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Probabilistic causal interaction models have become quite popular among Bayesian-
network engineers as elicitation of all probabilities required often proves the main 
bottleneck in building a real-world network with domain experts. The best-known 
interaction models are the noisy-OR model and its generalisations. These models in 
essence are parameterised conditional probability tables for which just a limited number of 
parameter probabilities are required. The models assume specific properties of intercausal 
interaction and cannot be applied uncritically. Given their clear engineering advantages 
however, they are subject to ill-considered use. This paper demonstrates that such ill-
considered use can result in poorly calibrated output probabilities from a Bayesian network. 
By studying, in an analytical way, the propagation effects of noisy-OR calculated probability 
values, we identify conditions under which use of the model can be harmful for a 
network’s performance. These conditions demonstrate that use of the noisy-OR model 
for mere pragmatic reasons is sometimes warranted, even when the model’s underlying 
assumptions are not met in reality.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

When building a Bayesian network with the help of domain experts, the process of eliciting all probabilities required for 
its quantification is generally considered the most daunting and time consuming among the engineering tasks involved 
[10,26]. The task is often impeded by the experts feeling uncomfortable with providing concrete numbers to describe 
their knowledge and experience [12]. In order to reduce the amount of time spent on probability elicitation and to al-
leviate the burden for the experts involved, often probabilistic causal interaction models are used for the quantification task 
[13,20,21,25]. These models can in general be looked upon as parameterised conditional probability tables for the effect 
variable of a causal mechanism with multiple cause variables. The models require a limited number of parameters, from 
which the values for all remaining probabilities in the table of the effect variable are readily calculated. The rules provided 
for this purpose are derived from properties of probabilistic interaction which are assumed to hold among the variables of 
a mechanism. Since only a limited number of parameters need be provided, use of a probabilistic causal interaction model 
often implies a substantial reduction of the number of probabilities to be assessed explicitly by experts.

The most popular among the causal interaction models are the noisy-OR model and its generalisations [8,14,25]. Various 
empirical studies have been conducted with the noisy-OR model specifically, to investigate the occurrence of its underlying 
pattern of causal interaction in reality [32], and to study the effect of its use on the process of knowledge elicitation [14,31]; 
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empirical studies have further been conducted to gain insight in the possible effects of use of the model on the performance 
of Bayesian networks developed for practical applications [1,2,23]. The overall conclusion from these studies is that use of 
the noisy-OR model serves to considerably reduce the burden of probability elicitation, without severely hampering the 
performance of a network.

Despite its clear advantages for Bayesian-network engineering, the noisy-OR model cannot be applied uncritically. The 
probability values calculated from the model’s rules can only be considered appropriate approximations of the true proba-
bilities if the properties underlying the noisy-OR model actually hold in the domain of application. In practise unfortunately, 
Bayesian-network engineers are not all aware of these properties, which makes the noisy-OR model subject to ill-considered 
use. The consistently positive results of using the model in practical applications moreover, have led to the suggestion that 
Bayesian networks are quite robust against the inaccuracies that are induced in their conditional probability tables by using 
the noisy-OR model.

In this paper, we show that ill-considered use of the noisy-OR model can result in poorly calibrated output probabilities. 
For this purpose, we study the propagation effects of noisy-OR calculated probability values that deviate from the true 
probability values. More specifically, we employ sensitivity-analysis techniques for determining when use of the model may 
harm a network’s output probabilities, and hence its overall performance. The conclusions of our investigations do not 
contradict the findings from earlier experimental studies which have led to the suggestion that the noisy-OR model can be 
used without severely hampering the performance of the network, even when the underlying assumptions of the model are 
not met in reality. Our investigations serve to provide a formal underpinning of these findings and show that use of causal 
interaction models such as the noisy-OR model for mere pragmatic reasons may often be warranted.

The paper is organised as follows. In Section 2 we introduce our notational conventions, and briefly introduce Bayesian 
networks and the noisy-OR model. We further review the technique of sensitivity analysis of Bayesian networks which will 
be used in Section 3 for studying in an analytical way, the propagation effects of noisy-OR calculated values on output 
probabilities computed from a basic causal mechanism. Our results are extended in Section 4 to apply to more involved 
Bayesian networks. The results of our analyses of various generalisations of the noisy-OR model are addressed in Section 5. 
The paper ends with our concluding observations in Section 6.

2. Preliminaries

In this section, we begin by introducing our notational conventions and briefly review Bayesian networks in general; 
more elaborate introductions are found in various textbooks [7,15,16]. We then describe the noisy-OR model in detail. 
Since in this paper we will exploit insights from sensitivity analysis of Bayesian networks, preliminaries from this field are 
provided as well.

2.1. Bayesian networks

We consider (discrete) random variables, which are denoted by capital letters and whose values are denoted by indexed 
small letters. We assume that a random variable E adopts a value ei from its possible values e0, . . . , em , m ≥ 1; for a 
binary variable E , we will write ē and e to denote its two values e0 and e1, representing the absence and the presence 
of the modelled concept respectively. Sets of random variables are denoted by bold-face capital letters and joint value 
combinations for these sets are written in bold-face small letters. We further consider joint probability distributions Pr over 
our sets of random variables.

A Bayesian network is a graphical representation of a joint probability distribution over a set of variables. The network 
includes a directed acyclic graph in which the nodes represent the variables and in which the arcs describe the (in)de-
pendency relation among the variables. We will use the term variable to refer to a random variable itself and to the node 
representing it, interchangeably. The arcs of the graph of a Bayesian network are often looked upon as capturing a causal 
relationship between the connected variables; although we will not make any claims with respect to a causal interpretation, 
we will adopt the terminology involved. If the graph includes an arc pointing from a variable C to a variable E , we say that 
C is a cause variable for E , and E is an effect variable of C . The phrase causal mechanism is used to refer to a single effect 
variable with its associated n cause variables, n ≥ 0, in the graph of a Bayesian network. In this paper we will focus mostly 
on causal mechanisms with two or more cause variables C1, . . . , Cn , n ≥ 2, unless stated otherwise.

In addition to the graphical structure, a Bayesian network includes a conditional probability table, or CPT, for each 
variable. For a variable E , this table specifies the conditional probability distributions Pr(E | c) over E given all possible joint 
value combinations c for its cause variables. Fig. 1 shows an example causal mechanism; the figure depicts the graphical 
structure of the mechanism, with the binary effect variable E and the two binary cause variables C1 and C2, and shows 
the conditional probability table for E . Note that the table specifies four conditional probability distributions for the effect 
variable, which number is exponential in the number of cause variables discerned.

A Bayesian network describes a unique joint probability distribution and hence provides for computing any prior or 
posterior probability of interest over its variables. The problem of establishing probabilities from a Bayesian network was 
proven to be NP-hard in general by Cooper [4]; Roth later showed #P-hardness [27]. For networks of which the graphical 
structure has bounded treewidth, the problem can be solved in polynomial time, that is, polynomial in the network’s size. 
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C1 C2 E

Present Absent

present present 0.99 0.01
present absent 0.80 0.20
absent present 0.95 0.05
absent absent 0.00 1.00

Fig. 1. The graph of an example causal mechanism (left), along with the conditional probability table for its effect variable E (right).

Various algorithms have been designed for this purpose, among which the junction-tree propagation algorithm is the most 
efficient to date [15,18].

