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11 Introduction 

Chapter 1 

INTRODUCTION 

Seismic waves travelling through the Earth have given much information about the 
Earth's interior. Dependent as they are on the volume density and the elastic constants of 
the medium they pass, seismic waves are one of the most important tools a geophysicist can 
use in determining the distribution of these physical parameters through the Earth. Using 
this tool seismologists have been able to visualize even the deepest parts of the Earth, while 
exploration geophysicists have been able to describe many complicated geological 
structures, such as hydrocarbon reservoirs, in the Earth's upper part. 

In the interpretation of seismic data it is often assumed that the medium being studied 
is isotropic with respect to elastic wave propagation. Even if the medium is actually 
anisotropic, i.e. the velocities and displacements of the waves depend on the direction of 
wave propagation, the assumption of isotropy may often be used if only P-wave data 
(which are only slightly affected by anisotropy) are considered (Krey and Helbig, 1956). 
Because in most seismic studies carried out until recently only P-waves were used 
anisotropy could often be ignored. 

In the last few years, however, a considerable increase in the use of shear waves, 
which are much more affected by anisotropy than P-waves, can be noted. Consequently, 
there is a growing amount of seismic data showing the effects of anisotropy (Crampin, 
1987). If these data would still be interpreted using the assumption of isotropy one might 
end up with erroneous results. Only if the anisotropy is properly taken into account the 
correct interpretations are obtained. Moreover, information about the cause of anisotropy, 
which is often an internal structure of the rocks, such as aligned inclusions or fine layering, 
with dimensions much smaller than the seismic wavelengths used, might be obtained then. 
Considering the many anisotropy observations being reported in seismic data, nowadays, 
much effort should be paid to study all characteristics and applications of anisotropy. With 
this in mind the research as described in this thesis, which is aimed at a better 
understanding of the anisotropy caused by aligned inclusions, has been carried out. 

In the last decade much attention (in particular by Crampin and co-authors) has been 
paid to the anisotropy shown by media containing distributions of stress-aligned (normal to 
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the minimum compressional stress) circular cracks (e.g. Crampin, 1978, 1981, 1984, 1985, 
1987). Although there are other causes of seismic anisotropy, such as aligned crystals, 
sequences of thin layers, etc. (Crampin, Chesnokov and Hipkin, 1984) many anisotropy 
observations only seem explicable by assuming distributions of stress-aligned cracks. 
Because crack-induced anisotropy has been identified in many types of rocks (e.g. igneous, 
metamorphic, and sedimentary rocks) stress-aligned cracks are assumed to pervade most 
rocks in the Earth's crust. These fluid-filled cracks (which have dimensions ranging from a 
few tens of micrometres in igneous and metamorphic rocks to a few millimetres in 
sedimentary rocks) are strongly affected by stress changes: not only their direction might 
be changed, but their shape, number or the fluid inside the cracks might be changed as well 
(Crampin, 1987). Therefore, studying variations of crack-induced anisotropy in terms of 
changes of the crack configuration might become an important technique to monitor the 
stress field. Such a technique would have important applications in both seismology 
(earthquake prediction) and exploration geophysics (monitoring the internal structure of 
hydrocarbon reservoirs). 

Such studies can of course only be carried out if the characteristics of the anisotropy 
shown by media containing aligned inclusions are understood. For this reason several crack 
models have been derived in the past. One of the most 'popular' models that has often been 
used to explain observed anisotropy is Hudson's (1980, 1981) crack model. This model is 
based on the scattering of elastic waves by the cracks. A major assumption in this and most 
other crack models is the small aspect ratio a of the inclusions. (If a rotationally 
symmetrical ellipsoidal inclusion, having two equal semi-axes with length a and one semi­
axis with length b, is considered (Fig. 1.1) the aspect ratio a is defined as a = b/a). 
However, with the growing amount of evidence that the aspect ratio of the inclusions in the 
Earth is not necessarily small (Crampin, McGonigle and Ando, 1986b) and that it probably 
is the most important crack parameter being affected by stress changes (peacock, Crampin, 
Fletcher and Booth, 1988) a model that can describe the anisotropy due to inclusions with 
large aspect ratios is needed. One of the models that can deal with large aspect ratios is 
Nishizawa's (1982) model. Unlike Hudson's model (which is based on the scattering of 
elastic waves) Nishizawa's model is based on a static approach. (For unknown reasons 
many people working in the field of anisotropy have been unaware of Nishizawa's method, 
which is a refinement of a (better-known) method presented by Anderson, Minster and 
Cole (1974)). In this thesis the consequences of Nishizawa's model for wave propagation 
in cracked media are studied. 

In chapter 2 of this thesis the characteristics of the anisotropy (i.e. transverse 
isotropy) as described by Nishizawa's (1982) model are shown. These results are shown for 
rotationally symmetrical ellipsoidal inclusions ranging from flat cracks (a 4:: 1) up to 
spherical inclusions (a = 1). Moreover, the range of aspect ratios for which Nishizawa's 
(1982) model and Hudson's (1980,1981) model are similar is studied in this chapter. This 
range, which appears to include not only small aspect ratios, is indicative (assuming the 
validity of Nishizawa's method) of the range of cracks for which Hudson's model (despite 
its small-aspect-ratio assumption) can still be used. From this it can be concluded whether 
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Fig. 1.1. Rotationally symmetrical ellipsoidal inclusion having two equal semi-axes with length a 
and one semi-axis with length b. The aspect ratio a of such an inclusion is defined as a = bfa. 

experiments (such as described by Crampin et aI., 1986b) in which Hudson's model is used 
to model cracks with aspect ratios that violate Hudson's small-aspect-ratio-assumption 
should be revised or not. 

In chapters 3 and 4 it is investigated whether the anisotropy effects shown by media 
containing aligned inclusions (as described by Nishizawa's and Hudson's model) can also 
be explained by media containing slip interfaces (simulating a fracture system composed of 
large, closely spaced, aligned joints) or by media containing sequences of thin isotropic 
layers. An eventual identity of the resultant anisotropy would imply that whenever such 
anisotropy is observed additional (e.g. geological) information is needed to obtain the 
actual cause of the anisotropy. Differences in the resultant anisotropy, however, would 
make it possible to derive methods to separate the cause of anisotropy. One of such 
methods, aimed at separating aligned cracks and sequences of thin isotropic layers as 
possible causes of anisotropy, is presented in chapter 4. 

In anisotropic media there are three body waves with different velocities and with 
mutually orthogonal polarizations in every direction of phase propagation. In general none 
of these waves has a polarization parallel (longitudinal direction) or perpendicular 
(transverse direction) to the wave normal. For weak anisotropy, however, the polarization 
of the waves is close to these directions and, therefore, there are a quasi-longitudinal wave 
and two quasi-shear waves. Consequently, shear waves on entering an anisotropic medium 
generally split up into two quasi-shear waves: a fast and a slow one. This shear-wave 
splitting has often been used to interpret anisotropy observations. For cracked media the 
time delay between both quasi-shear waves and the polarization of the first-arriving quasi­
shear wave have been used to derive estimates on the densities and directions of the aligned 
cracks, respectively (Crampin, Bush, Naville and Taylor, 19800). Because the polarizations 
of shear waves recorded at the free surface may seriously be distorted by free-surface 
effects the preferred data acquisition method to study shear-wave splitting is three­
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component Vertical Seismic Profiling (VSP). In VSP measurements where the receivers are 
located in the subsurface, shear waves do not suffer from disturbing free-surface effects. 

The research described in chapter 5 shows that one should be cautious in interpreting 
shear-wave splitting, shown by VSP measurements, only in terms of anisotropy. It is 
described how even an isotropic medium containing steeply dipping interfaces may show 
shear-wave splitting in such measurements. 

In the last two chapters of this thesis the effect of anisotropy on synthetic multi-offset 
VSP is studied. In chapter 6 it is investigated how multi-offset shear-wave VSPs carried out 
in media containing aligned inclusions change for a changing aspect ratio of the inclusions. 
Such research may have important applications because, as stated earlier, the aspect ratio is 
probably the crack parameter most likely to be modified by stress changes. If temporal 
anisotropy changes (such as reported by Peacock et al. (1988» observed in repeated shear­
wave VSPs can be interpreted in terms of a changing aspect ratio, temporal stress changes 
could be monitored. In chapter 6 synthetic VSP datasets are constructed and methods to 
recognize aspect ratio changes in these data are described. 

At the end of this thesis (chapter 7) traveltime inversion methods are applied to 
synthetic multi-offset VSP traveltime data that were calculated (using anisotropic ray 
tracing) for a simple two-layered transversely isotropic model. First an inversion scheme 
based on isotropy is applied to these 'anisotropic' traveltimes. It is investigated how such 
an inversion scheme (with its wrong assumption) distorts the interface (separating the 
layers in our model) which it is inverting for. The results of this study describe the type of 
errors that may be expected when standard inversion schemes (based on the assumption of 
isotropy) are applied to VSP data obtained in anisotropic media without taking anisotropy 
into account. In the second part of chapter 7, however, inversion schemes are developed 
that do take anisotropy into account. They are aimed at determining both the elastic 
constants and the structures of transversely isotropic media. 
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Chapter 2 

THE EFFECT OF THE ASPECT RATIO ON 
CRACK-INDUCED ANISOTROPY 

AnSTRACf 

Media contammg aligned cracks show anisotropy with respect to elastic wave 
propagation. There are several models describing the wave propagation in cracked media, 
most of them only valid for cracks with small aspect ratios. One of these models (Hudson's 
model) is compared with a model valid for all aspect ratios (Nishizawa's model). The 
elastic constants and the group velocities are compared for both dry and liquid-filled 
inclusions with aspect ratios ranging from 0.0001 (flat cracks) up to 1 (spheres). The 
difference between both models is small for small aspect ratios but becomes larger for 
increasing aspect ratios. At a crack density of 0.05 both models give-within an error of 
5%-the same results for aspect ratios up to 0.3. Therefore Hudson's model can be applied 
to a large range of cracked media even if the aspect ratio of the inclusions is not very small. 
The variation of the anisotropy as a function of the aspect ratio can be studied using 
Thomsen's dimensionless parameters 0, E, and y. They show how inclusions with large 
aspect ratios result in elliptical anisotropy. 

This chapter has been published as: 

Douma, J. 1988. The effect of the aspect ratio on crack-induced anisotropy. Geophysical Prospecting 36, 614-632. 
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2.1 INTRODUCfION 

Anisotropy with respect to elastic wave propagation is becoming important in 
geophysical research nowadays. Seismic anisotropy was already studied more than 30 
years ago (postma, 1955; Helbig, 1956, 1958), but for a long time its effect was considered 
to be negligible. Helbig (1984) pointed out this was because most of the seismic data 
recorded were P-wave reflection data obtained for P-waves travelling at small angles 
against the vertical axis of the medium. In a transversely isotropic medium with a vertical 
axis of symmetry (e.g. caused by thin horizontal layering), such P-waves (and thus most of 
the reflection seismic surveys) would only be slightly affected (Krey and Helbig, 1956). 
This is the main reason why most seismic surveys could be carried out without taking the 
effect of anisotropy into account. However, for special acquisition geometries (like Vertical 
Seismic Profiling (V.S.P.)) where large angles of incidence may occur the effect of 
anisotropy still had to be taken into account (Uhrig and Van Melle, 1955). 

During the last few years it has been realized that anisotropy can play an important 
role in seismic exploration. This is primarily due to the increasing use of shear waves, 
which are much more sensitive to anisotropy than P-waves (Crampin, Chesnokov and 
Hipkin, 1984). Without taking anisotropy into account it is often difficult to interpret 
shear-wave data (Alford, 1986). Secondly, it is due to the quantity of information that can 
be derived from shear waves showing anisotropy effects (Crampin (1985) claims that there 
is at least three times as much information in shear waves than in P-waves). Crampin shows 
in many papers how shear-wave splitting can be used to find the orientation and crack 
density of aligned circular cracks. Because these cracks may exist in hydrocarbon 
reservoirs this information may be of great importance in evaluating these reservoirs 
(Crampin, 1987). Cracks are also assumed to play an important role in earthquake 
prediction (Crampin, Evans and Atkinson, 1984). It is believed that the geometry of cracks 
will change due to variations in the stress field just before an earthquake takes place. 
Consequently, the resulting anisotropy may also change. If temporal changes in this 
anisotropy could be observed, it might be possible to monitor the build up of stress 
preceding an earthquake. 

Recently anisotropy effects have been observed in seismic data and have been 
attributed to aligned cracks, although many other possible causes of anisotropy (e.g. thin 
layering, aligned crystals, aligned grains, etc.) may exist (Crampin, 1987). This could only 
be justified after theoretical models describing the wave propagation in cracked media had 
been developed and the results compared with experimental data. It turned out that many of 
the anisotropy effects observed in the Earth's crnst could be modelled by cracked media. In 
the . comparison between modelled and real data, hodograms and velocity variation 
diagrams were used. From the best fit the parameters describing the cracks (e.g. crack 
density, aspect ratio, and the orientation of the cracks) were estimated (Crampin, 
McGonigle and Bamford, 1980; Crampin, McGonigle and Ando, 1986) 

However, a number of problems has to be solved before an inversion for these 
parameters will have a high level of confidence. Some of these problems were pointed out 



19 Effect ofaspect ratio on anisotropy 

at the workshop on anisotropy held at the 49th E.A.E.G. Meeting in Belgrade, 1987. (The 
papers presented at this workshop will be published in a special issue of Geophysical 
Transactions, Eotvos Lorand Geophysical Institute of Hungary.) There are, for example, 
serious practical problems with respect to the construction of reliable hodograms from 
three-component V.S.P. measurements and problems as to whether the two shear waves 
travel along the same raypath (as assumed in many anisotropy analyses). Moreover, it is 
even possible to have polarization effects in isotropic media that might be misinterpreted as 
anisotropy effects (Douma and Helbig, 1987). 

Apart from these problems which may complicate the estimation of the crack 
parameters from experimental data, the theory used to describe the wave propagation in 
cracked media is also critical. Different theories may result in different crack parameters 
describing the same data. Therefore, it is important to know the limitations of each theory. 
We here investigate a theory valid for all aspect ratios of the cracks and compare it with 
one often used to describe the wave propagation in cracked media, but only valid for small 
aspect ratios. 

2.2 FLAT CRACK MODELS 

Several theories have been developed to calculate the effective elastic constants of 
media containing aligned circular cracks. All assume that the dimensions of the cracks are 
small with respect to the seismic wavelengths used. The theories that have often been used 
in geophysics are due to Garbin and Knopoff (1973, 1975a, b), and Hudson (1980, 1981). 
They are all based on the scattering of waves at the cracks. These theories have been used 
(Crampin, 1978, 1984; Crampin et al., 1980, 1986) to analyse wave propagation in cracked 
media and to explain observed anisotropy. The basic assumptions of these theories are that 
the cracks are in dilute concentration and have small aspect ratios. 

A theory that is valid for large concentrations of cracks has been proposed recently by 
Thomsen (1988) and is based on the work of Hoenig (1979), who calculated the elastic 
constants of a cracked medium using a self-consistent approach. In such an approach the 
interactions between the cracks are taken into account by estimating the behaviour of a 
single crack in the composite medium as that of a single crack in the equivalent 
homogeneous medium. Although Hoenig's model is not restricted by the assumption of a 
dilute concentration of the cracks, it does assume a small aspect ratio of the cracks, just like 
the other models mentioned. Therefore we call them 'flat crack models' (Thomsen (1988) 
has compared some of these models). In a review on rock physics Yale (1985) considers 
the assumption of small aspect ratios a serious drawback of these models which should not 
exist anymore in future models. Apparently, Yale (1985) was unaware of theories that do 
model large aspect ratios correctly. 
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2.3 ELLIPSOIDAL INCLUSION MODELS 

Anderson, Minster and Cole (1974) and Nishizawa (1982) presented models that 
calculate the effective elastic constants of media containing aligned ellipsoidal inclusions. 
(Note that there are some misprints in Nishizawa's (1982) paper: to use the equations for 
Gijkl in the appendix of that paper Nishi~wa's ~q. (9) ~hould be divided by 81t, the term 41t 
in (10) should be omitted and note that Gijkl = Gjik1 = Gijlk .) A small size of the inclusions 
with respect to the wavelengths used is assumed. The ellipsoids have two equal semi-axes 
with length a, whereas the third axis (the axis of rotational symmetry) may have any length 
b. The ratio b/a is called the aspect ratio. Circular cracks are one limiting case of these 
ellipsoids for very small aspect ratios (b/a ~ 0). Unlike the flat crack models, Anderson's 
and Nishizawa's models are valid for all values of the aspect ratio. 

Because both models seem to be rather unknown we will shortly review them here. 
They are based on the results obtained by Eshelby (1957). Eshelby suggested a static 
approach to calculate the effective elastic constants of a medium containing aligned 
ellipsoidal inclusions. His approach is based on two hypothetical processes: 

1. introducing the inclusions keeping the surface tractions constant, and 
2. introducing the inclusions keeping the surface displacements constant. 

From the change in elastic energy of the medium due to these processes the elastic 
constants can be found. To avoid interactions between the inclusions their concentration 
has to be dilute. 

Anderson's model is based on Eshelby's second process of keeping the surface 
displacements constant. Nishizawa (1982) pointed out that Anderson would have obtained 
different results by using the first process. To avoid this discrepancy Nishizawa developed 
a numerical algorithm which can calculate the effective elastic constants even for large 
concentrations of ellipsoids. Considering a volume concentration of ellipsoids embedded in 
a homogeneous background material the effective elastic constants of the background 
material containing only a small portion of ellipsoids (in order to use Eshelby's equations 
which are only valid for dilute concentrations of ellipsoids) are calculated. Then a small 
portion of the remaining concentration of ellipsoids is added to the resultant anisotropic 
medium calculated in the first step and the effective constants are calculated again. This 
process is repeated until the effect of the total concentration of inclusions has been 
calculated. 

We compare Nishizawa's method with Hudson's flat crack model (Hudson, 1980, 
1981). Hudson's model, based on the scattering of elastic waves by the cracks, has been 
derived for first- (no mutual interactions between the cracks) and second-order (crack-crack 
interactions are accounted for) terms in the crack density. Throughout this paper first- and 
second-order terms have been included when Hudson's model is used. The purpose of a 
comparison between Nishizawa's and Hudson's model is to obtain the aspect ratios for 



21 Effect ofaspect ratio on anisotropy 

which both models result in the same anisotropy. This will indicate the range of aspect 
ratios for which Hudson's flat crack model is valid. The need to know this range becomes 
clear when velocity variations in cracked media are studied for different aspect ratios using 
Hudson's model, although it is realized that the results may be suspect for large aspect 
ratios (Crampin et al., 1986). When it is known for what range of aspect ratios Hudson's 
model is valid, it can be judged whether the results of these studies should be corrected or 
not 

Further, Nishizawa's model is carefully studied to gain a better understanding of the 
role the aspect ratio of the cracks plays in the resultant anisotropy of cracked media. 
Although Crampin (1987, Table 1) shows that there are many parameters influencing the 
anisotropy, the aspect ratio is probably one of the most important parameters (Crampin, 
1987). 

2.4 WAVE PROPAGATION IN CRACKED MEDIA 

A medium containing aligned circular cracks or aligned ellipsoidal inclusions can be 
replaced by a homogeneous transversely isotropic medium. Transverse isotropy is a 
special case of anisotropy and is described by five independent elastic constants, whereas 
anisotropy in general is described by up to 21 independent constants. Media having an axis 
of rotational symmetry which may be oriented in any direction show transverse isotropy. If 
this axis is not vertical this type of anisotropy is sometimes called 'azimuthal anisotropy' 
(Crampin, 1986). 

Once the effective elastic constants of such a medium are known (e.g. when they have 
been calculated with one of the theoretical models described earlier) the characteristics of 
wave propagation through this medium can be modelled. Many such studies have been 
carried out (Helbig, 1958; Keith and Crampin, 1977a. b, c, and Crampin, 1981). We will 
summarize their main features. 

In anisotropic media there are three body waves in every direction of phase 
propagation with mutually orthogonal displacements. In general, none of the waves has a 
polarization parallel (longitudinal direction) or perpendicular (transverse direction) to the 
wave normal. For weak anisotropy, however, the polarization of the waves is close to these 
directions and, therefore, there are a quasi-longitudinal wave (qP-wave) and two quasi­
transverse waves (qSl- and qS2-wave). In any symmetry plane of the medium the 
polarization of the qP-wave and one of the quasi-transverse waves (called qSP) are parallel 
to this plane whereas the other quasi-transverse wave (called qSR) is polarized 
perpendicular to the plane. qP-, qSP-, and qSR-waves are studied in this paper. 

All three waves have different velocities which depend on the angle between the wave 
nonnal and the symmetry axis of the medium. Two velocities can be used to describe wave 
propagation in anisotropic media: the phase velocity normal to the wavefront and the group 
velocity - the velocity of energy propagation. The exact fonnulae relating these quantities 
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to the elastic constants can be found in the references mentioned above. 
The exact formulae for transverse isotropy contain five independent elastic 

parameters. This number can be reduced to four by using dimensionless parameters. In 
recent studies (Thomsen, 1986) approximate formulae were derived for weak: transverse 
isotropy containing only three dimensionless parameters. These formulae give the 
linearized phase velocities v(S): 

(la) 

[ . 2 2Vp2]Vqsp(S) ::: Vs 1+ v§ (e - o)sm Scos S (lb) 

(lc) 

where Vp = (C3?!pJ1f1 and Vs = (c,wpJ1f1 are the velocities along the symmetry axis 
(assumed to be directed along the x3-axis), Pc is the density of the effective medium, S the 
angle between the wave normal and the symmetry axis, and C33 and C44 are elements of the 
elastic tensor denoted compactly according to the Voigt nomenclature (see e.g. Thomsen 
(1986». 

The anisotropy parameters 0, e, and yare combinations of elastic constants: 

(2a) 

(2b) 

(2c) 

As stated by Thomsen (1986) there is no reason to use these linearized expressions for 
computational purposes but they are useful because their simplicity in form aids in the 
understanding of the effect of anisotropy. The parameters are all zero for isotropic media 
and their deviation from zero can be regarded as a degree of anisotropy. The parameters 0, 
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E, and 'Y are easy to derive and interpret. 
Equations (1a)-(lc) show that the parameter E represents the relative difference 

between the qP-phase velocities perpendicular and parallel to the axis of symmetry: 

(3a) 

'Y represents this difference for the qSR-waves: 

(3b) 

Finally, the parameter 8 is: 

(3c) 

and can thus be obtained from measurements at e = 0°, 45°, and 90°. Because the 
parameters 8, E, and 'Y can easily be estimated from real data the modelling of observed 
weak anisotropy is simpler with (1a)-(1c) than with most of the other (exact) formulae for 
phase velocities which need estimates of the elastic constants. 

As shown by Thomsen (1986) 8, E, and 'Y are < 0.2 for weak-to-moderate anisotropy. 
Furthermore, as shown by (1a), 8 dominates most anisotropy effects at small angles e for 
qP-waves (unless E:> 8), whereas E does this at e close to rc(2. 

Finally, Thomsen states that elliptical anisotropy will be observed if 8 equals E. 

Rudzki (1911) showed that such a type of anisotropy implies ellipsoidal qP-wavefronts 
while the qSP-wavefronts become spherical. Berryman (1979) and Helbig (1979) showed 
that elliptical anisotropy can never be caused by thin-layered isotropic media. The 
significance of elliptical anisotropy in exploration geophysics has been discussed by Helbig 
(1983). 

Because the parameters 8, E, and 'Yare easily interpretable and give a comprehensive 
view on anisotropy we used them to model and study the variation of the anisotropy as a 
function of the aspect ratio. 
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2.5 NUMERICAL RESULTS AND DISCUSSION 

In this section we compare Nishizawa's ellipsoid model with Hudson's flat crack 
model. Nishizawa's model is also studied in terms of the parameters 0, E, and y. 

The comparison is carried out for dry and liquid-filled inclusions. Both types of 
inclusions are investigated because they have often been used to model experimental data 
(e.g. Crampin et aI., 1986). The dry inclusions have Lame constants Al = III = 0, whereas 
the liquid-filled inclusions have Lame constants Al = 15 kbar and III = O. The isotropic 
background material is the same as used by Crampin (1984), i.e. its density Pb = 2.6 g cm-3 

and its Lame constants are A.z =291.4 kbar and Jlz =291.6 kbar (corresponding to a P-wave 
velocity of 5.8 km S-I and a S-wave velocity of 3.349 km S-I). Different crack densities e 
are studied. Two possible expressions for the crack density e are: 

Na 3 

e=-- (4)
V 

or 

3<11 e=-- (5)
41[(1 

where N is the number of cracks of radius a in a volume V, <II the total volume of the 
inclusions, and (1 their aspect ratio. 

2.5.1 Comparison ofelastic constants 

First the resultant elastic constants calculated with Nishizawa's and Hudson's model 
are compared (a similar comparison between Nishizawa's model and a joint model was 
carried out by Schoenberg and Douma (1988)). We define their normalized 'Euclidean 
distance' D as the root mean square of the normalized differences between the five 
independent elastic constants calculated with Nishizawa's model (cit eft c~, c~, ci::;) and 
Hudson's model (c~, cfJ, c~, c~, cfi,). The normalization is carried out with the elastic 
constants of the background material (cfl' Cf3' C~3' ct, cit;): 
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Fig. 2.1. Nonnalized distance D between Nishizawa's and Hudson's model as a function of the 
aspeet ratio a of a) dry inclusions and b) liquid-filled inclusions embedded in an isotropic 
backgrmmd medium. The results are shown for three crack densities e =0.001 (--), e =0.01 
(---), and e = 0.05 (. -. -). 

In Fig, 2.1 the distance D is calculated for three crack densities e = 0.001, 0.01, and 0.05 
for aspect ratios ranging from <X = 0.0001 (almost flat cracks) up to <X = 1 (spheres). In Fig. 
2.1a the result is shown for dry inclusions and in Fig. 2.1b for liquid-filled inclusions. Both 
figures show that the distance D is small for small aspect ratios but increases for increasing 
aspect ratio. Moreover, D increases for increasing crack density. If we consider D = 0.05 to 
be the upper limit for which Hudson's and Nishizawa's model give similar results, both 
Figs 2.1a and 2.1b show that this limit is reached at aspect ratios around <X = 0.3 for a crack 
density e = 0.05. It is clear from both figures that the distance is not sensitive to the type of 
inclusion. Thus, for a large range of aspect ratios both models give the same results. We 
will call this range of aspect ratios the 'crack range'. This crack range is large for small 
crack densities, but becomes smaller for increasing crack densities. 

2.5.2 Comparison of the group velocities 

Although the comparison of elastic constants shown in Figs 2.1a and 2.lb gives 
insight in the differences between Hudson's and Nishizawa's model, it is also instructive to 
compare the velocities resulting from both models. Modelled velocities (either phase- or 
group velocities) are often used to explain observed velocity variations in real data, and 
therefore, it is important to know how large the difference between the velocities calculated 
with both models is and at what angles this occurs. The velocity studied here is the group 
velocity, because this is the velocity of energy transport wich is generally calculated from 
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Fig. 2.2. The group velocity of the qP- (a, d). qSP- (b, e), and qSR-waves (c, f) travelling through 
an isotropic medium containing liquid-filled inclusions as a function of the angle (in degrees) 
between the ray direction and the symmetry axis of the effective medium. The upper figures (a, b, 
and c) are calculated with Hudson's model and lower ones (d, e. and f) with Nishizawa's model. 
Four aspect ratios of the inclusions are considered: a. = 0.0001 (..... '), a. = 0.01 (. -. - '), a. = 0.1 
(----), and a. = 0.5 (---). The crack density of the inclusions is e = 0.05 

the arrival times of body waves. 
To calculate the velocity not only the elastic constants of the effective medium need to 

be known but its density Pe as well. If the total porosity <I> of the inclusions is small this 
density can very well be approximated by the density Pb of the background material (i.e. Pc 
= Pb = 2.6 g cm-3

). However, for large porosities the density of the effective medium 
changes if the density of the inclusions is different from that of the background. Changes in 
the effective density should be taken into account in the calculation of the velocities. 
However, to study only the influence of the aspect ratio on the velocity we will first assume 
a constant effective density (Pc = 2.6 g cm-\ 

Consider the liquid-filled inclusions embedded in the isotropic background medium. 
Let the crack density be e = 0.05. In the Figs 2.2a-c the resultant group velocities of the 
qP-, qSP-, and qSR-waves calculated with Hudson's model are shown, respectively, as a 
function of the angle against the symmetry axis. Figures 2.2d-f show the same for 
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Fig. 2.3. As for Fig. 2.2. but for dry inclusions. 

Nishizawa's model. In each figure the group velocity is calculated for four aspect ratios Le. 
a = 0.0001, 0.01, 0.1, and 0.5. Comparing the upper and lower figures it can be seen that 
both models give almost the same results for the small aspect ratios a =0.0001 and a = 
0.01. However, for the two larger aspect ratios a = 0.1 and a = 0.5, there is an increasing 
difference between the results of both models. In spite of this difference the variation of the 
group velocities as a function of the ray direction does not change much for increasing 
aspect ratios. This seems to confirm Crampin's assumption that the overall pattern of the 
velocity variations for large aspect ratios would be similar to that for small aspect ratios, 
although the exact values may be different (Crampin et aI., 1986). 

Figures 2.2d-f also show that an increasing aspect ratio tends to reduce the group 
velocity. Nishizawa's model shows that this is even true for the qSR-waves which do not 
show a dependence on the aspect ratio for Hudson's model. 

The same calculations have been carried out for dry inclusions. The results are shown 
in Fig. 2.3, which confirms the conclusions drawn from Fig. 2.2: both models give almost 
the same results for small aspect ratios, whereas a difference between the results arises for 
large aspect ratios. Note, however, that for Hudson's model none of the waves (qP, qSP, 
and qSR) shows a dependence of the group velocity on the aspect ratio, whereas for 
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Fig. 2.4. NOITIlalized difference between the qP-group velocities calculated with Hudson's and 
Nishizawa's model as a function of the ray direction. Three crack densities are studied: e = 0.01 
(a and d), e = 0.03 (b and e), and e =0.05 (c and f). Figures a, b, and c show the results for dry 
inclusions and figures d, e, and f for liquid.filled inclusions. 

Nishizawa's model such a dependence exists for each of them. 
The velocities of the media studied here are typical for basement forming material. 

Calculations carried out for sedimentary rocks (but not shown here) give the same 
similarities and differences between both models as observed in this section. 

