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domain method to solve the Maxwell’s equations coupled to equations describing the changes in the material
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silicon and gold under laser ablation conditions. We compare the simulations to experimental results and find
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1. INTRODUCTION
Recent advances in ultrafast laser material processing en-
able nanosized structures to be directly fabricated in various
materials [1–4]. The basic processes during femtosecond la-
ser ablation are absorption by electrons, energy transfer to
the lattice, and subsequent material removal. These proc-
esses can in a first approximation be treated as temporally
separated [5]. The first step, the absorption of light, is a
complex and interesting issue. In the field of laser nanopro-
cessing, subwavelength features are created using diffrac-
tion-limited laser spots. As the laser pulses are focused
into a spot size comparable to the wavelength of the laser
light, the interaction between the light and the material
takes place in an equally confined volume. Furthermore,
due to the high peak intensities involved, nonlinear optical
effects play a dominant role. Typically, when a laser pulse
propagates through a semiconductor or an insulator, multi-
photon absorption takes place during the leading part of the
pulse. This leads to the generation of a high concentration
of charge carriers. When a laser pulse impinges on a metal,
the existing free electrons in the metal will be strongly
heated by the leading part of the pulse. In both cases the
leading part of the pulse dramatically alters the optical prop-
erties of the material, which implies that the trailing part of
the laser pulse interacts with a material whose optical prop-
erties are locally significantly different from those of the un-
excited material. Due to strong focusing of the laser and the
inherent nonlinearity of the processes, the changes in the
optical properties actually occur on length scales below
the diffraction limit. A detailed numerical modeling of this
process may serve to provide insight into the complex
mechanism of energy deposition under these conditions
and is therefore crucial to describe laser nanoprocessing.

In earlier one-dimensional (1D) models of the absorption of
femtosecond laser pulses in silicon, the dynamically changing
optical properties due to the generation of free carriers were
taken into account. The results of these models are in good
agreement with reflectivity measurements performed with
weakly focused laser beams [6,–8]. However, these 1D models
are expected to be inadequate to describe the laser–matter
interaction in subwavelength volumes and with the large fo-
cusing angles obtained with high-numerical-aperture (NA) ob-
jectives. In other studies, the propagation of femtosecond
laser pulses in nonlinear media is simulated by solving the
nonlinear Schrödinger equation (NLSE) [9,10]. However, in
experiments involving subwavelength structures, the NLSE
does not hold. For instance, as shown in one of our previous
publications [11], the subwavelength plasma formed by the
laser is actually a Mie-like scatterer induced inside the sili-
con-on-insulator (SOI) device layer, which couples incident
light in a slab mode. This implies the breakdown of the slowly
varying amplitude approximation on which the NLSE is based.
Additionally, the high-NA objective used to focus the beam
implies the breakdown of the paraxial approximation, another
approximation used in the derivation of the NLSE. Due to
these limitations of the NLSE, there is an increasing need
for the development of numerical models that resolve the full
set of Maxwell’s equations coupled to the equations describ-
ing the changes in the materials induced by the pulse under
tight focusing conditions [12–15]. However, these studies do
not find quantitative agreement with experiments or lack a
comparison to experiments. Furthermore, no existing studies
address subwavelength laser–matter interactions in metals.
Finally, all mentioned models neglect the fact that the effec-
tive mass of the charge carriers actually changes due to the
increasing temperature during the pulse.
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In this paper, we numerically model the first phase of fem-
tosecond laser processing, which is the laser energy deposi-
tion. Furthermore, we present self-reflectivity measurements
of a strongly focused femtosecond laser beam in single-shot
ablation experiments on silicon and gold. The model simulates
the propagation of light using a two-dimensional (2D) finite-
difference time-domain (FDTD) method, coupled to a set of
differential equations that describe the changes in the material
driven by the laser light. The model results are compared with
the self-reflectivity measurements. We show that the model
excellently describes the self-reflectivity measurements on
the four types of specimens we investigated, namely, two
SOI samples with different device layer thickness, bulk sili-
con, and gold. We further show that, in the case of strong
focusing, a 1D model fails to reproduce the experimental re-
sults and that a higher dimensional model is required. Another
important result is that it is crucial to take into account that
the effective mass of the charge carriers changes during the
pulse. As our model excellently agrees with the experimental
results, with no open parameters, it can be applied to study
and optimize the energy deposition in femtosecond laser
nanoprocessing of materials.

The paper is organized as follows. In Section 2 we discuss
the theoretical model to describe the propagation of an in-
tense laser pulse in a medium in which the optical properties
are changing during the pulse. In Section 3, we explain in de-
tail the numerical implementation of that model. In Section 4,
we compare the results of the model to experimental results.
A summary and conclusion are presented in Section 5.

2. THEORY
The propagation of electromagnetic waves is governed by
Maxwell’s equations,

∇ ×H � ∂D
∂t

� j; ∇ × E � −

∂B
∂t

;

in combination with relations defining the auxiliary fields:

D � ϵ0E� P; H � 1
μ0

B −M:

The above relations are specific to the medium and can be
evaluated using microscopic theories. For instance, in a linear
and homogeneous medium, we would write P � ϵ0χE and
M � χmB∕μ0, where χ is the electric susceptibility and χm
is the magnetic susceptibility. For electromagnetic waves at
optical frequencies, the magnetic susceptibility is in practice
negligibly small. We will therefore neglect it in the remainder
of this paper and consider only the electric susceptibility. In
the simple linear and homogeneous case, the above set of
equations can be cast into a wave equation, which can be
solved analytically. However, in many cases, the susceptibility
is not homogeneous. Then one generally needs numerical
methods to solve Maxwell’s equations. Furthermore, when
sufficiently strong fields are applied, nonlinear effects can
come into play. For example, absorption of light by a semicon-
ductor or dielectric medium can result in the generation of
free charge carriers. These free carriers will contribute to
the susceptibility. As this will cause the susceptibility to de-
pend on the intensity of light inside the medium, free-carrier

generation inherently leads to inhomogeneity even in the case
of an initially homogeneous medium. Local heating of the
material has a similar effect, as it locally changes the refrac-
tive index and thus makes the medium inhomogeneous.