2.2. The noisy-OR model

When constructing a Bayesian network for a real-world application, the first step is to configure a directed acyclic graph 
to describe the probabilistic independencies between the relevant variables. Subsequently, conditional probability tables 
need be specified for all variables, that is, for the effect variables of all causal mechanisms in the graph. For an effect 
variable E , such a table details an exponential number of conditional probability distributions Pr(E | c) over E , given all 
possible value combinations c for the cause variables C1, . . . , Cn , n ≥ 0, of E . Experience shows that obtaining all required 
numbers is a daunting and time consuming task, especially if these numbers have to be elicited from domain experts. The 
noisy-OR model has been designed to alleviate this burden for mechanisms involving binary variables only [25].

The noisy-OR model in essence is a parameterised conditional probability table for the effect variable E of a causal 
mechanism with two or more cause variables. The model takes for its parameters the conditional probabilities Pr(e |
c̄1, . . . , ̄c j−1, c j, ̄c j+1, . . . , ̄cn), j = 1, . . . , n, of the effect e to arise in the presence of the single cause c j ; it thus takes as 
many parameters as the number of cause variables in the mechanism to which it is applied. The remaining probabilities 
need not be provided explicitly, but are generated by the model: it sets the conditional probability Pr(e | c̄1, . . . , ̄cn) of the 
effect e to arise in the absence of all known causes to zero, and defines the remaining probabilities through

Pr(e | c) = 1 −
∏
j∈ J

(1 − Pr(e | c̄1, . . . , c̄ j−1, c j, c̄ j+1, . . . , c̄n))

where J is the set of indices of the cause variables C j that are marked as being present in the joint value combination c. The 
probability of the effect e arising in the presence of multiple simultaneous causes thus is calculated from the probabilities 
of e given each of these causes separately. We demonstrate the use of the noisy-OR model with an example.

Example 1. We consider the causal mechanism from Fig. 1 on the left, and take the cause variables C1 and C2 to represent 
the intake of alcohol and of the GHB party drug respectively. Either substance can cause a stimulating effect, which is 
represented by the effect variable E . Suppose that a domain expert is able to assess the probability of a stimulating effect 
arising from either substance, yet feels uncomfortable attaching a concrete number to the joint effect of concurrent intake 
of both substances. The conditional probability table from Fig. 1 on the right then results from applying the noisy-OR model 
to the effect variable E of the mechanism. The probabilities printed in bold are the parameter probabilities provided by the 
expert; the probability Pr(e | c̄1, ̄c2) is set to zero and the probability Pr(e | c1, c2) is calculated by the noisy-OR model from 
the two provided parameter probabilities. We note that the probability of the stimulating effect arising with the concurrent 
intake of both substances is calculated to be higher than the probability of the effect to arise upon the intake of either one 
of these stimuli.

Underlying the noisy-OR model are two basic assumptions concerning the probabilistic interactions among the variables 
of a causal mechanism. The assumption of accountability states that the effect e of a mechanism cannot arise as long as 
none of its causes are present; this assumption thus sets Pr(e | c̄1, . . . , ̄cn) = 0. The assumption of exception independence
pertains to the exception mechanisms that may inhibit the effect to arise in the presence of a cause. Each arc C j → E in 
a causal mechanism can be viewed as an essentially deterministic causal relation between the variables C j and E which 
sometimes is perturbed, that is, on exception, the effect does not show even though the cause is present. The exception 
mechanism involved can be made explicit by a so-called inhibitor variable I j with a probability distribution capturing the 
probability of the exception occurring. The property of exception independence now states that the inhibitor variables I j for 
a causal mechanism are mutually independent. For further details of the noisy-OR model and its underlying properties of 
intercausal interaction, we refer to [25].

Since its introduction, the noisy-OR model has given rise to several variants and generalisations, the most prominent 
among these being the leaky noisy-OR model [14] and the noisy-MAX model [8,14]. With the leaky noisy-OR model the 
probability of the effect occurring in the absence of all explicitly modelled causes is assumed to be non-zero and is captured 
explicitly by an additional parameter. The noisy-MAX model generalises the noisy-OR model to discrete variables with 
arbitrary numbers of values. We will elaborate on these generalisations in Section 5.
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Fig. 2. A causal mechanism with dashed arrowing indicating the directions of causal and diagnostic propagation.

2.3. Sensitivity analysis of Bayesian networks

The probability values specified in the conditional probability tables of a Bayesian network in general are either estimated 
from suitable data or assessed by domain experts. Either way, the probability values obtained are likely to include at least 
some degree of inaccuracy. To study the possible effects of these inaccuracies on its output, a Bayesian network can be 
subjected to a sensitivity analysis [3,5,22]. Informally spoken, such an analysis amounts to systematically varying one of the 
network’s probability values and computing the effect of the variation on an output probability of interest. The result of a 
sensitivity analysis is a sensitivity function f (x) that expresses the network’s output probability in the probability value x
being varied [6].

A sensitivity function f (x) cannot be arbitrarily shaped, but is either a linear function or a (rectangular) hyperbolic 
function in the probability value x under study [6]. More specifically, for an output probability pertaining to a variable 
without any observed descendants, the sensitivity function is linear in the probability value being varied and hence takes 
the form f (x) = α · (x + β) where the constants α and β are built from the network’s non-varied probability values. The 
linear function arises basically from studying the effects of inaccuracies in the probability values for the (possibly indirect) 
causes of the variable of interest, and hence is said to capture the effects of causal propagation; Fig. 2 visualises this 
direction of propagation.

Hyperbolic sensitivity functions arise from studying the effects of inaccuracies in a network’s probability values on output 
probabilities for variables with observed successors; we say that these functions capture the effects of diagnostic propaga-
tion. More formally, a hyperbolic sensitivity function f (x) takes the following form:

f (x) = α′ · x + β ′

α · x + β

where the constants α, α′, β, β ′ are again built from the non-varied probability values of the network. We note that both 
x and f (x) represent probabilities and hence range from 0 to 1. For studying the effects of variation of a probability value 
x on a network’s output therefore, only a fragment of one of the branches of the hyperbola f (x) is relevant. The window 
defined by the range [0, 1] for both f (x) and x, is called the unit window for the sensitivity function [11].

The hyperbolic function f (x) can be written in the following more suitable form [11]:

f (x) = r

x − s
+ t

with

s = −β

α
, t = α′

α
and r = β ′ · α − α′ · β

α2

In this form, the constant s denotes the vertical asymptote of the hyperbola and t denotes its horizontal asymptote. The 
constants s and t determine the general shape of the hyperbola, and the quadrants in which its two branches lie more 
specifically. The constant r defines the locations of the vertices of the two branches of a hyperbola in general: the vertex 
of a hyperbola branch is the point where the absolute value of its first derivative equals 1. For a sensitivity function, the 
vertex is one of the four points (s ± √|r|, t ± √|r|), dependent of the quadrant of the branch under study; we note that the 
vertex need not lie within the unit window to which the sensitivity function is restricted.

