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The shape and center of mass of a part are crucial parameters to algorithms for 
planning automated manufacturing tasks. As industrial parts are generally manufactured 
to tolerances, the shape is subject to variations, which, in turn, also cause variations in 
the location of the center of mass. Planning algorithms should take into account both 
types of variation to prevent failure when the resulting plans are applied to manufactured 
incarnations of a model part.
We study the relation between variation in part shape and variation in the location of the 
center of mass for a part with uniform mass distribution. We consider a general model 
for shape variation that only assumes that every valid instance contains a shape P I while 
it is contained in another shape P E . We characterize the worst-case displacement of the 
center of mass in a given direction in terms of P I and P E . The characterization allows us to 
determine an adequate polytopic approximation of the locus of the center of mass. We also 
show that the worst-case displacement is small if P I is convex and fat and the distance 
between the boundary of P E and P I is bounded.

© 2015 Published by Elsevier B.V.

1. Introduction

Many automated part manufacturing tasks involve manipulators that perform physical actions—such as pushing, squeez-
ing [1], or pulling [2]—on the parts. Over the past two decades, researchers in robotics in general and algorithmic automation 
in particular have thoroughly studied the effect of physical actions as well as their potential role in accomplishing high-level 
tasks like orienting or sorting. It is evident that shape and—in many cases (see e.g. [1,3–7])—location of the center of mass 
are important parameters in determining the effect of a physical action on a part.

Industrial parts are always manufactured to tolerances as no production process is capable of delivering parts that are 
perfectly identical. Tolerance models [8,9] are therefore used to specify the admitted variations with respect to the CAD 
model. A consequence of these variations [10,11] is that actions that are computed on the basis of a CAD model of a part 
may easily lead to different behavior when executed on a manufactured incarnation of that part, and thus to failure to 
accomplish the higher-level task. It is important to note that the shape variations not only directly affect the behavior of 
the part but indirectly as well because they also cause a displacement of the center of mass of the part.
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Fig. 1. A family of shapes specified by a subshape P I and a supershape P E of a model part P M , along with a valid instance P ∈ S(P I , P E ).

To extend the planning algorithms to imperfect manufactured incarnations, it is important to understand the effects of 
variations and take them into account during planning. Larger variations in part shape and center-of-mass location inevitably
result in a larger range of possible part behaviors, which reduces the likeliness that a manufacturing task can be accom-
plished. Therefore we will study how variations in part shape influence the location of the center of mass. (Note that 
variations in shape and center of mass are not the only sources of uncertainty in robotics. Additional uncertainty can result 
from the inaccuracy of the actuators and manipulators [12] and sensors [13].)

Several geometric approaches have been proposed to overcome the problems occurring in the presence of uncertainty 
and to smooth the effects of errors. Among the existing approaches are the model of ε-geometry [14], tolerance and interval 
geometry [15,16] and region-based models [17]. Generally, in all these models an uncertain point is represented by a region 
in which it may vary. The model of ε-geometry assumes that a point can vary within a disk of radius ε . Tolerance and 
interval-geometry take into account coordinate errors which results in an axis-aligned rectangular region in which a point 
can vary. In general, region-based models represent a point by any convex region. After modeling uncertainty as a point 
surrounded by a region, it is possible to study worst (and best) cases for a problem under the specific uncertainty model.

As observed before, variation of the shape causes variation of the center of mass of a part. The locus of the centroid of 
a set of points with approximate weights has been studied by Bern et al. [18]. Akella et al. [19] estimated the locus for a 
polygon under the ε-geometry model [19]. The problem of finding the locus of the center of mass of a part with shape 
variation and uniformly distributed mass has been mentioned as an open problem [11,19]. Akella et al. [19] studied rotating 
a convex polygon whose vertices and center of mass lie inside predefined circles centered at their nominal locations. The 
problem of orienting a part by fences has been studied by Chen et al. [11]. They define disk and square regions for the 
vertices of a part and proposed a method for computing the maximum allowable uncertainty radius for each vertex. They 
also discussed in a more general way the key role of the center of mass and the successfulness of part feeding (or orienting) 
algorithms in a setting of shape variation. Chen et al. [20] presented algorithms for squeezing and pushing problems. Kehoe 
et al. [21] explored cloud computing in a context of grasping and push-grasping under shape variation.

