
On the Incremental Evaluation of
Higher-Order Attribute Grammars

Over de Incrementele Evaluatie van
Hogere-Orde Attributengrammatica’s

(met een samenvatting in het Nederlands)

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de
rector magnificus, prof.dr. G.J. van der Zwaan, ingevolge het besluit van het college
voor promoties in het openbaar te verdedigen op dinsdag 30 juni 2015 des middags
te 4.15 uur

door

Jeroen Bransen

geboren op 14 september 1987 te Utrecht

Promotor: Prof.dr. S. D. Swierstra
Copromotor: Dr. A. Dijkstra

The work in the thesis has been carried out under the auspices of the research
school IPA (Institute for Programming research and Algorithmics) and is part of
the research programme Non-Invasive Incremental Evaluation, which is (partly)
financed by the Netherlands Organisation for Scientific Research (NWO).

Preface

The cover of this thesis shows an ant colony that is building a bridge of ants standing
on top of each other. The cover image is not only a nice photograph, but also
symbolises several of my interests, such as my love for walking through the forest.
There are three different elements in the image that symbolise different aspects of
the basis of this thesis.

My background in artificial intelligence is symbolised by the ant colony itself.
In the field of artificial intelligence ant colonies are studied for their interesting
behaviour: every single ant uses only very simple rules for deciding in which way to
move, yet the combination of many of those ants together leads to complex patterns.
For example, the shortest path to a source of food is found and utilised by all ants
even though no single ant is capable of finding such shortest path by itself.

The leaves of the tree on which the ants walk symbolise attribute grammars.
Attribute grammar computations, on which the work in this thesis is based, are
computations over tree-shaped structures which are extended with attributes. Such
attributes are often visualised as values that are attached to the tree, just like the
ants that walk on the tree. Furthermore, ants gather food from the tree in the same
way that attribute grammars gather information from the tree structure.

Finally the bridge made out of ants standing on top of each other symbolises
the incremental construction of results. Whenever a new ant arrives it builds upon
the result achieved by the ants that arrived earlier; the bridge is extended with the
newly arrived ant to form a larger bridge. Such an incremental way of constructing
a bridge is in a way similar to the incremental evaluation of attribute grammars as
described in this thesis: instead of starting all over again when more ants are there,
the ants simply reuse the previous result of building a bridge.

In addition to the explanation of the cover image, the preface of a thesis is the
natural place to thank people. Although I am thankful to many people, I have
chosen not to explicitly mention all of them. For Doaitse, my promotor, and Atze,
my copromotor, I make an exception.

Before Doaitse retired he was actively involved in my research, often showing
up in my office to explain a new idea he came up with that morning while cycling to

iii

iv PREFACE

university. I also enjoyed the many lunches where Doaitse explained things about
functional programming, finance, politics and many other subjects to me and the
other group members. After he retired the daily contact got lost, but via Skype and
face to face meetings now and then he kept supervising me and has provided a lot
of valuable feedback on all aspects of my research.

Atze has taught me many aspects of the life as a scientist. To contrast Doaitse,
who had many suggestions for research, Atze helped me to focus on the important
bits that would lead to concrete results. The weekly meetings with Atze were a
good way of getting me on the right track, either by pushing me to work a bit
harder on certain subjects, or by slowing me down to avoid spending too much
time on wild ideas. Without Atze his supervision this thesis would have probably
not been finished by now.

To conclude: Doaitse and Atze, thank you very much for the supervision. I have
enjoyed the past four years a lot and you have played an important role in them. To
all others who have somehow contributed to this thesis, colleagues, members of the
reading committee, family members, friends, students, etc.: thank you very much,
I hope that you have enjoyed my enthusiasm and the interaction with me as much
as I have enjoyed it. Have fun reading!

Contents

Preface iii

1 Introduction 1
1.1 General overview . 2
1.2 Code . 2
1.3 Guestbook example . 3

1.3.1 Introduction . 3
1.3.2 Complicating matters . 4
1.3.3 Incremental computation . 6
1.3.4 The big picture . 9

1.4 Definitions . 10
1.5 C] example . 11

1.5.1 Architecture . 11
1.6 Thesis overview . 13

1.6.1 Dependency graph . 15

2 Attribute Grammars 17
2.1 Abstract Syntax Tree . 18

2.1.1 Guestbook example . 18
2.1.2 C] example . 19

2.2 Synthesized attributes . 21
2.2.1 Guestbook example . 21
2.2.2 C] example . 24

2.3 Inherited attributes . 24
2.3.1 C] example . 25

2.4 Chained attributes . 26
2.5 Higher-order attributes . 27

2.5.1 Guestbook example . 27
2.5.2 C] example . 28

v

vi CONTENTS

2.6 Minimal higher-order attribute grammars 29

3 Scheduling 31
3.1 Lazy evaluation . 33

3.1.1 Guestbook example . 33
3.1.2 C] example . 33

3.2 Ordered AGs . 37
3.2.1 Dependency graphs . 38
3.2.2 Induced dependencies . 39
3.2.3 Nonterminal dependency graph 40
3.2.4 Visit interfaces . 40
3.2.5 Code generation . 41
3.2.6 Counter example . 42
3.2.7 Augmenting dependencies . 46

3.3 Absolutely Noncircular AGs . 47
3.3.1 Input-output graph . 47
3.3.2 Visit graph . 48
3.3.3 Runtime evaluator . 51
3.3.4 Functional implementation . 53
3.3.5 Discussion . 58

3.4 Linearly Ordered AGs . 59
3.4.1 Backtracking algorithm . 60
3.4.2 SAT algorithm . 60
3.4.3 Translation into SAT . 61
3.4.4 Chordal graph heuristics . 63
3.4.5 Optimisations . 64
3.4.6 Code generation . 67

3.5 Runtime comparison . 67
3.6 Conclusion . 68

4 Tree Transformations 69
4.1 Transformation operations . 70

4.1.1 Localisation . 72
4.1.2 Diff is not enough . 72

4.2 Guestbook example . 73
4.2.1 Paths . 73
4.2.2 Guestbook values with references 74
4.2.3 Trees with references . 75
4.2.4 Full change . 75

CONTENTS vii

4.3 C] example . 76
4.3.1 Paths . 77
4.3.2 Trees with references . 78
4.3.3 Full change . 79
4.3.4 List support . 79

4.4 Generic programming for regular functors 80
4.4.1 Representation . 81
4.4.2 Functoriality of the representation types 82
4.4.3 Embedding user-defined types . 82
4.4.4 Generic functions . 83

4.5 Zippers and paths . 83
4.6 Generic representation of transformations 86

4.6.1 Representation . 86
4.6.2 Applying transformations . 87
4.6.3 Generic diff . 88
4.6.4 Improving the interface . 92

4.7 Family of data types . 92
4.7.1 Representation . 92
4.7.2 Generic functions . 94
4.7.3 Zippers and paths . 96
4.7.4 Generic representation of transformations 96

4.8 Discussion and conclusion . 98
4.8.1 Related work . 98
4.8.2 Shortcomings . 98
4.8.3 Future work . 99

5 Incremental AG evaluation 101
5.1 Overview . 101
5.2 Representation . 102

5.2.1 Nonterminal and evaluator types 105
5.3 Functional implementation . 105

5.3.1 Example invocation . 109
5.3.2 Intra-visit attributes . 110

5.4 Conclusion . 110

6 Higher-order attributes 113
6.1 Problem . 114
6.2 Solution . 115
6.3 Implementation . 118

viii CONTENTS

6.3.1 Paths . 118
6.3.2 Derived change construction . 120
6.3.3 Change propagation . 121

6.4 Restrictions and drawbacks . 122
6.4.1 Inspectability . 122
6.4.2 Overhead . 123
6.4.3 Memory consumption . 123
6.4.4 Equality and granularity . 124
6.4.5 Cache size . 124

6.5 Conclusion . 124

7 Supporting incrementality 125
7.1 Unique value generation . 127
7.2 Projection of inherited attributes . 130
7.3 General suggestion . 130
7.4 Equality . 131
7.5 Inspectability . 132
7.6 Automatic projection . 133
7.7 Haskell to AG translation . 134

7.7.1 A simple functional language . 134
7.7.2 Example . 136
7.7.3 Example translation . 139
7.7.4 Translation . 141
7.7.5 Top level declarations . 142
7.7.6 Recognising folds . 142
7.7.7 Identifying recursive calls . 143
7.7.8 Lambda lifting in case alternatives 143
7.7.9 Translation rules . 144

7.8 Conclusion . 147

8 Benchmarking 149
8.1 Input data . 150

8.1.1 Correctness . 150
8.1.2 Appropriateness . 151
8.1.3 Distribution . 151
8.1.4 Existing data . 151
8.1.5 Data generation . 152

8.2 Lazy evaluation . 153
8.3 Overhead . 154

CONTENTS ix

8.3.1 Diff overhead . 154
8.3.2 Benchmarking overhead . 155

8.4 Results . 155
8.4.1 Guestbook example . 156
8.4.2 C] example . 158

8.5 Memory consumption . 161

9 Discussion and conclusion 163
9.1 Related work . 163

9.1.1 Simple change propagation . 164
9.1.2 Synthesizer generator . 164
9.1.3 Function caching . 164
9.1.4 Self-adjusting computation . 165
9.1.5 Adapton . 166
9.1.6 Computational complexity . 166

9.2 Future work . 166
9.2.1 Other backend . 166
9.2.2 Automatic projection . 167
9.2.3 Inspectability . 167
9.2.4 Granularity . 168
9.2.5 Synthesized attribute equality . 168
9.2.6 Serialisation . 168
9.2.7 Correctness and soundness . 169
9.2.8 Utrecht Haskell Compiler . 169

9.3 Long term future work . 169
9.4 Conclusion . 170

Bibliography 171

Index 179

Samenvatting 181

Curriculum Vitae 185

Titles in the IPA Dissertation Series since 2009 187

x CONTENTS

1
Introduction

Computers perform many computations over input data that changes over time. For
example, a text editor keeps the table of contents up-to-date while a document is
being edited, an e-mail client updates its interface when new e-mails arrive and an
IDE shows compilation errors during program construction. For such programs to
be useful in practice we expect them to respond promptly to such changes to their
input.

For the programmer of such applications this poses a problem, as the compu-
tations take more time when the input data grows. The solution is to construct
programs that update their results incrementally, such that small changes to the in-
put lead to a short computation time. To obtain such short computation times the
program may try to reuse results computed from the previous input.

In general constructing an incremental version of an algorithm is complex and
error-prone, and much more complicated than writing a non-incremental version.
For instance, in the case of a compiler, constructing a correct and efficient com-
piler is by itself already a hard task and adapting such compiler to behave incre-
mentally complicates matters even more. This raises the question whether we can
(semi)automatically get an incremental version of an otherwise non-incremental
program.

In this thesis we therefore take the approach of automatically generating incre-

1

2 CHAPTER 1. INTRODUCTION

mental evaluators from a declarative definition. With this approach the program-
mer can think about the program in terms of a non-incremental version, and get
the incremental version “for free”.

1.1 General overview

The work in this thesis is based on attribute grammars [Knuth, 1968] (AGs), a for-
malism for specifying computations over tree structures in a declarative way. From
the perspective of the programmer the usage of attribute grammars for software
development can be limiting; attribute grammars provide only a restricted form of
constructing programs. From the perspective of the automatic generation of incre-
mental evaluators, however, this restricted form is exactly where we find a handle
to attack our problem. We believe that attribute grammars are the right level of
abstraction: they are restricted enough for the automatic generation of incremen-
tal evaluators, while there are still many programs that can be constructed in an
attractive way by expressing them as attribute grammars.

A particular type of such programs are compilers. The input of a compiler is the
source code in some language, represented by an abstract syntax tree. The abstract
syntax tree is then analysed and transformed into a resulting program expressed in
some backend language, probably again represented by a tree structure. Because
attribute grammars provide an attractive way of specifying computations on trees
they are useful in compiler construction.

The Utrecht Haskell Compiler (UHC) [Dijkstra et al., 2009], which is built using
attribute grammars, is the main motivation for this work. We want the UHC to
update its compilation results incrementally: when some file is compiled, changed
and compiled again, we want the second compilation run to take only a short time
when the changes are small. Of course this is not always achievable since a small
change may have a large effect on the complete compilation result, but in many
cases efficiency can be gained by storing intermediate results from the first compi-
lation. The work in this thesis forms the first step in the automatic construction of
an incremental version of the UHC.

1.2 Code

The functional programming language Haskell [Peyton Jones, 2003] is used for im-
plementing the techniques described in this thesis, and we assume the reader to be
familiar with that programming language. As the UHC is a research project rather

1.3. GUESTBOOK EXAMPLE 3

than an industrial strength compiler, we use the Glasgow Haskell Compiler1 (GHC)
version 7.8.3 with several of its extensions to the Haskell language for compila-
tion. The techniques for incremental attribute grammar evaluation are however not
specific to Haskell and could as well be implemented in another (functional) lan-
guage. For the incremental evaluation of attribute grammars without higher-order
attributes, the lazy semantics of Haskell can have a positive effect on the effective-
ness of the incremental evaluation, but laziness is not essential. For the support of
higher-order attributes we do however make essential use of lazy evaluation.

It is a standard practice to format the code nicely instead of printing it ver-
batim and in this thesis we follow that convention. For example, Set.empty is
formatted as ; and ++ is formatted as ++. In some cases multiple different func-
tions may be typeset as the same symbol, for instance ‘elem‘, ‘Set.member‘
and ‘Map.member‘ are all typeset as ∈. From the context it should always be
clear which function is used.

We have implemented the techniques described in this thesis as a proof of con-
cept for which the source code can be found online2. All relevant implementation
details are given in this thesis; the repository can be regarded as an extra reference
in case implementation details are unclear.

1.3 Guestbook example

To illustrate the techniques of incremental evaluation and the difficulties in the man-
ual construction of such incremental evaluators, let us take a look at the following
short story. The example introduced in the story is also used in later chapters of this
thesis as a running example.

1.3.1 Introduction

Imagine a hotel with a guestbook containing two types of entries: the arrival of a
guest and the departure of a guest. Furthermore, upon departure guests can also
write a small review of the hotel and assign a grade to their stay. Figure 1.1 shows a
few example entries of such a guestbook. Note that the guestbook is ordered from
new to old; the most recent entry is at the beginning of the list and the oldest entry
at the end.

Now the hotel owner is interested in knowing the average grade that clients
give to his hotel and therefore he writes a Haskell program to compute this grade

1https://www.haskell.org/ghc/
2https://github.com/jbransen/uuoagc

https://www.haskell.org/ghc/
https://github.com/jbransen/uuoagc

4 CHAPTER 1. INTRODUCTION

LEAVE Bransen - 7.6 - I liked the fast internet connection
LEAVE Dijkstra - 8 - The atmosphere is great for taking pictures!
ARRIVE Dijkstra
LEAVE Swierstra - 6 - Nice hotel, but the beds are too short
ARRIVE Bransen
ARRIVE Swierstra

Figure 1.1: Example guestbook entries

type Name= String

data Entry = Arrive Name
| Leave Name Double String

type Guestbook= [Entry]
average :: [Double]→ Double
average nums= sum nums / genericLength nums

avgGrade1 :: Guestbook→ Double
avgGrade1 gb= average [g | Leave g ← gb]

Figure 1.2: Haskell code for representing the guestbook and computing the average
grade

(Figure 1.2). The guestbook consists of a list of entries with the latest entry at the
beginning of the list. As expected, the code returns 7.2 as the average grade for the
example guestbook, which makes the hotel owner quite happy.

1.3.2 Complicating matters

Unfortunately, soon after constructing this wonderful piece of code, the hotel owner
realises that there are two problems with this approach: honesty and efficiency. Or
more precisely: dishonesty and inefficiency.

Honesty First of all not all guests are honest and it happens that guests enter fake
reviews under another name. For obvious reasons the hotel owner wants to exclude
those reviews from the grade computation, since they do not give a fair indication
of the quality of the hotel. To solve this problem he decides to only include reviews

1.3. GUESTBOOK EXAMPLE 5

avgGrade2 :: Guestbook→ Double
avgGrade2 = average ◦ trueReviews

trueReviews :: Guestbook→ [Double]
trueReviews [] = []
trueReviews (Arrive : xs) = trueReviews xs
trueReviews (Leave n g : xs) = if n ∈ signedIn xs

then g : trueReviews xs
else trueReviews xs

signedIn :: Guestbook→ Set Name
signedIn [] = ;
signedIn (Arrive n : xs) = n ‘Set.insert‘ signedIn xs
signedIn (Leave n : xs) = n ‘Set.delete‘ signedIn xs

Figure 1.3: Computing the average grade for all honest guests

from guests that have actually arrived, and to accept only the first review of a guest
after arrival in case of multiple reviews from the same guest. His first coding attempt
is given in Figure 1.3.

The signedIn function computes for a given guestbook which guests are currently
signed in. Keep in mind that the latest entry is at the beginning of the list. In order
to retrieve all reviews from honest guests (trueReviews), we check for each guests
which leaves whether this guest was indeed checked in at that time. Note that we
do not disallow multiple arrival entries from the same guest.

Efficiency problem 1 (lack of sharing) Although this code gives the required an-
swer, there is a problem: it has become less efficient! To be precise, the running
time changed from O

�

n
�

to O
�

n2
�

where n is the number of entries in the guest-
book3. The reason for this is that for each Leave entry in the guestbook, the functions
signedIn and trueReviews are both called on the tail of the guestbook and thus the
complete trailing list is traversed. Another way of viewing this is that in trueReviews
there are calls to two recursive functions instead of just one, and because the re-
cursive call to trueReviews can have two recursive calls again, the complexity has
increased from linear to quadratic.

3We assume constant time set operations here, which in practice is not the case. However, the loga-
rithmic factors introduced by the set operations do not influence the main message of this story so we
ignore them in this example

6 CHAPTER 1. INTRODUCTION

avgGrade3 :: Guestbook→ Double
avgGrade3 = average ◦ snd ◦ tupled where

tupled :: Guestbook→ (Set Name, [Double])
tupled [] = (;, [])
tupled (Arrive n : xs) = let (signedIn, trueReviews) = tupled xs

in (n ‘Set.insert‘ signedIn
, trueReviews)

tupled (Leave n g : xs) = let (signedIn, trueReviews) = tupled xs
in (n ‘Set.delete‘ signedIn

, if n ∈ signedIn
then g : trueReviews
else trueReviews)

Figure 1.4: Tupled version of computing the average grade for all honest guests

This problem can be solved by tupling of the functions trueReviews and signedIn.
The idea of the tupling technique is that we compute the results of both functions
in one go, as result of which we only have one recursive call. In Figure 1.4 we show
the resulting code for which the running time is in O

�

n
�

again.

Efficiency problem 2 (big data) A larger problem is that execution takes more
and more time as the guestbook grows, even though each call takes time linear in the
length of the list argument. The hotel owner wants to recompute the average grade
whenever a new review is added, but as time passes there are so many guestbook
entries (the hotel has become really popular) that the code takes minutes to run,
for each new single entry that is added!

1.3.3 Incremental computation

In order to solve such problems the hotel owner wants to revert to incremental
computation. When a function works on data that changes over time, as is the
case in our example, it is often possible to create a version of the function that
caches some intermediate values as a result of which the function can efficiently be
(re)computed whenever only a small part of its argument has changed.

In Figure 1.5 we present an incremental version of the guestbook code. The in-
termediate state contains both the set of signed in members at a given point in time

1.3. GUESTBOOK EXAMPLE 7

type State4 = (Set Name, [Double])
avgGradeI4 :: State4→ Double
avgGradeI4 = average ◦ snd

avgGradeU4 :: Entry→ State4→ State4
avgGradeU4 (Arrive n) (signedIn, trueReviews)
= (n ‘Set.insert‘ signedIn, trueReviews)

avgGradeU4 (Leave n g) (signedIn, trueReviews)
= (n ‘Set.delete‘ signedIn

, if n ∈ signedIn
then g : trueReviews
else trueReviews)

avgGrade4 :: Guestbook→ Double
avgGrade4 = avgGradeI4 ◦ foldr avgGradeU4 (;, [])

Figure 1.5: Incremental version of the tupled guestbook code

together with the list of true reviews found so far. The function avgGradeU4 is used
for updating: given a new guestbook entry it updates the state. With avgGradeI4
the current average can be extracted from the state. For convenience we have also
added an avgGrade4 function with the same type as before which simply adds all
entries from the guestbook one by one and returns the final result.

This transformation is a step closer to the optimal solution, but one important
problem remains: the addition of a single entry still takes O

�

n
�

time! The remaining
problem is that even though a list of grades from honest guests is constructed effi-
ciently, the computation of the average grade still requires a traversal of the whole
list.

Figure 1.6 shows the final version of the code which takes constant time for each
additional entry. To achieve this result the hotel owner applied the same tupling and
incrementalisation trick to the computation of the average by caching the length and
sum of the list. The state for computing the average contains the length of the list
and the sum and can be updated with the averageU5 function. In the avgGradeU5
the AvgState is incrementally updated with a call to averageU5, such that adding a
single entry takes only constant time.