Generally the changes in the local susceptibility are small
and slow enough to be negligible when considering the propa-
gation of light. However, when using focused picosecond or
femtosecond pulses, dramatic changes in local susceptibility
may take place already during the incident pulse. As illus-
trated in Fig. 1, this requires one to solve the equations gov-
erning the dynamics of the properties of the material, in the
presence of a driving optical field. The intensity of the optical
field is obtained by solving Maxwell’s equations, with the
material properties as an input.

If we assume that the susceptibility changes slowly with re-
spect to the oscillation period of the light, we can neglect time
derivatives of the susceptibility and thus write the time deriva-
tive of the displacement field as ∂D∕∂t � �1� χ�∂E∕∂t. This
reduces Maxwell’s equations to

∂H�r; t�
∂t

� −

1
μ0

∇ × E�r; t�; (1)

∂E�r; t�
∂t

� 1
ϵ0ϵr�r; t�

∇ ×H�r; t�; (2)

where r represents the spatial position vector in Cartesian co-
ordinates and we have introduced the dielectric func-
tion ϵr�r; t� � 1� χ�r; t�.

To determine the susceptibility, we need to know certain
position- and time-dependent properties of the material. For
instance, we require the carrier density N�r; t�, which we
can obtain by integrating the diffusion equation

∂N�r; t�
∂t

� ∇ · �−D0�r; t�∇N�r; t�� � SN �E�r; t��; (3)

where D0 is the carrier diffusivity and the source term SN de-
pends on the intensity of light (and thus on the electric-field
amplitude) as absorption of light leads to the formation of free
carriers.

The carrier density distribution obtained from the diffusion
equation is subsequently used to calculate the position- and

Fig. 1. Diagrammatic view of the model. The iteration starts at
Maxwell’s equations, which solve the propagation of the laser pulse
in an initially unexcited material. Once every optical half-cycle, the
optical intensity inside the material can be derived using the electric
field obtained with Maxwell’s equations. This optical intensity is used
as an input to the material equations that describe the response of the
material to the intensity. By solving the material equations, parame-
ters of the excited material, such as electron density and electron tem-
perature, are obtained. Subsequently, a new susceptibility can be
deduced from the parameters of the excited material. This new sus-
ceptibility and thus the dielectric function are further inserted into
Maxwell’s equations to complete a single iteration. The iterations
are conducted once every optical half-cycle until the end of the pulse.
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time-dependent susceptibility (and thus the dielectric
function):

ϵr�r; t� � 1� χ�r; N�r; t�;…�; (4)

where we have now explicitly written the susceptibility as a
function of the carrier density. The dots in Eq. (4) indicate that
the susceptibility is also a function of other properties of the
medium, such as electron temperature and lattice tempera-
ture. If these are expected to vary on the timescale of the
pulse, additional equations need to be included to describe
their dynamics. For instance, the susceptibility in gold also
depends strongly on the electron temperature. This will be dis-
cussed further in the following sections.

In the next section, we will follow the outline indicated
above to derive a model to compute the self-reflectivity of sil-
icon and gold samples subjected to intense femtosecond laser
illumination. We will explicitly discuss the physical processes
that should be taken into account and give details of the
numerical implementation of the model.

3. THE MODEL
A. Laser–Matter Interaction for Silicon
The initial process during the absorption of a femtosecond la-
ser pulse by a semiconductor is the excitation of electrons
from the valence band to the conduction band. Depending
on the bandgap of the material and the incident photon en-
ergy, the excitation can be either one-photon absorption
(OPA) or multiphoton absorption, or both. Subsequently, elec-
trons already excited to the conduction band can gain energy
in the laser field via free-carrier absorption. If the excess en-
ergy of a conduction electron is sufficiently high, it may excite
another electron in the valence band to the conduction band,
by a process known as impact ionization. When this process
occurs multiple times, it is referred to as avalanche or cascade
ionization. For silicon at 800 nm excitation wavelength, free
carriers are created by OPA, two-photon absorption (TPA)
[7,16], and impact ionization [17]. Generally, impact ionization
is a very complicated process that involves the energy distri-
bution of the electrons [18]. Here we use a simplified and con-
venient expression for the impact ionization term [19,20]. We
rewrite Eq. (3) as

∂N�r; t�
∂t

� ∇ · �−D0�r; t�∇N�r; t�� � α0I�r; t�
ℏω

� βI2�r; t�
2ℏω

� θI�r; t�N�r; t�; (5)

where α0 is the OPA coefficient, β is the TPA coefficient, and θ
is the impact ionization coefficient. The intensity I�r; t� that
appears in the source term on the right-hand side of the above
equation is the laser intensity inside the medium, which can be
obtained from the amplitude of the time-varying electric field
in the material using

I�r; t� � 1
2
ϵ0cRefnex�r; t�gjE0�r; t�j2; (6)

where Refnexg denotes the real part of the refractive index nex

of the excited material. The amplitude of the electric field
jE0�r; t�j is extracted, once every optical half-cycle, from
the time-varying electric field in Maxwell’s equations. The

details of the extraction can be found in Appendix A. We de-
duce the impact ionization coefficient θ � 21.2 cm2∕J by a lin-
ear fit of the experimental results obtained by Pronko et al.,
who measured the impact ionization rate (s−1) for the dielec-
tric breakdown in silicon with 786 nm fs laser pulses [17]. Due
to the creation of a high density of carriers, the optical re-
sponse of silicon under ablation conditions is dominated by
the free-carrier response, which can be calculated using the
Drude model [7,16]. In our model, we also take into account
the changes in the dielectric constant due to the optical Kerr
effect and TPA. This is accomplished by an extra ϵNL term in
the total dielectric function ϵex, as shown in Eqs. (7) and (9).
Thus the dielectric function of strongly excited silicon ϵex can
be written as

ϵex�r; t� � ϵSi � ϵDrude � ϵNL; (7)

ϵDrude�r; t� � −

�ωp∕ω�2
1� i∕ωτd

; (8)