All the previous models for shape variation only allow the vertices to vary. In this paper we use a more general model for 
shape variation. For given shapes P I and P E such that P I ⊆ P E we consider the family of shapes P satisfying P I ⊆ P ⊆ P E . 
In the practical setting of toleranced parts the shapes P I and P E will be fairly similar. We will show in Section 3 that the 
valid instance that yields the largest displacement of the center of mass in a given direction is a shape that combines a 
part of P I with a part of P E . The corresponding displacement is computable in O (n log n) time where n is the complexity 
of P I and P E ; it can be used to obtain a k-facet outer approximation of the set of all possible loci of the center of mass in 
O (kn log n) steps.

In Section 4, we will study the size of the set of possible center-of-mass loci. Fatness of the objects under consideration 
has led to lower combinatorial complexities and more efficient algorithms for various problems, including union complex-
ities [22], motion planning [23], hidden surface removal [24], and range searching [25]. Here we show that fatness and 
convexity of P I together with the assumption that no point in P E has a distance larger than ε to some point in P I leads to 
a bound on the distance between the centers of mass of any two valid instances of a part which is proportional to ε and 
the fatness of P I .

2. Preliminaries

In this section, we first present a general model for shape variations, then review the notion of a center of mass, and 
finally introduce a few notions that allow us to characterize the shapes that maximize the displacement of the center of 
mass. Let P M ⊂ R

d be the model part, with d = 2 or d = 3. The part P M has a uniform mass distribution.
No production process ever delivers parts that are perfectly identical to the model part P M and therefore industrial parts 

are manufactured to tolerances. We use a very general model for permitted shape variations that only requires that any 
manufactured instance of P M contains a given subshape P I of P M while it is contained in a supershape P E of P M . As a 
result, the set of acceptable instances of P M is a family of shapes S(P I , P E ) = {P ⊂ R

d | P I ⊆ P ⊆ P E } for given P I and 
P E satisfying P I ⊆ P M ⊆ P E . In other words, the boundary ∂ P of an instance P ∈ S(P I , P E ) should be entirely contained 
in Q = P E − int(P I ) where int(P ) denotes the interior of the set P . The region Q is referred to as the tolerance zone. 
The objects P I and P E are assumed to be closed semi-algebraic sets with a total of n boundary features. (Fig. 1 shows an 
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Fig. 2. A minmax object.

example of a model part P M , shapes P I and P E , and a valid instance P ∈ S(P I , P E).) We denote by COM(P I , P E ) the set of 
all centers of mass of instances P ∈ S(P I , P E).

We let Xc(P ) denote the x-coordinate of the center of mass and V (P ) be the volume of the object P , with the under-
standing that the volume of a two-dimensional object is its area. The x-coordinate of the center of mass of an object with 
uniform mass distribution satisfies

Xc(P ) = 1

V

∫
V

xdV , (1)

where V is the volume of the object. A similar equality holds for the other coordinate(s) of the center of mass. In the 
case of uniform mass distribution the center of mass corresponds to the centroid of the object. We will often decompose 
an object P into sub-objects Pi (1 ≤ i ≤ n) and then express its center of mass as a function of the centers of mass of its 
constituents, through the equation

Xc(P ) =
∑n

i=1 Xc(Pi)V (Pi)∑n
i=1 V (Pi)

. (2)

We conclude this section by defining several useful objects. Balls play a prominent role in Section 4 of this paper. We 
denote by B(p, r) the closed d-dimensional ball with radius r centered at p, and use the abbreviation B(r) = B(O , r) where 
O is the origin.

For an object P and a value m we define its right portion P+[m] with respect to m by P+[m] = {(x, y) ∈ P ⊂ R
d | x ≥ m}. 

Similarly, we define its left portion P−[m] with respect to m by P−[m] = {(x, y) ∈ P ⊂ R
d | x ≤ m}. With these portions we 

can define minmax objects, which allow us to capture the intuition that the largest displacement of the center of mass in 
a given direction is achieved by the object from S(P I , P E) that ‘maximizes mass’ in that direction and ‘minimizes mass’ in 
the opposite direction. The minmax object P∗[m] consists of a left portion of P I and a right portion of P E with respect to 
the same m, so P∗[m] = P−

I [m] ∪ P+
E [m] = P−

I ∪ P+
E [m] (see Fig. 2). Note that an alternative way to describe P∗[m] is by the 

equation P∗[m] = P−
I [m] ∪ Q +[m] = P I ∪ Q +[m].

