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Abstract. In this paper we provide a novel perspective on a family of
music description algorithms that perform what could be referred to as
‘soft’ audio fingerprinting. These algorithms convert fragments of musi-
cal audio to one or more fixed-size vectors that can be used in distance
computation and indexing, not just for traditional audio fingerprinting
applications, but also for retrieval of cover songs from a large collec-
tion, and corpus-level description of music. We begin with a high-level
overview of the algorithms. Next, we identify and formalize an underly-
ing paradigm that allows us to see them as variations of the same model.
Finally, we present pytch, a Python implementation of the model that
accommodates several of the reviewed algorithms and allows for a vari-
ety of applications. The implementation is available online and open to
extensions and contributions.
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1 Introduction

1.1 Song Description and Audio Fingerprinting

Robust, large-scale audio fingerprinting was one of the first achievements in
music information retrieval to cause a ripple outside the field, with the first
effective algorithms being developed in the early 2000’s by Haitsma and Kalker
at Philips, and Wang and Smith for Shazam [5, 14]. Twelve years later, these
same audio fingerprinting algorithms still form the backbone of music search
services across industry, reliably identifying a single exact music fragment in a
collection of millions of songs. Yet, crucially, they are unable to identify covers,
live renditions, hummed versions, or other variations of a piece.

Several attempts have been made to adapt the concept of fingerprinting to
such use cases, which require invariance to intentional and performance-related
changes to the song. We refer to such systems as ‘soft audio fingerprinting’ sys-
tems.
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In this broadened interpretation, fingerprinting can be defined as any reduction
of a large audio object to a compact, representative digest. Classic fingerprinting
systems like Shazam1 and Soundhound2 use such representations to identify
short musical fragments, by matching the fingerprint of the unlabeled fragment
to a large reference database. State-of-the-art algorithms for audio fingerprinting
produce fingerprints with a high degree of robustness to noise, compression and
interference of multiple signals [4] and perform matching of fingerprints very
efficiently.

An important distinction between this notion of fingerprinting and other kinds of
document retrieval, is the fixed size of the representations and the use of an index
to store them. Consider for example what is seen as the most challenging of song
retrieval applications: cover song detection. Several strategies for the retrieval of
cover songs exist, yet only a few of these strategies use indexing. Most, including
the best-performing systems, rely on alignment to assess the similiarity for every
pair of songs. Since alignment is expensive, and direct comparison of songs results
in search times linear with the size of the dataset, alignment-based algorithms
are not a good solution for large-scale cover song retrieval [6]. Unfortunately,
of all index-based cover song retrieval algorithms proposed so far, none have
reached performance numbers close to those of the alignment-based systems.

Admittedly, the situation for some related tasks, such as query by humming,
is better. There is little information about the exact workings of commercial
services such as Soundhound’s MIDOMI3, but they work. However, they are
generally understood to rely on matching (alignment or otherwise) of simplified
contours of melodies sung by volunteers, rather than matching hummed melodies
with a song’s original audio, which remains an unsolved problem. By and large,
the continuing prevalence of alignment-based methods illustrates the need for a
fresh perspective on fingerprinting.

1.2 Contribution and Outline

In this paper, we introduce a unifying perspective on current song description
strategies by pointing out some essential commonalities. We then propose a gen-
eral model of song-level music description, that accomodates a large family of
approaches, including some of the existing ones. We argue that the fingerprint-
ing architecture proposed in this paper has the potential to produce both very
complex and very interpretable musical representations. Finally, we present an
implementation of the proposed computational pipeline that can be used for
the comparison of fingerprints, and for song and corpus description in general,
alongside an example experiment that illustrates its use.

1 http://www.shazam.com/
2 http://www.soundhound.com/
3 http://www.midomi.com/
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First, however, we succinctly review a number of fingerprinting and soft fin-
gerprinting techniques, beginning with the seminal ‘landmark-based’ strategy
originally proposed by Wang.

2 Overview of Audio Fingerprinting and Soft Audio
Fingerprinting Algorithms

2.1 Landmark-based fingerprinting

Like most fingerprinting systems, Wang’s system includes an extraction and a
matching component [14]. In the extraction component, a piece of audio is first
converted to a spectrogram. The most prominent peaks in the spectrogram are
detected and paired based on proximity. Pairs of peaks are called landmarks,
and can be fully described by 4 parameters: the frequencies of the peaks, a start
time, and the time interval between the peaks. In a last step, the two peaks
frequencies and time interval are combined into a hash code for efficient look-
up. The reference database is constructed by storing all hashes for a collection
of songs into an index, where each hash points to the landmark start time and
a song ID.

