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Abstract Finding subsets of a dataset that somehow deviate from the norm, i.e. where
something interesting is going on, is a classical Data Mining task. In traditional local
pattern mining methods, such deviations are measured in terms of a relatively high
occurrence (frequent itemset mining), or an unusual distribution for one designated
target attribute (common use of subgroup discovery). These, however, do not encom-
pass all forms of “interesting”. To capture a more general notion of interestingness in
subsets of a dataset, we develop Exceptional Model Mining (EMM). This is a super-
vised local pattern mining framework, where several target attributes are selected,
and a model over these targets is chosen to be the target concept. Then, we strive
to find subgroups: subsets of the dataset that can be described by a few conditions
on single attributes. Such subgroups are deemed interesting when the model over the
targets on the subgroup is substantially different from the model on the whole dataset.
For instance, we can find subgroups where two target attributes have an unusual cor-
relation, a classifier has a deviating predictive performance, or a Bayesian network
fitted on several target attributes has an exceptional structure. We give an algorithmic
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solution for the EMM framework, and analyze its computational complexity. We also
discuss some illustrative applications of EMM instances, including using the Bayesian
network model to identify meteorological conditions under which food chains are dis-
placed, and using a regression model to find the subset of households in the Chinese
province of Hunan that do not follow the general economic law of demand.

Keywords Exceptional Model Mining · Subgroup Discovery · Supervised Local
Pattern Mining · Regression · Bayesian Networks

Mathematics Subject Classification H.2.8: Data mining

1 Introduction

Traditionally, the goal of Subgroup Discovery (SD) (Klösgen 2002; Herrera et al.
2011) is to find interesting subsets of the dataset at hand. Commonly, a subset is
deemed interesting when the distribution of one designated target attribute on the
subset deviates from its distribution on the entire dataset. Consider for instance a dataset
concerning people, and let the target attribute be whether the person develops lung
cancer. Interesting subsets would then include the group of smokers, with an increased
incidence of lung cancer, and the group of athletes, with a decreased incidence of
lung cancer. SD explicitly requires a subset to have a concise description in terms
of constraints on non-target attributes. A subset for which such a description exists
is called a subgroup. This requirement makes subgroups easier to interpret by the
data miner, but also more actionable for the domain expert who is interested in the
real-world implications of the subgroup.

The notion of a deviating distribution of one designated target attribute does not
encompass all forms of “interesting”. We illustrate this with the synthetic example
from Fig. 1. To our human eyes, it is immediately clear that the entire dataset (Fig. 1a),
consists of a mixture of two phenomena: there is uniformly randomly distributed static
(Fig. 1b), and there is something stronger going on along the diagonal (Fig. 1c). This
diagonal forms a subset of the dataset where something interesting is going on, so
ideally we would want our computer to find it for us in the dataset. It is not that easy
for a computer to come up with this idea, for a variety of reasons:

– for each single record in the dataset, it is unclear whether it belongs to the diagonal
or the static. Of course, when a record is in the top-left or bottom-right corner of
Fig. 1a, it will surely be part of the static, but as we approach the diagonal it
becomes less clear. After all, the dataset should be partitioned into a diagonal and
uniformly randomly distributed static; it should not be partitioned into a diagonal
and uniformly randomly distributed static minus the diagonal;

– for the partition to be actionable, we need a description for the diagonal in terms
of other attributes in the dataset, in order to easily classify new records into one of
the subsets and interpret the formed model in terms of the dataset domain;

– the model class is unknown. Our human eyes immediately see that there is a
diagonal in the data, but I have to tell my computer what to look for. For all it
knows, there is a parabola in the data, or a sinusoidal wave;
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Fig. 1 A mixture of distributions. Ideally we would want to find a way to partition the original dataset
from a into two parts: the static, depicted in b, and the diagonal line, depicted in c

– the model parameters are unknown. Even if we know that we want our computer
to look for a diagonal, we still need to determine when we find such a diagonal
really interesting. This is a matter of degree: do we find the diagonal in Fig. 1a
pronounced enough to be reported? What if it becomes twice as thick? Obviously,
if the diagonal would cover the entire dataset, we would not find it interesting;
where do we draw the line?
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In this paper, we do not solve all these issues. We do, however, develop a frame-
work allowing users to define the model classes they are interested in, and to search
for interesting subgroups. To capture this more general notion of interestingness in
subgroups, we develop Exceptional Model Mining (EMM). It can be seen as a gener-
alization of traditional SD that allows for more complicated target concepts. An EMM
instance always starts with partitioning the attributes of the dataset into two sets: the
descriptive attributes, which are used to define subgroups, and the target attributes,
on which the subgroups are evaluated. A model class over these targets is selected,
and a quality measure is defined that determines the interestingness of a subgroup
in terms of model characteristics. Then, an SD run is performed to find subgroups
with a high quality, i.e. having a model that is exceptional compared to the model
on the entire dataset. Subgroup evaluation being based on any kind of characteristic
of any kind of model, EMM discovers interesting subgroups for any interpretation of
“interesting”.

As this paper extends the previously published papers (Leman et al. 2008;
Duivesteijn et al. 2010, 2012a) [the fourth publication Knobbe et al. (2012) is essen-
tially a reproduction of Leman et al. (2008)], we detail in this paragraph which parts
stem from which papers, and which parts are new. The Abstract, Introduction and Con-
clusion are all newly drafted. The motivating Pisaster example from Sect. 2 is taken
from Duivesteijn et al. (2010), and the motivating Giffen example from Sect. 2 is taken
from Duivesteijn et al. (2012a). The EMM framework definition in Sect. 3 is adapted
from Leman et al. (2008), but the separation between descriptors and targets is made
more explicit [as it is in Duivesteijn et al. (2010) and Duivesteijn et al. (2012a)]. The
separation was not as strict in the EMM definition in Leman et al. (2008), and one can
debate whether it is absolutely necessary. We think, however, that it is a healthy choice
to make a clear separation between the attributes on which subgroups are formed and
the attributes on which they are evaluated. The formal problem statement, discussion
of our choices for the refinement operator and description language, and pseudocode
for the beam search algorithm with accompanying complexity analysis (Sects. 3.1–
4.2) are new contributions of this paper. Also new is the discussion in Sect. 3.2 on
how to define an EMM instance, on common concepts in quality measures, and on
whether a subgroup should be compared to its complement or to the whole dataset.
The EMM instances from Sects. 5.1, 5.3, and 5.4 stem from Leman et al. (2008), the
instance from Sect. 5.5 was introduced in Duivesteijn et al. (2010), and the instance
from Sect. 5.6 stems from Duivesteijn et al. (2012a), while the Association model
class from Sect. 5.2 is new. A similar division holds for the corresponding parts of
Sect. 6: Sects. 6.1, 6.3, 6.4, 6.7.1, and 6.7.2 appeared in Leman et al. (2008), Sects. 6.5
and 6.7.3 stem from Duivesteijn et al. (2010), Sect. 6.6 is taken from Duivesteijn et al.
(2012a), and Sect. 6.2 is new. Section 7.1 is relatively new: it obviously includes the
related work discussed in Leman et al. (2008), Duivesteijn et al. (2010), Duivesteijn
et al. (2012a), but it adds many more references, and categorizes and discusses them
in more detail. The discussion of the three reasons why EMM exists in Sect. 8 is
entirely new, including the subgroup-reinforced general linear regression modeling
experiments of Sect. 8.1.
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2 Motivation

Finding elements that behave differently from the norm in a dataset is a well-known
task. Most data mining research in this direction focuses on detecting outliers: simply
identifying the peculiarly-behaving records. The characteristic feature of local pattern
mining techniques that separate them from outlier detection methods, is that in local
pattern mining, we are not just looking for any outlying record or set of records in the
data. Instead, we are looking for subgroups: coherent subsets that can be concisely
described in terms of attributes of the data. The existence of such descriptions makes
the subgroups more actionable. If we can tell a drug manufacturer that ten of his patients
react badly to a certain type of medication, this doesn’t help him much. However, if
we can tell him that the group of smokers reacts badly, this gives the manufacturer a
clear indication where to find a solution to his problem.

When the target concept in a dataset can no longer be captured by one particular
attribute, but we still want to find exceptional subgroups in the dataset, we find a need
for EMM. As an example of a relatively complex target concept, consider the research
performed by Robert T. Paine in 1963 and 1964 in Makah Bay, WA (Paine 1966).
It concerns the carnivore starfish Pisaster ochraceus whose presence kept a marine
ecosystem consisting of 15 species stable. In this system, the sponge Haliclona was
browsed upon by the nudibranch Anisodoris. When Pisaster was artificially removed,
the bivalve Mytilus californianus and the barnacles Balanus glandula and Mitella poly-
merus rapidly grew and crowded out other species. In total, only 8 species remained.
Also, the sponge-nudibranch food chain was displaced, and the anemone population
was reduced in density. When present, Pisaster does not eat either of these last three
species.

In the studied ecosystem, Pisaster was the top carnivore: it consumed other species,
but no other species consumed him, and Pisaster was the only species in the system for
which both these statements held. This made Paine et al.’s research very relevant from a
biological point of view; up until that point, it was generally assumed that removing the
top carnivore from an ecosystem would increase diversity, but the Pisaster experiment
proved that that was not necessarily the case.

Paine remarks that the food chains are strongly influenced by Pisaster, but by
an indirect process. When dealing with a dataset detailing the presence of individ-
ual species, existing methods can probably detect simple patterns in the ecosystem,
such as the growth of Mytilus, Balanus and Mitella and the decline in the number of
species when Pisaster is removed. However, the more indirect influence of Pisaster
on processes such as a food chain it is not directly related to, like the one between Hali-
clona and Anisodoris, cannot be found by looking at single species or even correlations
between pairs of species: the (in-)dependence between Haliclona and Anisodoris is
conditional on the presence of Pisaster.

Paine models the food chains in the ecosystem as a Bayesian network. In order
to find subgroups where the food chains between species are substantially different
from the norm, we need to be able to detect the indirect processes that can be captured
with a Bayesian network. Using an EMM instance, we can for instance find subgroups
defined by environmental parameters in which complex food chains are displaced.
The ability to cope with Bayesian networks makes the same EMM instance applicable
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to datasets from such diverse fields as information retrieval (de Campos et al. 2004),
gene expression in computational biology (Friedman et al. 2000), traffic accident
reconstruction (Davis 2003), medical expert systems (Díez et al. 1997), and financial
operational risk (Neil et al. 2005).

Another EMM instance could for example be used to find evidence for the Giffen
effect in data. The economic law of demand states that, all else equal, if the price of a
good increases, the demand for the product will decrease. Sir Robert Giffen described
conditions under which this law does not hold (Marshall 1895). The classic example
concerns extremely poor households, who mainly consume cheap staple food, and
relatively rich households in the same neighborhood, who can afford to enrich their
meals with a luxury food. In this situation, when the price of the staple food increases,
there will be a point where the relatively rich households can no longer afford the luxury
food. However, these people need to uphold their calorie intake. Hence, they react by
consuming more of the cheapest food available to them, which is the staple food whose
price just increased. For the relatively rich households in this poor neighborhood, an
increase in the price of the staple food, will lead to an increase in the demand for the
staple food. Notice that this relation does not hold for the extremely poor households:
they consume only the staple food to begin with, so when the price increases they can
simply afford less of it.

For a long time, the Giffen effect was a controversial theory in Economics, since no
real-life dataset featuring the effect was available. However, in 2008, Jensen and Miller
(2008) published a paper with the first real-world dataset containing the Giffen effect,
for rice in Hunan, China. The relation between the price of and demand for certain
goods is captured by a regression model. The group of relatively rich households in a
poor neighborhood can be seen as a subgroup. Hence, an EMM instance mining for
an unusual slope of a regression line can automatically detect such groups displaying
Giffen behavior in a dataset.

3 The Exceptional Model Mining framework

We assume a dataset Ω to be a bag of N records r ∈ Ω of the form

r = {a1, . . . , ak, �1, . . . , �m}
where k and m are positive integers. We call a1, . . . , ak the descriptive attributes or
descriptors of r , and �1, . . . , �m the target attributes or targets of r . The descrip-
tors are taken from an unrestricted domain A; restrictions on the type of each tar-
get may be imposed by the choice of model class. We refer to the i th record by
r i .

For our definition of subgroups, we need to define descriptions. These are functions
D : A→ {0, 1}. A description D covers a record r i if and only if D

(
ai

1, . . . , ai
k

) = 1.
Typically we restrict the description language D from which descriptions can be taken;
the choice of description language within EMM is free. In Sect. 4.1 we detail the choice
for D we make in this paper, but the Exceptional Model Miner is free to make another
choice.
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Definition 1 (Subgroup) A subgroup corresponding to a description D is the bag of
records G D ⊆ Ω that D covers:

G D =
{

r i ∈ Ω
∣∣∣D

(
ai

1, . . . , ai
k

)
= 1

}

From now on we omit the D if no confusion can arise, and refer to a subgroup as
G. Whenever it is clear that we have a particular subgroup G in mind, we write n for
the number of records in that subgroup: n = |G|. The complement of a subgroup is
denoted by GC , and for its number of records we write nC . Hence, GC = Ω\G, and
nC = N − n.

To objectively evaluate a candidate description in a dataset, we define a quality
measure. For each description D in the description language D, this function quantifies
how exceptional the model is that we induce on G D .

Definition 2 (Quality Measure) A quality measure is a function ϕ : D → R that
assigns a unique numeric value to a description D, given a dataset Ω .

EMM (Leman et al. 2008; Duivesteijn et al. 2010, 2012a) is a data mining frame-
work that can be seen as a generalization of the SD framework. SD strives to find
descriptions that satisfy certain user-specified constraints. Usually these constraints
include lower bounds on the quality of the description (ϕ(D) ≥ lb1) and size of the
induced subgroup (|G D| ≥ lb2). More constraints may be imposed as the question at
hand requires; domain experts may for instance request an upper bound on the com-
plexity of the description. Most common SD algorithms traverse1 the search space of
candidate descriptions in a general-to-specific way: they treat the space as a lattice
whose structure is defined by a refinement operator η : D→ 2D. This operator deter-
mines how descriptions can be extended into more complex descriptions by atomic
additions. Most applications (including ours) assume η to be a specialization opera-
tor: ∀ Di ∈ η(D j ) : D j � Di (i.e. Di is more specialized than D j ). The algorithm
results in a ranked list of descriptions (or the corresponding subgroups) that satisfy
the user-defined constraints.