2.5.3 Normalized difference between group velocities 

To study the exact values of the differences in group velocity between both models we 
calculated, for each wave (qP, qSP, and qSR), the normalized difference DNIie) defined as: 

[vHUdS(e) - VNishce)] 
DNHce) = (7)

VHudsce) 
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Fig.2.5. As for Fig. 2.4, but for the qSP-group velocity. 

where VHuds(S) and VNish(S) denote the group velocities calculated with Hudson's and 
Nishizawa's model, respectively. This was done for three different crack densities e = 0.01, 
0.03, and 0.05 for both dry and liquid-filled inclusions. In Fig. 2.4 the results are shown for 
the qP-wave. The upper Figs 2.4a-c are calculated for the dry inclusions and the lower Figs 
2.4d-f for the liquid-filled inclusions. Figures 2.4a-f show that there is hardly any difference 
between the results when either dry or liquid-filled inclusions are studied. They also show 
more quantitatively than Figs 2.2 and 2.3 that the difference between Hudson's and 
Nishizawa's model is almost zero for small aspect ratios but increases for larger aspect 
ratios. The differences also increase for increasing crack density and angle of incidence. In 
general, most of the differences are smaller than 0.05 indicating that for most of the crack 
parameters studied there is a good correspondence between the two models. Only for large 
aspect ratios ex and large crack densities e (e.g. ex = 0.5 and e = 0.05) this correspondence 
starts to fail. 

The same calculations have been carried out for qSP-(Fig. 2.5) and qSR-waves (Fig. 
2.6). They all show the same characteristics as for the qP-waves (Fig. 2.4), except that 
qSP-waves always have a maximum difference at S = 45°, whereas qP- and qSR-waves 
have such a maximum at S = 90°. 
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Fig. 2.6. As for Fig. 2.4, but for the qSR.group velocity. 

2.5.4 The influence ofthe effective density on the group velocity 

The results of Figs 2.4-2.6 are not influenced by a change in the density Pe of the 
effective medium. because the ratio DNH(S) does not depend on the density Pe. However, 
Figs 2.2 and 2.3 would be influenced by such a change. In these figures the density was 
assumed constant to isolate the effect of the aspect ratio on the group velocity. Therefore, 
the magnitudes of the velocities shown may be in error. The correct value of the effective 
density is 

(8) 

where Pet Pb. and Pi are the densities of the effective medium, background material, and the 
inclusion material, respectively, and <j> is the volume concentration of the inclusions. 

To study the effect of the density on the group velocities we calculated these velocities 
for our background medium containing liquid-filled and dry inclusions. The results are 
presented in Figs 2.7 and 2.8, respectively. Figures 2.7a-c and 2.8a-c show the group 
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Fig. 2.7. The group velocities of the qP- (a and d), qSP- (b and e), and qSR-waves (c and 0 
travelling through an isotropic medium containing liquid-filled inclusions as a function of the ray 
direction. The results are calculated with Nishizawa's model using a constant density of the 
effective medium (a. b, and c) and using the correct density (d, e, and 0. Four aspect ratios are 
considered: a. = 0.0001 (..... '), a. = 0.1 (.-.-.), a. = 0.5 (----), and a. = 1 (---). The crack 
density of the inclusions is e = 0.05. 

velocities assuming a constant density Pe, whereas Figs 2.7d-f and 2.8d-f show the results 
for the correct density Pe (calculated with equation (8». The densities Pi of the liquid-filled 
and dry inclusions were Pi = 0.93 g cm-3

, and Pi = 0, respectively. In both sets of figures 
the velocities were studied for four different aspect ratios a =0.0001, 0.1, 0.5, and 1 (i.e. 
the inclusions range from flat cracks to spheres). The crack density of the inclusions was e 
=0.05. 

A comparison between the results obtained for the correct density Pe with those 
calculated for a constant density Pe shows that the velocities increase when the correct 
density is taken into account. This effect is negligible for small aspect ratios but becomes 
strong for large aspect ratios. 

Such a phenomenon can be explained by a reduction in the effective density Pe' That 
this reduction is zero for small aspect ratios but becomes significant for larger aspect ratios 
becomes clear from (8) which shows that Pe starts to deviate from Pb for increasing 
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Fig. 2.8. As for Fig. 2.7, but for dry inclusions.
 

inclusion porosity <1>. This is only true if Pi :t- Pb (with significant difference) as in our 
situation. At a constant crack density an increasing porosity can only be obtained if the 
aspect ratio increases (see (5)). 

From Figs 2.2 and 2.3, calculated at a constant density Pe = Pb' we concluded that the 
group velocities were reduced by an increasing aspect ratio. From Figs 2.7 and 2.8 we now 
conclude that a large part of this reduction vanishes due to the decreasing value of the 
effective density Pe for larger aspect ratios. As might be expected, this density Pe has the 
strongest effect on the results of dry cracks (Fig. 2.8), because then the density of the 
inclusion material (Pi = 0) differs most from the density of the background medium. 

Both Figs 2.7 and 2.8 show that the effective medium is isotropic when the inclusions 
are spherical (ex = 1). The velocities no longer depend on the ray direction and there are 
only two different velocities: the velocity of the qP-waves and the velocity of the qSP-wave 
that is equal to that of the qSR-wave. 
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Fig. 2.9. The anisotropy parameters & (._._.), E (----), and 'Y(--~)calculated with 
Nishizawa's model as a function of the aspect ratio of dry (a and b) and liquid-filled inclusions (c 
and d). The results are shown for two crack densities e = 0.01 (a and c) and e = 0.05 (b and d). 

2.5.5 Anisotropy analysis using the parameters 0, e, and y 

At the end of this section on numerical results we evaluate the anisotropy due to 
aligned ellipsoidal inclusions by calculating Thomsen's parameters 0, e, and y. Nishizawa's 
model is used to calculate the elastic constants. In Fig. 2.9 the results are shown for dry 
(Figs 2.9a and 2.9b) and liquid-filled inclusions (Figs 2.9c and 2.9d) at two different crack 
densities e = 0.01 and 0.05. The aspect ratio of the inclusions varies from a. = 0.0001 (flat 
cracks) up to a. =1 (spheres). Figure 2.9 shows that the absolute values of 0, e, and yare 
within the range 0 - 0.2, indicating that we are dealing with weak-to-moderate anisotropy 
(Thomsen, 1986). These values increase for increasing crack density as might be expected. 
They all become zero for an aspect ratio a. = 1 (spherical inclusions), corresponding to an 
isotropic situation. 

Note that for dry inclusions the values of S, e, and y have a non-zero constant value for 
a large range of aspect ratios and only go to zero for large aspect ratios. Thus for a large 
group of dry inclusions the resultant anisotropy is hardly affected by a change in aspect 
ratio. This conclusion corresponds to Fig. 2.3 which shows for dry inclusions a very small 
variation in group velocities for small aspect ratios. 
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However, the liquid-filled inclusions show a large variation of the parameters 8 and E 

(Figs 2.9c and 2.9d) with the aspect ratio. Because both parameters are related to the qP­
and qSP-wave velocities (see (Ia) and (lb)) this variation corresponds to a strong 
dependence of the qP- and qSP-group velocity on the aspect ratio (as seen in Fig. 2.2). 
Since the parameter y (related to the qSR-wave) is constant for a large range of aspect 
ratios (especially for small aspect ratios), the group velocity of qSR-waves is not strongly 
affected by (small) aspect ratios (see Fig. 2.2). 

For all the situations studied the values of E and y are positive, indicating that the 
phase velocities of the qP- and qSR-waves perpendicular to the axis of symmetry are 
always larger than those along this axis. For liquid-filled inclusions the value of E goes to 
zero for very small aspect ratios, indicating that the difference between the qP-phase 
velocities in both directions also goes to zero. Figure 2.2d shows this effect for the qP­
group velocity at small aspect ratios. Figures 2.9a and 2.9b show this effect does not occur 
for dry inclusions where the parameter E is non-zero for small aspect ratios. 

Finally, Fig. 2.9 shows an interesting feature of the anisotropy caused by ellipsoidal 
inclusions, i.e. the parameters 0 and E are equal for aspect ratios ex:::: 0.3 up to ex = I for 
both liquid-filled and dry inclusions. This implies that the resultant anisotropy is elliptical, 
i.e. the qP- and qSR-wavefronts are ellipsoidal, while the qSP-wavefronts are spherical. 
Thus, we may conclude that media containing aligned ellipsoidal inclusions can be 
elliptically anisotropic. 

2.6 CONCLUSIONS 

This numerical study has shown that for a large range of aspect ratios of either liquid­
filled or dry inclusions Hudson's and Nishizawa's model give similar results. Significant 
differences between the results exist only for large aspect ratios and crack densities (i.e. ex 
> 0.3 and e = 0.05). 

Although Hudson's flat crack model is strictly valid only for small aspect ratios, it 
appears to model ellipsoidal inclusions with aspect ratios up to 0.3 reasonably well 
(considering a crack density e = 0.05). This implies that in the modelling of real data one 
may use Hudson's model even if the aspect ratios of the inclusions are not expected to be 
very small. For large aspect ratios and crack densities Nishizawa's model is more reliable 
and should be used. Otherwise Hudson's model is to be preferred because of its simple 
anal,ytical form and the possibility of studying wave attenuation effects (due to scattering), 
which can not be done with Nishizawa's model. 

For inclusions with large aspect ratios it is necessary to take the density of the 
effective medium into account. Otherwise the velocities modelled will be too low. 

Finally, Thomsen's parameters 0, E, and y prove to be useful for gaining a good 
impression of the anisotropy caused by all kind of ellipsoidal inclusions. They show how 
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inclusions with large aspect ratios result in elliptical anisotropy. 

ACKNOWLEDGEMENT 

I thank K. Helbig for many discussions on the subject. 

2.7 REFERENCES 

Alford, R.M. 1986. Shear data in the presence of azimuthal anisotropy: Dilley, Texas. 56th S.E.G. 
Meeting, Houston, Expanded Abstracts, 476-479. 

Anderson, D.L., Minster, B. and Cole, D. 1974. The effect of oriented cracks on seismic velocities. 
Journal ofGeophysical Research 79, 4011-4015. 

Berryman, J.G. 1979. Long-wave elastic anisotropy produced in transversely isotropic media. 
Geophysics 44,869-917. 

Crampin, S. 1978. Seismic wave propagation through a cracked solid: polarization as a possible 
dilatancy diagnostic. Geophysical Journal ofthe Royal Astronomical Society 53, 467-496. 

Crampin, S. 1981. A review of wave motion in anisotropic and cracked elastic-media. Wave Motion 
3,343-391. 

Crampin, S. 1984. Effective anisotropic elastic constants for wave propagation through cracked 
solids. Geophysical Journal ofthe Royal Astronomical Society 76, 135-145. 

Crampin, S. 1985. Evaluation of anisotropy by shear-wave splitting. Geophysics 50, 142-152. 
Crampin, S. 1986. Anisotropy and transverse isotropy. Geophysical Prospecting 34, 94-99. 
Crampin, S. 1987. Geological and industrial implications of extensive dilatancy anisotropy. Nature 

328,491-496. 
Crampin, S., McGonigle, R. and Bamford, D. 1980. Estimating crack parameters from observations 

ofP-wave velocity anisotropy. Geophysics 45,345-360. 
Crampin, S., Chesnokov, E.M. and Hipkin, R.G. 1984. Seismic anisotropy: the state of the art. 

Geophysical Journal ofthe Royal Astronomical Society 76,1-16. 
Crampin, S., Evans, R. and Atkinson, B.K. 1984. Earthquake prediction: a new physical basis. 

Geophysical Journal ofthe Royal Astronomical Society 76, 147-156. 
Crampin, S., McGonigle, R. and Ando, M. 1986. Extensive-dilatancy anisotropy beneath Mount 

Hood, Oregon and the effect of aspect ratio on seismic velocities through aligned cracks. Journal of 
Geophysical Research 91, 12703-12710. 

Douma, J. and Helbig, K. 1987. What can the polarization of shear waves tell us. First Break 5 (3), 
95-104. 

Eshelby, J.D. 1957. The determination of the elastic field of an ellipsoidal inclusion, and related 
problems. Proceedings ofthe Royal Society, London, Series A, 241, 376-396. 

Garbin, RD. and Knopoff, L. 1973. The compressional modulus of a material permeated by a random 
distribution of free circular cracks. Quarterly ofApplied Mathematics 30, 453-464. 

Garbin, H.D. and Knopoff, L. 1975a. The shear modulus of a material permeated by a random 
distribution of free circular cracks. Quarterly ofApplied Mathematics 33, 296-300. 

Garbin, H.D. and Knopoff, L. 1975b. Elastic moduli of a medium with liquid-filled cracks. Quarterly 
ofApplied Mathematics 33,301-303. 

Helbig, K. 1956. Die Ausbreitung elastischer Wellen in anisotropen Medien. Geophysical 
Prospecting 4, 71-81. 



36 Chapter 2 

Helbig, K. 1958. Elastische Wellen in anisotropen Medien. Gerlands Beitriige zur Geophysik 67, 
177-211,256-288. 

Helbig, K. 1979. Discussion on 'The reflection, refraction, and diffraction of waves in media with 
elliptical velocity dependence' (F. K. Levin).Geophysics 44, 987-990. 

Helbig, K. 1983. Elliptical anisotropy-its significance and meaning. Geophysics 48,825-832. 
Helbig, K. 1984. Transverse isotropy in exploration seismics. Geophysical Journal of the Royal 

Astronomical Society 76, 79-88. 
Hoenig, A. 1979. Elastic moduli of a non-randomly cracked body. International Journal ofSolids and 

Structures 15,137-154. 
Hudson, I.A. 1980. Overall properties of a cracked solid. Mathematical Proceedings of the 

Cambridge Philosophical Society 88, 371-384. 
Hudson, I.A. 1981. Wave speeds and attenuation of elastic waves in material containing cracks. 

Geophysical Journal ofthe Royal Astronomical Society 64, 133-150. 
Keith, C.M. and Crampin, S. 1977a. Seismic body waves in anisotropic media: reflection and 

refraction at a plane interface. GeophysicalJournal ofthe Royal Astronomical Society 49, 181-208. 
Keith, C.M. and Crampin, S. 1977b. Seismic body waves in anisotropic media: propagation through 

a layer. Geophysical Journal ofthe Royal Astronomical Society 49,209-224. 
Keith, C.M. and Crampin, S. 1977c. Seismic body waves in anisotropic media: synthetic 

seismograms. Geophysical Journal ofthe Royal Astronomical Society 49,225-243. 
Krey, Th. and Helbig, K. 1956. A theorem concerning anisotropy of stratified media and its 

significance for reflection seismics. Geophysical Prospecting 4, 294-301. 
Nishizawa, O. 1982. Seismic velocity anisotropy in a medium containing oriented craCks-transversely 

isotropic case. Journal ofPhysics ofthe Earth 30, 331-347. 
Postma, G.W. 1955. Wave propagation in a stratified medium. Geophysics 20,780-806. 
Rudzki, M.P. 1911. Parametrische Darstellung der elastischen Welle in anisotropen Medien. Anzeiger 

der Akademie der Wissenschaften Krakau, 503-536. 
Schoenberg, M. and Douma, I. 1988. Elastic wave propagation in media with parallel fractures and 

aligned cracks. Geophysical Prospecting 36, 571-590. 
Thomsen, L. 1986. Weak elastic anisotropy. Geophysics 51, 1954-1966. 
Thomsen. L. 1988. Elastic anisotropy due to aligned cracks. Geophysical Journal of the Royal 

Astronomical Society (submitted). 
Uhrig, L.F. and Van Melle, F.A. 1955. Velocity anisotropy in stratified media. Geophysics 20, 774­

779. 
Yale, D.P. 1985. Recent advances in rock physics. Geophysics 50, 2480-2491. 



37 Parallel fractures and aligned cracks 

Chapter 3 

ELASTIC WAVE PROPAGATION IN MEDIA 
WITH PARALLEL FRACTURES AND ALIGNED 
CRACKS 

ABSTRACT 

A model of parallel slip interfaces simulates the behaviour of a fracture system 
composed of large, closely spaced, aligned joints. The model admits any fracture system 
anisotropy: triclinic (the most general), monoclinic, orthorhombic or transversely isotropic, 
and this is specified by the form of the 3 x 3 fracture system compliance matrix. The 
fracture system may be embedded in an anisotropic elastic background with no restrictions 
on the type of anisotropy. To compute the long wavelength equivalent moduli of the 
fractured medium requires at most the inversion of two 3 x 3 matrices. When the fractures 
are assumed on average to have rotational symmetry (transversely isotropic fracture system 
behaviour) and the background is assumed isotropic, the resulting equivalent medium is 
transversely isotropic and the effect of the additional compliance of the fracture system 
may be specified by two parameters (in addition to the two isotropic parameters of the 
isotropic background). Dilute systems of flat aligned microcracks in an isotropic 
background yield an equivalent medium of the same form as that of the isotropic medium 
with large joints, i.e. there are two additional parameters due to the presence of the 
microcracks which play roles in lhe stress-strain relations of the equivalent medium 

This chapter has been published as: 

Schoenberg, M. and Douma, J. 1988. Elastic wave propagation in media with parallel fractures and aligned cracks. 
Geophysical Prospecling 36, 571-590. 
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identical to those played by the parameters due to the presence of large joints. Thus, 
knowledge of the total of four parameters describing the anisotropy of such a fractured 
medium tells nothing of the size or concentration of the aligned fractures but does contain 
information as to the overall excess compliance due to the fracture system and its 
orientation. As the aligned microcracks, which were assumed to be ellipsoidal, with very 
small aspect ratio are allowed to become non-flat, i.e. have a growing aspect ratio, the 
moduli of the equivalent medium begin to diverge from the standard form of the moduli for 
flat cracks. The divergence is faster for higher crack densities but only becomes significant 
for microcracks of aspect ratios approaching 0.3. 

3.1 INTRODUCfION 

It is now clear that there are many regions of the subsurface (some say everywhere) 
showing azimuthal velocity anisotropy and this has been attributed to the presence of 
aligned vertical microcracks that arise because of tectonic stresses (see e.g. Crampin, 1985; 
Crampin and Atkinson, 1985; Willis, Rethford and Bielanski, 1986; Crampin and Bush, 
1986). That this Crampin model is the actual mechanism causing the azimuthal velocity 
anisotropy is difficult to say as drilling and coring in such a region distort the stress field 
locally and perhaps distort and close the cracks that existed in the undeformed rock. A set 
of robust parameters is needed to give (1) the orientation of the cracks and/or fractures in 
the subsurface, and (2) a measure of crack density times strength which could be called 
excess compliance due to the presence of cracks. Such a parameter set could be a valuable 
indicator of overall stress orientation, and the orientation and strength of the anisotropic 
part of the permeability tensor. Crack orientation, when cracks are vertical, can be simply 
determined by the splitting of vertically propagating shear waves. This occurs because of 
the azimuthal anisotropy induced by microcracks and fractures. The polarization of the 
faster propagating shear wave according to current theory is parallel to the fractures; the 
polarization of the slower propagating shear wave is perpendicular to the fractures. 

We compare theories that predict elastic anisotropy due to the presence of filled or 
empty ellipsoidal inclusions with one another and with a theory that predicts elastic 
anisotropy due to long (compared to wavelength) parallel joints or fractures. For inclusions 
with small aspect ratios (almost flat cracks), all the models agree with one another and in 
fact they are indistinguishable from the fracture model. The fracture model is exactly 
derivable as the limiting case of wave propagation through a region composed of 
alternating elastic layers. The results for anisotropic layers are reviewed in Section 3.2 and 
the derivation of the fracture model in its most general form and for special cases is 
presented in detail in Section 3.3. In Section 3.4, the simplest anisotropy attributable to 
'transversely isotropic' fractures in an isotropic background is compared in detail with the 
anisotropy due to systems of aligned flat microcracks. In both the anisotropy is 
characterized by two, positive, dimensionless parameters that play the same roles in the 
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stress-strain relations. The first depends on the tangential compliance of the joints or cracks 
and the second depends on the normal compliance. From a phenomenological point of view 
the behaviour of such systems of aligned flat cracks or parallel joints can be reduced to two 
numbers which, with the isotropic background moduli, determine the five elastic moduli of 
a transversely isotropic elastic medium. From the elastic moduli themselves nothing more 
specific concerning crack density, individual crack compliance or crack size can be found. 

However, in Section 3.5 it will be shown that for the ellipsoidal inclusions, as the 
aspect ratio becomes large (up to 1.0), the moduli derivable from the theory of ellipsoidal 
inclusions (Nishizawa, 1982) deviate from those obtainable from the flat crack or joint 
theories. This occurs at aspect ratios of about 0.3 for gas- or liquid-filled inclusions at the 
highest values of crack density of such inclusions for which the theory is thought to be 
valid. 

3.2 ELASTIC MODULI OF STRATIFIED MEDIA 

Consider a stratified medium made up of perfectly bonded homogeneous, but not 
necessarily isotropic, layers. Let the x3-axis be perpendicular to the layering and assume 
that there are n different constituent layers, arranged so that in each sufficiently large 
interval one finds the same proportion of each medium. The simplest arrangement that 
satisfies this requirement is a periodic sequence of layers. Each anisotropic constituent i has 
a relative thickness hi i= I, ..., n so that hI + '" + hn = I, a density Pi> and an elastic modulus 
tensor Cpqrs,i' relating stress (1pq,i with strain e..,i' In condensed notation, for which subscripts 
11 ~ I, 22 ~ 2, 33 ~ 3, 23 ~ 4, 31 ~ 5 and 12 ~ 6, the stress-strain relation may be 
written 

(11 Cll CI2 cl3 C14 CIS CI6 

(12 Cl2 C22 C23 C24 C25 C26 

(13 Cl3 C23 C33 C34 C35 C36 

(14 CI4 C24 C34 C44 C4S C46 

(15 CIS C25 C35 C45 C55 CS6 

(16 CI6 C26 C36 C46 CS6 C66 

where 

£1 

£2 

£3 
, (1)

£4 

£5 

£6 
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0'1 0'11 E1 Ell 

0'2 0'22 E2 E22 

0'3 0'33 E3 E33 

= and 
2E230'4 0'23 E4 

0'5 0'31 E5 2E31 

0'6 0'12 E6 2E12 

The elastic moduli for the homogeneous anisotropic medium. equivalent. in the long 
wavelength (or quasistatic) limit. to a layered medium composed of anisotropic constituent 
layers. can be expressed in terms of thickness-weighted averages of functions of the moduli 
of the constituents. The long wavelength assumption on stress is that all stress components 
acting on surfaces parallel to the layering are the same in all layers. i.e. 0'33,i == 0'3,i = 0'3. 

O'23,i == 0'4,i = 0'4. and O'13,i == 0'5,i =0'5' The long wavelength kinematic assumption is that 
over many layers. the layers move together (so that derivatives of in-plane displacements 
with respect to in-plane coordinates. Xl and X2. are the same) implying that all strain 
components lying in the plane of the layering arethe same in all layers. i.e. Ell,i == E1,i = E1• 

E22,i == E2,i =E2• and 2E12,i == E6,i =E6' The other stress and strain components. O'll,i == 0'1,i' 

0'22,i == O'2,i. 0'12,i == 0'6,i' E33,i == E3,i. 2E23,i == E4,i. and 2E13,; == E5,i. may vary from layer to layer. 
In each layer. such a component may be taken as its average value across the thickness of 
that layer. 

A concise way to pose the problem of finding the effective moduli. even when the 
constituent layers are anisotropic. is through a matrix formulation which distinguishes 
components that are constant over many layers from the other components which can vary 
from layer to layer. Following the procedure first outlined by Helbig and Schoenberg 
(1987) for general anisotropic layers. define the following vectors 

layer dependent 

and 

layer independent (2) 

which allow the stress-strain relations in any layer to be rewritten as 
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Here 

Cll,i C12,i c l 6,i 

M i = C12,i cll,i C26,i' N i = 
C16,i C26,i c66,i 

(3a) 

(3b) 

C33,i C34,i C3S,i] _ [CI3,i C14,i CIS,i]
 

C34,i C44,i C45,i' Pi - C23,i C24,i C25,i , (4)
 

C3S,i C4S,i CSS,i C36,i C46,i CS6,i 

with superscript T denoting the matrix transpose. M i and Ni are symmetrical matrices. Then 
multiplying (3b) by Ni-

I gives 

N.-IS =N.-Ip.TE + E2,. (5)
1 2 1 1 I 1 ' 

and solving this for ~,i and substituting into (3a) yields 

SI· = M·EI + P.[N~IS2- N.-Ip.TEI] (6),1111 11· 

Now let the thickness-weighted average over all the constituent layers, L
n 

h;(-J, be denoted 
i=1 

as <'>. Then taking first, the thickness-weighted average of (6), and second, the thickness-
weighted average of (5) and premultiplying this second result by <~I>-I gives 

(7a) 

(7b) 

Finally substituting the expression for S2 from (7b) into (7a) allows us to write the elastic 
moduli for the media equivalent to the stratified medium in the long wavelength limit, in 
matrix form as 

(8a) 
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(8b) 

with 

- N-1 -INe-< > , 

(9) 

If the ith constituent is transversely isotropic with the xraxis, the axis of symmetry, 
then, from the expressions for Mi, Ni, and Pi in (4), we have 

Cll,; c ll ,; - 2C66,; 0] 
Mi = Cll,; - 2C66,; Cll,; 0,
 

[
 o 0 C66,; 

(10) 

Note that when the ith constituent layer is isotropic, cM,; = C66,i =~, Cll,; = C33,; = ~ + 2~ 

and cl3,; = A.; where A.; and Il; are Lame parameters. If all the constituent layers are 
transversely isotropic, the equivalent homogeneous medium is transversely isotropic and 
from (9) the moduli are given by 

Cl3 0 OJ [<C13/c33>/<1/c33> 0 OJ 
Pe = Cl3 0 0 = <C13/c33>/<1/c33> 0 0 , (11) 

[ o 00 0 00 

Me = [Cll ~1~C66 Cll ~1~C66 ~] = [Cll _C~~C66> Cll C~~C66> ~],-

o 0 C66 0 0 <C66> 

Cll =<Cll> - <CrJC33> + <cIJc 33>2/<1/c33> , 

identical to the results of Backus (1962). 
Note that the combination rules (9) are commutative in layer order. If, instead of 
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considering the relative thickness hi of each constituent, the combination operation is 
thought of as the folding together of a total thickness Hi of each constituent, albeit divided 
into fine layers, then the combination rules (9) are also associative (Schoenberg and Muir, 
1988). Thus, if there are three constituents of total thickness HI' H 2, and H 3, the properties 
of the combined medium of thickness HI + H2 + H 3 can be determined by first finding the 
properties of the medium equivalent to constituent 3 mixed with constituent 1, and then 
stirring in amount H 2 of constituent 2. The resulting equivalent medium is independent of 
the order of combination. 

3.3 GENERAL MODEL FOR LONG THIN PARALLEL FRACTURES 

The behaviour of long parallel fractures or J010ts in an otherwise homogeneous 
anisotropic background medium may be modelled as a set of thin constituent layers, not 
necessarily isotropic, embedded in the background. The above derived formalism is used 
and the fractures are modelled by taking the limit as the thickness and the elastic moduli of 
the embedded thin layers go to zero together. The formalism enables us to identify the 
effect of even the most anisotropic fractures on the most anisotropic background, and to see 
the variation in anisotropic behaviour permitted by sets of large parallel fractures. The 
fracture behaviour is at its simplest if the material inside the fracture is assumed to be 
transversely isotropic; the assumption of full isotropy implies no further simplification. This 
type of fracture behaviour is discussed and compared with the behaviour of dilute 
concentrations of aligned inclusions that may be assumed to model a medium with internal 
cracks where the cracks have a preferred orientation. 

For now, the material inside the fracture is allowed to have arbitrary anisotropy. The 
fracture-filling material is assumed to be soft by letting the moduli of the fracture layer, 
cjk,f' be much smaller than a typical non-zero background modulus, say c33.b (the effect of a 
hard fracture-filling material would tend to vanish as the fracture widths approached zero). 
In particular, the moduli are assumed to be of the order of the VOlume ratio of the fractures 
hr, i.e. cjk.flc33•b = O(hf )· Here hf may be thought of as the total fracture thickness in an 
interval of width H divided by H . The interval width H must satisfy two criteria. It must be 
sufficiently large so that the fractured medium has the same total thickness of fractures hfH 

in any interval of thickness H. Yet H must be much smaller than the smallest wavelength of 
interest for the fractured medium to be replaced by a long wavelength equivalent 
homogeneous medium. The assumption on the cjk,f means that, in the limit, as hr ~ 0 the 
cjk,f may be replaced by ¥jk and, from (9) as hr ~ 0, 



44 Chapter 3 

Ne=<~I>-I = [(1 _ hr)Nb"1 + hrNrlJ -I ~ [Nb"1 + N-1J-I 

l 
=Nb[I + N-1Nbr (12) 

Pe~ [PbNb"IJNe, Me ~ Mb- PbNb"lpJ + [PbNdNe[Nb"lpJJ ' <P> ~ Pb' 

where I is the 3 x 3 identity matrix. The fracture parameters enter only through N, a 
symmetrical 3 x 3 submatrix of the full 6 x 6 modulus matrix, so that in general there are at 
most six fracture parameters, the six independent components of N. To see why this must 
be so, consider (3b) for the fracture medium, which gives the components of the stress 
traction across the fracture. They are 

(13) 

Since the fractures are soft, strain components in the fracture layers are large and can be 
approximated by E3,r=t1u?1hrH, E4rt1u-J!hrH, and Esrt1ut/hrH where hrH is the total fracture 
width in an interval of width Hand t1U;. are the components of the total slip displacement 
across all the fractures in that interval of width H . The other strain components in the 
fracture layers are constrained by the long wavelength assumption to be the same as the 
corresponding components in the background medium and thus not large. Then, in the limit 
as hr~O, 

(14) 

In subsequent development the 'fracture system compliance matrix' Z=N-1 will be used 
instead of N as small slip or vanishing of some components of the fracture system slip­
strain will cause N to be very large or undefined, while causing Z merely to have some 
small or zero components. Thus (14) becomes 
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(15) 

Define the vector on the left, the slip-displacement vector of the fractures in width H 
divided by H , as the 'fracture system slip-strain'. Then Z gives the fracture system slip­
strain as a linear function of the traction on any X3 = constant surface (Schoenberg, 1980). 
Note that it is perfectly acceptable that some of the components of Nf ~ 0 as hf ~ 0 and 
for others to remain finite. This is accounted for in the evaluation of the term hrNi1, which 
approaches Z, occurring in the first equation of (12) for Nc• 

Rewriting the first equation of (12) as 

(16) 

enables us to write the matrices of the changes from the background moduli due to the 
fractures, from (12), as 

(17) 

When Z is so small that all terms of ZNb<:l, we see that Nc ::: Nb- NbZNb and 
.1.N ::: -N~Nb. 

As an aside, note that had we begun with a compliance formulation, writing strain as 
an elastic compliance matrix times stress, Le. !OJ = SjkO'k' the strain-stress relations could be 
written analogously with (3) as 

E1= AiS1,i + CiS2 , 

E2.i = C?Sl,i + BiS2 ' (18) 

then the matrices of the changes from the background compliances due to the presence of 
the fractures are M =0, .1.C =0 and .1.B =z. 

From the associativity of the process of combining layers, even when there are many 
types of parallel fractures in the medium, it is the overall compliance of all of them that can 
be combined to form an 'effective fracture behaviour' which is the average of the different 
types of fractures weighted by the respective fracture density. 