In the matching stage, a query is passed to the system. Its landmarks and corre-
sponding hashes are computed. Any matching landmarks from other songs are
then retrieved from the reference database, with their corresponding start time
and song ID. Note that this can be done in constant time. In the last step, the
systems determines for which landmarks the start times are consistent between
query and candidate, and the song with most consistently matching landmarks
is returned as the result.

2.2 Constant-Q-based Fingerprinting

At least three systems in the literature have succesfully applied Wang’s ideas to
spectrograms for which the frequency axis is divided into logarithmic rather than
linearly spaced bins [3,10,13]. Such spectral representations are generally referred
to as constant-Q transforms. All three systems aim to produce fingerprints that
are robust to pitch shifting, a tranformation of musical audio that is often applied
by DJ’s at radio stations and in clubs. The system by Van Balen specifically aims
to identify cases of sampling, a compositional practice in which pieces of recorded
music are transformed and reused in a new work. In each case, the idea is that
the constant-Q spectrogram preserves relative pitch.

2.3 Chroma- and Melody-based Fingerprints

Other soft audio fingerprintinging systems are simpler in concept and resemble
Wang’s original strategy a little less, among them a procedure proposed by Kim



4 Jan Van Balen, Frans Wiering, Remco Veltkamp

et al. [7]. This system takes 12-dimensional chroma and delta chroma features
and computes their 12 × 12 covariance matrices to obtain a global fingerprint
for each song. This relatively simple strategy achieves good results on a test set
of classical music pieces. A later extension by the same authors introduces the
more sophisticated ‘dynamic chroma feature vectors’, which roughly describe
pitch intervals [8].

A similar family of fingerprints was proposed by Van Balen in [12]. Instead of
the covariance matrix, the correlation matrix of the chroma features is used.
The feature is also 12 × 12 in size. Compared to the covariance, correlation
coefficients introduce more invariance to the overall ubiquity of a pitch; it picks
up less occurence and more actual concurrence. A second fingerprint is based
on the melody as extracted by a melody estimation algorithm, and aims to
measure transitions in melodic pitch. The fingerprint counts co-occurrence of
pitches given a certain maximum offset in time, respecting order.

The above fingerprints proposed in [7] and [12] can be seen as a continuous-time,
audio-domain analogues of bigram representations often used in symbolic music
research. Bigrams are pairs of objects, typically letters or words in a text or
notes in a score. Distributions of bigrams have been succesfully used to model
pitch-related expectations [11] and the evolution of style in Western classical
music [9].

2.4 Jumpcodes and the 2D Discrete Fourier Transform

Two studies by Bertin-Mahieux and others have taken the idea of fingerprinting
and applied it to truly large-scale retrieval of cover songs. The first study aims
to discover to which extent the landmark-based approach can be used with 12-
dimensional chroma instead of the spectrogram. In an evaluation using the very
large Million Song Dataset (MSD), the approach was found to be relatively
unsuccesful [1, 2].

The second study therefore follows an entirely different approach. Beat-aligned
chroma features are transformed using the two-dimensional Discrete Fourier
Transform (DFT), to obtain a compact summary of the song that is somewhat
hard to interpret, but roughly encodes recurrence of pitch intervals in the time
domain [2]. Since only the magnitudes of the Fourier coefficients are used, this
‘2DFTM’ approach is robust to both pitch shifting and tempo changes by design.
Results are modest with a mean average precision in the MSD in the order of
0.03, but formed the state-of-the art in scalable cover song retrieval at the time.

Humphrey et al. have taken this idea further by applying a number of fea-
ture learning and dimensionality reduction techniques to the above descriptor,
with the aim to construct a sparse geometric representation that is more robust
against the typical variations found in cover songs [6]. The method performs an
initial dimensionality reduction on the 2DFTM features, and then uses the re-
sulting vectors to learn a large dictionary (using k-means clustering), to be used
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as a basis for a higher-dimensional but sparser representation. Finally, supervised
Linear Discriminant Analysis (LDA) is used to learn a reduced embedding opti-
mized for cover song similarity. Their method achieves an increase in precision,
but not in recall.

