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Abstract
Confocal microscopy in combination with real-space particle tracking has proven to be a powerful
tool in scientific fields such as soft matter physics, materials science and cell biology. However, 3D
tracking of anisotropic particles in concentrated phases remains not as optimized compared to
algorithms for spherical particles. To address this problem, we developed a new particle-fitting
algorithm that can extract the positions and orientations of fluorescent rod-like particles from three
dimensional confocal microscopy data stacks. The algorithm is tailored to work even when the
fluorescent signals of the particles overlap considerably and a threshold method and subsequent
clusters analysis alone do not suffice. We demonstrate that our algorithm correctly identifies all five
coordinates of uniaxial particles in both a concentrated disordered phase and a liquid-crystalline
smectic-B phase. Apart from confocal microscopy images, we also demonstrate that the algorithm
can be used to identify nanorods in 3D electron tomography reconstructions. Lastly, we determined
the accuracy of the algorithm using both simulated and experimental confocal microscopy
data-stacks of diffusing silica rods in a dilute suspension. This novel particle-fitting algorithm allows
for the study of structure and dynamics in both dilute and dense liquid-crystalline phases (such as
nematic, smectic and crystalline phases) as well as the study of the glass transition of rod-like
particles in three dimensions on the single particle level.

Keywords: rod-like particles, image processing, 3D reconstructions
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(Some figures may appear in colour only in the online journal)

1. Introduction

Colloidal particles are applied throughout industry, for
example in paints, personal care products, food, ceramics and
pharmaceutics [1–3]. Additionally, they are also applied in
recent commercially available products such as the electronic
ink in e-readers [4]. As a result, the characterisation
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of the structure and dynamics of colloidal suspensions is
important for many industrial applications. Furthermore, hard-
sphere colloidal suspensions have proven to serve as a model
system to investigate phenomena such as crystallization, the
glass transition and flow induced behaviour on the single
particle level [5–12]. In many of these studies, an image
processing technique was applied based on the algorithm
described by Crocker and Grier [13]. In their algorithm,
spherical particles are located in 2D digital microscopy images
using a local brightness maxima criterion. The position is
refined by calculating the brightness-weighted centroid of a
cluster of pixels. This method was extended to 3D either
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slice-by-slice [5, 7] or by considering the full 3D image
[9]. Crocker and Grier also reported a method to obtain
the trajectories of the individual particles in time, known
as particle tracking [13]. Since then, there have been
numerous algorithms that locate or track spherical particles
with increased accuracy or performance [14–20]. These
extensions and alternatives are all based on processing images
of spherical particles. However, due to recent progress in
particle synthesis, well-defined (shape) anisotropic colloids are
becoming widely available, see e.g. [21–26]. These particles
can often be observed directly with a (confocal) microscope
and therefore enable quantitative measurement of not only
their positional but also their rotational degrees of freedom.
Therefore, a rapid increase in the number of algorithms that
extract coordinates of anisotropic particles from microscopy
images has taken place [23, 27–33]. Most of these algorithms
are based on processing of 2D (bright-field) images of quasi-
2D systems. Mohraz and Solomon, however, were one of the
first to determine the 3D position and orientation of uniaxial
ellipsoidal particles, i.e. all five coordinates, using 3D confocal
microscopy and a novel anisotropic feature-finding algorithm
[23]. Their algorithm identifies the points that are located

on the central axis (or backbone) of a rod. These points are
then grouped together by cluster analysis as individual rod-
backbones, from which the centroid location and orientation
are determined. This algorithm enabled the quantitative
determination of the 3D translational and rotational motion
of a dilute suspension of ellipsoids [34].

Quantitative 3D real-space study of concentrated phases
of anisotropic particles is, however, much less progressed
compared to studies on spherical colloids. Progress has been
made for suspensions of ellipsoids, where nematic order was
found using a centrifugal field [35] and local crystalline order
with an external electric field [36]. In contrast with the system
of ellipsoidal particles, it was recently shown by some of us
that a system of fluorescent silica rod-like particles forms both
nematic and smectic phases in equilibrium [21, 22]. However,
determination of all the 3D positions and orientations of the
particles in these dense phases was not possible due to the
significant overlap of fluorescent signals. In this paper we
demonstrate a novel 3D image processing algorithm that is
capable of quantifying fluorescent silica rods in concentrated
(liquid-crystalline) phases. The algorithm is tailored to work
even when the fluorescent signals of the particles overlap
considerably and a threshold method and subsequent clusters
analysis alone do not suffice. The algorithm in principle
also works for other uniaxial particles such as ellipsoids or
dumbbells.

This paper is organized as follows. First, we describe the
basics of particle-locating algorithms. Second, we describe our
algorithm in detail. Third, we demonstrate the performance of
the algorithm with 3D image stacks of concentrated fluorescent
silica rods. Then, we illustrate that our algorithm can also
be applied to 3D electron tomography data of gold nanorods.
Next, we evaluate the accuracy of the algorithm by measuring
the translational and rotational motion of non-overlapping rod-
like particles. Finally, we compare our results with recent
progress in the field and give an outlook on further studies that
the algorithm enables.

2. Methods

2.1. Locating particles in confocal microscopy data sets

The aim is to identify and locate (rod-shaped) particles in a
set of real-space images (or snapshots) and to obtain the full
configuration of the system. A specific configuration of a
system of particles is given by a set of parameters, one for
each degree of freedom of every particle. In the case of rods,
these degrees of freedom for particle i are centre position ri ,
orientation ûi and possibly length li , diameter di and brightness
bi . If the length and diameter are known in advance they can be
fixed, but if the particles vary in size they can also be left as free
parameters. If the particles vary in brightness this can be added
as an additional degree of freedom. Variations in brightness
can be caused by the synthesis method, scattering or shading
in the sample, but also by photo bleaching. In the case of
fully symmetric, homogeneously dyed rods it is not possible to
distinguish between the two ends of the rods. However, we also
synthesised rods with a gradient in brightness, with one bright
and one much darker end [37], of which the orientation could
be fully determined. To keep the notation short we introduce
pi = {ûi , li , di, bi} which contains all the degrees of freedom
except the position.