The hotel owner is happy that this solution works well and proud that he man-
aged to come up with this solution. There are however a few drawbacks of this
approach.

8 CHAPTER 1. INTRODUCTION

type StateAvg= (Double, Double)
averageI5 :: StateAvg→ Double
averageI5 (sum, len) = sum / len

averageU5 :: Double→ StateAvg→ StateAvg
averageU5 x (sum, len) = (sum+ x, len+ 1)
type State5 = (Set Name, StateAvg)
avgGradeI5 :: State5→ Double
avgGradeI5 = averageI5 ◦ snd

avgGradeU5 :: Entry→ State5→ State5
avgGradeU5 (Arrive n) (signedIn, avgState)
= (n ‘Set.insert‘ signedIn, avgState)

avgGradeU5 (Leave n g) (signedIn, avgState)
= (n ‘Set.delete‘ signedIn

, if n ∈ signedIn
then averageU5 g avgState
else avgState)

avgGrade5 :: Guestbook→ Double
avgGrade5 = avgGradeI5 ◦ foldr avgGradeU5 (;, (0,0))

Figure 1.6: Efficient incremental version of the tupled guestbook code

1.3. GUESTBOOK EXAMPLE 9

• The code has become less readable and not quite as nice as the code from Fig-
ure 1.3, which computes exactly the same result but less efficiently. The two
functions have been merged and therefore the design criterion of ’separation
of concerns’ has been broken.

• The code only supports a very limited set of incremental changes: the efficient
update only works when a new element is added to the beginning of the
list. In practice it can however also happen that an earlier entry needs to
be changed. For example, when a name was misspelled this code needs to
process the whole guestbook again, even though theoretically only the last
few entries need to be processed.

• The functions that we have defined only have a single argument which is the
guestbook: in practice functions often have other parameters containing con-
textual information, which highly complicates the incremental computation.

1.3.4 The big picture

In the previous sections we have illustrated with a small example (1) why incre-
mental computation is useful, and (2) that manually writing functions that behave
incrementally is a tedious job. It should not come as a surprise that this effect is even
larger for real-world applications, with many functions that need to be interleaved
and merged in order to get the desired incremental behaviour. Also, when going
from list-like structures like the guestbook to tree-like structures like the source
code of a programming language, the types of changes are more complex.

In this thesis we solve this problem as follows: we ask the end-users, such as
the hotel owner, to write their code as an attribute grammar, and let the attribute
grammar compiler automatically generate code that efficiently handles changes to
the input data. In the rest of this thesis this approach is explained in more detail,
but the essential insight is that attribute grammars have the right expressivity: their
expressiveness is restricted enough to allow the attribute grammar compiler to gen-
erate efficient incremental code, but at the same time expressive enough to allow
many programs to be written as an attribute grammar in an attractive way.

Concretely, in this thesis we describe techniques that support the following
workflow.

• The user writes his code as an attribute grammar, which is a formalism that is
suitable for writing compilers. The attribute grammar definitions are declara-
tive in nature and enable aspect oriented programming. For our example the
attribute grammar definition is similar to the code given in Figure 1.3.

10 CHAPTER 1. INTRODUCTION

• The compiler generates code that can be used to efficiently compute the at-
tributes (similar to function results) for a given abstract syntax tree efficiently,
with automatic tupling as in Figure 1.4. This automatic tupling is a direct
result of using attribute grammars and is not related to the use of the incre-
mental evaluation techniques described in this thesis.

• The attribute grammar compiler also generates functions for efficiently up-
dating the computation after a change to the input. These functions take a
description of the change to the abstract syntax tree and a state resulting from
the previous evaluation of the attributes. In a way this resembles the code in
Figure 1.6 but it is more general. For example, the deletion of the first entry
only takes constant time, and the insertion of an entry somewhere later in the
list only takes time linear in the length of the list up to the position at which
the entry is inserted.

In this thesis we describe how the above can be achieved using so-called higher-
order attribute grammars. A higher-order attribute is an attribute value which itself
is a tree structure over which attributes can be computed. In our example the list of
grades from honest guests is such a value; we first build up this list in the trueReviews
function and then compute the average over this list in the average function.

In compiler construction higher-order attributes can also be used to model dif-
ferent stages in a pipeline architecture like a compiler. Each phase in the compiler
pipeline takes as input an abstract syntax tree, and returns a new (internal) repre-
sentation of the program which is also an abstract syntax tree. For example, most
Haskell compilers contain a separate pass in which type inferencing takes place,
taking as input an untyped program and returning the program with explicit types
for each subtree. Higher-order attribute are used to take the result of one phase
and instantiate this result as the abstract syntax tree to be used as input for the next
phase.

1.4 Definitions

An evaluator is a function that computes the result for the computation represented
by its argument. An attribute grammar is a declarative specification of a computa-
tion and is therefore not directly executable. Instead, an attribute grammar com-
piler generates from this declarative specification a runtime evaluator that computes
the result for a given input.

We call a function f I incremental when its result is efficiently computed given
the result of the previous call and a change to the previous input. Formally, given

1.5. C] EXAMPLE 11

a function f , an input x and a changed input x⊕δx we say that f I is the incremen-
tal version of f when f (x ⊕ δx) = f I (f (x),δx) and f I computes this result more
efficiently. In our setting f I does not necessarily depend on the result f (x) and the
change δx only, but may use any additional data that was computed in earlier calls
to f or f I, such as the internal state of the example.

1.5 C] example

A second and more real-world example used in this thesis is a small C] compiler4 that
supports a subset of C], expressed as an attribute grammar. Supported programs
consist of a single class containing only static functions, the primitive types int,
char and bool, and the standard control structures if, for and while. No library
functions are implemented except from printing a value to the screen (but only for
int, char or bool types, because Strings are not supported). In Figure 1.7 we show
an example C] program that can be compiled with our compiler.

The input of the compiler is a program written in this subset of C], and the
output of the compiler is code for the Simple Stack Machine (SSM)5. The SSM is a
stack machine emulator that allows easy debugging with stepping, breakpoints and
memory overview. The SSM language is still readable by humans but the operations
are close to real world machine models.

The result of compiling the fac function from Figure 1.7 to SSM is shown in
Figure 1.8 with annotations to explain the code. The precise meaning of all com-
mands is not important here, but the figure illustrates that the SSM language is low
level. Note that names are used for function calls, but that in other places like BRA
(Branch Always) and BRT (Branch if True) relative addresses are used.

1.5.1 Architecture

Discussing the full implementation of our C] compiler is out of the scope of this
thesis, and we only show its general architecture here. In Chapter 2 we show some
more implementation details when introducing attribute grammars. The full im-
plementation be found in the code repository.

The compiler consists of two phases: in the first phase the declared variables for
each function are collected; in the second phase these are used for constructing the
resulting SSM code. In the second phase an environment is constructed containing
the names of the parameters and local variables and their relative addresses on the

4This compiler is the result of an exercise for the Languages and Compilers course
5http://www.staff.science.uu.nl/~dijks106/SSM/

http://www.cs.uu.nl/education/vak.php?vak=INFOB3TC
http://www.staff.science.uu.nl/~dijks106/SSM/

12 CHAPTER 1. INTRODUCTION

class Hello
{

void Main ()
{

print (fac (square (2)));
}
int square (int x)
{

return x ∗ x;
}
int fac (int x)
{

int r= 1;
for (int t= 1; t¶ x; t= t+ 1)

r= r ∗ t;
return r;
}
}

Figure 1.7: Example C] program that is supported by our compiler

1.6. THESIS OVERVIEW 13

stack, which are used in the rest of the code generation whenever variables are
used.

In the SSM execution, at the beginning of each function execution the values
for the parameters are already on the stack, and for the local variables extra space
is reserved on the stack using the LINK instruction. The LINK instruction lets the
mark pointer, a special register, point to the current top of the stack, such that the
location of the parameters and local variables on the stack can be computed relative
to the mark pointer. Before returning from a function call the UNLINK instruction is
used to free the space for local variables from the stack and restore the mark pointer
to its previous value, which was also stored on the stack by LINK.

With this setup the rest of the code generation is fairly straightforward. For a
block of statements the SSM instructions are simply concatenated, for function calls
special instructions take care of storing the current execution location, for expres-
sions we have instructions for each standard operator and finally for implementing
loops we have a collection of jump instructions available. The jump instructions
such as BRA take as argument relative addresses which are computed from the size
of the generated code.

1.6 Thesis overview

The work in this thesis is based on several papers that have been published else-
where. These papers roughly correspond to the following sections.

• [Bransen et al., 2012]: Section 3.3

• [Bransen et al., 2015b]: Section 3.4

• [Bransen and Magalhães, 2013]: Chapter 4

• [Bransen et al., 2014b]: Chapter 5

• [Bransen et al., 2015a]: Chapter 6

• [Bransen et al., 2014a]: Chapter 7

I hereby would like to thank the co-authors of these papers, who all contributed to
the final result of this thesis. In particular I like to mention José Pedro Magalhães
who wrote most of the text of the [Bransen and Magalhães, 2013] paper on which
Chapter 4 is almost entirely based, Thomas van Binsbergen and Koen Claessen who
have both contributed to Section 3.4, and Arie Middelkoop who has contributed to
Section 3.3.

14 CHAPTER 1. INTRODUCTION

fac:
LINK 2 ;; Create stack space for variables r and t
LDC 1 ;; Load 1 on stack
LDS 0 ;; Duplicate top of stack
LDLA 1 ;; Load address of r
STA 0 ;; Store 1 in r
AJS -1 ;; Pop from stack
LDC 1 ;; Load 1 on stack
LDS 0 ;; Duplicate top of stack
LDLA 2 ;; Load address of t
STA 0 ;; Store 1 in t
AJS -1 ;; Pop from stack
BRA 26 ;; Jump 26 bytes (to jump target 1)
LDL 1 ;; Load value of r (jump target 2)
LDL 2 ;; Load value of t
MUL ;; Multiply r * t
LDS 0 ;; Duplicate top of stack
LDLA 1 ;; Load address of r
STA 0 ;; Store r * t in r
AJS -1 ;; Pop from stack
LDL 2 ;; Load value of t
LDC 1 ;; Load 1 on stack
ADD ;; Add t + 1
LDS 0 ;; Duplicate top of stack
LDLA 2 ;; Load address of t
STA 0 ;; Store t + 1 in t
AJS -1 ;; Pop from stack
LDL 2 ;; Load value of t (jump target 1)
LDL -2 ;; Load value of x
LE ;; Compare t <= x
BRT -33 ;; Jump -33 bytes if true (to jump target 2)
LDL 1 ;; Load value of r
STR R3 ;; Store r in R3
UNLINK ;; Clean up stack space of r and t
RET ;; Return to caller

Figure 1.8: Example SSM code for the fac function with manual annotations

1.6. THESIS OVERVIEW 15

Introduction (Chapter 1)

Attribute Grammars (Chapter 2)

Lazy scheduling (Section 3.1)

OAGs (Section 3.2)

Tree Transformations (Sections 4.1 to 4.3)

Incremental AGs (Chapter 5)

Higher-order AGs (Chapter 6)

Supporting incrementality (Chapter 7) Benchmarking (Chapter 8)

Discussion and conclusion (Chapter 9)

ANAGs (Section 3.3)

LOAGs (Section 3.4)

Generic Transformations
(Sections 4.4 to 4.8)

Figure 1.9: Graph visualising the dependencies between the chapters in this thesis

1.6.1 Dependency graph

In Figure 1.9 we show an overview of the chapters in this thesis and their depen-
dencies. Although all sections in this thesis of course contain useful information,
for understanding it is not necessary to read all of them in the order as they appear
in this thesis. In particular the sections in dashed boxes can be skipped by readers
who are not interested in the details dealt with there.

The thesis starts with this introduction, followed by an introduction to attribute
grammars in Chapter 2. In Chapter 3 different scheduling algorithms are explained,
of which the OAG algorithm is the most important one for the main story line. The
representation of changes to abstract syntax trees is discussed in Chapter 4; the first
three sections of that chapter illustrate the representation using the two running ex-
amples of this thesis and are preliminary information for the later chapters, while
the rest of the scheduling chapter is about representing these transformations gener-
ically using generic programming techniques. In Chapter 5 and Chapter 6 the core

16 CHAPTER 1. INTRODUCTION

technique of this thesis is explained. Chapter 7 we describe in what way attribute
grammars need to be constructed to support the effectiveness of our technique, and
in Chapter 8 we show some problems related to benchmarking together with the
benchmarking results for the two running examples. Finally, in Chapter 9 we wrap
up with a discussion of related work and conclusion.

2
Attribute Grammars

In this chapter we introduce attribute grammars (AGs) as they are used within the
rest of this thesis with our two running examples. We define the essential AG ter-
minology and provide the reader with some intuition about AGs.

AGs describe the decoration of trees with attributes with the purpose of perform-
ing computations over a tree. Such attributes are attached to nodes and their values
are accessible to either parent or child nodes to be used in the computation of other
attributes. For example, in a type checking phase of a compiler one typical attribute
holds a table mapping variables that are in scope to types and another attribute con-
tains the resulting type of the expression. The first would pass information from a
node to its children (inherited) while the second would pass information from a
node to its parent (synthesized).

According to the original definition of [Knuth, 1968], an attribute grammar con-
sists of three parts: a context-free grammar describing the collection of trees we
are about to decorate, for each node type a collection of attributes to be associated
with it and a collection of semantic rules describing how to compute the value of
attributes in terms of other locally accessible attributes. Over the years many varia-
tions on this simple formalism have been proposed, such as higher-order attributes
[Vogt et al., 1989], reference attributes [Hedin, 2000], door attribute grammars
[Hedin, 1994], and many classes of attribute grammars have been identified, usu-

17

18 CHAPTER 2. ATTRIBUTE GRAMMARS

ally based on properties enabling some specific evaluation strategies.
The work in this thesis has been performed in the context of the Utrecht Uni-

versity Attribute Grammar Compiler (UUAGC) [Swierstra et al., 1998], which uses a
slightly different representation. Instead of a context-free grammar describing the
concrete syntax of the language, an abstract syntax tree forms the starting point of
evaluation. The following sections introduce the different components of AGs step
by step. We introduce both the underlying concepts and the UUAGC syntax which
is also used in the rest of this thesis.

2.1 Abstract Syntax Tree

The Abstract Syntax Tree (AST from now on) forms the basis of the AG computation
and is defined as a family of algebraic data types describing the tree structure for
which attributes are to be computed. These algebraic data types are similar to
Haskell data types, consisting of a set of constructors each having a sequence of
types. Because AGs were once introduced as an extension to context-free grammars,
we still use the terms nonterminal and production. In the context of the AST a
nonterminal refers to a data type, whereas a production refers to a constructor of
this data type. Furthermore, other Haskell types are referred to as terminals.

The children of each production are named such that we can refer to these
children in the semantic rules later on. Each child has its own type which can be
either a nonterminal or a terminal; terminal children can have any Haskell type
and are not used to define attributes over as their values themselves can be used in
other attribute value computations.

2.1.1 Guestbook example

In Figure 2.1 we show the AST definition of the AG implementation of our guest-
book example. The AG consists of a single nonterminal named Guestbook with
three productions: Empty, Arrive and Leave. The Empty production represents an
empty guestbook (or empty list in the Haskell version) whereas the Arrive and Leave
productions represent the two possible types of guestbook entries. Both have a non-
terminal child named tl containing the rest of the entries and a terminal child name
which is the name of the corresponding guest. Leave has two more terminal chil-
dren: grade and review.

Note that the representation is slightly different from the Haskell version: in-
stead of a data type Entry and a type for lists we only use only a single data type.

2.1. ABSTRACT SYNTAX TREE 19

data Guestbook
| Empty
| Arrive name :: Name

tl :: Guestbook
| Leave name :: Name

grade :: Double
review :: String
tl :: Guestbook

Figure 2.1: Attribute grammar representation of the guestbook, which is isomor-
phic to the original definition

This data type is isomorphic to the Haskell version; we feel that this representation
is slightly more intuitive for explaining attribute grammars.

2.1.2 C] example

The AST of our C] compiler from Chapter 1 is described by the family of data types
given in Figure 2.2. The start nonterminal is Class which has a single alternative
containing a name and a list of members, each being either a variable or a method.
Methods consist of a return type, a name, a list of parameters and a body. The body
usually consists of a (possibly compound) statement.

Special list syntax The UUAGC provides special syntax to deal with lists. With the
definition type T = [U] a nonterminal T is introduced which is a list of elements of
type U, which again can be either a nonterminal or a Haskell type. This is completely
equivalent to having defined the following data type.

data T
| Cons hd :: U

tl :: T
| Nil

We can define attributes over the Cons and Nil constructor as usual. In the under-
lying representation however the built-in list type of Haskell is used.

20 CHAPTER 2. ATTRIBUTE GRAMMARS

data Class | ClassC name :: String members :: MemberL

type MemberL= [Member]
data Member | MemberD decl :: Decl

| MemberM rtype :: Type name :: String
params :: DeclL body :: Stat

type StatL = [Stat]
data Stat | StatDecl decl :: Decl

| StatExpr expr :: Expr
| StatIf cond :: Expr

true :: Stat false :: Stat
| StatWhile cond :: Expr body :: Stat
| StatFor init :: Decl cond :: Expr

incr :: Expr body :: Stat
| StatReturn expr :: Expr
| StatBlock stats :: StatL

data Const | ConstInt val :: Int
| ConstBool val :: Bool
| ConstChar val :: Char

type ExprL = [Expr]
data Expr | ExprConst const :: Const

| ExprVar name :: String
| ExprOper op :: String

left :: Expr right :: Expr
| ExprFun name :: String params :: ExprL

type DeclL = [Decl]
data Decl | DeclC vtype :: Type name :: String

data Type | TypeVoid
| TypePrim ptype :: String
| TypeObj otype :: String
| TypeArray itype :: Type

Figure 2.2: The data type definitions of the C] compiler.

2.2. SYNTHESIZED ATTRIBUTES 21

2.2 Synthesized attributes

Synthesized attributes contain information that is computed in a bottom-up way,
from the children to the root. This direction is the same as the result of a recursive
function, and synthesized attributes are therefore used for storing the final result
of an AG computation. They may however also be used to compute intermediate
values which are to be passed back down the tree again, even at internal nodes.

In this section we introduce the syntax for defining and using synthesized at-
tributes. For this we need two components: the attribute definition and the semantic
rules.

The attribute definition introduces an attribute by giving it a name, a type and
a location. Since many nonterminals may have similar attributes serving a similar
purpose, we can provide a collection of nonterminals for which we want to have an
attribute with this name. No confusion can arise, since when we use an attribute
name it can always be inferred from the context with which node the attribute is
associated. The name must be unique for each nonterminal for which it is defined
and is used, in combination with the reference to a node, in the semantic rules to
refer to this attribute. Its type can be either a nonterminal or a Haskell type.

The semantic rules describe for each production of the corresponding nonter-
minals how the values of the attributes are to be computed. Each rule contains an
arbitrary well-typed Haskell expression, possibly containing references to other at-
tributes that are in scope, which are synthesized attributes of the children, inherited
attributes (explained in the next section) and values of terminal children.

2.2.1 Guestbook example

Figure 2.3 shows how the signedIn and trueReviews function from the example may
be expressed using AG syntax. The attr keyword introduces an attribute for the non-
terminal Guestbook. In this case, the attribute signedIn has a Haskell type Set Name;
the curly braces are used to escape to Haskell. In the UUAGC syntax the curly braces
are not always strictly necessary but can be used to make a clear distinction between
terminals (from the Haskell world) and nonterminals (from the AG world).

The semantic rules are defined with the sem keyword, followed by the nonter-
minal name and for each production a list of rules. Rules defining a synthesized
attribute are of the form lhs.a = e, where a is the attribute name and e the expres-
sion. The abbreviation lhs stands for the left-hand side, referring to the left-hand
side of a production rule in a context-free grammar. In other words, lhs refers to the
parent node. To define the value of the synthesized attribute we define the value
for an attribute that is accessible by the parent node.

22 CHAPTER 2. ATTRIBUTE GRAMMARS

attr Guestbook
syn signedIn :: {Set Name}

sem Guestbook
| Empty lhs.signedIn= ;
| Arrive lhs.signedIn= @name ‘Set.insert‘ @tl.signedIn
| Leave lhs.signedIn= @name ‘Set.delete‘ @tl.signedIn

attr Guestbook
syn trueReviews :: {[Double]}

sem Guestbook
| Empty lhs.trueReviews= []
| Arrive lhs.trueReviews= @tl.trueReviews
| Leave lhs.trueReviews= if @name ∈ @tl.signedIn

then@grade : @tl.trueReviews
else @tl.trueReviews

Figure 2.3: Attribute grammar version of the signedIn and trueReviews functions

The @c and @c.a occurrences in the right-hand side of the expression refer to
other values in scope: c is the name of a (terminal) child and a the name of an
attribute associated with child c. In the former case we refer to the subtree as a
(Haskell) value to be used, and in the second form to an attribute with name a
associated with child c.