In traditional SD, there is only a single target variable. Hence, the typical quality
measure contains a component gauging the distributional difference of the target vari-
able in the subgroup, compared to its distribution in the whole dataset. Since unusual
distributions are easily achieved in small subsets of the dataset, the typical quality
measure also contains a component indicating the size of the subgroup. Thus, whether
a description is deemed interesting depends on both its exceptionality and the size of
the corresponding subgroup.

EMM can be seen as an extension of SD. Rather than one single target variable,
EMM uses a more complex target concept. An instance of EMM is defined by the
combination of a chosen model class over the targets, and a designed quality measure
over this model class. Having generated candidate subgroups to evaluate, for each
subgroup under consideration we induce a model on the targets, learning the model
from only the data belonging to the subgroup. Then, this model is evaluated with the

1 We consider the exact search strategy to be a parameter of the algorithm.
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designed quality measure, to determine which subgroups are the most interesting ones.
The typical quality measure in EMM indicates how exceptional the model fitted on
the targets in the subgroup is, compared to either the model fitted on the targets in
its complement, or the model fitted on the targets in the whole dataset (we discuss
this fundamental choice in Sect. 3.2.2). Just like in traditional SD, exceptional models
are sometimes easily achieved in small subgroups, so if necessary an EMM quality
measure also contains a component indicating the size of the subgroup.

3.1 Problem statement

So far, we have talked about EMM in an informal, colloquial manner. This is deliberate.
The goal is to find interesting subgroups of a dataset, for whatever instantiation of
“interesting” the user of EMM cares for, which is intrinsically subjective. Therefore,
any formal definition of the EMM task will only concern a subset of what we attempt
to achieve with EMM. Nevertheless, to provide a more precise handle on what we will
be concerned with in the remainder of this paper, we can consider the following task
definition.

Problem statement 1 (Top-q Exceptional Model Mining) Given a dataset Ω ,
description language D, quality measure ϕ, positive integer q, and set of constraints C,
the Top-q EMM task is to find the list

{
D1, . . . , Dq

}
of descriptions in the language

D such that

– ∀1≤i≤q : Di satisfies all constraints in C;
– ∀i, j : i < j ⇒ ϕ(Di ) ≥ ϕ(D j );
– ∀D∈D\{D1,...,Dq} : D satisfies all constraints in C ⇒ ϕ(D) ≤ ϕ(Dq).

Informally, we find the q best-scoring descriptions in the description language that
satisfy all constraints in C. This set encompasses the limits to which we explore the
search space, and potentially any other constraint that the Exceptional Model Miner
would want to impose. In the Sect. 4, we discuss the choices made for the search
space traversal and the refinement operator in the remainder of this paper. Note that
the general EMM framework leaves the choice for these matters open.

Also noteworthy is the fact that this problem statement includes the traditional SD
problem. This is a feature rather than a bug: we consider SD to be encompassed by
EMM. In our view, SD is simply a version of EMM in which m, the number of targets,
is set to 1.

3.2 How to define an EMM instance?

As previously described, an EMM instance is defined by the choice of model class over
the targets, and quality measure over the model class. In Sect. 5, we define several such
instances. Before that, we discuss some general themes that recur in EMM instance
definitions.

The choice of model class is usually inspired by a real-life problem. For instance,
to find conditions under which the expression of two genes interact in an unusual way,
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one could choose a correlation model. When the goal is to find deviating dependencies
between several species in an ecosystem, one is drawn towards graphical models. If we
can formulate the relation between the targets for which we are interested in finding
exceptions, this usually naturally directs our attention to a particular model class.

3.2.1 Quality measure concepts

Having chosen a model class, we need to define a quality measure that extracts char-
acteristics from the learned models, and extracts from these characteristics a quantifi-
cation of how different the models are from each other. Usually such a quantification
is relatively straightforward to design. For instance, if the model class is a regression
model with two variables, one could take the difference between the estimated slopes in
each model as quality measure. However, such a quantification is typically not enough
to design a proper measure for the quality of a description. After all, deviations from
the norm are easily achieved in very small subsets of the data. Hence, directly taking
a difference quantification as quality measure probably leads to descriptions of very
small subgroups, which are usually not the most interesting ones to domain experts.
Therefore, we somehow want to take the size of a subgroup into account in a quality
measure.

In some of the canonical quality measures for SD, such as Weighted Relative Accu-
racy (WRAcc) (Lavrač et al. 1999), the size of a subgroup is directly represented by a
factor n or

√
n. Though their simplicity is appealing, under certain circumstances one

might argue that it is somewhat counter-intuitive to have a factor in a quality measure
that explicitly favors subgroups covering the entire dataset over smaller subgroups.
A slightly more sophisticated way to represent the subgroup size, is to multiply (i.e.
weigh) the quantification of model difference with the entropy of the split between the
subgroup and its complement. The entropy captures the information content of such
a split, and favors balanced splits (1 bit of information for a 50/50 split) over skewed
splits (0 bits for the extreme case of either subgroup or complement being empty).
The entropy function ϕef(D) is defined (in this context) as

ϕef(D) = −n/N lg n/N − nC/N lg nC/N

Another way to direct the search away from extremely small subgroups, is by
employing a quality measure based on a statistical test. For certain models there may
be hypotheses of the form

H0 : model parameter for description = model parameter for complement;
H1 : model parameter for description �= model parameter for complement.

If statistical theory enables us to compute a p value corresponding to this test, then
we could use 1 − p as the quality measure. Hence, we have constructed a measure
ranging from 0 to 1 for which higher values indicate more interesting descriptions.
Notice that we do not employ these p values to assess the statistical significance of
the found subgroups. In a typical mining run, a vast number of candidate subgroups is
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considered. Hence, to properly assess significance, one should deal with the multiple
comparisons problem (Hochberg and Tamhane 1987): the p values should at least be
corrected to assess whether a subgroup could be considered statistically significant.
This, however, is not our goal. We merely employ the p values as components in a
statistically inspired quality measure: a function that is meant to compare the relative
merits of subgroups, but not to reject some and accept others. Alternatively but equiv-
alently, we could use the test statistic upon which the p value computation is based as
the quality measure.

Sections 5.1 (ϕscd), 5.4 (ϕsed) and 5.3 (ϕssd) feature examples of quality measures
that are directly based on a statistical test. In Sects. 5.1.1 (ϕent) and 5.5 (ϕweed) we
find examples of quality measures employing the entropy function. Quality measures
from Sects. 5.1.1 (ϕabs), 5.4.1 (ϕBDeu and ϕHel), 5.5.1 (ϕed), and 5.6 (ϕCook) consist
solely of a difference quantification (occasionally these are statistically inspired, but
they are not directly based on an established statistical test).

Notice that the choice of quality measure is left entirely to the whims and fancies
of the Exceptional Model Miner: we find it important to let our framework allow the
user to specify exactly what he/she finds exceptional. That being said, in our opinion it
would generally make sense when quality measures incorporate the abovementioned
concepts. As a rule of thumb, we would advise to strive for statistically based quality
measures. However, there may very well be reasons to forego these, for instance when
they are computationally too expensive to be incorporated into EMM, or when they
depend on assumptions that we do not want to impose on our subgroups. In those
cases, our rule of thumb would be to look beyond the statistically inspired measures,
and consider the other categories. In Sect. 6.7 we discuss some subgroups found with
alternative quality measures for particular model classes, allowing a comparison with
the main quality measure we propose for the same model class.

3.2.2 Compared to what?

So far we have discussed quality measure development as a means of assessing how
different two learned models are from one another, and how to ensure that subgroups
have a substantial size. However, we have neglected a cardinal point. Since a quality
measure should assign a quality to a description, its model should be compared, but to
which other model? There are two options: we can compare the model for a description
of a subgroup G either to the model for its complement GC , or to the model for the
whole dataset Ω . The simple constructed example from Fig. 2 illustrates that these
two comparisons can lead to very different outcomes.

Suppose that we have a two-dimensional target space, and we are concerned with
finding descriptions having a deviating regression line in these two dimensions. Fig-
ure 2 depicts the target space, and the six records in the example dataset. The dotted
grey line is the regression line of the whole dataset, with slope −1. Now suppose that
we find the description D covering the records depicted as circles. The dashed grey
line is the regression line of G D , with slope 1. The solid grey line is the regression line
of GC

D , also having slope 1. When gauging the exceptionality of a description solely
by the slope of the regression line, we find G D interesting when compared to Ω , but

123



Exceptional Model Mining

Fig. 2 Should we compare a
subgroup G to its complement
GC , or to the whole dataset Ω?

X

Y

not at all when compared to GC
D . Of course, the assessment changes when we include

the intercept in the evaluation.
The problem as displayed in Fig. 2 is underdetermined; we do not have enough

information to formulate an opinion on whether the subgroup should be deemed inter-
esting. It can therefore not be used to illustrate whether comparing to GC

D or to Ω is
preferable; it merely illustrates that a different choice may lead to a different outcome.

There is not always a clear-cut preferred choice whether to compare to GC
D or to

Ω . Sometimes, the real-life problem at hand can point in one direction: if we are
interested in deviations from a possibly inhomogeneous norm, it makes more sense
to compare to Ω , whereas if we are interested in dichotomies, it makes more sense
to compare to GC

D . On other occasions, a statistically inspired quality measure may
require choosing either Ω or GC

D , to prevent violation of mathematical assumptions.
Lastly, when the model class is so complicated that learning models from data covered
by descriptions has a nontrivial computational expense, efficiency might dictate the
choice: when comparing n descriptions toΩ , learning n+1 models suffices, but when
comparing them to GC

D , learning 2n models is required. In our view, there is no general
correct choice what to compare to. It is important for an Exceptional Model Miner to
realize that, at least in theory, this choice can fundamentally influence the outcome.

4 Algorithmic solution

Since the goal of SD/EMM is to find interesting subsets of the data, the correspond-
ing search space could potentially be exponentially large in the number of records.2

Hence, we cannot simply explore this space by brute force; we need to find a more
sophisticated search strategy. Usually, part of the problem is already solved by only
allowing subgroups. Since subgroups are subsets of the data for which a description
exists, the set of subgroups is typically smaller than the set of subsets. Unfortunately,
when many descriptors in the dataset are numeric, the difference is not very large.

2 When the description language at hand is very expressive, and the dataset contains many numeric
attributes, one can imagine that for every subset of the dataset at least one corresponding description
exists.
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There are two main schools of thought in the community on how to overcome
this problem, each with their own focus. The one, following classical SD papers
(Wrobel 1997; Lavrač et al. 1999), restricts the attributes in the dataset to be nominal
and imposes an anti-monotonicity constraint on the used quality measure. Then the
resulting search space can be explored exhaustively. The other resorts to heuristic
search. This allows the attributes to be numeric as well, and facilitates a general
quality measure. Since EMM is developed to capture any concept of interestingness
in subgroups, we value the capacity for handling any quality measure and numeric
attributes over exhaustiveness. Hence we select the heuristic path. Exhaustive SD
methods and alternative search strategies are discussed in further detail in Sect. 7.1.

In the EMM setting, usually the beam search strategy is chosen, which performs
a level-wise search. On each level, the best w descriptions according to our quality
measure ϕ are selected, and refined to create the candidate descriptions for the next
level. The search is constrained by an upper bound on the complexity of the description
and a lower bound on the support of the corresponding subgroup. This search strategy
combines the advantages of a greedy method with those of the implicit parallel search:
as on each level w alternatives are considered, the search process is less likely to end
up in a local optimum than a pure greedy approach, but the selection of the w best
descriptions at each level keeps the process focused and thus more tractable.

4.1 Refinement operator and description language

An important part of the beam search strategy is generating the set of candidate descrip-
tions for the next level, by refining descriptions on the current level. This process is
guided by the refinement operator η and the description language D, for which we
detail our choices in this section. Our description language D consists of logical con-
junctions of conditions on single attributes.

We treat the numeric attributes with a particular kind of discretization, starting by
fixing a positive integer b ≤ N (the number of bins) before the EMM process starts.
On the first search level, when the generating description has no conditions, the dis-
cretization we apply is equal to static pre-algorithm discretization of the attribute into
b bins of equal frequency. However, on each subsequent search level, our generat-
ing descriptions consist of a positive number of conditions, hence they cover strictly
less than N records. Since on these levels we consider a discretization into b equal-
frequency bins of the attribute-values within the generating non-empty description,
the bins may be different for each generating description. This dynamic discretization
during the process draws more information from the attribute than we would get when
statically discretizing it beforehand. Notice that this type of discretization is a general
technique, rather than being endemic to EMM.

When η is presented with a description D to refine, it builds up the set η(D) by
looping over all the descriptive attributes a1, . . . , ak . For each attribute, a number of
descriptions are added to η (D), depending on the attribute type

if ai is binary: add D ∩ (ai = 0) and D ∩ (ai = 1) to η(D);
if ai is nominal, with values v1, . . . , vg: add

⋃g
j=1{D ∩ (ai = v j ), D ∩ (ai �= v j )}

to η(D);
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if ai is numeric: order the values of ai that are covered by the description D; this
gives us a list of ordered values v(1), . . . , v(n) (where n = |G D|). From this list
we select the split points s1, . . . , sb−1 by letting

s j = v(
 j n
b �)

Then, add
{

D ∩ (ai ≤ s j ), D ∩ (ai ≥ s j )
}b−1

j=1 to η(D).