To obtain the configuration (ri and pi) we need to elaborate
on what is measured. In case of fluorescent confocal laser
scanning microscopy we can assume that the imaging system
is linear so that we can add intensities. Furthermore, li and di

refer to the fluorescent part of the particle length and diameter
respectively. The measured image intensity M(r) at position
r can be written as the sum of the ideal (noiseless or averaged)
images of the single particles,

M(r) =
N∑

i=1

RSP(r − ri , pi ), (1)

and RSP(r, pi ) is the image of a single particle placed in the
origin, or rod spread function (RSP). The image of a single
particle at the origin depends on all the internal degrees of
freedom of the particle such as orientation, length, diameter
and brightness, but also on the point spread function (PSF) of
the imaging system. It is given by

RSP(r, pi ) =
∫

dr′ρdye(r′, pi )PSF(r − r′)

= (ρdye(pi ) ∗ PSF)(r), (2)

which is a convolution (∗) of the dye distribution ρdye(r, pi )

of particle i placed in the origin and the PSF. In a dilute
sample this RSP(r, pi ) can be measured directly but it can
also be calculated when the dye distribution is simple and the
parameters of the optical systems are known.

Different approaches to obtain the particle coordinates
are possible. If all the parameters such as the PSF and
RSP are known, the locating problem becomes in principle
a deconvolution. However, the RSP and the PSF can be time
consuming to determine accurately, and deconvolutions are
sensitive to small changes in the kernel function [38]. This is
unfortunate since e.g. polydispersity will introduce changes
in the RSP which would make the deconvolution difficult.
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If the RSP is not known, there exist several other possible
options. The first option is to assume that the overlap between
the RSPs is not too severe and to determine centre-of-mass
and orientation with methods that are insensitive to the details
of the optical system. This is the method used by centroiding
algorithms and is also the method used in this article.

Another option is to use a Bayesian method [39]. This
method searches for the configuration that has the largest
probability of having resulted in the observed image. This
method has proven to work well for two-dimensional data
sets [40]. It is, however, slow and complex and therefore not
practical for large three-dimensional data sets.

2.2. Generation of test images

To test our algorithm we generated confocal-like images from
sets of computer-generated particle trajectories. The images
were first generated with intensity values between 0 and 1,
which were later converted to an 8-bit grayscale. Using the
centres-of-mass ri and particle orientations ûi , we generated
3D stacks of xy-images of spherocylinders with aspect ratio
l/d = 5, where l is the end-to-end length of the particle
and d the diameter. This was done by calculating the closest
distances D to a line segment, representing the backbone of
a particle. The distance from a point in the origin to a line
segment from x1 to x2 with length l = |x1 − x2| is given by

D(x1, x2) =
|x1| if α < 0,√

|x1|2 − α2 if 0 < α < l,

|x2| if α > l,

(3)

where α = (û · x1) and û = (x1 − x2)/ l the unit vector
along the length of the line segment. If this distance was less
than half the diameter of the particle, the pixel was given a
value of 0.95. This was then repeated for all particles. We
approximated the effect of the PSF in our test images by
convolving them with a Gaussian kernel with fixed standard
deviation σx/d = σy/d = 0.3 and σz/d = 0.3, 0.6 and 0.9
with d the diameter of the particle. The full-width-at-
half-maximum (FWHM) of the Gaussian function, given by
2
√

2 ln 2 σi , is a direct measure of the resolution of the images.
Besides variation of resolution, we also varied the amount of
noise in the images. Although noise from modern detectors is
essentially photon-limited, suggesting a Poisson distribution
[41], we added noise to each pixel in our images with a

simple Gaussian distribution for efficiency reasons. We used a
Gaussian distribution with standard deviation σn = 0.10–0.30.
Because the amount of noise is known a priori, it is still
straightforward to calculate the signal to noise ratio (SNR),
which we define as SNR = (σ 2

g /σ 2
n − 1)1/2, with σ 2

g the
variance of the constructed image and σ 2

n the variance of the
noise [15]. Finally, we converted all our data, with pixel-values
between 0 and 1, to 8-bit grayscale tiff images.

2.3. Our algorithm

In this section we demonstrate our three-dimensional rod fitting
algorithm step by step3. We will first illustrate all steps of

3 Code available upon request.

the algorithm with an artificially created set of images of a
single rod, shown in figures 1(a)–(j ). This will allow us to
demonstrate clearly what is going on on a single pixel/voxel
level. Later we will demonstrate how the algorithm fares with
real colloidal suspensions. The following description is for
three dimensions but most of the steps are straightforward to
modify for two dimensions. A flowchart of the algorithm is
shown in figure 1(k).