While recent research in sensitivity analysis of Bayesian networks has focused mostly on varying a single probability 
value, it is possible also to perform a sensitivity analysis in which multiple probability values are varied simultaneously; 
such an analysis serves to reveal the joint combined effect of variation of these values on the output probability of interest. 
For a higher-order sensitivity analysis in essence similar observations hold as reviewed above for a one-way analysis in 
which a single probability value is varied. For a two-way sensitivity analysis for example, the sensitivity function f (x, y)

takes the form of a quotient of two functions that are bi-linear in the two probability values x and y under study [5]:

f (x, y) = α′
1 · x · y + α′

2 · x + α′
3 · y + β ′

α1 · x · y + α2 · x + α3 · y + β

where the constants involved again are built from the non-varied probability values of the network at hand; the function 
f (x, y) reduces to a bi-linear function upon causal propagation. The cross-product terms of the function, involving both 
probability values x and y, capture the interaction effects of the two values on the output probability of interest. We 
note that this information cannot be revealed by one-way analyses for each of the two probability values separately. A 
sensitivity function which results from varying two probability values from the same conditional probability table will lack 
such cross-product terms whenever the two probabilities relate to logically incompatible conditions.
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Fig. 3. A basic causal mechanism with the effect variable E and cause variables C1, C2.

3. Basic propagation effects of noisy-OR calculated probability values

The noisy-OR model is highly popular among Bayesian-network engineers, because its use serves to substantially reduce 
the number of conditional probabilities for which values need actually be obtained. Experiences with the model have further 
suggested that even if the noisy-OR calculated probability values deviate from the true probabilities, the overall performance 
of the network at hand does not substantially degrade. In view of these experiences, we consider again Example 1, in which 
we modelled the stimulating effect from alcohol use and from taking the GHB party drug. We recall that the noisy-OR model 
calculated a probability value of 0.99 for a stimulating effect arising when both substances are taken. In reality however, 
this probability is much smaller, as concurrent intake of alcohol and GHB is known to have a depressing rather than a 
stimulating effect. We would like to note that, in general, experts may be quite reluctant to provide a concrete probability 
value for a combined effect, mostly because they have little experience with observing the joint effect of the simultaneous 
presence of the causes involved. They will often be able, however, to indicate, based upon their domain knowledge, whether 
the combined effect will be stronger or weaker than the effect of each cause separately. In this section, we will study in 
an analytical way what the consequences can be on the output of a Bayesian network, when a noisy-OR calculated value 
deviates from the true probability. We will focus to this end on a basic causal mechanism for which we investigate the 
effects upon causal propagation and upon diagnostic propagation separately; in Section 4, we extend our results to more 
involved network snippets.

3.1. Effects upon causal propagation

We consider the conditional probability tables for the three variables of the basic mechanism from Fig. 3. We assume 
that the prior probability distributions for the cause variables C1 and C2 are non-degenerate, that is, we assume that the 
probabilities Pr(ci) and Pr(c̄i), i = 1, 2, are non-zero. We further assume that the conditional probability Pr(e | c̄1, ̄c2) for 
the effect variable E equals 0 and that values for the probabilities Pr(e | c̄1, c2) and Pr(e | c1, ̄c2) have been obtained from 
data or from experts. We now focus on the value of the fourth probability Pr(e | c1, c2) of the conditional probability 
table Pr(E | C1, C2) for E . We begin by investigating the effects of possible deviations from the true probability value of 
Pr(e | c1, c2) on the prior distribution of E . We have that the probability Pr(e) equals:

Pr(e) = Pr(e | c1, c2) · Pr(c1) · Pr(c2) + Pr(e | c̄1, c2) · Pr(c̄1) · Pr(c2) + Pr(e | c1, c̄2) · Pr(c1) · Pr(c̄2)

where the cause variables C1 and C2 have been taken to be mutually independent a priori, as read from the mechanism 
under study. We now write Pr(e) as a function of the value x of the probability Pr(e | c1, c2). The result is a linear function 
in x:

Pr(e)(x) = x · Pr(c1) · Pr(c2) + Pr(e | c̄1, c2) · Pr(c̄1) · Pr(c2) + Pr(e | c1, c̄2) · Pr(c1) · Pr(c̄2)

= α · (x + β)

where

α = Pr(c1) · Pr(c2)

β = Pr(e | c̄1, c2) · λ−1
C1

+ Pr(e | c1, c̄2) · λ−1
C2

with λ−1
Ci

= Pr(c̄i)/Pr(ci), i = 1, 2. The reciprocal likelihood ratio λ−1
Ci

expresses the degree to which the cause Ci is more 
likely to be absent than to be present. A large ratio λ−1

Ci
∈ (1, ∞) reflects a high probability of Ci being absent; a small ratio 

λ−1
Ci

∈ (0, 1) on the other hand indicates that Ci is more likely to be present.
The gradient α of the function Pr(e)(x) describes the effect that a deviation from the true value of Pr(e | c1, c2) can have 

on the prior probability of the effect e arising. This gradient is restricted by 0 ≤ α ≤ 1 and depends solely on the prior 
probabilities of each of the two causes being present. We note that large values for α are found only with high probabilities 
of the presence of these causes. The constant β in the offset of the function equally depends on the prior probabilities 
Pr(c1) and Pr(c2), yet is also dependent of the two probabilities Pr(e | c̄1, c2) and Pr(e | c1, ̄c2) of the effect arising in the 
presence of a single cause. We note that since the overall offset α ·β is necessarily restricted to the interval [0, 1], the range 
of possible values for the constant β is constrained by the value of the gradient α.

To illustrate the above considerations, Fig. 4 depicts, for the basic mechanism under study, two example functions ex-
pressing the prior probability of interest Pr(e) in terms of the value x for the conditional probability Pr(e | c1, c2). For both 
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Fig. 4. The effects on Pr(e) of varying the value of Pr(e | c1, c2), given small values (left) and given large values (right) for Pr(c1) and Pr(c2); the values for 
Pr(e) found with the true probability Pr(e | c1, c2) are indicated by the open circles and the output probabilities found with the noisy-OR calculated value 
for Pr(e | c1, c2) are marked by the black dots.

functions, the two probabilities Pr(e | c̄1, c2) and Pr(e | c1, ̄c2) were set to 0.43 and 0.71, respectively. For the function on the 
left, Pr(c1) and Pr(c2) were assigned the small values 0.22 and 0.11 respectively, resulting in a small gradient α = 0.024. 
This small gradient conveys the information that even a substantial deviation from the true value of Pr(e | c1, c2) will have 
just a minor effect on the probability of interest. Given the larger values 0.83 and 0.91 for Pr(c1) and Pr(c2), the effect 
on Pr(e) of a deviation from the true probability Pr(e | c1, c2) can be more substantial, as is demonstrated by the function 
on the right; this function has a gradient equal to α = 0.755. We now observe that since the two functions describe the 
effect of any arbitrary deviation from the true value of the probability Pr(e | c1, c2), they also capture the effect of using the 
noisy-OR calculated value for Pr(e | c1, c2). Fig. 4 indicates, with each depicted function, the two output probabilities which 
result from using the true probability value of 0.22 (represented by the open circle) and using the noisy-OR calculated value 
of 0.83 (represented by the black dot) respectively. The figure thereby illustrates that using the noisy-OR value will have a 
larger effect on the output probability in view of large prior probabilities for the separate causes than in view of small prior 
probabilities.

The effects of causal propagation through the basic mechanism are further investigated by assuming the presence of one 
of the causes, that is, by considering Pr(e | c1) or Pr(e | c2) for the probability of interest. We note that assuming absence of 
one of the causes would be irrelevant for our purposes since the probabilities Pr(e | c̄1) and Pr(e | c̄2) are not (algebraically) 
dependent of the value of the conditional probability Pr(e | c1, c2) under study, that is, varying Pr(e | c1, c2) cannot influence 
Pr(e | c̄1) or Pr(e | c̄2). As an example we now express the probability of interest Pr(e | c1) as a function of the probability 
value x = Pr(e | c1, c2), where we again take the two cause variables C1 and C2 to be mutually independent a priori:

Pr(e | c1)(x) = Pr(c2) · (x + Pr(e | c1, c̄2) · λ−1
C2

)

Upon comparison with the function Pr(e)(x) derived above, we note that the two functions differ in the role of the prior 
probability Pr(c1) of the presence of the observed cause: where the gradient of Pr(e)(x) includes both Pr(c1) and Pr(c2), the 
gradient of Pr(e | c1)(x) no longer reveals a dependency of Pr(c1). Analogous observations hold for the function derived for 
the probability of interest Pr(e | c2).