Informally, when presented with a description D, η builds a set of refinements by
considering the descriptive attributes one by one. Each such refinement consists of the
conditions already present in D, plus one new condition. If an encountered attribute
ai is binary, 2 refined descriptions are added to η(D): one for which D holds and ai

is true, and one for which D holds and ai is false. If the attribute ai is nominal with g
different values, 2g refined descriptions are added to η(D): for each of the g values,
one where D holds and the value is present, and one where D holds and any of the
g− 1 other values is present. If the attribute ai is numeric, we divide the values for ai

that are covered by D into a predefined number b of equal-sized bins. Then, using the
b− 1 split points s1, . . . , sb−1 that separate the bins, 2(b− 1) refined descriptions are
added to η(D): for each split point s j , one where D holds and ai is less than or equal
to s j , and one where D holds and ai is greater than or equal to s j .

4.2 Beam search algorithm for Top-q Exceptional Model Mining

Having described our choices for the search strategy and refinement operator that we
use in the remainder of this paper, we can now describe and analyze an algorithm for
the top-q EMM problem stated in Sect. 3.1. The pseudocode is given in Algorithm 1.
In the algorithm, we assume that there is a subroutine called satisfiesAll that tests
whether a candidate description satisfies all constraints in a given set. Among the
abstract datastructures we assume, the Queue is a standard queue with unbounded
length. The PriorityQueue(x) is a queue containing at most x elements, where elements
are stored and sorted with an associated quality; only the x elements with the highest
qualities are retained, while other elements are discarded. In a straightforward but
not too naive implementation, a PriorityQueue is built with a heap as its backbone.
In this case the elementary operations, insert_with_priority for adding an element to
the PriorityQueue and get_front_element for removing the element with the highest
quality from the PriorityQueue, have a computational cost of O (log x) (Knuth 1998,
pp. 148–151).

Many statements in the algorithm control the beam search process in a straight-
forward manner. However, the process is also controlled by the interplay between
the different (Priority-)Queues, which is more intricate and deserves attention. The
resultSet is a PriorityQueue maintaining the q best descriptions found so far. Nothing
is ever explicitly removed from the resultSet, but if the quality of a description is no
longer among the q best, it is automatically discarded. Hence, the resultSet maintains
the final result that we seek. The beam is a similar PriorityQueue, but with a different
role. Here, the w best descriptions found so far on the current search level are main-
tained. When all candidates for a search level have been explored, the contents of the
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Algorithm 1 Beam Search for Top-q Exceptional Model Mining
Input: Dataset Ω , quality measure ϕ, refinement operator η, beam width w, beam depth d, result set size

q, Constraints C
Output: PriorityQueue resultSet
1 : candidateQueue← new Queue;
2 : candidateQueue.enqueue({}); � Start with empty description
3 : resultSet← new PriorityQueue(q);
4 : for (Integer level← 1; level ≤ d; level++) do
5 : beam← new PriorityQueue(w);
6 : while (candidateQueue �= ∅) do
7 : seed← candidateQueue.dequeue();
8 : set← η(seed);
9 : for all (desc ∈ set) do
10 : quality← ϕ(desc);
11 : if (desc.satisfiesAll(C)) then
12 : resultSet.insert_with_priority(desc,quality);
13 : beam.insert_with_priority(desc,quality);

14 : while (beam �= ∅) do
15 : candidateQueue.enqueue(beam.get_front_element());

16 : return resultSet;

beam are moved into the unbounded but (by then) empty Queue candidateQueue, to
generate the candidates for the next level.

4.2.1 Complexity

Since EMM is a highly parametrized framework, instantiated by a model class and
quality measure, we need to introduce some notation before we can analyze the com-
putational complexity of the algorithm. We write M(n,m) for the cost of learning a
model from n records on m targets, and c for the cost of comparing two models from
the chosen model class.

Theorem 1 The worst-case computational complexity of Algorithm 1 is

O (dwk N (c + M(N ,m)+ log(wq)))

Proof We start our analysis at the innermost loop, working bottom-up. Line 12 inserts
an element into a PriorityQueue of size q (the number of subgroups the algorithm
should report), which costs O (log q). Line 13 does the same for a PriorityQueue
of size w (the beam width), and hence costs O (logw). The conditions checked in
line 11 are the user-induced constraints a domain expert may impose on the resulting
descriptions. These usually are relatively simple conditions concerning for instance a
minimal number of records covered by the descriptions. As such, they are relatively
cheap to check. For all reasonable constraints a domain expert may come up with, the
necessary information can be extracted during the same scans of the dataset we need
when, for instance, computing the quality of the description in the preceding line.
As such, we assume the computational complexity of line 11 to be dominated by the
complexity of line 10. The worst-case scenario is that all descriptions pass the test,
hence the commands inside the if-clause need to be computed every time. Thus, the
total complexity of lines 11 through 13 is O (logw + log q) = O (log(wq)).
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Line 10 computes the quality of a description. In the worst case, this requires
the learning of two models: one on the description and one on its complement, and
comparing these models. Hence: O (c + 2M(N ,m)) = O (c + M(N ,m)) (recall the
definition of c and M(N ,m), as introduced just before Theorem 1). In line 9, a loop is
run for all refinements of a seed description. By our choice of refinement operator η,
the worst case would be if every descriptive attribute were nominal (or numeric)
having N (the number of records in the dataset) distinct values. For each of the
k descriptors, we would then generate 2N refinements. The loop is thus repeated
2k N times, which costs O (k N ). Hence, the total complexity of lines 9 through 13 is
O (k N (c + M(N ,m)+ log(wq))).

Line 8 enumerates all refinements of one description, which we have just analyzed to
cost O (k N ). Line 7 dequeues an element from an ordinary Queue, which can be done
in O (1). Line 6 loops all previously analyzed lines as many times as there are elements
in the candidateQueue. This queue never has more thanw elements, since it is always
emptied before (in line 15) at mostw new elements are added to the queue. Hence, the
total complexity of lines 6 through 13 is O(w(k N+k N (c+M(N ,m)+log(wq)))) =
O(wk N (c + M(N ,m)+ log(wq))).

On the same level we find line 5, which costs O (1), and the while-loop of lines
14 through 15, which costs O (w logw) if done extremely naively. These lines are
dominated in complexity by lines 6 through 13. All these lines are enveloped by a
for-loop starting at line 4, which is repeated d (the beam depth) times. Lines 1 through
3 and 16 can be computed in constant time, and so the total computational complexity
of Algorithm 1 becomes

O (dwk N (c + M(N ,m)+ log(wq)))

��
This complexity seems relatively benign; we see no factors with exponents higher

than one, and the worst parameter has complexity O (w logw), which is tractable for
a generous range of values forw. However, there are some variables in the complexity
expression, which can lead to higher powers of parameters if we fill them in by select-
ing a model class and quality measure. For instance, if we would perform traditional
SD with this algorithm, we would be searching for descriptions having an unusu-
ally high mean for one designated target. Hence, the model computation complexity
becomes M(N , 1) = O (N ), and the model comparison cost becomes c = O (1).
Thus, the total computational complexity of Beam Search for Top-q SD would be
O (dwk N (N + log(wq))), which is quadratic in the number of records in the dataset.

Note that this computational complexity is in many respects a worst-case scenario,
whose bounds a real-life run of the algorithm is unlikely to meet. Since data of such
high cardinality is rarely obtained, the number of refinements of a seed description is
usually much lower than 2k N . Also, unlike in the worst-case scenario, the beam search
converges in such a way that per search level the subgroups reduce in size, hence the
modeling is done over progressively smaller parts of the dataset. Also noteworthy are
the facts that when a dataset is extended with more data of the same cardinality, the
algorithm scales linearly, and that the number of candidates under consideration is
roughly equal per search level, except for level d = 1.
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5 Exceptional Model Mining instances

In this section we define several sensible model classes, and develop appropriate
quality measures for each of them. In several of these model classes, notational con-
ventions hold to which we strive to adhere. Consequentially, we will overload some
symbols with multiple meanings across the following subsections. These multiply-
defined symbols reappear in the same context in the respective subsections of Sect. 6.
Please be careful not to confuse the symbols over different model classes; they are
kept consistent and unambiguous within every model class.

5.1 Correlation

In the correlation model, we consider two numeric targets, �1 and �2. Within the
correlation model class, we refer to them as x = �1 and y = �2. We are interested in
their linear association as measured by the correlation coefficient ρ. We estimate ρ by
the sample correlation coefficient r̂ :

r̂ =
∑ (

xi − x̄
) (

yi − ȳ
)

√∑ (
xi − x̄

)2 ∑(
yi − ȳ

)2

where xi denotes the ith observation on x , and x̄ denotes its mean. We let ρG and ρGC

denote the population coefficients of correlation for G and GC , respectively, and let
r̂ G and r̂ GC

denote their sample estimates.
To find descriptions with a substantial coverage and deviating correlation coeffi-

cient, we develop a statistically-oriented quality measure, based on the test

H0 : ρG = ρGC
against H1 : ρG �= ρGC

Generally, the sampling distribution of r̂ is not known. If x and y follow a bivariate
normal distribution, then we can apply the Fisher z transformation

z′ = 1

2
ln

(
1+ r̂

1− r̂

)

The sampling distribution of z′ is approximately normal (Neter et al. 1966).
As a consequence,

z∗ = z′ − zC ′
√

1
n−3 + 1

nC−3

approximately follows a standard normal distribution under H0.
If both n and nC are greater than 25, then the normal approximation is quite accurate,

and can safely be used to compute the p values. As quality measure ϕscd we take 1
minus the computed p value. Because we have to introduce the normality assumption
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to be able to compute the p values, ϕscd should be viewed as a heuristic measure.
Transformation of the original data (for example, taking their logarithm) may make
the normality assumption more reasonable.

5.1.1 Alternatives

A logical consideration for a quality measure would be the absolute difference of the
correlation for the description D and its complement, i.e.

ϕabs(D) =
∣∣∣r̂ G D − r̂ GC

D

∣∣∣

Unfortunately, this measure does not take into account the coverage of the descrip-
tions, and hence does not do anything to prevent overfitting.

As an improvement of ϕabs, the following quality function weighs the absolute
difference between the correlations with the entropy function of the split between the
description and its complement, as introduced in Sect. 3.2.1. Hence, when we find
descriptions with ϕabs, but we find their coverage not sufficient, we can solve this
problem by running EMM with the alternative quality measure ϕent, defined as

ϕent(D) = ϕef(D) ·
∣∣∣r̂ G D − r̂ GC

D

∣∣∣

5.2 Association

In analogy to the correlation model between two numeric targets, we turn to the
association between two nominal targets, denoted by x = �1 and y = �2. Let the
values of x be coded as 0, 1, . . . , dx − 1, where dx is the cardinality of x . The values
of y are coded in a similar fashion. Even though we use integers to code the distinct
values of x and y, their values are treated as unordered.

We are interested in finding subgroups where the association between x and y is
markedly different from their association in the complement. To this end, we propose
to compare two log-linear models (Goodman 1970) on the set of variables x , y, and D,
where D is the description inducing the subgroup we strive to evaluate. These models
are the saturated model (allowing the association between x and y to be different for
D = 0 and D = 1), and the so-called homogeneous association model (enforcing the
constraint that the association between x and y is the same within the subgroup and
its complement). In terms of their log-linear expansion, the two models are:

log P(x, y, D) = u∅+ ux (x)+ uy(y)+ u D(D) (saturated model)

+ uxy(x, y)+ ux D(x, D)+ uy D(y, D)

+ uxy D(x, y, D)

log P(x, y, D) = u∅+ ux (x)+ uy(y)+ u D(D) (homogeneous association)

+ uxy(x, y)+ ux D(x, D)+ uy D(y, D)

Here uxy(x, y) is called the u-term associated with the variable pair x, y. To avoid
getting too many parameters in the model, uxy(x, y) is constrained to be zero when at
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least one of x and y has the value zero. Analogous constraints are applied to the other
u-terms. In this way, the saturated model has dx × dy × 2 u-terms, that is, as many
as there are cells in the three-way contingency table of x , y and D. For further details
we refer the reader to Chap. 7 of Whittaker (1990).

The difference between these two models is the absence of the three-way interaction
term uxy D(x, y, D) in the homogeneous association model. Because this three-way
interaction term is constrained to be zero, the homogeneous association model cannot
model the case where the association between x and y differs between the subgroup
and its complement.

The deviance of the homogeneous association model is commonly used as a test
statistic for comparison against the saturated model. Therefore we use this quantity as
a quality measure, where a high deviance corresponds to a high quality description.
The deviance corresponding to description D is given by:

ϕdev(D) = 2
∑

cells

observed(D) · log
observed(D)

fitted(D)

In this expression, the summation ranges over all cells of the contingency table of
x , y and D, observed refers to the observed count of a cell, and fitted refers to the
maximum likelihood fitted counts of the homogeneous association model. It should be
noted that this quality measure does not have a natural protection against overfitting, so
it should be used in combination with some minimal support threshold on the subgroup
size. To use the deviance as a basis for testing, the chi-squared approximation to the
distribution of the deviance is commonly regarded as accurate if the fitted counts are
at least 5 for each cell of the contingency table (Agresti 1990). A similar minimum
support restriction can be employed to use the deviance as a quality measure.

5.3 Simple linear regression

In this section, we discuss some possibilities of EMM with simple regression models,
allowing only one output (y = �2) and one input variable (x = �1) in the regression:

yi = β0 + β1xi + εi (1)

We will discuss a more general linear regression model in Sect. 5.6.
Consider model (1) fitted to a subgroup G and its complement GC . Of course, there

is a choice of distance measures between the fitted models. We propose to look at the
difference in the slope β1 between the two models, because this parameter is usually of
primary interest when fitting a regression model: it indicates the change in the expected
value of y, when x increases with one unit. Another possibility would be to look at
the intercept β0, if it has a sensible interpretation in the application concerned. Like
with the correlation coefficient, we use significance testing to measure the distance
between the fitted models. Let βG

1 be the slope for the regression function of G and

βGC

1 the slope for the regression function of GC . The hypothesis to be tested is
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H0 : βG
1 = βGC

1 against H1 : βG
1 �= βGC

1

We use the least squares estimate β̂1 for the slope β1, and unbiased estimator s2 for
the variance of β̂1

β̂1 =
∑
(xi − x̄) (yi − ȳ)
∑
(xi − x̄)2

s2 =
∑
ε̂2

i

(ξ − 2)
∑
(xi − x̄)2

where ε̂i is the regression residual for individual i , and ξ is the sample size. Finally, we
define our test statistic t ′. Although it does not have a t distribution, its distribution can
be approximated quite well by one, with degrees of freedom given below (cf. Moore
and McCabe (1993)):

t ′ = β̂G
1 − β̂GC

1√
sG 2 + sGC 2

d f =

(
sG2 + sGC 2

)2

sG 4

n−2 + sGC 4

nC−2

The approximation is accurate when n + nC ≥ 40, so unless we analyze a very
small dataset we should be confident to base p value computation on it. Our quality
measure ϕssd is one minus this p value.