3. Displacement of the center of mass

In this section, we find an upper bound on the displacement of the center of mass in a given direction. The resulting 
bound allows us to determine a good polytopic outer approximation of the set COM(P I , P E ) of possible loci of the center of 
mass.

3.1. Bounding the displacement in one direction

Without loss of generality we assume that P I and P E are positioned and oriented in such a way that the center of 
mass of P I coincides with the origin (so Xc(P I ) = 0) and the direction in which we want to bound the displacement aligns 
with the positive x-axis. Although we will bound the displacement with respect to the center of mass of P I we observe 
that the result also induces a bound with respect to the center of mass of P M as P M ∈ S(P I , P E) by definition. We let 
Xr = max(x,y)∈P E x.

Our first lemma establishes a connection between the minmax objects P∗[x] for 0 ≤ x ≤ Xr and the location of their 
centers of mass.

Lemma 1. There is exactly one minmax object P∗[m] (0 ≤ m ≤ Xr) that satisfies Xc(P∗[m]) = m. Moreover x < Xc(P∗[x]) ≤ m for 
all 0 ≤ x < m and Xc(P∗[x]) < m for all m < x ≤ Xr .

Proof. From Xc(P I ) = 0 and Xc(Q +[0]) ≥ 0 and the fact that P∗[0] = P I ∪ Q +[0] it follows that Xc(P∗[0]) ≥ 0; moreover, 
it is clear that Xc(P∗[Xr]) ≤ Xr . As the center of mass of P∗[x] moves continuously as x increases from 0 to Xr there must 



F. Panahi, A.F. van der Stappen / Computational Geometry 48 (2015) 398–406 401
be at least one x such that Xc(P∗[x]) = x. It remains to show that there is also at most one such x. Let m be such that 
Xc(P∗[m]) = m. We consider a minmax object P∗[x] for x 	= m and distinguish two cases: (i) 0 ≤ x < m and (ii) m < x ≤ Xr .

Consider case (i). Using the notation Q ′ = Q +[m] and Q ′′ = P∗[x] − P∗[m] = Q +[x] − Q +[m] we have that P∗[m] =
P I ∪ Q ′ and P∗[x] = P I ∪ Q ′ ∪ Q ′′ . Note that Q ′′ ⊂ [x, m] ×R

d−1 and thus

x ≤ Xc
(

Q ′′) ≤ m.

As x < Xc(P∗[m]) = Xc(P I ∪ Q ′) = m it follows from applying Eq. (2) to P∗[m] = P I ∪ Q ′ that

x
(

V (P I ) + V
(

Q ′)) < Xc
(

Q ′)V
(

Q ′) = m
(

V (P I ) + V
(

Q ′)).
If we then apply Eq. (2) to P∗[x] = P I ∪ Q ′ ∪ Q ′′ and use the aforementioned equation and inequalities we obtain

Xc
(

P∗[x]) = Xc(Q ′)V (Q ′) + Xc(Q ′′)V (Q ′′)
V (P I ) + V (Q ′) + V (Q ′′)

>
x(V (P I ) + V (Q ′)) + xV (Q ′′)

V (P I ) + V (Q ′) + V (Q ′′)
= x

and

Xc
(

P∗[x]) = Xc(Q ′)V (Q ′) + Xc(Q ′′)V (Q ′′)
V (P I ) + V (Q ′) + V (Q ′′)

≤ m(V (P I ) + V (Q ′)) + mV (Q ′′)
V (P I ) + V (Q ′) + V (Q ′′)

= m.

Consider case (ii). Using the notation Q ′ = Q +[x] and Q ′′ = P∗[m] − P∗[x] = Q +[m] − Q +[x] we have that P∗[x] =
P I ∪ Q ′ and P∗[m] = P I ∪ Q ′ ∪ Q ′′ . Note that Q ′′ ⊂ [m, x] ×R

d−1 and thus

m ≤ Xc
(

Q ′′) ≤ x.