Computing the average grade Another part of the guestbook code computing
synthesized information is the function average. While we could just call the Haskell
average function in some semantic rule, we prefer to express it as an AG computa-
tion. Lists have a tree structure and can therefore be fitted into an attribute grammar
based formalism.

In Figure 2.4 we show how to compute the average of a list of floating point num-
bers. The length and sum attributes implement the corresponding Haskell functions,
while average is the attribute that combines them.

Separation of concerns At this point we want to remark that the compositional
nature of AGs allows for aspect oriented programming. The three attributes defined
in Figure 2.4 can also be separated into different attr and sem blocks, and may even
be defined in separate files. The attribute grammar compiler combines all defini-

2.2. SYNTHESIZED ATTRIBUTES 23

type DL= [Double]
attr DL

syn length :: {Double}
syn sum :: {Double}
syn average :: {Double}

sem DL
| Nil lhs.length = 0

lhs.sum = 0
lhs.average= 0

| Cons loc.length = @tl.length+ 1
loc.sum = @tl.sum+ @hd
lhs.average= @loc.sum / @loc.length

Figure 2.4: Attribute grammar version of computing the average of a list of numbers

tions into a single evaluator, which allows the programmer to separate concerns as
he likes.

Local attributes In the rules associated with the Cons constructor the loc keyword
appears. It refers to local attributes, which are attribute values that can only be used
in the production for which they are defined. In this case the values of loc.length and
loc.sum are used in the rule for computing lhs.average. Local attributes resemble
Haskell let bindings. In this case their use is necessary because it is not possible to
refer to defined synthesized attributes such as lhs.length.

Copy rules A careful reader may have spotted a potential mistake in Figure 2.4:
the Cons constructor has no definitions for lhs.length and lhs.sum! Fortunately,
those definitions are automatically generated by the UUAGC, thanks to the so-called
copy rules feature. When a semantic rule for a certain attribute is absent, the UUAGC
generates a rule which gets the missing value from an attribute with the same name.
In case of a synthesized attribute this can be, in order of priority, a local attribute,
a synthesized attribute of a child or even its own inherited attribute. Similarly, for
an inherited attribute of a child, the value of the synthesized attribute with the
same name of its closest left sibling providing such an attribute or the value of the

24 CHAPTER 2. ATTRIBUTE GRAMMARS

inherited attribute of the parent is copied when no explicit rule is given.
The use of copy rules might seem a bit strange at first glance, but they are

useful and intuitive to use in practice. Often there are attributes that only need to
change in specific locations and otherwise are just to be passed on. For example, an
environment containing all bound variables is changed only in places where new
variables are introduced, but can be copied unchanged at all other types of nodes.
Situations in which this arises closely resembles the use of the Reader, Writer and
State monads in Haskell.

2.2.2 C] example

The C] compiler contains many different synthesized attributes for which we do not
show the code here. Figure 2.5 gives part of the code for defining code and declVars.

The code attribute is introduced for all nonterminals and at the root contains
the final result of the compiler, which is a list of SSM instructions. We only show
two of its definitions. The exact instructions generated are not important for the
understanding of this thesis, but one can see that for each method we generate
a label, generate instructions for allocating room on the stack for local variables,
insert the code of the body and finally take care of cleaning up the stack and return
from the function.

In the declVars attribute we collect the names of all declared variables. We use a
list because the index in the list is used later to compute the location of the variables
in memory.

Use rules Both the code and the declVars declaration use the keyword use. This
keyword is used in combination with the copy rules to automatically generate rules
in case some are missing. The first argument to use is an operator which combines
two values of the children, and the second argument is the value to be used when
there are no children with this attribute. These two operations together form a
monoid.

For the declVars attribute this is actually the complete definition. Only at the
DeclC constructor we introduce a new variable, and at all other places the results
are simply combined.

2.3 Inherited attributes

Dual to synthesized attributes we have inherited attributes, which are used to pass
information from a node to its children. Inherited attributes resemble the argu-

2.3. INHERITED ATTRIBUTES 25

attr Class MemberL Member StatL Stat ExprL Expr DeclL Decl Const
syn code use {++} {[]} :: {[Instr]}

sem Class
| ClassC lhs.code= [Bsr "Main", HALT] ++ @members.code

sem Member
| MemberM lhs.code= [LABEL@name,LINK (length @loc.locs)]

++ @body.code
++ [UNLINK,RET]

attr DeclL Decl StatL Stat
syn declVars use {++} {[]} :: {[String]}

sem Decl
| DeclC lhs.declVars= [@name]

Figure 2.5: Synthesized attributes code and declVars

ments of a Haskell function and provide some contextual information. For instance,
an environment containing bound variables or a value containing the option flags
as passed to the compiler.

Apart from the direction the inherited attributes are similar to synthesized at-
tributes. They are again introduced in an attr block with the keyword inh instead
of syn. How their value is to be computed is defined by semantic rules too. In this
case a node should define the value for all inherited attributes of its children.

Our guestbook example does not make use of inherited attributes, since all in-
formation is computed in a bottom-up way. This bottom-up behaviour allows for
easier construction of an incremental version, but later in this thesis we show how
to support inherited attributes in incremental computations and how they can have
a negative influence on incremental evaluation (Section 7.2).

2.3.1 C] example

Figure 2.6 contains the definition of the inherited attribute env, a mapping from
variable names to their location on the stack relative to the mark pointer. The
parameters are located below the mark pointer as they have been pushed to the
stack before the function call occurred, whereas local variables are located above
the mark pointer.

26 CHAPTER 2. ATTRIBUTE GRAMMARS

attr StatL Stat ExprL Expr Decl
inh env :: {Map String Int}

sem Member
| MemberM body.env =Map.fromList (@loc.params++ @loc.locs)

loc.params= zip (reverse @params.declVars) [−2,−3 . .]
loc.locs = zip @body.declVars [1 . .]

Figure 2.6: The inherited attribute env

The env attribute contains a Haskell Map and is associated with statements, ex-
pressions and declarations, but only in the MemberM constructor a semantic rule is
given. Note that even though Member has no inherited attributes, the body attribute
of nonterminal Stat does have an inherited attribute env for which a value needs to
be defined. For all other productions this value is automatically copied by the copy
rules.

Another thing to notice is that the inherited attribute env depends on the syn-
thesized attribute declVars. This construct can therefore be thought of as a two-pass
AG: in the first pass the declared variables are collected into an environment, and in
the second pass this environment is used to generate the code. To determine such
an evaluation order is however left to the AG compiler and there is no need for the
user to specify one.

For synthesized attributes there is no such thing as the use keyword; each child
has only a single parent and therefore there is nothing to be combined. The initial
value of an inherited attribute can be set in a semantic rule, which is often done at
the top level node (starting nonterminal).

2.4 Chained attributes

A chained attribute, sometimes called threaded attribute, is a special name for a pair
of an inherited and a synthesized attribute that share their name and type. Such
an attribute pair is defined with the chn keyword in an attr block. When there
are no explicit semantic rules given, the copy rule mechanism copies the attributes
as before. The inherited value of a chained attribute is copied to the inherited
attribute of the first child of a node with that attribute, the synthesized value of
the first child to the inherited attribute of the second child with that attribute, and

2.5. HIGHER-ORDER ATTRIBUTES 27

so on, and finally the synthesized value of the last child with that attribute to the
synthesized attribute of the current node.

One common use of chained attributes is to provide a facility for the generation
of fresh names. As we do not have something like a global mutable state, it is not
trivial to generate fresh names in different locations. However, global state can be
simulated by chaining a single attribute value through the tree which can be read
and updated in each node of the tree (compare this with the use of a State monad
in Haskell). This works especially well for generating fresh names as the order in
which the names are generated does not matter, only their uniqueness.

Chained attributes are not often used in this thesis, but in Section 7.3 we show
that they can destroy efficient incremental behaviour. We will show some common
techniques for circumventing the problems thus arising.

2.5 Higher-order attributes

Attribute grammars as introduced in the previous section with inherited and syn-
thesized attributes are useful as such, but the addition of higher-order attributes
[Vogt et al., 1989] is what makes them especially suitable for the implementation of
compilers. Higher-order attributes may be used to model different compiler phases
and intermediate data structures in a natural way.

A higher-order attribute is an attribute value which itself is an AST over which
attribute values can be computed. In the UUAGC this is implemented by letting
the user define higher-order children, which are constructed at run-time and can
depend on attribute values. Such a higher-order child may of course also contain
higher-order children again and attributes of the higher order child may depend
on attributes of its parent and vice versa. We call AGs with higher-order children
higher-order attribute grammars (HOAGs).

The expressive power of HOAGs comes with a price however: achieving incre-
mental evaluation of HOAGs is harder than incremental evaluation of AGs without
higher-order attributes. This extra difficulty is the focus of this thesis.

2.5.1 Guestbook example

To complete the guestbook example we need to compute the average of the list
of true grades stored in trueReviews. Not surprisingly we can express this using a
higher-order child as shown in Figure 2.7. In this code we also introduce a Top
nonterminal and production, which are used to wrap the attributes at the top level,
a commonly used pattern.

28 CHAPTER 2. ATTRIBUTE GRAMMARS

data Top | Top gb :: Guestbook

attr Top
syn average :: {Double}

sem Top
| Top inst.revs :: DL

inst.revs = @gb.trueReviews
lhs.average= @revs.average

Figure 2.7: Top level wrapper for the guestbook in which a higher-order child is
instantiated

The inst.c :: N syntax instantiates a child c of nonterminal type N. Note that
here no primitive Haskell type can be used, as we can only compute attributes over
nonterminals. The inst.c= e is a semantic rule that defines the value of the higher-
order child c using expression e. As with other semantic rules, e can be an arbitrary
Haskell expression in which attribute values in scope can be referred to.

In our example the higher-order child consists of the list of true grades. In the
rest of the semantic rules the child revs can now be used as if it were a regular child
node. As the type DL has no inherited attributes there are no extra definitions for
inherited attributes, and only the average synthesized attribute is used and copied
to the synthesized attribute of the top level node. Note that the last line could have
been left out as it would be automatically generated by the copy rule mechanism;
we have included it here for clarity.

2.5.2 C] example

In the C] example higher-order children are used to specify the different compiler
phases. Specifically, the AST contains two loop constructs: while and for, for which
the generated code is quite similar. To avoid code duplication we only define the
code generation for the while, and we desugar the for into a while statement. Fig-
ure 2.8 shows the implementation of the desugaring step. The child block has type
Stat and its value is an AST describing the way in which the for can be desugared.
In particular, the init statement is first executed, followed by a while with the cond
as condition, and the body of the while contains the body of the for followed by the
incr statement. Finally the declVars and code synthesized attributes of the StatFor
are copied from the results for block.

2.6. MINIMAL HIGHER-ORDER ATTRIBUTE GRAMMARS 29

attr Expr ExprL Stat StatL Decl Type Const
syn copy :: self

sem Stat
| StatFor inst.block :: Stat

inst.block = StatBlock [
StatDecl @init.copy,
StatWhile @cond.copy (StatBlock [

@body.copy,
StatExpr @incr.copy
])

]
lhs.code = @block.code
lhs.declVars= @block.declVars

Figure 2.8: Using a higher-order child to desugar a for into a while statement

Self rules This example also illustrates another feature of the UUAGC: the self
rules. The identifier self is a special name resolving to the name of the nontermi-
nal for which this attribute is defined. For example, for Expr the copy attribute has
type Expr. Furthermore, rules are generated that construct a tree which is an exact
copy of the AST. This may sound a bit counter intuitive at first, because @init and
@init.copy are the same tree. However, for implementational reasons it is not possi-
ble to refer to nonterminal children directly and thus using @init is not permitted.
We therefore use the self rules to create an attribute we can refer to.

2.6 Minimal higher-order attribute grammars

A concept that we have introduced in [Bransen et al., 2014a] is that of so-called
minimal higher-order attribute grammars (MHOAGs). The difference with HOAGs
is that all types must be nonterminals and the right-hand side of the semantic rules
must consist of a constructor (production) with an attribute reference for each of
its children. In other words, in MHOAGs we do not rely on any backend language
such as Haskell for defining the semantic rules, but define a minimal language for
attribute grammar computations.

MHOAGs are not suitable for practical usage but have the property that they are

30 CHAPTER 2. ATTRIBUTE GRAMMARS

fully inspectable, which implies that the attribute grammar compiler has complete
knowledge of the program flow. In regular HOAGs however we can have arbitrary
Haskell expressions for which the attribute grammar compiler only knows which
attributes are used, but not in what way. MHOAGs are Turing complete even though
they do not depend on Haskell or any other language. Although we do not use
MHOAGs for the main goal of this thesis, we do mention them as they may be
useful as intermediate representation in an attribute grammar compiler, or even as
a representation for an attribute grammar specific virtual machine.

3
Scheduling

An AG compiler, such as UUAGC, compiles the AG code into a runtime evaluator. In
the pipeline of the UUAGC the AG code is compiled into Haskell which is then com-
piled by GHC into an executable. The semantic rules, which can be arbitrary Haskell
expressions, are directly copied into the Haskell code generated by the UUAGC, with
the attribute references contained in them replaced by generated Haskell variable
names.

The runtime evaluation of the attributes can be performed in several different
ways. Because attributes may depend on other attributes, an evaluation order must
be found such that each semantic rule is only scheduled for evaluation when all
attributes that the rule refers to have been computed. The process of finding such
an evaluation order is called scheduling and we distinguish between two different
types of scheduling: dynamic and static.

Dynamic scheduling Dynamic scheduling is performed at runtime when a con-
crete AST is given for which the attributes are to be computed. The generation of
such an evaluator is straightforward by relying on Haskell’s lazy evaluation as we
will describe in Section 3.1. The drawback of this approach is however that no static
guarantees are given: when the attribute grammar definition is cyclic, the runtime
evaluator may enter an infinite loop. Furthermore, runtime scheduling is relatively

31

32 CHAPTER 3. SCHEDULING

expensive, especially when generating incremental evaluators.

Static scheduling We talk about static scheduling when an evaluation order is
defined at compile time. This is much harder for the AG compiler since no concrete
AST is given; only the grammar is known. The static scheduling problem is to find
a scheduling strategy based on the grammar such that for each AST the schedule
obtained from following this strategy is valid, where valid means that the attributes
can be computed in such an order that all dependencies of an attribute are computed
before the attribute itself.

AG classes Based on the algorithm used for static scheduling different classes of
AGs can be identified. A well-known class is the class of Ordered Attribute Grammars
(OAGs) [Kastens, 1980] which is discussed in Section 3.2. The analysis to obtain
a static scheduling strategy for this class takes time polynomial in the size of the
grammars, but as we show there are many practical AGs that fall outside this class
and cannot be scheduled.

The algorithm by [Kennedy and Warren, 1976]which is discussed in Section 3.3
works for all Absolutely Noncircular Attribute Grammars (ANAGs), which is the
largest class of AGs for which a (partially) static scheduling algorithm is known.
The algorithm is however a combination between static and dynamic scheduling;
there is a static guarantee that no loop will be encountered at runtime, but certain
decisions on the precise evaluation order are postponed until runtime.

The sweet spot in the AG classes as used in this thesis are the Linearly Ordered
Attribute Grammars (LOAGs) [Engelfriet and Filè, 1982], which we discuss in Sec-
tion 3.4. The class of LOAGs is the largest class for which a completely static sched-
ule can be constructed. Hence we have the following class hierarchy.

OAGs ⊂ LOAGs ⊂ ANAGs

Note that the name of the OAGs is a bit counter intuitive in this respect, because
the class of LOAGs is strictly bigger.

One important problem of the LOAG scheduling is that the corresponding analy-
sis is computationally hard: statically finding a schedule for a LOAG is NP-complete
and therefore no polynomial algorithms are known. Fortunately there exist algo-
rithms that work well in practice, which we show in Section 3.4. The class of LOAGs
is the starting point for the rest of the thesis in which we investigate the incremental
evaluation of AGs. The runtime evaluator which is eventually generated for LOAGs
has the same structure as the runtime evaluator for OAGs, and the rest of this thesis
can therefore be read with the information from Section 3.1 and Section 3.2 only.

3.1. LAZY EVALUATION 33

3.1 Lazy evaluation

The simplest purely functional implementation of AGs [Saraiva, 1999] in terms of
scheduling (or rather the lack thereof) makes use of folds, or catamorphisms. A
fold defines a general way of recursing over a data type using a given algebra. The
algebra defines for each constructor how to compute the result given the results of
the children.

The carrier type of the algebra defines which information is computed over the
data type. For our translation of AGs relying on lazy evaluation we choose the
carrier type for each nonterminal to be a function from a tuple consisting of all the
inherited attributes of that nonterminal to a tuple consisting of all the synthesized
attributes of that nonterminal. As most interesting AGs are many-sorted algebras,
we speak about data types and result types instead.

3.1.1 Guestbook example

We show a part of the translation of the guestbook code in Figure 3.1. The type
TGuestbook is the carrier type for the algebra, which in this case is just a tuple
of the two synthesized attributes. Because this example does not have inherited
attributes we could have given it the isomorphic type ()→ (Set Name, [Double]).

The function semGuestbook, which we call a nonterminal semantic function, is the
recursive function taking care of visiting the children of the node at hand. It uses the
algebra which contains for the constructors Empty, Arrive and Leave, the correspond-
ing functions semGuestbookEmpty, semGuestbookArrive and semGuestbookLeave to
which we refer as the production semantic functions. The (production) semantic
function for the Arrive production is shown, which takes the name and the result of
the tl child as argument and returns the result for this Arrive node by applying the
semantic rules as they were defined by the AG. The functions semGuestbookEmpty
and semGuestbookLeave are similar.

In the top level wrapper the list of true grades is instantiated as a higher order
child. Figure 3.2 shows the translation in which the nonterminal semantic function
semDL is called to compute the attribute values of the valid grades.

3.1.2 C] example

In the C] example most nonterminals are equipped with both inherited and synthe-
sized attributes. As with the AG explanation we do not show the full code and only
highlight some of the most important aspects.

The type of the evaluator for the Stat nonterminal is:

34 CHAPTER 3. SCHEDULING

type TGuestbook= (Set Name, [Double])
semGuestbook :: Guestbook→ TGuestbook
semGuestbook Empty = semGuestbookEmpty
semGuestbook (Arrive _name _tl) =

semGuestbookArrive _name (semGuestbook _tl)
semGuestbook (Leave _name _grade _review _tl) =

semGuestbookLeave _name _grade _review (semGuestbook _tl)
semGuestbookArrive :: Name→ TGuestbook→ TGuestbook
semGuestbookArrive name_ tl_=

let _lhsOsignedIn :: Set Name
lhsOsignedIn = name ‘Set.insert‘ _tlIsignedIn
_trueReviews = _tlItrueReviews
_lhsOtrueReviews :: [Double]
_lhsOtrueReviews= _trueReviews
_tlIsignedIn :: Set Name
_tlItrueReviews :: [Double]
(_tlIsignedIn, _tlItrueReviews) = tl_

in (_lhsOsignedIn, _lhsOtrueReviews)

Figure 3.1: Part of the lazy runtime evaluator of the guestbook AG

3.1. LAZY EVALUATION 35

semTopTop :: TGuestbook→ TTop
semTopTop gb_=

let _gbIsignedIn :: Set Name
_gbItrueReviews :: [Double]
(_gbIsignedIn, _gbItrueReviews) = gb_
revs_val_ :: DL
revs_val_ = _gbItrueReviews
_lhsOaverage :: Double
_lhsOaverage = _revsIaverage
_revsIaverage :: Double
_revsIlength :: Double
_revsIsum :: Double
(_revsIaverage, _revsIlength, _revsIsum) = semDL revs_val_

in (_lhsOaverage)

Figure 3.2: Instantiation of the higher-order child revs in the lazy runtime evaluator
of the guestbook AG

type TStat=Map String Int→ ([Instr], [String])

Remember that Stat has a single inherited attribute env and two synthesized at-
tributes code and declVars, which are all present in the type. In order to get access
to the inherited attribute the production semantic functions of the nonterminal Stat
now get an extra argument:

sem_Stat_StatDecl :: TDecl→ TStat
sem_Stat_StatDecl decl_ _lhsIenv=

let . . . in . . .

When a production has a child of type Stat, like the MemberM production, the
inherited attribute env is passed as an argument. In Figure 3.3 we show that the
argument _bodyOenv is passed to body_ to produce the synthesized attributes of
body.

Apart from inherited attributes, this example shows an important aspect of the
lazy evaluator: a circular program! If we take a closer look at the code in Fig-
ure 3.3, we see that the argument _bodyOenv depends on _locs, which depends
on _bodyIdeclVars. In other words: the argument _bodyOenv of the function call
depends on the result _bodyIdeclVars of that very same function call.