5.4 Classification

In the case of classification, we are dealing with models for which the output attribute
y = �m is discrete. In general, the attributes �1, . . . , �m−1 can be of any type (binary,
nominal, numeric, etc). Furthermore, our EMM framework allows for any classifica-
tion method, as long as some quality measure can be defined in order to judge the
models induced. Although we allow arbitrarily complex methods, such as decision
trees, support vector machines or even ensembles of classifiers, we only consider a
relatively simple classifier here, for reasons of simplicity and efficiency.

Analogous to the linear regression case, we consider the logistic regression model

logit(P(yi = 1|xi )) = ln

(
P(yi = 1|xi )

P(yi = 0|xi )

)
= β0 + β1 · xi

where y ∈ {0, 1} is a binary class label and x ∈ {�1, . . . , �m−1}. The coefficient β1
tells us something about the effect of x on the probability that y occurs, and hence may
be of interest to subject area experts. A positive value for β1 indicates that an increase
in x leads to an increase of P(y = 1|x). The strength of influence can be quantified
in terms of the change in the odds of y = 1 when x increases with, say, one unit.

To judge whether the effect of x is substantially different in a particular subgroup
G D (built from a description D), we fit the model

logit(P(yi = 1|xi )) = β0 + β1 · D(i)+ β2 · xi + β3 · (D(i) · xi ) (2)
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where D(i) is shorthand notation for D
(
ai

1, . . . , ai
k

)
Note that

logit(P(yi = 1|xi )) =
{
(β0 + β1)+ (β2 + β3) · xi if D(i) = 1

β0 + β2 · xi if D(i) = 0

Hence, we allow both the slope and the intercept to be different in the subgroup
and its complement. As a quality measure, we propose to use one minus the p value
of a test on β3 = 0 against a two-sided alternative in the model of Eq. (2). This is a
standard test in the literature on logistic regression (Neter et al. 1966). We refer to this
quality measure as ϕsed.

5.4.1 Alternatives

Another classifier we can consider is the Decision Table Majority (DTM) classifier
(Kohavi 1995), also known as a simple decision table. The idea behind this classifier
is to compute the relative frequencies of the �m values for each possible combination
of values for �1, . . . , �m−1. For combinations that do not appear in the dataset, the
relative frequency estimates are based on that of the whole dataset. The predicted �m

value for a new individual is simply the one with the highest probability estimate for
the given combination of input values.

Example 1 As an example of a DTM classifier, consider a hypothetical dataset of 100
people applying for a mortgage. The dataset contains two attributes describing the
age (divided into three suitable categories) and marital status of the applicant. A third
attribute indicates whether the application was successful, and is used as the output.
Out of the 100 applications, 61 were successful. The following decision table lists
the estimated probabilities of success for each combination of age and married. The
support for each combination is indicated between brackets.

Married = ‘no’ Married = ‘yes’

Age = ‘low’ 0.25 (20) 0.61 (0)

Age = ‘medium’ 0.4 (15) 0.686 (35)

Age = ‘high’ 0.733 (15) 1.0 (15)

As this table shows, the combination married = ‘yes’∧ age = ‘low’ does not appear
in this particular dataset, and hence the probability estimate is based on the complete
dataset (0.61). This classifier predicts a positive outcome in all cases except when
married = ‘no’ and age is either ‘low’ or ’medium’.

For this instance of the classification model, we discuss two different quality mea-
sures. The Bayesian Dirichlet equivalent uniform (BDeu) score, which can be used
as a measure for the performance of the DTM classifier on G D , and the Hellinger
distance, which assigns a value to the distance between the conditional probabilities
estimated on G D and GC

D .
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BDeu Score (ϕB Deu) The BDeu scoreϕBDeu is a measure from Bayesian theory (Heck-
erman et al. 1995) and is used to estimate the performance of a classifier for a descrip-
tion, with a penalty for small contingencies that may lead to overfitting. Note that this
measure ignores how the classifier performs on the complement. It merely captures
how “predictable” a particular description is.

The BDeu score is defined as

∏

�1,...,�m−1

Γ (θ/I)
Γ (θ/I + #(�1, . . . , �m−1))

∏

�m

Γ (θ/IJ + #(�1, . . . , �m))

Γ (θ/IJ )

where Γ denotes the gamma function, I denotes the number of value combinations of
the input variables, J the number of values of the output variable, and #(�1, . . . , �m)

denotes the number of records with that value combination. The parameter θ denotes
the equivalent sample size. Its value can be chosen by the user.

Hellinger (ϕHel ) Another possibility is to use the Hellinger distance (Yang and Le
Cam 2000). It defines the distance between two probability distributions P(x) and
Q(x) as follows

H(P, Q) =
∑

x

(√
P(x)−√

Q(x)
)2

where the sum is taken over all possible values x . In our case, the distributions of
interest are

P
(
�m

∣
∣ �1, . . . , �m−1

)

for each possible value combination �1, . . . , �m−1. The overall distance measure
becomes

ϕHel(D) = H
(

P̂G D , P̂GC
D

)

=
∑

�1,...,�m−1

∑

�m

(√
P̂G D (�m |�1, . . . , �m−1)−

√
P̂GC

D (�m |�1, . . . , �m−1)

)2

where P̂G D denotes the probability estimates on G D . Intuitively, we measure the
distance between the conditional distribution of �m in G D and GC

D for each possible
combination of input values, and add these distances to obtain an overall distance.

5.5 Bayesian network

The Bayesian network model was inspired by the Pisaster example from Sect. 2. We
consider multiple nominal targets �1, . . . , �m . A subgroup is deemed interesting in this
setting, when the conditional dependence relations between the targets are substantially
different on the subgroup than these relations on the whole dataset. Hence we validate
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the subgroups on the interdependencies between the targets, rather than the target
values themselves. To capture these interdependencies, we learn a Bayesian network
between the targets, from data.

There are many ways in which a Bayesian network can be learned from data. We
use a non-deterministic hill climbing algorithm, but in no way is this essential to the
method presented here. The choice of method can be considered a parameter of this
EMM instance, hence we consider the details of the selected method to be irrelevant
to the reader of this paper. Feel free to plug in your own preferred method. We refer
the reader who is interested in the details to Sect. III.B of Duivesteijn et al. (2010).

Having chosen a method to learn a Bayesian network from data, we would like to
employ such networks to capture deviating conditional dependence relations between
targets. Our quality measure uses the structure of the learned networks to this end. The
main idea is to start the EMM process by learn a Bayesian network B NΩ between the
targets from the entire dataset. Then, for each description D under consideration, we
learn another Bayesian network B ND , but we learn it only from the records covered by
D. Comparing the structure of the networks B NΩ and B ND then gives us a measure
for the quality of the subgroup G D . One might be tempted to consider traditional
edit distance between graphs to make this comparison, but then we would not take
into account some peculiarities about how Bayesian networks represent independence
relations. Instead, we propose a heuristic quality measure based on the following
well-known result by Verma and Pearl (1990):

Theorem 2 (Equivalent DAGs) Two DAGs are equivalent if and only if they have the
same skeleton and the same v-structures.

Since these two conditions determine whether two DAGs are equivalent, it makes
sense to consider the number of differences in skeletons and v-structures as a measure
of how different two DAGs are.

Definition 3 (Edit distance for Bayesian networks) Let two Bayesian networks B N1
and B N2 be given with the same set of vertices. Denote the edge set of their skeletons
by S1 and S2, and the edge set of their moralized graphs by M1 and M2. Let

ζ =
∣
∣∣[S1 � S2] ∪ [M1 � M2]

∣
∣∣

The distance between B N1 and B N2 is defined as:

δ(B N1, B N2) = 2ζ

m(m − 1)

As usual in set theory, � denotes an exclusive disjunction: X � Y = (X ∪ Y ) −
(X ∩ Y ). The factor 2

m(m−1) causes the distance to range between 0 and 1: it is the

expanded reciprocal of
(m

2

)
, the number of distinct pairs of targets in the dataset, hence

vertices in the Bayesian networks.
The edit distance can now be used to quantify the exceptionality of a subgroup:
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Definition 4 (Edit distance based quality measure) Let a description D be given.
Denote the Bayesian network we learn from Ω by B NΩ , and denote the Bayesian
network we learn from G D by B ND . Then the quality of D is:

ϕed(D) = δ (B NΩ, B ND)

If we would plug ϕed into the EMM framework, a familiar problem would occur:
unusual interdependencies between the targets are easily achieved in very small subsets
of the dataset. Thus, using ϕed would result in small subgroups. For this reason,
we combine the measure with the entropy function ϕef from Sect. 3.2, to obtain the
following aggregate measure.

Definition 5 (Weighed Entropy and Edit Distance)

ϕweed(D) =
√
ϕef(D) · ϕed(D)

The original components ranged from 0 to 1, hence the new quality measure does
so too. We take the square root of the entropy to reduce its bias towards 50/50 splits,
since we are primarily interested in a subgroup with large edit distance, while mediocre
entropy is acceptable.

5.5.1 Alternatives

We discussed how we incorporated an entropy term in our quality measure ϕweed, in
order to avoid obtaining small subgroups. If small subgroups are required, we can also
run this EMM instance with the non-composite quality measureϕed, selecting the good
descriptions only by virtue of their edit distance on Bayesian networks. Alternatively,
one could divert one’s attention away from the learned structure of the model, and
focus on the underlying joint probability distribution of the Bayesian network models.
Having computed the joint probability distribution for both a subgroup and either its
complement or the whole dataset, one could then for instance employ the Hellinger
distance ϕHel from Sect. 5.4.1.

5.6 General linear regression

In this section, we investigate the more general case of the model investigated in
Sect. 5.3: a linear regression model on multiple target attributes �1, . . . , �m . We learn
the linear regression model

Y = Xβ + ε

where Y is the N × 1 vector of �m-values from our dataset, X is the N × m full rank
matrix of which column 1 consists of N times the value 1 and column i + 1 consists
of the �i -values from our dataset (with i ∈ {1, . . . ,m − 1}), β is the unknown m × 1
vector consisting of the regression parameters, and ε is the N × 1 vector of randomly
distributed errors such that E(ε) = 0 and Var(ε) = diag(σ 2I). Of course, I denotes
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the N × N identity matrix. Motivated by the Giffen example from Sect. 2, we are
interested in subgroups on which the parameter vector β significantly deviates from
the parameter vector estimated on the whole dataset.

Given an estimate of the vector β, denoted β̂, one can compute the vector of fitted
values Ŷ . These quantities can be used to assess the appropriateness of the fitted model,
by looking at the residuals e = Y − Ŷ . We estimate β with the ordinary least squares
method, which minimizes the sum of squared residuals. This leads to the estimate:

β̂ =
(
β̂i

)
=

(
X�X

)−1
X�Y

In order to define a proper quality measure for comparing estimated parameter vec-
tors, we need to take into account the variance of the estimator β̂, and the covariances
between β̂i and β̂ j . For example, if β̂i has a large variance compared to β̂ j , then a
given change in β̂i should contribute less to the overall quality than the same change
in β̂ j , because the change in β̂i is more likely to be caused by random variation. This
suggest that

(
β̂G − β̂

)� [
Cov

(
β̂
)]−1 (

β̂G − β̂
)

might be a better distance measure than the normal Euclidean distance. In fact this
expression is equivalent to Cook’s distance up to a constant scale factor. R. Dennis
Cook originally introduced his distance (Cook 1977) in 1977 for determining the con-
tribution of single records to β̂. He states that according to normal theory (Gentleman
and Wilk 1975), the (1− α)× 100 % confidence ellipsoid for the unknown vector, β,
is given by the set of all vectors β∗ satisfying

(
β∗ − β̂

)� [
Ĉov

(
β̂
)]−1 (

β∗ − β̂
)

m

=
(
β∗ − β̂

)�
X�X

(
β∗ − β̂

)

ms2 ≤ F(m, N − m, 1− α)

where

s2 = e�e

N − m
Ĉov

(
β̂
)
= s2

(
X�X

)−1

and F(m, N − m, 1 − α) is the 1 − α probability point of the central F-distribution
with m and N − m degrees of freedom.

Now the stage has been set to determine the degree of influence of single records.
Suppose we want to know how record r i influences β̂. Then one could naturally
compute the least squares estimate for β with the record removed from the dataset.
Let us denote this estimate by β̂(i). We can adapt the confidence ellipsoid as an easily
interpretable measure of the distance between β̂(i) and β̂. Hence, Cook’s distance is
defined as:
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Δi =
(
β̂(i) − β̂

)�
X�X

(
β̂(i) − β̂

)

ms2 (3)

Suppose for example that for a certain record r i we find thatΔi ≈ F(m, N −m, 0.5).
Then removing r i moves the least squares estimate to the edge of the 50 % confidence
region for β based on β̂.

Cook and Weisberg extended Cook’s distance to the case where multiple records
are deleted simultaneously (Cook and Weisberg 1980). Let I be a vector of indices
that specify the records to be deleted, and let β̂(I ) denote the least squares estimate
for β computed from the dataset with all records in I removed. Cook’s distance for
multiple observations becomes

ΔI =
(
β̂(I ) − β̂

)�
X�X

(
β̂(I ) − β̂

)

ms2 (4)

and its geometric interpretation is identical to the geometrical interpretation of Δi .
Any subset that has a large joint influence on the estimation of β corresponds to a
large ΔI .