2.3.1. Reading. In figures 1(a)–(c) we show three orthogonal
slices through a generated 3D image that acts as the source
image. The particle shown in the image has a diameter
d = 13.0 pixels, and is blurred with a Gaussian kernel
σx/d = σy/d = 0.3 and σz/d = 0.9. Gaussian pixel noise
of σn = 0.1 was added to the image. The first step is to
read in these source images. To avoid accumulating rounding
errors and to allow the use of images of arbitrary bit depth
we perform all image manipulations on floating point numbers
between zero and one. Next, the image is rescaled to make sure
the voxels are cubic, which is often not the case for confocal
microscopy image stacks. The rescaling avoids having to
account for different x, y and z scales in all following routines.
To make sure no information is lost, this is done by enlarging
the image using a bicubic interpolation. Care should be taken
not to use overexposed images since this will result in a loss
of information and an increase of positional error. See [15]
for a more detailed description and the optimal shape of the
intensity histogram. We generally choose the magnification
such that the particles are approximately 10 pixels in diameter.
Larger magnification results in a large file size without any
additional benefit.

2.3.2. Noise filter. The aim of the first filter step is to reduce
image noise. We apply a Gaussian blur to the image, i.e. a
convolution with a Gaussian kernel, that acts as a low pass filter.
The optimal width of the function depends on the noise level in
the images; a value between 1.5 and 3 pixels was found to give
the best results for the images obtained in the present paper.
A value that is too large will result in the loss of resolution
and in missing particles, a value that is too small will result in
additional, incorrectly identified, particles. To ensure a black
background for the particles, a background value is subtracted
from every pixel. This background value is assumed to be
mostly the result of photon noise, but it can also originate
from other sources such as fluorescence from the solvent or
immersion fluid. Pixels that have a negative value after the
background value has been subtracted, are set to zero. In most
cases a background value between 0.01 and 0.1 is used. This
value should be chosen such that approximately half the empty
pixels (not containing a particle) of the image are zero. We also
save a copy of the image that has not been filtered. This allows
us to perform the final fitting step on the original image. An
example of a computer-generated image that has been filtered
is shown in figure 1(d).

2.3.3. Threshold method. When the intensity distributions of
the individual particles do not overlap significantly we apply
what we call a threshold method. This threshold method works

3
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Figure 1. The different stages of identification of the position and orientation of a single rod-shaped particle. ((a)–(c)) Orthogonal slices
through a computer generated 3D image stack. The particle has a diameter of 13.0 pixels and is blurred with a Gaussian kernel with width
σx/d = σy/d = 0.3, and σz/d = 0.9. Pixel noise has been added by adding Gaussian noise with σn = 0.1. (d) The same image after the
filter-step. (e) After a threshold step, the pixels above the threshold are marked in yellow. (f ) After a backbone step, the pixels identified as
backbone pixels are marked in yellow. ((g)–(i)) The rod as it is located, viewed from the xy, xz and yz plane. (j ) The histogram of the
average intensity along the rod length after smoothing and background removal. The dashed vertical lines mark the fitted end-points of the
rod. (k) Flowchart of the algorithm.

as follows. A typical value for the threshold is between 0.4
and 0.7 and can be determined by plotting a histogram or by
a quick test on a single image in a program like Photoshop,
Gimp or ImageJ. The next step is to group all connected pixels
above the threshold value into sets, as described in the next
section. This method works when these sets of pixels belong
each to a single particle and each particle only corresponds to
a single set of pixels. In figure 1(e) an example is shown of the
threshold method applied to a single particle. All pixels above
the threshold are marked in yellow. The particle coordinates
can be obtained by applying a fit to these sets of pixels, as
described later in this section. When this threshold method
works, it is preferred over more complex methods since it is
both robust and accurate.

2.3.4. Backbone search. When a threshold does not
successfully separate the image into regions belonging to
single particles another method has to be used. The first step of
this method is similar to the Crocker and Grier algorithm and
is aimed at providing the final fitting steps with a good initial
starting point.

In this step, we roughly locate the line segment starting
from one end of the rod and ending at the other end, called the
backbone of the particle. To locate the backbone, we look at
all voxels brighter than a predetermined cut-off value. A good

value for this is in general between 0.1 and 0.5 depending on
the intensity fluctuations between the rods. For these bright
pixels we then check whether they are part of a backbone. To
do this we first note that all local maxima should be part of
the backbone. To check if the brightness of the pixel is a local
maximum we compare its intensity to that of all pixels within
a distance rbb. If none of these pixels are brighter the pixel is
a local maximum. To find the parts of the backbone that are
not on a local maximum, we look at the distribution of brighter
pixels around the pixel in question. If the pixel is part of the
backbone they should be on a ridge. Backbone pixels can have
brighter pixels to one side or two sides but all these brighter
pixels should be more or less on a line through the pixel in
question. So to check if the pixel is part of a backbone we
need to check if the pixels brighter than the pixel in question
are on a straight line. To do this we fit a line to these bright
pixels and sum the squared residuals χ , the squared distance
between the brighter pixels and the line. If these bright pixels
are part of the backbone of a rod this number will be low since
the pixels will form an almost perfect line while on other places
they will not form a line and the residuals will be much higher.
We found that rbb = 3 pixels and a maximum value χmax = 80
work well for all our data. This step depends on the initial
filtering and on the thickness of the rod in pixels. Figure 1(f )
shows the pixels that have been identified as backbone pixels
in yellow.
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After having identified the backbone pixels, we group
them into connected clusters. Due to noise there can be small
gaps between the backbone pixels of a rod, so we use the same
search range rbb as before to identify neighbouring pixels. This
should work as long as the diameter of a rod is larger than rbb.

We now have groups of pixels most likely belonging to
a single rod. To continue, we fit (least square) a straight line
to these pixels using a singular value decomposition [42, 43].
The coordinates resulting from this fit are accurate, but still
have a strong pixel bias since they only fit to a few backbone
pixels. To eliminate this bias and to obtain more accurate
results, we use these coordinates, lengths and orientations as a
starting point to fit the real image again.

