Dimensionality Reduction and Uncertainty Quantification for Inverse Problems

Tristan van Leeuwen - Utrecht University, the Netherlands

SIAM CSE - MS35 -March 14, 2015

Inverse problems

Estimate parameters from noisy measurements

$$
\mathbf{d}_{i}=F(\mathbf{m}) \mathbf{q}_{i}+\mathbf{n}_{i}
$$

with
\mathbf{d}_{i} - observations
F - forward operator, typically involves a PDE solve
$\mathbf{m}-$ parameters
$\mathbf{q}_{i}-$ input/source
$\mathbf{n}_{i} \sim \mathcal{N}(0, C)$

Non-linear data-fitting

Maximum likelihood estimation can be formulated as

$$
\min _{\mathbf{m}} \sum_{i=1}^{n}\left\|F(\mathbf{m}) \mathbf{q}_{i}-\mathbf{d}_{i}\right\|_{C^{-1}}^{2}
$$

which can be solved using a Newton-like method.

- Noise covariance may not be know a-priori
- Evaluation of the misfit and gradient requires $2 n$ PDE solves.

Non-linear data-fitting

Agenda:

Estimation of the noise covariance matrix

- May give different estimate of the parameters m,
- Important for uncertainty quantification

Non-linear data-fitting

Agenda:

Estimation of the noise covariance matrix

- May give different estimate of the parameters m,
- Important for uncertainty quantification

Reduction of the effective number of simulations

- Random subsampling
- Exploit structure of Covariance matrix

Extended least-squares

Formulate an extended LS problem:

$$
\min _{\mathbf{m}, C} \log (|C|)+\sum_{i=1}^{n}\left\|F(\mathbf{m}) \mathbf{q}_{i}-\mathbf{d}_{i}\right\|_{C^{-1}}^{2}
$$

For fixed \mathbf{m} we have a closed-form solution

$$
C(\mathbf{m})=\sum_{i=1}^{n} \mathbf{r}_{i}(\mathbf{m}) \mathbf{r}_{i}(\mathbf{m})^{T}
$$

where

$$
\mathbf{r}_{i}(\mathbf{m})=F(\mathbf{m}) \mathbf{q}_{i}-\mathbf{d}_{i}
$$

[Aravkin et. al. 12]

Intermezzo: Variational projection

Given a twice differentiable function $g(x, y)$, define $\bar{y}(x)=\min _{y} g(x, y)$ and define a reduced function

$$
f(x)=g(x, \bar{y}(x))
$$

then

$$
\begin{gathered}
\nabla f(x)=\nabla_{x} g(x, \bar{y}(x)) \\
\nabla^{2} f(x)=\nabla_{x}^{2} g(x, \bar{y}(x))-\nabla_{x, y}^{2} g^{T}\left(\nabla_{y}^{2} g\right)^{-1} \nabla_{x, y}^{2} g
\end{gathered}
$$

[Bell \& Burke 08; Aravkin et. al. 12]

Extended least-squares

Define a reduced objective

$$
f(\mathbf{m})=\log (|C(\mathbf{m})|)+\sum_{i=1}^{n}\left\|F(\mathbf{m}) \mathbf{q}_{i}-\mathbf{d}_{i}\right\|_{C(\mathbf{m})^{-1}}^{2}
$$

with gradient

$$
\nabla f(\mathbf{m})=\sum_{i=1}^{n} D F\left(\mathbf{m}, \mathbf{q}_{i}\right)^{T} C(\mathbf{m})^{-1} \mathbf{r}_{i}(\mathbf{m})
$$

where

$$
C(\mathbf{m})=\sum_{i=1}^{n} \mathbf{r}_{i}(\mathbf{m}) \mathbf{r}_{i}(\mathbf{m})^{T}
$$

Extended least-squares

Main tasks:

1. Compute all residuals (n PDE-solves),

$$
\mathbf{r}_{i}=F(\mathbf{m}) \mathbf{q}_{i}-\mathbf{d}_{i}
$$

2. Estimate the covariance matrix,

$$
C=\sum_{i=1}^{n} \mathbf{r}_{i} \mathbf{r}_{i}^{T},
$$

3. Compute gradient (2n PDE solves)

$$
\nabla f(\mathbf{m})=\sum_{i=1}^{n} D F\left(\mathbf{q}_{i}\right)^{T} C^{-1} \mathbf{r}_{i}
$$