For practical purposes one might not be interested in computing Cook’s distance
based on the entire parameter vector β̂. For instance, one might be interested in the
influence records have on the regression coefficient corresponding to one particular
attribute, while excluding the intercept and other coefficients from the evaluation. To
this end, Cook and Weisberg (1982) introduce the zero/one-matrix Z , with dimensions
m′ × m, where m′ is the number of elements of β̂ that we are interested in (hence
m′ ≤ m). The matrix Z is defined in such a way that ψ = Zβ are the coefficients of
interest. Hence, if we are interested in the last m′ elements of β̂, Z starts from the left
with m − m′ columns containing all zeroes, followed by a m′ × m′ identity matrix
(Z = (0, Im′)).

When using this transformation, Cook’s distance (Eq. (4)) becomes:

Δ
ψ
I =

(
β̂(I ) − β̂

)�
Z�

(
Z

(
X�X

)−1
Z�

)−1
Z

(
β̂(I ) − β̂

)

m′s2

Since Cook’s distance is invariant to changes in scale of the variables involved
(Cook 1977), it would make an excellent quality measure for use in EMM:

Definition 6 (ϕCook) Let D be a description. Its quality according to Cook’s distance
is given by:

ϕCook(D) = ΔψI , where I =
{

i
∣∣∣r i ∈ Ω, D

(
ai

1, . . . , ai
k

)
= 0

}

The quality of a description according to Cook’s distance, is the distance bridged
when the records that are not covered by the description are simultaneously discarded.
Hence, Cook’s distance is computed for the case where the records covered by the
description D are retained.
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6 Experimental results

For each EMM instance developed in the previous section, we run some experiments
on relevant publicly available datasets in this section. EMM being an exploratory
technique, our main evaluation method is interpreting the subgroups and fitted models
using domain-specific literature. The reader should keep in mind that this type of
analysis should normally be performed in collaboration with a subject area expert
who could aid in the interpretation of the results. The experiments were run in Cortana
(Meeng and Knobbe 2011), with some additional computations in R.3 The publicly
available version of Cortana contains implementations of the model classes Correlation
(cf. Sect. 5.1) as target type double_correlation, Simple Linear Regression (cf.
Sect. 5.3) as target type double_regression, and Bayesian Network (cf. Sect. 5.5) as
target type multi_label. Recall that, in Sect. 4.1, we chose as description language
D the conjunctions of conditions on single descriptors.

6.1 Correlation

For this model class we analyze the Windsor housing dataset4 (Anglin and Gençay
1996). This dataset contains information on 546 houses that were sold in Windsor,
Canada in the summer of 1987. The information for each house includes the two
attributes of interest, �1 = x = lot_si ze and �2 = y = sales_price. An additional
10 attributes are available to define candidate subgroups, including the number of
bedrooms and bathrooms and whether the house is located at a desirable location. The
correlation between lot size and sale price is 0.536, which implies that a larger size of
the lot coincides with a higher sales price. The fitted regression function is:

y = 34136+ 6.60 · x

As this function shows, on average one extra square meter corresponds to a sales
price increase of $6.60.

On the Windsor housing dataset, we run an experiment with the significance of
correlation difference measure, ϕscd. As discussed in Sect. 5.1, in order to be confident
about the test results for the quality measure ϕscd, the support of a subgroup has to be
over 25. This number was used as minimum support threshold for a run of Cortana
using ϕscd. The following subgroup (and its complement) was found to show the most
significant difference in correlation: ϕscd(D1) = 0.9993.

D1 : drive = 1 ∧ rec_room = 1 ∧ nbath ≥ 2.0

This is the group of 35 houses that have a driveway, a recreation room and at least
two bathrooms. The scatter plots for the subgroup and its complement are given in
Fig. 3. The subgroup shows a correlation of r̂ G1 = −0.090 compared to r̂ GC

1 = 0.549

3 http://cran.r-project.org.
4 Available from the Journal of Applied Econometrics Data Archive at http://econ.queensu.ca/jae/.

123

http://cran.r-project.org
http://econ.queensu.ca/jae/


Exceptional Model Mining

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

0 2000 4000 6000 8000 10000 12000

lot_size

sa
le

_p
ri

ce

(a)

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

lot_size

sa
le

_p
ri

ce

(b)

Fig. 3 Windsor housing, ϕscd: scatter plot of lot_si ze and sales_price for the subgroup corresponding
to description D1 : drive = 1 ∧ rec_room = 1 ∧ nbath ≥ 2 and its complement. a G1, r̂ = −0.090,
b GC

1 , r̂ = 0.549

Table 1 Subgroups on the
housing data, and their sample
correlation coefficients and
supports

Subgroup r̂ n

Whole dataset 0.536 546

nbath ≥ 2 0.564 144

drive = 1 0.502 469

rec_room = 1 0.375 97

nbath ≥ 2 ∧ drive = 1 0.509 128

nbath ≥ 2 ∧ rec_room = 1 0.129 38

drive = 1 ∧ rec_room = 1 0.304 90

nbath ≥ 2 ∧ rec_room = 1 ∧ ¬drive = 1 −0.894 3

nbath ≥ 2 ∧ rec_room = 1 ∧ drive = 1 −0.090 35

for the remaining 511 houses. A tentative interpretation could be that G describes a
collection of houses in the higher segments of the markets where the price of a house
is mostly determined by its location and facilities. The desirable location may provide
a natural limit on the lot size, such that this is not a factor in the pricing. Figure 3
supports this hypothesis: houses in G tend to have a higher price.

In general sales_price and lot_si ze are positively correlated, but EMM discovers
a subgroup with a slightly negative correlation. However, the value in the subgroup is
not significantly different from zero: a test of

H0 : r̂ G1 = 0 against H1 : r̂ G1 �= 0

yields a p value of 0.61. The scatter plot confirms our impression that sales_price
and lot_si ze are uncorrelated within the subgroup. For purposes of interpretation, it
is interesting to perform some post-processing. In Table 1 we give an overview of the
correlations within several subgroups whose intersection produces the final result, as
given in the last row. It is interesting to see that the condition nbath ≥ 2 in itself
actually leads to a slight increase in correlation compared to the whole database, but
the combination with the presence of a recreation room leads to a substantial drop to
r̂ = 0.129. When we add the condition that the house should also have a driveway
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Table 2 Data on gender and
admission for various programs

n(g, a, p) adm Program

Gender A B C

Female No 30 80 10

Yes 10 80 40

Male No 20 120 30

Yes 40 120 20

Table 3 Quality (deviance) of
several descriptions

D ϕdev(D)

T ype = A 21.09

T ype = C 20.60

T ype = B 0.28

we arrive at the final result with r̂ = −0.090. Note that adding this last condition
only eliminates 3 records (the size of the subgroup goes from 38 to 35) and that
the correlation between sales price and lot size in these three records (defined by
the condition nbath ≥ 2 ∧ ¬drive = 1 ∧ rec_room = 1) is −0.894. We witness
a phenomenon similar to Simpson’s paradox: splitting up a subgroup with positive
correlation (0.129) produces two subgroups both with a negative correlation (−0.090
and −0.894, respectively).

6.2 Association

As an example of the association model, suppose we are interested in the association
between gender and admission to the master program, perhaps in an attempt to discover
possible discrimination on gender. Suppose furthermore that one of the descriptive
attributes is the type of master program (A, B, or C). The relevant artificial dataset is
given in Table 2.

We can describe three subgroups by constraints on the attribute t ype; their quality is
given in Table 3. For example, to evaluate the description t ype = A, we create a binary
variable t ype = A and then compare the fit of the homogeneous association model
on gender , admission, t ype = A against the saturated model. The homogeneous
association model doesn’t give a very good fit, resulting in a high deviance and thus
high quality for the description. The association between gender and admission for
master program A is quite different from the association between gender and admission
for master programs B and C together.

To illustrate this EMM instance on a real data set, we consider a study on potential
predictors for the completion or non-completion of a three-shot vaccine regimen (Chao
et al. 2009). The data set contains 1413 observations on 10 variables, such as race,
age, type of insurance, type of practice, location of the clinic, etc. Suppose we are
interested in the relation between race and whether or not the person completes the
regimen. To start with, let us consider the association between these two variables
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Table 4 Association between
race and completion of the
vaccine regimen on the complete
data set

Race Completed? P (Completed) (%)

No Yes

White 452 280 38

Black 338 105 24

Hispanic 35 17 33

Other 119 67 36

Table 5 Association between race and completion of the vaccine regimen for subgroup PracticeT ype =
paediatric ∧ Age = 11–17 years and its complement

Race Subgroup Complement

No Yes P (Completed) (%) No Yes P (Completed) (%)

White 138 79 36 314 201 39

Black 139 41 23 199 64 24

Hispanic 20 8 29 15 9 38

Other 27 30 53 92 37 29

Columns labeled ‘No’ and ‘Yes’ indicate the number of persons who have not, or have, respectively,
completed the regimen

in the complete data set (see Table 4). We summarize the association by giving the
probability of completion for each race in the final column.

On a search depth of 2, the best subgroup that we find is PracticeT ype =
paediatric∧Age = 11–17 years, with a deviance of 10.59. The association between
race and completion for this subgroup is given in Table 5. The most striking difference
is that in the subgroup the probability of completion of the regimen for Race = Other
is much higher than in the overall data base (and the complement of the subgroup). In
the subgroup the probability of completion is 53 %, whereas in the complement group
it is only 29 %.

6.3 Simple linear regression

On the Windsor housing dataset using the Significance of Slope Difference (ϕssd)
quality measure, we find as highest ranking subgroup the 226 houses that have a
driveway, no basement and at most one bathroom:

D2 : drive = 1 ∧ basement = 0 ∧ nbath ≤ 1

The subgroup G2 and its complement GC
2 (320 houses) lead to the following two

fitted regression functions, respectively:

G2 : y = 41568+ 3.31 · x
GC

2 : y = 30723+ 8.45 · x
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Fig. 4 Windsor housing, ϕssd: scatter plot of lot_si ze and sales_price for the subgroup corresponding
to D2 : drive = 1 ∧ basement = 0 ∧ nbath ≤ 1 and its complement. a G2, y = 41568 + 3.31 · x ,
b GC

2 , y = 30723+ 8.45 · x

The subgroup quality is ϕssd > 0.9999, meaning that the p value of the test

H0 : βG2
1 = β

GC
2

1 against H1 : βG2
1 �= β

GC
2

1

is virtually zero. As discussed in Sect. 3.2.1, this does not necessarily imply that the
subgroup is statistically significant; a low p value merely implies that the subgroup is
more exceptional than other subgroup with higher p values, but no significance claim
can be made due to the multiple comparisons problem (cf. Sect. 3.2.1). There are
subgroups with a larger difference in slope, but the reported subgroup scores higher
because it is quite big. Figure 4 shows the scatter plots of lot_si ze and sales_price
for the subgroup and its complement.

6.4 Classification

We demonstrate the classification model in the domain of bioinformatics, on the
Affymetrix dataset. In genetics, genes are organized in so-called gene regulatory net-
works. This means that the expression (its effective activity) of a gene may be influ-
enced by the expression of other genes. Hence, if one gene is regulated by another,
one can expect a linear correlation between the associated expression-levels. In many
diseases, specifically cancer, this interaction between genes may be disturbed. The
Gene Expression dataset shows the expression-levels of 313 genes as measured by
an Affymetrix microarray, for 63 patients that suffer from a cancer known as neu-
roblastoma (van de Koppel et al. 2007). Additionally, the dataset contains clinical
information about the patients, including age, sex, stage of the disease, etc.

In the logistic regression experiment, we take NBstatus as the output �2=y, and age
(age at diagnosis in days) as the predictor �1 = x . The subgroups are created using
the gene expression level variables. Hence, the model specification is

logit{P(N Bstatus = ‘relapse or deceased’)}
= β0 + β1 · D(i)+ β2 · x + β3 · (D(i) · x)
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We find the subgroup

D3 : SMPD1 ≥ 840 ∧ HOXB6 ≤ 370.75

with a coverage of 33, and quality ϕsed(D3) = 0.994. We find a positive coefficient of
x for the subgroup, and a slightly negative coefficient for its complement. Within the
subgroup, the odds of NBstatus = ‘relapse or deceased’ increase with 44 % when the
age at diagnosis increases with 100 days, whereas in the complement the odds decrease
with 8 %. More loosely, within the subgroup an increase in age at diagnosis decreases
the probability of survival, whereas in the complement an increase in age slightly
increases the probability of survival. Such reversals of the direction of influence may
be of particular interest to the domain expert.

6.5 Bayesian network

So far, we have discussed results on model classes with a severely restricted number
of targets. This has the benefit that multiple facets of the resulting subgroups can be
interpreted: we can interpret the description of the subgroup, and we can also interpret
the associated model. While this model interpretation can give us valuable information
on the found subgroups, EMM was designed to capture intricate interactions between
a multitude of targets. Hence, restricting our attention to model classes with only two
or three targets, implies restricting the expressive power of EMM.

In this section and in Sect. 6.6, we discuss results on model classes that allow the
number of targets to grow as large as the user wants (or the data allows). Since the
resulting subgroups capture unusual interplay between these potentially numerous
targets, the model classes have a large expressive power. The obvious drawback to
this power is that the associated models are so intricate that they become impossible
to interpret completely by the human eye. One can still examine some cherrypicked
particular elements of the resulting models, but the overview one has with the simpler
model classes is gone. Relatively complex model classes ask the Exceptional Model
Miner to suspend their disbelief on the target space: since the miner has determined
which quality measure is used to find exceptional models, he/she will have to trust
that the found models are indeed exceptional. The subgroups can of course still be
interpreted on the descriptor space: the complexity of the descriptions doesn’t change
with the chosen model class.

6.5.1 Emotions data

The Emotions dataset (Trohidis et al. 2008) consists of 593 songs, from which 8 rhyth-
mic and 64 timbre features were extracted. Domain experts assigned the songs to any
number of six main emotional clusters: amazed-surprised, happy-pleased, relaxing-
calm, quiet-still, sad-lonely, and angry-fearful.