2.3.5. Fitting. The fitting steps work best when applied to
the unfiltered image. The Gaussian blur filter will result in an
additional overlap of the RSPs which can result in a decreased
accuracy. The fitting is done in three steps; first the centre of
mass of each group of pixels is computed, then the orientation
is fitted and finally the length is fitted. The position is taken
from the centre of mass, weighted with the pixel intensity, of
the pixels within half a diameter from the previous fit. The
orientation is obtained by fitting a straight line to these pixels
where the fit is weighted with the intensity of the pixels using
the same least square fitting algorithm as for the backbones.
The length is obtained by calculating the average intensity of
pixels along the rod length, see figure 1(j ). The histogram that
is obtained from this is smoothed with a Gaussian kernel to
avoid noise. The end points are then obtained by determining
where the histogram value drops below IendImax, where Imax

is the maximum intensity value in the smoothed histogram
and Iend is a parameter that can be set manually. Usually a
value of Iend = 0.6–0.8 was found to give good results, see
the (blue) dashed lines in figure 1(j ). To obtain sub-pixel
accuracy we fit a straight line to the 2 pixels above and 2 pixels
below the point where the histogram crosses this value. To
determine which pixels to take into account in the generation
of the histogram and the other fits, we use the pixels within one
radius of the central line segment of the previous fit. Therefore,
the result of the fit might improve when the step is repeated.
The fitting algorithm normally converges in one or two steps.
If this is not the case there is something wrong with the data
or one of the parameters. Figures 1(g)–(i) show the same
orthogonal sections as figures 1(a)–(c) with the backbone of the
rod highlighted in yellow and the outline of the rod (resulting
from the fit) highlighted in magenta.

2.3.6. Filtering. The final step is to filter out particles that are
found more than once, particles that do not contain enough
intensity or sometimes particles that are not long enough.
Ideally not much filtering is required.

2.4. 3D particle tracking

To study particle dynamics, we applied our algorithm to
time-series of 3D image-stacks. We first identified the
positions and orientations of the rods in each 3D stack
separately. Then, we obtained the particle trajectories using

standard IDL-based routines [13]. To uniquely track the
tip of the (up-down indistinguishable) rods, it is required
that the angular displacements between successive frames
[û(t + 1) − û(t)]2 < 2. Therefore, care was taken that
displacements with [û(t + 1) − û(t)]2 > 2 were negligible.
We then calculated the mean squared displacement (MSD) and
the mean squared angular displacement (MSAD). We fitted the
MSD to the expression

〈�r2(t)〉 = 6 Dt t + 6 ε2
t , (4)

with Dt the rotationally averaged translational diffusion
coefficient and εt the error in measurement of each of the
coordinates of the particle [44]. For the MSAD we used the
expression [45, 46]

〈�û2(t)〉 = 2[1 − (1 − ε2
r ) exp(−2Drt)], (5)

with Dr the average rotational diffusion coefficient and εr the
measurement error in the determination of û(t). For short
times, equation (5) reduces to

〈�û2(t)〉 = 4Drt + 2ε2
r . (6)

To estimate the sedimentation velocity at infinite dilution,
assuming complete decoupling of rotations, translations and
sedimentation [47], we use the Svedberg equation [48]

vsed = vp Dt g (ρp − ρs)

kB T
, (7)

with vp the volume of the particle, g the gravitational
acceleration, ρp the mass density of the particle and ρs the
mass density of the solvent.

2.5. Expressions for the diffusion coefficients

To test the validity of our experimental measurements of
the diffusion coefficients, we compared them to analytical
expressions for hard cylinders at infinite dilution, as proposed
by Tirado, Martinez and de la Torre [49],

D⊥ = kBT

4πη l
(log p + δ⊥), (8)

D‖ = kBT

2πη l
(log p + δ‖), (9)

Dt = 2

3
D⊥ +

1

3
D‖, (10)

Dr = 3kBT

πη l3
(log p + δr), (11)

with η the solvent viscosity, p = l/d the aspect ratio of the
particle and δi a correction term for the finite aspect ratio of
the cylinders, given by [49]

δ⊥ = 0.839 + 0.185/p + 0.233/p2, (12)

δ‖ = −0.207 + 0.980/p − 0.133/p2, (13)

δr = −0.662 + 0.917/p − 0.050/p2. (14)
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Figure 2. Particle fitting in 3D. (a) Transmission electron microscopy (TEM) micrograph of fluorescently labelled silica rods with length
l = 2.37 µm (δ = 10%) and diameter d = 640 nm (δ = 7.5%). (b) 3D confocal microscopy image of a single rod suspended in 85 wt%
glycerol in water. ((c)–(e)) Three orthogonal slices through the 3D confocal image shown in (b). The scale bar is 800 nm. ((f )–(h)) The
particle after rescaling, filtering and fitting. The magenta outline indicates the final fit from which the position and orientation is computed.
(i) The (normalized) intensity histograms along the major axis of two differently dyed particles that are oriented in the xy plane, obtained
from confocal microscopy images. The (red) solid line is from a uniformly dyed silica rod. The (green) dashed line is from a silica rod with
a gradient in dye distribution.