As Xc(P∗[m]) = Xc(P I ∪ Q ′ ∪ Q ′′) = m it follows from applying Eq. (2) to P∗[m] = P I ∪ Q ′ ∪ Q ′′ that

Xc
(

Q ′)V
(

Q ′) = m
(

V (P I ) + V
(

Q ′)) + (
m − Xc

(
Q ′′))V

(
Q ′′).

If we then apply Eq. (2) to P∗[x] = P I ∪ Q ′ and use the above equations and inequality we obtain

Xc
(

P∗[x]) = Xc(Q ′)V (Q ′)
V (P I ) + V (Q ′)

≤ m(V (P I ) + V (Q ′)) − (Xc(Q ′′) − m)

V (P I ) + V (Q ′)

≤ m(V (P I ) + V (Q ′))
V (P I ) + V (Q ′)

= m < x.

Combining both cases we find that there is no x 	= m that satisfies Xc(P∗[x]) = x. �
In addition to the fact that there is only one minmax object P∗[m] that satisfies Xc(P∗[m]) = m, Lemma 1 also reveals 

that Xc(P∗[x]) > x for x < m and Xc(P∗[x]) < x for x > m. Moreover, it shows that Xc(P∗[x]) < m for all x 	= m which means 
that the minmax object P∗[m] with Xc(P∗[m]) = m achieves larger displacement of the center of mass in the direction 
of the positive x-axis than any other minmax object P∗[x] with x 	= m. The following theorem shows that P∗[m] in fact 
achieves the largest displacement of the center of mass among all objects in S(P I , P E ).

Theorem 2. Let P∗[m] (0 ≤ m ≤ Xr) be the unique minmax object that satisfies Xc(P∗[m]) = m. Then Xc(P ) < Xc(P∗[m]) for all 
P ∈ S(P I , P E), P 	= P∗[m].

Proof. Let P ∈ S(P I , P E), P 	= P∗[m] be the object that yields the largest displacement m′ ≥ m of the center of mass, so 
Xc(P ) = m′ . If P = P∗[m′] then it follows immediately from Lemma 1 that m′ = m. Now assume for a contradiction that 
P 	= P∗[m′] = P−

I [m′] ∪ P+
E [m′] which implies that (i) P+

E [m′] − P+[m′] 	= ∅ or (ii) P−[m′] − P−
I [m′] 	= ∅.

Consider case (i) and let R be a closed connected subset with V (R) > 0 of P+
E [m′] − P+[m′]. Observe that P ∪ R ∈

S(P I , P E ). Note that R ⊂ (m′, ∞) ×R
d−1 and thus Xc(R) > m′ . We get

Xc(P ∪ R) = Xc(P )V (P ) + Xc(R)V (R)

V (P ) + V (R)

>
m′V (P ) + m′V (R) = m′
V (P ) + V (R)
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which contradicts the assumption that P is the object in S(P I , P E) that achieves the largest displacement of the center of 
mass.

Consider case (ii) and let R be a closed connected subset with V (R) > 0 of P−[m′] − P−
I [m′]. Observe that P − R ∈

S(P I , P E). Note that R ⊂ (−∞, m′) ×R
d−1 and thus Xc(R) < m′ . We get

Xc(P − R) = Xc(P )V (P ) − Xc(R)V (R)

V (P ) − V (R)

>
m′V (P ) − m′V (R)

V (P ) − V (R)
= m

which again contradicts the assumption that P is the object in S(P I , P E ) that achieves the largest displacement of the 
center of mass. As a result we find that P∗[m] with Xc(P∗[m]) = m is the unique object in S(P I , P E) that achieves the 
largest displacement of the center of mass. �

The theorem shows that the set COM(P I , P E ) does not extend beyond the plane or line x = m where m is such that 
Xc(P∗[m]) = m. The bound is tight because P∗[m] ∈ S(P I , P E). In fact, the theorem shows that P∗[m] is the only instance 
in S(P I , P E ) that has its center of mass on that plane or line. Since the result holds in any direction, this implies that the 
boundary of COM(P I , P E ) bounds a convex set.