ϵNL�r; t� �
3
4
χ3jE0�r; t�j2; (9)

ωp�r; t� �
���������������������
N�r; t�e2
m��r; t�ϵ0

s
; (10)

where ϵSi is the dielectric constant of unexcited silicon at
800 nm�13.6� 0.048i� [16] and τd is the carrier collision time,
which is believed to be around 1 fs [6,7] at the excitation level
relevant for this work. Finally,m� is the optical effective mass
of highly excited silicon, which we will discuss later in this
section. The third-order susceptibility χ3 can be calculated
from the value of the Kerr coefficient n2 and the value
of TPA coefficient β in silicon. The refractive index nex

and the effective absorption coefficient αex of the excited
material are

nex � �������
ϵex

p
; (11)

αex � 4π Imfnexg
λ0

: (12)

Although the carrier temperature does not explicitly appear
in the above equations for the dielectric function, we never-
theless have to calculate it. This is because the carrier diffu-
sivity D0 and the optical effective mass m� depend on the
carrier temperature. In Ref. [21], a complete two-temperature
model is given. In our case, however, we can safely neglect the
change of lattice temperature, since our pulse width is much
shorter than the electron–phonon coupling time, which is of
the order of a picosecond [16]. Thus, in order to model the
change of the carrier temperature Tc during the pulse, we
use a simplified carrier heat equation [21,7,16]:

∂�Uc�r; t��
∂t

� ∇ · �−κc∇Tc�r; t�� � αexI�r; t�: (13)

One should distinguish αex in Eq. (13) from α0 in Eq. (5)
since αex includes both the contribution of intraband and
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interband transition. The total energy density Uc of the ex-
cited carriers is given by

Uc � CcTc � NEg; (14)

with Cc the carrier heat capacity, Eg the bandgap energy, and
κc the thermal conductivity of the carriers. The carrier density
and temperature we find through the simulation in silicon
around the ablation threshold are N on the order of 1022∕cm2

and Tc ∼ 104 K (Fig. 5). These numbers are in general agree-
ment with the estimation made by Sokolowski-Tinten and von
der Linde from time-resolved pump–probe experiments [7].
The Fermi temperature of a free-electron gas of this density
is TF ∼ 2 × 104 K. As this is on the same order as the temper-
ature we obtained from the simulation, the carrier gas is nei-
ther in the degenerate nor in the nondegenerate limit. Thus we
determine the carrier heat capacity by taking the temperature
gradient of the total energy density of the free carriers, assum-
ing a free electron density of states [22]. We subsequently
determine the carrier heat conductivity using

κc �
1
3
Ccv

2
cτd; (15)

where kB is the Boltzmann constant, vc the thermal velocity of
the free carrier, and τd the carrier–carrier collision time. The
carrier diffusivity is then found using the Einstein relation [22]:

D0 �
kBTcτd
m� ; (16)

with an effective mass m�. In Ref. [7] the authors determine a
static optical effective mass of the femtosecond-laser-induced
plasma in silicon using time-resolved pump–probe experi-
ments. However, as the optical effective mass is both temper-
ature and density dependent, it will actually change during the
pulse. When the electrons are heated up far beyond the conduc-
tion band edge, the curvature of the band decreases, giving rise
to a larger effective mass. As experimental measurements of
the optical effective mass are based on the Drude model, they
depend only on the ratio N∕m� [see Eq. (10)]. So to measure
m� one needs to know the carrier density N , which in our case
is a priori unknown. Therefore, we use the relation suggested
by Riffe’s theoretical calculation, which takes the detailed band
structure of silicon into account. His calculation shows that the
optical effective mass can in the nondegenerated limit be ap-
proximated by [23]

m�

me

� m�
0

me

�mkTc; (17)

where the optical effective mass of unperturbed silicon m�
0 �

0.15me [7,23]. We extract the slope mk � 3.1 × 10−5 K−1 from
Riffe’s calculations [23]. Although the above equation is valid
for the nondegenerate limit, the elevation of carrier effective
mass in the process is clear.

Rigorously speaking, the carrier–carrier collision time τd
also dynamically changes due to the change of carrier temper-
ature during the pulse. However, as we will discuss in
Section 4, in silicon the effect of the changes in the
carrier–carrier collision time can be neglected with respect
to those of the carrier density.

B. Laser–Matter Interaction for Gold
In the case of femtosecond laser ablation of gold, the leading
optical absorption process is different. As there is already a
high density of free electrons present in the unexcited
material, the number of free electrons is not increased by or-
ders of magnitude during the laser pulse as is the case in sil-
icon. There is an increase of free electron density in gold due
to the transition from the d- to the s-band, as discussed by
many groups [24,25]. However, its effect on reflectivity is
minor compared with the effect of electron heating due to in-
traband absorption. This will be discussed in detail later. In
analogy with Eq. (13), we use

Ce

∂�Te�r; t��
∂t

� ∇ · �−κe∇Te�r; t�� � αexI�r; t�; (18)

where the subscript e denotes that the charge carriers are ex-
clusively electrons. The electron temperature reached in our
simulations (see, for instance, Fig. 6) is neither far above nor
far below the Fermi energy of gold (5.5 eV). For the electron
heat capacity in the above equation, we use the results of Lin
et al., obtained with ab initio calculations [26]. For very high
electron temperatures, impact ionization or ballistic transport
of electrons could actually change the electron density on the
local scale. These effects are expected to have a small influ-
ence on the self-reflectivity, but could play an important role
in the subsequent transfer of heat to the lattice. Very recently,
Fourment et al. [24] demonstrated the importance of d-band
electrons for the electron–electron collision rate in noble met-
als. They experimentally determined the conduction electron
density as well as the electron–electron collision rate in gold
as a function of electron temperature in the range 0.6–5 eV.
We incorporate the increase of conduction electrons into
our FDTD model by fitting a simple spline function to their
experimental results. The authors find that the electron–
electron collision rate due to d-band electrons is given by
νdee � A�11 − Zeff��Zeff − 1�, where Zeff is the effective number
of conduction electrons per atom. They further find that for
electron temperatures in the range of 0.6–5 eV, the collisions
due to d-band electrons are dominant. We therefore use this
expression and adjust the coefficient A to best fit their exper-
imental data. Finally, we obtain the following expression for
the Drude damping term τd in gold:

τd � 1
νph � 0.301�11 − Zeff��Zeff − 1� ; (19)

where νph � 0.129 × 1015 s−1 is the contribution of electron–
phonon collisions in gold [27]. Because, in the temperature
range and timescale considered, the electron–electron colli-
sion dominates [24], we fix the electron–phonon collision rate
in our model.