In general, from (15), all three components of the fracture system slip-strain are 
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coupled to all three components of the traction across the fractures. This is the case of 
triclinic fracture system anisotropy. For this most general behaviour, six parameters are 
needed to fully describe fracture behaviour within an otherwise homogeneous medium, the 
six independent components of the fracture compliance matrix Z. However, there are three 
symmetry classes that apply to fracture systems that reduce the number of independent 
fracture system parameters. 

The monoclinic fracture system. Let the fracture system be invariant under reflection 
about a plane containing the x3-axis, say the xI-X3 plane, implying that Z has the form 

(19) 

This shows that fracture slip in the xrdirection is uncoupled from normal slip and 
tangential slip in the XI-direction. The xI-tangential slip is not uncoupled from normal slip. 
Tangential fracture displacement and the tangential component of the stress traction are not 
colinear. Such fracture system behaviour need not be due to the anisotropy of the infilling 
material, but could be due to slight micro-corrugation of the fracture surfaces, which then 
must have its peaks and troughs slightly offset, top to bottom, to couple normal and 
tangential components. This is shown by the schematic diagram in Fig. 3.la. 

The orthorhombic fracture system. Let the fracture system be invariant under 
reflection about the xl-x2 plane uncoupling the fracture system displacement normal to the 
fractures from the tangential fracture system displacement. Then Z has the form 

(20) 

but there is always a rotation about the x3-axis which diagonalizes Z giving 

(21) 

Here, Z'I and Z'2 are the tangential compliances in the x'r and x'rdirections respectively. 
The tangential fracture displacement and the tangential component of the stress traction are 
not colinear but the normal compliance is uncoupled from the tangential compliance. This 
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----.. x 1 

b) 

Fig. 3.1. A schematic of a fracture (a) with monoclinic behaviour and (b) with orthorhombic 
behaviour. In both cases the ridges cause the tangential traction and tangential slip not to be 
parallel unless they are either parallel or perpendicular to the ridge axis. In (a), additionally, 
closure or opening of the fracture will cause tangential slip in the xrdirection and vice versa but 
is uncoupled from tangential motion in the xrdirection. 

can be visualized as a micro-corrugated interface with peaks and troughs aligned. top to 
bottom (see Fig. 3.1b). Tangential slip compliance along the corrugation is larger than the 
tangential slip compliance against the corrugation. 

The transversely isotropic fracture system. This most symmetrical case occurs when 
the fracture system behaviour is invariant with respect to rotation about the xTaxis. In this 
case Z must have the form 

ZN 0 0]
Z= 0 Zr 0 . (22) 

[ o 0 Zr 

ZN and Zr are normal and tangential compliances respectively of an average fracture of 
dimension length/stress. The tangential fracture displacement and the tangential component 
of the stress traction are colinear and the normal and tangential compliances are uncoupled. 
The form of Z given here is independent of whether the fracture medium is isotropic or 
transversely isotropic. However, if the fracture medium were isotropic, stability requires 
that Zr ~ 4ZN/3 ~ O. However, if the fracture medium is merely transversely isotropic the 
stability requires only that Zr and ZN be non-negative. 

The long wavelength equivalent medium to the fractured medium is transversely 
isotropic only if the fracture system is transversely isotropic, i.e. with Z given by (22), and 
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it is embedded in a transversely isotropic background medium which has its symmetry axis 
perpendicular to the fractures. Then, from (16) and (9) 

Cl3 o OJ [,,,J(! + EN) 0:] 
p- Cl3 o 0 = c13,J(1 + EN) 0 0 ,e-

O 00 0 0 0

l'" Cn - 2C66 

0] [ '" Me = Cn -

0 

2C66 Cn o = Cll - 2C66,b 

0 C66 0 

Cll - 2C66.b 

Cn 

0 

]oo , 
C66,b 

(23) 

2 [ ] 
C13.b 1 

cn = Cll,b- -­ 1­-­
C33.b 1+ EN 

, 

where 

EN and ET are dimensionless compliances that give the fracture system compliances 
relative to the background medium compliances, normal and tangential to the fracture 
system, respectively. The modulus matrix depends on seven parameters, the five of the 
background plus the normal and tangential fracture system compliances. When the 
background medium is isotropic, the resulting medium is transversely isotropic, but now 
depends on four parameters, Jlb' ~, EN' and ET • The moduli are given by (23) with 
cll,b = C33,b =~ + 2J.1b, C13,b = Ab' and C44,b = C66,b =!lb' The matrices of the changes from 
the isotropic moduli due to the presence of the fractures are 
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O"b + 2Ilb)EN!(1 + EN) 0 O· 

~ =- 0 Il~T/(1 +ET) 0 
[ o 0 Il~T/(1 + ET) 

E [I 0OJ (24)~p=_At, __N- I 0 0 ,
 
I + EN 0 0 0
 

~M =- -()..:-b-:-:-Il-b)- -(-I-:-~-N-) [i i~] . 
This is the very simple model for the behaviour of large joints in an isotropic background. 
These results agree with those of Morland (1974) and have been used to describe 
reflectivity from a jointed half-space by Schoenberg (1983). 

An isotropic background medium with a transversely isotropic fracture system, as 
described in (24), is a restricted class of transversely isotropic media. To examine the 
behaviour of such media, let vqp be the phase speed of the quasi-compressional wave (the 
fast wave which is purely longitudinal for propagation parallel and perpendicular to the 
fractures), vq• be the phase speed of the quasi-shear wave (the in-plane wave which is 
purely transverse for propagation parallel and perpendicular to the fractures), and v. be the 
phase speed of the pure shear wave that is always polarized parallel to the fractures. The 
dimensionless compliances are directly related to the differences between parallel (If) and 
perpendicular (1) propagation of the squares of the phase speeds normalized by the 
isotropic background speeds as, from (24), 

C66 - C44 
= 

(25) 
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where 'Yb is the square of the ratio of the background shear speed to compressional speed, 
i.e. 'Yb = JlJO'b + 2Jlb). Further, substitution of the perturbations to the elastic moduli from 
(24) for small ET and EN (neglecting 0(E2

) terms) into the Christoffel equations for the 
phase velocity (e.g. see Musgrave, 1970) gives 

2 Ilb [ 2 . 2 1vqs(8) :::: - 1 - ET cos 28 - 'Y~N SIn 28J ' (26)
Pb 

where 8 is the angle between the wavenumber vector and the xTaxis. It is clear from (26) 
that all the phase speeds at all angles are non-increasing with increasing ET or EN' Note that 
terms depending on sin2 28 or cos2 28 are actually cos 48 terms which have period re/2 and 
are symmetrical about 8 = re/4. Thus for small tangential and normal compliances, vqs is 
48-dependent and is symmetrical about 8 =re/4 whereas for vqp' the tangential compliance 
yields a 48 term symmetrical about 8 =re/4 while the normal compliance yields a 28 term 
necessarily not symmetrical about 8 = re/4. Note that tangential compliance by itself, even 
when it is large, yields only 48-dependence to both vqp and vqs (Schoenberg, 1983). 
Tangential compliance contributes a maximum speed decrease for vqs at 8 ::;: 0 and re/2 and 
no decrease at 8 =re/4. For vqp ' tangential compliance gives maximum decrease at8 =re/4 
and no decrease at 8 = 0 and re/2. Normal compliance decreases vqs in exactly the same way 
as tangential compliance decreases vqp while normal compliance decreases vqp with 
maximum decrease at e=0 and minimum decrease at e= re/2. The pure shear wave is 
uncoupled (in the Christoffel equations) from the other two waves. Its greatest speed 
decrease is at e= 0 and there is no decrease at e=re/2. 

This is a simplified picture due to the assumptions of (1) small fracture compliance 
relative to the compliance of the unfractured medium, (2) isotropy for the unfractured 
medium, and (3) transverse isotropy for the behaviour of the fracture system. None the less, 
(26) indicates the qualitative effects of the presence of large aligned fractures (and, as will 
be seen below, also of the presence of aligned microcracks) on wave speeds in much more 
general circumstances. 

. Equations (24), and the resulting (26), can be compared with the formulation of 
Thomsen (1986). His three dimensionless anisotropy parameters for weak transverse 
isotr0pY,/Th, tTh, and Orb (the subscript Th refers to Thomsen's parameters) along with the 
shear and compressional wave speed along the symmetry axis of the medium are derivable 
from the elastic moduli. The three dimensionless parameters express, in general, the 
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deviation of the weakly transverse isotropy from full isotropy. For a fractured medium, the 
three parameters can be expressed in terms of ET and EN as 

(27) 

Thus, the three are not independent for a fractured medium and, until the assumption of 
microcrack flatness is relaxed, the anisotropy depends only on two parameters, ET and EN' 

3.4 JOINTS AND MICROCRACKS 

The anisotropy described by the changes of the moduli from an isotropic background, 
(24), defines a restricted class of transversely isotropic media. Hudson (1981) pointed out 
that 'although the geometry of joints is rather different from that of circular cracks ... under 
certain conditions, the results are very similar.' To see this, we shall examine results from 
Hudson (1981) and Thomsen (1988) to show that under simple conditions of dilute 
concentration of very flat microcracks (those where one of the ellipsoidal semiaxes is much 
smaller than the other two) in an isotropic background, we can always find joint 
compliances that give identical values for all the anisotropic elastic moduli. This implies 
that a seismic experiment giving estimates of the moduli for a Crampin model (az~muthal 

anisotropy due to the presence of a vertical system of aligned microcracks in an isotropic 
background which cause the medium to be transversely isotropic with a horizontal axis of 
symmetry) does not distinguish very well between various types of crack systems. 
Refinements in the theory of scattering due to flat microcracks will not help in inverting for 
the crack system's characteristic properties, such as crack size, crack density or the 
contents of the cracks. Only properties that systems of cracks have in commoI;l with those 
of systems of large vertical joints (such as orientation, excess compliance, relative 
tangential to normal compliance) have a chance of being determined, but in many instances 
these could be very informative. 

Hudson (1981) gives the general form of the 6 x 6 change of moduli m~trix for an 
isotropic background medium permeated with aligned flat ellipsoidal microcracks to lowest 
order in wavenumber times mean crack radius a . For ease of comparison we can express 
Hudson~s matrix (denoted by subscript H) using our fprmulation of three 3 x 3 matrices, 
giving 
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O"b + 2Ilb)(U3:JYb) 0 

L\NH =-e 0 IlbUn
 
[
 o 0 

(28) 

where e is the crack density which is equal to the crack number density (number of cracks 
per unit volume) times a3

• Note that crack porosity, which is crack number density times 
the mean crack volume is given by '1>c =41tea/3 where ex is the (very small) mean aspect 
ratio of the flat ellipsoidal inclusions. The terms Un and U33 appearing in (28) arise in the 
derivation of the scattered field from a single small crack. Essentially Uij is the integral 
over the face of the crack of the ith component of the displacement discontinuity due to unit 
stress 0"3j imposed infinitely far from the crack in the ±X3-directions. 

Comparing (24) and (28) shows that both flat microcracks and large joints in the same 
isotropic background give exactly the same moduli if, assuming a dilute concentration of 
inclusions, we let 

(29) 

Thomsen (1988) points out that the derivations for dilute concentrations of flat aligned 
microcracks are valid for e only as large as about 0.05. However, even if second-order 
terms in e are included (Crampin, 1984), the slip-joint model still conforms to the 
microcrack model except that there are additional terms proportional to e2 on the left-hand 
sides of (29). 

Hudson (1981) gives results for Un and U33 for three examples which we will write in 
terms of ET and EN' Example 1 is for fluid-filled cracks under the assumptions that (a) the 
tangential component of the traction on the internal crack surfaces is zero (no shear stress) 
and (b) the crack is so thin that the normal displacement discontinuity across the crack is 
zero (only tangential displacement discontinuity across the crack). Then 

(30) 
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Example 2 is for dry cracks under the assumption of zero traction (both normal and 
tangential) on the internal crack surfaces. These cracks are assumed thick enough to allow 
non-zero normal displacement discontinuity across the crack. ET remains the same but EN 

is non-zero: 

E _ 16 (31)T- 3(3 _ 2Yb) e, 

Example 3 is for cracks filled with a weak solid with small bulk and shear moduli again 
aHowing non-zero normal displacement discontinuity across the crack. Now 

(32) 

where Jl' and K' are the shear and bulk moduli of the inclusion medium, respectively. Here 
terms of order a, a2JlJJl' and a2JlJlC' have been neglected relative to aJlJJl' and aJlJK' 
(Hudson, 1981). Note that for the moduli of the weak: solid to affect the values of ET and 
EN in (32), the values of Jl' and K' must go to zero as the value of the aspect ratio a goes to 
zero. This is analogous to the requirement for large joints that the moduli of the infilling 
material in the joints be proportional to hf as hf tends to zero. As Jl' and K' actually gold 0, 
the compliances of (32) go to those of (31) for dry cracks. 

For K'/Jlb and Jl'/Jlb not small (of order larger than that of a as a ~ 0), EN and ET ~ 0. 
For lC'/Jlb not small but Jl'/Jlb ~ °as for fluid-filled cracks, (32) go to (30). However, letting 
K'/Jlb be small, of order a but with Jl' = 0, approximating cracks filled with weak: fluid, 
gives 

4 
(33) 

where lCb = (3 - 4'¥b)JlJ3Yb is the background bulk modulus. Substituting (33) into (26) and 
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(27) gives (3) of Thomsen (1988) for his three anisotropy parameters and resulting phase 
speeds. 

Thomsen (1988) then presented modified results [his (4)] based on t,he. work of Boenig 
(1979). These results are similar to (33); ET is unchanged but K'/Kb is replaced by 
(K'/Kb)/(1-(K'/Kb)) in EN' When K'/Kba is 0(1), K'/Kb <: 1, there is no difference between 
the two sets of results. In the stiff fluid limit, when K'/Kb (and hence K'/llb also) is 0(1), EN 

is' O(a) and hence tends to zero in both (32) and (33). Thus there is no significant 
difference between the two sets of results. 

Further results are derived by Thomsen (1988) for when the background uncracked 
medium has equant (non-directional) porosity I1>p, i.e. porosity in which the pore space has 
no dimension significantly larger or smaller than any other and so the pore space can be 
modelled by spherical pores. His results, again in terms of the dimensionless compliances, 
ET and EN' are that ET is unchanged due to the presence of equant porosity but EN, from ETh 

[derived by substituting (A34b) into (A16a) Thomsen (1988)] becomes 

(34) 

As I1>p ~ 0, EN of (34) goes to Thomsen's (1988) modified result for EN with no equant 
porosity, that is, (33) with K'/Kb replaced by (K'/%)/(l -(K'/Kb))' This may be seen as even 
whe.n 11>p!l1>c is 0(1) or less, the second term within the brackets of the denominator of (34) 
dominates the first tcrm due to the presence of the small a, the aspect ratio, in the 
denominator of that second term. Whcn 11>p!l1>c is largc (which it is in typical sedimentary 
rocks), so that multiplication by a gives a term of order unity, the two bracketed terms are 
of the same order of magnitude. Then in the weak fluid limit, K'llCb <: I, the right-hand 
fraction of (34) tends to unity and EN tends to the value given for it in (31). For a stiff fluid 
when K'/Kb ~ 1, the presence of the 1 - K'/Kb term implies that EN becomes small. 

3.5 NON-FLAT ELLIPSOIDAL INCLUSIONS 

For all the models discussed so far, an underlying assumption has been that the cracks 
are flat, i.e. that they can be modelled by ellipsoids with aspect ratio a <: 1. These models 
have all been shown to be identical in behaviour with the medium with large joints (itself 
an extreme case of aspect ratio ~ 0). Nishizawa (1982) calculated the anisotropy due to 
small concentrations of aligned rotationally-symmetrical ellipsoidal inclusions of any 
aspect ratio, even including prolate spheroidal inclusions which have an aspect ratio greater 
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than unity. As this is an iterative method using only small increments in crack density at 
each step, Nishizawa claimed that the method is valid even for large concentrations of 
inclusions. 

Following Nishizawa (1982), the effects of a given crack density e of ellipsoids are 
calculated in an iterative way. First the moduli for an isotropic background medium with a 
crack density of eln is calculated, with n the tolal number of iterations. Then the moduli for 
this new 'anisotropic background medium' with additional crack density eln is calculated 
giving the moduli for the original medium with crack density 2eln . This is repeated another 
n - 2 times eventually giving the moduli for the original medium with crack density e, the 
desired result. Results can be checked by repeating the calculation with larger values of n 

until no change due to increasing n occurs. The resulting medium is transversely isotropic 
and we denote the changes in the elastic moduli due to Nishizawa's procedure by 

t:.cif == cif - Cij.b· To see how well these moduli, and thus the Nishizawa model, can be 
approximated by the model of large joints in an isotropic background, we construct D 2, 

defined to be one-fifth of the sum of the squares of the differences between the 
dimensionless moduli changes (over the five independent elastic moduli) from the 
Nishizawa procedure, t:.ciflcij,b' ij = 11, 33, 13, 44, 66 and the dimensionless moduli 
changes from the joint model, t:.ci~lcij.b' ij = II, 33, 13, 44, 66, from (24). The root mean 
square of the differences of the five elastic moduli D satisfies 

t:.Cr; EN ]2 [t:.C~ ET ]2 [t:.e~]2+ --+--- + --+--- + -- . (35)[ Ab I + EN Ilb I + ET Ilb 

The values of ET and EN that minimize D 2, in terms of the Nishizawa moduli cif = 
Cij.b + t:.cif, are given by 

(36) 

These values of ET and EN give the elastic moduli of the joint model that best fit those of 
the Nishizawa's ellipsoids model in a least-squares sense. Also note that these values of ET 

and EN are independent of c~ so that the last term of (35) gives a minimum value to D 2 
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Fig;. 3.2. The rool mean square normalized difference D (in %) between the five elastic moduli 
computed according to Nishizawa (1982) and those five moduli computed from values of EN and 
ET which minimize D as functions of aspect ratio a holding e (the crack number density x the 
mean crack radius cubed) constant. The curveC--) is for e = 0,001, (----) for e = 0.01 and 
(-, -, -) for e = 0.05. The background medium has a Poisson's ratio of 1/4 fu.d the ellipsoids are 
filled with gas assumed to have vanishing shear modulus and a bulk modulus equal to 0.0128 x 
the shear modulus of the background medium. 

below which no combination of ET and EN can cause the value of D 2 to fall. However, as 
the l;lsPect ratio ex ~ 0 for any small value of e, L1cl}; and D approach zero. This becomes 
clear when we calculate the c~ over a wide range of aspect ratios (from 10-3 to 1) for gas­
filled ellipsoidal inclusions. In a homogeneous isotropic background, with 'Yb = 1/3 
(poisson's ratio = 1/4), the gas is assumed to have a vanishing shear modulus and a bulk 
modulus equal to 0.0128 x Ilb' For this model, Fig. 3.2 shows D as a function of ex while e 

is held constant at three values, 0.001,0.01, and 0.05. D is very small for small values of ex 
and only exceeds 0.05 (which we consider the point where meaningful difference between 
the joint model and the ellipsoidal model begins) for e = 0.05 when ex> 0.316 for which 
crack porosity <Pc > 0.066. The same calculations have been carried out for empty (dry) 
incl!Isions and for liquid-filled inclusions (vanishing shear modulus and bulk modulus equal 
to 0.0385 x Ilb) giving almost the same results for D. The values of D become smaller with 
the shrinking of the acoustic contrast between the background medium and the material 
filling the inclusions. The high contrast between the background and the inclusion medium 
sh9\Y,n here rn&y be ~ought oLas a worst case for matching with the jointed model. 

Figuf~ 3.~. shows D as a function of ex for the same gas-filled inclusions while crack 
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Fig 3.3. As for Fig. 3.2 except here D is shown as a function of aspect ratio a holding crack 
porosity cl>c constant. The curve (--) is for cl>c = 0.01, (--------lfor cl>c = 0.03, (----) for cl>c = 
0.05, and(-. -. -) for cl>c = 0.07. 

porosity 4>c is held constant for four values of porosity, 4>c = 0.01, 0.03, 0.05, and 0.07. To 
avoid values of e larger than 0.05, an approximate upper limit for single scattering theory, 
each curve starts at the aspect ratio corresponding to e =0.05, i.e. at a..tart =34>j(41t xO.05). 
Each curve continues to larger aspect ratios for which the values of e necessary to maintain 
constant porosity shrink accordingly. D increases with increasing aspect ratio whether 
crack density is held constant or whether porosity is held constant, For these gas-filled 
inclusions, a porosity of at least 0.05 is required for D to exceed 5% and that occurs for 4>c 
= 0.05 at aspect ratio a = 0.44 (see Fig. 3.3). 

3.6 DISCUSSION AND CONCLUSIONS 

The behaviour of parallel linear-slip interfaces has been used to model the long 
wavelength propagation characteristics of a medium with a set of large parallel joints or 
fractures much larger than the largest wavelength but spaced much closer than the smallest 
wavelength. This model gives geometrical insight into the mechanical properties of such a 
fractured medium by letting us visualize the action of planes of weakness in a solid. In 
addition, we have shown that the linear-slip interface model exactly describes the 
behaviour of systems of aligned flat microcracks according to Hudson (1981). However, as 
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the aspect ratio of the microcracks grows, i.e. the microcracks become less flat, the results 
of Nishizawa's iterative method to compute moduli for a solid with aligned ellipsoidal 
inclusions deviate increasingly from the linear-slip interface model. But this linear-slip 
interface model is a good approximation even for aspect ratios as large as 0.3 when e = 
0.05 (which is about as large a value of e as one can assume and still hope that single 
scattering theory is valid). 

All possible types of fracture system anisotropy: triclinic, monoclinic, orthorhombic or 
transversely isotropic, and all anisotropic elastic backgrounds are included in the model. To 
compute the elastic moduli of the equivalent medium, once the fracture system compliance 
matrix is given, requires at most the inversion of two 3 x 3 matrices. 

Azimuthal anisotropy has been assumed to be caused by aligned sets of vertical 
fractures and microcracks. It has been shown that large joints are indistinguishable from 
dilute systems of flat microcracks. Assuming rotationally isotropic fractures (which is 
suspect, but perhaps a good first approximation) means that azimuthal anisotropy may be 
characterized by three scalar quantities, the orientation of the normal to the system and the 
two compliances, Zr and ZN' A good approximation to a vertically cracked earth, for which 
conventional transverse isotropy is often an order of magnitude larger than the azimuthal 
anisotropy, might be a transversely isotropic (with a vertical symmetry axis) background 
with a rotationally isotropic vertical fracture system. Such a model allows for the additional 
compliance due to the presence of fractures or cracks in a physically meaningful way even 
when the underlying fracture mechanism is not fully understood. The values of Zr and ZN' 

dimensionless with respect to the appropriate background modulus, quantify in the simplest 
way the azimuthal anisotropy. In many situations it has been shown that the normal 
compliance can be very small. Assuming that ZN vanishes leaves only one parameter 
quantifying azimuthal anisotropy but this is a key parameter as it still allows for shear-wave 
splitting for shear waves propagating parallel to the fractures. 
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Chapter 4 

THE REPRESENTABILITY OF CRACKED MEDIA 
BY PERIODICALLY LAYERED MEDIA 

AnSTRACT 

Media containing aligned cracks or ellipsoidal inclusions as well as media consisting 
of sequences of isotropic layers show transverse isotropy with respect to elastic wave 
propagation. However, the transversely isotropic media which are equivalent to media 
containing aligned inclusions do not necessarily have to be representable by sequences of 
stable isotropic layers. These transversely isotropic media can only be modelled by such 
sequences if several stability conditions are satisfied. Important parameters determining 
whether these conditions are satisfied are the aspect ratio of the inclusions and the material 
filling the inclusions, the 'fluid'. An analytical expression describing the range of aspect 
ratios for which the constraints are satisfied can be derived. This expression (which is a 
good approximation for several crack models) and numerical calculations show that media 
containing water-filled inclusions can be represented by sequences of stable isotropic layers 
if the inclusions have aspect ratios less than 0.1. The limiting aspect ratio decreases for a 
decreasing ratio of the bulk modulus of the fluid to the shear modulus of the matrix 
material. Finally, media containing dry inclusions of any aspect ratio can not be modelled 
by thin isotropic layering. These results depend only weakly on the crack density and on 
the matrix material. The representation of crack-induced anisotropy by layer-induced 

This chapter has been submitted for publication as: 

Douma, J. 1988. The representability of cracked media by periodically layered media. Submitted to Geophysicat 
Prospecting. 
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anisotropy might be useful in the separation of the cause of anisotropy and the 
determination of the nature of the fluid. 

4.1 INTRODUCTION 

Periodically layered media and media contammg aligned cracks are transversely 
isotropic with respect to elastic wave propagation if the seismic wavelength is large 
compared to the thickness of the layers or the size of the cracks, respectively. A 
transversely isotropic medium is a special type of anisotropic medium: whereas the most 
general type of anisotropic medium is described by 21 independent elastic constants, a 
transversely isotropic medium (because of its rotational symmetry) is described by at most 
five independent elastic constants. Seismic waves travelling through a transversely 
isotropic medium have velocities and polarizations which depend on the angle of incidence 
against the axis of rotational symmetry. Moreover, just as in any anisotropic medium, shear 
waves on entering a transversely isotropic medium generally split up into two shear waves 
with different velocities. Wave propagation in anisotropic media can be modelled if the 
elastic constants of the media are known. 

To calculate the elastic constants of periodically layered media several formulations 
(all based on the long wavelength approximation, i.e. using a quasi-static elastic approach) 
have been presented (Bruggeman, 1937; Postma, 1955; Helbig, 1958; and Backus, 1962). 
With any of these formulations the elastic constants of the equivalent transversely isotropic 
media are expressed in terms of the elastic constants of the isotropic constituent layers. 
With the same purpose, but then valid for any anisotropic constituent layer, a matrix 
formulation was presented, recently (Helbig and Schoenberg, 1987; Schoenberg and 
Douma, 1988). 

To calculate the elastic constants of media containing aligned circular cracks several 
models, most of them based on different assumptions, have been derived from various 
points of view; A model based on the scattering of clastic waves by the cracks is Hudson's 
(1980, 1981) crack model. This model has often been used by Crampin and co-authors (e.g. 
Crampin, 1984; Crampin, McGonigle and Ando, 1986). Apart from the long wavelength 
assumption (i.e. the size of the cracks is small compared to the seismic wavelength) it is 
also assumed that both the density and the aspect ratio a. of the cracks is small. Another 
model (based on a static approach) presented by Nishizawa (1982), however, is valid even 
for large aspect ratios. Rotationally symmetrical ellipsoidal inclusions with aspect ratios up 
to a. = 1 (spherical inclusions) can be studied. The elastic constants are derived by 
numerical calculations in contrast with Hudson's (1980, 1981) model which gives 
analytical expressions for the elastic constants. A comparison of the results of Nishizawa's 
and Hudson's model was carried out (and a review of both models was given) recently by 
Douma (1988). Douma (1988) showed that Hudson's and Nishizawa's model are almost 
identical for aspect ratios up to 0.3. 
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It should be realized that the validity of these models (Le. whether they describe the 
real situation of cracked media) only becomes known when the model results can be 
compared with experimental results. For cracked media with all kind of inclusions such 
experimental results, however, do not exist yet and therefore the validity of each model is 
still unknown. What is known are the situations for which the models give identical results 
and the basic assumptions of each model. This information might only indicate the 
situations for which the models could be expected to describe real cracked media. 
Therefore, it is assumed here that Nishizawa's model which does not assume a small aspect 
ratio is more likely to describe the real situation of aligned inclusions with large aspect 
ratios than Hudson's model (based on a small aspect ratio). 

In this paper crack-induced anisotropy as described by both Hudson's and 
Nishizawa's model is compared with the anisotropy caused by sequences of thin isotropic 
layers. Assuming the aligned cracks and the layers have the same axis. of rotational 
symmetry it is investigated whether the resultant crack-induced anisotropy could also be 
caused by sequences of isotropic layers. As shown by Backus (1962) there are transversely 
isotropic media that can not be modelled by such sequences. In a paper on a systematic 
classification of layer-induced anisotropy Helbig (1981) described the conditions a 
transversely isotropic medium has to satisfy in order to be the equivalent of a sequence of 
stable isotropic layers. These conditions are used in this paper to study the representability 
of cracked media by layer sequences. In the following a transversely isotropic medium will 
be called a RSSIL-medium if it is Representable by Sequences of Stable Isotropic Layers. 
The range of aspect ratios of the cracks for which the resultant transversely isotropic 
medium is a RSSIL-medium is studied both analytically (using Hudson's formulations) and 
numerically (using Nishizawa's formulations). Such a study complements an earlier study 
carried out by Schoenberg and Douma (1988) that showed the resemblance between 
crack-induced anisotropy and the anisotropy due to large fractures (constructed from a 
periodically layered medium). In that particular study the fracture material could be any 
transversely isotropic medium, whereas in this study only RSSIL-media are studied. 

The representability of cracked media by RSSIL-media might have some interesting 
applications. If there are cracked media which are not RSSIL-media one might be able to 
distinguish between aligned cracks and sequences of isotropic layers as possible causes of 
observed anisotropy. Moreover, this representability might be used to classify crack­
induced anisotropy. 

4.2 STABILITY CONSTRAINTS OF A TRANSVERSELY ISOTROPIC MEDIUM 

A transversely isotropic medium with an axis of rotational symmetry in the x3-direction is 
described by an elastic tensor Cijkl which, using the condensed two-suffix notation cpq (see, 
e.g. Schoenberg and Douma, 1988), is given by 
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cll cl2 cn 0 0 0 

C12 cll cn 0 0 0 

cn cn C33 0 0 0 
C = pq 0 0 0 C44 0 0 , (1) 

0 0 0 0 C44 0 

0 0 0 0 0 C66 

where cl2 = cll - 2C66' Eq. (1) shows that a transversely isotropic medium is described by 
at most five independent elastic constants. For an isotropic medium (a special type of 
transversely isotropic medium described by only two independent elastic constants) 
cll = C33 = A+ 2Jl, C12 = en = A, and C44 = C66 = Jl. where A and 1.1 are called the Lame 
parameters. The transversely isotropic medium is a stable medium (i.e. no deformation has 
non-negative internal energy) if the matrix presented in (1) is positive semidefinite. As 
shown, e.g. by Backus (1962), this is true if 

(2) 

There are some further inequalities which, being consequences of (2), can be omitted. For 
an isotropic medium (2) becomes 

(3a) 

or equivalently 

< 3
Jl~ O ,and 0 <-1-""4' (3b) 

where 1 = J..lI(A + 2Jl) is the ratio of the square of the shear wave velocity to the 
compressional wave velocity. If only media for which a deformation has positive internal 
energy are considered, the 'weak stability conditions' of (3b) become 

3
1.1>0, and 0<1<""4' (3c) 

Throughout this paper an isotropic medium is called stable if the 'strong stability 
conditions' of (3c) are satisfied. In the next section the stability constraints of a (RSSIL-) 
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medium that can be represented by sequences of stable isotropic layers are given. 