3 Unifying Model

3.1 Fingerprints as Audio Bigrams

The song description model we propose in this paper builds on the following
observation: many of the fingerprinting methods listed in the previous section
can be reduced to a combination of detecting salient events in a time series, and
pairing these over different time scales to obtain a set of bigram distributions.

The paradigm identified here will be referred to as the audio bigram paradigm
of fingerprinting. We propose the following formalisation:

The audio bigram model is a fingerprinting paradigm in which a system

1. extracts salient events from a multidimensional time series M , to produce a
time series P of lower density,

2. computes co-occurrences of the events in P over K different timescales, to
produce a fixed-size fingerprint F .

We proceed to show how the example systems from section 2 can easily be
mapped to the above formulation of the model.

For the case of the Wang’s landmark approach, the salient events are peaks in
the linear spectrum (M = DFT magnitudes), and the time scales for pairing are
a set of fixed, linearly spaced offsets up to a maximum horizon ∆t.

τ = 1, 2 . . . ∆t,

yielding a set of i peak bigram distributions for the total of the fragment.

The constant-Q and chroma landmark-based systems reviewed above are essen-
tially analoguous, with salient events as peaks in the logarithmic spectrum (A =
CQT) and beat-aligned chroma features, respectively.

For the case of the melody bigrams, the salient events are pitch activations
pertaining to the melody and the time scale for pairing is a single range of
offsets

τ ∈ (1, ∆t).

Chroma (and delta chroma) covariance and correlation matrix features are even
simpler under this paradigm: pitch activations are only paired if they are simul-
taneous, i.e. τ = 0.



6 Jan Van Balen, Frans Wiering, Remco Veltkamp

The only approaches that don’t seem to be accommodated at first sight, are
Bertin-Mahieux and Humphrey’s algorithms based on the 2D Fourier transform.
In the remainder of this section, we will show that:

– a formulation of the audio bigram model exists that has the additional advan-
tage of easily being vectorized (expressed as vector and matrix operations,
for efficient computation),

– the vectorized model is conceptually similar to the 2D Fourier transform
approach to cover song fingerprinting,

– the model is closely related to convolutional neural network architectures
and can be used for feature learning.

It is good to point out that the model will not accommodate all of the algorithms
completely. Notably, in the adaptation of landmark-based fingerprinting as de-
scribed here, some of the time information of the landmarks is lost, namely, the
start time of the landmarks. We believe this can ultimately be addressed,4 but
currently don’t foresee any such adaptation, as the primary aim at this stage is
to explore and evaluate the commonalities between the algorithms.

3.2 Efficient Computation of Audio Bigrams

In this section, we further formalize the model and characterize its computational
properties by proposing a vectorized reformulation. Vectorized computations are
expressed in terms of matrices and vectors, and are crucial in optimizing com-
putational performance. The first step to be examined is the detection of salient
events.

Salient Event Detection In its simplest form, we may see this component as a
peak detection operation, where we define peak detection as the transformation
that sets a matrix cell to 1 if its value is greater than any of the values in its
immediate surroundings, and 0 otherwise.

Peak detection may be vectorized using dilation. Dilation, denoted with ⊕, is
an operation from image processing, in which the value of a pixel in an image
or cell in a matrix gets set to the maximum of its surrounding values. Which
cells or pixels constitute the surroundings is specified by a small binary mask or
‘structuring element’.

Given a masking structure Sm, a complete mask for X is given by Sm ⊕X and
peaks P are those positions in X where X = Sm ⊕X. More precisely,

P = h(X − Sm ⊕X)

4 e.g. by not extracting one global fingerprint, but fingerprinting several overlapping
segments and pooling the result, cfr. [2, 6]
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where

h(x) =

{
1 if 1 ≥ 0

0 otherwise,

the heaviside (step) function.

As often in image processing, convolution, denoted with ⊗, can be used as well.
We get:

P = h(X − Sm ⊗X)

where h(x) as above, or if we wish to retain the peak intensities,

h(x) =

{
x if x ≥ 0

0 otherwise,

the rectification function.

Equivalently, we may write
P = h(S ⊗X)

where S is a negative kernel with center 1 and all other values equal to −Sm,
similar to kernels used for edge detection in images (top left in Figure 1).

The latter approach, based on convolution, directly allows for the detection
of salient events beyond simple peaks in the time series. Indeed, as in image
processing and pattern detection elsewhere, convolutional kernels can be used
to detect a vast array of very specific structures ranging, for this model, from
specific intervals (e.g. fifths or sevenths) over major and minor triads to interval
jumps. See Figure 1 for simplified examples.