36 CHAPTER 3. SCHEDULING

semMemberMemberM :: TType→ String→ TDeclL→ TStat
→ TMember

semMemberMemberM rtype_ name_ params_ body_=
let _paramsOenv :: Map String Int

_paramsOenv =Map.empty
_paramsIcode :: Code
_paramsIdeclVars :: [String]
(_paramsIcode, _paramsIdeclVars) = params_ _paramsOenv
_loc_params = zip (reverse _paramsIdeclVars) [−2,−3 . .]
_loc_locs = zip _bodyIdeclVars [1 . .]
_bodyOenv :: Map String Int
_bodyOenv =Map.fromList (_loc_params++ _loc_locs)
_bodyIcode :: Code
_bodyIdeclVars :: [String]
(_bodyIcode, _bodyIdeclVars) = body_ _bodyOenv
_lhsOcode :: Code
lhsOcode = [LABEL name,LINK (length _loc_locs)]

++ _bodyIcode
++ [UNLINK,RET]

in (_lhsOcode)

Figure 3.3: The lazy translation of the semantic function for the MemberM produc-
tion, which is circular

3.2. ORDERED AGS 37

In a strict language such a definition is impossible, but in a lazy language like
Haskell such circular definitions do not pose any problem, provided of course that
the resulting definition makes sense. As shown in [Bird, 1984] this can even lead to
more efficient code than a non-circular version of the code, because the constructor
for each node is only used once in a pattern match during evaluation of the tree.
In this case our definition is well-founded since the computation of declVars does
not depend on the argument env and therefore declVars can be computed without
evaluating env. For code the value of env is necessary, but this does not pose a
problem either since env does not depend (directly nor indirectly) on code.

Lazy evaluation can thus be used to dynamically obtain an evaluation order to
compute the attributes of the tree: values are only computed when strictly nec-
essary, and if there are no truly cyclic definitions this works. As stated before, the
problem with this approach is obviously that erroneous definitions, which encounter
a loop at runtime, are not detected statically, i.e. before evaluation starts. Further-
more, the incremental evaluation as discussed later in this thesis can not easily be
combined with circular programs and once programs start to loop it may be very
hard to find out why.

3.2 Ordered AGs

In contrast to relying on lazy evaluation in order to find a schedule for the eval-
uation of the attributes, we may analyse the grammar and try to statically find a
deterministic order in which we can walk over the tree while evaluation attributes,
in such a way that whenever we evaluate an attribute it is guaranteed that all the
attributes referred to in its definition have been evaluated already, thus avoiding a
lot of dynamic tests.

The first static scheduling algorithm that we discuss is the Ordered Attribute
Grammar algorithm [Kastens, 1980]. The OAG algorithm is a polynomial time al-
gorithm that (by definition1) can schedule all attribute grammars in the OAG class.
The OAG class does however not contain all AGs for which an order can be statically
found. We want to remark again that the name OAG is therefore confusing, but we
use it for consistency.

The OAG algorithm analyses the grammar and generates a runtime evaluator
with a fixed evaluation order. To construct this fixed order the algorithm analy-
ses the dependencies between the attributes to construct a visit interface for each
nonterminal. A visit interface is a list of visits with a set of inherited and a set

1The class of OAGs is defined as all AGs that can be scheduled by Kastens’ algorithm

38 CHAPTER 3. SCHEDULING

Figure 3.4: PDGMemberM for the C] AG. Note that the children rtype and name are not
shown here.

of synthesized attributes assigned to each visit, defining in what order the corre-
sponding attributes are computed. Every attribute is assigned to exactly one visit.
In each visit the values for the inherited attributes of that visit have become avail-
able, while the synthesized attributes of that visit must be computed. For each visit
all inherited attributes upto and including that visit are available to compute the
synthesized attributes of that visit. The runtime evaluator for the attribute gram-
mar can be generated from these visit interfaces in a straightforward way, and the
key part of the algorithm is thus the construction of a valid visit interface for each
nonterminal.

3.2.1 Dependency graphs

The scheduling algorithms analyse the grammar to find an evaluation order such
that for all ASTs generated by that grammar the evaluation order satisfies all direct
dependencies. These direct dependencies are defined by the semantic rules because
each attribute on the left-hand side is defined in terms of the attributes in the right-
hand side of the rule. The attributes in the right-hand side of the rule therefore
need to be computed before evaluating that semantic rule.

All scheduling algorithms which try to find a static evaluation order start from
a so-called dependency graph. A dependency graph represents the dependencies be-
tween attributes; we use it both in the implementation of the algorithm and in the
visualisation of the algorithm. The direct dependency graphs consist only of depen-
dencies directly induced by the semantic rules, while the dependency graphs may
also contain dependencies introduced in other ways, for instance by the scheduling.
The dependency graph for a production P is called PDGP.

3.2. ORDERED AGS 39

Figure 3.5: Induced PDGMemberM

In Figure 3.4 we show part of the direct PDGMemberM for the C] example. The
circles represent the nonterminals in a production, with the topmost node being
the parent node and the bottom nodes the children. Attached to the children are
the boxes representing the attributes, for which we use the convention of drawing
inherited attributes to the left of the node and the synthesized attributes to the right
of a node.

The arrows denote the flow of information. For example, we have an arrow
params.declVars → body.env because the params.declVars attribute is used in com-
puting the body.env attribute. Note that here again the presentation may be slightly
misleading at first: we speak about dependency graphs, but the arrow a→ b means
that b depends on a, and not the other way around! We do however stick to this
convention as it is standard in AG literature and intuitive from an AG perspective.
The true dependency graph could easily be obtained by reversing all arrows.

3.2.2 Induced dependencies

After constructing a dependency graph for each production, the OAG algorithm
constructs an induced dependency graph for each production. The induced depen-
dencies are dependencies introduced by dependencies in the child or parent nodes
of a production. For example, in our MemberM production the child body is of type
Stat and any production of the Stat nonterminal could appear as a child of MemberM
in a concrete AST. One of the productions of Stat is StatReturn, which (again indi-
rectly) uses env to compute its synthesized attribute code inducing the dependency
body.env→ body.code which is added to the graph. In Figure 3.5 we show the full
induced PDGMemberM, where the dashed lines represent the induced dependencies.

The construction of the induced dependency graphs is not straightforward. The

40 CHAPTER 3. SCHEDULING

addition of a dependency to one production may lead to a new path from one at-
tribute to another at its parent or one of its children, which leads to the addition of
further induced dependencies in other productions. An iterative process is there-
fore required to compute the fixed point of all induced dependency graphs. Be-
cause there is only a finite number of valid dependencies this process obviously
terminates.

By definition, if a cycle is found in any of these induced dependency graphs the
attribute grammar does not belong the OAG class. On the other hand the fact that
the induced dependency graphs are acyclic does not guarantee yet that the grammar
is in the OAG class, as we show in Section 3.2.6.

3.2.3 Nonterminal dependency graph

The nonterminal dependency graph for a nonterminal N called NDGN is a pessimistic
approximation of all dependencies for that nonterminal. NDGN contains a node for
each attribute of N, and an edge a→ b if for any p there exists a path a→ b in the
induced PDGp with a and b being attributes of the same node of type N. Note that
the production p does not need to be a production of N, because children of type N
can also appear in productions of other nonterminals.

An important remark here is that the OAG algorithm constructs a global order
on the attributes of a nonterminal; every occurrence of that nonterminal uses the
same dependencies, irrespective of the specific AST used for its children, its context
in the tree, or the production being used at this location. As a static schedule is
a schedule in which we do not have to take a further decisions during evaluation;
we take a worst case approach and assume that all dependencies of all productions
occur at the same place at the same time.

3.2.4 Visit interfaces

From the nonterminal dependency graphs the visit interfaces are constructed. A visit
interface defines for a nonterminal in what order the attributes of that nonterminal
are to be computed. Specifically, a visit interface consists of one or more visits,
where each visit consists of a (possibly empty) set of inherited attributes and a (non-
empty) set of synthesized attributes. Every attribute of that nonterminal belongs to
exactly one visit.

A requirement for the visit interfaces is that they should comply with the depen-
dencies from the nonterminal dependency graphs. Let visit (a) be the visit number
in which attribute a is scheduled, where the visits are numbered in increasing order.
The lowest visit number is the first visit. For any dependency (direct or indirect)

3.2. ORDERED AGS 41

i→ s for inherited attribute i and synthesized attribute s, it should be the case that
visit (i)¶ visit (s). In other words, the inherited attribute i must be available before
or in the same visit in which s is computed. For a dependency s → i it must be
the case that visit (s) < visit (i), which means that s needs to be computed in an
earlier visit than i. As the direct dependencies are always between different types
of attributes, we do not need to restrict i→ i or s→ s.

Construction To construct the visit interface for nonterminal N from NDGN the
OAG algorithm proceeds as follows.

• Repeat for v= 0, v= 1, etc. as long as NDGN is non-empty:

– For each inherited attribute i such that there is no s→ i in NDGN:

∗ Put i in visit v.

– For each synthesized attribute s such that for each i→ s in NDGN i is in
visit v:

∗ Put s in visit v.

– For each attribute a in visit v:

∗ Remove a and all edges connected to a from NDGN.

The result of this algorithm is that each attribute is scheduled as early as possible
and that the resulting schedule has the least number of visits. In Section 3.2.6
we show that it can also be the case that the algorithm fails to find a schedule
because of the extra dependencies that are introduced by this algorithm, which are
not reflected in the description above.

For the Stat nonterminal of our C] example, which is also the type of the body
child of MemberM, this algorithm constructs two visits: visit 0 computes the synthe-
sized attribute declVars, and visit 1 gets the inherited attribute env and computes
the synthesized attribute code. This order satisfies all dependencies as shown in
Figure 3.5.

3.2.5 Code generation

In the code generated from the visit interfaces, the type of the evaluator for each
nonterminal encodes the visit interface of that nonterminal in the following way.
Instead of a single evaluator type, we construct a type for each visit in the visit
interface, which takes as arguments the inherited attributes of that visit and returns

42 CHAPTER 3. SCHEDULING

a tuple containing the synthesized attributes of that tuple. For all but the last visit
of a nonterminal, one more thing is returned: the evaluator for the next visit.

For our C] example this results in the following types:

type TStat = ([String], TStat1)
type TStat1 =Map String Int→ [Instr]

As the type of the full evaluator for Stat is the type of the first visit, we use the
name TStat instead of TStat0. As we see the first visit also returns something of
type TStat1, which is the evaluator for the second visit of the Stat nonterminal.

The code for the MemberM production is shown in Figure 3.6. The first differ-
ence to the lazy version (Figure 3.3) is that we have nested the let . . . in . . . to make
the evaluation order explicit in the code. Although this is not strictly necessary, mak-
ing the evaluation order explicit may help the compiler in generating more efficient
code. Furthermore, the computation of the attributes of params_ and body_ is now
split into multiple calls, one for each visit. The circular definition has now been un-
folded by first computing _bodyIdeclVars, then constructing _bodyOenv after which
_bodyIcode can be computed. Because of the explicit evaluation order the code can
also be written in a monadic style.

In Figure 3.7 we show the generated code for the StatReturn production, which
has two visits. In the first visit _lhsOdeclVars is computed, which for return is an
empty list, since no variables are declared. The evaluator for the subsequent visit is
then defined in a let binding such that this evaluator can be returned together with
_lhsOdeclVars. In the second visit the code of the child is computed based on the
current environment. Note that in this way subsequent visits can refer to attributes
that were declared in an earlier visit, which happens often in AGs with multiple
visits (but not in this example).

3.2.6 Counter example

As indicated there exist AGs for which the algorithm by Kastens fails to find an
evaluation order even though a linear order exists. While [Kastens, 1980] states
that such AGs do not often show up in practice, we have encountered this situation
quite often, especially when the number of attributes grows. In this section we show
a very simple example AG for which Kastens’ algorithm fails.

The AST of our counter example is a binary tree with integer values in the leaves.
We define two attributes: one for giving a unique label to each leaf in the tree and
one for computing a list of all values in the leaves in pre-order. These computations
may seem unrelated and artificial, but such combinations of computations often
occur in compiler construction.

3.2. ORDERED AGS 43

semMemberMemberM :: TType→ String→ TDeclL→ TStat
→ TMember

semMemberMemberM rtype_ name_ params_ body_=
let _paramsIdeclVars :: [String]
(_paramsIdeclVars, params2) = params_ in

let _paramsOenv :: Map String Int
_paramsOenv =Map.empty in

let _paramsIcode :: Code
_paramsIcode= params2 _paramsOenv in

let _loc_params = zip (reverse _paramsIdeclVars) [−2,−3 . .] in
let _bodyIdeclVars :: [String]
(_bodyIdeclVars, body2) = body_ in

let _loc_locs = zip _bodyIdeclVars [1 . .] in
let _bodyOenv :: Map String Int

_bodyOenv =Map.fromList (_loc_params++ _loc_locs) in
let _bodyIcode :: Code

_bodyIcode = body2 _bodyOenv in
let _lhsOcode :: Code

lhsOcode = [LABEL name,LINK (length _loc_locs)]
++ _bodyIcode
++ [UNLINK,RET]

in (_lhsOcode)

Figure 3.6: Code generated for the OAG translation of the MemberM production

44 CHAPTER 3. SCHEDULING

semStatStatReturn :: TExpr→ TStat
semStatStatReturn expr_=

let _lhsOdeclVars :: [String]
_lhsOdeclVars= [] in

let semStatStatReturn_1 :: TStat1
semStatStatReturn_1 _lhsIenv=

let _exprOenv :: Map String Int
_exprOenv = _lhsIenv in

let _exprIcode :: [Instr]
exprIcode = expr _exprOenv in

let _lhsOcode :: [Instr]
_lhsOcode = _exprIcode++ [STR R3,UNLINK,RET]

in (_lhsOcode)
in (_lhsOdeclVars, semStatStatReturn_1)

Figure 3.7: Code generated for the OAG translation of the StatReturn production

data Tree | Leaf val :: {Int}
| Bin l, r :: Tree

attr Tree
chn label :: {Label}

sem Tree | Leaf lhs.label = nextLabel @loc.label
loc.label= @lhs.label

| Bin l.label = @lhs.label
r.label = @l.label
lhs.label = @r.label

attr Tree
chn vals :: {[Int]}

sem Tree | Leaf lhs.vals= @val : @lhs.vals
| Bin l.vals = @r.vals

r.vals = @lhs.vals
lhs.vals= @l.vals

Figure 3.8: Simple AG for which a linear evaluation order exists which is not found
by the OAG algorithm

3.2. ORDERED AGS 45

Figure 3.9: Induced PDGBin

In Figure 3.8 we show the full code. In order to compute a unique label for each
leaf we introduce some type Label and a function nextLabel :: Label → Label that
gives the next available (unique) label based on the current one. The label attribute
is a chained attribute holding the next label value to be handed out, and is copied
through the tree in a standard pre-order traversal. At each Leaf the current label is
stored such that other rules may use loc.label, and the next label is passed on to be
used in the labelling of subsequent leaves. Note that due to the copy rules most of
the semantic rules might have been left out; we have included them for clarity.

Collecting the values in the leaves is also done with a chained attribute. We
do compute only synthesized information so one might expect a single synthesized
attribute to suffice. Since list concatenation is expensive a synthesized attribute will
in general not produce the list of leave values in linear time. A better solution is to
introduce another chained attribute in which we collect the Leaf values; note that
this attribute is chained in the opposite order: the inherited attribute of the root is
passed to the right child first, in the tree the leaves of that tree are prepended, and
the updated list is then passed to the left child, in order to be extended with the
nodes from that subtree. Finally the result computed from the left subtree becomes
the result of the tree at hand. The initial empty list is given at the top level, which
is not shown in the code.

Induced dependency graph We show the induced PDGBin in Figure 3.9. It is not
hard to see that no information flows between the two computations. The OAG
scheduling algorithm therefore constructs a single visit with inherited attributes
label and vals and synthesized attributes label and vals.

46 CHAPTER 3. SCHEDULING

Figure 3.10: Extended PDGBin

Extended dependencies The result of combining multiple attributes into a sin-
gle visit is that extra dependencies are induced. For each visit it must be the case
that the inherited attributes of that visit can be computed before the synthesized
attributes of that visit. To complete the induced PDGN into the extended dependency
graph these extra edges are added between each pair of inherited and synthesized
attributes of the same visit.

For our example there is only one visit such that the extra edges are label→ vals
and vals→ label, both arrows from an inherited to an (albeit unrelated) synthesized
attribute. In Figure 3.10 we show this extended PDGBin, which unfortunately con-
tains a cycle: l.vals→ l.label→ r.label→ r.vals→ l.vals. It is therefore not possible
to generate code that computes these attributes without relying on lazy evaluation,
and this AG is therefore not compatible, meaning it is not in the class of OAGs.

3.2.7 Augmenting dependencies

One solution to the problem that such AGs cannot be scheduled with the OAG algo-
rithm, is to introduce augmenting or fake dependencies. Such dependencies are not
present in the semantic rules, but may be added to the source code separately with
the sole purpose of guiding the scheduling process. The AGs that can be scheduled
with the addition of a collection of augmenting dependencies form the class of ar-
ranged orderly attribute grammars [Kastens, 1980], which is exactly the same as the
class LOAG, which contains all AGs for which a static linear order exists.

In our example there are multiple augmenting dependencies that may be added.
Intuitively, the resulting schedule should consist of two visits, one computing the
label inherited and synthesized attribute and the other computing the vals attributes.

3.3. ABSOLUTELY NONCIRCULAR AGS 47

Indeed, adding an additional dependency between the synthesized attribute label
and the inherited attribute vals solves the problem.

The problem with such augmenting dependencies is that there may be expo-
nentially many of them. Finding a set of augmenting dependencies to construct a
valid schedule is an NP-hard combinatorial problem [Engelfriet and Filè, 1982]. In
some cases, like the small example above, these can be found manually, but in large
projects like the UHC this is a tedious job and therefore it is not feasible to do this
manually. We furthermore note that usually a large attribute grammar is developed
in an incremental way, and continuously adapting the set of augmenting dependen-
cies to the new extended grammar distracts from the main programming task. In
the next sections we therefore present some improved scheduling algorithms.

3.3 Absolutely Noncircular AGs

The algorithm from [Kennedy and Warren, 1976], from now on referred to as K&W,
is the second scheduling algorithm we discuss. This algorithm can find a schedule
for attribute grammars in the class of absolutely noncircular attribute grammars,
which is the largest class of AGs for which a scheduling algorithm is known. The
property of absolutely noncircularity [Knuth, 1968] is a pessimistic approximation
of true noncircularity [Knuth, 1971]; there exist AGs that do not belong to the class
of ANAGs for which none of the ASTs contains a cycle in its attribute dependencies.

The most important difference with the OAG algorithm is that certain decisions
on the exact evaluation order are delayed until runtime, which makes the schedul-
ing partially dynamic. Instead of a visit interface the K&W algorithm constructs a
visit graph for each nonterminal, representing a set of different visit interfaces that
can be used at runtime based on the context. These visit graphs are constructed
from input-output graphs, which are induced dependency graphs in which the con-
text is not taken into account. In Section 3.3.1 we give a definition of input-output
graphs, and in Section 3.3.2 we give the definition and the construction of a visit
graph. In Section 3.3.3 we describe the generation of a runtime evaluator from such
a visit graph, which we illustrate with the label and vals example of Section 3.2.6.
For the [Bransen et al., 2012] paper we have created an efficient implementation
in Haskell, of which we discuss the most important aspects in Section 3.3.4.

3.3.1 Input-output graph

An input-output graph resembles an induced dependency graph as used in the OAG
algorithm, and it is used in a similar way. The important difference is that in an

48 CHAPTER 3. SCHEDULING

input-output graph the dependencies for the parent node (the context) are not taken
into account. Hence the name input-output graph: only dependencies from inher-
ited (input) to synthesized (output) attributes are induced.

The input-output graph for a production p we call PIOp and the input-output
graph for a nonterminal N we call NION. The NION is the union over all dependen-
cies from the productions of N; for each production p of N, if there is a path from
inherited attribute i to synthesized attribute s of the lhs of p in PIOp, there is an edge
i→ s in NION. The PIOp consists of the PDGp together with all dependencies for its
children; for each child c in p of type M, the dependencies from NIOM are present
in PIOp.

As with the induced dependency graphs, the process of constructing all input-
output graphs is a fixed point computation. Again, as the number of possible de-
pendencies is finite the algorithm terminates. When none of the production input-
output graphs contain a cycle, the AG is absolutely noncircular and the K&W algo-
rithm finds a valid schedule.

3.3.2 Visit graph

The OAG algorithm defines a global order on the attributes of a nonterminal in
terms of a visit interface that works in every context. As we have shown in Sec-
tion 3.2.6 such a global order may introduce extra dependencies leading to cycles.
To avoid that problem the K&W algorithm constructs a visit graph, which repre-
sents the different visit interfaces for all possible contexts of a nonterminal. The
choice of the actual visit interface is taken at runtime based on the context, and the
algorithm guarantees that for every possible AST the runtime evaluator is able to
choose a visit interface such that no cycle is encountered at runtime.

The visit graph for a nonterminal N is a directed acyclic graph with a special
starting vertex. Every possible path from the starting vertex to a leaf vertex repre-
sents a visit interface, which in this context we call visit sequence. The vertices in
the graph represent the possible states of a nonterminal, where a state is the set of
attributes that have already been evaluated. Every edge in the graph corresponds
to a visit to a node, hence each edge is labelled with a set of inherited and a set of
synthesized attributes. For every visit sequence it must be the case that the sets of
inherited attributes along the path are all disjoint, and similarly for the synthesized
attributes.