The dielectric function of excited gold can then be writ-
ten as

ϵex�r; t� � ϵ∞ � ϵDrude�r; t�; (20)

ϵDrude�r; t� � −

�ωp∕ω�2
1� i∕ωτd�r; t�

; (21)

where ϵ∞ is an offset to the dielectric function that
takes into account the effect of resonances at shorter
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wavelengths. Both the plasma frequency ωp �
����������������������
Ne2∕m�ϵ0

p
and the damping time τd are locally and dynamically chang-
ing during the pulse.

C. FDTD Model
To solve Eqs. (1) and (2), we use a FDTD method. As dictated
by the Courant condition of the FDTD method (see, for in-
stance, [28]) and the fine spatial grid used in our simulation,
the E and H fields are updated hundreds of times per optical
cycle. Once every optical half-cycle, we extract the electric-
field amplitude E0�r; t� from that optical half-cycle. Details
of how we extract the amplitude can be found in Appendix A.
From the electric-field amplitude, we determine the intensity
I�r; t� using Eq. (6). We use this intensity to march Eqs. (5) and
(13) (in the case of silicon) or Eq. (18) (in the case of gold)
forward in time by a single step using an implicit Euler
method. As implicit Euler methods are unconditionally stable,
we can choose the time step in the Euler method as half an
optical cycle. The other quantities, such as diffusivity, heat
capacity, and heat conductivity, are subsequently calculated.
After this, we use the carrier density N�r; t� and/or the elec-
tron temperature Te�r; t� to obtain a new dielectric function
ϵex�r; t�. This updated dielectric function is used in the next
optical half-cycle of the FDTD simulation.

The self-reflectivity of a strongly focused laser pulse is in
principle a three-dimensional (3D) problem. However, 3D-
FDTD simulations are notoriously time and memory consum-
ing. We therefore instead run 2D simulations for the TE and
TM cases and use those to approximate the 3D reflectivity.
This requires an extra step that we discuss at the end of this
subsection. A schematic representation of our 2D-FDTD sim-
ulation box is shown in Fig. 2. The grid sizes for the simula-
tions are chosen to be around 15 nm such that the errors in the
absolute reflectivity are smaller than 0.01 (see Appendix B)
and the device layer thicknesses can be written as integers
times the grid size. The width of the simulation box is
2 μm, which is 2 times the size of the focused laser spot
(1 μm@1∕e2 of intensity). The incident pulse duration used
in the simulation is 126 fs, which is the value measured exper-
imentally using a single-shot autocorrelator. The source plane
is located at 200 nm above the sample surface, while the near-
field detector plane is located one cell above the sample sur-
face. There are 30 grid points in each of the four perfectly
matched layers (PMLs) to ensure negligible reflections at

the boundaries. We tested the accuracy of our method
by comparing to several benchmarks, as discussed in
Appendix C. The FDTD simulation of dispersive and lossy
material as the excited silicon and gold we study in this paper
is implemented using the auxiliary differential equation (ADE)
method [28]. Details of this implementation are given in
Appendix D.

To determine the field that will be scattered/reflected back
by the sample, we run the simulation with and without the
sample and take the difference in the electric field at the de-
tector plane as the scattered near field. We therefore filter the
high spatial frequency components from the scattered near
fields, as described in Appendix E, in order to obtain the scat-
tered far field. From the resulting fields, we calculate the
reflected pulse fluence F

TE;TM
refl �y� and the incident pulse flu-

ence F
TE;TM
inc �y�. Here, the superscripts TE and TM denote

the results for the TE and the TM case. To obtain the total
reflected/incident pulse energy, we add the TE and TM
contributions. To approximate the 3D results, we treat the
y coordinate in our simulation as the radial coordinate in a
polar coordinate system and integrate the reflected/incident
fluence over the area of the incident focal spot:

U refl;inc �
Z

rmax

0
2πrdr�FTE

refl;inc�r� � FTM
refl;inc�r��; (22)

where rmax is chosen to be twice the waist of the focused laser
spot. Finally, we obtain the reflectivity:

R � U refl

U inc
: (23)

This equation yields the value for R that we will compare
with experimental measurements in the next section.

4. RESULTS AND COMPARISON WITH
EXPERIMENTS
In the case of silicon we have carried out simulations on thin-
film SOI samples as well as bulk silicon. Experimental results
for these samples can be found in Ref. [11]. For the simula-
tions, a number of input parameters need to be specified.
The values we used are listed in Table 1. In addition to these
parameters, values for the Si and SiO2 layer thicknesses are
required for the SOI samples. Table 2 lists the parameters used
in our simulations. As can be seen, we inserted values for the
layer thicknesses slightly deviating from their measured val-
ues. These adjusted values were chosen in order to yield
the correct self-reflectivity at vanishing fluence. It should
be noted that the reflectivity in this regime depends only
on the thicknesses of the layers and the refractive indices
of the unperturbed media.