−1 −1 −1 −1 −1 −1
17 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1

 −1 −1 −1 −1 −1 −1
8 −1 8 −1 −1 −1
−1 −1 −1 −1 −1 −1


−1 −1 −1 −1 −1 −1

5 −1 5 −1 5 −1
−1 −1 −1 −1 −1 −1

  5 −1 −1 −1 −1 −1
2 −1 2 −1 −1 −1
−1 −1 5 −1 −1 −1


Fig. 1. Examples of event-detecting kernels. Rows are time frames, columns can be
thought of as pitch classes or frequency bins. Clockwise, they would roughly detect
edges or single peaks, a two-semitone interval sounding together, a two-semitone jump,
and a triad.

Co-occurrence Detection Co-occurrence computations can be vectorized just
as easily. Consider that the correlation matrix of a multidimensional feature can
be written as a matrix product:

F = PTP
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where P has been normalized by subtraction of the mean and dividing by the
standard deviation (for each dimension). The resulting fingerprint measures the
co-occurrence of harmonic pitch classes.

When a certain time window for pairing needs to be allowed, one efficient ap-
proach is to apply dilation or convolution prior to the matrix multiplication.

In this case, the structuring element we need is a binary column matrix (size
along the pitch dimension is one) of length ∆t, denoted T . The melody co-
occurrence feature can be defined as

F = PT (T ⊕ P )

where P is a chroma-like matrix containing 1 when a pitch class is present in
the melody m(t) and 0 everywhere else:

Pt,i =

{
1 if m(t) = i,

0 otherwise.

To see how the above F is mathematically equivalent to the proposed co-occurrence
matrix, consider that by definition of dilation,

(T ⊕ P )t,i = max
τ∈T

(Pt,i−τ )

so that
(PT (T ⊕ P ))i,j =

∑
t

(Pt,i ∗max
τ∈T

(Pt,j−τ ))

which, for a binary melody matrix P based on the melody m(t), translates to

Fi,j =
∑
t

max
τ∈T

{
1 if m(t) = i and m(t+ τ) = j,

0 otherwise,

i.e. the standard definition of the co-occurrence matrix over discrete one-dimensional
data.

Alternatively, convolution can be applied, and we get

F = PT (T ⊗ P )

or

Fi,j =
∑
t

∑
τ∈T

{
1 if m(t) = i and m(t+ τ) = j,

0 otherwise,

provided S is again binary.

The difference between these two types of co-occurrence matrix is small for
sufficiently sparse M , in which case the maximum and the sum over τ ∈ T
are on the order of 1. This is generally true for natural language data, the
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context in which co-occurrence matrices were first used. It may also hold for the
peak constellations used in classic landmark-based audio fingerprinting. For more
general, dense matrices, the convolution-based F will scale with the density of
M while the dilation-based F will not. This underlines the advantage of sparsity
in the extraction of P .

We conclude that the pairing of salient events over different time scales can
be completely vectorized for efficient computation using image processing tech-
niques such as dilation, convolution or both.

Summary Given an input times series X (time frames as rows), a set of n
masking structures {Si} and a set of K structural elements {Tk} specifying the
time scale for co-occurrence, we apply

1. salient event detection using

– convolution with Si:

X ′(t) = [Si ⊗X](t) (1)

– rectification:

P (i, t) = h([Si ⊗X](t)]) (2)

i = 1 . . . n.

2. co-occurrence detection using

– convolution with Tk:

F (k, i, j) = [PT · (Tk ⊗ P )](i, j) (3)

i, j = 1 . . . n and k = 1 . . .K.

– optional normalization.

so that F (k, i, j) in fingerprint F encodes the total amount of co-occurrences of
Si and Sj over time scale Tk.5

3.3 Audio Bigrams, 2DFTM and Feature Learning

Reviewing the 2D discrete Fourier transform-based approaches we noted how,
of all song description features, they aren’t the most open to interpretation.

5 For completeness we point out that the above example only covers cases in which all
Si have a number of rows equal to that of X, so that each convolution yields a one-
dimensional result. In cases where the number of rows in S is smaller, an additional
index must be introduced, iterating over the rows of the resulting convolution.
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The most straightforward intuition behind the output of the 2D Fourier mag-
nitude coefficients over a patch of chroma features, is that it encodes periodic
recurrences in both time and pitch class.