3.2. A k-facet approximation for COM(P I , P E)

The results in the previous subsection suggest an easy approach to determine an outer approximation of the set 
COM(P I , P E) of possible centers of mass of instances in S(P I , P E ). If we select k different directions that positively span the 
d-dimensional space (d = 2, 3) and apply Theorem 2 in each of these directions then we obtain a bounded polytope with k
facets enclosing COM(P I , P E ). Every facet of the polytope contains a point of the convex set COM(P I , P E).

Our method to efficiently compute the largest displacement of the center of mass in the positive x-direction relies on a 
covering P I and P E by a set of signed cones, following an idea by Lien and Kajiya [26], using that an integral (such as the 
center of mass) over an object is the sum of appropriately signed integrals over the cones. To get the required covering of 
P I (and P E ) we pick a point v on its boundary and decompose its facets into O (n) subfacets of constant complexity such 
that every half-line emanating from v intersects the subfacet at most once. The cones are then obtained by connecting v to 
every single subfacet.

To find the largest displacement of the center of mass in the positive x-direction, we sort the features of P I and P E by 
x-coordinate and perform a binary search. For each x considered during this search we compute Xc(P∗[x]) = Xc(P−

I [x] ∪
P+

E [x]) by using the intersections of the constant-complexity cones covering P I and P E with the respective half-spaces. 
This requires the computation of O (n) integrals of a bounded-degree polynomial over a constant-complexity domain. By 
comparing the resulting Xc(P∗[x]) to x it can be determined how to continue the search. Once the x satisfying Xc(P∗[x]) = x
is found to lie between two consecutive features, we can find it by solving a polynomial equation of bounded degree. 
Applying the same procedure in each of the k selected directions yields that we can find a k-facet outer approximation 
of COM(P I , P E) in O (kn log n) steps, where each step requires the computation of a bounded-degree polynomial over a 
constant-complexity domain or the solution of a polynomial equation of bounded degree.

Fig. 3 shows a two-dimensional P I and P E and 4-, 8-, 16-, and 64-edge outer approximations of COM(P I , P E). Recall 
that every edge of the polygonal approximation contains one point of the convex set COM(P I , P E ), so COM(P I , P E) strongly 
resembles its approximation.

The examples in Fig. 3 seem to suggest that the displacement of the center of mass is proportional to the distance 
between the boundaries of P I and P E and does not depend on the sizes of P I and P E themselves. In the next section we 
will see that this is not true in general. We will derive a bound on the size of COM(P I , P E) for a convex P I that depends 
on the distance between the boundaries of P I and P E and the fatness of P I .

4. Bounding the size of COM(P I , P E )

The admitted shape variation for a manufactured part is usually small compared to the dimensions of the part itself. As 
a result, the enclosed shape P I and enclosing shape P E do not deviate much from the model shape P M , and therefore also 
not from each other. To capture this similarity we will assume that P I ⊆ P E ⊆ P I ⊕ B(ε), where ⊕ denotes the Minkowski 
sum. Note that this means that every point in P E lies within a distance of at most ε from some point in P I .

We must also assume that P I is convex and fat to obtain a bound on the diameter of COM(P I , P E) that depends on ε
and the fatness. There are many different definitions of fatness and we will use the one by De Berg et al. [27], which is 
based on a similar definition presented in the thesis of van der Stappen [23].

Definition 1. Let P ⊆ R
d be an object and let β be a constant with 0 < β ≤ 1. Define U (P ) as the set of all balls centered 

inside P whose boundary intersects P . We say that the object P is β-fat if for all balls B ∈ U (P ) we have V (P ∩ B) ≥ β ·V (B). 
The fatness of P is defined as the maximal β for which P is β-fat.
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Fig. 3. Outer approximations of COM(P I , P E ) with (a) 4, (b) 8, (c) 16, and (d) 64 vertices.

Fig. 4. (a) The part P∗[L/2] = P I ∪ Q +[L/2] (in gray) has its center of mass at least L/4 to the right of the center of mass of thin convex part P I . (b) The 
part P∗[0] = P I ∪ Q +[0] (in gray) has its center of mass at least L/16 to the right of the center of mass of the fat non-convex part P I .

For bounded objects the value of β is at most 1/2d; larger values only occur for unbounded objects [23].
Two planar polygonal examples in Sections 4.1 and 4.2 show that both fatness and convexity of P I are necessary for a 

bound that is independent of the size of P I (and P E ). In Section 4.3 we derive a bound for the case that both assumptions 
hold.