Figure 3 shows the self-reflectivity calculated using the
model and the experimental data of the bulk silicon and
the SOI samples. As is shown for the SOI1 sample, the exper-
imental data lie between the calculated self-reflectivity for the
TM and the TE modes and agree well with the calculation con-
sidering both modes. For clarity, we do not show the TM and
TE modes separately for the SOI2 and bulk samples. The ex-
perimental data scatters at low fluences, due to electronic
noise and quantization errors in the data acquisition. This is
because we designed our setup to work at fluences at and

Fig. 2. Layout of the 2D-FDTD simulation box. The FDTD grid is
excited by a soft source that is located 200 nm above the silicon–air
interface. Scattered E and H near-field values are recorded at the
detector plane to extract the reflectivity.
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above the ablation threshold. A more detailed description of
the setup can be found in Ref. [11]. At fluences above
0.05 J∕cm2 the scatter of the experimental data quickly re-
duces. With small adjustments in the values of θ and τd, the
agreement with the experimental data is even better [11].
We find that the reflectivities for the bulk and the SOI2 sam-
ples are very similar, whereas the reflectivity of the SOI1 sam-
ple deviates strongly from the other two samples. This is
because the device layer of the SOI1 sample is thick enough
to allow for constructive interference in the layer at 800 nm,
impossible for the bulk sample and the 100 nm thin device
layer of the SOI2 sample. As the incident fluence increases,
the reflectivity drops to a minimum and then increases again.
This behavior suggests a typical free-carrier (Drude) re-
sponse. If one applies Eq. (7) with the Fresnel equation to
a simple homogeneous plasma, one would find that after
the critical density (where the plasma frequency equals the
incident light frequency), as the carrier density further in-
creases, the reflectivity drops to a minimum and then
increases. The dashed lines in Fig. 3 show the results of
1D-FDTD calculations using the same parameters as the 2D
calculations. The disagreement with the experimental data
of the 1D calculations directly shows that the substantial
range of incident angles must be taken into account when
a high-NA objective is used, as is the case in nanoablation ex-
periments. Note that, in the above calculations, we used a con-
stant carrier collision time τd � 1 fs. As mentioned earlier, the
carrier collision time is actually both density and temperature
dependent. A standard result from Landau-liquid theory is that
the mean collision time of a thermalized electron bath of tem-
perature Te is given by [30]

1
τee�Te�

� π4k2B
���
3

p

256
ωp

E2
F

T2
e � BT2

e ; (24)

where ωp is the plasma frequency and EF is the Fermi energy.
This expression is not expected to hold for the entire pulse
duration, as it holds only for Fermi degenerate electrons,
i.e., only when Te ≪ TF , a condition that certainly does not
hold at the end of the pulse. To compensate for this limitation,
we treat the coefficient B as a free parameter that we adjust to
improve the correspondence between theory and experiment
for the reflectivity of the bulk silicon sample. We find good
agreement whenwe chooseB � 1.7 × 107 s−1 K−2, a value con-
sistent with Eq. (24) using a density of 1022 cm−3. We then use
this value to calculate the reflectivity for the SOI samples. The
results are shown in the right inset of Fig. 3. As we see, the
results are qualitatively similar, but quantitatively slightly dif-
ferent for the 200 nm thick SOI sample. At high fluences, the
model overestimates the change in reflectivity for the SOI1
sample. Given the small difference between the model with
a static and a dynamic carrier–carrier collision time, we con-
clude that the self-reflectivity is, in the case of silicon, not very
sensitive to the exact form of the temperature dependence of
the collision time. To corroborate this, we also calculate the
self-reflectivity using the square root dependence of the col-
lision rate that is appropriate in the regime that Te ≫ TF . As
before, we fit the bulk data to find the appropriate coefficient.
We then use this coefficient to calculate the reflectivity of the
SOI samples. The results are shown in the left inset of Fig. 3. In
this case, we find no significant difference between the results
for the constant and temperature-dependent rates. We thus
conclude that for a calculation of the self-reflectivity of silicon
under these conditions, a constant collision rate can be used.

We now turn to the importance of impact ionization in the
carrier creation process. In Fig. 4, we show the calculated
results with the impact ionization coefficient θ set to zero.
The disagreement with the experimental data in Fig. 4 and
the good agreement with the experimental data in Fig. 3
demonstrate directly that impact ionization plays a significant
role in the development of the dense electron-hole plasma in
silicon induced by a single femtosecond laser pulse. It should

Table 1. Material Parameters Used in the Simulation
as Obtained from Literaturea

Symbol Description Value

ϵSi Dielectric constant 13.6� 0.048i [16]
β TPA coefficient 1.85 × 10−9 cm∕W [29]
n2 Kerr coefficient 5 × 10−15 cm2∕W [29]
Eg Bandgap 1.12 − 1.5 × 10−8 N1∕3 eV [21]
τd Carrier collision time 1 fs [7]
θ Impact ionization coeff. 21.2 cm2∕J [17]

aThe dielectric constant refers to unexcited silicon at a wavelength of
800 nm.

Table 2. Sample Parametersa

Parameter Specified (Measured) Adjusted

d1; SOI1 200 nm (201.3	 4.1 nm) 202 nm
d2; SOI1 1000 nm 963 nm
d1; SOI2 100 nm (111.5	 3.0 nm) 100 nm
d2; SOI2 300 nm 275 nm

aThe device layer thicknesses d1 are measured using atomic force
microscopy. The specified values are also shown. For the buried
oxide layer, only the specified values are given. We use the
specified parameters for the device layer thicknesses and adjust
the buried oxide layer to obtain the correct reflectivity in the low
fluence limit.

Fig. 3. 2D-FDTD calculations and experimental measurements of
self-reflectivity for bulk silicon and SOI samples. Open and closed
symbols indicate results of two independent experimental runs for
bulk silicon (circles), SOI1 (squares), and SOI2 (diamonds). The solid
lines show the reflectivity calculated by 2D-FDTD simulations with
the TM and TE modes combined for bulk (green), SOI1 (blue), and
SOI2 (red). The dashed lines show the results obtained from a 1D-
FDTD simulation. The blue dashed–dotted and dotted lines show
the reflectivity calculated for SOI1 using either the TE or the TMmode,
respectively. The left inset shows the reflectivity calculated using a
dynamically changing collision rate with a

����
T

p
dependence, and

the right inset shows the reflectivity calculated using a collision rate
with a T2 dependence.
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be pointed out that in earlier work [7] the role of impact
ionization was ignored, which resulted in an underestimation
of the carrier density and a fitted (static) optical effective
mass of m� � 0.18me. However, as shown by Riffe’s theoreti-
cal work, at a carrier temperature of 3000 K the optical effec-
tive mass of silicon already exceeds 0.24me [23]. Considering
that carrier temperatures above 104 K are reached in the ex-
periments [6,7], the value m� � 0.18me reported in Ref. [7] is
far too low. To see whether these conditions also occur in our
model, we inspect the carrier density and the carrier temper-
ature as calculated in our model. In Fig. 5, we plot the results
of those quantities. Specifically, we plot the values obtained at
the surface of the sample, directly after the pulse. In Fig. 5(a)
we find that the carrier density is clearly beyond 1022 cm−3 at
the excitation level relevant for this work.