2.6. Experimental methods

2.6.1. Dense sediments of silica rods. For the preparation
of dense samples of silica rods, two different batches of
particles were used. The first batch consisted of rods with
length l = 2.37 µm (δ = 10%) and diameter d = 640 nm
(δ = 7.5%), with δ the polydispersity (standard deviation
over the mean) [21]. A transmission electron microscopy
(TEM) image of these particles is shown in figure 2(a). The
particles contained a non-fluorescent core, a 30 nm fluorescein
isothiocyanate (FITC) labelled shell, and a 190 nm non-
fluorescent outer shell. For the second batch of silica rods,
with length l = 2.6 µm (8.5%) and diameter d = 630 nm
(6.3%), rhodamine isothiocyanate (RITC) dye was added

during synthesis, which resulted in an intensity gradient of
dye molecules along the major axis of the particle [37]. The
particles were coated with a 175 nm non-fluorescent outer
shell. Particle suspensions were prepared by dispersing the
rods in an index-matching mixture (n21

D = 1.45) of either
dimethylsulfoxide (DMSO) and ultrapure water (Millipore
system) or glycerol and ultrapure water. The particles were
first dispersed in DMSO or glycerol, after which water was
added until the suspension was index-matched by eye. This
resulted in mixtures of 91 wt% DMSO in water and 85 wt%
glycerol in water.

Next, sample cells were constructed with stan-
dard microscopy slides and No. 1.0–1.5 glass coverslips
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(Menzel–Gläzer). After the cells were filled with the suspen-
sion, they were sealed with UV-glue (Norland No. 68). The
suspensions were imaged with a confocal microscope (Leica
SP2 or Leica SP8) using a 63x/1.4 or 100x/1.4 oil-immersion
confocal objective (Leica). We corrected the 3D images for
distortion of the axial (z) distances due to the refractive index
mismatch between sample (n21

D = 1.45) and immersion oil
(n21

D = 1.51), which resulted in an increase of axial distances
of 5% [50]. Figure 2(b) shows a 3D confocal microscopy
image of a single rod suspended in 85 wt% glycerol in wa-
ter. In figures 2(c)–(e), three orthogonal slices through this
3D volume are shown. The larger width of the PSF in the
axial (z) direction is clearly visible. Notice that the pixel size
in x, y (50 nm) is smaller than in z (78 nm). Figures 2(f )–
(h) show the same rod after rescaling to cubic pixels, filtering
and particle-fitting. In figure 2(i), we show the intensity his-
tograms of two rods that were oriented parallel to the xy image
plane of the confocal microscope. The continuous (red) line
shows the intensity histogram of a single uniformly dyed rod
and the dashed (green) line that of a gradient-dyed rod [37].

2.6.2. Freely diffusing silica rods. For the experimental
measurements on a dilute suspension of silica rods we used
particles with length l = 3.3 µm (δ = 10%) and diameter
d = 550 nm (δ = 11%), as measured with TEM. The
particles were fluorescently labelled with a 30 nm (FITC)
shell. The particles were dispersed in an index matching
mixture of 85 wt% glycerol in water. The density of the
solvent mixture was ρ = 1.222 g ml−1 [51] and the viscosity
η = 92 cP (22 ◦C), as measured with an SV10 viscometer
(A&D Company). This mixture not only matches the refractive
index of the particles (n25

D = 1.45), the high viscosity
slows down the particle dynamics enough to measure their
short-time self-diffusion in 3D. Because the density of this
mixture is significantly lower than the density of the particles
ρ = 1.9 g ml−1 [37], sedimentation cannot be avoided. We
assume, however, complete decoupling between translational
motion, rotational motion and sedimentation [47]. A fused
quartz capillary (Vitrocom) was filled with a dilute suspension
(volume fraction φ < 1%) of the fluorescent silica rods. The
suspension was imaged with a confocal microscope (Leica
SP8) equipped with a fast 12 kHz resonant scanner and hybrid
detector. Images with 8-bit pixel-depth were acquired using a
white light laser with a selected wavelength of 488 nm. A
confocal glycerol immersion objective 63x/1.3 (Leica) was
used, which is optimized for refractive index nD = 1.45. If
we assume a Poisson distribution of the noise, we can easily
estimate the signal to noise ratio (SNR) of a single image
because of the photon counting mode of the hybrid detector.
We use the definition SNR = √

np with np the number of
detected photons in the brightest part of the image [52]. To
avoid hydrodynamic interactions with the wall, particles were
imaged 20 µm deep into the sample. We recorded 800 repeats
of 3D image stacks consisting of 512 × 261 × 66 pixels with
voxel size 144 × 144 × 331 nm. The time to record a single
3D volume was τ = 1.80 s. During this time, the particles are
expected to translate on average

√
2 Dt τ = 110 nm in each

direction and rotate only
√

4 Dr τ = 0.1 rad.

2.6.3. AuNRs@SiO2 and 3D electron tomography. For
the fabrication of a spherical cluster of nanorods, we first
synthesized gold nanorods following the method described
in [53]. Next, the gold rods were coated with a layer of
mesoporous silica (AuNRs@SiO2) [54], which resulted in
particles with length l = 119 nm and diameter d = 68 nm, as
measured with TEM. Afterwards, clusters were fabricated via
an emulsification process [55, 56]. Brightfield TEM tilt series
of an 11-particle NR-cluster were acquired by tilting the sample
over a range of −65◦ to 65◦ and recording images every 2◦.
Images were taken on a Tecnai 20 (FEI) transmission electron
microscope, operating at 200 kV with an LaB6 electron
source, in bright field mode. Tomographic reconstructions
of the images were made with the iMOD software package
using the simultaneous iterative reconstruction technique
(SIRT) [57, 58]. After reconstruction, the data stack was
filtered using a low frequency Fourier filter (iMOD) and
inverted to ensure light particles on a dark background to enable
individual particle identification.