With every edge we also associate an execution plan for each production of the
corresponding nonterminal. This execution plan is a list of instructions for com-
puting the values of the synthesized attributes of that visit. These instructions are

3.3. ABSOLUTELY NONCIRCULAR AGS 49

Figure 3.11: The visit graph of the example

either the computation of an inherited attribute of a child, the invocation of the visit
of a child, or the computation of a synthesized attribute.

The key algorithm of this section is an adapted version of the K&W algorithm
for the construction of the visit graph including the execution plans. This algorithm
performs stable and predictable inference of the evaluation order which determines
visits in a demand driven way with per visit the smallest set of inherited attributes
that are needed to produce the demand set of synthesized attributes, and per visit
the largest set of synthesized attributes that can be derived from the inherited at-
tributes. If the AG is absolutely noncircular, thus none of the input-output graphs
contains a cycle, this algorithm returns a complete visit graph. At run time this leads
to a predictable evaluation order, but it is partially dynamic because the actual visits
performed for each node depend on the collection of new inherited attributes that
have become available for the parent node.

Example Figure 3.11 shows the visit graph for our example, containing three visit
sequences. The execution plans for the productions are not made explicit in this
figure. Visit v0 is the main visit, which is also invoked at the top level, in which
both inherited attributes are available at the start of the visit. For the Leaf we can
compute both synthesized attributes directly, but for the Bin production we need
to perform child visits. As we have already seen it is impossible to do this in a

50 CHAPTER 3. SCHEDULING

single visit. For the left child visit v1 is done first and then visit v3, and for the right
child visit v2 is done first and then visit v4. Hence, for scheduling visit v0 of the Bin
production extra visits are added to the visit graph. Execution plans can be created
for all visits using only these visit sequences.

Construction The algorithm works by gradually building up the visit graphs from
the NIOp’s. Every visit graph has exactly one vertex without incoming edges which
is the starting vertex.

To construct the initial visit graph for a nonterminal N we create a starting vertex
and one pending edge plus the corresponding target vertex, containing all inherited
and synthesized attributes defined on N. In our example Tree0 is the starting vertex
and v0 the initial pending edge.

The main loop of the K&W algorithm constructs the visit graphs for all nonter-
minals simultaneously. Pending edges are handled one by one, thereby possibly
adding new pending edges to the visit graph of other nonterminals. For each pend-
ing edge of the visit graph for some N an execution plan is constructed for each
production p of N. Once a pending edge is handled it is marked final and the al-
gorithm terminates when there are no more pending edges. As the set of possible
edges is finite the algorithm always terminates.

For each visit graph we keep for every vertex in that graph a list with a state for
each of the children of the productions. Such a state contains the set of attributes
that have already been computed for a child c and is represented by a reference to
a vertex in the visit graph of the nonterminal N of which c is an instance. Initially
every child state is the starting vertex of the visit graph for N.

For the construction of an execution plan for a production p we use marks on the
PIOp. Marked vertices represent the attributes that have already been evaluated and
thus are available. To handle a pending edge we mark the vertices corresponding to
the inherited attributes assigned to the pending edge. The goal is then to mark all
synthesized attributes assigned to this pending edge. A vertex can be marked only
if all its dependencies are already marked. For synthesized attributes of children
a child visit needs to be performed, and we maximise the number of synthesized
attributes that we compute in the child visit. This child visit is where potential
new pending edges are added. The vertices in PIOp are recursively marked until
all synthesized attributes are marked. If the production input-output graphs do not
contain cycles this is always possible.

Apart from the synthesized attributes of the children that are strictly needed
for computing the desired synthesized attributes of the current visit, we also add
synthesized child attributes that depend only on the inherited child attributes that

3.3. ABSOLUTELY NONCIRCULAR AGS 51

are already evaluated. In other words, we add synthesized child attributes that can
already be computed without introducing extra child visits. By eagerly adding such
synthesized attributes we avoid constructing many almost similar visits and thus
limit the growth of the visit graph resulting from the K&W approach.

3.3.3 Runtime evaluator

The runtime evaluator coming from the K&W algorithm can be thought of as taking
the visit graph and the AST as parameters, and evaluating the attributes according
to the execution plans in the visit graph. However, as the visit graph is computed
statically at compile time we can already partially apply the evaluator to the visit
graph and directly generate an evaluator in which the visit graph is implicitly en-
coded.

The type of the evaluator resulting from applying the semantic function to the
AST is similar to that of the OAG code; given the values of some inherited attributes
the values of some synthesized attributes and the function for the next visit are
returned. In this case however an extra parameter needs to be given to specify
which visit needs to be performed, as there can be multiple possible visits. This
extra parameter is given by the parent node, for which the execution plan specifies
which child visits need to be performed. The extra parameter is thus where the
scheduling is dynamic, as at runtime extra pattern matches need to be performed
to find the right visits.

Figure 3.12 shows some important parts of the generated code for the exam-
ple. As the K&W algorithm is not the one finally used in this thesis, we do not go
into much detail here and leave out many implementation details. We do however
highlight some of the key elements of the generated runtime evaluator.

For every node in the visit graph there is a data type similar to TTree_s0 stor-
ing the possible visits for a node in that state. The corresponding type KTree_s0
has a constructor for each possible visit and is a generalized algebraic data type
[Cheney and Hinze, 2003, Xi et al., 2003] such that the type of the corresponding
visit is propagated at the type level. When invoking a visit, which is illustrated in v0,
the KTree_v1 parameter fixes the type of the return, which is this case is a function
from Label to a tuple consisting of a Label and a new state for the l child. Finally
the k0 function is an example of where the dynamic scheduling takes place; based
on the parameter one of the visit functions is selected and because of the GADT
pattern matching these visit functions can have different types.

We do not go into further details but like to point out again that the generated
code is purely functional and strongly typed. The type checker proves that the code
has the define-before-use property and that no attribute depends indirectly on itself.

52 CHAPTER 3. SCHEDULING

type TTree= TTree_s0

data TTree_s0 = CTree_s0 {
inv_Tree_s0 ::∀ t. KTree_s0 t→ t
}

data KTree_s0 k where
KTree_v0 :: KTree_s0 TTree_v0
KTree_v1 :: KTree_s0 TTree_v1
KTree_v2 :: KTree_s0 TTree_v2

type TTree_v0 = (Label, [Int])→ (Label, [Int])
type TTree_v1 = Label → (Label, TTree_s2)
sem_Tree_Bin :: T_Tree→ T_Tree→ T_Tree
sem_Tree_Bin l_ r_= st0 where

st0 = let k0 :: KTree_s0 t→ t
k0 KTree_v0 = v0
k0 KTree_v1 = v1
k0 KTree_v2 = v2
v0 :: TTree_v0
v0 = . . .

let (_lIlabel, _l2) = inv_Tree_s0 l_ KTree_v1 _lOlabel in
. . .

. . .
in CTree_s0 k0

. . .

Figure 3.12: Small part of the generated code for the K&W algorithm for the exam-
ple

3.3. ABSOLUTELY NONCIRCULAR AGS 53

The generated code can be seen as the evidence of the proof that the AG is absolutely
noncircular. For further details we would like to refer to [Middelkoop, 2012].

3.3.4 Functional implementation

For the UUAGC we have implemented the K&W algorithm efficiently in Haskell
and here we give some implementation details. As with the code generation only
highlight the important aspects but do not go into detail because the K&W algorithm
is not used in the rest of this thesis, and it is only explained for educational reasons.

Dependency graphs The first ingredient of the scheduling is how we represent
dependency graphs efficiently in Haskell (Figure 3.13). An important property of
the dependency graphs is that no new vertices are added to the graph during the
execution of the algorithm which means that upon construction of the initial graph
the list of all vertices is known. We use this property to assign a unique number to
each vertex at construction time and we use these numbers as Array indices thus
giving constant lookup time.

The algorithm from [Knuth, 1968], which we call Knuth-1, is an algorithm that
statically determines whether an AG is absolutely noncircular. In our implementa-
tion the Knuth-1 algorithm is used both as a check whether the AG can be scheduled
with the K&W algorithm and as a way to construct the PIOp for every production p.

In the Knuth-1 algorithm there are several operations on the input-output graph
for which an efficient implementation is important: graphEdges, the enumeration
of all edges in the graph, graphInsert, the insertion of a new edge into the graph,
and graphContainsEdge, a check whether two vertices are connected. Also, it is
important to know which vertices become connected as a result of the insertion of
a new edge.

To accomplish this we maintain the invariant that the graph is always transitively
closed. Keeping such an invariant may lead to more efficient update operations
[La Poutré and van Leeuwen, 1988]. We store the graph as a set of successors and
a set of predecessors for each vertex. Upon insertion of a new edge we transitively
close the graph in the obvious way. The return value of graphInsert is the list of
newly added edges, excluding the one in the argument.

We use the ST Monad [Launchbury and Peyton Jones, 1994] for performing ef-
ficient in-memory updates in a functional setting. Using the STRef in the successors
and predecessors Array, the sets are updated in place without the need to update
the Array structure itself.

54 CHAPTER 3. SCHEDULING

type Vertex = . . . -- External vertex type
type Edge = (Vertex, Vertex) -- External edge type
type IVertex = Int -- Internal representation of a vertex
type IEdge = (IVertex, IVertex) -- Internal representation of an edge

data DepGraph s= -- Representation of the graph
DepGraph {vertexIMap :: Map Vertex IVertex

, vertexOMap :: Array IVertex Vertex
, successors :: Array IVertex (STRef s (Set IVertex))
, predecessors :: Array IVertex (STRef s (Set IVertex))}

graphConstruct :: [Vertex] → [Edge]→ ST s (DepGraph s)
graphInsert :: DepGraph s→ Edge → ST s [Edge]
graphContainsEdge :: DepGraph s→ Edge → ST s Bool
graphSuccessors :: DepGraph s→ Vertex → ST s [Vertex]
graphPredecessors :: DepGraph s→ Vertex → ST s [Vertex]
graphVertices :: DepGraph s→ ST s [Vertex]
graphEdges :: DepGraph s→ ST s [Edge]

Figure 3.13: Dependency graph representation

3.3. ABSOLUTELY NONCIRCULAR AGS 55

Input-output graphs As explained, the K&W algorithm constructs a PIOp for every
production p by constructing a NION for every nonterminal N, which represents the
union over all possible dependencies for a tree rooted by N. We implement the
construction of these input-output graphs as a work-list algorithm that alternates
between adding dependencies coming from an NION to a PIOp and vice versa. The
work-list contains the pending dependency edges: edges that have been added to
one of the graphs and may have to be added to other graphs. Initially the list
of pending edges consists of all initial edges (direct dependencies) of PIOp for all
productions p. The main function is implemented as:

knuth1 :: [NontM s]→ ST s ()
knuth1 nonts= do

nes← forM nonts $λnont→ do
pend←mapM graphEdges (productions nont)
return (pend, nont)

knuth′1 nes -- run worklist algorithm on initial graph

The type NontM represents a nonterminal in the AG containing its productions,
attributes and semantic rules. NontM also contains the input-output graphs to which
extra edges are added by the Knuth-1 algorithm.

To add pending edges coming from some PIOp to a NION the following helper
function is used.

addProdNont :: ([[Edge]], NontM s)→ ST s [Edge]

The argument of this function is a pair consisting of a list of edges that needs to
be added and the corresponding nonterminal. The return value is the list of all
edges that are newly added due to taking transitivity into account. These new
edges are then taken as the new list of pending edges which are to be added to the
corresponding PIOp’s:

addNontProd :: ([Edge], NontM s)→ ST s [[Edge]]

Again, this function takes a pair of a list of new edges and the corresponding non-
terminal, and returns for each nonterminal a list of edges that were added to its
production input-output graphs due to transitivity. The new edges must be taken
as new pending list.

The helper function knuth′1 recursively alternates between adding edges to the
nonterminal input-output graphs and adding edges to the production input-output
graphs, and it terminates when the list of pending edges is exhausted.

56 CHAPTER 3. SCHEDULING

runVG :: VG s a → ST s a
insertInitialNode :: NontM s→ VG s VGNode
createPending :: VGNode→ [Identifier]→ [Identifier]

→ VG s VGEdge
selectPending :: VG s VGEdge
getInherited :: VGEdge → VG s [Identifier]
getSynthesized :: VGEdge → VG s [Identifier]
markFinal :: VGEdge → VG s ()
getProductions :: VGEdge → VG s [VGProd]
onMarkedDG :: (ProdDepGraphM s→ ST s a)→ VGProd

→ VG s a
isDGVertexFinal :: VGProd → Vertex→ VG s Bool
setDGVerticesFinal :: VGProd → [Vertex]→ VG s ()
getChildState :: VGProd → Identifier→ VG s VGNode
addChildVisit :: VGProd → Identifier → VGEdge

→ VG s VisitStep
addVisitStep :: VGProd → VisitStep→ VG s ()
repeatM :: VG s () → VG s ()

Figure 3.14: Functions available in VG monad

knuth′1 :: [([[Edge]], NontM s)]→ ST s ()
knuth′1 nonts= do

edges←mapM addProdNont nonts
let nontedges= concat edges
when (¬ (null nontedges)) $ do

perprod←mapM (λ(, x)→ addNontProd (nontedges, x)) nonts
newlist← zipWithM (λ(, nt)me→ return (me, nt))

nonts perprod
when (any (¬ ◦ null) perprod) $ knuth′1 newlist

Visit graph representation In order to maintain the visit graph we use a monad,
VG, built on top of the ST monad. In this way the representation of the visit graph
is separated from the actual algorithm. This greatly improves the readability of the
code.

The VG monad is defined as follows:

3.3. ABSOLUTELY NONCIRCULAR AGS 57

type VG s a= ErrorT String (StateT (VGState s) (ST s)) a

The inner monad is the ST monad with threaded state s. On top of this there is
a State monad with state VGState s, which contains the visit graph representation.
The topmost monad is the Error monad which is used for capturing failure and
error messages. This is also used in the implementation of the function repeatM ::
VG s ()→ VG s () that repeats the execution of the argument until mzero (failure)
is encountered. The VGState s is used for storing the visit graph and all necessary
related data. Figure 3.14 shows type signatures of the functions that are available
in the VG monad.

Visit graph construction At the start of the algorithm we create a starting vertex
for each nonterminal and the corresponding pending edge.

kennedyWarren :: [NontM s]→ VG s [Maybe VGEdge]
kennedyWarren nonts= do

initvs← forM nonts $λnont→ do
nd ← insertInitialNode nont
initv ← createPending nd (inh nont) (syn nont)
return initv

. . .

The main loop for handling pending edges is implemented using repeatM as follows:

repeatM $ do
pend ← selectPending
prods← getProductions pend
inhs ← getInherited pend
syns ← getSynthesized pend
forM prods $λprod→ do

. . .
markFinal pend

return initvs

When there are no more pending edges the selectPending function will result in
mzero, thereby breaking the repeatM loop and the algorithm terminates. The final
visit graph and the corresponding execution plans can now be retrieved from the
internal representation.

The marking of attributes is implemented as recursive function that assigns a
number to every vertex in a depth-first way. For every attribute the number is

58 CHAPTER 3. SCHEDULING

the maximum of all its predecessors, and for a synthesized child attribute it is
the maximum plus one, because one extra child visit needs to be performed. The
foldChildVisits helper function implements this behaviour.

We mark the inherited attributes as final and then call the foldChildVisits:

setDepGraphVerticesFinal prod (map createLhsInh inhs)
(vis, i)← foldM (foldChildVisits prod) ([], 0) (map createLhsSyn syns)
setDepGraphVerticesFinal prod (map fst vis)
. . .

The return value vis has type [(Vertex, Int)] and indicates the vertices that corre-
spond to rules or attributes that need to be evaluated at this stage, together with
the corresponding child visit number.

To generate the final execution plans (implemented in terms of addVisitStep)
we group the vis2 (vis combined with the extra synthesized child attributes) by visit
number. For every visit we first evaluate all corresponding rules and then add the
desired child visits.

forM (groupSortBy (comparing snd) vis2) $λvisit→ do
let (chatr, rules) = partition isChildAttr $ map fst visit

-- Rules have been added to the list in reverse order
forM (reverse rules) $λrule→ do

addVisitStep prod (Sem rule)
-- Group by child

forM (groupSortBy (comparing getChildName) chatr) $λchildvs→ do
let cinhs =map getName $ filter isChildInh childvs
let csyns =map getName $ filter isChildSyn childvs
let cname= getChildName $ head childvs
curstate← getChildState prod cname
target← createPending curstate (fromList cinhs) (fromList csyns)
step ← addChildVisit prod cname target
addVisitStep prod step

For the full implementation we refer the reader to the source code of the UUAGC2.

3.3.5 Discussion

We have formulated our version of the K&W algorithm in a rather different way
than the original formulation of [Kennedy and Warren, 1976]. One important dif-

2http://hackage.haskell.org/package/uuagc

http://hackage.haskell.org/package/uuagc

3.4. LINEARLY ORDERED AGS 59

ference involves the marking of the input-output graph vertices. Furthermore, in
the original formulation the child visits are performed based on availability of inher-
ited attributes, and all child visits that can be done are done. Our approach works
demand-driven, in the sense that we only do child visits that are strictly needed
for the computation of the requested synthesized attributes. This optimisation thus
removes unnecessary child visits and limits the growth of the visit graph.

An important drawback of the K&W algorithm its running time grows exponen-
tially because the visit graphs can have a size which is exponential in the number
of attributes. Our experience has shown that for practical AGs the visit graphs stay
small because usually the AG programmer has some evaluation order in mind.

In the rest of this we do not use the K&W algorithm because the runtime evalua-
tor is dynamic. When doing incremental computation the visits are memoized, but
changes higher up in the AST can lead to a different context in which other visits
need to be performed, even though the values of the attributes stay the same. We
therefore continue in the next section with a static scheduling algorithm that leads
to a complete linear order for all practical AGs we have encountered.

3.4 Linearly Ordered AGs

As explained in the introduction we believe that the LOAG class is the sweet spot of
the class hierarchy; all AGs that we have ever programmed fall in that class, while
it is still possible to find a schedule statically. The scheduling problem for LOAGs is
however NP-complete [Engelfriet and Filè, 1982], which in the earlier days of AG
scheduling was used as an argument to not use LOAGs.

In our work on scheduling we did however find that despite the NP-hardness of
the problem, we can do the scheduling efficiently in practice. We have been able
to construct AGs that can not be efficiently scheduled, but these are highly artificial
and we argue that these AGs are never written in practice. Intuitively, for the AGs
that fall outside of the OAG class like our label and vals example, there are many
valid schedules. This means that any (heuristic) search strategy for such schedules
quickly encounters a valid solution if any exist.

We have implemented two different algorithms for LOAG scheduling: a back-
tracking algorithm and an algorithm using SAT-solvers. We shortly explain the back-
tracking algorithm in Section 3.4.1, but we leave out the details as the SAT-based
algorithm is what we finally adopt, as explained in Section 3.4.2 and further. Note
that the result of both of these approaches is a visit interface for each nonterminal,
such that the runtime evaluators that are generated are the same as those of the
OAG algorithm. The only difference is in the construction of the visit interfaces.

60 CHAPTER 3. SCHEDULING

3.4.1 Backtracking algorithm

The backtracking algorithm is extension of the OAG algorithm and is described in
more detail in [Van Binsbergen et al., 2015]. The algorithm proceeds by running
the OAG algorithm and adding augmenting dependencies when cycles are encoun-
tered in the extended dependency graph. The augmenting dependencies are chosen
from all edges in the cycle that are not in the induced dependency graph, such that
one edge in the cycle is reversed and this edge does not lead to a cycle in the in-
duced dependency graph directly. As a result of this other cycles can be induced,
and the algorithm therefore recursively adds augmenting edges until a schedule is
found.

Picking the (correct) augmenting edges is a combinatorial problem, however,
and the algorithm may make wrong choices and end up in a situation where no
possible augmenting edges can be added anymore. That is where the backtracking
comes in; the algorithm backtracks one of the choices and picks another edge to
resolve that cycle. In the worst case the algorithm makes the wrong choices for
every edge, leading to exponential running time.

Experiments on the UHC and other AG projects however resulted in an inter-
esting observation: on all real-world AGs the algorithm never needs a backtracking
step and all its initial choices lead to a valid schedule. The algorithm therefore
works well in practice and has running time similar to the OAG algorithm, but does
not need any manual augmenting dependencies to be added to the source code!