In Fig. 5(b), we see that the calculated carrier temperature
is indeed larger than 104 K for all but the lowest fluences.
Finally, in Fig. 5(c), we plot the optical effective mass ob-
tained from our model. It is also clearly beyond its unper-
turbed value (0.15me). This is caused by the high carrier
temperature reached in the laser-induced plasma.

To test the versatility of our method, we also carried out
experiments and simulations on a 400 nm thick gold film
grown on a glass substrate by vapor deposition. As the

available electron heat-capacity data of gold obtained by ab
initio calculations is limited to temperatures below 4.3 eV
[26], the simulation results in Fig. 6 have a reduced accuracy
for fluences >1 J∕cm2. As mentioned in Section 3.B, in con-
trast to the case of semiconductors, metals already have such
a high carrier concentration that the heating of those carriers
has the dominant effect on the optical properties of the sam-
ples. In Fig. 6(a) we can clearly see this simplicity in the ex-
perimental results: the self-reflectivity starts out high for low
fluences and decreases slowly with increasing fluence. The
lines in the plot are the results from our model, where no free
parameters where used. All fixed parameters, as listed in
Table 3, were taken from literature. We can see that the model
predicts the self-reflectivity very well from the unperturbed
reflectivity without free parameters. The calculation also
yields the electron temperature and the Drude damping time,
as shown in Figs. 6(b) and 6(c), respectively. We find also, in
the case of gold, final temperatures beyond 104 K (∼1 eV) for
all but the lowest fluences. In order to separate out the effect
of the increased conduction-electron density on the reflectiv-
ity from the decreased electron collision time, we further cal-
culated the reflectivity using the constant electron density
N � 5.9 × 1022∕cm3 of gold at room temperature [24]. The

Fig. 4. FDTD calculations and experimental measurements of self-
reflectivity on the SOI1, SOI2, and bulk samples. For the calculations,
an impact ionization coefficient θ � 0 cm2∕J is used. The lines and
symbols have the same meaning as in Fig. 3.

(b)

(c)

(a)

Fig. 5. Calculated (a) carrier density, (b) carrier temperature, and
(c) optical effective mass on the surface of the sample after the
end of the pulse. In each plot, the green line shows the data for
the bulk silicon sample, the blue line for the SOI1 sample, and the
red line for the SOI2 sample.

(a)

(b)

(c)

Fig. 6. (a) FDTD calculation and experimental measurements of self-
reflectivity on a 400 nm gold film on glass. Open and closed squares
are the experimental data from two independent runs. The solid line
shows the calculated self-reflectivity taking both the TM and the TE
mode into account. The dotted and dashed–dotted lines show the
self-reflectivity taking only the TE mode or only the TM mode into
account, respectively. The dashed line shows the self-reflectivity
calculated with the conduction electron density at room temperature.
(b) Calculated electron temperature on the surface of the sample.
(c) The corresponding Drude damping time.

Table 3. Physical Parameters Used in the
Simulation for Golda

Symbol Value

ϵ∞ 7.6 [24]
νph 0.129 × 1015 s−1 [24]
A 0.301 fs−1∕�e∕atom�2
N interpolation of the data in Ref. [24]
m� 1me [24,31,32]

aThe coefficients νph and A are as defined in the text around
Eq. (19), N is the conduction electron density in gold, m� is the
optical effective mass, and ϵ∞ is an offset to the Drude dielectric
constant that takes resonances at higher optical frequencies into
account.
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result is plotted as the dashed line in Fig. 6(a). We see that the
increasing conduction-electron density indeed has a very
small effect compared to the decreasing collision time, but
certainly neglecting the increased conduction-electron den-
sity does lead to a slight overestimation of the change in re-
flectivity, especially in the high fluence regime.

5. SUMMARY AND CONCLUSIONS
We presented a model describing the propagation and ab-
sorption of a strongly focused femtosecond laser pulse used
for single-shot laser ablation in semiconductor and metal
samples, based on an extended 2D-FDTD method. The
model is compared with self-reflectivity measurements of
strongly focused femtosecond laser pulses used for single-
shot femtosecond laser ablation on two SOI samples, bulk
silicon, and gold. We obtain good agreement between sim-
ulation and experiments, using the unperturbed reflectivity
to fix material and sample specific constants; the self-
reflectivity at high fluences follows without open parame-
ters. This confirms the accuracy and robustness of the
model. The model shows the important role of impact ion-
ization for the carrier generation in silicon induced by a
femtosecond laser pulse of 800 nm. The model also indi-
cates a marked increase of the optical effective mass in sil-
icon due to the elevation of the carrier temperature during
the pulse. Furthermore, the simulations demonstrate that
the dominant factors determining the self-reflectivity are
the carrier density in the case of silicon and the electron–
electron collision time in the case of gold.

These results prove that FDTD simulations incorporating
production and heating of free carriers and the free-carrier
Drude response faithfully describe the behavior of the self-
reflectivity of strongly focused femtosecond laser beams
under the ablation conditions. As the simulation accurately
predicts the self-reflectivity, it also gives a detailed under-
standing of the energy deposition of femtosecond laser pulses
in metals and semiconductors. The method can easily be fur-
ther extended to study the effects of heat and charge transport
after the excitation, which could be compared to transient re-
flectivity measurements. In conclusion, this extended FDTD
method is a flexible and indispensable tool in the study of
femtosecond laser nano-structuring of materials.