The audio bigram model proposed in this paper measures co-occurrences of
events given a set of timescales. In other words, its aspires to do just the same as
the 2DFTM-based systems, but dropping the periodicity requirement, pinning
down the specifics of what kinds of recurrence in time and pitch space are allowed,
and linking it to the bigram paradigm that has been succesful in other strands
of audio fingerprinting.

Audio Bigrams and Convolutional Neural Networks Last but not least,
we demonstrate the most promising aspect of this model, which is its relationship
to feature learning systems. Indeed, the above set of transforms is very similar
to the architecture of convolutional neural networks as used in computer vision
and artificial intelligence.

Convolutional neural networks are a currently popular type of artifical neural
networks (ANN) in which a cascade of convolutional filters and non-linear acti-
vation functions is applied to an input vector or matrix (e.g. an image). Common
non-linear functions include sigmoid functions (e.g. tanh) and the rectification
function, used in so-called Rectified Linear Units or ReLU’s.

Convolutional neural networks are much like other ANN, in that most of the
layers can be expressed as either a linear operation on the previous layer’s output
or a simple non-linear scaling of the result. The coefficients or ‘weights’ of these
linear operations can be seen as connections between neurons, and make up the
majority of the network’s parameters. Crucially in ANN, these parameters can
be learned given a large dataset of examples.

Learning parameters in the context of variable-length time series presents an
extra challenge, since either the output or the number of weights will not be
constant. This system circumvents that issue by exploiting the fixed size of the
dot product in Equation 3. An important additional advantage of convolutional
neural networks over other ANN is that the connections are relatively sparse,
and many of the weights are shared between connections, both of which make
learning easier.

As it is summarized in section 3.2, the bigram model only consists of convo-
lutions, one non-linear activation function h and a dot product, making it a a
rather simple convolutional network with relatively few parameters.

Audio Bigrams and 2DFTM Finally, because of the convolution-multiplication
duality of the DFT, the audio bigram model can be considered the non-Fourier
domain analogue of the k-NN-based system proposed by Humphrey, who de-
scribes their system as ‘effectively performing convolutional sparse coding’ [6].
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Effectively, the differences come down to the use of two complementary smaller
kernels instead of one large one, saving in the number of weights.

Future tests will determine whether standard back-propagation-style learning
can be used directly for this kind of convolutional architecture. Yet, whatever
the outcome, we believe the model is an important first step towards learning
convolutional kernels over variabe-length time-series, and learning powerful song
descriptors specifically.

4 Implementation

4.1 PYTCH

Song

- metadata
- feature time series

load feature(file)
make fingerprint()

Collection

- [songs]

add song(song)
make index()

Index

- hash table

query(song)

fingerprint

method(song)
method(song)
method(song)
...

Experiment

- query collection
- candidate collection

run()
evaluate()

tools

plotting

Fig. 2. Class and module structure of the soft audio fingerprinting toolbox pytch.

We provide an implementation of the above ideas in the form of pytch, Python
toolbox for pitch-based song description available at www.github.com/jvbalen/
pytch.

The toolbox builds on three primary classes. A class Song returns several repre-
sentations including raw features, a fingerprint, or a set of subfingerprints. The
Collection class contains a list of songs and returns an instance of Index which
contains fingerprints and metadata for a collection in a datastructure that allows
for efficient look-up.

Centrally in the toolbox is the fingerprint module, containing the fingerprinting
transforms. It contains the feature transforms as layed out in section 3.2, and a
set of fingerprinting methods building on these transforms. New transforms and
new configurations of the existing architecture can be added here.

On top of this, there is a class Experiment that can be used to evaluate fin-
gerpinting methods, a module for supplementary methods tools, and a plotting
module. Figure 2 illustrates the class and module structure of the toolbox.
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4.2 Code Example

In the following (Python) example, an experiment is run on a set of 100 candi-
dates and queries for which the Song class has access to a file with chroma base
features.