3. Results

3.1. Determination of 3D particle positions and orientations in
dense suspensions

To test our 3D particle-fitting algorithm we identified the
fluorescent particles in a concentrated suspension of silica rods,
as shown in figure 3. The particles were uniformly dyed, had
a length l = 2.37 µm (10%), diameter d = 640 nm (7.5%)
aspect ratio l/d = 3.7 and were dispersed in a 85 wt% glycerol
in water mixture. Small regions of hexagonally stacked
particles existed in the sample (figure 3(c)), however there
was no long-ranged order in the sample and particles seemed
jammed or arrested in different orientations. Figure 3(a) shows
that 5.2 µm deep in the sample, the fluorescent signals of
the particles did not overlap significantly in xy, despite the
high particle concentration. This is due to the 190 nm non-
fluorescent outer shell of the particles which was deliberately
grown around the particles during synthesis to resolve
them individually, even when they were lying side-by-side.
However, the orthogonal slices in figures 3(b) and (c) show that
particle signals did overlap in the z-direction, even after noise
filtering. Nevertheless, by visual inspection of the (magenta)
particle outlines in figures 3(d)–(f ) we conclude that the
algorithm correctly identified the orientations and positions
of the particles, despite the high particle concentration.

Figure 3(g) shows a computer generated reconstruction of
the sample, with colours indicating the 3D orientation of the
particles.

Figure 4 shows a second example of the performance
of our fitting-algorithm in a concentrated suspension. The
rods in this sample had length l = 2.6 µm (8.5%), diameter
d = 630 nm (6.3%) and were dispersed in an index-matching
mixture of DMSO/water. After the particles had been left to
sediment for several days, they ordered into smectic layers,
more or less parallel to the xy-plane, as can be seen from
figure 4(a) (12.5 µm deep in the sample). It can also be
seen that the particles had an intensity gradient along their

7
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Figure 3. Local order in a dense sediment of rods with length l = 2.37 µm (10%), diameter d = 640 nm (7.5%) and aspect ratio l/d = 3.7,
dispersed in a glycerol/water mixture. The particles had an outer non-fluorescent shell of 190 nm. The dimensions of the image volume
were 512 × 201 × 79 pixels with voxel sizes 60 × 60 × 83 nm in x, y and z. The time to record the complete stack was 3.37 s. ((a)–(c))
Close-ups of orthogonal slices through the 3D image, after filtering and ((d)–(f )) after particle identification. The scale bars are 3 µm.
(g) Computer rendered 3D reconstruction of the sample with the RGB value of the colour indicating the particle orientations.

major axis and that there was significant overlap of the
fluorescent signals in the xy-image (figure 4(a)). As expected,
it was even more difficult to resolve individual particles in the
z-direction (figures 4(b) and (c)), however, it is clear from the
hexagonal pattern in figure 4(b) that the particles formed a
smectic-B phase. The magenta outlines in figures 4(d)–(f )
show the result of the particle fitting. By visual inspection
of the outlines in the complete image-stack (containing 1699
particles), we conclude that >98% of the particles had been
correctly identified by the algorithm. In figure 4(g) we show a
3D reconstruction of a part of the image-stack, which clearly
shows 3D orientational order, smectic layering, and transverse
(red and blue) particles.

3.2. Determination of 3D positions and orientations of gold
nanorods

Although our algorithm was written for analysis of
confocal microscopy images, it is also applicable to other

3D image-stacks of uniaxial symmetric particles. As an
example, we show results of the identification of gold nanorods
(AuNRs) from a 3D transmission electron microscopy (TEM)
tomographic reconstruction in figure 5. The TEM micrograph
in figure 5(a) shows the gold nanorods (in black), that were
coated with a layer of mesoporous silica (dark grey).

Figures 5(b)and (c) show two orthogonal sections through
the 3D reconstruction of the cluster. The images were
inverted to enable particle identification with our algorithm.
Figures 5(d) and (e) show the same orthogonal sections after
filtering, with identified particles outlined in red. Finally,
figure 5(f ) shows the 3D reconstruction, with color-coding
of the 3D orientation of the rods. The algorithm had identified
all 11 particles and the reconstruction clearly shows that there
was some degree of orientational ordering inside the cluster.

We are aware that a substantial amount of information
on the 3D structure of the nanoparticles can be measured
directly (and manually) from the 3D tomogram itself.

8
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Figure 4. Smectic-B phase of rods with length l = 2.6 µm (8.5%), diameter d = 630 nm (6.3%) and aspect ratio l/d = 4.1, dispersed in a
DMSO/water mixture. The particles had an outer non-fluorescent shell of 175 nm. The dimensions of the image volume were
256 × 256 × 151 pixels with voxel size 58 × 58 × 104 nm in x, y and z. The time to record the image stack was 73.3 s. ((a)–(c)) Orthogonal
sections after filtering. (a) 12.5 µm deep in the sample, particles were ordered in smectic-like layers. ((d)–(f )) Identified particles are
outlined in magenta. All scale bars are 3 µm. (g) Computer rendered 3D reconstruction of the sample with the RGB value of the colour
indicating the particle orientations.

Our image-processing algorithm however can determine
unambiguously the 3D positions and orientations of the
particles and can therefore be useful for the quantification of
(larger) nanoparticle assemblies and should in principle also
work on other types of samples, e.g. self-assembled clusters
of nano-dumbbells [59].

3.3. Testing the accuracy of the algorithm for non-overlapping
particle signals

In this section, we assess the accuracy of our algorithm in
more detail. We focus on the fitting accuracy of the algorithm
when applied to images containing particle signals that are well
separated. Although this situation is much less demanding
compared to partially overlapping signals, care has to be taken
when fitting this type of data as well. The main reason is
that the (fluorescent) diameter of typical rod-like particles

used in our experiments (df l ∼ 300 nm) is comparable to the
resolution of a typical confocal microscope (200–300 nm in
the lateral and 500–700 nm in the axial direction [50, 60]).
Additionally, the PSF itself is anisotropic, which can result
in a (strongly) distorted image of a rod-like particle. Things
become progressively worse when there is a refractive-index
mismatch between the sample and immersion fluid, which
deteriorates the PSF, introduces an intensity fall-off with height
and distorts axial distances [50, 61].