4.1. A thin convex part

When P I is a sufficiently long and narrow box the set S(P I , P E) contains shapes whose centers of mass are a distance 
proportional to the diameter of P I apart. Let L � ε and pick λ such that 0 < λ < 2ε2/(L − ε). We define P I = [−L/2, L/2] ×
[−λ/2, λ/2] and P E = [−(L + ε)/2, (L + ε)/2] × [−(λ + ε)/2, (λ + ε)/2], and note that P E ⊆ P I ⊕ B(ε). See Fig. 4(a).

Now consider the object P∗[L/2] = P−
I [L/2] ∪ P+

E [L/2] = P I ∪ Q +[L/2]. We observe that V (P I ) = λL, Xc(P I ) = 0, 
V (Q +[L/2]) = ε(ε + λ)/2, and Xc(Q +[L/2]) = L/2 + ε/4 > L/2. The upper bound on λ implies that V (Q +[L/2]) > V (P I ). 
From Eq. (2) it follows that Xc(P∗[L/2]) > L/4, showing that the diameter of COM(P I , P E ) is not proportional to ε in this 
case.

4.2. A fat non-convex part

We define an auxiliary box A = [−L/2, L/2]2 that will contain P I and let P E = [−(L + ε)/2, (L + ε)/2]2. We subdivide 
A both horizontally and vertically into an odd number (≥ 5) of strips of width just smaller than ε/2. See Fig. 4(b). We 
construct P I by taking the union of every second vertical strip, starting with the first and ending with the last, and the 
bottommost horizontal strip. The resulting object P I is a comb-shaped object that is known to be at least 1/4π -fat [23]. 
Note that P E ⊆ P I ⊕ B(ε). From the symmetry of P I it is immediately clear that Xc(P I ) = 0.

Now consider the object P∗[0] = P−
I [0] ∪ P+

E [0] = P I ∪ Q +[0]. It is clear from the construction that V (Q +[0]) > V (P I )/2
and that V (Q +[0]) < V (P I ). It is also easy to verify that Xc(Q +[0]) > L/4. Combining the inequalities with Eq. (2) yields 
that Xc(P∗[0]) > L/16 showing that the diameter of COM(P I , P E ) is also not proportional to ε in this case.
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Fig. 5. Illustration of Lemma 4.

4.3. Fat convex parts

We turn our attention to the case that P I is both convex and β-fat (0 < β ≤ 1), and recall that P E ⊆ P I ⊕ B(ε). The 
Steiner formula for convex bodies (see e.g. [28,29]) establishes a useful connection between the properties of a convex 
object P and a value ε on the one hand and the volume of P ⊕ B(ε) on the other hand. Lemma 3 summarizes the formula 
for two- and three-dimensional objects.

Lemma 3. Let P ⊂ R
d (d = 2, 3) be a convex object. Then

• V (P ⊕ B(ε)) = V (P ) + pε + πε2 , where p is the perimeter of P , when d = 2, and
• V (P ⊕ B(ε)) = V (P ) + aε + 2π wε2 + 4

3 πε3 , where a is the surface area and w is the mean width of P , when d = 3.

The results will be used in the proof of Theorem 5 to bound the additional volume that any instance of S(P I , P E) can 
have in comparison to P I .

Lemma 4 is not strictly necessary yet it leads to a better bound in our main theorem. The two-dimensional version of 
the lemma is based on a result by Hammer [30], which we will generalize to three-dimensional objects.

Lemma 4. Let P ⊂ R
d (d = 2, 3) be a convex object with diameter δ. Then no point in P has distance larger than δd

d+1 to the center of 
mass of P .

Proof. Hammer’s result [30] says that the center of mass of every planar convex body divides every chord through it in a 
ratio less than or equal to 2/3, meaning that the part of the chord on one side of the center of mass cannot be more than 
twice as long as the part on the other side of the center of mass. The result then follows from the observation that no chord 
is longer than the diameter δ.