We obtain the networks shown in Fig. 5. Figure 5a depicts a network fitted on
the whole dataset, and Fig. 5b displays a network fitted on a subgroup of size 94
corresponding to description D4 : STD_MFCC_7 ≤ 0.203 and Mean_Centroid ≥
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Fig. 5 Bayesian networks for the Emotions data. a Whole dataset, b D4 : STD MFCC 7 ≤ 0.203 and Mean
Centroid ≥ 0.066

0.066, with quality ϕweed(D4) = 0.675. The first condition says that coefficient 7 of
the 13-band Mel Frequency Cepstrum has a low standard deviation, i.e. there is little
variation in one of the middle spectrum bands. The second condition says that the
songs in the subgroup have a moderate to high mean spectral centroid. This correlates
with the impression of a bright sound (Schubert et al. 2004).

From Fig. 5a we find that on the whole dataset, the emotion sad-lonely is corre-
lated with all other emotions: it shares marginal dependency relations with happy-
pleased, relaxing-calm and quiet-still, and conditional dependency relations given
both relaxing-calm and quiet-still with angry-fearful and amazed-surprised. When
restricted to the subgroup, sad-lonely is correlated with none of the other emotions
(cf. Fig. 5b). By lack of experts on the domain of this dataset, we will refrain from
interpreting the Bayesian networks, also keeping in mind the discussion in the second
paragraph of Sect. 6.5.

6.5.2 Mammals data

The Mammals dataset (Garriga et al. 2007; Mitchell-Jones et al. 1999) focuses on
subdividing the geography of Europe into clusters based on their fauna, which is a
core activity of biology. The dataset was created by combining two datasets: one doc-
umenting presence or absence of 101 mammals for a set of 2221 grid cells covering
Europe, and one documenting climate details of the corresponding land areas. We
define candidate subgroups by conditions on the climate data, and fit Bayesian net-
works on the mammals. We use a version of this dataset that was pre-processed by
Heikinheimo et al. (2007).

The found exceptional subgroup G5 is defined by the constraints max_temp_mar
≤ 7.97 and max_temp_sep ≤ 17.65, i.e. the temperatures in both March and Septem-
ber do not reach high levels. It has quality ϕweed(D5) = 0.121, and size |G5| = 834.
Existing studies of the Mammals dataset provide evidence that the discoveries corre-
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Fig. 6 Regions in Europe that belong to the subgroup defined as D5 :max temp mar ≤ 7.97 and max temp
sep ≤ 17.65 (n = 834)

spond to real underlying concepts in the dataset domain, by considering the spatial
coherence of the discovery on the map of Europe (Heikinheimo et al. 2007). Mirror-
ing this evaluation technique, Fig. 6 shows the regions in Europe that belong to the
subgroup. At first sight, the subgroup seems to consist of relatively coherent Northern
parts of Europe, and some random clutter more to the South. However, when one
overlays a map of Europe that depicts the altitudes, this clutter turns out to be much
more coherent than it seems: these are the not-too-Southern mountainous regions of
Europe, including the Alps, the Pyrenees, and the Carpathians. These observations do
not necessarily prove that the subgroup describes an underlying concept in the dataset,
but they do provide evidence.
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Summing up all conditional dependence relations in a 101-node Bayesian network
would results in a list that is unsurveyable to the average reader, so instead, we highlight
two particular relations that differ between the whole dataset and the subgroup. On
the whole dataset, but not on G5, the European Water Vole (Arvicola terrestris) and
the Mountain Hare (Lepus timidus) are conditionally dependent given the Ermelin
(Mustela erminea). Conversely, on G5, but not on the whole dataset, the Red Squirrel
(Sciurus vulgaris) and the Least Weasel (Mustela nivalis) are conditionally dependent
given the European Badger (Meles meles).

6.6 General linear regression

6.6.1 Giffen behavior data

This dataset was used for a study that provided the first real-world evidence of Giffen
behavior, i.e. an upward sloping demand curve (Jensen and Miller 2008). As common
sense suggests, the demand for a product will usually decrease as its price increases.
According to economic textbooks, there are circumstances however, for which we
should expect to see an upward sloping demand curve. The common example is that
of poor families that spend most of their income on a relatively inexpensive staple
food (e.g. rice or wheat) and a small part on a more expensive type of food (e.g. meat).
If the price of the staple food rises, people can no longer afford to supplement their
diet with the more expensive food, and must consume more of the staple food.

The dataset we analyze was collected in different counties in the Chinese province
Hunan, where rice is the staple food. The price changes were brought about by giving
vouchers to randomly selected households to subsidize their purchase of rice. For each
household, two changes are observed: the change between periods 2 and 1 (t = 2),
capturing the effect of giving the subsidy; and the change between periods 3 and 2
(t = 3) capturing the effect of removing the subsidy. The global model estimated in
Jensen and Miller (2008) is:

Δstaplei,t = β0 + β1Δpi,t +
∑

β2ΔZi,t +
∑

β3County× Timei,t +Δεi,t

where Δstaplei,t denotes the percent change in household i’s consumption of rice,
Δpi,t is the percent change in the price of rice due to the subsidy (negative for t = 2
and positive for t = 3), and ΔZi,t is a vector of percent changes in other control
variables including income and household size. County×Time denotes a set of dummy
variables included to control for any county-level factors that change over time. For
further details about the design of the study and the estimation strategy, we refer to
Jensen and Miller (2008).

The coefficient of primary interest is β1. If β1 > 0 we observe Giffen behavior.
The other variables are included in the model to control for other possible influences
on demand, so that the effect of price can be reliably estimated. Therefore it makes
sense to restrict our quality measure to the coefficient β1.

Jensen and Miller (2008) suggest that for the extremely poor, one might not observe
Giffen behavior, because they consumed rice almost exclusively anyway, and therefore
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have no other possibility than buying less of it in case of a price increase. The Initial
Staple Calorie Share (ISCS) was also measured in the study, and the hypothesis is that
families with a high value for this variable do not display Giffen behavior. (Jensen
and Miller 2008) tried several manually selected thresholds on ISCS; for example,
for the subgroup of households with ISCS > 0.8, indeed it is observed that β̂1 =
−0.585 (no Giffen behavior) whereas for ISCS ≤ 0.8 they get β̂1 = 0.466 (Giffen
behavior).

We analyzed this dataset with ISCS as one of the variables on which the subgroups
could be defined. The best subgroup we found was ISCS ≥ 0.87 with β̂1 = −0.96
(against β̂1 = 0.22 for the complete dataset). The size of this subgroup is n = 106. This
confirms the conclusion that Giffen behavior does not occur for families that almost
exclusively consume rice anyway. This conclusion can also be reached by defining
subgroups on income per capita rather than ISCS. Particularly illustrative examples
are the 4th-ranked subgroup: Income per Capita ≤ 64.67, with a slope of −0.41, and
the 6th-ranked subgroup: Income per capita ≥ 803.75, with a slope of 0.79 (strong
Giffen behavior).

6.6.2 EAEF data

This dataset was extracted from the National Longitudinal Survey of Youth 1979-
(NLSY79). It contains information about hourly earnings of men and women, their
education, and other information. For more details, we refer to Appendix B of
Dougherty (2011). We fit a model relating years of schooling and years of work
experience to earnings. The model fitted on the complete dataset is:

Earnings = −29.15+ 2.78× YrsOfSchool+ 0.63× YrsWorkExp

All coefficients in this model are significant at α = 0.01, and R2 is approximately
equal to 20 %.

The 4th ranked subgroup we found was COLLBARG = 1, meaning that the pay was
set by collective bargaining. The fitted model for this subgroup of size n = 533 is:

Earnings = −8.93+ 1.57× YrsOfSchool+ 0.43× YrsWorkExp

This suggests that for this group an extra year of schooling on average leads to an
increase of just $1.57 in hourly earnings, compared to $2.78 for the whole dataset.
The same is true for the influence of an extra year of work experience: just $0.43
for the collective bargaining subgroup, against $0.63 in the complete dataset. This
is consistent with the finding that unions tend to equalize the income distribution,
especially between skilled and unskilled workers (Aidt and Tzannatos 2002).

6.6.3 Personal computer data

This dataset was analyzed in Stengos and Zacharias (2006). The data was collected
from advertisements in PC Magazine. Each observation consists of the advertised
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price and features of personal computers. We have fitted the following model to the
complete dataset:

Price =− 246.68+ 8.89× Spd+ 0.71× HD+ 47.39× RAM

+ 126.70× Scr+ 0.97× Ads− 47.08× Trend

where Price is the price in US dollars of a 486 PC, Spd is the clock speed in MHz, HD
is the size of the hard drive in MB, RAM is the size of RAM in MB, Scr is the size of the
screen in inches, Ads is the number of 486 price listings in the month the advertisement
was placed, and Trend is a time trend indicating month starting from January of 1993
(Trend = 1) to November of 1995 (Trend = 35). All coefficient estimates are significant
at α = 0.01, and R2 is about 71 %.

By far the most important attribute to create subgroups was whether or not the
company was a “premium firm” (IBM or COMPAQ). The most deviating subgroup
were the non-premium firms:

Price =− 2130.21+ 13.15× Spd+ 2.31× HD+ 22.20× RAM

+ 252.80× Scr+ 0.79× Ads− 46.45× Trend

The size of this subgroup is n = 612, and R2 is about 85 %. We get the clearest
picture when we contrast this with the regression model fitted to the premium firms:

Price = 165.69+ 8.50× Spd+ 0.67× HD+ 53.66× RAM

+ 99.96× Scr+ 0.65× Ads− 47.87× Trend

The size of this subgroup is n = 5647, and R2 is about 79 %. We find mostly
reasonable behavior in these subgroups: the price of computers from premium firms
is based on a far higher intercept, since the premium brand name ensures a vast price
upkeep. Consequently, other factors have a substantially smaller impact on the price
than for computers from non-premium firms. Oddly, the size of RAM memory does
matter more strongly for premium brands than for non-premium brands.

6.7 Experiments with alternative quality measures

To illustrate how one can influence the results of EMM by the selection of quality
measure, we explore some results found with alternative measures for a few model
classes.

6.7.1 Correlation

For the Correlation model class, we run additional experiments on the Affymetrix
dataset (cf. Sect. 6.4) with the alternative quality measure ϕabs (cf. Sect. 5.1.1). Recall
that this measure computes the absolute difference of the correlation for a description
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Fig. 7 Affymetrix, ϕabs: scatter plot of the subgroup corresponding to description D6 : 11_band =
‘nodeletion’∧survival time ≤ 1919∧X P_498569.1 ≤ 57 and its complement. a G6, with r̂ = −0.950,
b GC

6 , with r̂ = 0.363

and its complement, without considering the coverage of the descriptions, and hence
does not do anything to prevent overfitting.

On the Affymetrix dataset, recall that we analyze the correlation between ZHX3
and NAV3, showing a very slight correlation (r̂ = 0.218) on the whole dataset. We
analyze this dataset in terms of the absolute difference of correlations ϕabs, allowing
the use of all remaining attributes (both gene expression and clinical information) for
building descriptions. As the ϕabs measure does not have any provisions for promoting
larger subgroups, we use a minimum support threshold of 10 (15 % of the patients).
The largest distance (ϕabs(D6) = 1.313) was found with the following description
covering 11 records (17.5 %) of the dataset

D6 : 11_band = ‘no deletion’ ∧ survival time ≤ 1919 ∧ X P_498569.1 ≤ 57

Figure 7 shows the plot for this description and its complement with the regression
lines drawn in. The correlation for the description is r̂ G6 = −0.95 and the correlation
in the remaining data is r̂ GC

6 = 0.363. Note that the description displays a very “stable”
behavior: all points are quite close to the regression line, with R2 ≈ 0.9.

6.7.2 Classification

As an alternative in the Classification model class, we run experiments with a DTM
classifier on the Affymetrix dataset, evaluating subgroups with both alternative quality
measures (cf. Sect. 5.4.1). We have selected three binary attributes as targets. The
first two attributes, which serve as input variables of the decision table, are related
to genomic alterations that may be observed within the tumor tissues. The attribute
1p_band (�1) describes whether the small arm (‘p’) of the first chromosome has been
deleted. The second attribute, mycn (�2), describes whether one specific gene is ampli-
fied or not (multiple copies introduced in the genome). Both attributes are known to
potentially influence the genesis and prognosis of neuroblastoma. The output attribute
for the classification model is NBstatus (�3), which can be either ‘no event’ or ‘relapse
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or deceased’. The following decision table describes the conditional distribution of
NBstatus given 1p_band and mycn on the whole dataset

1p_band = mycn = ‘amplified’ mycn = ‘not amplified’

‘deletion’ 0.333 (3) 0.667 (3)

‘no change’ 0.625 (8) 0.204 (49)

In order to find descriptions for which the distribution is significantly different, we
run EMM with the Hellinger distance ϕHel as quality measure. As our quality measures
for classification do not specifically promote descriptions with larger coverage, we
have selected a slightly higher minimum support threshold of 16, which corresponds
to 25 % of the data. The following subgroup of 17 patients (27.0 %) was the best found
(ϕHel(D7) = 3.803)

D7 : prognosis = ‘unknown’

1p_band = mycn = ‘amplified’ mycn = ‘not amplified’

‘deletion’ 1.0 (1) 0.833 (6)

‘no change’ 1.0 (1) 0.333 (9)

Note that for each combination of input values, the probability of ‘relapse or
deceased’ is increased, which makes sense when the prognosis is uncertain. Note
furthermore that the overall dataset does not yield a pure classifier: for every combi-
nation of input values, there is still some confusion in the predictions.