We therefore determined the accuracy of our algorithm
using two approaches. In the first approach we investigated
both the effect of the theoretically approximated PSF and the
effect of noise on particle tracking accuracy using computer
generated data. The second approach consisted of an
experimental measurement of the translational and rotational
diffusion of a dilute suspension of silica rods.

9
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Figure 5. Identification of the positions and orientations of 11 gold nanorods coated with mesoporous silica (AuNRs@SiO2), confined in a
small spherical cluster. (a) A single TEM image that was part of the tilt-series used for the tomographic reconstruction. (b) An xy and (c)
zy-view of the 3D electron tomogram. The images were inverted for particle identification. (d) Corresponding xy and (e) zy-views of the
filtered images with the identified particles outlined in red. (f ) 3D reconstruction of the nanorod cluster. Colours indicate their 3D
orientations.

Details on the construction of the test-images and
variation of the theoretically approximated PSF and
noise can be found in the supplementary information
(stacks.iop.org/JPCM/27/194109/mmedia). The results are
summarized in table 1, which shows that for our worst-
case scenario of a z-resolution of 636 nm and signal
to noise ratio of 1.7, we obtain for the error in the
determination of the main-axis of the rod εr = 0.07 rad,
which corresponds to a small measurement error of 4.1◦,
see also figure S1 (stacks.iop.org/JPCM/27/194109/mmedia).
Additionally, we did not find any significant pixel-bias
in either the position or the orientation (see figure S2
(stacks.iop.org/JPCM/27/194109/mmedia)). For the error in
the positional measurement, we found εt/d ∼ 0.05, which
indicates sub-pixel accuracy.

Finally, we measured the diffusive motion in a dilute
suspension of fluorescent silica rods experimentally, which
provides a real-life test of the accuracy of our algorithm. The
rods that were used had length l = 3.3 µm (δ = 10%),
diameter d = 550 nm (δ = 11%) and aspect ratio l/d = 6.0.
From the number of photons in the brightest part of the
image we estimated the signal to noise ratio to be SNR ≈ 3,
which is in the range stated in table 1. The tracking results,
averaged over 8 particles, are shown in figure 6. A typical
translational trajectory of 12 min is shown in figure 6(a). From
a fit to the average linear displacements (of all 8 particles)
in the z-direction, we estimate the sedimentation speed to
be vsed = 0.331 ± 0.005 µm min−1. This value is slightly
higher but comparable to the value of vsed = 0.28 µm min−1

Table 1. Static measurement error εr in the determination of the
main axis of the rod, assuming d = 300 nm. The error increases
with both σz and σn. For the worst case scenario of σz/d = 0.9 and
σn = 0.27, the value for εr remains rather small.

z-resolution Noise levels Error

σz/d FWHM (nm) σn SNR εr (rad)

0.3 212 0.09 13.5 0.025
0.6 424 0.09 11.4 0.026
0.9 636 0.09 11.2 0.036
0.9 636 0.18 3.8 0.048
0.9 636 0.27 1.7 0.071

that we obtained from equation (7). For further analysis
we subtracted the average linear displacements from the
trajectories. Figure 6(b) shows a rotational trajectory of 12 min
for a single particle. In figure 6(c) we show the probability
distribution of the norm of the displacement |�r|, for three
different time-steps �t. In figure 6(d) we show the same
distribution for the norm of the displacements of the unit vector
|�û|. The solid black lines in figures 6(c) and (d) are fits
proportional to |α|2 exp(−|α|2) with α = �r, �û respectively.

To extract the translational diffusion coefficient, we
calculated the rotationally averaged mean squared dis-
placement 〈�r2〉, as can be seen in figure 6(e). For �t > 10 s
we found that 〈�r2〉 ∼ t0.97 indicating diffusive behaviour.
The statistical error in the individual measurement points is
smaller than the symbol size. Fitting the data with equation (4),
we obtain the short-time rotationally averaged translation
diffusion coefficient Dt = (3.06 ± 0.01) × 10−3 µm2 s−1
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Figure 6. Experimental measurement on a dilute suspension of sedimenting silica rods with length l = 3.3 µm and diameter l = 550 nm
suspended in a 85 wt% glycerol in water mixture. (a) Typical translational and (b) rotational trajectory of a single particle. (c) Distribution
of the translational displacements |�r| and (d) rotational displacements |�û| for three different time-steps �t . The displacements are an
average over 8 particles and the black lines are fits. (e) The average mean squared displacement (MSD). The estimate for the static error
(εt = 45, 46 and 59 nm in x, y and z, respectively) confirms sub-pixel accuracy. (f ) Mean squared angular displacement (MSAD). The
static error in the determination of the unit vector εr = 0.07 rad corresponds to an angular uncertainty of 4◦. Both the fitted translational and
rotational diffusion coefficients are in good agreement with the analytical predictions from [49].

and static error εt = 45, 46 and 59 nm in the x, y and
z-direction respectively, which confirms that we can locate
the particles with sub-pixel accuracy. The value for Dt is
in strong agreement with the theoretical value obtained from
equation (10) which is Dt = 3.2 × 10−3 µm2 s−1. Finally, we
calculated the mean squared angular displacement 〈�û2〉, as
shown in figure 6(f ). This time we obtained 〈�û2〉 ∼ t0.92

and for the short-time rotational diffusion coefficient Dr =
(1.32 ± 0.02) × 10−3 rad2 s−1. This is in good agreement with
the theoretical value Dr = 1.5× 10−3 rad2 s−1, obtained from
equation (11). For the corresponding rotational relaxation time
we found τr = 1/(2 Dr) = 3.8 × 102 s, which confirms that
we measured in the short-time diffusion regime. From the fit
we also obtained εr = 0.07 rad, which corresponds to a small
angular uncertainty of ∼4◦.