We have considered the consequences of deviating noisy-OR probability values upon causal propagation through the basic 
mechanism; we note that by a deviating noisy-OR value, we refer to a noisy-OR calculated probability value which deviates 
from the associated true probability value. We have shown that a large deviation from the true value of the probability 
Pr(e | c1, c2) can give a large shift in a prior or posterior probability of the effect only if the yet unobserved causes have 
large probabilities of being present. The larger these probabilities, the larger the gradient of the associated function will 
be and the larger the effect on the output probability of interest can become. In view of relatively small probabilities of 
the (yet unobserved) causes of a mechanism being present therefore, a network engineer may safely apply the noisy-OR 
model for the conditional probability table of the effect variable. If these probabilities may become substantially larger upon 
inference however, caution is advised when considering application of the model. Since strong effects may then arise upon 
causal propagation, the network engineer should verify that the true probability value does not deviate significantly from 
the noisy-OR calculated one. We would like to emphasise that the extent to which a large shift in the output probability 
of a mechanism will actually affect the overall performance of the Bayesian network at hand is strongly dependent of the 
network’s graphical structure and (other) parameter probabilities. We will return to this observation in Section 4.

3.2. Effects upon diagnostic propagation

Thus far we examined the consequences that a deviating noisy-OR calculated value can have on a probability of interest 
which is established by causal propagation through the basic mechanism under study. In this section we investigate the 
consequences of such a value upon propagation in the diagnostic direction, that is, upon propagating evidence for the effect 
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Fig. 5. Several example fourth-quadrant hyperbola branches restricted to the unit window with their vertices indicated by a dot (left), and the x-coordinate 
of the vertex, plotted as a function of β − β ′ and β ′ (right).

variable to an unobserved cause variable. For this purpose, we consider again the basic causal mechanism from Fig. 3 and 
express the example output probability Pr(c1 | e) as a function of the value x of the probability Pr(e | c1, c2):

Pr(c1 | e)(x) = x · Pr(c1) · Pr(c2) + Pr(e | c1, c̄2) · Pr(c1) · Pr(c̄2)

Pr(e)(x)

= x + β ′

x + β

where

β ′ = Pr(e | c1, c̄2) · λ−1
C2

β = Pr(e | c̄1, c2) · λ−1
C1

+ Pr(e | c1, c̄2) · λ−1
C2

with λ−1
Ci

, i = 1, 2, as before. To acquire more detailed insight in the values which the constants β and β ′ can attain, we 
begin by writing the denominator Pr(e)(x) as

Pr(e)(x) = Pr(c1, e)(x) + Pr(c̄1, e)(x)

Writing the functions Pr(c1, e)(x) and Pr(c̄1, e)(x) in terms of the parameter probabilities Pr(e | c1, ̄c2) and Pr(e | c̄1, c2) now 
gives

Pr(e)(x) = Pr(c1) · Pr(c2) ·
(

x + Pr(e | c1, c̄2) · λ−1
C2

+ Pr(e | c̄1, c2) · λ−1
C1

)

In the function Pr(c1 | e)(x) therefore, both the numerator and the denominator include the multiplicative term Pr(c1) ·
Pr(c2), which can be divided out of the equation. As a result, we find that the function Pr(e)(x) is proportional to

Pr(e)(x) ∝ x + Pr(e | c1, c̄2) · λ−1
C2

+ Pr(e | c̄1, c2) · λ−1
C1

∝ (x + β ′) + (β − β ′)
where

Pr(c1, e)(x) ∝ x + β ′ and Pr(c̄1, e)(x) ∝ β − β ′

Since the denominator Pr(e)(x) of the function Pr(c1 | e)(x) is required to be larger than zero for all values x, we have 
that β > 0. From Pr(c1, e)(x) expressing a probability for all x we further find that β ′ ≥ 0. From also Pr(c̄1, e)(x) being a 
probability for all x, we conclude that β ≥ β ′ .

Now, the function Pr(c1 | e)(x) derived above is hyperbolic in the probability value x, as expected from insights in sensi-
tivity analysis of Bayesian networks in general. Building upon the properties of hyperbolic functions reviewed in Section 2.3, 
we find that the vertical asymptote s of the function equals s = −β . As β > 0, we have that this asymptote lies to the left 
of the unit window. The function further has its horizontal asymptote at t = 1. From these findings we conclude that the 
function Pr(c1 | e)(x) is a fragment of a fourth-quadrant hyperbola branch. For illustrative purposes Fig. 5 depicts, on the 
left, seven example fourth-quadrant branches, restricted to the unit window. The figure shows that while a relatively small 
deviation in the x-value may have a considerable effect on the output value with some branches, with other branches the 
output is hardly affected by even large deviations in x.

From studies of sensitivity functions from Bayesian networks in general, we know that the effect of deviations from the 
true x-value on the output probability is largely dependent of the location of the vertex of the hyperbola branch at hand. In 
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the plot of Fig. 5 on the left, the vertices of the example branches are indicated by a dot if lying within the unit window. 
In general, the closer the vertex of the hyperbola branch lies to the upper-left corner of the unit window, that is, the closer 
it is to the point (0, 1), the larger the effect of a deviation from x to smaller values can be. Our function Pr(c1 | e)(x) has its 
vertex at

(s + √|r|,1 − √|r|) =
(
−β + √

(β − β ′),1 − √
(β − β ′)

)

The vertex lies within the unit window for values of β, β ′ with β <
√

(β − β ′) < 1. From β <
√

(β − β ′) and β ≥ β ′ , we 
find that only relatively small values of β ′ can result in a vertex with an x-coordinate in the unit range. This observation 
is supported by the plot of Fig. 5 on the right, which depicts the x-coordinate of the vertex, if within the unit range, as a 
function of β ′ and β − β ′ . The plot on the left in addition provides some examples. The function at the bottom of the plot 
has the values β ′ = 0.395 and β = 2.521; this function has a vertex to the left of the window as a result of the asymptote 
s = −2.521 and in fact is almost linear within the unit window. In contrast, the function depicted as the third from below 
has its vertex within the window; it has the smaller value β ′ = 0.170 and the value β = 0.782. Although a relatively small 
value of the constant β ′ will give a vertex with a positive x-coordinate, the vertex will approach the upper-left corner of the 
unit window only if in addition the difference β − β ′ is quite small. We note that with a small value of β − β ′ , the function 
Pr(c1 | e)(x) = (x +β ′)/(x +β) indeed approaches 1. Once more considering the plot of Fig. 5 on the left, we observe that the 
vertex of the top function lies close to the upper-left corner of the unit window; this function has β ′ = 0.009 and β = 0.019. 
From these considerations, we conclude that deviations from the true value x of the probability Pr(e | c1, c2) can have large 
effects on the output probability Pr(c1 | e) only if both constants β ′ and β are small. Small values of β ′ = Pr(e | c1, ̄c2) · λ−1

C2
are found when at least one of the probabilities Pr(e | c1, ̄c2) and Pr(c̄2) is small; small values of β are found if, in addition, 
at least one of Pr(e | c̄1, c2) and Pr(c̄1) is small.