4.3 STABILITY CONSTRAINTS OF PERIODICALLY LAYERED MEDIA 

Consider a periodically layered medium. The five independent elastic constants of the 
(in the long wavelength approximation) equivalent transversely isotropic medium can be 
expressed as thickness-weighted averages of the elastic constants of the constituent layers. 
Using the formulae presented by Schoenberg and Douma (1988) (whose results are 
identical to Backus' (1962) results) we have 

(4) 

where the symbol < > denotes thickness-weighted averaging. If only stable isotropic 
constituent layers are assumed Backus (1962) showed that the resultant transversely 
isotropic media (i.e. RSSIL-media) are a subset of all possible stable transversely isotropic 
media. Deriving the stability constraints for these RSSIL-media Helbig (1981) introduced 
two sets of dimensionless parameters, i.e. 

a) p, <J, 't, and I defined as 

(Sa) 

and 

b) h (=p-'t), k (=<J-'t), 't, and l. (Sb) 

Note that Helbig (1981) used the symbol A for l. In this paper, however, the symbol A 
denotes already one of the Lame parameters and therefore the symbol I is introduced. 
Backus (1962) proved that transversely isotropic media can only be modelled by sequences 
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of stable isotropic layers with different shear moduli if the following stability constraints 
(Helbig's (1981) notation is used) are satisfied 

(6) 

Using Eq. (5b) (6) can easily be transformed into the stability constraints for p, 0", 't, and I. 
Transversely isotropic media which satisfy the constraints of (6) are called RSSIL­

media throughout this paper. Note that with this definition of RSSIL-media, RSSIL-media 
do not include isotropic media: Backus (1962) proved that a periodically layered medium is 
an isotropic medium if the following constraints are satisfied 

2
1= 1, 1't = (h + 't)(k + 't) , and 1[ ~ - 't] 2 = [~ - (h + 't)] [~ - (k + 't)] . 

These conditions are always satisfied (Backus, 1962) if the constituent layers have identical 
shear moduli. 

It should be noted that the definition of RSSIL-media which requires constituent layers 
with different shear moduli does not exclude the situation in which some constituent layers 
have identical shear moduli. As shown by Backus (1962) these particular constituents can 
be combined to form one equivalent isotropic layer. Having combined these layers the 
resultant periodically layered medium can be regarded again as a medium consisting of 
isotropic layers with different shear moduli. 

The inequalities of (6) are most easily interpreted by regarding the corresponding 
equalities as the equations of (hyper) surfaces separating the four-dimensional h, k, 't, 1 
parameter space into a region (the constraint area) where the inequalities of (6) are satisfied 
and into a region where they are not satisfied. Each transversely isotropic medium can be 
represented in this four-dimensional parameter space by a point whose coordinates are 
given by the h, k, 't, 1 parameters of the medium. If and only if this point lies inside the 
constraint area the medium is a RSSIL-medium. 

The four-dimensional constraint area can be visualized by keeping one of the four h, k, 
't, 1 'coordinates' constant. With 1 fixed at 1 = 4/9 Helbig (1981) showed the three­
dimensional intersection of the four-dimensional constraint area with the hyperplane 1= 
4/9. This result is shown in Fig. 4.1. The intersection is a finite body limited by the planes 't 
= 0 and 't = 3/4, and by 'sheared' parabolic hyperboloids. 

Media that are represented in the four-dimensional constraint area by points lying on 
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l= ..i 
9 

-0.5 

h 

Fig. 4.1. The three-dimensional intersection of the 'stability area' (described by Eq. (6» with the 
hyperplane 1= 419. Shown are the two-dimensional intersections of the three-dimensional body 
with the planes 't = 0, 0.25, 0.50, and 0.75, respectively. 

the t-axis (h = k = 0) are known as K-media (Krey and Helbig, 1956). A RSSIL-medium is 
a K-medium if and only if the constituent layers all have the same y (squared ratio of shear­
to compressional wave velocity). The velocity of qP-(quasi-longitudinal) waves travelling 
through such K-media at moderate angles against the symmetry axis is independent of the 
direction of wave propagation. Therefore, K-media, assumed to be a very reasonable 
representation of sedimentary basins, were regarded to be isotropic in standard reflection 
seismics. Finally, it should be mentioned that for isotropic media (a subset of K-media) h = 
k = 0 and 1= 1 (Helbig, 1981). 

In the next section it is investigated whether cracked media result in transversely 
isotropic media that can be represented by h, k, t, I points lying inside the constraint area. 

4.4 THE REPRESENTABILITY OF CRACKED MEDIA BY RSSIL-MEDIA 

To study the transverse isotropy shown by media containing aligned inclusions several 
models have been derived. In this section it is investigated whether the resultant 
transversely isotropic medium as described by some of these models can be represented by 
sequences of stable isotropic layers. 
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a) Hudson's model 

Considering media containing a dilute distribution of aligned cracks Hudson (1980, 1981) 
presented analytical expressions (based on the scattering of elastic waves by the cracks) to 
calculate the effective elastic constants of the resultant transversely isotropic medium 
(these results were discussed in detail by Crampin, 1984). In the derivation of these 
formulae several assumptions were made: both the crack density e = Na3/V (whereN is the 
number of cracks of radius a in a volume V) and the aspect ratio ex. of the cracks (the aspect 
ratio of rotationally symmetrical ellipsoidal inclusions with semi-axes having lengths a, a, b 
is defined as ex. = bla) should be small ( <c 1 ). Moreover, to result in elastic anisotropy the 
size of the cracks is assumed to be very small compared to the seismic wavelength. The 
resultant elastic constants cif (the superscript H denotes Hudson's model) of the cracked 
medium are given as: 

c.l:f = c.(O) +C.(l) +c.(2)
1) (7)1) 1) 1)' 

where Ci~l) and Ci~2) are first- and second-order (in crack density e) perturbations of the 
elastic constants Ci~O) of the uncracked (isotropic background) medium due to the presence 
of the cracks (these perturbations are given in terms of the crack parameters by Crampin, 
1984). In the calculation of the second-order perturbations crack-crack interactions are 
accounted for in the scattering of the elastic waves, as opposed to the calculation of the 
first-order perturbations in which mutual interactions of the cracks are neglected. 

To determine whether Hudson's model results in transversely isotropic media that can 
be represented by sequences of isotropic layers it is investigated whether Hudson's elastic 
constants cif satisfy the stability constraints described in (6). In this paper this problem is 
not approached directly by writing out (6) using Hudson's expressions for cif, but by 
considering the results obtained by Schoenberg and Douma (1988). In a study on the elastic 
wave propagation in media containing parallel fractures and aligned cracks they showed 
that Hudson's model (both first- and second-order perturbations) is identical to their model 
of slip interfaces in an isotropic background medium. This model of parallel slip interfaces 
simulates the behaviour of a fracture system composed of large closely spaced aligned 
joints. It has been derived from the model of periodically layered media by letting the 
thickness and the elastic constants of the constituent thin layers go simultaneously to zero 
(Schoenberg, 1980, 1983). This means that media containing slip interfaces are a special 
type of periodically layered media. Therefore, using the identity of Hudson's (1980, 1981) 
crack model and Schoenberg and Douma's (1988) slip interface model we may conclude 
that cracked media described by Hudson's model can only be represented by RSSIL-media 
if the equivalent medium containing slip interfaces is such a medium. 

As described by Schoenberg and Douma (1988) the five elastic constants of the 
transversely isotropic medium which is the long wavelength equivalent of an isotropic 
medium containing large parallel fractures (filled with a transversely isotropic medium 
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which has an axis of rotational symmetry perpendicular to the fractures) are given by 

(8) 

where EN and E T are dimensionless compliances (normal and tangential to the fracture 
system, respectively) that give the fracture system's compliance relative to the background 
compliances, At, and Ilb are the Lame parameters of the background medium, and the 
superscript S denotes the slip interface model. Note that only four of the five elastic 
constants in (8) are independent. EN and E T can be expressed in terms of the elastic 
constants of the isotropic background medium and the transversely isotropic medium inside 
the fractures (denoted by Cij,f), and the fraction If of the fracture within one period of layers: 

O"b + 2llb}ff
EN=---- (9) 

C33,f 

Eq. (9) shows that for fr = 0 (Le. the isotropic situation), EN = E T = O. We now assume 
If::F- O. If both the background medium and the medium inside the fractures are stable (3c) 
requires that both EN and E T are positive. If the fracture medium is also a RSSIL-medium, 
the condition 0 < C44,r!C33,f < 3/4 (Le. 0 < h + 't < 3/4, Eq. (6)) puts another constraint on EN 

and E T: 0 < Y~N/ET < 3/4. (In appendix A the same conditions on EN and E T are obtained 
if the values of EN and E T are investigated for which the elastic constants Ci~ (see (8)) 
satisfy all the stability constraints (6) of a RSSIL-medium). Combining these constraints we 
may conclude that a cracked medium as described by Hudson's model is a RSSIL-medium 
if the dimensionless compliances EN and E T of the equivalent medium containing slip 
interfaces satisfy 

(10) 

Using Schoenberg and Douma's (1988) Eq. (24) and Crampin's (1984) Eqs (2) and 
(3) (but now with the crack normal in the x3-direction) EN and E T can be expressed in terms 
of the parameters of Hudson's first- and second-order model. 
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Hudson's first-order model: 

EN eU33 ET (11a)1 + EN - ----:y;;- 1 + E
T

= eUll , 

Hudson's second-order model: 

(11b)
'Yb 15 

where q = 15(AJJ..lb)2 + 28(AJJ..lb) + 28, X = 2J..lb(3Ab + 8J..lb)/(Ab + 2J..lb), and e is the crack 
density. If the inclusions are filled with a weak isotropic material 

16
Ull = 3[(~ + 2J..LJ/(3~ + 4J..lJ]/(1 + M) , 

(12) 

where 

a is the aspect ratio of the cracks and J..l' and lC' are the shear and bulk moduli of the 
medium inside the cracks, respectively. With Eqs (10)-(12) it is possible given the set of 
elastic constants of the background medium, the medium inside the inclusions, and the 
crack density e to calculate analytically the range of aspect ratios a of the inclusions for 
which the resultant transversely isotropic medium is a RSSIL-medium. 

In this paper such an analytical calculation is only performed for Hudson's first-order 
model (lla). For Hudson's second-order model the calculations are carried out 
numerically. If Hudson's first-order model is considered we get from (lla) 

eUllET = _----=.=--­ (13)
1- eUll 

In order to satisfy the constraints (10) of a RSSIL-medium EN and ET certainly have to be 
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positive. This implies 

(14) 

Rewriting Un and U33 (given by (12» as 

(ISa) 

U = 4 (I5b) 
33 3[1- '¥b + (K' + (4/3)/l')/(1tCXllb)] , 

it is easily seen with e > 0, <x> 0 and the stability constraints (3c) for isotropic media that 
both eUll and eU3J!'¥b are positive. To satisfy the second inequality of each part of (14) 
both terms also have to be smaller than unity. We assume throughout this paper that Ilb"# 0 
(and therefore Yb"# 0 ). With crack densities smaller than 0.05 (for larger values Hudson's 
model, based on dilute concentrations of inclusions, certainly becomes questionable 
(Thomsen, 1988» it can easily be concluded from (15) that eUll < 1. In order to have 
eU3J!'¥b < 1 the aspect ratio should satisfy 

(I6a) 

or 

(16b) 

(If (4e - 3Yb + 3y;) = 0 the term eU3:ffb is always smaller than unity for (K' + (4/3)/l') > 0, 
i.e. for non-dry inclusions). Since <X is always non-negative the last constraint (I6b) is 
always satisfied. The other constraint on EN and ET in order to satisfy (10) is ET > 4Y~N/3. 

Using (13) and (15) it can be shown that this is satisfied for 

(17) 
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which becomes (for e '" 0 and K '" 0) 

(18) 

where 

If K' == 0, i.e. the inclusions are dry, there is no aspect ratio for which (17) is satisfied. As 
shown in appendix B the constraint (18) is more restrictive than (16a) and therefore we 
may conclude that a cracked medium as described by Hudson's first-order model is only a 
RSSIL-medium if the aspect ratio of the cracks satisfies (18). Eq. (18) shows that the range 
of aspect ratios for which it is satisfied decreases for decreasing K'/Ilb and disappears for 
KIIlb == 0, Le. for dry inclusions. These results show that the representability of cracked 
media by RSSIL-media might be used to describe the content of the inclusions. 

b) Nishizawa' s model 

Nishizawa (1982) described a numerical model to calculate the elastic constants of a 
transversely isotropic medium which is the long wavelength equivalent of a medium 
containing aligned ellipsoidal inclusions. Unlike Hudson's model Nishizawa's model does 
not assume a small aspect ratio of the inclusions. The aspect ratios ex in his model range 
from ex == 0 (representing flat cracks) up to ex == 1 (spherical inclusions). (In principal they 
can be extended up to ex == representing cylindrical inclusions). Nishizawa's (1982) 00, 

model has been compared with Hudson's crack model by Douma (1988). The comparison 
showed that these models are almost identical for aspect ratios up to ex == 0.3. At larger 
aspect ratios the models deviate. Therefore, in order to determine the aspect ratios for 
which cracked media as described by Nishizawa's model are RSSIL-media we can not use 
the constraints as described in (10) (although such a procedure would be valid for ex up to 
0.3) but have to use the basic constraints as described in (6). It will be calculated 
numerically whether Nishizawa's results satisfy these constraints. 

4.5 CRACKED MEDIA REPRESENTED IN THE h, k, 't,1 PARAMETER SPACE 

As mentioned before Hudson's (1980, 1981) crack model is identical to Schoenberg 
and Douma's (1988) slip interface model. Therefore, the dimensionless parameters h, k, 't, 

and I (and p and cr) of Hudson's model are identical to those derived for uie slip interface 
model (see appendix C). So, we have for Hudson's crack model (see (Cl)-(C6)) 
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(19) 

where EN and ET are the dimensionless compliances as described in (lIa) and (lIb), 
depending on whether Hudson's first- or second-order model is used, respectively. In 
general, transverse isotropy is described by five independent elastic constants 
corresponding to four independent dimensionless parameters. Eq. (19), however, shows 
that cracked media as described by Hudson's model only have 3 independent dimensionless 
parameters, which define a subspace in the h, k, 't, I parameter space. 

Cracked media as described by Hudson's model are characterized by k = 0 (see (19)). 
This means that these media become K-media (described by h = k = 0) as soon as the 
parameter h becomes zero. Eq. (19) shows that this occurs if EN = ET• Such media are 
represented in the h, k, 't, I parameter space by points lying on the 't-axis. For Hudson's 
first-order model the aspect ratio of the inclusions for which this is true can be calculated 
analytically. With EN and ET given by (13) EN equals ET if 

(20) 

This result is only valid for Yb(4K' + (16/3)~') - 4~' '* 0, Le. for fluid-filled inclusions this 
result is valid for non-dry inclusions. For dry inclusions there is no aspect ratio for which 
the cracked medium is a K-medium. Eq. (20) shows that CXJ< is independent on the crack 
density e. If EN = ET = 0 (19) shows that the resultant medium is isotropic (i.e. 1= 1, h = k = 
0). 

Because Nishizawa's (1982) model is not identical to Hudson's (1980, 1981) crack 
model for all aspect ratios of the inclusions (this is only true for aspect ratios up to 0.3) Eq. 
(19) can not be used to represent the cracked medium as described by Nishizawa's model 
in the h, k, 't, I-space. Therefore, such a representation can only be carried out by 
calculating the h, k, 't, I parameters numerically from the elastic constants given by 
Nishizawa's model. 

4.6 RESULTS 

In this section theoretical cracked media as described by Hudson's (1980, 1981) crack 
model and Nishizawa's (1982) model are studied. For a large mnge of aspect ratios (i.e. 
from ex = 0.0001 (almost flat cracks) up to ex = I (spherical inclusions)) of the inclusions 
and for different media inside the inclusions the elastic constants of the resultant 
transversely isotropic medium are calculated using both models. Then it is investigated 
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Fig. 4.2. The dimensionless compliances EN, ET (a, c, e) and the tenn (ET -E~yJ3) (b, d, f) as a 
function of the aspect ratio a of water-filled inclusions for three crack densities e = 0.01 (a, b), e 
=0.03 (c, d), and e =0.05 (e, f) using Hudson's first- (solid line) and second-order model (dashed 
line). The inclusions are embedded in a matrix material with 'Yb = 1f3. The black dot in b, d, and f 
represents the upper limit of the aspect ratios for which the cracked medium as described by 
Hudson's first-order model is a RSSIL-medium. The triangle in a, c, and e represents the aspect 
ratio for which the cracked medium as described by Hudson's first-order model is a K-medium. 

whether the resultant medium can be represented by a RSSIL-medium or eventually by a 
K-medium. 

We consider an isotropic background medium described by 'Yb = 1/3. Three types of 
inclusions are studied: 1) water-filled inclusions with le' = 0.0771 X I1b, 2) gas-filled 
inclusions with 1C' =0.0034 X I1b, and 3) dry (empty) inclusions with le' =O. All these 
inclusions have a shear modulus 11' = O. The dry inclusions are perhaps not a realistic type 
of inclusions in the Earth, but are considered here as the limiting case of gas-filled 
inclusions. 

a) Hudson's model 

First the results obtained with Hudson's model are shown. Cracked media as described by 
Hudson's model can be represented by RSSIL-media if the constraint (10) (Le. 
ET > Ert4'fr13 > 0) is satisfied. In Fig. 4.2 the values of EN, ET , and ET - Ert4'fr13 calculated 
for water-filled inclusions using Hudson's first- (solid lines) and second-order model 
(dashed lines) are presented. These values all have to be positive to satisfy (10). The values 
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Fig.4.3. As for Fig. 4.2, but now for gas-filled inclusions.
 

of EN and ET are presented in the upper figures 4.2a, 4.2c, and 4.2e for crack densities e = 
am, 0.03, and 0.05, respectively. In the lower figures 4.2b, 4.2d, and 4.2f the values of 
ET - Er-r4yJ3 are presented for the same crack densities, respectively. In the lower figures 
of Fig. 4.2 the point denoted by a black dot corresponds to the analytically calculated upper 
limit al of the range of aspect ratios (18) for which the cracked medium (as described by 
Hudson's first-order model) can be represented by a RSSIL-medium. In the upper figures 
the point denoted by a triangle corresponds to the analytically calculated aspect ratio ak for 
which the cracked medium (as described by Hudson's first-order model) is a K-medium. 
From Fig. 4.2 it can be concluded that both EN and ET calculated with either Hudson's first­
or second-order model are positive. ET is constant for all aspect ratios and its value 
increases for increasing crack density e. EN, however, is not constant: its value decreases 
for decreasing aspect ratio a and approaches zero for a ~ O. With EN and ET being both 
positive the conditions for the representability of cracked media (as described by Hudson's 
model) by RSSIL-media can only be violated if ET - Er-r4yJ3 becomes non-positive. For a 
crack density e =0.05 and for Hudson's first-order model Fig. 4.2f shows that this occurs at 
aspect ratios around a =0.1. For smaller aspect ratios the term is positive and the cracked 
medium is a RSSIL-medium. For larger aspect ratios, however, the term becomes non­
positive and the cracked medium is no longer a RSSIL-medium. Figures 4.2b, 4.2d, and 
4.2f show that the ultimate aspect ratio for which the cracked medium is a RSSIL-medium 
depends (although not very strongly) on the model used (Hudson's first-order model results 
in a smaller ultimate aspect ratio than Hudson's second-order model, especially for large 
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Fig. 4.4. As for Fig. 4.2, but now for dry inclusions. 

crack density e) and on the crack density e (for increasing crack density e the ultimate 
aspect ratio tends to shift towards smaller values). These figures also show that the 
analytically calculated ultimate aspect ratio (denoted by the black dot) agrees with the 
ultimate aspect ratio <Xl at which the term ET - EN'tyt!3 calculated with Hudson's first-order 
model is positive (indicating the correctness of (18)). Because the ultimate aspect ratios at 
which Hudson's first- and second-order model result in a RSSIL-medium are not much 
different from each other (especially at small crack densities) the aspect ratio <Xl defined in 
(18) also appears to be a good estimate of the ultimate aspect ratio for which Hudson's 
second-order model results in a RSSIL-medium. 

Finally, it should be pointed out that for the situations studied in Fig. 4.2 there are 
indeed aspect ratios for which the resultant cracked medium is a K-medium. As discussed 
in section 4.5 this is true whenever EN and ET become equal. Figure 4.2e shows that for a 
crack density e = 0.05 and for Hudson's first-order model this is true for an aspect ratio 
<X::: 0.02. This result corresponds to the analytically calculated aspect ratio <Xk (denoted by 
a triangle) for which the cracked medium is a K-medium. As shown by Figs 4.2a, 4.2c, and 
4.2e this result does not seem to depend very much on the crack density e or on whether 
Hudson's first- or second-order model is used. The former statement is in agreement with 
(20). 

In Fig. 4.3 the results of the same calculations but now for gas-filled inclusions are 
presented. Most of the conclusions drawn from Fig. 4.2 also hold for Fig. 4.3. The only 
important difference is that the aspect ratios for which Hudson's model results in a RSSIL­
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Fig. 4.5. The upper limit at (Eq. (18» of the aspect ratios of water- (a) and gas-filled (b) 
inclusions for which the resultant cracked medium (as described by Hudson's first-order model) 
is a RSSIL-medium as a function of 'Yb of the background medium for three crack densities e = 
0.01 (solid line), e = 0.03 (dashed line), and e = 0.05 (dashed-dotted line). The aspect ratios ak 
(Eq. (20» of water- and gas-filled inclusions for which the resultant cracked medium (as 
described by Hudson's first-order model) is a K-medium are presented in (c) and (d), 
respectively. These results are valid for any crack density e. 

medium and a K-medium, respectively, become smaller than the corresponding aspect 
ratios obtained from Fig. 4.2. Figures 4.3b, 4.3d, 4.3f show that the value of the ultimate 
aspect ratio for which the cracked medium is a RSSIL-medium now lies around (X::: 0.005, 
while the aspect ratio for which the cracked medium is a K-medium is now (X::: 0.001. So, 
we may conclude that for gas-filled inclusions there is a large range of aspect ratios for 
which the cracked medium is not a RSSIL-medium. 

This situation becomes even more distinct when dry inclusions are considered (Fig. 
4,4). Figure 4,4 shows that there are no aspect ratios at all for which the cracked medium is 
a RSSIL-medium or a K-medium because the term ET - E~YJ3 is negative for all aspect 

ratios and crack densities being studied (see Figs 4,4b, 4,4d, and 4,4f). This result agrees 

with the result of (18) for dry inclusions. 
The results discussed above were derived for one specific background medium (i.e. Yb 

= 1/3). To find out whether the results depend on the background medium (Xl and (Xk (i.e. 

only cracked media as described by Hudson's first-order model are studied) are calculated 
for all possible stable background media (i.e. a< % < 3/4) for both the water- and gas-filled 

inclusions and presented in Fig. 4.5. Figure 4.5 shows that (Xk strongly depends on %: (Xk 
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decreases significantly for decreasing 'Yh, whereas (Xl only strongly depends on 'Yb if 'Yh is 
small (i.e. 'Yh < 0.1). For values of 'Yh around 1/3 (a realistic background medium in the 
Earth) (Xl only weakly depends on 'Yh' Moreover, Fig. 4.5 shows that the effect of the crack 
density (which only affects (Xl) is not very large, especially for 'Yh around 1/3. 

All these results are similar for both water- and gas-filled inclusions. The only 
difference between the results for both types of inclusions is that both (Xk and (Xl are smaller 
for gas-filled inclusions than for water-filled inclusions if the same value of 'Yh is 
considered. 

The results shown up to here have been calculated with Hudson's model. Next the 
results calculated with Nishizawa's model are shown. 

b) Nishizawa' s model 

Consider theoretical cracked media that are described by Nishizawa's model. As 
mentioned in section 4.4 the representability of these media by RSSIL-media is studied by 
investigating the basic constraints (6) on their dimensionless h, k, 't, I parameters. In Fig. 
4.6 these dimensionless parameters together with the parameters 

Sl = [3/4 - (h + 't)][3/4 - (k + 't)] -1(3/4 - 't)2 and 

S2 = (h + 't)(k + 't) - 1't2 

are presented for water-filled inclusions (a, b, c) and dry inclusions (d, e, f). The crack 
density used in these calculations is e = 0.05. The results have been calculated for 
Nishizawa's model (dashed line) and Hudson's second-order model (solid line). 

If the parameters I and 't, presented in Figs 4.6a and 4.6d for water-filled and dry 
inclusions, respectively, are considered, Figs 4.6a and 4.6d show that for Hudson's 
second-order model I and 't are constant and independent on the medium inside the 
inclusions. With the expressions given for these parameters in (19): 

1
I =-- and 't = 'Yb 

1 +ET 

and the results of Figs 4.2 and 4.4 (showing that ET is constant for both dry and water-filled 
inclusions) this result can be explained. Important to note is that both I and 't satisfy the 
stability constraints of a RSSIL-medium, i.e. I < 1 and a< 't < 3/4. This is also true for 
Nishizawa's I and 't (dashed lines). The value of Nishizawa's 't is almost identical to 
Hudson's 't, but the value of Nishizawa's I is only identical to Hudson's I at aspect ratios 
smaller than 0.3. At larger aspect ratios the value of Nishizawa's I goes to unity, 
corresponding to the isotropic situation (spherical inclusions). 

In Figs 4.6b and 4.6e the values of hand k are shown for water-filled and dry 
inclusions, respectively. From these figures it is concluded that both hand k (calculated 
with either Hudson's or Nishizawa's model) satisfy the constraints -'t < h < (3/4 - 't) and 
-'t < k < (3/4 - 't) (with 't presented in Figs 4.6a and 4.6d) of RSSIL-media. Figures 4.6b 
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Fig. 4.6. The dimensionless parameters 1, 't (a, d). h, k (b, e), and 
51 =(3/4 - (h + 't)X3/4 - (k+ 't» -1(3/4 - 't)2 and 52 =(h + 't)(k+ 't) -1't2 (c, f) as a function of 
the aspect ratio a of water-filled (a, b, c) and dry (d, e, f) inclusions embedded in a matrix 
material with 'Yb =1/3. The results are calculated for a crack density e = 0.05 using Hudson's 
second-order model (solid line) and Nishizawa's model (dashed line). The dot in (c) and the 
triangle in (b) have the same meaning as described in Fig. 4.2. 

and 4.6e show that Hudson's k is always zero, which agrees with (19). Nishizawa's k, 
however, is only zero for smail aspect ratios (a < 0.01) and for a =1. The aspect ratio a = 
1 is also the only aspect ratio at which Nishizawa's model results in a K-medium (i.e. h = k 
= 0) both for the dry and water-filled inclusions, but this K-medium is an isotropic medium. 
Unlike Nishizawa's model which does not result in a K-medium at aspect ratios smaller 
than a = 1, Hudson's model does if water-filled inclusions are considered (the triangle 
again denotes the K-medium according to Hudson's first-order model). 
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k 

h 

Fig. 4.7. The two-dimensional intersection (shaded area) of the 'stability area' (described by Eq. 
(6» with the hyperplanes 1 = Ie' and 't = 'te (where Ie and 'te are constants given by the constant 
values of 1 and 't at small aspect ratios in Figs 4.6a and 4.6d). The coordinates of the points lying 
on the solid and dashed curves represent the h, k parameters (calculated with Nishizawa's model) 
of media containing water-filled (solid line) and dry inclusions (dashed line) with aspect ratios a. 
ranging from a. = 0.0001 (the starting point of each curve) up to a. = I (the endpoint of each 
curve). The arrow and the thick dot at each curve denote the direction of increasing aspect ratio 
and the aspect ratio a. = 0.1, respectively. The crack density e = 0.05. 

Finally, in Figs 4.6c and 4.6f the parameters 51 and S2 are shown. The stability 
constraints of a RSSIL-medium require that the values of 51 and S2 are positive. Both Figs 
4.6c and 4.6f show that S2 is always positive, but that SI may be non-positive. This means 
that the media studied are not RSSIL-media if SI becomes non-positive. Figure 4.6c 
therefore shows that for water-filled inclusions (with e = 0.05) Nishizawa's model only 
results in RSSIL-media at aspect ratios smaller than (X::: 0.1. This result agrees very well 
with the ultimate aspect ratio (XI of Hudson's first-order model (black dot). Figure 4.6f 
shows that both Nishizawa's and Hudson's model do not result in a RSSIL-medium if dry 
inclusions are considered. 

In conclusion we can say that the results of Fig. 4.6 are similar for both Nishizawa's 
and Hudson's (second-order) model at aspect ratios up to 0.3 (which agrees with the 
similarity between both models as described already by Douma, 1988) but that at larger 
aspect ratios only Nishizawa's model converges to an isotropic situation at (X = 1. 

Because for a large range of aspect ratios the dimensionless parameters I and 't of the 
cracked media are constant these media can be represented in the h, k-subspace of the h, k, 
't, I parameter space for a large range of aspect ratios together with the two-dimensional 
cross-section (at the constant values of I and 't) of the constraint area (representing all 
RSSIL-media) in this subspace. In Fig. 4.7 this cross-section is plotted as a shaded area in 
the h, k-space. Together with this constraint area the points representing the cracked media 
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as described by Nishizawa's model are given for a large range of aspect ratios (from ex = 
0.0001 up to ex = 1). The h. k coordinates of these points are the h, k parameters calculated 
for these media (and presented in Figs 4.6b and 4.6e). The points are given in Fig. 4.7 by 
solid and dashed lines describing the situation of water-filled and dry inclusions (with e = 
0.05), respectively. The arrows indicate the direction of increasing aspect ratio. Figure 4.7 
shows clearly that for water-filled inclusions the resultant cracked medium is a RSSIL­
medium at small aspect ratios, but that at a certain aspect ratio, as the point representing the 
medium in the h, k-space moves out of the constraint area, it is no longer a RSSIL-medium. 
Only for aspect ratios approaching ex = 1 (spherical inclusions) the resultant medium lies 
inside the constraint area again. 

For dry inclusions Fig. 4.7 shows that already at small aspect ratios the points 
representing the cracked media lie outside the constraint area. At these small aspect ratios 
the resultant medium is not a RSSIL-medium. Only if the aspect ratio approaches ex = 1 the 
resultant medium lies inside the constraint area again. Figure 4.7 also shows that for the 
inclusions and background medium studied here Nishizawa's model only results in a K­
medium (h = k = 0) at ex = 1 (both curves end in the origin of the h, k-space). 

One should be aware that Fig. 4.7 is misleading for large aspect ratios (Le. ex:::: 1). 
Because the value of I (as calculated with Nishizawa's model) increases at these aspect 
ratios and approaches I = 1 (Figs 4.6a and 4.6d) the constraint area becomes narrower 
around the origin than shown in Fig. 4.7 (at ex = 1, Lhe isotropic situation, the constraint 
area disappears: its boundary is the origin). Consequently, the points representing the 
cracked medium at large aspect ratios which now seem to lie inside the constraint area 
actually lie outside the constraint area. To study the situation for large aspect ratios (ex:::: 1) 
the results of Fig. 4.6 should be used. 