In our second alternative classification experiment, we are interested in “pre-
dictable” descriptions. Therefore, we run EMM with the ϕBDeu measure. All other
settings are kept the same. The following subgroup (|G8| = 16 (25.4 %),ϕBDeu(D8) =
−1.075) is based on the expression of the gene RIF1 (‘RAP1 interacting factor
homolog (yeast)’)

D8 : RI F1 ≥ 160.45

1p_band = mycn = ‘amplified’ mycn = ‘not amplified’

‘deletion’ 0.0 (0) 0.0 (0)

‘no change’ 0.0 (0) 0.0 (16)

For this description, the predictiveness is optimal, as all patients turn out to be
tumor-free. In fact, the decision table ends up being rather trivial, as all cells indicate
the same decision.
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6.7.3 Bayesian network

In Sect. 5.5, we discussed how we incorporated an entropy term in our quality measure
ϕweed, in order to avoid obtaining small subgroups. If small subgroups are required,
we can also run this EMM instance with the non-composite quality measure ϕed,
selecting the good descriptions only by virtue of their edit distance on Bayesian net-
works. To illustrate what the outcome of such a run can be, we repeated the experi-
ments from the previous section on the Mammals dataset with ϕed instead of ϕweed.
The first-ranked description we found with this distance is D9 : mean_temp_apr
≥ 11.86 ∧ mean_temp_aug ≤ 23.28. Its quality is ϕed(D9) = 0.147, and its cover-
age is |G9| = 105 (4.7 %). The regions in Europe that belong to D9 are displayed in
Figure 8.

Relations between mammals that distinguish D9 from Ω (i.e.: relations that
appear as v-structures in the one Bayesian network but not in the other) include
the following. On Ω , but not on D9, the Alpine Marmot (Marmota marmota) and
the Alpine Field Mouse (Apodemus alpicola) are conditionally dependent given
the Alpine Ibex (Capra ibex), and the Beech Marten (Martes foina) and the Red
Fox (Vulpes vulpes) are conditionally dependent given the Least Weasel (Mustela
nivalis). On D9, but not on Ω , the Common Genet (Genetta genetta) and the Euro-
pean Mink (Mustela lutreola) are conditionally dependent given the Crowned Shrew
(Sorex coronatus), and the European Snow Vole (Chionomys nivalis) and the Iberian
Shrew (Sorex granarius) are conditionally dependent given the Lusitanian Pine Vole
(Microtus lusitanicus).

Using plain ϕed instead of the composite ϕweed has its benefits and its drawbacks.
When we compare the description D9 found with ϕed, with the description D5 found
withϕweed, there are several things to remark. As expected, using the plain edit distance
leads EMM to report smaller subgroups than we obtain when using the edit distance
weighted with entropy. Whether this is an argument for using ϕed or ϕweed depends
on the problem statement or domain expert at hand.

When we look at the deviating conditional dependence relations between the mam-
mals, we find that particularly in the description found with the plain edit distance, the
relations tend to focus on mammals that appear only in a very small subarea of Europe.
For instance, within the parts of Europe covered by the dataset, the European Mink
only occurs in a small area in the South West of France and the North of Spain, while
the Iberian Shrew and the Lusitanian Pine Vole are confined to the Iberian peninsula.
So, roughly speaking, ϕed can be seen as more focused than ϕweed.

On the other hand, if we look at the maps of regions of Europe belonging to the
subgroups, we see that ϕweed finds subgroups that are, geographically speaking, more
coherent than the subgroup found with ϕed. As we have discussed in Sect. 6.5.2, the
area depicted in Fig. 6 seems to indicate that subgroup G5 spans a dichotomous but
relatively coherent part of Europe: some Northern areas, and some mountainous areas.
By contrast, the regions belonging to subgroup G9, as depicted in Fig. 8, are far more
scattershot. The coastal line of Portugal is a fairly coherent part of the subgroup, but
the remaining areas seem relatively random. Although “Mediterranean coastal” is a
recurring theme, the selection of parts of the Mediterranean coast seems incoherent, as
does the isolated grid cell in Serbia and the small chunks in Bulgaria and Turkey. Hence,
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Fig. 8 Regions in Europe that belong to the subgroup corresponding to D9 : mean_temp_apr ≥ 11.86 ∧
mean_temp_aug ≤ 23.28 (|G9| = 105)

roughly speaking, ϕweed seems to deliver more substantially coherent subgroups than
ϕed.

7 Related work

EMM extends a vast body of work, of which this section contains some highlights.
First, we discuss the search strategies developed to deal with the exponential search
space. Then, we look into other local pattern mining tasks, and other extensions of
SD. Finally, we discuss how similar questions arise in other data mining disciplines,
and what distinguishes them from EMM.
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7.1 Search strategies for SD/EMM

When striving to find interesting subsets of a dataset, the search space is exponential in
the number of records. By restricting the problem to finding interesting subgroups, i.e.
subsets with a concise description, the search space remains theoretically exponential
(when the description language is generous, and the attributes are high-cardinality
numerical or nominal), but we obtain a handle with which we can tackle the prob-
lem. Traditionally (Klösgen 1996), this is done by compelling all attributes in the
dataset to be nominal (and assuming their cardinality to be not too large). In this case,
exhaustive search is possible, using filters akin to the anti-monotonicity constraints
known from frequent itemset mining. An interesting approach employing optimistic
estimates for a continuous target is given in Atzmüller and Lemmerich (2009), but
here too, all descriptors are compelled to be nominal. The same holds for the Non-
redundant Subgroup Discovery task (Boley and Grosskreutz 2009), where the goal is
to deliver only those subgroups that form a representative for an equivalence class with
respect to their extensions in the dataset: though the approach is undeniably a valu-
able contribution to the field, all attributes are compelled to be nominal. When not all
attributes are nominal, traditionally there was no option other than to resort to heuristic
search.

Instead of opting for heuristic search, one could of course make the numeric
attributes nominal by static discretization before invoking the SD algorithm. The obvi-
ous drawback is that by doing this, one loses information on the numeric attribute. A
refreshing alternative to discretization which ameliorates this drawback, is by employ-
ing fuzzy partitions in an evolutionary algorithm (del Jesús et al. 2007). The numeric
attributes are still essentially discretized, but during instead of before the algorithm,
and in a flexible, reversible manner. This way, we can expect to retrieve more informa-
tion from the attributes than static discretization would allow. This fuzzy innovation is
combined with mining non-dominated subgroups in terms of support and unusualness
in Carmona et al. (2010).

Recently, Grosskreutz and Rüping (2009) developed a new pruning scheme with
accompanying SD algorithm, MergeSD, which allows for exhaustive mining even
when the attributes are taken from a numerical domain. Their key idea is to exploit
bounds between related numerical subgroup descriptions to prune with optimistic
estimates, thus reducing the search space to tractable levels. Unfortunately, the pruning
scheme cannot be used with any quality measure; implicitly a constraint similar to anti-
monotonicity is imposed, bounding the choice of target concept and quality measure
and hence restricting the pruning scheme to the subset of EMM instances for which
anti-monotonicity can be enforced.

In work dedicated to expanding the description language available to Subgroup
Discoverers, Mampaey et al. introduced an efficient treatment of numerical attributes
(Mampaey et al. 2012). The subgroup space is not explored exhaustively. Instead,
the algorithm finds richer descriptions efficiently, by finding an optimal interval for
every numerical attribute, and an optimal value set for every nominal attribute. The
efficiency comes from having the algorithm only consider subgroup descriptions that
lie on a convex hull in ROC space, and evaluating subgroups with a convex quality
measure. Hence, the method is only suitable for a target concept that can be properly
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expressed in ROC space, i.e. traditional SD with a nominal target, and a convex concept
of interestingness.

Another problem stemming from the exponential search space, is the redundancy in
a resulting subgroup set. When a subgroup is deemed interesting, it is very likely that
small tweaks to the subgroup will lead to other subgroups that are also quite interesting.
Therefore it is not uncommon, especially when there are numerical attributes in the
dataset, to find the top of a subgroup chart being dominated by many copies of what
technically may all be slightly different subgroups, which in practice all indicate
the same underlying concept. Scholz (2005) binds the utility of a subgroup to prior
knowledge, which encompasses all previously found subgroups. Iterative modeling
evaluates candidate subgroups by weighing data according to the prior knowledge.
The data distribution is updated in each iteration, such that redundant patterns no
longer receive a high utility. Lavrač et al. (2004) employ a beam search approach
which is very similar to the one in Algorithm 1 in the current paper, except for two
properties: their beam search uses the classification accuracy of a rule as quality
measure, and they select only a single rule through the beam search. The deployment
of a weighted covering scheme before re-running the beam search algorithm, leads
to a rule set with increased diversity. van Leeuwen and Knobbe (2011) introduced
three degrees of subgroup redundancy, and incorporated selection strategies based
on these redundancies in a beam search algorithm. This results in non-exhaustive,
but interestingly different search strategies. The authors extended their approach in a
paper (van Leeuwen and Knobbe 2012) where some subgroup quality is conceded to
increase the diversity of the result set. This is achieved by post-processing the results
of a larger beam search run.

Whereas the traditional EMM framework strives to find exceptional subgroups by
searching through the descriptive attribute space, and evaluating on the target attribute
space, interesting results have been obtained by taking a more symmetrical approach
to the two subspaces of the data. The EMDM algorithm (van Leeuwen 2010) strives
to effectively find exceptional models by iteratively improving candidate subgroups,
exploiting structure in both spaces. Each iteration consists of two steps, one for Excep-
tion Maximization (EM) and one for Description Minimization (DM). In the EM step,
a compression-based quality measure guides the search for subsets having an unusual
model. In the DM step, a rule-based classifier is employed to find a concise description
that crafts a subgroup from the found subset. Upon convergence, or when a threshold
on the number of iterations is surpassed, the subgroups are reported.

New developments have also been made towards exhaustive EMM, by adapting
the well-known FP-Growth algorithm. The generic pattern growth algorithm (GP-
Growth) of Lemmerich et al. (2012) strives to avoid scanning the whole dataset to
evaluate subgroups. Instead, it builds a special datastructure, in which the key infor-
mation of the model learned for a subgroup is summarized. Such a summary is called a
valuation basis. It contains enough information to determine the quality of any refine-
ment of the subgroup. The GP-Growth algorithm can reduce the memory requirement
and runtime of an EMM instance by more than an order of magnitude, but only when
a valuation basis can be found that is suitably condensed. This depends on the cho-
sen model class: for relatively simple model classes it can be done, but for the more
computationally expensive model classes it cannot. If a parallel single-pass algorithm
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with sublinear memory requirements exists to compute the model from a given set of
records, profit can be gained from GP-Growth. Most of the model classes discussed
in Sect. 5 can benefit from GP-Growth, but the Bayesian Network model class of
Sect. 5.5 cannot.

7.2 Similar local pattern mining tasks

SD research originated in the mid-nineties, in a simple single-table setting with a binary
target attribute (Klösgen 1996), and in a multi-relational setting (Wrobel 1997). The
latter paper has a very general definition of an evaluation function, which can be
seen as equivalent to Definition 2 from this paper. At the same time, several papers
were written giving a different name to essentially the same task, most notably Bump
Hunting (Friedman and Fisher 1999) and Data Surveying (Siebes 1995).

At the turn of the century, Willi Klösgen wrote a pair of survey papers on SD
(Klösgen 1998, 1999). The first (Klösgen 1998) discusses interestingness, description
languages, subgroup validation, search strategies, and presentation of the results. Par-
ticularly interesting is that this paper looks beyond the standard binary, nominal, and
numeric attributes, by investigating SD on time-stamped, spatial, and text-based data.
The second (Klösgen 1999) again explores interestingness, and adds a discussion on
conditions that make SD successful, as well as a few applications.

Tasks that are very similar to, but slightly different from Subgroup Discovery,
include Contrast Set Mining (Bay and Pazzani 2001), where the goal is to find “con-
junctions of attributes and values that differ meaningfully in their distributions across
groups”, and Emerging Pattern Mining (Dong and Li 1999), which strives to find item-
sets whose support increases substantially from one dataset to another. Kralj Novak
et al. (2009) provide a framework unifying Contrast Set Mining, Emerging Pattern
Mining, and Subgroup Discovery.

For nominal-valued datasets, Zimmermann and Raedt (2009) have introduced the
problem of Cluster-Grouping as a bridge between Subgroup Discovery and several
other important data mining tasks, such as clustering and classification.

Giving a full overview of all work related to SD is beyond the scope of this paper;
such overviews are available in the literature (for instance: (Herrera et al. 2011)). In
the remainder of this section, we focus on work related to supervised local pattern
mining with a more complex goal in mind.

As the antithesis to Contrast Set Mining, Redescription Mining (Ramakrishnan et al.
1995; Gallo et al. 2008) strives to find multiple descriptions of the same subgroups,
originally in itemset data. It has recently been extended to categorical and real-valued
data (Galbrun and Miettinen 2012).

Umek and Zupan (2011) consider SD with a multi-dimensional output space. They
approach this data by considering the output space first: by agglomerative clustering
in the output space, candidate subgroups are proposed that have records similar in
outcomes. Then, a predictive modeling technique is used to test for each identified
candidate whether it can be characterized by a description over the input space.

One of the few papers that explicitly seeks a deviating model over a target attribute,
concerns Distribution Rules (Jorge et al. 2006). In this work, there is only one numeric
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target, and the goal is to find subgroups for which the distribution over this target is sig-
nificantly different from the overall distribution, measured in terms of the Kolmogorov-
Smirnov test for goodness of fit. Since rules are evaluated by assessing characteristics
of a model, this can be seen as an early instance of EMM, albeit considering only one
target attribute.

An extensive overview of the state of the art in Local Pattern Mining (LPM) was
portrayed in a Dagstuhl Seminar in 2004. Its proceedings (Morik et al. 2005) provide a
wealth of approaches to LPM by experts from many data mining and machine learning
subfields that are not necessarily primarily focused on Local Pattern Mining. Hence,
the proceedings provide many interesting alternative approaches.

7.3 Similar tasks with a broader scope

General concepts from EMM, like fitting different models to different parts of the data,
or identifying anomalies in a dataset, appear in tasks beyond Local Pattern Mining. In
this section we discuss a few such tasks, and how they relate to EMM.