Since the function Pr(c1 | e)(x) derived above describes the effect of any arbitrary deviation from the true value of the 
probability Pr(e | c1, c2), it also captures the effect of using the noisy-OR calculated value for Pr(e | c1, c2) upon inference. 
The above analysis shows that strong effects on the output probability Pr(c1 | e) can be expected only if both β ′ and β have 
rather small values, that is, if at least one of the following conditions holds:

• both Pr(e | c1, ̄c2) and Pr(e | c̄1, c2) have small values;
• both Pr(e | c1, ̄c2) and Pr(c̄1) are small;
• both Pr(e | c̄1, c2) and Pr(c̄2) are small;
• both Pr(c̄1) and Pr(c̄2) are small, that is, both causes are quite likely to be present.

Whether the anticipated effects will actually arise upon propagation depends on the true value of Pr(e | c1, c2) and on the 
noisy-OR calculated one: only if at least one of these values is smaller than the x-coordinate of the vertex of the function 
can using the noisy-OR value strongly affect the output. In addition to the above considerations, we note that effects on the 
output probability, albeit weaker ones, may also be found with larger β values in view of a small value of β ′ .

We have considered the consequences of deviating noisy-OR probability values upon diagnostic propagation through the 
basic mechanism. We have found, as with causal propagation, that a large deviation from the true probability value can give 
a large shift in an output probability of interest if the yet unobserved causes have large probabilities of being present. In 
combination with small values for the noisy-OR parameter probabilities can the effects become especially strong. A network 
engineer is strongly advised against applying the noisy-OR model for the effect variable if the true conditional probability 
of the effect arising or the noisy-OR calculated value for this probability is quite small. The noisy-OR model can be more 
or less safely applied if none of the yet unobserved causes is likely to occur. Once again we would like to emphasise that 
the extent to which a large shift in the output probability of a mechanism can actually affect the overall performance of a 
network as a whole, is strongly dependent of the network’s graphical structure and (other) parameter probabilities.

4. Propagation effects of noisy-OR calculated values in general

In the previous section, we studied the possible consequences of deviating noisy-OR calculated probability values upon 
propagation through a causal mechanism with two mutually independent cause variables. We now extend our study to 
more involved network snippets. We first consider causal mechanisms which involve a direct dependency between their 
pair of cause variables, and then turn to mechanisms with more than two cause variables. We end by briefly reviewing the 
possible consequences of deviating noisy-OR values in larger Bayesian networks. Throughout this section we will focus on 
just the differences in effects between the more involved network snippets and the basic causal mechanism considered in 
Section 3.

4.1. Causal mechanisms with dependent cause variables

The basic mechanism studied in Section 3 included the independent cause variables C1 and C2, and the effect variable E . 
We now pursue our investigations by no longer assuming a priori independence of the two cause variables. As an example, 
we study the mechanism with the added extra arc C1 → C2. We assume that the prior probability distribution over C1 and 
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the conditional distributions over C2 given C1 are non-degenerate. We further assume that Pr(e | c̄1, ̄c2) equals zero, and 
that values for the probabilities Pr(e | c̄1, c2) and Pr(e | c1, ̄c2) have been estimated from data or assessed by experts. We 
focus again on the fourth probability Pr(e | c1, c2) in the conditional probability table for E , and begin again by addressing 
the consequences for the prior probability Pr(e), of propagating a value x for Pr(e | c1, c2) which deviates from the true 
value. As with the basic mechanism, we find a linear function expressing the probability Pr(e) in this value:

Pr(e)(x) = α · (x + β)

The main difference with the function obtained with the basic mechanism is that the gradient now equals α = Pr(c1) ·
Pr(c2 | c1). Since it now takes the dependency between the two cause variables into consideration, α is no longer dependent 
of the prior probabilities of each of the two causes separately, but of the prior probability of their joint presence instead. The 
gradient may now attain a large value with a moderately likely cause c2 which becomes quite likely in the presence of c1; 
a dependency capturing a negative probabilistic influence between two likely causes on the other hand, may forestall a large 
gradient. The propagation effects in the causal direction are otherwise in line with the effects with the basic mechanism: 
a large deviation from the true value of the probability Pr(e | c1, c2) can give a large shift in the prior probability of the 
effect only if the two causes have a large probability of being present simultaneously.

For investigating the effects upon diagnostic propagation through the extended mechanism, we consider again the ex-
ample posterior probability of interest Pr(c1 | e), and express it as a function of the value x of Pr(e | c1, c2). The following 
hyperbolic function is found:

Pr(c1 | e) = x + β ′

x + β

with 0 ≤ β ′ ≤ β , β > 0, as before. While with the basic mechanism, the constants β and β ′ included the reciprocal likelihood 
ratios for the two cause variables separately, they now involve the reciprocal conditional likelihood ratios

λ−1
Ci |C j

= Pr(c̄i | c j)

Pr(ci | c j)

for Ci given c j , i, j = 1, 2, i �= j. In view of these conditional ratios however, similar observations hold as with the basic 
mechanism. Deviations from the true value x of the probability Pr(e | c1, c2) can have a large effect on the output probability 
Pr(c1 | e) only if both constants β and β ′ are small, that is, if at least one of the following conditions hold:

• both Pr(e | c1, ̄c2) and Pr(e | c̄1, c2) have small values;
• both Pr(e | c1, ̄c2) and Pr(c̄1 | c2) are small;
• both Pr(e | c̄1, c2) and Pr(c̄2 | c1) are small;
• both Pr(c1 | c2) and Pr(c2 | c1) are quite large, that is, there is a strong positive probabilistic influence between the two 

cause variables.

From the above considerations, we conclude that the presence of a direct dependency between the two cause variables 
of a basic causal mechanism does not result in significantly different consequences of propagating deviating noisy-OR calcu-
lated values. Large effects on a probability of interest are expected in fact under essentially the same conditions as derived 
in Section 3 with the basic mechanism. When considering application of the noisy-OR model for the effect variable of a 
mechanism with an explicit intercausal dependency, extra caution is advised however, if the mutual dependency between 
the causes is positive and quite strong. A network engineer should then carefully consider the direction and strength of the 
qualitative probabilistic influence associated with the explicit dependency; for further information on qualitative concepts 
of probability, we refer to [24].