4.7 CONCLUSIONS 

Not all media contammg rotationally symmetrical aligned inclusions result in 
transversely isotropic media that can also be modelled by sequences of stable isotropic 
layers (with a symmetry axis identical to that of the inclusions). Important parameters that 
determine whether a medium containing aligned inclusions is representable by such 
sequences of layers are the aspect ratio ex of the inclusions and the medium inside the 
inclusions. The crack density e and the background medium (if Yb lies around 1/3) only 
slightly affect these results. Media (with 'Yb = 1/3) containing water-filled inclusions are 
only RSSIL-media if the aspect ratio of the inclusions is smaller than ex:::: 0.1 (for a crack 
density e = 0.05). For larger aspect ratios the resultant medium can not be modelled by 
sequences of stable isotropic layers. For gas-filled inclusions (i.e. for larger contrast 
between the medium inside the inclusions and the background medium) the range of aspect 
ratios for which the resultant cracked medium is a RSSIL-medium becomes smaller, Le. 
only media having inclusions with aspect ratios smaller than ex:::: 0.005 are RSSIL-media. 
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Finally, for dry inclusions (the limiting case of gas-filled inclusions) there are no aspect 
ratios at all for which the resultant medium is a RSSIL-medium. The results can be 
obtained using either Nishizawa's or Hudson's model. Both give almost identical results for 
ex up to 0.3. Using Hudson's first-order model an analytical expression can be obtained for 
the range of aspect ratios for which the resultant medium is a RSSIL-medium. The value 
appears to be a good approximation of the range of aspect ratios for which numerical 
calculations show that Hudson's second-order model and Nishizawa's model result in 
RSSIL-media. 

The representability of cracked media by sequences of isotropic layers might be used 
in the separation of the cause of observed transverse isotropy: if it is shown that the 
observed anisotropy can not be modelled by sequences of isotropic layers this would 
exclude one possible cause of anisotropy, whereas cracked media, which (as shown in this 
paper) not necessarily have to be representable by such sequences, could still be the cause 
of the observed anisotropy. Realizing, however, that there are other causes of transverse 
isotropy the results in this paper should only be considered as a first step towards possible 
separation methods. Another application of the representability of cracked media by 
sequences of isotropic layers might be the determination of the medium inside the 
inclusions. The results of this study show that for a given aspect ratio of the inclusions this 
representability strongly depends on the medium inside the conclusions. For example if it 
would be known that a cracked medium containing inclusions with a very small aspect ratio 
is not a RSSIL-medium this can only be explained by gas-filled inclusions with a very 
small bulk modulus. Other media (with a larger bulk modulus) inside the inclusions would 
result in a RSSIL-medium. Therefore, the representability of cracked media by RSSIL­
media might be useful to monitor the fluid inside the inclusions changing with time 
(earthquake prediction) or space (gas exploration) in a uniformly cracked media. 
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4.8 ApPENDIX A. 

In Eq. (10) the dimensionless compliances EN and ET for which a medium containing 
large fractures (slip interfaces) is the equivalent of a RSSIL-medium were derived by 
considering the medium inside the fractures (the fracture material itself had to be a RSSIL­
medium). In this appendix the same is done, but now by investigating the values of EN and 
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ET for which the elastic constants cif of the medium containing the large fractures satisfy 
the stability constraints (6) of a RSSIL-medium. Only stable background media (i.e. Ilb > 0 
and 0 <"Yb < 3/4) are considered here. The dimensionless h. k, t.1 parameters (or eventually 
p, 0', t. and I) used in the stability constraints (6) are calculated for the elastic constants cif 
in appendix C. With these h, k, t, I parameters (expressed in tenus of EN, ET • and "Yb) the 
stability constraints (6) become 

1) 0 < 1<1 : 

1
0<---<1, (AI)

1 +ET 

which is satisfied for ET > O. 

2) 0 < t < ~ : 

(A2) 

which is always satisfied for a stable isotropic background medium (see (3c)). 

(A3) 

which is identical to the previous constraint. 

with ET > 0 (see (AI)) this constraint becomes 
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(A4) 

5) 1't2 < (h + 't)(k + 't) (or 1't2 < pO') : 

With ET > 0 (see (AI» we get 

(AS) 

Using ET > 0 (see (AI) we get 

(A6) 

This constraint is (with 0 < 'Yb < 3/4) more restrictive than the second inequality of (A4). 
In conclusion Eqs (AI)-(A6) show that a transversely isotropic medium which is the 

long wavelength equivalent of a medium containing slip interfaces is a RSSIL-medium if 
EN and ET satisfy: 

(A7) 

4.9 ApPENDIX B. 

In this appendix it is shown that the constraint described in (18) is more restrictive (i.e. 
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it is satisfied for a smaller range of aspect ratios a) than the constraint described in (16a). 
This is true if 

(BI) 

Because the terms in brackets of both denominators in (B I) are positive (in the first term of 
(BI) because of 0 < Yb < 3/4 and in the second term because (100) is only true for 
(3y; - 3Yb + 4e) > 0 ) (B 1) becomes 

(B2) 

(B2) is certainly true if it can be proven that 

(B3) 

i.e. 

Yb(6Yb - 9 + 16e) < 0 . (B4) 

With Yb"# 0 (which was assumed throughout this paper) (B4) is always satisfied for crack 
densities up to e ::: 0.28 (because 0 < Yb < 3/4). So, we may conclude that the constraint (18) 
is more restrictive than (16a). This is true for crack densities up to e ::: 0.28 and therefore is 
certainly true for the crack densities (e smaller than 0.05) for which Hudson's model is 
assumed to be valid (Thomsen, 1988). 

4.10 ApPENDIX C. 

In this appendix the dimensionless parameters p, cr, 't, land h, k corresponding to the 
elastic constants Ci~ of a transversely isotropic medium which is the long wavelength 
equivalent of a medium containing large fractures (slip interfaces) are calculated. Using the 
elastic constants Ci~ as described in (8) we get: 
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c~ 1 
I=-s-=--' (C1) 

C66 1 +ET 

(C2) 

(C3) 

(C4) 

l+EN ]h=p-'t="f!, ---1 , (C5)[ l+ET 

k=O'-'t=O. (C6) 

Eqs (C1) - (C6) show that both the dimensionless parameter sets p, 0', I, 't, and h, k, 't, 1only 
have three independent parameters, which agrees with the four independent elastic 
constants Ci~ (8). 
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Chapter 5 

SHEAR-WAVE SPLITTING IN ISOTROPIC 
MEDIA 

AnSTRACT 

The direction of polarization of seismic shear waves and the time shift between shear 
waves of different polarization contain important clues to the internal structure of the 
medium through which the waves have passed. For instance, the direction of polarization 
can be used to infer the average orientation of cracks (and thus the direction of tectonic 
stresses), while the time shift depends not only on the orientation of the ray path with 
respect to the plane of the cracks, but also on the product of crack density and path length 
through the cracked medium. 

Before the direction of polarization and the time shift can be used for this purpose one 
must ascertain that these parameters are not contaminated by spurious effects. Disturbances 
that must be corrected for occur at the free surface, but even in Vertical Seismic Profiling 
(VSP) disturbances might occur due to transmission through interfaces: unless the shear 
waves are polarized parallel or perpendicular to the 'plane of propagation' that contains the 
ray and the normal to the interface (or unless the angle of incidence is zero), the direction 
of polarization changes at transmission due to the different transmission coefficients of the 
two component waves. For incidence at and beyond the critical angle, the transmission 
coefficient of the component parallel to the plane of propagation is complex, resulting in a 
time shift. 

This chapter has been published as: 

Douma,1. and Helbig, K. 1987. What can the polarization of shear waves tell us? First Break 5, (3),95-104. 
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The effects at the free surface and at individual interfaces are relatively small (though 
not negligible). However, passage through several interfaces can lead to the accumulation 
of time shifts. In the limit this accumulation results in two shear waves with different 
velocities, i.e. to anisotropy. 

5.1 INTRODUCTION 

Of the two different wave types that can propagate in an isotropic elastic medium only 
the shear waves have a non-predictable polarization: P-waves are, for all practical 
purposes, polarized in the direction of the ray, but the shear waves can be polarized in any 
direction in the plane that is perpendicular to the direction of the ray. Since information is 
contained only in non-predictable parameters, it is the shear-wave polarization from which 
we can learn something. 

What then determines the polarization of a shear wave? We generally describe the 
polarization implicitly by talking of SH- and SV-waves, i.e. of shear waves with the 
displacement vector in a horizontal plane and shear waves with the displacement vector in 
the vertical plane containing the ray. The choice of these two directions is natural as long as 
we are dealing with, or assume we are dealing with, an isotropic homogeneous medium, a 
transversely isotropic medium with vertical axis, or any combination of these with 
horizontal layering. Under these circumstances, the local vertical is an axis of rotational 
symmetry and thus the pre-ordained reference direction. The tangent of the 'polarization 
angle' between the direction of shear displacement and the vertical plane containing the ray 
is then simply the ratio of the SH- and SV-amplitudes. 

In isotropic conditions, the propagation velocities of the two shear waves are equal. 
Since the ray path (as determined by Snell's law) depends only on the velocity distribution, 
the two wave types travel along the same ray path even if the medium is inhomogeneous. 
Identical angles of refraction, however, do not imply identical transmission and reflection 
coefficients, since SH-waves generate only SH-waves, but SV-waves generate both SV­
and P-waves at non-normal incidence. Unless the incident wave is purely SH or SV, the 
polarization angle changes at every interface. 

These changes in polarization angle are relatively simply to determine in a 
horizontally stratified medium. Moreover, they are generally small since for moderate 
offsets the angle of incidence remains moderate. The polarization observed at a three­
component geophone station is determined by the original polarization produced by the 
source and by the accumulated changes of the two shear components along the ray path. To 
a degree these concepts have been used in connection with offset-dependent reflection 
coefficients, though generally only the change in the amplitude of the P-waves is taken into 
account. Generalization to SV- and SH-waves would make the conclusions drawn from 
these offset dependences more reliable. 

The situation can change drastically when our simplistic model of a stack of isotropic 
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plane layers breaks down, i.e. for anisotropy or for dipping interfaces. At a dipping 
interface one has to redefine SV- and SH-waves: the displacement vectors of the 'new' 
SV-waves lie ~n the (not necessarily vertical) plane containing the rays and the normal to 
the interface, the displacement vectors of the 'new' SH-waves are parallel to the interface. 
For steeply dipping interfaces the angle of incidence can become considerable even for 
moderate offsets, and significant changes of the polarization angle might occur. In 
particular, for large angles of incidence the reflection/refraction process can become critical 
with respect to P- or S-waves in the two media separated by the interface. Beyond the 
critical angle, reflection coefficients are complex, Le. in addition to the change in amplitude 
there is a phase shift. 

In anisotropic media the two types of S-waves travel, in general, with different 
velocities. Combination of the two S-waves, or splitting of one according to a convenient 
coordinate system, is then no longer possible, except in the special directions where the two 
velocities happen to be equal. This equality of the two shear-wave velocities occurs for all 
directions of symmetry, but there are also a few other directions of such 'shear-wave 
degeneration'. For the immediate vicinity of these directions the differences in the two 
velocities are small, but even a difference of as little as 1% means that after 50 wavelengths 
the two signals are shifted by half a wavelength. In other directions the difference can 
easily reach 10 - 20 %, i.e. a shift by one wavelength is reached after only five to ten 
wavelengths. If these S-waves, after being affected by the anisotropy, continue in an 
isotropic medium, this shift remains constant. 

If we do not look at the complete signal but at its (sinusoidal) Fourier components, this 
time (or distance) shift is translated into a phase shift of 360° for every shifted wavelength. 
Such phase-shifted sinusoidal waves combine to form elliptically polarized S-waves, 
except for phase shifts that are a multiple of 180°. For these phase shifts the polarization 
ellipse degenerates into a straight line. 

In the last few years the polarization of S-waves and the corresponding time shift have 
been observed in several investigations in order to obtain information about the anisotropy 
that has affected it (Crampin, 1985a, b; Gal'perin, 1984). The time shift is often loosely 
referred to as 'shear-wave splitting'. If the anisotropy is caused by aligned cracks, 
polarization measurements can help to determine the orientation of the cracks or their 
spatial density, and thus the polarization of, and the time shift between, shear waves 
contain information that is potentially valuable for the exploration of hydrocarbons: the 
polarization is related to the orientation of the cracks, since that determines the axes of 
symmetry of the medium and thus the 'allowed' direction of polarization, while the time 
shift is related to the spatial density of the cracks and the orientation of the ray path with 
respect to the plane of the cracks. Note that different velocities imply different ray paths for 
the two shear wave signals: for non-vertical incidence they are refracted by different angles 
according to Snell's law. 

Polarization measurements are carried out with three-component geophones at the free 
surface or below it in boreholes (Vertical Seismic Profiling, VSP). Measurements at the 
free surface suffer from all kinds of interactions of waves (Evans, 1984) which mask the 



92 Chapter 5 

X'2 

X'1 

X, 

Fig. 5.1. Interface with the local coordinate system X'lo x'2. x'3. 

polarization caused by anisotropy. Measurements within the medium, such as VSPs, are not 
influenced by these disturbing effects. However, particularly in offset VSPs, where oblique 
rays are used, one has to take into account the effect of polarization changes at interfaces, 
since the angle of incidence at a dipping interface can be large. Waves arriving at the 
receivers in the borehole may have passed through many interfaces, and the accumulated 
change of the polarization angle may be significant. Thus a part of the polarization changes 
observed in VSP measurements may have been caused by the passage through interfaces 
rather than by the passage through an anisotropic medium. 

5.2 THEORY 

In the theoretical considerations we shall use sinusoidal waves instead of short signals. 
Accordingly, we talk of phase shifts instead of time shifts. A phase shift that depends 
linearly on frequency is easily translated into a time shift: for example, a phase shift of 36° 
per Hz corresponds to a time shift of 0.1 s (36/360 s). 
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X' 
1 

Fig. 5.2. The system of waves generated by an incident SH-wave at an interface between two 
solids. 

5.2.1 Decomposition into SH- and SV-waves 

The incident S-wave is decomposed into SR- and SV-waves according to the local 
coordinate system at the point of incidence. This system consists of a x'raxis normal to the 
interface and X'I- and x'2-axes perpendicular to each other in the plane tangent to the 
interface (see Fig. 5.1). The x'l-axis is chosen in such a way that the incident ray lies in the 
X'I> x'rplane. The SR- and SV-displacement amplitudes USH and Usv are the components of 
the S-wave displacement vector resolved into the direction of the x'2-axis and into the X'I' 

x'rplane, respectively. The polarization angle 4J is defined as: 

4J = tan-I [USH] . (1) 
usv 

From the dynamic and kinematic boundary conditions at an interface between two 
homogeneous solids for both incident SR- and SV-waves, a complete system of generated 
waves can be determined (Aki and Richards, 1980). As illustrated in Fig. 5.2, an SR-wave 
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Fig. 5.3. As for Fig. 5.2. but for an incident SV-wave. 

incident at an angle PI with the normal to the interface generates reflected and transmitted 
SR-waves. Their angles with the local normal can be derived from Snell's law. Only 
transverse waves are involved here. An incident SV-wave, however, generates reflected 
and transmitted P-waves as well as reflected and transmitted SV-waves (Fig. 5.3). 

5.2.2 Transmission coefficients 

The next step in the determination of the polarization of the transmitted S-wave is to 
multiply the amplitudes of the incident SR- and SV-waves with the corresponding 
transmission coefficients. We denote these coefficients by SHSHand 5ySy, respectively. In 
this nomenclature letters indicate the wave type and the superscripted symbols the direction 
of the ray before and after the interaction with the interface. For instance Sy Pindicates the 
generation of an upgoing (reflected) P-wave by and incident downgoing SV-wave. 

The displacement of the incident downgoing SR-wave with amplitude SI is described, 
in a coordinate system with the x'3-axis directed upwards, by 
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Wave type Slowness vector s 

Incident SV-wave [. ~ ~] [ [ raJSID 1 COS 1 1 2
--,0,--- or p,O,­ -2 -p

VS1 VS1 VS1 

Reflected SV-wave [. ~ ~] [ [ raJSID 1 COS 1 1 2
--,0, + -­ or p, 0, + -2- ­ P 

VS1 VS1 VS1 

Transmitted SV-wave [.~ ~] [ [ ra]SID 1 COS 2 1 2
--,0,--- or p,O,­ -2-- PVS1 VS2 VS2 

Reflected P-wave [.~ ] [ [ ra]SID 1 COSU1 1 2----V-' 0, + -­ or p, 0, + -2 - P 
Sl VP1 Vp1 

Transmitted P-wave [ . P ] [ [ ra]SID 1 COSU2 1 2 
~,O,- V 

n 
or p,O,­ vh -p 

Table 5.1. The slowness vector S for the five waves described in Fig. 5.3. 

. [Sin ~1, cos ~1, J]uSH= (0, S1> 0) exp lCO ~x 1 - ~X3 - t , (2)[ 

and that of the incident downgoing SV-wave with amplitude S2 by 
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sin ~J cos ~J J]Usv == Sz(cos ~J' 0, sin ~J) exp ioo _-X/J - --X/3 - t , (3)[ [ VSJ VS1 

where ~J is the angle of incidence, (sin ~J)/(VSJ) = P is called the ray parameter in the 
xlj,xlz,x/3-coordinate system, 00 is the angular frequency, t is time, and VSJ is the shear­
wave velocity in medium 1. The displacement vector of the incident wave is the sum of 
these two displacement vectors. 

Note that p = (sin ~1)/(VS1) is the term occurring in Snell's law and that 

cos ~J == "'./1 - sinz ~1 = "'./1 - V~tPz. We thus have the choice of defining a ray by the angle 
of incidence ~ or by the ray parameter p (see Table 5.1). 

The displacements of the downgoing transmitted SH- and SV-wave are, respectively: 

(4) 

and 

• " • I cos ~z I 

Usv == Sz(cos ~z, 0, SIn ~ilSvSv exp[zoo [px 1 -~ X 3 - ~I'] ' (5) 

where Vsz is the shear-wave velocity in medium 2 and ~z is the angle between the 
transmitted wave and the normal to the interface. The displacement vector of the 
transmitted S-wave is the sum of the displacement vectors of these two waves. The 
transmission coefficients of the SH- and SV-waves (e.g. Aki and Richards, 1980) are: 

(6) 

with ~ == PJ VSJcos ~J + pzVszcos ~z and 

(7) 

with 
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cos 0.1 cos 0.2 
E = b--- + c---

Vn 'VPI 

cos PI cos P2 
F=b--+c-­

'VSI VS2 

cos 0.1 cos P2 
G=a-d----,

VPI VS2 

cos 0.2 cos PI 
H=a-d--- ---,


Vn VSI
 

D=EF+GH p2, 

a =P2 (1- 2Vl2p2) - PI(1- 2vll p2) , 

b =P2 (I - 2Vl2p2) + 2PIvll p2 , 

C =PI (I - 2vll p2) + 2P2Vl2p2 , 

d = 2 (P2Vl2 - PIVfl) , 

where 0.1 and ~ are the angles between the reflected and transmitted P-waves and the 
normal to the interface, respectively. The subscripts I and 2 denote the media I and 2, 
respectively. PI and P2 are the densities, and VPI and Vn are the P-wave velocities. The 
parameters E. F, G, H, D, a, b, c. and d are abbreviations. Without them the expression for 
5y5y would be even more complex. Fortunately, the polarization angle can be discussed 
without dissecting this complicated expression. 

With the transmission coefficients 5H 5H and SySy, the displacements of the 
transmitted SH- and SV-waves can be calculated using (4) and (5), after which the 
displacements due to each wave can be summed vectorially to result in the total 
displacement for the transmitted S-wave. 

5.2.3 Complex transmission coefficients 

The expressions (6) and (7) for the transmission coefficients contain functions of the 
angles PI' P2' 0.1> and~. The first of these four angles can be freely chosen between 0° and 
90°, but the other three angles are determined from their sines by Snell's law. Beyond the 
critical angle, the sines of these angles become larger than 1. This means that, because of 

the relation cos P="I-sin2p, the cosine then becomes imaginary, resulting in complex 
transmission coefficients. Of special interest are the situations where 5y 5y happens to be 
complex. A complex transmission coefficient means that waves with an imaginary X'3­

component of the normal to the wavefront are generated in medium 2. Such waves are 
called 'inhomogeneous'. 
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The real part of the normal to the wavefront specifies the direction of wave 
propagation; the imaginary part specifies a direction of exponential decay. This can be seen 
from the 'phase term' in (2) and (3) - Le. (sin ~/V) x\ - (cos ~/V) X'3 which can be regarded 

as the dot product of the slowness vector S = [(sin ~/V), 0, (-cos ~/V)] with the position 
vector x' = (x' I, 0, X'3)' The slowness vector has the direction of the normal to the 
wavefront and magnitude l/V. The phase term appears in (2) and (3) as part of the 
argument of the exponential function. Thus for a real phase term we have a cosine or sine, 
but any imaginary part of the phase term, on multiplication by iCJ), becomes real, and results 
in an 'ordinary exponential'. The algebraic sign of the real part of the exponential is always 
such that the amplitude falls off with distance from the interface, so exponential growth 
never occurs. 

Inhomogeneous waves decay away from the interface (they are 'bound' to the 
interface) and could be observed only in its immediate vicinity. What can be observed is 
the effect the generation of inhomogeneous waves has on the coexisting homogeneous 
waves. In our context we thus should look for changes in the non-critically transmitted 
SV-wave caused by the generation of inhomogeneous P-waves. To see under what 
conditions inhomogeneous P-waves are generated, we study the slowness vector of all 
waves generated by the incident SV-wave. In Table 5.1 these vectors are given in two 
different ways, once in terms of the angles between the normal to the wavefront and the 
x'raxis and once in terms of the ray parameter p (the horizontal component of the slowness 
vector). The ray parameter is, of course, equal for all waves (this statement is tantamount to 
Snell's law). For an incident S-wave p = (sin ~1)NsI' From Table 5.1 we conclude that an 
inhomogeneous transmitted or reflected P-wave is generated for Ip I > l/Vn or 
Ipl > l/VpI,respectively. 

Suppose we have 

1 1 1 1 
, Le. -- < -- < -- < -- . 

Vn VPI VS2 VSI 
VS1 < VS2 < VPI < Vn 

We consider an incident SV-wave with ray parameter p between Ip I o (normal 
incidence) and Ip I=l/VsI (grazing incidence). If 

_1_ > Ipl = [ sin ~I] > _1_ , 
VP1 VSI Vn 

the transmitted P-wave is inhomogeneous, whereas all other waves remain homogeneous. 
The imaginary component 53 of the slowness vector s of the transmitted P-wave is 

(8) 

This expression takes the place of -«cos ~Nn> in the formulation of SySy in (7). Thus 
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E and H in (7) become complex, resulting in a complex value of SySy. SHSH is 
independent of the P-wave and its slowness vector, and thus remains real. 

For 

I I I->lpl>->­
VS2 Vp1 Vn 

the reflected P-wave also becomes inhomogeneous, with 

S3=+ Jp2_+]1/2 

VP1l 
taking the place of ((cos Ul)/VP1)' G in (7) is now also complex. The value of SySy is 
complex, whereas that of SHSH remains real. 

To be meaningful Ip I can assume values up to Ip I = l/Vs2 only. At larger values the 
transmitted S-waves would also become inhomogeneous and there would be no 
transmission in the ordinary sense. So the highest angle of incidence for which there is 
'ordinary' transmission is given by sin Pi =VS1/VS2' This angle Pi is the critical angle for 
SH-waves. 

It can be seen from (7) that as soon as any of the cosines is imaginary the transmission 
coefficient SySy is complex since E, F, G, and H occur in the expression. 

What does a complex transmission coefficient mean? A complex number z =x + iy 

can be written as r expi9 (where r = -V~ + y) and e = tan-1 (y/x). r = Izi is called the 
'amplitude' of z and e is called the 'phase' of z. A complex transmission coefficient for 
SV-waves means that the amplitude of the incident wave is multiplied by ISySyl and the 
phase is shifted bye. For the situation we study (i.e. 0 ~ Ip I < l/Vd, SHSH is always real, 
whereas SySy is real for Ip I ~ I/Vn and complex for Ip I>l/Vn . A complex SySy may 
be written as 

(9) 

Using (9) we rewrite (5) as: 

(10) 

In other words, a phase shift e occurs for Ip I = I(sin Pl)/VS11 > I/Vn. It should be noted 
that the intervals of Ip I described here apply if VS1 < VS2 < VP1 < VP2• A change in the 
order of these velocities changes the intervals of Ip I. 
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5.204 The polarization of the transmitted S-wave 

To find the polarization of the transmitted S-wave, we combine the displacements of the 
transmitted SR- and SV-waves. For Ipl ::; INn the two are in phase, and the resultant 
wave is linearly polarized with an amplitude 

(11) 

and an angle of polarization 

(12) 

For Ip I > INn the resultant wave is elliptically polarized. The polarization ellipse is 
described by Smith and Ward (1974): 

(13) 

(see Fig. SA). The parameters USH and Usvare the displacement amplitudes of the SR- and 
SV-waves, respectively, and e is the phase difference between the SV-and SR-waves. The 
displacement uSH is parallel to the x'z-axis, marked X in Fig. SA, and the displacement Usv 
is in the Xl> x'3-plane along the Z-axis in Fig. SA. If e=0°, the polarization ellipse in (13) 
degenerates into a line, i.e. the wave is linearly polarized. If e= 90° the resulting ellipse has 
its axes lying along the X- and Z-axes. The sign of the phase difference e determines the 
orientation of the rotating displacement vector. For positive and negative phase 
differences, the direction of rotation is clockwise and anti-clockwise, respectively. The 
polarization angle 4> for elliptically polarized waves is defined as: 

(14) 

The polarization angle 4> is positive for ellipses with a major axis lying in the first and third 
quadrants of the X, Z coordinate system, and is negative when the major axis lies in the 
second and fourth quadrant. 
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x 

Fig. 5.4. The displacement of an elliptically polarized wave. The SH- and SV-displacements are 
along the X-and Z-axes, respectively. 4> is the angle of polarization. 

5.3 EXAMPLE: INTERFACE BETWEEN SANDSTONE AND HALITE 

Consider an interface between sandstone (medium 1) and halite (medium 2) 
representing, for example, the edge of a salt dome. The velocities and densities are: VSI = 

1904 m S-I, VPI = 3047 m S-I, VS2 =2697 m S-I, VP2 =4618 m S-I, PI =2.65 g cm-3• and P2 

= 2.16 g cm-3. The dip 0 of the interface is 45° and its strike is along the xz-direction (Fig. 

5.5). The incident S-wave, travelling in medium 1 with its propagation direction in the xI> 
x3-plane, has a polarization angle <I> = 45°. 

The determination of the polarization of the transmitted S-wave can be summarized as 
follows: 

1. Choose a new local coordinate system at the interface of interest. 
2. Decompose the displacement of the incident S-wave into SH- and SV-waves according 

to this system. 
3. Calculate the displacements of the transmitted SH- and SV-waves. 
4. Recombine them to the resultant transmitted S-wave. 
5. Detennine the polarization of the transmitted S-wave. 
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Sandstone 

Xl 

Fig. 5.5. Interface between sandstone (medium 1) and halite (medium 2). The interface has a dip
 
S = 45°, and a strike along the xz-axis. An incident S-wave (~l =40°) having a polarization angle
 
<l> = 45° is shown, together with the transmitted elliptically polarized S-wave. 
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Due to our choice of the strike, the Xjo X3- plane and the x'jo x'3-plane are parallel, and 
x2 and x'2 identical. For a polarization angle <1> =45° the SV- and SH-displacements in both 
systems are identical. 

The next step is to calculate the displacements of the transmitted SV- and SH-waves. 
The transmission coefficients for the incident SV-and SH-waves are presented in Figs 5.6 
and 5.7, respectively. They are given as a function of the angle 'l' = ~l + 8 between the 
incident ray and the horizontal. For'l' = 45° we have normal incidence at the interface, thus 
both figures are symmetric with respect to 45°. For 'l' < 45°, p > 0, and for 'l' > 45°, p < O. 
The calculations have been done for the interval 0 ~ Ip 1 < I/VS2' Le. for the entire range of 
'ordinary' transmission. 

Figure 5.6 shows that the SV-transmission coefficient generally increases (for 
Ip I > I/Vn) with increasing Ip I. Furthermore, one sees how the amplitude is affected by 
the generation of inhomogeneous P-waves. At the angles corresponding to the values of 
Ip 1 = I/VP2 and Ip 1 == I/VPl the slope of the amplitude curve changes discontinuously as 
the transmitted and reflected P-wave, respectively, become inhomogeneous. The SH­
transmission coefficient is not affected by these inhomogeneous waves (see Fig. 5.7). Its 
amplitude also increases with increasing 1p I, but smoothly. 

In Fig. 5.8 the phase difference between the SV-and SH-waves is plotted. For angles 
corresponding to Ip 1 ~ I/Vn there is no phase difference since both SH-and SV­
transmission coefficients are real. At values of Ip I == l/Vn and Ip I == IjVP1 , discontinuities 
are observed in this figure also. For Ip 1 > I/Vn the phase difference is non-zero. This is 
due to the fact that the SV-transmission coefficient becomes complex, whereas the SH­
coefficient remains real. The phase difference is positive for our example and increases 
with Ip I. 

From these data the polarization of the transmitted S-wave can be calculated as 
described earlier. The results are presented in Fig. 5.9. At normal incidence, Le. at an angle 
of 45° to the horizontal, the polarization of the transmitted wave is the same as for the 
incident wave, Le. <1> = 45°. For increasing angles of incidence (Le. for increasing 1p Dthe 
polarization angle increases until inhomogeneous waves are generated at Ip I == I/Vn. For 
Ip 1 > I/Vn the angle decreases over a short interval. From Fig. 5.9 we conclude that the 
largest polarization change in our sandstone-halite model is about 3°. Despite this relative 
small change, the total polarization change of these waves may increase considerably when 
more interfaces are involved: if more interfaces are traversed by the S-wave before it 
reaches the receiver, the polarization changes accumulate. 
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Fig. 5.6. The amplitude ISvSv I of the SV-transmission coefficient as a function of the angle 'I' 
between the incident ray and the horizontal. Some values of !PI are given to illustrate the effect of 
inhomogeneous waves on the amplitude. 