We will extend Hammer’s construction to show that the center of mass of every three-dimensional convex body divides 
every chord through it in a ratio less than or equal to 3/4, which will then immediately imply the given result. Let b1 and 
b2 be the endpoints of a chord through the center of mass of P . See Fig. 5. Let Π1 be a plane tangent to P at b1, and let 
Π2 be the plane parallel to Π1 at 3/4 the distance between b2 and Π1 from b2. The intersection of P with the plane Π2 is 
a convex two-dimensional shape I . We create a generalized cone C by taking the union of all half-lines emanating from b2
and passing through I and clipping the resulting shape with the plane Π1. Application of Eq. (1) to C reveals that its center 
of mass lies on Π2.

The plane Π2 cuts the objects P and C into two parts each. Let P1 and C1 be the parts of P and C respectively between 
Π1 and Π2; let P2 and C2 be the parts of P and C respectively in the half-space bounded by Π2 and containing b2. The 
convexity of P implies that P1 ⊆ C1 and P2 ⊇ C2; in other words, the object P has less or equal mass than C beyond Π2, 
while it has more or equal mass than C in front of Π2 (when viewed from b2). As a result, the object P must have its 
center of mass on the part of the chord between b1 and b2 in front of Π2, which proves the claim. �

Lemma 4 shows that any convex object with diameter δ (and uniform mass distribution) fits completely inside a ball 
with radius δd

d+1 centered at its center of mass, which is a slightly stronger result than the obvious claim that it fits inside 
a ball with radius δ.

We now have all the ingredients to prove our upper bound on the diameter of COM(P I , P E).

Theorem 5. Let P I ⊂ R
d (d = 2, 3) be a bounded convex β-fat object (0 < β ≤ 1) and let P E ⊂ R

d be a bounded object satisfying 
P I ⊆ P E ⊆ P I ⊕ B(ε). Then the diameter of COM(P I , P E) is bounded by 5 β−1ε if d = 2 and by 3β−1ε if d = 3.
2
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Proof. We use δ to denote the diameter of P I and once again assume without loss of generality that Xc(P I ) = 0. Theorem 2
shows that it suffices to consider objects P∗[m] to bound the size of COM(P I , P E ). The assumption Xc(P I ) = 0 allows us to 
simplify Eq. (2) for P∗[m] = P I ∪ Q +[m] to

Xc
(

P∗[m]) = Xc(Q +[m])V (Q +[m])
V (P I ) + V (Q +[m]) . (3)

Lemma 4 says that P I lies completely inside B(δd/(d + 1)). As a consequence, the object P∗[m] must lie entirely inside 
B(δd/(d + 1) + ε), which implies that Xc(P∗[m]), Xc(Q +[m]) ≤ (δd/(d + 1) + ε). We treat d = 2 and d = 3 separately.

Consider d = 2. We distinguish two cases based on the ratio of ε and δ.
If ε ≥ δ/6 then Xc(P∗[m]) ≤ 2δ/3 + ε ≤ 5ε . Since P∗[m] is bounded we know that β ≤ 1/4 and thus Xc(P∗[m]) ≤ 5ε ≤

5β−1ε/4.
If ε ≤ δ/6 we use Eq. (3) to obtain an upper bound Xc(P∗[m]) by combining the upper bound Xc(Q +[m]) ≤ 2δ/3 + ε

with a lower bound on V (P I ) and upper and lower bounds on V (Q +[m]). The lower bound on V (P I ) follows from the 
fatness of P I . As δ is the diameter of P I there must be two points p1, p2 ∈ P I that are δ apart. The boundary of the ball 
B(p1, δ) contains p2 and thus belongs to the set U (P I ). The β-fatness of P I implies that V (P I ) ≥ β · V (B(p1, δ)) = βπδ2.

It remains to bound V (Q +[m]). We note that Q +[m] ⊆ Q ⊆ (P I ⊕ B(ε)) − int(P I ), from which it follows that 
V (Q +[m]) ≤ V (P I ⊕ B(ε)) − V (P I ). Lemma 3 says that V (P I ⊕ B(ε)) − V (P I ) = pε + πε2, where p is the perimeter of 
P . As P I is contained in B(2δ/3) we know that p ≤ 4πδ/3. Combining these observations with a trivial lower bound on 
V (Q +[m]) we get 0 ≤ V (Q +[m]) ≤ 4πεδ/3 + πε2.