In Outlier Detection, traditionally the goal is to identify records that deviate from a
general mechanism. Usually there is no desire to find a coherent set of such outliers,
which can succinctly be described: identifying non-conforming records is enough.
Early on, Hand et al. (2002) pointed at the distinction between noise, i.e. exceptions to
be deleted, and local patterns, which form interesting subgroups. As Outlier Detection
becomes more and more mature and sophisticated, we witness more attention towards
the reason why a point is an outlier, for instance in recent work by Kriegel et al.
(2012). Their method to detect outliers in arbitrarily oriented subspaces of the original
attribute space also delivers an explanation with each outlier, consisting of two parts:
an error vector, pointing towards the expected position of the outlier, and an outlier
score, indicating the likelihood that the outlier is generated by a different mechanism
rather than being just a rare object from the general mechanism. Searching for the
reason for outliers is a step towards bridging the gap with finding coherent deviating
subsets as done in EMM, although the approaches differ vastly.

When fitting a regression function to a dataset with a complex underlying distrib-
ution, one could employ Regression Clustering (Zhang 2003). The idea is to simulta-
neously apply K > 1 regression functions to the dataset, clustering the dataset into
K subsets that each have a simpler distribution than the overall distribution. Each
function is then regressed to its own subset, resulting in smaller residual errors, and
the regression functions and clustering optimize a common objective function. Cater-
ing for parts of the dataset where a fitted model is substantially different is a shared
idea between Regression Clustering and EMM. However, in Regression Clustering
the subsets are not necessarily coherent, easy to describe subgroups: the goal is not to
explore exceptionalities, but to give a well-fitting partition.

A similar caveat holds for the well-known Classification And Regression Trees
(Breiman et al. 1984), where a nominal or numerical target concept is assigned a dif-
ferent class or outcome depending on conditions on attributes. While the recursive
partitioning given by the tree ensures that every path from the root to a leaf constitutes
a coherent, easy to describe subgroup, there is again no explicit search for exceptional-
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ities. A partition that performs well is enough, and if multiple exceptional phenomena
that happen to have similar effects on the target are lumped together in one cell of the
partition, the CART algorithm is happy while the Exceptional Model Miner is not.

Contrary to ordinary decision trees, where the classes are found in the leaves of the
tree and the internal nodes merely contain conditions for classification, a Predictive
Clustering Tree (PCT) (Blockeel et al. 1998) has each internal node and each leaf cor-
responding to a cluster. A cluster is represented by a prototype, and a distance measure
is assumed that computes the distance between prototypes hence clusters. Given all
this, the decision tree algorithm is adapted to select in each node the condition max-
imizing the distance between the clusters in its children. Defining a quality measure
that finds an optimal separation between a subset of the data and its complement, is
a common concept in PCT and EMM. However, the goal of PCT is not to find global
exceptionalities, but rather find a partition of the data that is optimal in some sense.

The work on PCTs has been generalized to concern the general problem of mining
on a dataset with structure on the output classes, whether this structure takes the form
of dependencies between classes (tree-shaped hierarchy, directed acyclic graph) or
internal relations between classes (sequences). A tree ensemble method working on
such data was proposed by Kocev et al. (2013). Such a method is able to give different
predictions for parts of the dataset that behave differently from the norm. However,
contrary to EMM, there is no explicit identification of the deviating subgroup and
model.

8 Reasons for performing Exceptional Model Mining

So far in this paper we have seen what EMM is, how we can define EMM instances
in a sensible way, and what kind of subgroups we can find with it. All this obviously
raises the question why we would need EMM. In this section, we give one trivial and
two more complicated answers to that question.

For starters, there’s the trivial reason to perform EMM: we learn things about our
data. Extracting pieces of information from a raw dataset is the core business of data
mining, and it should not be thought of lightly if a method does merely that. As we
have seen in Sect. 6, each subgroup one can find with EMM is such a coherent nugget
of information. Those real-life nuggets are far more actionable for a domain expert
than the raw data could ever be. Given that EMM is able to capture a richer concept
of “interestingness” than conventional SD, EMM can retrieve subgroups containing
more information out of the data than was possible beforehand, as long as the domain
expert and the data miner together can formulate a model for the particular concept of
interestingness that they strive to find.

Beyond the trivial reason, EMM is a great tool for metalearning. For example,
in Sect. 5.4 we introduced an EMM instance with a classification model as target
concept. Hence this instance finds subgroups for which the classification is performed
in a substantially different manner than overall, which could be interesting to the
researcher. Additionally, one could mine explicitly on a metadataset crafted from the
results of a classification run. Suppose one is interested in predicting a numerical
variable, for instance the number of days a court case will take to resolve. Having
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trained and tested a classifier, we end up with a metadataset of court cases, each with
the real number of days and the predicted number of days. We can now use these
real and predicted numbers as the two targets in an EMM run, for instance using the
correlation model from Sect. 5.1. This EMM run will result in coherent subsets of
the data for which the predictions of our classifier are particularly good or bad, which
is potentially very useful information for further development or finetuning of the
classification algorithm.

Lastly, the subgroups found through EMM may be directly applicable in a setting
that is less exploratory and more oriented towards a concrete goal. The EMM instance
with a Bayesian network model as target concept, which we discussed in Sect. 5.5,
is a good example. While the original goal of the EMM instance was simply to find
subgroups for which the conditional dependence relations between the targets were
unusual, the subgroups have been shown capable to improve multi-label SVM classi-
fiers (Duivesteijn et al. 2012b), though it didn’t work as well for decision trees. The
main idea is that every subgroup can be seen as a binary attribute of the dataset, indi-
cating whether the record is covered by the subgroup. These binary attributes highlight
regions in the dataset where the labels interact in an unusual manner, so employing
them in the learning phase may improve a multi-label classifier. Even though pre-
dictiveness was not considered at all when the subgroups were found, the classifier
performance of SVM methods improved when these additional attributes were avail-
able. The following section details experiments providing evidence for similar global
applicability of subgroups, found through EMM with the general linear regression
model discussed in Sect. 5.6.

8.1 Subgroup-reinforced general linear regression modeling

In Sect. 5.6, we have discussed EMM with the General Linear Regression model class,
which can be denoted by:

�i
m = β0 + β1�

i
1 + . . .+ βm−1�

i
m−1 + εi (5)

In Sect. 6.6, we have discussed subgroups found with this EMM instance on three
datasets. In this section, we explore whether the quality of the global regression model
can be improved by incorporating each of the found subgroups. Incorporation of a
subgroup G D is achieved by adding m new terms to the model: the subgroup indicator
variable D itself, and an interaction term D × � j for each explanatory variable � j in
the original model. Hence, the linear regression model with an incorporated subgroup
G D can be denoted by:

�i
m = β0 + β1 Di + β2�

i
1 + β3�

i
1 Di + . . .+ β2m−2�

i
m−1 + β2m−1�

i
m−1 Di + εi

(6)

Here, we write Di as shorthand for D
(
ai

1, . . . , ai
k

)
. We deviate from the enhanced

model definition on the Giffen dataset. Here we only added one interaction term,
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for D × %Δpi,t because the subgroups were found using Cook’s distance for the
coefficient of %Δpi,t only.

We would like to quantify whether the enhanced model of Eq. (6) constitutes an
improvement over the original model of Eq. (5). Now, obviously, since the enhanced
model encompasses all the terms of the original model (and adds some), its goodness-
of-fit will invariably be better, so that comparison would be unfair. Instead, we measure
model quality by the adjusted coefficient of multiple determination (adjusted R2).
Adjusted R2 is defined as:

R2
a = 1−

(
n − 1

n − p

)
SSE

SST

where SSE stands for the Sum of Squared Errors and SST denotes the Sum of Squares
Total. The adjusted coefficient of multiple determination may become smaller when
an extra explanatory variable is added, because the decrease in SSE may be more than
offset by the loss of a degree of freedom in the denominator n − p. We compare the
adjusted R2 of the original global model with the adjusted R2 of the global model with
the subgroup variables added. We also count how often coefficients of the subgroup
variables were significant at the α = 0.05 significance level. In addition to the datasets
from Sect. 6.6, we perform experiments on three other datasets.

The Ames Housing dataset contains information from the Ames Assessor’s Office
used in computing assessed values for individual residential properties sold in Ames,
Iowa from 2006 to 2010. The global model is

Price = −108225.05+ 1.93× Lot Area + 44201.87× Quali t y

where Price is the sales price of the house in dollars, Lot Area is the lot size in square
feet, and Quality rates the overall material and finish of the house on a scale from 1 to
10.

The Auction dataset was analyzed in Rezende (2008). It concerns eBay auctions of
Apple iPod mini players from June 27 to July 18, 2006. The goal is to model the final
price reached in the auction in terms of auction, seller, and product characteristics.
The global model is

Price = 1193.38+ 7.95× Nbid + 0.13× PositiveFeedback − 0.00× T ime

− 0.00× FeedbackScore − 0.10× Memory + 0.66× Res Price

where Price is the final price of the auction in US dollars, Nbid is the number of dis-
tinct people who bid in the auction, PositiveFeedback is the seller’s positive feedback
percentage (the coefficient is nonzero from the fourth decimal place), Time is the time
of he final bid expressed in seconds after Dec. 31 1969, 22:00:00 PDT (the coefficient
is nonzero from the fifth decimal place), FeedbackScore is the seller’s feedback score,
Memory is the reported memory of the iPod in gigabytes, and ResPrice is the auction
reservation price in US dollars.

Finally, the Wine dataset was analyzed in Costanigro et al. (2009). It is derived
from 10 years (1991–2000) of tasting ratings reported in the Wine Spectator Magazine
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Table 6 Results of subgroup-reinforced general regression modeling experiments

Ω Subgroups in R2
a improvement

G R C Average Maximum

Ames Housing 50 50 50 0.01462 0.04387

Auction 26 26 20 0.02453 0.08520

EAEF 50 50 47 0.01492 0.04993

Giffen 50 35 11 0.00149 0.02260

PC486 6 6 6 0.03989 0.08447

Wine 50 50 42 0.01210 0.05910

The set of subgroups available for testing is denoted by G, the set of subgroups whose inclusion in the global
model resulted in an increase of R2

a is denoted by R, and the set of subgroups for which at least one of the
coefficients (of D and D × �i ) was significant is denoted by C. The last two columns detail the average
and maximum improvement of R2

a made when replacing the original model of Eq. (5) with the enhanced
model of Eq. (6)

(online version) for California and Washington red wines. Our analysis uses a random
sample of size 5000 from the original data. For a detailed description of the data we
refer to Costanigro et al. (2009). The global model is

Price = −186.61− 0.0002× Cases + 2.35× Score + 5.51× Age

where Price is the retail price suggested by the winery, Score is the score from the
Wine Spectator, Age is the years of aging before commercialization, and Cases is the
number of cases produced (in thousands).

The results of these model-enhancing experiments can be found in Table 6. When
running the original EMM algorithm with the general linear regression model, we
had restricted the number of reported subgroups to the top-50, so no more subgroups
were tested here. The three leftmost columns show that, for almost all subgroups,
the enhanced model has an increased R2

a ; taken together, the additional terms in the
regression model improve the model more than would be expected by chance. This
holds for all subgroups considered here on all datasets, except for a minority (30 %) of
the subgroups considered on the Giffen dataset. Additionally, for each dataset except
for Giffen, for a large majority of the subgroups, at least one of the additional terms
in the enhanced regression model has by itself a significant (α = 0.05) coefficient.
Together, these observations provide evidence for our belief that the subgroups found
through EMM are not only interesting as nuggets of information, but also potentially
relevant for enhancing global modeling.

9 Conclusions

We have introduced EMM, a general framework to find subgroups of the data where
something exceptional, something interesting is going on. These subgroups are not
just any subset of the data: they must be coherent records in the dataset, covered
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by a succinct description in terms of conditions on attributes within the dataset. The
attributes that can be used for such a description are strictly separated from the target
attributes, which are used to evaluate the subgroups on. Hence, EMM can be seen as
an extension of SD, incorporating a more complex target.

Commonly, in traditional SD, the distribution of a single attribute is used as target
concept. In EMM, the target concept is a model over several attributes. We have
discussed several model classes: correlation, association, simple linear regression,
classification, Bayesian networks, and general linear regression models. For each such
model class we have developed a quality measure: a function that extracts relevant
model characteristics, and from those characteristics computes a number quantifying
how exceptional a subgroup is. A subgroup is considered exceptional when the model
learned from the data belonging to the subgroup differs substantially, either from
the model learned from the data belonging to its complement, or from the model
learned from the overall dataset (for more on this choice, see Sect. 3.2.2). An EMM
run results in succinct descriptions of subgroups, where for instance two targets are
unusually correlated, or where a classifier performs exceptionally good or bad, or
where the conditional dependence relations between several targets deviate from the
norm.

We have discussed experimental results for each of the introduced model classes.
Among the most striking results are the coherent regions within Europe found on
the Mammals data (see Sect. 6.5) with the Bayesian Network model, where animals
depend on each other in a substantially different way, and the strong real-life evidence
for the Giffen effect (see Sect. 6.6.1) found with the General Linear Regression model,
where poor households in the Chinese province Hunan displayed a positive price elas-
ticity of demand for rice. Apart from merely finding such exceptional subgroups, we
have argued that EMM is an excellent tool for metalearning, and found subgroups can
be employed to enhance global modeling: their incorporation can improve the perfor-
mance of a multi-label classifier performance, and the goodness-of-fit of a regression
model.

EMM is in many respects a white box system. When employing an EMM instance
on a particular domain, it is fairly simple to convey to a domain expert what kind
of exceptionality is being sought after (by means of agreeing on the model class).
The resulting subgroups are conjunctions of a few conditions on single attributes,
which should be simple to interpret for the expert. Depending on the model class,
a domain expert may also be able to properly investigate the discrepancies in fitted
models; for instance in the case of a correlation or regression model this may enrich
the expert’s understanding of the result, but in the case of a Bayesian network fitted
on a hundred animals it probably will not. We expect that deploying existing EMM
instances in, or developing new EMM instances for, other fields, could lead to many
fruitful collaborations between data miners and experts in those fields.
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Lavrač N, Flach P, Zupan B (1999) Rule evaluation measures: a unifying view. In: Proceedings of the ninth
international workshop on inductive logic programming. Lecture notes in artificial intelligence, vol
1634, pp 174–185
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