1 
IPI~v 
I 52 

_(fj I 1.6 l 
I 

~ 1.4 
u 
c 
o 
lJ)
 
lJ)
 

E 
lJ) 1.2 
c 
'" ~ 
I 
Cf) 

1.0 
I 
I 
I 
I 

a ....J...I__--'-__-'----__L-__---'-_-'----.---'-__...L-__-'----_---.JL-_--'-'II 

700 800 900 

Angle \If 
Fig.5.7. As for Fig. 5.6, but for the amplitude ISH~ Iof the SH-transmissioncoefficienL 



105 Shear-wave splitting in isotropic media 

1 1 1 1 
Ipl~v Ipl~ V- Ipl·~o Ipl~ V- Ipl~ V­

30° I 52 I P2 I t P2 I Pl 

t I I 
It t Ipl=v

1 

t 52I t t 

I I I tm 
t t II 

OJ I t t tu 
I It Ic 20°~ 
t t t t 

~ I I I I 
"0 

I I t
 
OJ
 
(J) I I I 
OJ 

..c I It c... 
I I t
 

I
 I(j) 10° 
t t 

:> t t t 

(j) I I I 
t I I 
t t I 
t tI 
t t I 
t t t 

0 tI I 

0° 10° 20° 30° 40° 50° 60° 70° 80° 90° 

Angle \jI 

Fig. 5.8. The phase difference e between the SV-and SH-components of the transmitted S-wave 
as a function of the angle 'I' between the incident ray and the horizontal. 
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5.4 CONCLUSIONS 

The direction of polarization of an S-wave incident at an interface between two solids 
generally changes due to the SV- and SH-components having different transmission 
coefficients. The polarization change is small for small angles of incidence (at normal 
incidence it vanishes), and increases with increasing angle of incidence until 
inhomogeneous waves are generated. Because the total polarization change may be 
considerable. it has to be taken into account in all methods that are based on shear-wave 
polarization. 

If any of the secondary waves becomes inhomogeneous. transmission in addition 
causes a time shift between the two S-arrivals. The time shift at an individual interface is 
generally small, but since it can accumulate it has to be taken into account in all methods 
that are based on the difference in arrival time of the two shear waves. 

It is worth noting that anisotropy and shear-wave splitting observed in finely layered 
media are caused by precisely this mechanism: the many layers arranged in a periodic 
spatial pattern produce systematically accumulating time shifts between the two shear 
waves, i.e. changes in the velocities. 
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Chapter 6 

THE EFFECT OF A CHANGING ASPECT RATIO 
OF ALIGNED CRACKS ON SHEAR-WAVE VSPs 

ABSTRACT 

Media contammg parallel cracks or preferentially oriented pores show elastic 
anisotropy. A change in the aspect ratio of these inclusions affects the resultant anisotropy. 
Curves, showing the velocity dependence of the two shear waves on the direction of wave 
propagation in such media, intersect in a singularity in a direction of propagation which 
depends on the size of the aspect ratio. The angle, this direction makes with the symmetry 
axis of the anisotropic medium, decreases for increasing aspect ratio. Characteristic of 
wave propagation around this angle is a change in the polarization of the leading shear 
wave. To demonstrate how this affects VSP measurements synthetic multi-offset VSPs at 
different azimuths are modelled with synthetic seismograms for media containing 
inclusions with small and large aspect ratios. For inclusions with small aspect ratios the 
polarization of the initial shear wave may change abruptly as the direction of propagation 
changes, whereas for large aspect ratios there is no change or the change may be more 
gradual. Such observations of changes of polarization and variation of delays between the 
split shear waves can be used to monitor the stress field as the stress changes. 

This chapter has been submitted for publication as: 

Douma, J. and Crampin, S. 1988. The effect of a changing aspect ratio of aligned cracks on shear-wave VSPs: a 
theoretical study. Submitted to Journal o/Geophysical Research. 
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6.1 INTRODUCfION 

Media containing aligned cracks or pores show elastic anisotropy (Crampin, 1978). 
Once wave propagation through such media could be modelled (Garbin and Knopoff, 1973, 
1975a, 1975b; Hudson, 1980, 1981; Crampin, 1984), the resultant azimuthal anisotropy 
was recognized in seismic data by the comparison of observed and synthetic data. 
Observations of this anisotropy (summarized in Table 1 of Crampin, 1987a) are made 
above small earthquakes, in geothermal reservoirs, in vertical seismic profiles (VSPs), in 
reflection surveys and with refracted P-waves. Shear-wave splitting (indicative of the 
anisotropy) is observed in many different types of rocks (sedimentary, igneous, and 
metamorphic), and it is concluded that distributions of stress-aligned cracks exist 
throughout most rocks in the Earth's crust These distributions of aligned cracks are known 
as extensive-dilatancy anisotropy or EDA (Crampin, 1987a; Crampin, Evans and Atkinson, 
1984). 

Analysing the anisotropy caused by stress-aligned cracks or pores opens wide 
perspectives for different geophysical disciplines. Information about the direction and 
density of the inclusions is important for exploration and production purposes (Crarnpin, 
1987a). Investigating the build-up of stress before an earthquake by studying the change in 
the anisotropy (caused by a changing geometry of the cracks) could be of great help in 
earthquake prediction (Crampin, 1987b). Important characteristics of wave propagation in 
anisotropic media that are used to obtain this information are the shear-wave splitting and 
the polarizations of the split shear waves. The time delay between the split shear waves is a 
measure of the anisotropy along the raypath (and therefore is an indication of the density of 
the cracks), while the polarization of the first arriving shear wave provides information 
about the orientation of the cracks. 

VSP probably offers the best possibilities to detect and analyse changes in anisotropy 
related to changes in crack geometry, especially when multi-offset shear-wave sources are 
used (Crampin, 1985; Crampin, 1987b; Chen, Booth and Crampin, 1987). Other methods 
like surface recordings of small earthquakes or reflection seismics may also show shear­
wave splitting but the interpretation of the delays in the shear-wave arrivals i~ terms of 
changing crack geometry and changing stress-field is difficult because the shear waves 
interact at the free surface resulting in disturbed waveforms and polarizations (Evans, 
1984). VSP measurements, characterized by subsurface recording of the seismic signal, are 
not influenced by this disturbing free-surface effect. Another advantage of VSPs above 
small earthquakes is the control of the source that can be fired at any time at any place. This 
is one of the main reasons that multi-offset shear-wave VSPs are recommended in 
earthquake prediction research (Crampin, 1987b), where observations may be hindered by 
the absence of suitable earthquakes at crucial times. 

In exploration seismics some shear-wave VSPs demonstrating sheat"wave splitting 
have already been carried out (Becker and Perelberg, 1986; Johnston, 1986; Crampin, 
Bush, Naville and Taylor, 1986a; Leary, Li and Aki, 1987; Li, Leary and Aki, 1987). They 
could all be interpreted in terms of aligned cracks. In one of them (Crampin et aI., 1986a) 
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the observed three-dimensional wavefonns were very well-matched with synthetic 
seismograms for waves travelling through cracked media. This demonstrates how repeated 
VSPs could be used to monitor changes in crack geometry and hence in the stress-field. 

In this paper we will demonstrate the influence of a changing aspect ratio of the cracks 
on multi-offset shear-wave VSPs by calculating synthetic seismograms and their 
corresponding polarization diagrams (PDs). Such a study can be used in earthquake 
prediction research where it has been concluded that temporal changes in the anisotropy 
preceding an earthquake are most likely due to changing aspect ratios of the cracks 
(peacock, Crampin, Fletcher and Booth, 1988; Crampin, 1987b). In exploration seismics or 
production engineering such a theoretical study could be of help to find out whether the 
cause of observed anisotropy are either cracks (having a small aspect ratio) or flattened 
pores (having large aspect ratios). The aspect ratio, AR, of inclusions is defined as the ratio 
of the thickness and the diameter of the inclusions. 

6.2 THE INFLUENCE OF THE ASPECT RATIO ON CRACK·INDUCED ANISOTROPY 

The models often used to describe wave propagation through cracked media are those 
derived by Hudson (1980 and 1981). The basic assumptions of these models are that the 
cracks are in dilute concentrations with a small aspect ratio. Assuming that the upper limit 
of the aspect ratio for which Hudson's equations are valid is probably about AR = 0.1, 
Crampin, McGonigle and Ando (1986b) showed variations of group- and phase-velocity 
for body waves propagating through parallel cracks with a range of aspect ratios up to 0.1. 
Douma (1988) investigated the range of aspect ratios for which Hudson's model gives the 
same results as a model, i.e. Nishizawa's (1982) ellipsoidal inclusion model, which does 
not assume a small aspect ratio (a review of both models is given by Douma (1988». He 
showed that Nishizawa's (1982) and Hudson's (1980, 1981) formulations give almost the 
same results for aspect ratios up to AR = 0.3. In this paper Nishizawa's model is used to 
calculate the elastic constants of the cracked media. 

Varying small aspect ratios AR (AR = 0.001 and AR = 0.05) Crampin (1987b) showed 
how the average time delay between shear waves, travelling at angles between 50" and 75° 
to the crack nonnal, approximately doubles, whereas it remains the same between 75° and 
90°. This modelled time delay was very similar to the behaviour observed in the shear­
wave splitting above small earthquakes in California (peacock et al., 1988). Although there 
are several parameters describing the crack geometry (crack orientation, crack density, 
aspect ratio, pore-fluid, and pore-fluid pressure, Crampin, 1987a) it can be argued 
(Crampin, 1987b) that if the stress changes value without changing orientation this is likely 
to have largest effect on the crack aspect ratio. 

In Fig. 6.1 the phase velocities of shear waves travelling through media containing 
distributions of inclusions having aspect ratios ranging from AR = 0.0001 to AR =0.3 are 
shown. The results have been calculated using Nishizawa's model. The density p of the 
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Fig. 6.1. Variation of body-wave phase-velocities in distributions of parallel liquid-filled cracks 
over a quadrant of directions from normal (00 

) to parallel (900 
) to the crack faces (after 

Nishizawa. 1982). The uncracked matrix velocities are Vp =5.8 and Vs =3.349 km S-I. The three 
body waves are a quasi P-wave, qP. with nearly radial polarization and two quasi shear waves, 
qSP polarized parallel, and qSR polarized at right angles to the plane of incidence through the 
crack normal. The cracks have a crack density CD = Na3/V = 0.05 (where N is the number of 
cracks of radius a and half-thickness d in a volume V) and aspect ratios: (a) AR = d/a = 0.0001 
(Medium I); (b) 0.03; (c) 0.05; (d) 0.1; and (e) 0.3 (Medium II). 

effective medium is assumed to be the density of the matrix material. Figure 6.1 shows that 
over a quadrant of directions. ranging from normal (00 

) to parallel (900
) to the plane of the 

inclusions, the velocity variations have some characteristic features: increasing the aspect 
ratio moves the point where both shear-wave velocity curves intersect to smaller angles. 
This singular point (actually a line singularity in hexagonal anisotropic symmetries, 
Crampin and Yedlin. 1981) is the direction of wave propagation where the phase-velocity 
surfaces of the two split shear waves intersect and the first arriving shear wave changes 
polarization (in case of wave propagation in a symmetry plane from qSP to qSR or qSR to 
qSP). Moreover. Fig. 6.1 shows that as the aspect ratio increases the singularity continues 
to shift towards the crack-normal until it coalesces with the kiss singularity (Crampin and 
Yedlin, 1981) along the normal, where the two shear-wave surfaces touch tangentially. 

These polarization changes may be detected in PDs, especially when wave 
propagation at a large range of angles is studied, as in multi-offset VSP. Identification of 
the singular points with their corresponding angle of wave propagation in such VSPs could 
be used in the analysis of temporal changes before an earthquake. 

Knowledge of these points could also be used in exploration or production 
applications. If it is not known whether the cause of anisotropy are aligned cracks (with 
small aspect ratios) or aligned flattened pores (with large aspect ratios) the exact location of 
the singular points could help answering these questions. In this paper, the effects of 
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Fig. 6.2. Equal-area projections of the horizontal polarizations of the first arriving shear wave 
(lefthand side) and the delays between the split shear waves (righthand side) through the Media I 
(a) and IT (b) with the vertical cracks aligned in the East-West direction. The delays are contoured 
in ms for path lengths of 1 km. On the left of each projection of delays is a North-South section. 
The inner circle represents the boundary of the effective shear-wave window at the free surface at 
an angle of incidence of 45° (see Evans, 1984). The calculations are based on plane-wave 
propagation. The corresponding phase-velocities are shown in Figs 6.1a and 6.1e, respectively. 
The arrows indicate the azimuths of the VSP sources used in this paper. 

singular points will be identified in synthetic VSP datasets to demonstrate how their 
positions are influenced by a changing aspect ratio. 

6.3 THE MODEL 

6.3.1 The anisotropic medium 

Two homogeneous anisotropic media are studied. Both contain vertically aligned 
liquid-filled inclusions (EDA-cracks) with a crack-normal directed to the North. In the first 
medium (Medium I) the inclusions have an aspect ratio AR = 0.0001 (almost flat cracks), 
whereas in the second medium (Medium II) AR =0.3 (flattened pores). The matrix material 
is the same as used by Crampin (1984), density p =2.6 g cm-3, Lame constants A. and Jl are 
respectively, 291.4 and 291.6 kbar (corresponding to P- and S-wave velocities of 5.8 and 
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Fig. 6.3. The geometry of the multi-offset shear-wave VSP. The depths of the receivers range 
from 1000 to 2000 m. The sources are located at offsets of 100, 500, and 1000 m at azimuths of 
0°, N300W, N600W, and N90"W. The distributions of vertical parallel cracks strike East-West. 

3.349 km/s, respectively), and the inclusions contain water. The crack density, CD (= 
Na3/V, where N is the number of cracks of radius a in a volume \I), for both media is 0.05. 
The elastic constants of the compound Media I and II are calculated using Nishizawa's 
model and the velocity variations of the body waves travelling through these resultant 
anisotropic media are shown in Figs 6.la and 6.1e, respectively. Figure 6.1a (AR = 0.0001) 
shows a shear-wave singularity at approximately 60°. At angles larger than this value the 
leading shear wave is a qSR-wave and at smaller angles it is a qSP-wave. In Fig. 6.1e the 
singularity is very close to the normal direction. 

Further detail about wave propagation through these two media is shown in Figs 6.2a­
b, where equal-area projections of the theoretical variations of the horizontal polarizations 
of the leading shear wave and the time delays between both split shear waves are presented. 
Figure 6.2a shows that, for the cracks with AR = 0.0001, the horizontal polarizations of the 
leading shear wave are parallel to the strike of the vertical cracks (East-West) in a wide 
band across the centre of the projection. Outside this band the horizontal polarizations 
change by nearly 90°. Along the line with an azimuth of 0° or 180° the change is the 
largest: from parallel to perpendicular to the strike of the cracks. At other azimuths the 
change is smaller. The angles that correspond to the change-over of the horizontal 
polarizations denote the shear-wave singularities. In contrast to Fig. 6.2a. Fig. 6.2b does not 
show any singularities: at all the angles of wave propagation the polarization of the leading 
shear wave is polarized parallel to the strike of the inclusions. 
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6.3.2 The VSP geometry 

The VSP acquisition geometry (shown in Fig. 6.3) used in this theoretical study 
consists of 6 receivers located at depths of 1000, 1200, 1400, 1600, 1800, and 2000 m in 
the borehole. Sources are located at 3 different offsets: 100, 500, and 1000 m and at 4 
different azimuths between 0° and N900W (these directions are also indicated in Figs 6.2a 
and 6.2b). Horizontal point forces simulating shear-wave sources are used. The direction of 
the forces makes an angle of 45° with the azimuthal direction. If a homogeneous medium is 
assumed, this VSP geometry offers the possibility to study wave propagation at ray 
directions between approximately 3° and 45° with the vertical. 

6.4 THE MODELLING 

We used the ANISEIS program to calculate synthetic VSP seismograms and their 
corresponding polarization diagrams for the model and geometry described above. Figures 
6.4-6.7 show the results for different azimuths of the sources. In Figs 6.4a-h where the 
sources have an azimuth of 0° it can be seen that at source offsets 100 and 500 m both 
Media I and II result in a first shear-wave arrival on the horizontal transverse geophone at 
all geophone depths. This can be seen in the synthetic seismograms and in the horizontal 
PDs. The polarization of this leading shear wave is in the direction of the strike of the 
inclusions. Given the locations of the 6 receivers and the 2 sources (resulting in ray 
directions between approximately 63° and 87° with the horizontal) this result corresponds 
to the theoretical horizontal polarizations of Fig. 6.2 at an azimuth of 0°. 

At the same azimuth, different polarizations are found if larger offsets are used. In 
Figs 6.4i-l, at an offset of 1000 m, the ray direction varies between approximately 45° and 
63° with the horizontal. For Medium I the polarization of the first arriving shear wave is 
perpendicular to the strike of the inclusions at receiver depths 1000, 1200, and 1400 m. At 
a depth of 1600 m (ray direction 58~ the ray is very close to the direction of the shear­
wave singularity. There is almost no delay between the split shear waves and the linear 
motion of the source is preserved. At 1800 m, however, there is shear-wave splitting again, 
but now with the polarization of the leading shear wave parallel to the strike of the 
inclusions, as in Figs 6.4a-h. Medium II does not have a point singularity, and Figs 6.4k-1 
show consistent initial polarization at all depths (in the direction of the strike of the 
inclusions). 

In Fig. 6.5 the same calculations have been carried out as for Fig. 6.4, but now for 
sources at an azimuth of N30OW. The results are in general similar to those of Fig. 6.4, but 
the singular point of the shear-wave velocities for Medium I is now located closer to the 
horizontal direction: a sudden change in the horizontal polarization now takes place at a 
receiver depth of 1400 m instead of 1600 m at a source offset of 1000 m. This result agrees 
with Fig. 6.2. In Figs 6.6 and 6.7 the results are shown for 
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sources at an azimuth of N600W and N90OW, respectively. Both figures do not show any 
sudden change in the polarization of the leading shear wave: it is parallel to the strike of the 
inclusions throughout the figures. Considering the angles of wave propagation in our VSP 
geometry this result agrees again with Fig. 6.2. 

6.5 CONCLUSIONS 

Changes of the aspect ratio of cracks influence crack-induced anisotropy. An 
important diagnostic for changing aspect ratios is the identification of the shear-wave 
singularity where the two shear-wave velocity surfaces intersect and where no shear-wave 
splitting exists. At the corresponding angle of wave propagation the polarization of the first 
arriving shear wave suddenly changes. Variations of the aspect ratio correspond to changes 
in these angles. 

It has been demonstrated how multi-offset VSP-data, providing us with data for wave 
propagation at a large range of angles, is an excellent data-acquisition technique to observe 
such changes. If the VSPs are carried out at different moments with exactly the same 
geometry temporal variations of the stress-field can be monitored. It is shown that if the 
aspect ratio increases due to such stress-changes the directions of the singularities move 
closer to the horizontal. This means that the singularities in multi-offset VSPs will be 

observed at shallower depths if the same source offset and azimuth are used. Our synthetic 
results also show that the polarization changes are accompanied by a change in the rotation 
of the particle motion: it changes from clock-wise to anti-clockwise or vice versa. These 
observations are promising diagnostics to analyse stress changes in VSPs. It should be 
noted that shear-wave splitting has very little effect on seismograms conventially displayed 
as time series, but has very distinctive effects when the seismograms are displayed in 
polarization diagrams. 
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Chapter 7 

VSP TRAVELTIME INVERSION FOR 
TRANSVERSELY ISOTROPIC MEDIA 

ABSTRACT 

Traveltime inversion of multi-offset VSP data is used more and more in exploration 
seismics. Isotropic traveltime inversion applied to multi-offset VSP arrival times of quasi 
P- and S-waves propagating through layered transversely isotropic media, may introduce 
errors in the depths of the interfaces between the layers. With the vertical velocities 
obtained at the borehole as the isotropic velocities of the layers, this inversion establishes 
interfaces which result in traveltimes that fit the traveltimes for the anisotropic media the 
best. For a medium consisting of a horizontal isotropic low-velocity layer on top of a 
transversely isotropic layer 2D isotropic inversion results in an anticline (with a form 
depending on the azimuth) if the axis of symmetry of the transversely isotropic layer is 
horizontal, whereas the result is a syncline (independent on the azimuth) for a vertical axis 
of symmetry. Transversely isotropic traveltime inversion (based on the azimuthal 
dependence of critically refracted qP- and qS-waves recorded just below the interface) 
results in the original transversely isotropic model if the axis of symmetry is horizontal. 
Moreover, this inversion scheme can successfully be used to determine the strike and dip of 
slightly dipping interfaces. 

This chapter has been submitted for publication as: 

Douma. J. 1988. Traveltime inversion applied to VSP arrival times in transversely isotropic media. Submitted to 
Journal o/Geophysical Research. 
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7.1 INTRODUCTION 

Vertical Seismic Profiling (VSP) is a rapidly evolving technique in exploration 
seismics. It offers the possibility to analyse reflected and transmitted seismic waves 
generated by a source located at the surface and recorded by geophones positioned in a 
borehole (or vice versa). From such an analysis the properties of the medium around the 
borehole through which the waves have travelled can be studied. Processing and 
interpretation techniques for VSP data have been described in detail by Gal'perin (1974), 
Hardage (1985), and Balch and Lee (1984). Most of the applications of VSP have been 
summarized by Oristaglio (1985). 

One of the methods to study the medium in the vicinity of the well is traveltime 
inversion. In this paper the traveltime inversion of multi-offset VSP data (the sources have 
different offsets from the borehole) is investigated. Such an inversion has already been 
carried out by many authors in order to obtain seismic velocities of layered media (Stewart, 
1984; Pujol, Burridge and Smithson, 1985), the structure of the interfaces separating the 
layers (Miller, 1983; Lines, Bourgeois and Covey, 1984) or even both (Deplante and 
Oristaglio, 1986). With the same objective rather similar tomographic methods have also 
been developed and applied to VSP data (Chiu and Stewart, 1987). 

All these inversion schemes (except for the method of Chiu and Stewart (1987)) 
assume an isotropic medium. This implies that if one or more layers are anisotropic the 
result of these schemes may become questionable. Seismic waves travelling in different 
directions through an anisotropic layer generally have different velocities, whereas in 
isotropic layers the velocities are equal for all directions. Whenever such a dependence of 
velocity on direction is neglected in processing, errors in the final results may be 
introduced. It is investigated what the effect of anisotropy is on the final results of a 
traveltime inversion scheme (based on isotropy) when this scheme is applied to synthetic 
multi-offset VSP data calculated for a transversely isotropic subsurface. 

The effects of disregarding anisotropy in standard processing techniques have already 
been noted in reflection seismics: reflector-depths calculated from P- and S-wave stacking 
velocities and event times show large differences against each other and against actual 
depths obtained from well logs (Banik, 1984; Winterstein, 1986). These results are not 
always troublesome; on the contrary, they can be of great help to identify anisotropic 
subsurface layers (Winterstein, 1986). In seismology it has also been reported how the 
failure to take account of anisotropy may give erroneous results: the hypocentrallocations 
of local earthquakes can seriously be mislocated (Doyle, McGonigle and Crampin, 1982). 

All these misleading results can be corrected as soon as the anisotropy of the medium 
is known. To invert for all the 21 independent elastic constants of a general anisotropic 
medium seems to be hopeless at present (Cerveny and Firbas, 1984a). Therefore, 
assumptions about the type and degree of anisotropy and about its direction of symmetry 
(e.g. assuming weak transverse isotropy with a horizontal axis of rotational symmetry) are 
often made to make the inversion simpler. Such assumptions seem to be justified by the 
large amount of anisotropy observations that can be modelled by 'simple' anisotropic 
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models (e.g. Crampin, Bush, Naville and Taylor, 1986a; Alford, 1986). Most of the 
inversion results published so far are based on Backus' (1965) approximate equations for 
the angular variation of the quasi P-wave (qP-wave) phase velocity over a plane in a 
weakly anisotropic medium. Several authors used these equations to explain observed 
angular variations of qP-wave velocities in refraction studies over oceanic and continental 
regions (Backus, 1965; Bamford, 1977; Crampin and Bamford, 1977; Bamford and Nunn, 
1979; Crampin, McGonigle and Bamford, 1980; White and Whitmarsh, 1984; Shearer and 
Orcutt, 1985; Crampin, McGonigle and Ando, 1986b), but the equations have also been 
used in large 3D P-wave traveltime inversion of earthquake data (Hirahara and Ishikawa, 
1984). Approximate equations have also been derived for the quasi-shear waves (Crampin, 
1977). However, only a few authors (Shearer and Orcutt, 1986) used both Backus' and 
Crampin's approximate equations to analyse observed velocity variations of qP- and qS­
waves in refraction data. From the coefficients of these equations the elastic parameters of 
the anisotropic medium can be derived. Other inversion methods which are not based on 
these equations have also been used or suggested (Doyle, Crampin, McGonigle and Evans, 
1985; White, Martineau-Nicoletis and Monash, 1983; Chiu and Stewart, 1987; Ivansson, 
1987) to invert for the anisotropy parameters. 

In this paper Backus' (1965) and Crampin's (1977) approximate formulae for qP- and 
qS-waves are used to study synthetic multi-offset VSP data generated in transversely 
isotropic media (with a horizontal axis of rotational symmetry). The elastic parameters of 
these media are inverted for by applying these formulae to critically refracted qP- and qS­
waves. It is investigated whether a transversely isotropic model, (geologically) simpler than 
the isotropic model obtained with the isotropic traveltime inversion, exists which results in 
traveltimes that fit the synthetic traveltime data just as good as the traveltimes for the 
isotropic model. 

7.2 THEORY 

Anisotropy with respect to elastic wave propagation is recognized more and more in 
the Earth's crust and upper mantle. Not only in seismology studies but also in exploration 
seismics anisotropy has been observed (Crampin, 1987). Necessary to recognize and 
understand anisotropy are forward and inverse modelling schemes. Before such schemes 
will be discussed wave propagation in anisotropic media is reviewed. 

7.2.1 Review of elastic wave propagation in anisotropic media 

In anisotropic media there are three body waves in each direction of phase 
propagation. For weakly anisotropic media the three waves are a quasi-compressional qP­
wave, and two quasi-shear qS-waves. These waves have velocities (which are generally 
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Fig. 7.1. Rays travelling through a medium consisting of an isotropic layer 1 on top of an 
anisotropic layer 2. At their interface the rays are critically refracted. If the construction plane 
(the cross-section (a)) perpendicular to the interface containing both source A and receiver B is 
not a symmetry plane the ray starting at A in this plane has to deviate from the plane in order to 
arrive at B, as shown in the plan view (b). If the ray would not deviate it would after refraction 
arrive at C (outside the construction plane) . 

different from each other) that are a function of the direction of phase propagation and their 
polarizations (being mutually orthogonal) are usually not parallel to the propagation vector 
or wavefront. Only in isotropic media (a special case of anisotropic media) the velocities 
are independent on the direction of phase propagation and the polarization directions are 
parallel to the propagation vector or the wavefront. 

The dependence of the body wave velocity on the phase direction in anisotropic media 
implies that the velocity of energy transport (group velocity) is generally not directed 
perpendicular to planes of equal phase (propagating with the phase velocity). Therefore, in 
an anisotropic medium body waves emanating from a point source travel along rays (at the 
group velocity) with directions that are usually different from the phase propagation 
directions along which plane waves travel (at the phase velocity). Whereas the magnitude 
and direction of the phase- and group velocity are generally different in anisotropic media 
these quantities are equal in non-dispersive isotropic media. It is the group velocity and the 
direction of energy transport (the ray direction) that are measured in most of the 
observations, whereas it is the phase velocity that is described in most analytical formulae. 

The phase velocity and polarization of plane waves travelling through anisotropic 
media can be obtained by solving an eigenvalue problem (see e.g. Helbig, 1958; Musgrave, 
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1970; Crampin, 1981). The three eigenvalues and eigenvectors obtained for each direction 
of the wave nonnal correspond to the phase velocities (or its inverse value: the slowness) 
and the mutual orthogonal polarizations of the plane waves, respectively. The result for all 
phase directions is a phase velocity surface spanned by all the endpoints of the phase 
velocity vectors or a slowness surface spanned by all the slowness vectors. For detailed 
information how these surfaces are related to the wave surface (describing the angular 
dependence of the group velocity) and the ray slowness surface (describing the angular 
dependence of the inverse of the group velocity: the ray slowness) the reader is referred to 
other papers, e.g. Helbig (1958, 1984) and Musgrave (1970). 

The difference between phase- and group velocity affects the ray path in layered 
anisotropic media (Booth and Crampin, 1983; Shearer and Orcutt, 1985). Consider a 
horizontal isotropic layer Ion top of an anisotropic layer 2 (Fig. 7.la). In order to calculate 
the traveltime of wave energy travelling from a source A at the surface to a receiver B in 
the anisotropic layer the ray path has to be known. If the medium would be isotropic the ray 
would lie in the plane perpendicular to the interface containing both source and receiver 
(the construction plane). In our anisotropic model, however, energy radiating from the 
source A and propagating in the construction plane deviates from this plane (unless the 
plane is a symmetry plane) as soon as it is refracted at the interface between both layers 
and arrives at a point C (outside the construction plane) instead of at the receiver B (Fig. 
7.lb). This phenomenon can be explained by the fact that refraction at the interface is 
controlled by the phase velocity direction, whereas energy transport is controlled by the 
group velocity. Because both velocity vectors may differ significantly in an anisotropic 
medium the deviation shown in Fig. 7.lb may be large. Thus in order to have the ray 
started at the source A and ended at the receiver B it immediately has to deviate away from 
the construction plane as it leaves the source. Once its path is known the corresponding 
traveltime can be calculated. 

The time-distance curve of critically refracted waves travelling from A to B is a 
straight line with a slope equal to the inverse value of the magnitude of the group velocity 
along the refractor in the direction of the source-receiver azimuth (see Appendix) if the 
construction plane is a symmetry plane (then there are no ray-path deviations). If the 
construction plane is not a plane of symmetry the time-distance curve is no longer a straight 
line, but becomes curved (Shearer and Orcutt, 1985). Only at large distances (large source 
offsets) the slope of this curve is related again to the group velocity in the direction of the 
source-receiver azimuth. At intennediate distances it is related to the group velocity in 
other directions. Shearer and Orcutt (1985) showed, however, that even for large 
anisotropy the time-distance curves can be approximated very well by straight lines with 
slopes corresponding to the group velocity in the direction of the source-receiver azimuth. 
This indicates that the traveltime perturbations due to ray perturbations are only a second­
order effect. 
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7.2.2 Forward modelling schemes in anisotropic media 

In recent years various methods have been developed to calculate traveltimes and 
amplitudes of body waves travelling through layered anisotropic media. Methods based on 
the anisotropic reflectivity method for calculating synthetic seismograms from point 
sources in horizontally layered anisotropic media have been developed by Booth and 
Crampin (1983) and Fryer and Frazer (1984, 1987). A numerical scheme valid for these 
kind of media and based on the Cagniard-de Hoop method has been developed quite 
recently by van der Hijden (1987). 