APPENDIX A: EXTRACTING THE COMPLEX
AMPLITUDE FROM FDTD SIMULATION
The FDTD method calculates real-value, time-varying electric
and magnetic fields. However, some relevant physical quan-
tities, such as the intensity [Eq. (6)], are more conveniently
expressed in the amplitude of the oscillation. We extract
the amplitudes of the fields from the simulation as follows.
If we assume the amplitude is slowly varying with respect
to the optical cycle, we can write the electric field on time
t as

E�t� � E0 cos�ω0t� ϕ�; (A1)

where ω0 is the frequency of the light, and E0 and ϕ are the
amplitude and phase, respectively. If we integrate E2�t� over
half an optical cycle T∕2, we find

Z
T∕2

0
E2�t�dt �

Z
T∕2

0
E2
0 cos

2�ω0t� ϕ�dt

� 1
4
TE2

0; (A2)

and thus

E0 �
������������������������������
4
R T∕2
0 E2�t�dt

T

s
: (A3)

In the FDTD simulation, the integration is approximated as a
summation:

Z
T∕2

0
E2�t�dt ≅

Xn1�m

n�n1

E2�nΔt� · Δt; (A4)

where n1 is the starting time step of the summation and m is
the total time steps contained in half an optical cycle.

To extract the phase ϕ we consider the integral

Z
T∕2

0
E0 cos�ω0t� ϕ�e−iω0tdt � E0π

2ω0
�cos ϕ� i sin ϕ�: (A5)

Thus, the phase of the electric field is the phase of above
integral.

APPENDIX B: FDTD ACCURACY
The FDTD method has intrinsic second-order accuracy be-
cause it uses central difference for both the time and space
derivative. A second source of error of a FDTD code is the
small residual reflection at the PML boundary. In this appen-
dix, we analyze the numerical error due to the FDTD algo-
rithm. Based on this result, we deduce the optimal grid size
and PML thickness for the simulations performed in this pa-
per. To analyze the error, we calculate the reflectivity of a
plane wave under normal incidence using 1D-FDTD method
and compare the result to the exact Fresnel result [33]:

R �
�
n − 1
n� 1

�
2
; (B1)

which for silicon at 800 nm incident wavelength yields a re-
flectivity of 0.3287. The 1D-FDTD simulation space we use
consists 50 nm of vacuum and 1 μm silicon, sandwiched be-
tween two PML layers. In the simulations we record the time-
varying E and H field at the detector that is located one grid
space above the silicon/vacuum interface. From the recorded
time-varying fields, one can calculate the reflected Poynting
vector and thus deduce the reflectivity R0.

Figure 7 shows the resulting absolute error err � R0
− R as

a function of grid spacing Δx and PML layer thicknesses npml

measured in the number of cells in the PML layer. From the
figure, we conclude that in order to keep the error in the ab-
solute reflectivity smaller than 0.01, one needs a grid spacing
≤15 nm and a PML layer not less than 20 points.

APPENDIX C: BENCHMARK
As a test for the validity of our self-developed 2D-FDTD code,
we calculate the reflectivity of both unperturbed SOI with a
230 nm thick device layer and unperturbed bulk silicon with
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our FDTD code and compare the results with a commercial
FDTD solver [34]. The oxide layer of the SOI wafer is
1 μm. The grid size in the simulation is set as 13 nm. We extract
the reflectivity from the field values calculated by the simula-
tions. The results are summarized in Table 4. We further tested
the code by calculating the reflectivity of a micrometer-sized
scatterer (dispersive and lossy) embodied in the device layer
of the SOI wafer in order to test our implementation of the
ADE method. As can been seen, the results obtained by the
FDTD Solutions and our FDTD code are very close to one an-
other. The small differences are most likely due to differences
in PML layer thicknesses and/or the grid spacing.

APPENDIX D: DISPERSIVE AND LOSSY
MEDIA
In two dimensions, Maxwell’s equations reduce to indepen-
dent equations for the TM and TE modes [33]. For the TM
mode, these become [28]

∂ ~Dz

∂t
� 1���������

ϵ0μ0
p

�
∂Hy

∂x
−

∂Hx

∂y

�
; (D1)

~Dz�ω� � ϵ�r �ω� ~Ez�ω�; (D2)

∂Hx

∂t
� −

1���������
ϵ0μ0

p ∂ ~Ez

∂y
; (D3)

∂Hy

∂t
� 1���������

ϵ0μ0
p ∂ ~Ez

∂x
: (D4)

For the TE mode they become

∂ ~Dx

∂t
� 1���������

ϵ0μ0
p ∂Hz

∂y
; (D5)

∂ ~Dy

∂t
� −

1���������
ϵ0μ0

p ∂Hz

∂x
; (D6)

~Dx�ω� � ϵ�r �ω� ~Ex�ω�; (D7)

~Dy�ω� � ϵ�r �ω� ~Ey�ω�; (D8)

∂Hz

∂t
� −

1���������
ϵ0μ0

p
�
∂ ~Ey

∂x
−

∂ ~Ex

∂y

�
: (D9)

In the above equations, we normalize the electric and dis-
placement fields as

~E �
�����
ϵ0
μ0

r
E; (D10)

~D �
�����
ϵ0
μ0

r
D; (D11)

to make the electric and magnetic fields the same order of
magnitude, and thus increase the numerical precision.