4.2. Causal mechanisms with multiple cause variables

Having focused on two-cause mechanisms so far, we now turn to mechanisms involving more than two cause variables. 
We focus more specifically on a mechanism with the three cause variables C1, C2, C3, and the effect variable E . In view of 
the three cause variables, the conditional probability table for E includes eight probabilities. When employing the noisy-OR 
model for the variable E , values for three of these probabilities are to be specified explicitly: these are the conditional 
probabilities of the effect e arising in the presence of just one of the three causes. The conditional probability of the 
effect arising spontaneously again is set to zero. We now focus on the remaining four probabilities of the table, which are 
calculated from the model. While we supposed in our investigations of the two-cause mechanism that the single noisy-OR 
calculated value under study deviated from the true probability, we cannot now reasonably assume for our three-cause 
mechanism that only one of the calculated probability values is deviant. Any of the four noisy-OR calculated values may 
deviate from its true probability in reality. We note that if we could assume that just the calculated value for the effect 
arising in the presence of all causes differed from the true probability value, our analysis would be analogous to the one 
presented in Section 3. For studying the joint effects of four deviating probability values however, we need to perform a 
higher-order analysis.
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We begin again by addressing the consequences for the prior probability of interest Pr(e), of propagating possibly de-
viating values w, x, y and z for the four probabilities Pr(e | c1, c2, c3), Pr(e | c̄1, c2, c3), Pr(e | c1, ̄c2, c3) and Pr(e | c1, c2, ̄c3), 
respectively. The following multi-dimensional function expresses Pr(e) in these values:

Pr(e)(w, x, y, z) = α1 · w + α2 · x + α3 · y + α4 · z + β

where the constants α j , j = 1, . . . , 4, are built from the prior probabilities of the three causes ci , i = 1, 2, 3. The constant 
α4 for example equals Pr(c1) · Pr(c2) · Pr(c̄3), and captures the function’s partial gradient associated with the dimension 
z = Pr(e | c1, c2, ̄c3). The constant β in the offset of the function also involves the prior probabilities of the three causes 
and in addition includes the values of the parameter probabilities Pr(e | c̄1, ̄c2, c3), Pr(e | c̄1, c2, ̄c3) and Pr(e | c1, ̄c2, ̄c3). 
Focusing again on the partial gradients of the function, we observe that α4 for example can attain a large value only with 
large prior probabilities of the causes c1 and c2 being present and a large probability of the absence of c3; analogous 
observations hold for the other partial gradients of the function. A large partial gradient can thus be found only with quite 
skewed prior probability distributions over the cause variables. Since the four dimensions of the function correspond to 
different combinations of causes being present, a large partial gradient can be found in a single dimension only. We conclude 
that the causal propagation effects with the three-cause mechanism are much in line with the effects found with the 
basic mechanism: large deviations from the true values of at least one of the probabilities Pr(e | c1, c2, c3), Pr(e | c̄1, c2, c3), 
Pr(e | c1, ̄c2, c3) and Pr(e | c1, c2, ̄c3) can give a large shift in the prior probability of the effect only with highly skewed prior 
probability distributions over the three cause variables.

To study the effects of deviating noisy-OR values upon diagnostic propagation, we now express the example posterior 
probability of interest Pr(c3 | e) as a function of the values w, x, y and z for the four probabilities under study, to find that

Pr(c3 | e)(w, x, y, z) = α1 · w + α2 · x + α3 · y + β ′

α1 · w + α2 · x + α3 · y + α4 · z + β

where the constants α j , j = 1, . . . , 4, again are built from the prior probabilities of the cause variables Ci , i = 1, 2, 3, and the 
constants β and β ′ in addition involve the parameter probabilities of the noisy-OR model. We note that while the value z of 
the probability Pr(e | c1, c2, ̄c3) no longer affects the numerator of the probability of interest Pr(c3 | e), it does still influence 
the denominator. Focusing on the partial gradient α1 as an example, we observe that, by taking the value zero for x, y, z, 
the multi-dimensional function above reduces to:

Pr(c3 | e)(w,0,0,0) = w + β ′/α1

w + β/α1

which again is a fragment of a fourth-quadrant hyperbola branch, to which the observations from Section 3.2 apply, that 
is, from the function we find that deviations of w from the true probability Pr(e | c1, c2, c3) may give large effects on the 
output probability of interest only if both β ′/α1 and β/α1 are quite small. We note that to this end at least the value of α1
need to be quite large, that is, each of the three causes needs to have a large prior probability of being present. In view of 
larger (fixed) values for x, y and z, the constants involved in the hyperbolic function expressing Pr(c3 | e) in w will become 
larger, and the propagation effect will diminish. We conclude that large effects on the example output probability Pr(c3 | e)
can be found only with a large value for α1, and small values for α2, α3, α4; such effects are then found for the smaller 
value range of x, y, z.

From the above considerations, we conclude that the inclusion of additional cause variables in a causal mechanism does 
not give rise to significantly different consequences of propagating deviating noisy-OR calculated values: in essence, large 
propagation effects are expected under essentially the same conditions as derived in Section 3. Although large propagation 
effects can still occur, they will become less likely as the number of cause variables increases.

4.3. On ill-considered use of the noisy-OR model in larger networks

In our analysis of the possible effects of ill-considered use of the noisy-OR model, we investigated the results from 
locally propagating deviating noisy-OR calculated values through a causal mechanism, that is, we focused on output prob-
abilities pertaining to one of the variables involved in the mechanism under study. In real-world applications however, 
the conditional probability tables resulting from application of the noisy-OR model are used upon propagating information 
throughout a larger Bayesian network. A large deviation of a locally computed probability may then be reduced by further 
propagation; alternatively, small deviations in locally computed probabilities may jointly induce a large deviation in the 
overall output probability of interest. Such effects are dependent of the topology of the graphical structure of the network 
at hand and of the skewness properties of the other conditional probability tables used in the propagation. Although over 
the years, quite some insights have been gained in the sensitivities exhibited by a network; we refer to [11] for such in-
sights. For a specific Bayesian network under study the effects of deviating noisy-OR calculated values should be investigated 
by experimental evaluation. The conclusions from the present paper provide directions for focusing such an evaluation on 
the relevant model-computed values and output probabilities of interest.
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5. Propagation effects with generalisations of the noisy-OR model

Despite its clear engineering advantages, the noisy-OR model has only restricted applicability because it assumes the 
properties of accountability and exception independence to hold for a causal mechanism and in addition assumes all vari-
ables involved to be binary. To enhance its applicability, researchers have developed various generalisations of the basic 
model. A well-known example is the leaky noisy-OR model, which does not assume the property of accountability for a 
mechanism [9,14]; in order to allow application with non-binary discrete variables moreover, the noisy-MAX model has 
been suggested [8]. Similar to the basic noisy-OR model, these generalisations can be viewed as parameterised conditional 
probability tables for which just a limited number of parameter probabilities are to be specified. In this section we briefly 
address the possible effects upon propagation of deviating probability values calculated from the leaky noisy-OR and noisy-
MAX models. Upon doing so, we will focus once more on the differences in effects between the generalised models and the 
basic noisy-OR model studied in the previous sections.

5.1. Propagation effects with the leaky noisy-OR model

The property of accountability assumed by the noisy-OR model presupposes that all causes of an effect have been iden-
tified and explicitly modelled in a causal mechanism. In real-world applications however, incompleteness of information is 
inherent to any model, and causes may escape explicit representation. For mechanisms in which causes are left implicit, 
the leaky noisy-OR model may be employed. This model closely resembles the noisy-OR model, yet does not assume ac-
countability. Instead, it provides for capturing the influence of all yet unmodelled causes on a common effect by a so-called 
leak probability [14]. For a causal mechanism with an effect variable E and the cause variables C1, . . . , Cn , n ≥ 2, the leaky 
noisy-OR model requires the same parameter probabilities as the noisy-OR model, and further takes the extra parameter 
Pr(e | c̄1, . . . , ̄cn) to capture the probability of the effect e occurring spontaneously in the absence of any of its modelled 
causes. This leak probability Pr(e | c̄1, . . . , ̄cn) typically attains small values in practise. For calculating the probabilities of 
the effect arising in the presence of multiple causes, a computation rule has been defined just as with the standard noisy-
OR model [9,14]. This rule assumes that the leak probability is not embedded in the parameter probabilities obtained, but 
is straightforwardly rewritten for parameter probabilities in which the leak probability is implicitly comprised; for further 
details, we refer to [9]. Since our observations below hold for both parameter probabilities with and without an implicit 
leak probability, we study the propagation effects of deviating model-calculated probabilities in the conditional probability 
table for the effect variable E through the original formulation of the computation rule:

Pr(e | c) = 1 − (1 − Pr(e | c̄1, . . . , c̄n)) ·
∏
j∈ J

1 − Pr(e | c̄1, . . . , c j, . . . , c̄n)

1 − Pr(e | c̄1, . . . , c̄n)

where J again is the set of indices of the cause variables C j that are marked as being present in the cause combination c. 
We note that if there are no unmodelled causes for the effect e, that is, if Pr(e | c̄1, . . . , ̄cn) = 0, then the leaky noisy-OR 
model results in the same calculated values as the noisy-OR model. In the remainder of this section, we investigate the 
consequences of the extra parameter of the leaky noisy-OR model and hence assume a non-zero leak probability.