A method that can deal with laterally inhomogeneous anisotropic media is the ray 
method. Although the ray method is an approximate method and less accurate than the 
schemes just mentioned its ability to describe wave propagation in complex geological 
situations is an important advantage above the more exact methods. According to Cerveny 
(1972) early work (published in Russian) on the application of the ray method to 
inhomogeneous anisotropic media was carried out by Babich (e.g. Babich (1961». 
Differential equations describing the wave propagation in these media and allowing the 
computation of the rays, traveltimes, and amplitudes were derived. In western literature 
such work was done by Vlaar (1968, 1969) and later on by Cerveny and co-authors (e.g. 
Cerveny (1972». (A graphical approach of the ray method in spherically layered 
anisotropic media was given by Helbig (1966». Although most of the differential equations 
derived are valid for 3D geometries, most of the applications were restricted to 2D 
anisotropic situations (Cerveny, Molotkov and Psencik, 1977; Cerveny and Firbas, 1984a). 
Only quite recently Gajewski and Psencik (1987, 1988) developed the numerical algorithm 
ANRAY86 (a description of the program is given by Gajewski and Psencik (1986» for ray 
tracing in 3D laterally varying anisotropic media. The anisotropic layers in their algorithm 
may have 21 independent elastic constants which even may vary in one and the same layer. 
However, just as in all other ray techniques it is assumed that the variation of the medium 
parameters within a seismic wavelength is small. 

In the study described in this paper the ANRAY86 program is used as the forward 
modelling program to calculate traveltimes in a multi-offset VSP geometry. Although the 
program has originally been designed for seismology purposes (i.e. the source is located in 
the subsurface, whereas the receivers are at the free surface) it can be used to calculate the 
rays and traveltimes in a VSP geometry by using the principle of reciprocity (i.e. in the 
program the sources and receivers are located at the positions of the receivers and sources 
in our actual VSP, respectively). At this stage normally two-point ray tracing is carried out 
to calculate the ray connecting the source and receivers and the corresponding traveltime. 
However, two-point ray tracing in three dimensions is quite complicated and time­
consuming. Therefore, boundary value ray tracing is performed in the program: all the rays 
are sought that connect the source (positioned at a VSP receiver position) with an arbitrary 
point on a specified line at the surface. If a large number of rays are found that end at this 
line, the ray connecting the source and a specified receiver position on the line and the 
corresponding traveltime are obtained by applying the paraxial ray method (Cerveny, 
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KlimeS and Psencik, 1984b). This paraxial ray method interpolates the ray information 
obtained at all the rays ending at the line to a ray ending at the specified endpoint position. 
In the VSP situation studied in this paper this endpoint is our source position, whereas the 
starting points of the rays are the receiver positions in our borehole. 

The ray method has already been used to study VSP data in anisotropic media (Leary, 
Li and Aki, 1987; Li, Leary and Aki, 1987), but the models used were restricted to 2D 
anisotropic models. In the current study also 3D anisotropic models will be studied. 

7.2.3 Isotropic traveltime inversion ofVSP data 

There are several inversion schemes which result in the parameters of a final 
subsurface model from a given set of observed traveltimes for multi-offset VSP and from 
some initial subsurface model. The final model gives traveltimes that fit the observed 
traveltimes best according to some error criterion. Most of these schemes are based on the 
assumption of an isotropic subsurface and therefore will be called 'isotropic traveltime 
inversion schemes'. The 2D isotropic inversion method used in this paper (the 
Schlumberger program FERMAn is almost similar to the one described by Deplante and 
Oristaglio (1986). The model parameters that can be inverted for in this 2D method are the 
isotropic P- and S-wave velocities within the subsurface layers and the depths of the points 
sampling the interfaces (represented by cubic splines) separating these layers (in this paper, 
however, FERMAT is only used to invert for the interfaces). Starting with an initial model 
of the subsurface (often based on well log information or zero-offset VSP) standard 
isotropic 2D ray tracing is performed through this model. The calculated traveltimes are 
compared with the observed traveltimes and the mismatch between both is used to update 
the initial model. The model parameters are updated in such a way that the difference 
between both sets of traveltimes is minimized in a least squares sense. The process is 
repeated until some convergence criterion is satisfied, e.g. the difference in traveltimes lies 
within some small error. 

7.2.4 Transversely isotropic traveltime inversion ofVSP data 

Applying isotropic traveltime inversion to data obtained in anisotropic media may give 
erroneous results (Doyle et al., 1982). In this paper a traveltime inversion scheme for 
multi-offset VSP data in transversely isotropic media with a horizontal axis of rotational 
symmetry is presented. This transversely isotropic traveltime inversion is based on the 
azimuthal phase-velocity variations of critically refracted qP- and qS-waves. The velocities 
of these waves are estimated from the arrival times of the waves at a receiver close to the 
interface of refraction: if /'J,T is the difference in traveltime of the critically refracted wave if 
the source is moved (at a constant azimuth) over a horizontal distance Lix =S2-Sl (Fig. 7.2) 
then the magnitude Va of the apparent velocity is given by: Va = AT/Lix. The dependence of 
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layer 1 

Rlayer 2 

Fig. 7.2. The apparent velocity of critically refracted waves in layer 2 can be detennined in a 
VSP from their difference in arrival time at the borehole receiver R if the source is moved from 
Sl to S2. 

this velocity on the azimuth <I> can be obtained by repeating the measurement with sources 
at different azimuths with respect to the borehole. 

a) Horizontal layers 

The apparent velocity measured in such refraction experiments for horizontally 
layered media is the group velocity along the refractor in the direction of the source­
receiver azimuth (see Appendix, equation (A3)). The assumption made here is that the 
direction of the ray path is identical to the direction of the source-receiver azimuth. As 
described before this is only strictly true for construction planes being symmetry planes, 
but is also a very good approximation if only traveltimes are being studied (as in this 
paper). Further we will assume that the magnitude and the direction of the group velocity 
can be approximated by the magnitude and direction of the phase velocity, which is the 
case for weak anisotropy (Backus, 1965). 

The azimuthal phase-velocity variations of the critically refracted qP- and qS-waves 
thus obtained can be interpreted with Backus' (1965) and Crampin's (1977) approximate 
equations for the azimuthal velocity variations of qP- and qS-waves. These equations are 
strictly applicable only in planes of mirror symmetry and are only valid for first order 
differences in the elastic constants of the anisotropic and the isotropic medium, i.e. for 
weakly anisotropic media (Crampin and Kirkwood, 1981; Crampin, 1982). Only for some 
special symmetry systems Backus' equations can also be applied to off-symmetry planes 
(Crampin and Kirkwood, 1981). Backus' equation for the qP-wave and Crampin's 
equations for the qS-waves have coefficients that are linear combinations of the elastic 
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constants of the anisotropic medium. Therefore, the equations can be applied to observed 
angular velocity variations in order to invert for the elastic constants of the medium. In 
refraction studies such an inversion has often been carried out, but only in a few of these 
studies receivers in a borehole have been used (Stephen, 1985). 

Consider an anisotropic medium with three orthogonal symmetry planes Xl == 0, X2 == 0, 
X3 == 0, where X3 is the vertical. Crampin and Radovich (1982) showed (using Backus' 
(1965) and Crampin's (1977) equations) that for such an anisotropic medium the phase 
velocity variations in one of the vertical symmetry planes (.x2 == 0) are approximately: 

pVJp(<1» == A + Bcos2<1> + Ccos4<1>, (la) 

pVJsp(<1» == D + Ecos4<1>, and (lb) 

(lc) 

where 

A == [3(C3333 + Cllll) + 2(Cl133 + 2Cl3l3)] 18; 

B == (C3333 - Cllll)/2; 

C == [C3333 + Cllll - 2(c1l33 + 2Cl3l3)] 18; 

D == [C3333 + Cllll - 2(Cl133 - 2C13l3)] 18; 

E==-C; 

F == (C2323 + Cl2lv/2; 

G == (C2323 - CI2d/2; 

P is the density, VqP ' VqSP, and VqSR are the phase velocities, respectively, of the qP-wave 
and of the two qS-waves, qSP polarized parallel, and qSR polarized perpendicular, to the 
plane of incidence, Cijkl are the elastic constants referred to the Xl' x2, and X3-axes and <1> is 
the direction of the phase velocity measured from the vertical xrdirection. There is no 
problem using these equations for phase velocity variations in a horizontal symmetry plane: 
the xraxis is then defined to be horizontal and <1> becomes the azimuth measured from this 
horizontal axis (from now on <1> will be measured positively clockwise from its origin). The 
elastic constants are then referred to the new coordinate system. 

If the anisotropic medium is transversely isotropic with an axis of rotational symmetry 
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in an arbitrary horizontal xTdirection the coefficients A-G in equations (la-c) become 
(using the condensed two-suffix notation cpq for the elastic constants Cijkl' see e.g. Thomsen 
(1986»: 

A = [3(C33 + C11) + 2(C13 + 2C44)] /8; 

B = (C33 - c11)/2; 

C = [C33 + C11 - 2(C13 + 2C44)] /8; 

D = [C33 + Cll - 2(C13 - 2C44)];8; 

E=-C; 

F = (c44 + c6J/2; 

G = (C44 - C66)/2; 

When equations (la-c) are used to fit observed velocity data the xTdirection is usually 
unknown. Therefore, the direction <\l in these equations has to be replaced by <\l - a, where 
a is the angular separation of the x3-axis from the origin of <\l, in order to keep using the 
equations (la-c) for fitting observed velocity variations. Substituting <\l - a in (la-c) gives: 

(2a) 

pvJsp(<\l) = D + Elcos4<\l +Ezsin4<\l, and (2b) 

(2c) 

where 

B l =Bcos2a, Bz =Bsin2a 

Cl =Ccos4a, Cz =Csin4a 

E l = Ecos4a, Ez = Esin4a 

Gl = Gcos2a, Gz = Gsin2a , 

and <\l is measured now from an arbitrarily chosen reference direction making an angle a 
with the (yet unknown) x3-direction. With equation (2a) to fit observed qP-wave velocity 
variations the best fitting coefficients B l , B z, Cl , and Cz can be determined. Two directions 
of symmetry (al and az) for the 2<\l variation can be derived from the coefficients B l and 
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(3) 

One of these directions corresponds to the direction of maximum velocity, the other to the 
direction of minimum velocity for the 2<j> velocity variation. To indicate which of the two is 
the direction of rotational symmetry additional information is needed. The vertical qP­
velocity in transversely isotropic media with a horizontal symmetry axis is directed 
perpendicular to the symmetry axis and is therefore equal to the horizontal qP-velocity 
perpendicular to this axis. Thus by comparing the vertical qP-velocity with the horizontal 
qP-velocities in the cxl - and ~-direction, the axis of rotational symmetry can be indicated 
(provided the two horizontal velocities are not equal). 

The same can of course be done with the coefficients £1 and £2 or G1 and G2 when 
equations (2b) and (2c) are used to fit the velocity variations of qSR- and qSP-waves. Once 
all the coefficients A - G are determined using either equations (la-c) or (2a-c) the five 
elastic constants of the transversely isotropic medium can be calculated: 

ClJ =A -B + C 

C33=A+B + C 

c66=F - G (4) 

c44=F+ G 

cI3 =-1.5 (C33 + clJ) - 2C44 + 4A . 

b) Dipping layers 

The equations of the previous section can be applied to describe the azimuthal velocity 
variations of critically refracted waves recorded just below a horizontal refractor. For 
dipping refractors, however, additional terms are required to account for the azimuthal 
velocity variation caused by the dip of the refractor. In the Appendix an approximate 
equation (AI6) for the apparent velocity variation of critically refracted qP-waves has been 
derived for a slightly dipping refractor separating an isotropic and a weakly anisotropic 
layer. Just as for the horizontal refractor it has been assumed that the ray path lies in the 
construction plane. Equation (AI6) shows (when compared with (2a)) that the additional 
terms caused by the refractor dip describe a <j> velocity variation (in contrast with the 2<j> and 
4<j> variations caused by anisotropy). From the coefficients of these additional terms the dip 
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Fig. 7.3. The VSP geometry: the sources (circles) located at different azimuths and offsets from 
the borehole generate waves that are recorded at receivers (stars) in the borehole. 

and strike of the refractor can be determined, whereas the remaining 2$ and 4$ coefficients 
describe some of the elastic constants of the anisotropic layer. The remaining elastic 
constants can be derived using the critically refracted qS-waves for which similar equations 
as for the qP-waves can be derived. 

7.3 THE VSP GEOMETRY 

In this theoretical study arrival times of body waves travelling through anisotropic 
media are studied for a large range of source-receiver combinations. In the borehole there 
are 30 receivers at equidistant depths between 20 m and 600 m and at the free surface there 
are 10 sources with offsets between 10 m and 900 m. Large offsets are used in order to 
have a wide lateral coverage of the subsurface and to be able to study critically refracted 
waves. The sources not only have different offsets from the borehole, but also have 
different azimuths. In this way azimuthal variations of the velocities or the subsurface can 
be studied. The geometry of such a multi-offset 'walk around' VSP is given in Fig. 7.3. 
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a Structure I 
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b Structure II 
layer 1 (isotropic) 

layer 2 (anisotropic) 

layer 1 (isotropic) 

layer 2 (anisotropic) 

c Structure III 

N 

layer 2 (anisotropic) 

Fig. 7.4. Three transversely isotropic structures (a) structure I, (b) structure II, and (c) structure 
III consisting of an isotropic low-velocity layer 1 on top of a transversely isotropic layer 2. The 
arrows indicate the direction of rotational symmetry in the transversely isotropic layer. 
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Fig. 7.5. The phase- (solid line) and group velocity (dashed line) variation from parallel (00) to 
perpendicular (900

) to the axis of rotational symmetry in the transversely isotropic layer 2 of the 
structures shown in Fig. 7.4. The variation is shown for the quasi longitudinal qP-wave. with 
nearly radial polarization and for the two quasi shear waves, qSP polarized parallel, and qSR 
polarized at right angles to the plane of incidence through the axis of rotational symmetry. 

7.4 THE TRANSVERSELY ISOTROPIC STRUCTURES 

Three transversely isotropic structures are studied in this paper. All structures consist 
of an isotropic low-velocity layer on top of a transversely isotropic layer (Fig. 7.4). The 
interface separating both layers is horizontal in structure I and II, but slightly dipping 
eastwards in structure III (the dip is 5° and the strike is NOOE). This interface intersects the 
borehole at a depth of 190 m. The isotropic layer 1 has P- and S-wave velocities of Vp = 
1800 mls and V. = 986 mis, respectively. The transversely isotropic layer 2 is the 
equivalent of an isotropic medium (with Vp = 2500 mls and V. = 1367 m/s) containing 
aligned water-filled inclusions. The crack density CD =Na31v =0.1 and the aspect ratio AR 
= dla = 0.1 (where N is the number of inclusions with radius a and half-thickness d in a 
volume v). In all layers the density p = 2.6 g/cm3

• The five independent elastic constants of 
the resultant transversely isotropic layer 2 (based on Nishizawa (1982» are presented in 
Table 7.1a and 7.1b. 

In structure I the axis of rotational symmetry in layer 2 is horizontal and directed to 
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Fig. 7.6. Synthetic arrival times of the direct qP-waves as a function of the receiver depth 
calculated for the initial isotropic model of structure I (small dots) and for the original anisotropic 
structure I (large dots) at source azimuths (a) NooE, (b) N30oE. (c) N60oE, (d) N90oE. At each 
azimuth the results have been calculated for three source offsets: 100 m (left series of arrival 
times), 500 m (middle series), and 900 m (right series). 

the North; in structure II this axis is vertical and in structure III it is horizontal with an 
azimuth N1200E (Figs 7.4a-c). The velocities in layer 2 along and perpendicular to this 
symmetry axis are for the qP-wave VqP// = 2258 mls and VqP.L = 2463 mis, respectively (they 
have a relative difference of about 9 %) and for the leading qS-wave Vqs// = 1225 mls and 
VqSL =1367 mis, respectively (with a relative difference of about 11 %). This implies that 
the vertical velocities of the qP- and the leading qS-wave in the transversely isotropic layer 
of structure I and III (that are perpendicular to the symmetry axis) are larger than those in 
structure II. The variation of the phase- and group velocity in this layer is shown in Fig. 
7.5. 
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7.5 RESULTS 

7.5.1 Isotropic traveltime inversion 

To demonstrate the errors traveltime inversion based on isotropy may introduce when 
applied to multi-offset VSP data in transversely isotropic media, the isotropic inversion 
scheme FERMAT is applied to synthetic multi-offset VSP traveltimes calculated for 
structures I, II, and III with the ANRAY86 program. 

To carry out this inversion an initial isotropic subsurface model is required. Such a 
model is usually constructed with a priori information about the subsurface obtained from 
e.g. well logging or zero-offset VSP data. In this paper we assume that once identified in 
these data the different subsurface layers intersected by the borehole are laterally extended 
away from the borehole in a horizontal direction, resulting in a horizontally layered initial 
model. The velocities assigned to the different layers (assumed to be isotropic) in this 
model are the vertical velocities obtained at the borehole. 

For structure I the initial isotropic model consists of a layer 1 with Vp,l = 1800 m/s and 
VS,l =986 m/s (where Vp,i and VS,i denote the isotropic P- and S-wave velocities in layer i, 
respectively) on top of a layer 2 with Vp ,2 =2463 m/s and VS ,2 = 1367 m/s (note these are 
the vertical velocities in the transversely isotropic layer 2 of structure I). The interface 
between both layers is horizontal at a depth of 190 m. The arrival times at the borehole 
receivers of the direct P- and S-waves travelling through this initial isotropic model are 
calculated using standard isotropic ray tracing and presented in Figs 7.6 and 7.7, 
respectively, for three source offsets (100, 500, and 900 m) and four source azimuths 
(NooE. N30oE, N60oE, and N900E). These traveltimes are expected to be observed in a 
multi-offset VSP experiment if the subsurface is identical to the initial isotropic model. 
Since structure I is transversely isotropic the traveltimes in it may be different from those 
calculated for the initial model. To demonstrate how large this difference may be the arrival 
times (calculated with ANRAY86) of the direct qP- and leading qS-waves travelling 
through structure I are also presented in Figs 7.6 and 7.7. A comparison of both sets of 
traveltimes shows that at receivers positioned above the interface (i.e. for depths smaller 
than 190 m) there is no difference in traveltime, because the top layer 1 is the same in both 
the initial model and in structure I. At receivers below the interface, however, traveltime 
differences can be observed for some azimuth and offset combinations. In general, the 
traveltimes fOfstructure I are larger than those for the initial model. This difference is most 
pronounced for the azimuth <I> =NOoEand increases for increasing source offsets: at 100 m 
offset the difference is negligible, whereas at 900 m offset the difference can be around 30 
and 60 ms for P- and S-waves, respectively. For <I> = N900E (Figs 7.6d and 7.7d), however, 
no difference is observed, because waves generated by sources at N900E travel through 
layer 2 of structure I with the same velocities as the velocities of the initial isotropic model 
(because just as in the initial model the waves at <I> = N900E travel perpendicular to the axis 
of rotational symmetry). At other azimuths the waves in layer 2 of structure 1 in general 
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Fig. 7.7. The same as for Fig, 7,6, but now for the leading qS-waves, 

travel with smaller velocities, which explains the difference in arrival times in layer 2 at 
azimuths different from N90°E. 

Isotropic traveltime inversion is applied to the traveltimes calculated for structure 1. 
The traveltimes used are the qP- and leading qS-wave arrival times at the receivers below 
the interface calculated for source offsets (varying from 10 - 900 m) at two sides of the 
borehole (i.e, at <p and <p + 180°). With this traveltime data set and the isotropic initial model 
derived for structure I the FERMAT inversion scheme looks for a final isotropic subsurface 
model best-fitting the traveltime data set. In the inversion the velocities of the different 
layers are kept constant so that the fit can only be established by adjustments of the 
interfaces, The inversion stops as soon as the final model results in traveltimes that fit the 
traveltimes for structure I within 2%. 

In Figs 7.8a-d the final inversion results for several source azimuths are shown 
together with the original position of the interface. From Fig, 7.8 it can be concluded that 
isotropic inversion when applied to the traveltime data set of structure I results in an 
anticline structure with a form depending on the azimuth of the sources and with a top at 
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Fig. 7.8. The original interface (dashed line) of structure I and the interface (solid line) obtained 
by isotropic traveltime inversion when applied to the qP- and leading qS-traveltime data 
calculated for structure I at different source azimuths: (a) NooE/N180oE, (b) N30oE/N150oW, (c) 
N60oE/N120oW, (d) N90oE/N90oW. The first direction in this notation is along the right-hand 
side of the borehole in (a)-(d). 

the borehole at 190 m depth. For the source azimuths NooE/N180"E the largest difference 
between the original and the resultant interface can be observed (Fig. 7.8a). For increasing 
azimuth this difference decreases and disappears at N90"E/N90oW. To indicate how large 
this difference may be we need to know which part of the resultant interface has actually 
been crossed by the rays, because the inversion result is only reliable for that part of the 
interface. In Fig. 7.9a the rays travelling through the final model obtained at NOoE/N180"E 
have been plotted and they show that the resultant interface is illuminated by rays up to 
around 650 m offset at both sides of the borehole. Thus it can be concluded from Figs 7.9a 
and 7.8a that the largest difference between the original and the resultant interface is 
around 85 m at 650 m offset. This difference is zero at the borehole. 

The anticline form of the resultant interface can be explained by considering the 
traveltime differences shown in Figs 7.6 and 7.7. The traveltimes for structure I are 
generally larger than those for the initial model. In the inversion used here the traveltime 
data for structure I can only be fitted by varying the depth of the interface in the initial 
model; this depth is generally increased in order to have a larger part of a ray travelling 
through the low-velocity layer 1 (and a smaller part through layer 2), so that the larger 
traveltimes fit the traveltimes for structure I. 

The arrival times of the direct elastic waves travelling through the final model at NODE 
(see Fig. 7.9a) and through the original structure I are presented in Figs 7.9b and 7.9c for 
qP- and leading qS-waves, respectively. These figures show how the traveltimes for the 
final model fit the traveltimes for structure I better than the traveltimes for the initial model 

900 
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Fig. 7.9. (a) The ray paths of the direct qP- and leading qS-waves travelling through the isotropic 
inversion result of Fig. 7.8a and their corresponding traveltirnes (small dots) presented in (b) and 
(c), respectively, together with the traveltimes calculated for the original anisotropic structure I 
(large dots) for three source offsets (the same as for Fig. 7.6) as a function of the receiver depth. 

(Figs 7.6a and 7.7a). 
Isotropic inversion is also applied to traveltime data calculated for structure II, which 

is transversely isotropic with a vertical axis of symmetry. We follow the same procedure as 
for structure I. The initial model for structure II contains the same isotropic top layer and 
horizontal interface as the initial model for structure I, but it has a different isotropic layer 
2: VP•2 and VS,2 are now 2258 mls and 1225 mis, respectively (these are the vertical 
velocities in the transversely isotropic layer 2 of structure II). Figs 7.lOa and 7.l0b show 
that the traveltimes calculated for the qP- and leading qS-wave at receivers below the 
interface are smaller in structure II than in the corresponding initial model. This is because 
in all directions different from the vertical (the direction of rotational symmetry) the 
velocities in layer 2 of structure II are larger than the vertical velocities (see Fig. 7.5), 
which are assigned to the isotropic layer 2 in the initial model. This also explains why the 
result of isotropic inversion applied to the traveltimes calculated for structure II is a 
synclinal structure (independent of the azimuth of the sources) with its lowest point at the 
borehole at 190 m depth (Fig. 7.11a): in order to decrease the difference in traveltimes 
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Fig. 7.10. Synthetic arrival times (small dots) of the direct qP- (a) and leading qS-waves (b) for 
three source offsets (the same as for Fig. 7.6) as a function of the receiver depth in the initial 
isotropic model of structure II together with the arrival times (large dots) of these waves in the 
original structure II. The same, but then for the qP- and qS-traveltimes (small dots) calculated for 
the isotropic inversion result of Fig. 7.11a is shown in (c) and (d), respectively, together again 
with the traveltimes in structure II (large dots). 

between the initial model and structure II the depth of the interface away from the borehole 
is decreased so that the ray paths through the low-velocity layer 1 become shorter (and 
through layer 2 larger) resulting in smaller arrival times. The rays of the direct qP- and qS­
waves travelling through the final isotropic model obtained by inversion are plotted in Fig. 
7.11b and the corresponding traveltimes are presented in Figs 7.lOc and 7.1Od, 
respectively. Figs 7.10c and 7.10d show that these traveltimes fit the traveltimes for 
structure II very well. The raypaths in Fig. 7.11b indicate that the resultant interface is 
illuminated by the rays up to an offset of 850 m from the borehole. We may conclude from 
Fig. 7.11a that the maximum difference in depth between this interface and the original one 
is around 125 m at 850 m offset. This difference is zero at the borehole. 
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Fig. 7.11. (a) The original interface (dashed line) of structure II and the interface (solid line) 
obtained by isotropic traveltime inversion when applied to the qP- and leading qS-traveltime data 
for structure n. (b) The raypaths of the direct qP- and qS-waves travelling through the isotropic 
inversion result of (a). 

Finally, isotropic inversion is applied to traveltime data calculated for structure III, 
which has a dipping interface and whose horizontal symmetry axis has a direction N120oE. 
The initial model for structure III is exactly the same as the one for structure I. The result of 
the isotropic inversion applied to the traveltime data for structure III is shown in Figs 
7.12a-f for several source azimuths. From these figures it can be concluded that the 
inversion only gives the correct interface for the source azimuths NI50oW/N30"E (Fig. 
7.12d), which are directed perpendicular to the symmetry axis of layer 2 in structure III. 
Such a result was also obtained for structure I for an azimuth perpendicular to the 
symmetry axis in its layer 2 and therefore the explanation of the phenomenon is exactly the 
same as given for structure I. For other azimuths Figs 7.12a-f show that the resultant 
interface is a tilted anticline intersecting the borehole at a depth of 190 m. Just as for 
structure I the difference between this interface and the original one in structure III is the 
largest for azimuths along the symmetry axis of layer 2 (here N60oW/N1200E). It can be 
shown that this difference may be around 115m. 

7.5.2 Transversely isotropic traveltime inversion 

In the transversely isotropic traveltime inversion described in this paper for multi­
offset VSP data the azimuthal velocity dependence of critically refracted qP- and qS-waves 
is used. Because it is assumed that the axis of rotational symmetry of the transversely 
isotropic medium is horizontal only structures I and III will be studied. The apparent 
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Fig. 7.12. The same as for Fig. 7.8, but now for structure III at source azimuths: (a) 
N60oW/N120oE, (b) N300W/N150oE, (c) NooE/N180oE, (d) N30oE/N150oW, (e) N60oE/N120oW, 
(f) N90oE/N90oW. 

velocities of the critically refracted waves are derived from their arrival times at a receiver 
(at 200 m depth) just below the interface in both structures. Having calculated the arrival 
times for source offsets up to 900 m the apparent velocities are determined from the best 
fitting straight line through the time-distance curves. Repeating this for a large range of 
source azimuths velocity variations in layer 2 of both structures can be studied. 

a) STRUCTURE I 

In Figs 7.13a-b the velocities of the critically refracted qP- and leading qS-waves 
calculated for layer 2 of structure I are shown for several azimuths. Because these waves 
travel in the symmetry plane of the weakly anisotropic layer 2 the qP-velocities (Fig. 7.13a) 
can be fitted in a least squares sense by curves of the form presented in equation (2a). The 
best fitting curve is given by: 
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Fig. 7.13. The apparent velocity variation of the critically refracted qP- and leading qS-waves as 
a function of the azimuth. In (a) and (c) the qP-velocities, together with the least squares fit (solid 
line) are shown for layer 2 of structure I and III, respectively. whereas in (b) and (d) the leading 
qS-velocities are shown for layer 2 of structure I and ITI, respectively. The qS-velocities (d) are 
corrected for the dip of the interface in structure ITI and are shown in (e). 
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V~p(<j» = V~PH(l.0632 - 0.0942cos2<j> + 0.0038sin2<j> + (5) 

0.03 IOcos4<j> + 0.0038sin4<j» , 

where VqPH = 2259 mls is the qP-velocity at <j> = 0° (North). This curve is also presented in 

Fig. 7.13a. Using equations (5) and (3) the symmetry directions (Xl and ~ of the 2<j> 
velocity variation can be determined from the 2<j> coefficients: there is a minimum velocity 
direction (Xl = N1.2°W, with VqP«(XI) = 2258 mls (calculated from (5» and a maximum 
velocity direction (xz = N88.8°E with Vqp«(Xz) = 2462 m/s. Comparing the vertical qP­
velocity VqPv = 2463 mls in layer 2 of structure I (assumed to be known from other 

information) with these velocities it is concluded that the direction of rotational symmetry 
(X = (Xl = N1.2°W in this layer. This value corresponds very well to the actual direction 
(NO~) of the symmetry axis (see Fig. 7.4a). It also corresponds to the symmetry direction 
N1.7"E that can be derived from the 4<j> terms in equation (5) and therefore using (X = 
N1.2°W equation (5) can be approximated by a reduced form: 

V~p(<j» = V~H[1.0632 - 0.0943cos2<j> + 0.031ICOS4<j>] , (6) 

where <j> is measured from (X =N1.2°W. With P = 2.6 g/cm3 the coefficients A, B, and C 
(see equation (la» can be derived from (6) and from these values the elastic constants Cll 

and C33 can be calculated with equation (4) (sec Table 7.la). 
In Fig. 7.13b the velocity variation of the leading shear wave in layer 2 of structure I is 

presented. In this study it has been assumed that in an actual measurement due to partial 
overlapping of the qSP- and qSR-waves only the arrival times of the leading shear wave 
can be measured accurately enough. Therefore, only the velocities of the leading shear 
wave are presented here. Because the type of this wave changes (from qSP- to qSR-wave 
or vice versa) as a function of the direction of wave propagation (Fig. 7.5) it is not possible 
to use equations like (lb-c) or (2b-c) to fit the qS-velocities in the same way as was done 
for the qP-waves. To derive additional elastic constants from the velocity variation of the 
leading shear wave the following method is proposed. As shown by equation (lb-c) the 
qSR- and qSP-wave have identical velocities in the direction of the axis of rotational 
symmetry: 
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Model parameters 

Model Cll C33 C13 C44 C66 a 

Structure I 15.77 13.26 5.32 3.90 4.86 NO.ooE 
Structure linY 15.77 13.27 5.07 3.90 4.86 N1.2°W 

a
 

Model parameters 

Model Cll C33 C13 C44 C66 a strike dip 

Structure III 15.77 13.26 5.32 3.90 4.86 N120.0oE NO.ooE 5.0° 
Structure Illmy 15.91 13.35 5.03 3.98 4.86 N121.0oE N3.6°W 5.1° 

b 
Table 7.1. The elastic constants (in 109 N/m2) of layer 2 of structure I (a) and III (b) together 
with the constants of the corresponding structures obtained by transversely isotropic inversion. 
Moreover, the direction of rotational symmetry a and the strike and dip of the interface in 
structure III (b) are compared. 