Plugging all the inequalities into Eq. (3) and using ε/δ ≤ 1/6 yields

Xc
(

P∗[m]) = Xc(Q +[m])V (Q +[m])
V (P I ) + V (Q +[m])

≤ ( 2
3 δ + ε)( 4

3πδε + πε2)

βπδ2

= β−1ε

(
8

9
+ 2

(
ε

δ

)
+

(
ε

δ

)2)

≤ 5

4
β−1ε

which shows COM(P I , P E) ⊆ B( 5
4 β−1ε) if d = 2.

Now consider d = 3, and again distinguish two cases based on the ratio of ε and δ.2

If ε ≥ 3δ/44 then Xc(P∗[m]) ≤ 3δ/4 + ε ≤ 12ε . As P∗[m] is bounded we have that β ≤ 1/8 and thus Xc(P∗[m]) ≤ 12ε ≤
3β−1ε/2.

If ε ≤ 3δ/44 we again derive a lower bound on V (P I ) and upper and lower bounds on V (Q +[m]), and combine it with 
the upper bound Xc(Q +[m]) ≤ 3δ/4 +ε . The lower bound on V (P I ) follows from the fatness of P I . If p1, p2 ∈ P I are δ apart, 
then the ball B(p1, δ) again belongs to the set U (P I ). The β-fatness of P I now implies that V (P I ) ≥ β · V (B(p1, δ)) = 4βπδ3.

We bound V (Q +[m]) using V (Q +[m]) ≤ V (P I ⊕ B(ε)) − V (P I ). Lemma 3 says that V (P I ⊕ B(ε)) − V (P I ) = aε +
2π wε2 + 4

3 πε3, where a is the surface area and w is the mean width of P . As P I is contained in B(3δ/4) we know 
that a ≤ 4π(3δ/4)2 = 9πδ2/4. Moreover, the mean width w does not exceed the diameter of P I so w ≤ δ. Combining these 
observations with a trivial lower bound on V (Q +[m]) we get 0 ≤ V (Q +[m]) ≤ 9πδ2ε/4 + 2πδε2 + 4πε3/3.

Plugging all the inequalities into Eq. (3) and using ε/δ ≤ 3/44 yields

Xc
(

P∗[m]) = Xc(Q +[m])V (Q +[m])
V (P I ) + V (Q +[m])

≤ ( 3
4 δ + ε)( 9

4πδ2ε + 2πδε2 + 4
3πε3)

4
3 βπδ3

= β−1ε

(
81

64
+ 45

16

(
ε

δ

)
+ 9

4

(
ε

δ

)2

+
(

ε

δ

)3)
<

3

2
β−1ε

which shows COM(P I , P E) ⊆ B( 3
2 β−1ε) if d = 3. �

2 For reasons of simplicity of the final bound we have chosen the split at ε = δ/(44/3). The optimal split would be at ε = δ/k where k equals the single 
positive real root of the equation 6k4 − 73k3 − 180k2 − 144k − 64 = 0, which yields

k = 3

√
977

8
+ √

654 + 3

√
977

8
+ √

654 + 9

2
.

A split at k leads to a marginally better bound on the radius of the disk containing COM(P I , P E ).
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Theorem 5 confirms the intuition that the variation of the center of mass of a convex part grows if the admitted shape 
variation increases or the fatness decreases.

5. Conclusion

We have considered a very general model for admitted shape variations of a model part, based on enclosed shape P I and 
an enclosing shape P E . We have identified the valid instance that maximizes the displacement of the center of mass in a 
given direction, and used this result to find a k-facet polytopic outer approximation of the set of all possible center-of-mass 
loci in O (kn log n) time, where n is the number of features of P I and P E . If P I is convex and β-fat and every point of P E

lies within a distance ε of P I then the diameter of the set of all center-of-mass loci can be shown to be O (β−1ε).
We have presented examples that show that both fatness and convexity are necessary to bound the size of the set of all 

possible center-of-mass loci. Since there are many definitions of fatness it is worthwhile to see if there are versions that can 
lead to a similar result without requiring convexity of P I . It seems crucial to avoid long boundaries. It is also interesting to 
investigate under which circumstances the results can be extended to parts with non-uniform mass distribution.
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