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Inverse problems

Estimate parameters from noisy measurements

di = F (m)qi + ni ,

with

di - observations
F - forward operator, typically involves a PDE solve
m - parameters
qi - input/source
ni ∼ N (0,C)



Non-linear data-fitting

Maximum likelihood estimation can be formulated as

min
m

n∑
i=1
‖F (m)qi − di‖2C−1 ,

which can be solved using a Newton-like method.

I Noise covariance may not be know a-priori
I Evaluation of the misfit and gradient requires 2n PDE solves.



Non-linear data-fitting

Agenda:

Estimation of the noise covariance matrix

I May give different estimate of the parameters m,
I Important for uncertainty quantification

Reduction of the effective number of simulations

I Random subsampling
I Exploit structure of Covariance matrix
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Extended least-squares

Formulate an extended LS problem:

min
m,C

log(|C |) +
n∑

i=1
‖F (m)qi − di‖2C−1 .

For fixed m we have a closed-form solution

C(m) =
n∑

i=1
ri (m)ri (m)T ,

where
ri (m) = F (m)qi − di .

[Aravkin et. al. 12]



Intermezzo: Variational projection

Given a twice differentiable function g(x , y), define
y(x) = miny g(x , y) and define a reduced function

f (x) = g(x , y(x)),

then

∇f (x) = ∇xg(x , y(x)),

∇2f (x) = ∇2
xg(x , y(x))−∇2

x ,ygT
(
∇2

yg
)−1
∇2

x ,yg .

[Bell & Burke 08; Aravkin et. al. 12]



Extended least-squares

Define a reduced objective

f (m) = log(|C(m)|) +
n∑

i=1
‖F (m)qi − di‖2C(m)−1 ,

with gradient

∇f (m) =
n∑

i=1
DF (m,qi )TC(m)−1ri (m).

where

C(m) =
n∑

i=1
ri (m)ri (m)T .



Extended least-squares

Main tasks:

1. Compute all residuals (n PDE-solves),

ri = F (m)qi − di ,

2. Estimate the covariance matrix,

C =
n∑

i=1
ri rT

i ,

3. Compute gradient (2n PDE solves)

∇f (m) =
n∑

i=1
DF (qi )TC−1ri



Estimating the covariance

Organizing the residuals in an m × n matrix R, we have

C = RRT .

Expanding R = UkΣkV T
k , we have C = UkΣ2

kUT
k , and

f = n + 2
k∑

i=1
log(σi ),

∇f =
k∑

i=1
σ−1

i DF (q̃i )T vi ,

with Q̃ = QVk .



Estimating the covariance

Observation:

If the covariance matrix has rank k, we need only 2k
PDE-solves to evaluate the gradient

Question:

How do we efficiently obtain the (truncated) SVD of R ?



Intermezzo: Randomized trace estimation

Given a matrix A, we can estimate the trace

tr
(
ATA

)
≈

k∑
i=1

wiATAwi ,

where wi is an i.i.d. random Gaussian vector.

Such techniques have been very succesfull in PDE-constrained
optimization/inverse problems.

[Avron & Toledo 11; Haber et. al. ’12]



Intermezzo: Randomized trace estimation

Given a matrix A, we can estimate the trace

tr
(
ATA

)
≈

k∑
i=1

wiATAwi ,

where wi is an i.i.d. random Gaussian vector.

Such techniques have been very succesfull in PDE-constrained
optimization/inverse problems.

[Avron & Toledo 11; Haber et. al. ’12]



Randomized linear algebra

First approach:

1. Compress the matrix by random projection:

R̃ = RWk ,

where E{WkW T
k } = In.

2. Compute k-SVD: R̃ = ŨkΣ̃k Ṽ T
k , and find

RRT ≈ ŨkΣ̃2
k ŨT

k .

Cost: k PDE solves + k-SVD of m × k matrix.



Randomized linear algebra

Second approach:

1. Capture range of the matrix Y = RWk and find orthonormal
basis L for Y .

2. Compute k-SVD of LTR = ŨkΣ̃kV T
k and find

RRT ≈ LŨkΣ̃2
kV T

k .

Cost: 2k PDE-solves + QR of m × k matrix + k-SVD of k × n
matrix.

[Halko et. al. 11]



Randomized linear algebra
True covariance matrix



Randomized linear algebra
Stochastic approximation



Randomized linear algebra
Randomized SVD



Randomized linear algebra



Numerical results

I PDE: 2D Helmholtz equation
I gradient-descent with Borzilai-Borwein steplength
I estimate covariance on-the-fly
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Conclusions

I We can exploit low-rank structure of the covariance matrix to
reduce the # of PDE solves

I Low rank estimate of the covariance matrix can be computed
on-the-fly using stochastic approximation or randomized SVD

I First results are promising, SA does remarkably well



Future work

I Adaptive estimation of the rank
I More sophisticated model for covariance matrix (diagonal +

low rank)
I Exploit low rank structure of C to represent the GN Hessian