3.4.2 SAT algorithm

The solution to the LOAG scheduling problem we finally adopt is the translation to
the Boolean satisfiability problem (SAT), which is the standard NP-complete prob-
lem [Cook, 1971]. Even though the worst case runtime of all known SAT-solving
algorithms is exponential in the input size, many SAT-solvers work very well in prac-
tice [Claessen et al., 2009]. By translating into the SAT problem we can therefore
use an efficient existing SAT-solver to solve our problem and even benefit from fu-
ture improvements in the SAT-community. In our implementation we use MiniSat3

[Eén and Sörensson, 2004].
To encode this problem in SAT we represent each edge in the dependency graphs

as a Boolean variable, with its value indicating the direction of the edge. For the
direct dependencies the value is already set, but for the rest of the variables the
SAT-solver may choose the direction of the edge. Ensuring cycle-freeness requires
us to encode transitivity with SAT-constraints, which in the straight-forward solution

3http://minisat.se

http://minisat.se

3.4. LINEARLY ORDERED AGS 61

leads to a number of extra constraints cubic in the number of variables. To avoid
that problem we make our graphs chordal [Dirac, 1961]. In a chordal graph every
cycle of size > 3 contains an edge between two non-adjacent nodes in the cycle.
In other words, if there exists a cycle in the graph, there must also exist a cycle of
at most three nodes. This allows us to encode cycle freeness much more efficiently
by only disallowing cycles of length three. Chordality has been used previously to
encode equality logic in SAT using undirected graphs [Bryant and Velev, 2002]; to
our knowledge this is the first application of chordality to express cycle-freeness of
directed graphs.

Apart from the fact that this translation into the SAT problem helps in efficiently
(in practice) solving the scheduling problem, there also is another benefit: it is
now possible to encode extra constraints on the resulting schedule. We show two
scheduling optimizations that are interesting from an attribute grammar point of
view, for which the optimal schedule can be found efficiently by expressing the
optimisation in the SAT problem.

3.4.3 Translation into SAT

To represent the scheduling problem as a Boolean formula we introduce a variable
for each edge, indicating the direction of the edge. The direct dependencies coming
from the source code are constants, but for the rest of the edges the SAT-solver can
decide on the direction. However, the encoding has been chosen in such way that
a valid assignment of the variables corresponds to a valid schedule.

Our algorithm has the following steps:

1. Construct a NDGN for each nonterminal N and add an edge between all pairs
of inherited and synthesized attributes

2. Construct a PDGp for each production p and add an edge for every direct
dependency

3. Make all graphs chordal

4. Introduce a SAT variable for each edge in any of the graphs including the
chords added in step 3. Variables of edges between attributes of the same
nonterminal must be shared between nonterminal dependency graphs and
production dependency graphs

5. Set the value of all variables corresponding to direct dependencies

6. Exclude all cycles of length three by adding constraints

62 CHAPTER 3. SCHEDULING

7. Optionally add extra constraints for optimizations

The first two steps have been explained in the previous sections. Step 3 is explained
below, step 4 is trivial, and step 5 and 6 follow from the explanation below. Finally,
step 7 is explained in Section 3.4.5.

Chordal graphs

A chordal graph is an undirected graph in which each cycle of length > 3 contains
a chord. A chord is an edge between two nodes in the cycle that are not adjacent.
As a consequence each cycle of length > 3 can be split up into two smaller cycles,
which implies that if a chordal graph contains a cycle it must also contain a cycle of
size three. Chordal graphs are therefore sometimes also referred to as triangulated
graphs.

In our case the graphs are directed, but we can still apply the same trick! Imag-
ine a graph with a cycle of length four: a → b → c → d → a. Because the graph
is chordal there must also be an edge between a and c (or b and d, but then the
following argument is similar). Regardless of the direction of the arrow between
a and c there always exists a cycle of length three as well: either a → b → c → a
or a → c → d → a. Hence, if we make our graph chordal by adding edges which
may have an arbitrary direction and explicitly exclude all cycles of length three, we
ensure that no cycles can exist at all.

Chordal graph construction

There are several algorithms for making a graph chordal. We use an algorithm
based on the following alternative definition of a chordal graph:

Definition 1. An undirected graph is chordal if and only if it has a perfect elimination
order. A perfect elimination order is an ordering v1, . . . , vn of the vertices of G such
that in the graph G[v1, . . . , vi], ∀i(1¶ i ¶ n), the vertex vi is simplicial. A vertex v is
called simplicial in a graph G if the neighbourhood of v forms a connected component
in G. The graph G[v1, . . . , vi] is the induced subgraph of G containing only the vertices
vi , . . . , vi and the edges between these vertices.

From this definition we can construct the following algorithm for making a
graph chordal:

1. While the graph still contains vertices:

(a) Select a vertex v from the graph

3.4. LINEARLY ORDERED AGS 63

(b) For every pair (a, b) of unconnected vertices in the neighbourhood of v:

i. Add the edge (a↔ b) to the graph

(c) Remove v, and all edges connected to v, from the graph.

One important open question in this algorithm is the order in which the vertices
should be chosen. In Section 3.4.4 we show the results for several heuristics that we
have implemented and tried on the UHC. We would like to remark that regardless of
the heuristic used, this approach always leads to much smaller SAT problems than
encoding transitivity in the SAT problem for ruling out cycles.

Finding the schedule

When the constructed Boolean formula is given to the SAT-solver, the result is either
that the formula is not satisfiable, meaning that no schedule has been found, of
satisfiable, meaning that there is a schedule. It is not hard to see that the formula is
satisfiable if and only if there exists a valid schedule for the given attribute grammar
definition, and in this thesis we therefore give no formal proof of this claim.

In the case where the formula is satisfiable, we obviously want to find the result.
From the SAT solver we can ask for the truth value of each variable in the solution.
When our algorithm keeps the connection between edges and variables we can then
complete our directed graph and trivially find the complete order for all attributes
from that. The constraints guarantee that this graph contains no cycles.

Shared edges

One important implementation detail is that of shared edges. As explained, the
nonterminal dependency graphs and the production dependency graphs share the
edges that define the order of the attributes. Because each edge is represented by
a variable in the SAT problem we can simply encode this by assigning the same
variable to the shared edges.

However, as we also make both graphs chordal, the edges added to make the
graphs chordal can also be shared. This is exactly what our implementation does,
such that the SAT problem is kept as small as possible. The implementation is
therefore slightly more complicated than explained in the previous sections.

3.4.4 Chordal graph heuristics

As explained in Section 3.4.3 we need to find an order in which to handle the
vertices such that the resulting SAT problem is as small as possible. In Table 3.1 we

64 CHAPTER 3. SCHEDULING

Order #Clauses #Vars Ratio
(| D |, | S |, | C |) 21,307,812 374,792 57.85
(| D |, | C |, | S |) 8,301,557 220,690 37.62
(| S |, | D |, | C |) 12,477,519 287,151 43.45
(| S |, | C |, | D |) 8,910,379 241,853 36.84
(| C |, | D |, | S |) 3,004,705 137,277 21.89
(| C |, | S |, | D |) 3,359,910 156,795 21.43
(| D | + | S |, | C |) 12,424,635 386,323 32.16
(| D |, | S | + | C |) 8,244,600 219,869 37.50
(| D | + | C |, | S |) 2,930,922 135,654 21.61
(| S |, | D | + | C |) 8,574,307 236,348 36.28
(| S | + | C |, | D |) 3,480,866 157,089 22.16
(| C |, | D | + | S |) 3,392,930 157,568 21.53
(| C | + | D | + | S |) 3,424,001 148,724 23.02

(3∗ | S | ∗(| D | + | C |) + (| D | ∗ | C |)2) 2,679,772 127,768 20.97

Table 3.1: Table showing the number of clauses and variables required for solving
the MainAG of the UHC, selecting the next vertex in the elimination order
based on different ways to compare neighbourhoods.

show the results of different heuristics for the MainAG of the UHC. In this table we
use three different sets: D is the set of direct dependencies (step 2, Section 3.4.3),
C is the set of edges that are added to make the graph chordal (step 3, Section
3.4.3) and S is the set of edge between all inherited and synthesized pairs (step 1,
Section 3.4.3). For each of the sets we take only the edges in the neighbourhood of
v for comparison.

3.4.5 Optimisations

Expressing the scheduling problem as a SAT problem and using an existing SAT-
solver can improve the running time of the scheduling, but that is not the only
advantage. In the SAT problem one can easily add extra constraints to further in-
fluence the resulting schedule. In this section we show two of such optimisations
that are useful from an attribute grammar perspective. These optimisations have
not been implemented in the release version of the UUAGC, but we have run pre-
liminary experiments to verify that they work as expected.

3.4. LINEARLY ORDERED AGS 65

Interacting with the solver

Instead of directly expressing all constraints in the initial SAT problem, we use a
different trick for implementing the two optimisations: interacting with the solver.
After the initial scheduling problem has been solved, we can ask for the truth value
of all variables to construct the schedule. MiniSat also keeps some state in memory
that allows us to add extra constraints to the problem and ask for a new solution.
In this way we can start with an initial solution and interact with the solver until
some optimum has been reached.

Minimising visits

The result of the static scheduling is a runtime evaluator that computes the values of
the attributes for a given abstract syntax tree. The total order for each nonterminal
defines in what order attributes should be computed, but in the implementation of
the evaluator we make use of a slightly bigger unit of computation: a visit.

Because invoking a visit at runtime may have a certain overhead, we would like
the number of visits to be as small as possible. In other words, in the total order on
the attributes we would like to minimise the number of places where a synthesized
attribute is followed by an inherited attribute, because that is the location where a
new visit needs to be performed.

It is theoretically impossible to minimise the total number of visits performed
for the full abstract syntax tree, because at compile-time we do not have a concrete
abstract syntax tree at hand and only know about the grammar. We therefore try to
minimise the maximum number of visits for any nonterminal, which is the number
of alternating pairs of inherited and synthesized attributes in the total order.

In our algorithm, we use efficient counting constraints, expressed in the SAT
solver using sorting networks [Codish and Zazon-Ivry, 2010]. This enables us to
count the number of true literals in a given set of literals and express constraints
about this number. A standard procedure for finding a solution for which the mini-
mal number of literals in such a set is true can be implemented on top of a SAT-solver
using a simple loop.

We use the following algorithm for minimising the maximal number of visits:

1. Construct the initial SAT problem and solve

2. Construct the set of all production rules P

3. Construct counting networks that count the number of visits V (p) for all pro-
duction rules p in P

66 CHAPTER 3. SCHEDULING

4. Count the number of visits for each production rule in the current solution;
let M be the maximum value

5. Repeat while M > 0:

(a) Add constraints that express that for all productions p in P: V (p)¶ M

(b) Construct a counting network that counts how many production rules p
have V (p) = M

(c) Compute a solution for which this number is minimised using the loop
described above

(d) Remove all p in P for which now V (p) = M from the set P

(e) Compute the new maximum value M of V (p) for all p left in P

The above algorithm features a complicated combination of counting networks;
one network for each production rule and one network for each corresponding out-
put of these networks. Still, the procedure finds optimal solutions quickly in prac-
tice, in times that are negligible and not practically measurable compared to the
time of generating the initial SAT-problem. The number of iterations for the min-
imisation loops has never been more than 5 in any of our problems.

The algorithm is guaranteed to find the global optimum. For our largest exam-
ple, the solution found had a total of 130 visits, which was 29 visits less in total
than the previously known optimum, found using backtracking heuristics.

One could criticise the usefulness of this particular optimisation for attribute
grammars. Indeed, details on how one should optimise the number of visits depend
on the kind of trees we are going to run the compiled code on. Our point is that we
can easily express variants of optimisations. For example, we can also minimise the
sum of all visits using a similar (but simpler) procedure to the one above. Again,
the running time of that procedure is short.

Eager attributes

Another optimisation is the ability to define eager attributes. Eager attributes are
attributes that should be computed as soon as possible, and they must be anno-
tated by the attribute grammar programmer as such. We would like our scheduling
algorithm then to schedule them as early as possible in the total order.

As an example, in a typical compiler there is an attribute containing the errors
that occur in compilation. When running the compiler one is typically first inter-
ested in knowing if there are any errors; if so they must be printed to the screen and
the compiler can stop its compilation. If there are no errors, then all other work

3.5. RUNTIME COMPARISON 67

that is not strictly necessary for the generation of errors can be done to complete
the compilation.

In order to schedule a given attribute as early as possible, we are going to par-
tition all attributes contained in the grammar into two sets E (for early) and L (for
late). The idea is that E contains all attributes that may be needed to be computed
before the eager attribute (i.e. there exist production rules which require this), and
L contains all attributes that we can definitely compute after knowing the eager at-
tribute (i.e. no production rule requires any attribute in L for computing the eager
attribute). We want to find a schedule for which the size of E is minimal.

To compute this, we introduce a SAT variable E(a) for every attribute a, that
expresses whether or not a is in E or not. We set E(a) to be true for the initial eager
attribute a. We go over the graphs for the nonterminals and production rules and
generate constraints that express that whenever a points to b and we have E(b),
then we also need E(a).

Finally, we use a counting network for all literals E(a) and ask for a solution
that minimises the number of literals in E.

We have run this algorithm on ever output attribute of the top-level nonterminal
of all our examples. For our largest grammar, the hardest output to compute took
1 second. So, while a harder optimisation than the previous one, it is doable in
practice.

3.4.6 Code generation

The code generation for this algorithm is the same as for the OAG algorithm (Sec-
tion 3.2.5), as the result of the LOAG algorithm is also a global order on the at-
tributes of each nonterminal. For the label and vals example this results in two
visits that can also be constructed by adding augmenting dependencies to the OAG
algorithm.

3.5 Runtime comparison

In order to give an indication of the differences in runtime for the scheduling algo-
rithms we have run them on several AG projects of which we could obtain the source
code. The Utrecht Haskell Compiler (UHC) [Dijkstra et al., 2009] is the first case
of which the source code consists of several attribute grammar definitions together
with Haskell code. The biggest attribute grammar in the UHC, called MainAG, con-
sists of 30 nonterminals, 134 productions, 1332 attributes (44.4 per nonterminal)
and 9766 dependencies and is the biggest attribute grammar we know of.

68 CHAPTER 3. SCHEDULING

Algorithm OAG K&W LOAG-bt LOAG-SAT
UHC MainAG - 33s 13s 9s
Asil Test - 1.8s 4.4s 3.4s
Asil ByteCode - 0.6s 29.4s 2.8s
Asil PrettyTree - 390ms 536ms 585ms
Asil InsertLabels - 314ms 440ms 452ms
UUAGC CodeGeneration - 348ms 580ms 382ms
Pigeonhole principle - 107ms 1970ms 191ms
Helium TS_Analyse 190ms 226ms 235ms 278ms

Table 3.2: Comparison of the four scheduling algorithms

The other test cases we have used for testing are the UUAGC itself, the Asil
[Middelkoop et al., 2012] tool which is a byte code instrumenter, the Helium com-
piler [Heeren et al., 2003] which is a Haskell compiler specifically intended for stu-
dents learning Haskell, and an encoding of the Pigeonhole principle. The Pigeon-
hole principle is a SAT formula which is unsolvable, but we removed one clause
such that there exists exactly one valid schedule, resulting in an artificial attribute
grammar that is hard to schedule.

In Table 3.2 we show the compilation times for the examples for the four differ-
ent algorithms. All times include parsing of the attribute grammar description and
code generation. In case of the SAT approach adding chords takes most time, while
the SAT-solver takes less than a second to find a solution in all cases.

3.6 Conclusion

In this chapter we have shown several classes of AGs with respect to finding an
evaluation order statically. We have illustrated the difficulties in scheduling and
shown several algorithms that statically find a schedule for the AGs in those classes.
Furthermore, we have illustrated how we generate runtime evaluators for some of
these classes, which are extended in later chapters to support incrementality. The
LOAG algorithm from Section 3.4 using SAT-solvers is what we finally use in the
remainder of this thesis, and to simplify matters we assume that all AGs fall in
the LOAG class. This is not technically true, but as we have not encountered AGs
outside of this class our methods are widely applicable.

4
Tree Transformations

The incremental evaluation of AGs as described in this thesis handles changes to the
input incrementally. However, in order for such an approach to work it is necessary
to know exactly in which way the input may change. We tackle this problem of
representing transformations on values in this chapter. We look at the problem
from a datatype-generic perspective [Gibbons, 2007], such that our description of
transformations is strongly-typed and applicable to a large class of data types.

Note that we are not exclusively interested in computing a difference between
two terms, as [Lempsink et al., 2009] did. Instead, we focus on the more general
notion of encoding transformations as they happen (as captured, for example, by
a graphical user interface such as a structure editor) and representing these trans-
formations in a way that minimises the duplication of data. Avoiding duplication
of data is not only useful for the efficient representation of changes, but essential
for the effectiveness of the incremental evaluation of AGs as explained later in this
thesis. The code from this chapter is available on Hackage1.

This chapter is organised as follows. We first illustrate the need for better repre-
sentations of transformations in Section 4.1. In Section 4.2 we illustrate our solution
with the guestbook example, and we extend our solution to a more complex solu-

1http://hackage.haskell.org/package/transformations

69

http://hackage.haskell.org/package/transformations

70 CHAPTER 4. TREE TRANSFORMATIONS

tion for the C] case in Section 4.3. For readers who are interested in the main story
line of this thesis, the above preliminary sections contain sufficient information for
understanding the subsequent chapters of this thesis.

We continue with a generic programming approach to the problem by intro-
ducing generic programming concepts in Section 4.4. In Section 4.5 we introduce
zippers and paths and we describe the generic encoding of the guestbook example
in Section 4.6. The generic programming approach is continued by extending it to
families of data types like the C] example in Section 4.7. Finally, in Section 4.8 we
wrap up with some discussion and conclusion.

4.1 Transformation operations

In this section we show a number of transformations that we want to express. We
use the following data type for representing example transformations on expres-
sions.

data Expr= Var String
| Const Int
| Neg Expr
| Add Expr Expr

An expression is either a named variable, an integer constant, the negation of an
expression, or the addition of two expressions. The following are sample expres-
sions.

expr1, expr2, expr3 :: Expr
expr1 = Add (Const 1) (Var "a")
expr2 = Add (Const 1) (Neg (Var "a"))
expr3 = Add (Var "a") (Const 1)

We use these sample expressions to illustrate the type of changes we like to repre-
sent.

Insertion An insertion can be seen as a transformation that extends a value with
one or more extra constructors. Consider the following transformation:

Var "a" Neg (Var "a")

The arrow “ ” is used to indicate a transformation, with the old term on the left and
the new term on the right. The right-hand side of this transformation can be seen as

4.1. TRANSFORMATION OPERATIONS 71

arising from completing the expression Neg with reusing the original expression
Var "a", where the underscore indicates a hole in an expression. Our example expr1
can be transformed into expr2 using such an insertion, which happens in the context
of the second subtree of the full expression.

Deletion A deletion removes part of an expression. For example, expr1 can be
seen as arising from the deletion of the Neg constructor in expr2. In reality, how-
ever, we see deletion as a form of replacement: expr1 arises by replacing the Neg x
expression by x in expr2. We do not consider the deletion of a full subtree as a valid
transformation because, in general, it results in ill-typed expressions. Instead, with
deletion we means the replacement of a subtree by a smaller subtree.

Swap Insertion and deletion are edit operations considered by general tree differ-
ence algorithms, such as that of [Lempsink et al., 2009]. Consider now the trans-
formation from expr1 to expr3, which has the following shape:

Add a b Add b a

It is possible to encode this transformation with insertion and deletion operations
alone. However, such an approach has two drawbacks. First, it is verbose, requir-
ing both a deletion and an insertion. Moreover, it does not adequately encode the
fact that the subexpressions a and b remain unchanged through the transforma-
tion and do re-appear in the result. This problem is particularly relevant when the
subexpressions being swapped are large, and the attributes that have already been
computed do not change due to the swap.

Rotation A rotation transformation involves rearranging the nesting structure of
a tree. A common example is reassociating binary operators:

Add a (Add b c) Add (Add a b) c

In rotations, we want to keep track of the fact that some subexpressions (in our
example, a, b, and c) remain unchanged and are just rearranged in their ancestors.
Although swap also falls under this definition of rotations, we mention it separately
because it is used as an example throughout this chapter.

Duplication Duplication is a transformation typically arising from a copy-paste
operation in an editor. For example:

72 CHAPTER 4. TREE TRANSFORMATIONS

Add a (Const 0) Add a a

In this transformation, the subexpression a has been duplicated. This is not the
same as just inserting a, as we want to remember that the inserted subexpression
is not new, but just a copy of something already existing. The representation of du-
plication is particularly interesting in the context of incremental evaluation, where
values computed over a may be preserved after a copy-paste operation due to the
information of the two subtrees being identical.

4.1.1 Localisation

A concept that is relevant to all types of transformation is that of localisation. Con-
sider the following transformation:

Neg (Neg (Neg (Neg (Neg (Neg (Neg (Const 1)))))))
 Neg (Neg (Neg (Neg (Neg (Neg (Neg (Const 2)))))))

A compact representation of this transformation should not mention the entire spine
of Neg constructors. Instead, changes must be represented in a local way focusing
on a part of the tree only, which in this case is only the Int value.

4.1.2 Diff is not enough

We argue here that the existing solutions are not sufficient for expressing the desired
sharing between the source and target of a transformation. The “standard” way of
tracking changes between values is to use a diff algorithm. The diff algorithm by
[Lempsink et al., 2009] is a type-safe, datatype-generic diff that may be used to
determine changes in terms: given a transformation t1 t2, diff t1 t2 returns an
edit script describing how to transform t1 into t2. An associated patch operation can
be used to apply an edit script to a term, obtaining a transformed term.