Perpendicular to this axis the velocities are different: 

This means that C44 in layer 2 of structure I can be derived from the qS-velocity (1225 
m/s) estimated from Fig. 7.l3b at the symmetry direction N1.2°W. If the vertical velocity 
VqSy (perpendicular to the symmetry axis in structure I) of the leading shear wave is larger 

than the velocity in this horizontal symmetry direction (which is true for structure I because 
VqSy = 1367 m/s) it means that c66 > C44 and c66 can be determined from VqSy' However, if 
VqSy would be equal to this horizontal velocity (implying c66 :s; c44) additional information is 
needed in order to estimate C66' Once C44 and C66 have been determined the elastic constant 
cl3 can be derived from c44 and the other constants Cll> c33. and A can be calculated from 
the qP-velocity variation (using equation (4». All the resultant elastic constants of structure 
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Fig. 7.14. The traveltimes (small dots) of the direct qP-(a) and leading qS-waves (b) calculated 
for the inverted structure I (obtained by transversely isotropic inversion) and for the original 
structure I (large dots) for three source offsets (the same as for Fig. 7.6) as a function of the 
receiver depth at a source azimuth NooE. The same but then for the qP- and qS-waves in structure 
III is shown in (c) and (d), respectively. 

I determined in this way are presented in Table 7.la. Table 7.la shows that the inversion 
results fit the original constants very well. 

With the inversion results an 'inverted structure l' can be composed: it consists of the 
original isotropic layer I (assumed to be determined from other information) on top of the 
transversely isotropic layer 2 described by the elastic constants determined in the inversion 
and presented in Table 7.la. The interface between both layers is horizontal. 

In Figs 7.14a and 7.14b the traveltimes of the direct qP- and the leading qS-waves are 
calculated for the inverted structure I and compared with the traveltimes for the original 
structure I. This is done for a source azimuth NODE. No difference between both sets of 
traveltirnes can be observed. This is also true for other azimuths not shown here. 

From these results and the results of isotropic inversion the non-uniqueness of 
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traveltime inversion is noted: both an isotropic and an anisotropic model result in 
traveltimes that fit the traveltimes calculated for the original structure I very well. To judge 
whether the geologically simple transversely isotropic model (horizontally layered) or the 
geologically more complicated isotropic model (that may contain anticlines) is the correct 
model additional information is needed (e.g. surface seismics or other VSPs). 

In the transversely isotropic inversion applied to the data for structure I the interface 
between layer I and 2 was assumed to be horizontal at a depth (l90m) observed at the 
borehole. However, as will be shown an eventual dip of this interface can also be 
determined with transversely isotropic inversion. 

b) STRUCTURE III 

The transversely isotropic inversion has also been applied to the velocities of the 
critically refracted qP- and qS-waves calculated for structure III. These velocities (shown 
in Figs 7.l3c-d) clearly show a <j> variation due to the dipping interface in structure III. The 
qP-velocity variation (Fig. 7.l3c) is fitted with curves of the form given by equation (A16). 
The best fitling curve (also presented in Fig. 7.l3c) is given by: 

V~p(<j» = V~p.(0.9834 - O.0091cos<j> - 0.1438sin<j> + (7) 

0.0416cos2<j> + O.0781sin2<j>­

0.0 159cos4<j> + 0.0171sin4<j» , 

where VqPN = 2358 m/s and <j> measured from North. As shown in the Appendix the dip 
direction y of the refractor can be determined from the quotient of the sin<j>- and cos<j> terms. 
For the velocity variation given in (7) this results in y = N86.4°E (equivalent to a strike 
N3.6"W) which corresponds very well to the true dip direction (N90.00£) of the refractor in 
structure III. The dip of the refractor (as shown by equation (A16)) can be determined from 
either the cos<j>- or sin<j> term if P, VI (the P-wave velocity in layer 1), and A are known. p 
and VI are assumed to be known from other information (being 2.6 g/cm3 and 1800 mis, 
respectively), whereas A can be derived from (7). The resultant dip 8 is 5.1°, which agrees 
very well with the true dip (5.0°) of the refractor. 

To determine the elastic constants of layer 2 in structure III the same procedure as 
used for structure I is applied to the velocity variations shown in Figs 7.13c-d. Using (7) the 
symmetry directions of the transversely isotropic layer 2 can be derived from the quotient 
of the 2<j> coefficients: there are two directions 0:1 = N31.00E and D:z = N121.0oE, 
corresponding to the maximum and minimum velocity direction of the 2<j> variation, 
respectively. Although the 2<j> and 4<j> velocity variations in equation (7) (according to 
(A12)) describe the velocity variation in the plane of the refractor, it has been assumed that 
this variation is a good approximation of the velocity variation in the horizontal plane of 
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layer 2 if the refractor is slightly dipping and layer 2 is weakly anisotropic. The horizontal 
qP-velocities VqPH in the two symmetry directions al and az are then approximated from (7) 

by omitting the cos<\> and sin<\> terms: Vqp/al):::; 2467 mls and VqPH(az):::; 2259 m/s. With 

the vertical qP-velocity VqPv =2463 mls in layer 2 (being almost identical to VqPH(al)) it is 

concluded that az (= N121.00E) is the direction of rotational symmetry in layer 2 of 
structure III. This direction agrees very well with the actual direction Nl200E (Fig. 7.4c) of 
the symmetry axis. Using az (= N121.00E) the elastic constants Cn and C33 can be derived 
from the 2<\> and 4<\> coefficients of (7) just as was done for structure I. The results are 
shown in Table 7.1b. 

In order to derive the remaining elastic constants of layer 2 in structure III from the 
leading shear wave velocities (shown in Fig. 7.13d) these velocities are corrected for the <\> 
variation caused by the dipping interface. This is done by fitting the qS-velocities with 
curves of the form: Vqs (<\» = [a + b cos<\>J, where <\> is measured from the dip direction 
(N86.4°E) determined from the qP-velocity variation. The best fitting curve is : 

(8) 

where Vqs(O) ( = 1201 m/s) is the qS-velocity in the N86.4°E direction. Then the cos<\> 
contribution of (8) is subtracted from the qS-velocities shown in Fig. 7.13d and the 
resultant velocities (assumed to be only due to anisotropy) are shown in Fig. 7.13e. 
Because the velocities VSI (= 1259 m/s) and Vsz (= 1215 m/s) estimated from Fig. 7.13e in 
the directions of rotational symmetry (N121.0oE and N59.0OW, respectively) are not equal, 
their average (1237 m/s) is taken as an estimate of the leading qS-velocity in those 
directions. From this average velocity the elastic constant C44 is calculated (see Table 7.1b). 
The constant C66 is calculated from the vertical qS-velocity in layer 2 of structure III (the 
same as for structure I) and Cl3 is calculated from the constants Cn, C33, C44' and A. All the 
resultant elastic constants (summarized in Table 7.1 b) that are obtained for layer 2 in 
structure III agree (within 5 %) with the actual elastic constants of this layer. 

In Figs 7.14c-d the traveltimes of the direct qP- and leading qS-waves are calculated 
for the inverted structure III (consisting of the isotropic layer 1 on top of a layer 2 that is 
described by the parameters shown in Table 7.1b) and compared with the traveltimes for 
the original structure III. This is done for a source azimuth NooE. Both traveltime data sets 
correspond very well to each other: no difference in traveltime can be noticed. This is also 
true for other source azimuths not shown here, so that again can be concluded that both an 
isotropic and a transversely isotropic model can explain the traveltimes calculated for 
structure III. 
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7.6 CONCLUSIONS 

Isotropic traveltime inversion used to locate the interfaces in layered media may give 
erroneous results when some of the layers are anisotropic. This has been demonstrated for 
synthetic multi-offset VSP traveltime data calculated for structures consisting of an 
isotropic low-velocity layer on top of a transversely isotropic layer. If both the interface 
separating the layers and the axis of rotational symmetry are horizontal 2D isotropic 
inversion only results in the original interface for VSP sources with azimuths perpendicular 
to the symmetry axis. For all other azimuths the resultant interface is an anticline with its 
top at the borehole and with a form depending on the azimuth. This is also true for a 
slightly dipping interface, but the anticline is tilted then. However, if the axis of rotational 
symmetry is vertical while the interface is horizontal the resultant interface is a syncline 
bottoming at the borehole and with a form that is independent on the source azimuth. 

For these three types of structures it has been shown that the difference in depth 
between the interface obtained by isotropic inversion and the correct interface in these 
structures may be very large; therefore it is concluded that this inversion may introduce 
serious errors in the interpretation of multi-offset VSP data when anisotropy is not taken 
into account. A key identifier of anisotropy is shear-wave splitting. As soon as this 
phenomenon is observed in multi-offset VSP measurements the results of isotropic 
traveltime inversion should be judged very critically. The same should be done of course if 
the inversion results do not fit with additional information (obtained from e.g. surface 
seismics, well logging, or other VSPs). 

Transversely isotropic traveltime inversion has also been applied to the synthetic VSP 
data calculated in this paper. The inversion method, based on the assumption of transverse 
isotropy with a horizontal axis of symmetry, has been applied to the arrival times of 
critically refracted qP- and qS-waves calculated for structures I and III. Using the 
azimuthal dependence of the velocities derived from these traveltimes the elastic constants 
of the transversely isotropic layer and the strike and dip of the interface could successfully 
be determined. It is expected that the method is also successful for other transversely 
isotropic structures with a horizontal symmetry axis, if the anisotropy is weak and the dip 
of the interface small. 

Because of all its assumptions the transversely isotropic inversion method is a robust 
method. However, it has not been the intention of this paper to develop an elegant multi­
purpose anisotropy inversion scheme. The transversely isotropic inversion has been 
suggested here in order to show that not only geologically complicated isotropic structures 
(with anticlines or synclines) can be derived that explain a given VSP traveltime data set, 
but geologically simpler transversely isotropic structures (with plane interfaces) as well. 
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7.7 APPENDIX 

In this Appendix the velocity variation of critically refracted waves, travelling through 
media that consist of a homogeneous isotropic layer 1 on top of a homogeneous anisotropic 
layer 2 and for which the separating interface is slightly dipping, is studied for a VSP 
geometry. This is done by deriving time-distance curves for these waves. Although the 
VSP geometry is different from the usual geometry used in refraction studies (i.e. both 
sources and receivers at the surface) the methods to derive the time-distance curves are the 
same. Throughout the Appendix it has been assumed that the ray path does not deviate 
from the construction plane (perpendicular to the interlace and containing both source and 
receiver). As shown earlier in this paper this is a valid approximation if traveltimes are 
studied. 

Consider a cross-section at right angles to the strike of the interlace as shown in Fig. 
7.A 1. Two lines are drawn perpendicular to the interface I from the borehole receiver Rand 
from the source S. These lines intersect the surlace and the interface at the points A and B, 
respectively and have lengths hA and hB • The distance between A and S is X'. From B a line 
is drawn in the direction of the plane wavefront that is critically refracted at the interface. 
From S a perpendicular is dropped on this wavefront, intersecting at the point S' . 

Following Helbig (1964), who studied the refraction for a layer 1 and layer 2 being 
both anisotropic, the total traveltime ts(X') of a critically refracted wave from S to R is 
equal to the distance B-R divided by the group velocity g2 along the interface in layer 2 plus 
the time the wavefront (which is critically refracted) needs to travel from S to S', which in 
our situation of an isotropic layer 1 is equal to the distance S-S' divided by the velocity VI 

in layer 1. So, it may be concluded that the total traveltime of a seismic pulse from the 
shotpoint S via the refractor I to the receiver R as a function of the distance X' is: 

(X') _ X' coso (AI)
ts - g2(O) + 

where ic is the critical angle of incidence and 0 is the dip of the refractor. More useful 
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layer 1 

layer 2 

I<'ig.7.Al. Cross-section at right angles to the strike of the dipping refractor I. 

would be to express this equation in terms of the depth DR of the borehole receiver and the 
offset X of the source from the borehole. With 

DR 
X' =X - hA sino, hB = hA +X' sino, and hA =--", ' 

coSu 

(AI) becomes: 

COS ic tano sino cos i c sino]
ts(X) =DR - - -- + (A2)

[ V1 coso V1 g2(O)
 

COSO sino cos ic J~

X --+---- . 

[ g2(O) V1 

The first term on the right hand side is the intercept time of the time-distance curve and the 
factor of X is the reciprocal of the apparent velocity Va: 

1 coso sino cos i c-=--+ (A3)
Va g2(O) V1 

This resultant velocity is identical to the apparent velocity which can be derived for 
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Fig. 7.A2. The construction plane (shaded area) containing source and receiver perpendicular to 
the dipping refractor I. The dip of the refractor (denoted by 8) becomes 8' when measured in the 
tilted construction plane. The projection of the azimuth ljJ of the construction plane on the plane of 
the refractor is given by ljJ'. 

refraction studies carried out in the same medium with sources and receivers at the surface 
(see Helbig, 1964). Moreover, equation (A3) shows that for a horizontal refractor (3 = 0°) 
Va == g2(00) (which is the group velocity in layer 2 along the refractor in the direction of the 
profile). Using Snell's law, which gives the relation between the critical angle ie' Vt and 
gi3): 

(A4) 

Va can be written as: 

Vt
V = or (A5) 

a sin ie(3)cos3 + sin3 cos ie(3) 
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v = gz(8) 
a cos8 + sin8 cot ic(8) 

(Note in these equations that the critical angle depends on the direction of the group 
velocity gz.) Equations (AS) give the apparent velocity Va that would be determined in a 
refraction study carried out along a profile at right angles to the strike of the interface. The 
method used to derive these equations, however, can also be used to determine the apparent 
velocities at other azimuths of the profiles. The construction as shown in Fig. 7.Al and the 
formulae derived from it are valid for all construction planes being perpendicular to the 
refractor and containing sources and receiver. However, the dip of the refractor is measured 
in this tilted plane and therefore it is not the true dip. The relationship between the dip 8' 
measured in the construction plane and the true dip 8 is shown in Fig. 7.A2 and is given by: 

sino' =sino cos<\> and cos8' = [1 - sinzo cosz<\>] 1{2 , (A6) 

where <\> is the azimuth of the profile along the surface measured from the normal to the 
strike. Using 8' instead of 8 equations (AS) become: 

V 
Va(<\» = [ ! (A7) 

sinicW) + 8'] 

or 

where gz and ic are now functions of <\>', which is the projection of the azimuth cp on the 
refractor and which is given by the relation (see Fig. 7.A2): 

ih' sincptan'!' = ---'--- (A8) 
coscp coso 

The formulae presented in (A7) are exact formulae. However, in order to describe the 
azimuthal apparent velocity variations in terms of linear combinations of the elastic 
constants of the anisotropic layer 2 some approximations are made. Assuming weak 
anisotropy the group velocity gzW) along the refractor can be approximated by the phase 
velocity VzW) along the refractor in layer 2 (Backus, 1965). If further the dip 8 of the 
refractor is assumed to be small and the value of cotic(<\>') is not too large (e.g. 
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cot ie(<jl') < 1) the approximate relation between the apparent velocity and the phase 
velocity in layer 2 can be derived from the second equation given in (A7): 

(A9) 

To illustrate for what dips this approximation is valid let's consider the isotropic case 
for which V2(<jl) and cot ie(<jl) become constants (denoted by V2 and COl ie' respectively). 
Equation (A9) then becomes: 

(A 10) 

For the same situation a similar equation was derived by Backus (1965): 

(All) 

Although Backus considered wave propagation in a vertical plane through the refractor to 
derive (All) instead of wave propagation in the construction plane perpendicular to the 
refractor for which (AlO) has been derived, both (AlO) and (All) are almost identical for 
small dips of the refractor (since then sin8::: tan8). In Fig. 7.A3 the approximate velocity 
variations described by (AlO) and (All) are compared with the correct velocity variation 
as described by (A7) with g2(<jl') = V2 = 2000 m/s and ie(<jl') = ie = 500 for three different 
dips of the refractor. Fig. 7.A3 shows that for small dips equations (AlO) and (All) are 
indeed almost identical and that both are very good approximations of the exact equation 
(A7), but that the difference increases for increasing dips (the difference is approximately 
5% for 8 = 100). These conclusions also hold for the approximate equation (A9) describing 
the anisotropic situation. 

To develop equation (A9) in terms of the elastic constants of the anisotropic layer 2 
we further assume the plane of the refractor is a symmetry plane of layer 2 so that when we 
take the square of (A9) equation (2a) for the qP-phase velocity can be used in order to 
obtain the resultant apparent qP-velocity variation: 

pV;(<jl):::: ~ + Bcos2(qr-a) + CCOS4(qr-a)] [1 - 2sin8 cos(qr-y)cot ie(qr-a)] , (A12) 

where p is the density in layer 2 and <jl is measured from an arbitrarily chosen reference 
direction making an angle a with the axis of rotational symmetry in layer 2 and an angle y 
with the dip direction (normal to the strike) of the refractor. A, B, and C are combinations 
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Fig. 7.A3. The apparent velocity variations of critically refracted waves for three dipping 
refractors (with dip 0 == 10, 0 == 5°, and 0 == 100). The velocity variations are calculated with exact 
equation (A7) (solid line), the approximate equation (AlO) (short dashed line), and Backus' 
approximate equation (All) (long dashed line). 

of elastic constants as given at equation (la-c). 
To further simplify (AI2) consider the term cot ic(~a). With the assumptions made 

the critical angle ic(~a) is given by: 

(A13) 

or 

V 2 
'2.(A...-) Plsm I 'l' -a == 

c A + Bcos2(~a) + Ccos4(~a) 

With (A13) we find 

2 A +Bcos2(~a) + Ccos4(~a) - pVr 
cot ic(~a) == 2 (AI4)

pVl 

2400 

2200 

-
~ 
E
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_ Z.I[l Bcos2(<jr-a) CCOS4(<jr-a)]
- cot Ie + Z + z. 

A-pVj A-pVj 

A pVz B C 
where i~ is given by cotZi~ = - Z j . If the terms z and z are much smaller 

pVj A-pVj A-pVj 

than 1 (which is true for weak anisotropy) we find: 

. (AL- ) _ .1[1 1 Bcos2(<jr-a) 1 CCOS4(<jr-a)]
cot Ie 'I' a - cot Ie + -2 z + 2 z· (AlS) 

A-pVj A-pVj 

With (A15) equation (A12) becomes (neglecting products of the cosine terms): 

pV;(<!» ==A + Djcos<!> + Dzsin<!> + Bjcos2<!> + Bzsin2<!> + (A16) 

Cjcos4<!> + Czsin4<!> , 

where 

D j =-2Asin8 cot iJ cosy 

D z =-2Asin8 cot iJ siny. 

andA, BI> B z•Cj, and Czare constants described at equation (2a-c). 
So, we may conclude that if the apparent velocity of qP-waves is fitted with curves of 

the form described in (A16) the dip direction y of the refractor can be determined from the 
quotient of the best fitting coefficients D j and D z. Once VI> A, and p are known cotiJ is 
known and the dip 8 of the refractor can be determined from either D j or D z. 

In (A16) the apparent velocity variation is given for qP-waves. If, however, instead of 
equation (2a) equations (2b-c) are used in (A9) similar equations like (A16) but then for the 
quasi-shear waves can also be derived. 

It should be noted that rather similar equations as derived here (especially (A7)) were 
used by Vetter and Minster (1981) (but a derivation was not given) who fitted observed 
apparent qP-velocity variations presented in polar diagrams by ellipses. 
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Chapter 8 

SUMMARY AND CONCLUSIONS 

Media containing aligned rotationally symmetrical inclusions show transverse isotropy 
with respect to elastic wave propagation. The characteristics of this type of anisotropy have 
been investigated in the first part of this thesis (chapters 2, 3, and 4) while its implications 
on Vertical Seismic Profiling have been investigated in the second part of this thesis 
(chapters 5, 6, and 7). 

Transverse isotropy due to aligned inclusions has been studied for inclusions ranging 
from flat cracks (very small aspect ratio a.) up to spheres (a. = 1) using Nishizawa's model 
(chapter 2). The resultant anisotropy as described by this model (which is based on a static 
approach) is identical to the anisotropy described by Hudson's crack model (based on the 
scattering of elastic waves) for inclusions with aspect ratios up to 0.3. This result, which is 
surprising because Hudson's model has been derived for small aspect ratios (a. < 1), 
implies (assuming the validity of Nishizawa's model) that Hudson's model which is often 
used to interpret anisotropy observations can be applied to much larger aspect ratios than 
the aspect ratios for which it has been derived. 

Another characteristic of the anisotropy as described by Nishizawa's model is that 
almost spherical inclusions (a. =:: 1) result in elliptical anisotropy, which is a type of 
anisotropy that can never be due to sequences of thin isotropic layers. 

Sequences of isotropic layers and systems of large aligned fractures are just like 
aligned inclusions possible causes of transverse isotropy. Although these fractures and 
sequences of isotropic layers have a geometry that is different from the geometry of aligned 
inclusions they may result in the same anisotropy as aligned inclusions (chapters 3 and 4). 
The model describing the anisotropy due to large aligned fractures turns out to be identical 
to Hudson's crack model, whereas the model describing the anisotropy due to fine layering 
is identical to Hudson's model for ranges of aspect ratios that strongly depend on the fluid 
inside the inclusions. For the situations that these models are similar observed anisotropy 
can only be interpreted in terms of crack distributions if additional information shows the 
existence of cracks. However, for the situations where the similarity does not hold it is 
possible to distinguish between the causes of transverse isotropy (chapter 4). It should be 
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realized, however, that other causes of transverse isotropy exist. Therefore, the 'separation' 
method described in this thesis should only be considered as a first step towards 
distinguishing between the causes of transverse isotropy. 

Because the 'representability' of cracked media by finely layered media strongly 
depends on the fluid inside the cracks, this 'representability' might not only be an 
interesting way to distinguish between the causes of transverse isotropy, but might also be 
an useful tool to investigate the nature of the fluid. Considering an uniformly cracked 
medium monitoring the nature of the fluid as a function of time or space could be very 
important for earthquake prediction or gas exploration, respectively. 

Studying anisotropy observations is a powerful way to obtain information about the 
internal structures of the rocks (such as aligned inclusions, thin layering) which have 
dimensions much smaller than the seismic wavelength used. Studying crack-induced 
anisotropy offers the possibility to monitor the stress-field that aligns the cracks. There is 
evidence that a changing stress strongly affects the aspect ratio of the cracks. The results of 
the first part of this thesis on the effect of a changing aspect ratio on crack-induced 
anisotropy have been used to develop methods to interpret anisotropy observations in 
multi-offset shear-wave VSPs in terms of a changing aspect ratio. Changes in the aspect 
ratio can be monitored in such VSPs (chapter 6) by studying the changes in the direction of 
wave propagation at which there is no shear-wave splitting. This technique which has been 
applied to synthetic shear-wave VSPs could become important if repeated VSPs are carried 
out to analyze temporal changes in anisotropy in terms of a changing stress-field. 

Although shear-wave splitting is often used as a key identifier of anisotropy one 
should be aware that shear-wave splitting can also be caused by transmission effects at 
interfaces in isotropic media (chapter 5). This effect should be taken into account first 
before shear-wave splitting is interpreted in terms of anisotropy. 

Anisotropy may give valuable information about the internal structures of rocks, but it 
may also lead to erroneous interpretations, when it is not properly taken into account. In 
chapter 7 this has been shown for an isotropic traveltime inversion scheme which, when 
applied to multi-offset VSP traveltime data in layered transversely isotropic media, may 
introduce errors in the depths of the interfaces separating the layers. Therefore, anisotropy 
should be included in inversion schemes. In a first attempt to develop inversion schemes 
that do take anisotropy into account a transversely isotropic traveltime inversion scheme 
has been developed and successfully applied to synthetic multi-offset VSP-data. The 
method developed is a robust method and further research is necessary to develop more 
elegant methods. Despite the robustness of the method the results of the transversely 
isotropic traveltime inversion scheme show, when compared with the results of the 
isotropic inversion scheme, that both an isotropic and a transversely isotropic model can 
explain the same traveltime data set (consisting of the arrival times of P- and first arriving 
S-waves). To attack this problem of non-uniqueness additional information (such as 
polarization, shear-wave splitting) should be incorporated in the inversion. 
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SAMENVATTING (SUMMARY IN DUTCH) 

Media, welke georienteerde rotatIe-mvariante insluitsels bevatten, vertonen 
transversale isotropie m.b.t. elastische golfvoortplanting. In het eerste gedeelte van dit 
proefschrift (hoofdstukken 2, 3 en 4) zijn de karakteristieke kenmerken van dit type 
anisotropie onderzocht, terwijl in het tweede gedeelte (hoofdstukken 5, 6 en 7) de gevolgen 
van deze anisotropie voor Vertical Seismic Profiling (VSP) zijn onderzocht. 

Transversale isotropie t.g.v. georienteerde insluitsels is onderzocht voor insluitsels 
varierend van cracks (welke een erg kleine aspect ratio a hebben) tot aan bolvormige 
insluitsels (a = 1) door gebruik te maken van Nishizawa's model (hoofdstuk 2). De 
resulterende anisotropie, zoals die door dit model (dat gebaseerd is op een statische 
benadering) wordt beschreven, is identiek aan de anisotropie, zoals die beschreven wordt 
door Hudson's crack model (dat gebaseerd is op de verstrooiing van elastische golven) 
voor insluitsels met een aspect ratio tot aan 0.3. Dit resultaat, dat verrassend genoemd mag 
worden omdat Hudson's model afgeleid is voor kleine aspect ratios (a <: I), betekent (als 
we de juistheid van Nishizawa's model aannemen) dat Hudson's model, dat vaak toegepast 
wordt om anisotropie waamemingen te kunnen verklaren, gebruikt kan worden voor veel 
grotere aspect ratios dan de aspect ratios, waarvoor het oorspronkelijk afgeleid is. 

Een andere eigenschap van de anisotropie, zoals deze beschreven wordt door 
Nishizawa's model, is dat bijna bolvormige insluitsels (a::: 1) in elliptische anisotropie 
resulteren. Dit type anisotropie kan nooit veroorzaakt worden door opeenvolgingen van 
dunne isotrope laagjes. 

Opeenvolgingen van isotrope laagjes en grote breuksystemen zijn net als 
georienteerde insluitsels mogelijke oorzaken van transversale isotropie. Hoewel deze 
breuken en opeenvolgingen van isotrope laagjes een geometrie hebben, welke verschillend 
is van de geometrie van de georienteerde insluitsels, kunnen ze allebei resulteren in 
dezelfde anisotropie als die t.g.v. de insluitsels (hoofdstukken 3 en 4). Het model, dat de 
anisotropie t.g.v. grote georienteerde breuken beschrijft, blijkt identiek te zijn aan Hudson's 
crack model, terwijl het model dat de anisotropie t.g.v. fijne gelaagdheid beschrijft alleen 
identiek is aan Hudson's model voor waarden van de aspect ratio, die sterk afhankelijk zijn 
van het medium in de insluitsels. Voor de situaties, waarin deze modellen identiek zijn, kan 
men waargenomen anisotropie alleen maar interpreteren in termen van crack verdelingen 
indien aanvullende informatie duidt op de aanwezigheid van cracks. Voor de situaties 
echter, waarin de modellen niet meer gelijk zijn, is het mogelijk om de oorzaken van de 
transversale isotropie te onderscheiden (hoofdstuk 4). Men moet zich echter weI realiseren, 
dat er meer oorzaken van transversale isotropie bestaan dan diegene welke hier genoemd 
zijn. Daarom moet men de 'scheidingsmethode', zoals die in dit proefschrift beschreven 
wordt, slechts zien als een eerste stap op weg naar het onderscheiden van de verschillende 



164 samenvatting 

oorzaken van transversale isotropie. 
Omdat het 'representeren' van media met cracks d.m.v. fijn gelaagde media sterk 

afhankelijk is van het materiaal in de cracks, zou zo'n 'representatie' niet aIleen een 
interessante manier zijn om de oorzaken van transversale isotropie te onderscheiden, maar 
zou het ook goed gebruikt kunnen worden bij hel bestuderen van de aard van het materiaal 
in de cracks. Het bestuderen hiervan in een uniform medium met cracks als een funktie van 
de tijd of de plaats zou erg belangrijk kunnen zijn voor respectievelijk aardbevings­
voorspellingen en gas exploratie. 

Het bestuderen van anisotropie waarnemingen is een machtig middel om informatie te 
verkrijgen omtrent de interne structuur (zoals georienteerde insluitsels, fijne gelaagdheid) 
van gesteenten, welke vaak afmetingen heeft, die veel kleiner zijn dan de gebruikte 
seismische golflengte. Het bestuderen van anisotropie, die veroorzaakt wordt door 
spanningsgeorienteerde cracks, biedt de mogelijkheid om het spanningsveld, dat de cracks 
orienteert, te onderzoeken. Er is bewijs, dat een veranderende spanning in sterke mate de 
aspect ratio van de cracks beihvloedt. De resultaten uil het eerste gedeelte van dit 
proefschrift, welke het effect van een veranderende aspect ratio op de resulterende 
anisotropie laten zien, zijn gebruikt om methoden te ontwikkelen om anisotropie 
waarnemingen in multi-offset shear-wave VSPs te interpreteren in termen van een 
veranderende aspect ratio. Variaties in de aspect ratio kunnen geanalyseerd worden in 
zulke VSPs (hoofdstuk 6) door de variaties in de richting van golfvoortplanting, waar geen 
shear-wave splitting plaatsvindl, te bestuderen. Deze techniek, die toegepast is op 
synthetische shear-wave VSPs, zou belangrijke toepassingen kunnen krijgen indien VSPs 
herhaaldelijk uitgevoerd worden om tijdelijke variaties in anisotropie te kunnen analyseren 
in termen van een veranderend spanningsveld. 

Hoowel shear-wave splitting vaak gebruikt wordt als een identificatie van anisotropie 
moot men zich weI realiseren dat shear-wave splitting ook veroorzaakt kan worden door 
transmissie effecten aan grenslagen in isotrope media (hoofdstuk 5). Met dit effect dient 
rekening gehouden te worden voordat shear-wave splitting geihterpreteerd kan worden in 
termen van anisotropie. 

Anisotropie kan waardevolle informatie geven over de interne structuur van 
gesteenten maar kan ook leiden tot foutieve interpretaties indien met haar bestaan geen 
rekening wordt gehouden. In hoofdstuk 7 wordt dit gedemonstreerd aan de hand van een 
isotroop inversie programma dat, wanneer het toegepast wordt op VSP-aankomsttijden in 
gelaagde transversaal isotrope media, fouten kan introduceren in de bepaling van de 
diepten van de grenslagen. Dit is de reden, dat anisotropie opgenomen dient te worden in 
inversie methoden. In een eerste poging hiertoe is een transversaal isotroop inversie 
programma ontwikkeld, dat met succes toegepast is op synthetische multi-offset VSP-data. 
De ontwikkelde methode is robuust en verder onderzoek is nodig om elegantere methoden 
te ontwikkelen. Ondanks de robuste vorm van de methode, laten de resultaten van de 
transversaal isotrope inversie zien, wanneer ze vergeleken worden met de resultaten van de 
isotrope inversie, dat zowel een isotroop als een transversaal isotroop model dezelfde 
dataset van aankomsttijden (van zowel P- als eerst binnenkomende S-golven) kan 
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verklaren. Om dit probleem van een niet-uniek antwoord op te lossen zal in de inversie 
gebruik gemaakt moeten worden van aanvullende informatie (zoals polarizatie en shear­
wave splitting) 
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