– Songs and their features are loaded upon construction of the Collection ob-
jects queries and candidates.

import collection as cn

import fingerprint as fp

import experiment as xp

query_ids = range(100)

candidate_ids = range(100,200)

queries = cn.Collection(query_ids)

candidates = cn.Collection(candidate_ids)

groundtruth = cn.groundtruth(queries.set, candidates.set)

– A fingerprinting function and its parameters are chosen and passed to the
object my_experiment of the Experiment class.

fingerprint_type = fp.chromafp

params = {‘win’: 0.5,

‘normfunction’: ‘whiten’,

‘keyhandling’: ‘transpose’}

my_experiment = xp.Experiment(queries, candidates,

groundtruth, fingerprint_type, params)

– Finally, the experiment is run. The index class is not used here as the ex-
periment is small enough for the system to compute all pairwise (cosine)
distances between the fingerprints.

my_experiment.run(distmetric=‘cosine’, evalmetrics=[‘map’])

print my_experiment.results

In most practical uses of this toolbox, it is adviced to set up a new module for
one’s dataset, overriding the Song, Collection and Experiment constructors to
point to the right files.

4.3 Example Experiment

We now demonstrate in an example experiment how bigram-based fingerprints
can be compared, by testing a number of configurations of the system in a cover
song retrieval experiment.
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As a dataset, we use a subset of the Second Hand Song dataset6 of 1470 cover
songs. The subset contains 412 ‘cover groups’ or cliques, and for each of these
we have arbitrarily selected a song for the query collection. The other 1058
songs constitute the candidate collection. Since the subset is based on the second
hand song dataset, we have access to pre-extracted chroma features provided by
the Echo Nest. Though not ideal, as we don’t know exactly how these features
were computed, they make a rather practical test bed for higher-level feature
development.

We implemented four bigram-based fingerprints: three kinds of chroma co-occur-
rence matrices (correlation, covariance, and chroma difference covariance follow-
ing [7,8,12]), and one chroma landmark system, roughly following [1]. The results,
with a description of the kernels S and T , are given in Table 1.

System Mean average precision Precision at 1 Recall at 5

Random baseline .012 .002 .001

Chroma correlation .181 .155 .097
no S, no T

Chroma covariance .223 .194 .112
no S, no T

Chroma difference covariance .114 .107 .051
S contains [−1, 1]T

Chroma landmarks .367 .340 .189
S simple peak detection
Tk of form [. . . 0, 1]

Table 1. Results table for the example cover song experiment. Chroma landmarks
outperform other bigram-type fingerprints.

The chroma landmark strategy was optimized over a small number of param-
eters: Tk was settled on a set of length-k arrays where k = 1 . . . 16. The best
length of the peak-detecting matrix S for the system was found to be 32. Only
one peak detection matrix was used.

As can be seen from the table, the chroma landmark system outperforms the
other systems. We believe this supports the hypothesis that, starting from the
kernels S and T that describe this transform, a more powerful representation
can be learned. In future work, the above table will be extended with the results
for more bigram configurations, and with an evaluation of the learned system
proposed in Section 3.3.

6 http://labrosa.ee.columbia.edu/millionsong/secondhand
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5 Conclusions and Future Work

We have reviewed a selection of ‘soft’ audio fingerprinting methods, and de-
scribed a fingerprinting model that allows to see these methods as variations of
the audio bigram paradigm. The audio bigram model measures co-occurrence of
prespecified salient events in a multidimensional time series. We have presented
an exploration of the computational architecture of the model and showed that
can essentially be implemented as a particular type of convolutional neural net-
work. The model can therefore be optimised for specific retrieval tasks using su-
pervised learning. Finally, we have introduced our implementation of the model,
pytch.

As future work, we plan a more extensive evaluation of some of the existing
algorithms the system is capable of approximating. Standard datasets like the
covers80 dataset can be used to compare results to the existing benchmarks.
If the results are close to what the original authors have found, pytch may
be used to do a comparative evaluation that may include some variants of the
model that have not previously been proposed.

We also intend to study the extent to which the convolutional network imple-
mentation of the model can be trained, and what kind of variants of the models
this would produce. This can be done most easily using the Second Hand Song
dataset, because a rather large number of train and test data will be required.

Finally, we would like to explore whether higher-order n-grams can be con-
structed using the same method. A rather straightforward option is to replace
the matrix product in Equation 3 with a novel matrix product that takes three
or four or more matrices and computes a single result, e.g. for trigrams:

P (X,Y, Z)(i, j, k) =
∑
n

X(n, i)Y (n, j)Z(n, k).

We believe n-grams could prove useful in adapting more techniques from natural
language processing and text retrieval, such as document frequency weighting
and topic modeling, to audio data.
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