However, standard edit scripts only contain copy, insert, and delete operations.
While these suffice to describe every transformation, the resulting edit description
is often not faithful to the actual change that occurred. This is easily seen in a swap
transformation, which, in an edit script, is represented by deletion and insertion.
As an example, the edit script resulting from computing the difference between
Add (Var "a") (Var "b") and Add (Var "b") (Var "a") is the following.

Cpy Add $ Cpy Var $ Ins "b" $ Ins Var $
Cpy "a" $ Del Var $ Del "b" $ End

4.2. GUESTBOOK EXAMPLE 73

To apply the edit script a pre-order traversal of the source expression is performed
while the target expression is built in a pre-order way as well. We start with the
Add constructor which can be copied, as well as the Var constructor in the left child.
Now, the source expression contains the value "a" while the target has value "b",
and thus "b" is inserted. This completes the left child of the target, so for the
right child the Var constructor is inserted, after which the "a" of the source can be
copied. Now the Var and "b" values of the source that are not used are deleted and
the edit is complete.

There are multiple edit scripts that transform the source expression into this
target, but none of them keeps track of the fact that the inserted expressions are
not “new”, losing adequate sharing between transformations. We could extend ex-
isting diff algorithms with a swapping operation, but this is not enough to capture
rotation, or duplication. Trying to add new edit operations to capture each differ-
ent transformation we can think of is tiresome, and we have no guarantee that we
covered all possible transformations. As such, we instead try to take a more general
approach in describing transformations, being as abstract as possible as to what type
of transformations are allowed, but making sure that sharing of subexpressions is
made explicit, with minimal duplication of information.

4.2 Guestbook example

Before we explain the generic approach to this problem we illustrate the representa-
tion with the guestbook example. Remember that the guestbook is essentially a list
with a constructor for an empty guestbook (Empty), and two different constructors
for an entry (Arrive and Leave). As the guestbook has a list-like structure the type
of transformations is somewhat simpler than for most tree-structures, which makes
the representation easier to explain.

4.2.1 Paths

The first part of the representation enables us to represent locations in the tree. For
this we use their path from the root node with a data type named Path as follows.

data Path= End
| Arrive_tl Path
| Leave_tl Path

The End constructor indicates the end of the path, while the other two constructors
indicate that we are at an entry (Arrive or Leave) and take a step into the remainder

74 CHAPTER 4. TREE TRANSFORMATIONS

of the list, for which another part of the path is given. In essence this data type
encodes the index of the entry in the list to which the path points.

In this case the last two constructors might be combined into a single constructor.
As a path points to a node in a given tree, it is always known whether there is an
Arrive or Leave constructor at that position. In the generic setting explained later,
however, it is necessary that these are different and we therefore use this definition.

4.2.2 Guestbook values with references

We represent a change to the tree by a path describing the location of the root of
the change, called the subtree, and a new tree that is to be inserted in that location.
Instead of always replacing the subtree with a full new tree, we allow the new tree to
contain references to locations in the original tree, thus making it possible to reuse
multiple parts of the original tree. In this way an insertion of an entry Arrive "a"
into the guestbook can be modelled by a path p and a Arrive "a" (Ref p), indicating
that the value at location p should be replaced by the Arrive constructor with a child
"a" and as its tail the value that was originally located at p.

The representation of such trees with references for our guestbook is the follow-
ing.

data GuestbookR= EmptyR
| ArriveR Name GuestbookR
| LeaveR Name Double String GuestbookR
| Ref Path

The data type for trees with references is an extended version of the data type it
expresses paths into, with a Ref constructor added, which holds a reference to a part
of the tree that is to be reused.

At this point it is important to notice that paths are absolute and therefore rel-
ative to the root of the tree being edited. At first glance this may seem to lead to
extra overhead because a local change somewhere deep in the tree may thus include
multiple paths that share a long common prefix. In order to compactify the repre-
sentation of different paths with the same prefix we need to introduce some sort of
variable bindings, expressing the shared prefix, and pass around an environment in
all places where the paths are used, which highly complicates matters. For the incre-
mental attribute grammar evaluation machinery information about shared prefixes
does not lead to more efficient evaluation, and we thus only solve the problem of
representing changes as precisely as possible here.

4.2. GUESTBOOK EXAMPLE 75

Figure 4.1: Illustration of a tree transformation with the changed part of the tree
being shaded.

4.2.3 Trees with references

In Figure 4.1 we illustrate insertion, deletion and replacements of nodes. The out-
ermost triangle represents the full tree in which a transformation operation is per-
formed. The innermost triangle represents a subtree that will be reused: we call
this part R. In the left and right picture R represent the same subtree. The shaded
triangle represents the part of the tree that is changed. As the shaded triangle in the
left picture does not necessarily correspond to the shaded part in the right picture,
we call the left one S1 and the right one S2.

With this representation an insertion can be implemented by choosing S1 to be
R. This means that in the left picture there is no shaded part and the full subtree S1
is reused. In S2 the shaded part is the part which is inserted, of which R is a child.
In a similar way deletion can be modelled by choosing S2 to be R. In that case there
is no shaded part in the right picture and therefore all nodes in the shaded part in
the left picture are removed and the full changed subtree is replaced by the smaller
subtree R.

In general there can be multiple references; in other words there can be multiple
inner triangles in the picture. For instance, when representing a swap operation two
references are used. Furthermore, the references do not necessarily need to point
into the shaded part of the tree; a subtree from anywhere in the tree can be reused.

4.2.4 Full change

Using the paths and replacement values, we can represent a change by tupling those
as follows.

type Change= (Path, GuestbookR)

76 CHAPTER 4. TREE TRANSFORMATIONS

The first element of the pair indicates the location at which the change occurs. The
second element is the tree that is to be inserted at that location, which can contain
references which need to be replaced by the parts from the original tree they refer
to.

Finally, a transformation can consist of multiple Changes, and thus a full trans-
formation is represented as follows.

type Transformation= [Change]

Let us illustrate the use of these data types for the guestbook with two examples.

Insertion To insert an arrival entry at the beginning of the guestbook, like was
done in the introduction, we insert this element at the empty path (root of the tree)
as follows.

insert :: Transformation
insert= [(End, ArriveR "Magalhães" (Ref End))]

The inserted tree is the arrive constructor with as its tail a reference to the tree at
the path End, which is the root of the original tree. In other words, the full original
tree is the tail of the new tree, and therefore the result of this transformation is that
a new element has been inserted.

Deletion In a similar way we can represent a deletion from the guestbook. In
order to delete the fourth entry2 from the example guestbook (Figure 1.1) from the
introduction, we need to insert a tree which consists only of a reference to the entry
after the deleted one.

delete :: Transformation
delete= [(Leave_tl (Leave_tl (Arrive_tl End))

, Ref (Leave_tl (Leave_tl (Arrive_tl (Leave_tl End)))))]

4.3 C] example

The representation of the guestbook is not only simple because of the specific list-
like structure, but also because it only contains a single data type. All types in

2Which is the "LEAVE Swierstra" entry, as the entries are ordered from newest to oldest

4.3. C] EXAMPLE 77

data Stat | StatDecl decl :: Decl
| StatExpr expr :: Expr
| StatIf cond :: Expr

true :: Stat false :: Stat

data Expr | ExprConst const :: Const
| ExprOper op :: String

left :: Expr right :: Expr

Figure 4.2: Some of the data type definitions of the C] compiler shown again.

the representation are therefore the same. In general however this is not the case,
and the generic approach has work for families of mutually recursive data types
like the C] data types (Figure 2.2). In this section we explain how to implement
this technique in a type-safe way illustrated with some of the data types of the C]

compiler implementation.

4.3.1 Paths

For the paths we need to carry type information on the source and target of the
path as we would like to represent paths through the different types of nodes in the
AST within a single Path data type. We therefore change the path to a Generalized
Algebraic Data Type [Cheney and Hinze, 2003, Xi et al., 2003], such that Path f t
represents a path in a tree of type f (from) pointing to a node of type t (to). For a
full path the f parameter equals the type of the root of the AST.

The constructors of this path data type are the End constructor for the empty
path and a constructor for each nonterminal child for each production. For example,
for the CSharp types from Figure 4.2 this results in the following path data type.

data Path f t where
End :: Path f f
StatDecl_decl :: Path Decl t→ Path Stat t
StatExpr_expr :: Path Expr t→ Path Stat t
StatIf_cond :: Path Expr t→ Path Stat t
StatIf_true :: Path Stat t→ Path Stat t
StatIf_false :: Path Stat t→ Path Stat t
ExprConst_const :: Path Const t→ Path Expr t
ExprOper_left :: Path Expr t→ Path Expr t

78 CHAPTER 4. TREE TRANSFORMATIONS

ExprOper_right :: Path Expr t→ Path Expr t
. . .

For each of the constructors the argument is a path with f set to the type of the
corresponding child, and it is polymorphic in t. As a return type the parameter f
is the type of the constructor itself, and t is the same as the t of its child because
that is the type of the node the path points to. For the End constructor these two
parameters must be equal.

Note that the type parameter f does not only give extra information on the type
level, but is also prevents some “wrong” types to be constructed. For example, the
path StatIf_cond (StatIf_cond End) is not type correct because the cond child of the
StatIf constructor has type Expr, and a StatIf can therefore never appear as first
child of StatIf .

However, it is still possible to construct paths that are invalid, for instance by
using the StatIf_true at a place where there is a StatDecl constructor. In order to
prevent such paths to be constructed we need dependent types, because the exact
set of valid paths for a given tree depends on that tree. As this is not easy to capture
at the type level in Haskell we allow such possible types to be representable and
rely on the generation algorithm not to construct incorrect paths.

4.3.2 Trees with references

The representation of the trees with references for multiple data types is similar
to the single data type case. For each nonterminal we have a corresponding type
of tree with references, and for each production C of that nonterminal we have a
constructor CR. Furthermore, we have a Ref constructor for representing a reference
containing a path.

Because the paths have two type parameters in the representation for multiple
data types, we need to set the value of these type parameters in the Ref constructor
where the path is an argument. The type of the second parameter t is set to the non-
terminal for which this data type is generated, as the path should point to a node
of that same type in order for it to be used in that position. The f parameter should
be the type of the top level node of the tree, which we add as a type level argu-
ment top to the reference type to be instantiated at the invocation of the evaluation
machinery. For the Stat nonterminal the data type is therefore the following.

data StatR top
= Stat_Ref (Path top Stat)
| StatStatDeclR (DeclR top)

4.3. C] EXAMPLE 79

| StatStatExprR (ExprR top)
| StatStatIfR (ExprR top) (StatR top) (StatR top)

. . .

The other constructors and other types are generated in the same way from their
original counterparts by postfixing the names with R, adding a Ref constructor and
propagating the top type.

4.3.3 Full change

Using the paths and trees with references, we can represent a change by a pair of
those values as before. However, as the type of the replacement depends on the type
of the node that the path points to, we can not directly specify this as a pair. Instead,
we use a type family (or type level function) that maps the type a (for example Stat)
to the corresponding type of trees with references (for example StatR).

type family ReplType a top :: ∗
type instance ReplType Stat top= StatR top
type instance ReplType Expr top= ExprR top
. . .

Using this type we can represent changes, which are also parametrized over the
type of the top level node. We use a GADT to hide the type of the node at which
the change takes place.

data Change top where
Change :: Path top t→ ReplType t top→ Change top

Finally, a full transformation is again a list of such changes, parametrized over the
type of the top level node.

type Transformation top= [Change top]

Note that different elements in this list can insert nodes of different types.

4.3.4 List support

The representation for changes we have described in the previous sections works
for all regular data types including common types such as lists. In a typical attribute
grammar there are many different lists, and generating paths and trees with refer-
ences for each of them works as expected. This does however lead to redundant

80 CHAPTER 4. TREE TRANSFORMATIONS

code as the generated data types for these lists with references are isomorphic as
well as paths over them. A similar problem appears with other common container
types likes Maybe.

To avoid redundancy we adopt UUAGC’s special support for lists and extend it
to trees with references. We add the following two generic constructors to the Path
data type.

data Path f t where
PathL_hd :: (Path a t)→ Path [a] t
PathL_tl :: (Path [a] t)→ Path [a] t

. . .

The general representation of lists with references, with the parameter a instan-
tiated to the type of the elements of the list and ar to the type of the trees with
references of the elements of the list, is the following.

data ListR a ar top
= List_Ref (Path top [a])
| ListConsR ar (ListR a ar top)
| ListNilR

Note that the pattern used here for the type parameter a can be used for other data
types with type parameters as well. For concrete lists we define a convenient type
alias.

type StatLR top= ListR Stat StatR top

Although this type alias is not strictly necessary, it makes some code simpler as for
each type we now have a corresponding type of trees with references.

This concludes the first part of this chapter, in which the representation of tree
transformations as used in the rest of this thesis is explained. The given approach
is based on extra data types being generated for representing paths and trees with
references. The rest of this chapter describes an approach based on generic pro-
gramming techniques for representing such data types generically for all families of
mutually-recursive data types.

4.4 Generic programming for regular functors

To tackle the problem of representing transformations generically, we first intro-
duce the generic programming library that we use for our solution. As we will see

4.4. GENERIC PROGRAMMING FOR REGULAR FUNCTORS 81

in the coming sections, our solution revolves around annotating recursive positions
in data types. As such, a library with an explicit encoding of recursion (for example
with a fixed-point view [Holdermans et al., 2006] on data) suits us best. We can
either pick regular [Van Noort et al., 2008], a library which supports only regu-
lar data types, or multirec [Rodriguez Yakushev et al., 2009], a generalisation of
regular that supports mutually-recursive families of data types. For presentation
purposes, we use regular, as it is easier to understand our solutions in the single
data type case. We have also written an implementation using multirec, which
we describe in Section 4.7.

This section provides only a brief introduction to regular for educational rea-
sons. For more details, the reader is referred to [Van Noort et al., 2008].

4.4.1 Representation

Data types are encoded in regular using the following five representation types:

data U r= U
data I r= I r
data K a r= K a
data (f :+: g) r= L (f r) | R (g r)
data (f :×: g) r= f r :×: g r

Unit, encoded by U, is used for constructors without arguments. Recursive posi-
tions, encoded by I, denote occurrences of the data type being defined. Constants,
encoded by K, are used for all other constructor arguments. Sums, encoded by
:+:, are used to denote choice between constructors, while products, encoded by
:×:, are used for constructors with multiple arguments. The regular library also
contains representation types for dealing with data type meta-information such as
constructor and selector names, but we elide those from our presentation as they
are not necessary.

As an example, the Guestbook data type is encoded in regular as follows:

type GBPF = U
:+: (K Name :×: I)
:+: (K Name :×: K Double :×: K String :×: I)

Note that GBPF (of kind ∗ → ∗) encodes the pattern functor of Guestbook, also known
as its open version. To obtain Guestbook, we need to “close” GBPF, replacing the
recursive positions under I with GBPF again. This can be done using a type-level
fixed-point operator:

82 CHAPTER 4. TREE TRANSFORMATIONS

data µ f = In (f (µ f))

Now, µGBPF is a data type that is isomorphic to Guestbook.

4.4.2 Functoriality of the representation types

The regular library encodes data types as functors; the recursive positions are
abstracted into a parameter r. As such, we can provide Functor instances for the
representation types. These are unsurprising, with the action being transported
across sums and products, ignored in units and constants, and applied at the recur-
sive positions:

instance Functor U where
fmap U = U

instance Functor (K a)where
fmap (K x) = K x

instance Functor I where
fmap f (I r) = I (f r)

instance (Functor f , Functor g)⇒ Functor (f :+: g)where
fmap f (L x) = L (fmap f x)
fmap f (R x) = R (fmap f x)

instance (Functor f , Functor g)⇒ Functor (f :×: g)where
fmap f (x :×: y) = fmap f x :×: fmap f y

This functoriality is used to define catamorphisms over the representation types.

4.4.3 Embedding user-defined types

To provide a convenient interface for generic functions, regular uses a type class
to aggregate generic representations of user data types. This class defines how to
represent each data type and how to convert to and from its representation:

class Regular a where
type PF a :: ∗ → ∗
from :: a→ PF a a
to :: PF a a→ a

The type family PF encodes the pattern functor of the data type being represented.
The conversion functions from and to do not operate on “fully generic” represen-
tations of type µ (PF a). Instead, from and to operate on representations that are

4.5. ZIPPERS AND PATHS 83

generic on the top level, and all recursive positions contain values of the original
data type a. This choice enables inlining optimizations and thus leads to more effi-
cient code [Magalhães, 2013].

We can now complete our encoding of Guestbook in regular:

type instance PF Guestbook= GBPF

instance Regular Guestbook where
from Empty = L U
from (Arrive n t) = R (L (K n :×: I t))
from (Leave n d s t) = R (R (K n :×: K d :×: K s :×: I t))
to (L U) = Empty
to (R (L (K n :×: I t))) = Arrive n t
to (R (R (K n :×: K d :×: K s :×: I t))) = Leave n d s t

Instances of the Regular class are tedious to write by hand; fortunately, the regular
library includes Template Haskell code to automatically generate these instances for
user data types.

4.4.4 Generic functions

We can now define generic functions by giving a case for each representation type.
We use a type class for this purpose, followed by five instances. As an example
we show a generic function that lists all the immediate children of a given term in
Figure 4.3.

The function gchildren operates on generic representations. We also define the
function children which operates directly on user data types, by first converting
them to generic representations:

children :: (Regular a, Children (PF a))⇒ a→ [a]
children= gchildren ◦ from

The to function is not used here because from leaves the recursive positions un-
changed and the children are thus already of type a.

4.5 Zippers and paths

The zipper is a data structure used to represent traversals in a term, which we use to
represent paths. It is a type-indexed data type [Hinze et al., 2002]: every algebraic
data type induces a zipper, generically. We provide a brief introduction to zippers

84 CHAPTER 4. TREE TRANSFORMATIONS

class Children f where
gchildren :: f r→ [r]

instance Children U where
gchildren = []

instance Children I where
gchildren (I x) = [x]

instance Children (K a)where
gchildren = []

instance (Children f , Children g)
⇒ Children (f :+: g)where

gchildren (L x) = gchildren x
gchildren (R x) = gchildren x

instance (Children f , Children g)
⇒ Children (f :×: g)where

gchildren (x :×: y) = gchildren x++ gchildren y

Figure 4.3: Generic function for retrieving all children

4.5. ZIPPERS AND PATHS 85

in this section because they form a key part of our solution. A detailed description,
however, is out of the scope of this thesis; [Rodriguez Yakushev et al., 2009], for
example, describe a zipper for families of data types.

For now we focus on a zipper for regular functors. The zipper encodes a position
of focus on a value, together with the surrounding context. These two elements are
stored in the Loc data type:

data Loc a where
Loc :: (Regular a)⇒ a→ [Ctx (PF a) a]→ Loc a

A location is the point currently in focus in the zipper (of type a), and the path to the
focal point. This path is stored as a stack of one-hole contexts. The context is given
by the derivative of the pattern functor representing the data type [McBride, 2001].
This type-indexed data type is encoded in regular as a data family, indexed over
the five representation types:

data family Ctx (f :: ∗ → ∗) :: ∗ → ∗
data instance Ctx U r
data instance Ctx (K a) r
data instance Ctx I r= CId
data instance Ctx (f :+: g) r= CL (Ctx f r)

| CR (Ctx g r)
data instance Ctx (f :×: g) r= C1 (Ctx f r) (g r)

| C2 (f r) (Ctx g r)

Units and constants contain no recursive positions and as such have an empty con-
text. The CId constructor signals a recursive position. Sums can either have a con-
text on the left (CL) or on the right (CR). For products, we can choose to traverse
the first argument, keeping the second argument intact (C1), or to do the opposite
(C2).

Zipper operations, such as navigation functions, can be defined over the type
of contexts. However, we are only interested in the type of contexts to encode
paths in data structures and ignore other useful applications like structure navi-
gation. A context instantiated with units for the recursive positions (r set to ())
effectively encodes a direction of navigation on a data structure to one of its chil-
dren [Gibbons, 2013]. Paths on a data type are then a list of such directions on the
corresponding pattern functor:

type Dir f = Ctx f ()
type Path a= [Dir (PF a)]

86 CHAPTER 4. TREE TRANSFORMATIONS

4.6 Generic representation of transformations

Given the representation for our examples and the encoding of data types in the
regular library as well as the zippers, this section shows how to represent trans-
formations generically.

4.6.1 Representation

The first part of the representation of transformations is the notion of paths in a
tree. We represent paths using a zipper context as explained in Section 4.5. To
represent trees with references we extend the pattern functor of a type a to allow
for references at recursive positions:

data WithRef a b= InR (PF a b)
| Ref (Path a)

This representation resembles the meta-variable extension for generic rewriting of
[Van Noort et al., 2008], the difference being that we extend with Path instead of
a meta-variable. The type µ (WithRef a) is isomorphic to the type a extended with
a Ref constructor and thus represents a full tree possibly containing multiple refer-
ences.