4. Discussion

In this paper we demonstrated a new image-processing
algorithm that is capable of extracting the positions and
orientations of fluorescent rod-like particles in both dilute and
concentrated suspensions. Although the algorithm was written
for three dimensions, most steps are straightforward to modify
for two dimensions [62]. Mohraz and Solomon [23] were
the first, as far as we know, to describe an algorithm that
can detect the position and orientation of ellipsoidal particles
in 3D confocal microscopy images and this work follows a
similar approach. The algorithm of Mohraz and Solomon
groups clusters of pixels together to form backbones but does
not use additional fitting steps, which we found necessary to
correctly identify particles when there is significant overlap of
particle signals. The difference in particle geometry (ellipsoids

versus rods) combined with the small (fluorescent) particle
diameter in our study might be the reason why we find that
using only a maximum threshold and cluster analysis is not
sufficient to identify rods in concentrated suspensions, even
when the rods have a large (>150 nm) non-fluorescent shell
and a considerable electric double layer (∼100 nm) [21, 22].
The rod-like particles used in this study have a repulsive
interaction potential and therefore form dense smectic-like
phases, which we now can identify on the single-particle level
in the bulk. The algorithm also enables the study of glassy
phases of anisotropic particles in three dimensions, which is
promising since all current real-space glass-transition studies
of anisotropic particles so far are either 2D [63–65] or tracer-
host [66]. Finally, we would like to mention that the algorithm
is also applicable to study the dynamics of (concentrated)
‘active colloids’ (e.g. self-propelled particles and bacteria),
a field that is rapidly emerging [67].

Since the typical fluorescent diameter of the rod-like
particles is around 300 nm, deconvolution of the image-
stacks before particle fitting can be useful when particles
are difficult to resolve individually. The necessary higher
(Nyquist) sampling rate, however, is not always practical or
even not possible for faster moving particles. Additionally,
deconvolutions are sensitive to small changes in the rod-
spread-function (RSP), introduced by e.g. polydispersity. A
clear improvement of the algorithm, therefore, is to fit the
particles with the RSP, analogous to the fitting of the sphere-
spread-function (SSF) reported by Jenkins et al [15], which
is work currently ongoing. With this type of extension of
the current algorithm it should also be possible to accurately
measure in-situ particle polydispersity, which is known to
have a large effect on e.g. the liquid-crystalline phase
behaviour [68].
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By measurement of freely diffusing rods, we acquired
additional information on the accuracy of our algorithm.
Although the motion is analysed in the lab-frame and therefore
translational and rotational motion should be coupled [28], we
did not observe such behaviour since the friction anisotropy
in our 3D measurement is small D‖/D⊥ = 1.3 and because
we averaged over an ensemble of particles and over many
initial orientations. We found that the error in locating the
rods (εt = 45, 46 and 59 nm in the x, y and z-direction
respectively) confirms sub-pixel accuracy and agrees roughly
with the criterion for spherical particles that εt ∼ M/N ,
with M the pixel-size and N the diameter of the particle
in pixels [13]. The value for the (short-time) rotational
diffusion coefficient Dr = (1.32 ± 0.02) × 10−3 rad2 s−1,
is one order of magnitude larger than previously accessible
with 3D confocal microscopy [34] which is, however, due to
the equipment rather than the image-processing. The error in
the determination of the orientation of the rod (εr = 0.07 rad)
is in the range of the values obtained via simulated test-images,
shown in table 1. The rule-of-thumb that εr ∼ 1/Pa with Pa

the half-length of the rods in pixels [34] seems to hold quite
well in our case, since 1/Pa = 0.08 in our measurements.

5. Conclusion

We developed an algorithm that extracts the positions and
orientations of rod-like particles from 3D confocal microscopy
images. The algorithm is tailored to a system of fluorescently
labelled silica rods and can identify these particles even in
the bulk of 3D concentrated phases where the fluorescent
signals of the particles overlap considerably. This allowed
us to determine the 3D positions and orientations of particles
in a concentrated disordered phase and in a liquid-crystalline
smectic-B phase. The algorithm also works on electron
tomography reconstructions of gold nanorods, which enables
the 3D quantification of (large) nano-particle assemblies. It
is also expected to work on other uniaxial particles such
as ellipsoids or dumbbells. We determined the accuracy of
the algorithm for varying z-resolution and noise levels from
generated 3D test-images. Despite the (anisotropic) distortion
of the theoretically approximated point spread function (PSF)
and the low signal to noise ratio (SNR), the error in the
determination of the orientation of the particles remained
small. These results confirmed that we can accurately
track rod-like particles with (fluorescent) diameters down to
300 nm. With our algorithm and a fast confocal microscope we
determined the translational and rotational motion of a dilute
suspension of sedimenting silica rods. We demonstrated that
the measured diffusive motion was in good agreement with
theory (neglecting sedimentation) and that we can track the
particles with sub-pixel resolution.

This novel algorithm therefore allows for studies of
structure and dynamics on the particle level of dense liquid-
crystalline phase behaviour (such as nematic, smectic and
crystalline phases), but also allows for studies of the glass
transition of anisotropic rod-like particles in three dimensions.
Of course, the algorithm will also be applicable to dilute
suspensions or in cases where rod-like particles are used as
tracers, such as in biophysical or micro-rheology studies.
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