For studying the possible propagation effects of deviating model-calculated probability values, we consider again a basic 
two-cause mechanism, with the effect variable E and the cause variables C1, C2. We assume that values have been obtained 
for the parameter probabilities Pr(e | c1, ̄c2), Pr(e | c̄1, c2) and Pr(e | c̄1, ̄c2), and address the fourth probability Pr(e | c1, c2)

from the conditional probability table of E . We begin again by considering propagation in the causal direction, and focus 
on the probability of interest Pr(e). We note that this probability Pr(e) is algebraically dependent of the leak probability 
Pr(e | c̄1, ̄c2). When expressing Pr(e) as a function of the value x of the probability Pr(e | c1, c2), this dependency is reflected 
in the offset of the function: we find that

Pr(e)(x) = α · (x + β)

with

α = Pr(c1) · Pr(c2)

β = Pr(e | c̄1, c2) · λ−1
C1

+ Pr(e | c1, c̄2) · λ−1
C2

+ Pr(e | c̄1, c̄2) · λ−1
C1

· λ−1
C2

When compared to the function obtained with the noisy-OR model, we find that the gradient α is the same in both 
functions. The noisy-OR and leaky noisy-OR models therefore share the property that large effects of a deviating model-
calculated value upon causal propagation can be found only with large prior probabilities of the causes being present. The 
constant β in the offsets of the two functions differ however: with the leaky noisy-OR model, this constant includes the ex-
tra term Pr(e | c̄1, ̄c2) · λ−1

C1
· λ−1

C2
involving the leak probability. Since this probability is quite small in general, the additional 

term will be quite small with large prior probabilities of the causes being present. With small probabilities of the causes 
being present on the other hand, the extra term in the constant β may become quite large. The larger value of β will then 
cause the range of values for the gradient α to be more restricted, and smaller propagation effects will be found.



12 S.P.D. Woudenberg, L.C. van der Gaag / International Journal of Approximate Reasoning 61 (2015) 1–15
We would like to note that the dependency of Pr(e | c1, c2) on the leak probability Pr(e | c̄1, . . . , ̄c2) appears to be 
non-linear in the computation rule of the leaky noisy-OR model. The apparent non-linearity arises from the leak probability 
being comprised in the parameter probabilities and the model taking the comprised leak into consideration only once. 
The leak thus is cancelled out from each of the parameter probabilities, thereby effectively removing the non-linearity. 
Our observations therefore are not influenced by the apparent non-linear dependency of the model-calculated value for 
Pr(e | c1, c2) on the leak probability.

The possible effects from diagnostic propagation with the leaky noisy-OR model are also largely similar to those found 
with the standard noisy-OR model. When expressing the output probability Pr(c1 | e) for example, as a function of the value 
x for the probability Pr(e | c1, c2), we find that the only difference from the function obtained with the noisy-OR model is 
in the function’s denominator. The following hyperbolic function is found:

Pr(c1 | e) = x + β ′

x + β

where the constant β includes the extra term Pr(e | c̄1, ̄c2) · λ−1
C1

· λ−1
C2

when compared with the function resulting from 
the noisy-OR model. The constant β may thus attain larger values with the leaky noisy-OR model than with the noisy-OR 
model. We recall that this constant determines the position of the vertical asymptote s = −β as well as the location of the 
vertex of the hyperbola branch under study. The larger β now implies that the vertical asymptote of the hyperbola branch 
lies further to the left of the unit window, which in turn causes the vertex to move away from the upper-left corner of 
the window. The effect of a deviating model-calculated value may therefore be smaller with the leaky noisy-OR model than 
with the noisy-OR model.

Based upon the above considerations, we conclude that application of the leaky noisy-OR model will result in similar 
propagation effects as the basic noisy-OR model. The extra parameter of the leaky noisy-OR model will tend to have a 
weakening influence on the effect however. In fact, the larger the leak probability for a causal mechanism is, the weaker 
the propagation effects will be.

5.2. Propagation effects of the noisy-MAX model

All causal interaction models discussed above, pertain to mechanisms with binary variables only. As real-world Bayesian 
networks often include non-binary discrete variables to describe their domain knowledge, researchers have generalised 
the noisy-OR model to provide for mechanisms involving such variables [8,14]. The most commonly used among these 
generalisations is the noisy-MAX model. Underlying this model are various assumptions concerning the variables of the 
causal mechanism at hand. The value domain of each cause variable Ci is assumed to include a designated value modelling 
absence of the cause, denoted as c0

i ; the other values of the variable then capture different levels of manifestation of the 
cause. The value domain of the effect variable E is also supposed to include a designated value e0 modelling absence, and in 
addition is assumed to allow a total ordering; in the sequel, we will take ei < e j whenever i < j. The noisy-MAX model now 
builds upon the properties of accountability and exception independence just like the noisy-OR model. With the noisy-MAX 
model, the assumption of accountability states that Pr(e0 | c0

1, . . . , c
0
n) = 1 and, hence, Pr(ei | c0

1, . . . , c
0
n) = 0 for all values ei

with i > 0. The parameter probabilities for the noisy-MAX model describe for each cause variable separately, the influence 
of its different manifestation levels on the possible values of the effect variable, that is, the model takes the parameter 
probabilities Pr(ei | c0

1, . . . , c
0
j−1, c

k
j, c

0
j+1, . . . , c

0
n) for all values ck

j , k > 0, of the cause variable C j and all values ei , i ≥ 0, of 
the effect variable E . The remaining probabilities for the conditional probability table for E are defined through

Pr(ei | c) =
{

Pr(E ≤ ei | c) − Pr(E ≤ ei−1 | c) for i > 0
Pr(E ≤ e0 | c) for i = 0

with

Pr(E ≤ ei | c) =
∏
j∈ J

∑
�=0,...,i

Pr(e� | c0
1, . . . , c0

j−1, ck
j, c0

j+1, . . . , c0
n)

where J is the set of indices of the cause variables C j that are marked as having a value ck
j with k > 0 in the joint value 

combination c.
To study the possible effects of propagating deviating model-calculated probability values, we consider again a basic 

two-cause mechanism, with the effect variable E and the cause variables C1, C2. For ease of exposition, we assume that the 
cause variable C1 is ternary and that the other variables are binary. For the binary variables, we will adhere to our former 
notations; the values of the ternary variable C1 are written c0

1, c
1
1, c2

1, where c0
1 denotes absence of the cause at hand. We 

assume that the probability Pr(e | c0
1, ̄c2) is set to zero, and that values have been obtained for the parameter probabilities 

Pr(e | c1
1, ̄c2), Pr(e | c2

1, ̄c2) and Pr(e | c0
1, c2). We now focus on the two remaining probabilities Pr(e | c1

1, c2) and Pr(e | c2
1, c2)

from the probability table for E , and write the prior probability of interest Pr(e) in terms of the values x and y for these 
probabilities. The following bi-linear function is found:
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Pr(e)(x, y) = x · Pr(c1
1) · Pr(c2) + Pr(e | c1

1, c̄2) · Pr(c1
1) · Pr(c̄2) + y · Pr(c2

1) · Pr(c2) + Pr(e | c2
1, c̄2) · Pr(c2

1) · Pr(c̄2)

+ Pr(e | c0
1, c2) · Pr(c0

1) · Pr(c2)

= α1 · x + α2 · y + β

where the constants αi , i = 1, 2, again are built from prior probabilities of the two cause variables; the constant α1 for 
example, equals Pr(c1

1) · Pr(c2) and captures the function’s partial gradient associated with the dimension x = Pr(e | c1
1, c2). 