Note that Eqs. (D2), (D7), and (D8) are expressed in the
frequency domain, whereas the FDTD method works in the
time domain. To bring the frequency domain equations into
the time domain, we need to assume they are of a known
analytical form. Here, we use a Drude model:

ϵ�r �ω� � ϵex

� ϵSi −

�
ωp

ω

�
2 1

1� i 1
ωτ

: (D12)

Using partial fraction expansion and switching the imaginary
unit from i to j (j � −i, as is conventional in engineering),
Eq. (D12) can be written as

ϵex � ϵSi �
ω2
pτ

jω
−

ω2
pτ

2

1� jωτ

� ϵSi �
σDrude
jωϵ0

� χ

1� jωτ
; (D13)

where we introduced the parameters

σDrude � ϵ0ω
2
pτ; (D14)

χ � −ω2
pτ

2; (D15)

where σDrude is the conductivity of the plasma. The χ term
causes additional dispersion. This is referred to as the Debye

Table 4. Comparison between the Results of Our
2D-FDTD Code with the Results from the
Commercial Software FDTD Solutionsa

Structure RTM R0
TM RTE R0

TE

Bulk Si 0.322 0.338 0.345 0.356
SOI 0.499 0.505 0.495 0.507
SOI� 0.220 0.237 0.236 0.252

aThe results by FDTD Solutions are denoted by R0
TM and R0

TE. The �
symbol represents the presence of a micrometer-sized scatterer
embodied in the SOI wafer.

Fig. 7. Error of the FDTDmethod. Results with a range of PML thick-
nesses are presented.
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formulation [28] of the Drude model. Inserting this dielectric
function, the electric displacement reads

D�ω� � ϵex�ω�E�ω�
� ϵSiE�ω� �

σDrude
jωϵ0

E�ω� � χ

1� jωτ
E�ω�

� D0�ω� � S�ω�; (D16)

where the first two terms of the right-hand side of the equation
are summarized as D0�ω� and the last term is written as S�ω�.

As the FDTD operates in the time domain, Eq. (D16) must
be transformed into the time domain. We first transform D0�ω�
into the time domain. Recall that 1∕jω in the frequency do-
main corresponds to integration in the time domain, so
D0�ω� becomes

D0�t� � ϵSiE�t� �
σDrude
ϵ0

Z
t

0
E�t0�dt0: (D17)

This integral is approximated as a summation over the time
steps Δt:

D0n � ϵSiE
n � σDrudeΔt

ϵ0

Xn
i�0

Ei; (D18)

where n indicates the time step at t � nΔt. In the FDTD algo-
rithm, we use this equation to determine the current En from
the current D0n and the previous values of E. We do this by
first separating the En term from the rest of the summation,

D0n � ϵSiE
n � σDrudeΔt

ϵ0
En � σDrudeΔt

ϵ0

Xn−1
i�0

Ei; (D19)

and solving that equation for En:

En �
D0n

−

σDrudeΔt
ϵ0

P
n−1
i�0 E

i

ϵSi � σDrudeΔt
ϵ0

: (D20)

We now treat the S�ω� term in Eq. (D16) in a similar man-
ner. We convert the term

S�ω� � χ

1� jωτ
E�ω� (D21)

to the time domain to find

S�t� � χ

τ

Z
t

0
e−

t−t0
τ E�t0�dt0: (D22)

We approximate the integral as a summation:

Sn � χ
Δt
τ

Xn
i�0

e−
Δt�n−i�

τ Ei

� χ
Δt
τ

�
En �

Xn−1
i�0

e−
Δt�n−i�

τ Ei

�
: (D23)

We can add Eq. (D23) to Eq. (D19) to find the electric displace-
ment for all three terms,

Dn � ϵSiE
n � σDrudeΔt

ϵ0
En � σDrudeΔt

ϵ0

Xn−1
i�0

Ei

� χ
Δt
τ

�
En �

Xn−1
i�0

e−
Δt�n−i�

τ Ei

�
; (D24)

which, when we solve for En, yields

En �
Dn

−

σDrudeΔt
ϵ0

P
n−1
i�0 E

i
− χ Δt

τ

P
n−1
i�0 e

−

Δt�n−i�
τ Ei

ϵSi � σDrudeΔt
ϵ0

� χ Δt
τ

: (D25)

As in the case of pure damping, we calculate En (the current
value of E) from the current value of D and the summation of
all previous values of E.

We can easily add the contributions of two-photon absorp-
tion (TPA) and the optical Kerr effect into Eq. (D25) by intro-
ducing an extra conductivity term due to the TPA and an extra
change in the real part of the dielectric constant due to the
optical Kerr effect. Together with the OPA, Eq. (D25) can
finally be written as

En �
Dn

−

σΔt
ϵ0

P
n−1
i�0 E

i
− χ Δt

τ

P
n−1
i�0 e

−

Δt�n−i�
τ Ei

Re�ϵSi� � Δϵ� σΔt
ϵ0

� χ Δt
τ

; (D26)

where σ � σOPA � σTPA � σDrude and Δϵ is the change in the
real part of the dielectric constant due to the optical Kerr
effect. The term σOPA can be linked to the imaginary part
of the dielectric constant of unexcited silicon. The terms
Δϵ and σTPA are linked to the real and imaginary parts of
χ�3�, respectively.

APPENDIX E: SPATIAL FILTERING
In the simulation, interaction between the light and the local-
ized laser-induced plasma gives rise to field components with
high spatial frequencies. When we decompose the wave vec-
tor into the transverse and the longitudinal component, they
are related by

kx �
���������������
k2 − k2y

q
; (E1)

where k is the wavenumber in air and ky is the transverse
wavenumber. We observe from the above equation that for
k2y > k2 the longitudinal wavenumber kx is purely imaginary;
therefore, the wave associated with it is evanescent and will
not propagate into the far field. Prior to calculating the reflec-
tivity, these components should therefore be filtered out. The
transverse wavenumber can be conveniently written as ky �
k sin θ, where θ is the angle of reflection. As the numerical
aperture of the objective used in our experiments is NA �
sin θ � 0.8, this means that scattered waves associated with
a transverse wavenumber ky > 0.8k will not be collected by
the objective. This means that what is measured in Figs. 3
and 6 is in fact the scattered field associated with a transverse
wavenumber ky < 0.8k. So in the FDTD simulation, spatial-
frequency components with ky > 0.8k should be filtered out.
This is accomplished by the spectral decomposition fields [35],

Â�ky� �
1������
2π

p
Z

∞

−∞
A�y�e−ikyydy; (E2)
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and by transforming this composition back using a truncated
inverse Fourier transform:

A0�y� � 1������
2π

p
Z

0.8k

−0.8k
Â�ky�eikyydky: (E3)
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