Estimating the covariance

Organizing the residuals in an $m \times n$ matrix R, we have

$$
C=R R^{T}
$$

Expanding $R=U_{k} \Sigma_{k} V_{k}^{T}$, we have $C=U_{k} \Sigma_{k}^{2} U_{k}^{T}$, and

$$
\begin{gathered}
f=n+2 \sum_{i=1}^{k} \log \left(\sigma_{i}\right), \\
\nabla f=\sum_{i=1}^{k} \sigma_{i}^{-1} D F\left(\widetilde{\mathbf{q}}_{i}\right)^{T} \mathbf{v}_{i},
\end{gathered}
$$

with $\widetilde{Q}=Q V_{k}$.

Estimating the covariance

Observation:
If the covariance matrix has rank k, we need only $2 k$ PDE-solves to evaluate the gradient

Question:
How do we efficiently obtain the (truncated) SVD of R ?

Intermezzo: Randomized trace estimation

Given a matrix A, we can estimate the trace

$$
\operatorname{tr}\left(A^{T} A\right) \approx \sum_{i=1}^{k} \mathbf{w}_{i} A^{T} A \mathbf{w}_{i}
$$

where \mathbf{w}_{i} is an i.i.d. random Gaussian vector.

Intermezzo: Randomized trace estimation

Given a matrix A, we can estimate the trace

$$
\operatorname{tr}\left(A^{T} A\right) \approx \sum_{i=1}^{k} \mathbf{w}_{i} A^{T} A \mathbf{w}_{i}
$$

where \mathbf{w}_{i} is an i.i.d. random Gaussian vector.
Such techniques have been very succesfull in PDE-constrained optimization/inverse problems.
[Avron \& Toledo 11; Haber et. al. '12]

Randomized linear algebra

First approach:

1. Compress the matrix by random projection:

$$
\widetilde{R}=R W_{k},
$$

where $\mathbb{E}\left\{W_{k} W_{k}^{T}\right\}=I_{n}$.
2. Compute k-SVD: $\widetilde{R}=\widetilde{U}_{k} \widetilde{\Sigma}_{k} \widetilde{V}_{k}^{T}$, and find

$$
R R^{T} \approx \widetilde{U}_{k} \widetilde{\Sigma}_{k}^{2} \widetilde{U}_{k}^{T} .
$$

Cost: k PDE solves $+k$-SVD of $m \times k$ matrix.

Randomized linear algebra

Second approach:

1. Capture range of the matrix $Y=R W_{k}$ and find orthonormal basis L for Y.
2. Compute k-SVD of $L^{T} R=\widetilde{U}_{k} \widetilde{\Sigma}_{k} V_{k}^{T}$ and find

$$
R R^{T} \approx L \widetilde{U}_{k} \widetilde{\Sigma}_{k}^{2} V_{k}^{T}
$$

Cost: $2 k$ PDE-solves + QR of $m \times k$ matrix $+k-S V D$ of $k \times n$ matrix.
[Halko et. al. 11]

Randomized linear algebra

True covariance matrix

Randomized linear algebra

Stochastic approximation

$$
R W_{k} W_{k}^{\top} R^{\top}(k=20)
$$

Randomized linear algebra
 Randomized SVD

Randomized linear algebra

Numerical results

- PDE: 2D Helmholtz equation
- gradient-descent with Borzilai-Borwein steplength
- estimate covariance on-the-fly

Numerical results

Numerical results

Numerical results

convergence history

Numerical results

Numerical results

Numerical results

Numerical results

Conclusions

- We can exploit low-rank structure of the covariance matrix to reduce the \# of PDE solves
- Low rank estimate of the covariance matrix can be computed on-the-fly using stochastic approximation or randomized SVD
- First results are promising, SA does remarkably well

Future work

- Adaptive estimation of the rank
- More sophisticated model for covariance matrix (diagonal + low rank)
- Exploit low rank structure of C to represent the GN Hessian