The constant β also involves these prior probabilities and in addition includes the parameter probabilities Pr(e | c j
1, ̄c2), 

j = 1, 2, and Pr(e | c0
1, c2). Focusing again on the partial gradients of the function, we observe that α1 can attain a large 

value only with large probabilities of c2 being present and of C1 having the value c1
1. Analogously, α2 attains a large value 

only with large prior probabilities of c2 being present and of C1 being equal to c2
1. We thus once more find propagation 

effects in line with those found with the noisy-OR model in Section 3: large deviations from the true values of at least one 
of the probabilities Pr(e | c1

1, c2) and Pr(e | c2
1, c2) can give a large shift in the prior probability of the effect only with highly 

skewed prior probability distributions over the cause variables. We note moreover that such a large partial gradient can be 
found in just a single dimension.

For investigating the effects of deviating noisy-MAX calculated values upon diagnostic propagation, we express the ex-
ample probability of interest Pr(c1

1 | e) as a function of the value x for the probability Pr(e | c1
1, c2) and the value y for the 

probability Pr(e | c2
1, c2), to find that

Pr(c1
1 | e)(x, y) = x + β ′

x + α · y + β

where

α = Pr(c2
1)

Pr(c1
1)

β ′ = Pr(e | c1
1, c̄2) · λ−1

C2

β = Pr(e | c0
1, c2) · Pr(c0

1)

Pr(c1
1)

+ Pr(e | c1
1, c̄2) · λ−1

C2
+ Pr(e | c2

1, c̄2) · Pr(c2
1)

Pr(c1
1)

· λ−1
C2

We observe that the function above once again is a quotient of two multi-linear functions. By a similar analysis as used 
in Section 4.2, we start by taking the value zero for y, as a result of which the function reduces to a one-dimensional 
hyperbolic function. The constants β ′ and β involved in this function again depend to a large extent on the skewness of 
the prior probability distributions over the two cause variables. With large prior probabilities Pr(c2) and Pr(c1

1), deviations 
of x from the true probability Pr(e | c1

1, c2) may again give large effects on the output probability of interest. In view of a 
larger (fixed) value for y however, the constants involved in the function expressing Pr(c1

1 | e) in x will become larger, and 
the propagation effect will diminish. Large effects can thus only be found for the smaller value range of y.

We conclude our analysis of the noisy-MAX model by mentioning that similar results hold for use of the model with 
causal mechanisms involving a non-binary effect variable and/or multiple non-binary cause variables.

5.3. On other generalisations of the noisy-OR model

Over the years, many other generalisations and extensions of the noisy-OR model have been developed, which range 
from fairly simple models to more involved ones such as the (inhibited) recursive noisy-OR [17,19] and the NIN-AND tree 
[29,30] models. The techniques and approach presented in this paper can be applied rather straightforwardly for studying 
the effects of propagating deviating values by the simpler models. For the more involved models, our techniques may 
not suffice. The NIN-AND tree model, for example, employs a tree structure to describe a causal mechanism. As this tree 
structure is inherent to the model, it should also be taken into consideration upon investigating propagation effects. In 
essence, each of the building block of an NIN-AND tree could be studied separately to gain at least some basic insights; we 
note that one of the building blocks is the noisy-OR model. Further analysis then depends heavily on the causal mechanism 
considered and on the actual NIN-AND tree corresponding with that mechanism. As such an analysis is beyond the scope 
of the current paper, we leave it for future research.

6. Conclusions

When building a Bayesian network with the help of domain experts, the elicitation of all probabilities required often 
proves the main bottleneck in the engineering process. In order to reduce the amount of time spent on probability elicitation 
and to alleviate the burden for the experts involved, researchers have developed various probabilistic causal interaction 
models. These models basically are parameterised conditional probability tables which require just a limited number of 
parameter probabilities. The remaining probabilities then are calculated using model-specific rules, which are derived from 
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properties of probabilistic interaction among the variables involved. Since not all network engineers are fully aware of these 
properties, causal interaction models are inherently subject to ill-considered use.

In this paper, we addressed the extent to which ill-considered use of a probabilistic causal interaction model can be 
harmful for the overall performance of a Bayesian network; upon doing so, we focused more specifically on the commonly 
employed noisy-OR model and its variants. Using techniques from sensitivity analysis, we expressed various output probabil-
ities of interest as functions of the values of one or more conditional probabilities from a causal mechanism. These functions 
served to reveal the propagation effects of any deviation from the true probability values on the output, and hence provided 
for studying the effects of deviating model-calculated values.

We demonstrated that ill-considered use of a causal interaction model can result in poorly calibrated output probabilities, 
and identified conditions under which large propagation effects on the output can be expected. We found for example that 
a deviating model-calculated value may have a large effect on an output probability upon propagation, only if the yet 
unobserved cause variables in the mechanism have quite skewed probability distributions and/or the obtained parameter 
probabilities have small values. Throughout the paper, we stated the conditions under which large propagation effects can 
be expected, in further detail. We would like to emphasise that these conditions pertain to output probabilities within 
a causal mechanism under study. Strong local effects may yet be subdued upon further propagation throughout a larger 
network.

While one of the results from this paper is the observation that ill-considered use of the noisy-OR model and its vari-
ants can lead to poorly calibrated network output, this result does not contradict the findings from earlier experimental 
studies which have led to the suggestion that Bayesian networks are quite robust against the inaccuracies induced in their 
conditional probability tables by the use of these models. In fact, our investigations have provided a formal underpinning of 
these findings and show that use of a causal interaction model for mere pragmatic reasons may be warranted, even when 
the model’s underlying assumptions are not met in reality. Network engineers are advised however, to verify whether large 
propagation effects may be expected before applying the noisy-OR model, using the insights from the paper.

Our investigations of the effects of deviating noisy-OR calculated probability values have revealed that the presence of 
cancellation effects among the causes in a causal mechanism may induce quite strong propagation effects on probabilities of 
interest. If a modelled cause serves to annihilate to some extent the effect of another cause, the noisy-OR calculated value 
will be considerably higher than the true probability value. Large prior probabilities of the causes being present will then 
induce strong effects on an output probability upon propagation in the diagnostic direction. Motivated by this observation, 
we are now focusing our further investigations on causal mechanisms which embed such cancellation effects among their 
causes. As it will be highly advantageous from a network-engineering point of view to have available a causal interaction 
model for describing cancellation effects, we are now in the process of designing parameterised conditional probability 
tables for this type of interaction.
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