A transformation is then a list of localised insertions of trees with references:

type Transformation a= [(Path a,µ (WithRef a))]

The Path describes the location of the insertion. Note that this Path describes a
path in the intermediate state of the tree, after insertions earlier in the list have
been applied. The Paths in the Refs, however, describe a path in the original tree.

The actual representation of the insertion of the Arrive constructor as shown in
Section 4.2.4 is as follows:

addArrive :: Transformation Guestbook
addArrive=
[([], In (InR (R (L (K "Magalhães" :×: I (In (Ref [])))))))]

As we have shown in Section 4.4.3, the value Arrive n t is represented as R (L (K n :×:
I t)). In the addArrive transformation these constructors are therefore used to build
a value representing Arrive with a reference.

4.6. GENERIC REPRESENTATION OF TRANSFORMATIONS 87

4.6.2 Applying transformations

To apply a transformation, the original tree is taken as a starting value, and the
localised insertions are performed one by one to produce a resulting tree:

apply :: Editable a⇒ Transformation a→ a→Maybe a
apply e t= foldM (λa (p, c)→mapP (flip lookupRefs c) p a) t e

The inserted value is constructed using function lookupRefs, which will be discussed
shortly. The function mapP takes care of inserting the value at the correct position,
as indicated by its path argument. The class constraint Editable is used as an alias
for all necessary instances (for example Regular).

Resolving references We resolve references from a tree by replacing them with
values that we look up from another tree:

lookupRefs :: Editable a⇒ a→ µ (WithRef a)→Maybe a
lookupRefs r (In (InR a)) = fmap to (fmapM (lookupRefs r) a)
lookupRefs r (In (Ref p)) = extract p r

This function simply recurses over the tree and uses extract to find the part of the
tree that is to be reused.

Extracting children The extract function takes a path and the original tree and
returns the subtree at that location. It uses the generic function gextract, which
extracts a child given a Direction:

extract :: (Editable a, Monad m)⇒ Path a→ a→m a
extract [] = return
extract (p : ps) = gextract (extract ps) p ◦ from

class Extract f where
gextract :: Monad m⇒ (a→m a)→ Dir f → f a→m a

The instances of Extract are unsurprising and are therefore not shown here.

Indexed mapping To update the tree in apply we use a map function that restricts
its application to a specific part of the tree:

mapP :: (MapP (PF a), Monad m, Regular a)⇒
(a→m a)→ Path a→ a→m a

88 CHAPTER 4. TREE TRANSFORMATIONS

mapP f [] = f
mapP f (p : ps) = liftM to ◦ gmapP (mapP f ps) p ◦ from

class MapP f where
gmapP :: Monad m⇒ (b→m b)→ Dir f → f b→m (f b)

The instances of MapP pattern match simultaneously on the path and on the tree
such that the given function is only applied at the recursive position to which the
path points. Note that the recursion is solved in mapP such that gmapP takes a Dir
as argument which describes a single “step” of the full path. The instance for the
:×: is the following, the other instances are similar.

instance (MapP f , MapP g)⇒MapP (f :×: g)where
gmapP f (C1 p) (x :×: y) = liftM2 (:×:) (gmapP f p x) (return y)
gmapP f (C2 p) (x :×: y) = liftM2 (:×:) (return x) (gmapP f p y)

4.6.3 Generic diff

We can now automatically generate a transformation from one tree into another (a
diff operation). This diff :: a → a → Transformation a should obey the following
law:

∀ a, b. apply (diff a b) a≡ Just b

For any given a and b there are many different ways to transform a into b. For
example, b can be inserted directly at the top level, completely replacing a; this is
a valid transformation, albeit unsatisfactory since all sharing is lost.

In this section we describe a diff function that uses maximal sharing, meaning
that only values that are not present in a are inserted into b. The algorithm recur-
sively builds up a set of insertions that transform a into b. As the diff function is
relatively large, we present it in a step-wise way, “uncovering” parts of its definition
as we describe each subcomponent.

Note that the algorithm we describe is not necessarily the best possible in terms
of efficiency or usability. The main goal of this section is to illustrate how such
an algorithm can be constructed, and to provide an example of how to use our
representation of transformations.

Overview The algorithm works in a top-down way by traversing the origin and
target trees from the root towards the children. At each node, the best set of inser-
tions is chosen based on whether the current node matches the target tree, whether

4.6. GENERIC REPRESENTATION OF TRANSFORMATIONS 89

parts of the original tree can be reused, and based on the insertions for the children.
We now describe each subcomponent of the algorithm.

Existing children To maximise sharing, existing parts of the tree should be used
whenever possible. The following function gathers all subtrees together with their
corresponding locations in the tree:

childPaths :: (Regular a, Children (PF a))⇒ a→ [(a, Path a)]
childPaths a= (a, []) : [(r, n : p) | (c, n)← children (from a)

, (r, p)← childPaths c]

In the diff function we gather all these subtrees with paths in a list for the original
tree:

diff ::∀ a. Editable a⇒ a→ a→ Transformation a
diff a b= . . . where

cps :: [(a, Path)]
cps= childPaths a

Base cases The recursive function that constructs the insertions is called build.
It takes three parameters: a Bool indicating whether the current tree has been in-
serted, the current tree a′, and the target tree b′. The base cases are implemented
as follows:

diff a b= build False a b where
. . .
build :: Bool→ a→ a→ Transformation a
build False a′ b′ | a′ ≡ b′ = []
build ins a′ b′ = case lookup b′ cps of

Just p → [([], In (Ref p))]
Nothing→ . . .

The trivial base case is when a′ and b′ are equal, and a′ has not just been inserted.
In case a′ has been inserted, which can happen when the parent of a′ did not exist
in the original tree, we continue the search for reuse.

The second base case is when b′ is present in the list of subtrees of a; in that
case, we simply build a Ref containing the path to that subtree.

90 CHAPTER 4. TREE TRANSFORMATIONS

Shallow equality In our quest for reuse, we need to be able to check whether two
trees are equal at least in their first constructor. For this we use shallow equality:

class SEq f where
shallowEq :: f a→ f a→ Bool

The instances of this class are standard, except for the case of the recursive position
where we always return True.

In case the roots of two trees are equal, they can be left unchanged and we
can continue trying to unify their children. This is implemented in the construct
function:

build ins a′ b′ = . . . where
construct :: Bool→ a→Maybe (Transformation a)
construct ins′ c=

if shallowEq (from c) (from b′)
then Just ◦ concat ◦ updateChildPaths $

zipWith (build ins′) (children c) (children b′)
else Nothing

This function returns a transformation containing the edits for the children, based
on some current tree c. The function updateChildPaths extends the Paths for all edits
with the current child indices.

Reusing parts of the original tree In case no subtree of the original tree can be
directly reused as a replacement for the full subtree that is being constructed, we
try to reuse only the top part of an existing subtree. Using the construct function,
we recursively create a list of insertions that transforms this existing subtree into
the target subtree:

build ins a′ b′ = . . . where
. . .
reuses :: Maybe (Transformation a)
reuses= foldl best Nothing [addRef p (construct False x)

| (x, p)← childPaths]
where addRef p= fmap (([], In (Ref p)) :)

Since there might be several valid possibilities, we use a function best to pick the
“best” transformation. The definition of what the best transformation is varies from
application to application; in our implementation, we have chosen to return the
transformation with the fewest insertions.

4.6. GENERIC REPRESENTATION OF TRANSFORMATIONS 91

Insertion When no existing parts of the tree can be reused, we are forced to insert.
This insertion is again a tree with references, and we thus recursively continue
constructing insertions that reuse existing parts:

build ins a′ b′ = . . . where
. . .
insert :: Transformation a
insert= ([], r′) : e′ where

Just r = construct True b′

(r′, e′) = partialApply (withRef b′) r

Function withRef lifts a regular tree to a tree with references (never introducing the
Ref constructor). As insertion can never fail we do not return a Maybe here.

Initially, an insertion inserts the full target subtree. However, in order to max-
imise sharing, we recursively try to replace parts of this target subtree by parts com-
ing from the original tree, using references. To make the inserted value as small as
possible, we directly apply these insertions to the inserted tree using partialApply,
thereby replacing parts of the inserted tree by references.

Completing the diff Finally, we combine the previous definitions to construct the
return value for the diff. The preferred return value is the case where a value is
reused, and only if no values can be reused is the insertion returned:

diff a b= build False a b where
. . .
build ins a′ b′ =

case lookup b′ cps of
. . .

Nothing→maybe insert id uses where
uses :: Maybe (Transformation a)
uses= if ins then reuses <|> construct ins a′

else reuses ‘best‘ construct ins a′

We use the Swierstra dike [Löh and Magalhães, 2013] operator<|> as a left-biased
choice for Maybe values.

Efficiency The diff algorithm as presented in this section has an exponential run-
ning time, which is not very useful in practice. However, because the arguments to
build are always subtrees of a or b memoization can be used to store the results of

92 CHAPTER 4. TREE TRANSFORMATIONS

build for repeated calls. If a and b both have at most n nodes (and thus n subtrees),
then the running time of the algorithm with memoization becomes O

�

n3
�

. We have
implemented the memoized variant of diff : it can be found in the companion Hack-
age package.

4.6.4 Improving the interface

A problem with the generic representation is that it is not convenient for manual
use. The representation contains many constructors, and especially when the data
type that is represented has many constructors, the number of L and R parameters
is significant. In order to solve this problem we can make use of pattern synonyms,
which give the possibility to name a more complex pattern, by creating an alias for
it. These patterns can be automatically be generated by Template Haskell just as
other instances, making the whole internal representation opaque to the user.

4.7 Family of data types

We have presented our approach using the regular library for generic program-
ming. However, this imposes the significant restriction that we can only represent
single data types like the guestbook examples. We have also developed a solution
using the multirec library for generic programming, which allows us to support
families of mutually recursive data types like the C] example. In this section we
describe some of the modifications required for representing transformations over
families of data types.

4.7.1 Representation

In multirec, the basic unit of generic representation is the family. We represent
families as a type variable f :: ∗ → ∗. Families are indexed, and each index is one
data type in the family. We represent indices using the type variable ι :: ∗.

For example, for the C] data types the family is defined as follows.

data AST :: ∗ → ∗where
IClass :: AST Class
IMember :: AST Member
IStat :: AST Stat

. . .

4.7. FAMILY OF DATA TYPES 93

Each constructor of this data type, for instance IClass, is the index in the family AST.
These indices are used to establish the connection between the term level and the
type level.

The representation types in the multirec library are similar to the ones in
regular, with some extra parameters. Their definition is as follows.

data U (r :: ∗ → ∗) ι = U
data I κ (r :: ∗ → ∗) ι = I {unI :: r κ}
data K a (r :: ∗ → ∗) ι = K {unK :: a}
data (f :+: g) (r :: ∗ → ∗) ι = L (f r ι) | R (g r ι)
data (f :×: g) (r :: ∗ → ∗) ι = f r ι :×: g r ι

In the actual multirec library there are a few more representation types that we
do not show here. For example, there is special support for container types like lists.

There are several differences to the regular case. All types are parametrized
over the type index ι of the data type they represent. Furthermore, the parameter
r is applied at the recursive position and is used for representing the resulting type
of recursive functions, which may depend on the type of the children.

The I constructor has an additional parameter κ, which is the type index of the
child. Note that this is essential as the child can have a different type than the
parent node, which means that ι and κ can be different. For convenience later the
I and K constructors are now written using record syntax for easy unwrapping.

An additional representation type is the following.

data (f Â ι) (r :: ∗ → ∗) κwhere
Tag :: f r ι→ (f Â ι) r ι

The Tag constructor fixes the type index to indicate to which type a constructor
belongs to.

As with the regular case, there is a type family PF that encodes the pattern
functor for the data type being represented. The implementation is similar to that
of the regular case and we only show a small part of the pattern functor for the
C] compiler here.

type CSharpPF = (I Decl
:+: I Expr
:+: (I Expr :×: I Stat :×: I Stat)
. . .

)Â Stat
:+:

94 CHAPTER 4. TREE TRANSFORMATIONS

(I Const
:+: K String
:+: (K String :×: I Expr :×: I Expr)
. . .

)Â Expr
. . .

The first three cases are for the StatDecl, StatExpr and StatIf constructors, and the
other three cases for the ExprConst, ExprVar and ExprOper constructors. The cases
for all other constructors are similar.

Note that because of the extra type parameters the kind of the pattern functor
is the following.

type family PF (φ :: ∗ → ∗) :: (∗ → ∗)→ ∗→ ∗

The argument φ is the type family (AST in our case), then the ∗ → ∗ parameter
is the parameter r, and finally the last parameter is ι, the type index. We thus
instantiate this as follows.

type instance PF AST = CSharpPF

Finally an instance of the following type class is used to convert from and to this
generic representation.

class Fam φ where
from ::φ ι→ ι → PF φ I0 ι
to ::φ ι→ PF φ I0 ι→ ι

The type I0 is a simple type level identity wrapper. We do not show the instance
Fam AST here as it is similar to the regular case, with the addition of the first
parameter which guides the types. As with the regular library, there is a Tem-
plate Haskell implementation that generates the pattern functor and the necessary
instances.

4.7.2 Generic functions

Figure 4.4 shows the implementation of the shallowEq function for a family of mu-
tually recursive data types. The r parameter is not used here as we never use the
elements at the recursive positions.

At first glance it may appear as if the φ ι parameter is superfluous, as it is never
used in a pattern match. It is however needed to fix the type in the recursive calls
to shallowEq.

4.7. FAMILY OF DATA TYPES 95

class SEq φ (f :: (∗ → ∗)→ ∗→ ∗)where
shallowEq ::φ ι→ f r ι→ f r ι→ Bool

instance SEq φ (I κ)where
shallowEq = True

instance SEq φ U where
shallowEq = True

instance Eq a⇒ SEq φ (K a)where
shallowEq p (K a) (K b) = a≡ b

instance (SEq φ f , SEq φ g)⇒ SEq φ (f :+: g)where
shallowEq p (L a) (L b) = shallowEq p a b
shallowEq p (R a) (R b) = shallowEq p a b
shallowEq = False

instance (SEq φ f , SEq φ g)⇒ SEq φ (f :×: g)where
shallowEq p (a :×: b) (c :×: d) = shallowEq p a c ∧ shallowEq p b d

instance SEq φ f ⇒ SEq φ (f Â ι)where
shallowEq p (Tag a) (Tag b) = shallowEq p a b

Figure 4.4: Generic function for checking shallow equality

96 CHAPTER 4. TREE TRANSFORMATIONS

4.7.3 Zippers and paths

The zipper for multirec is a straightforward extension of the zipper for regular.
The data types in the Ctx data family take two extra parameters, following the
pattern of the representation types. In the regular implementation the Loc con-
tained a list of such Ctx values, each describing a single “step” in the path. In the
multirec case these values need to be indexed over their type using the following
representation.

data Ctxs :: (∗ → ∗)→ ∗→ (∗ → ∗)→ ∗→ ∗where
Empty :: Ctxs φ a r a
Push ::φ a→ Ctx (PF φ) a r ι→ Ctxs φ b r a→ Ctxs φ b r ι

Note that this essentially encodes a list, but with a type index as extra piece of
information for each element in the list.

Finally, the Loc type representing the value currently in focus together with the
list containing the contexts is represented as follows.

data Loc :: (∗ → ∗)→ (∗ → ∗)→ ∗→ ∗where
Loc :: (Fam φ, Zipper φ (PF φ))⇒

φ ι→ r ι→ Ctxs φ ι r a→ Loc φ r a

4.7.4 Generic representation of transformations

To encode trees with references generically in multirec we use a data type similar
to that in the regular case.

data WithRef φ top a= InR (PF φ (WithRef φ top) a)
| Ref (Path φ a top)

Apart from the extra type parameters, there is another difference here. Instead of
using the µ · operator to fix the recursive positions in later stage, we directly fix the
recursion in the InR constructor by using WithRef for the recursive argument. The
reason for this change is that the order of the type parameters matters for defining
µ ·, and using it here introduces unnecessary difficulties.

Finally a full transformation is again a list of localised insertions consisting of the
location and the replacement value. Again we need a type index and we therefore
define yet another data type for representing a single insert.

type Transformation φ top= [Insert φ top top]

4.7. FAMILY OF DATA TYPES 97

data Insert φ top ι where
Insert ::φ t→ Path φ t ι→WithRef φ top t→ Insert φ top ι

This concludes the representation of tree transformations in multirec, on which
the rest of the work in this thesis can be based. The type indices ensure that the
representation is strongly typed. It is however, as explained earlier, still possible to
represent invalid paths but our diff and other library functions never do so.

Apply and diff We do not discuss the implementations of the apply, diff and re-
lated functions as their implementation is in essence similar to those of the regular
case. However, the type indices that need to be passed around make the code much
harder to read and obfuscate the function types with many polymorphic parameters.

Let us now look at the types of apply and diff . The ι argument is simply the
type of the top level node. For intermediate nodes the type indices are stored in the
Insert constructor.

apply ::∀ φ ι. Editable φ⇒
φ ι→ ι→ Transformation φ ι→Maybe ι

diff ::∀ φ ι. Editable φ⇒
φ ι→ ι→ ι→ Transformation φ ι

As with the regular code we have the following property.

∀ p a b. apply p a (diff p a b)≡ Just b

In other words, for every two values a and b of the same type in the family, of
which p is the index, we have that if we compute the diff between them and apply
this transformation to a, we get back b. Furthermore, our code ensures that the
transformation resulting from diff uses as much sharing as possible.

Child lookup and memoization One particular implementation difficulty where
work is involved for the multirec case, is the list of children that could be reused
and the implementation of the memoization. Both contain a table with parts of the
subtree. However, in the multirec case different subtrees can have a different
type, and therefore it is not possible to directly construct a list of all such values.

The solution is to maintain a separate list for each of the types in the family.
We use type classes to create a heterogeneous list storing those subtrees. In order
to do a lookup the type classes guide the usage of the right list. Another possible
solution is to use a list of Dynamics in which the type is part of the lookup key; such
an approach is simpler but less efficient as runtime type comparisons are necessary.

98 CHAPTER 4. TREE TRANSFORMATIONS

4.8 Discussion and conclusion

In this chapter we have highlighted the importance of a good representation of
transformations. We have shown some representations of transformations for the
running examples and have given implementations for computations using this rep-
resentation. We now review related work and discuss some shortcomings of our
approaches, together with possible directions for future work.

4.8.1 Related work

The most closely related work to ours is that of [Lempsink et al., 2009]. They de-
scribe how to define a generic, type-safe diff algorithm that operates on families
of data types. Their notion of “transformation” is encoded by an edit script, which
contains insertion, deletion, and copy operations only. They also define an associ-
ated patch function that transforms a value according to an edit script. However, as
we mentioned previously, our work goes beyond the notion of diff.

The ATerm library [Van den Brand and Klint, 2007] provides a representation
for the creation and exchange of tree-like data structures in an untyped setting.
The implementation is based on maximal subterm sharing by representing terms as
a directed acyclic graph.

The technique of extending pattern functors for supporting additional function-
ality is commonplace. We have used zippers in this work; other applications in-
clude selections of subexpressions [Van Steenbergen et al., 2010] and generic stor-
age [Visser and Löh, 2010].

4.8.2 Shortcomings

While our solution provides a good basis for an efficient representation of transfor-
mations, there are some potential limitations and shortcomings.

Type safety Our approach is type-safe in the sense that, when our diff and apply
functions are used as intended, they do not go wrong at runtime. Potential sources
of failure, such as navigating to non-existent positions by calling apply with the
wrong arguments, lead to runtime failures in the Maybe monad.

However, we could aim higher and try to check validity of transformations al-
ready at compile-time. This would require a significantly more complicated ap-
proach and certainly some form of dependent types: the types of the navigation
functions in the zipper depend on the type of value they are applied to. This

4.8. DISCUSSION AND CONCLUSION 99

would require a generalisation of the derivative concept; even the dissection of
[McBride, 2001] does not express this concept. Aiming for more type-safety would
probably be an interesting adventure in a dependently-typed approach to repre-
senting transformations. Using really generic zippers [Kiselyov, 2011], which are
derived once and for all for all data types, may also be a solution.

Error handling Currently, we handle failure by returning Nothing. While this is
preferable to runtime failure, it is not very informative. An easy way to improve the
usability of our transformations would be to provide more useful feedback in case
of failure, such as a String detailing what went wrong and where.

4.8.3 Future work

The performance of the diff function could be improved, as abstract syntax trees
can contain many nodes in practical applications. As mentioned in Section 4.6.3,
its complexity, with memoization, is O

�

n3
�

. Cubic behaviour might still be unaccept-
able in practical scenarios, but lowering this bound would require trading preser-
vation of reuse for speed. It remains to see where the balance between these two
factors lays.

Another way to improve the performance is to optimise the handling of transfor-
mations with many paths sharing some common prefix. The representation could
be extended to share such common prefixes so as to better support localised inser-
tions.

100 CHAPTER 4. TREE TRANSFORMATIONS

5
Incremental AG evaluation

In this chapter we describe how to write attribute evaluators that can efficiently
respond to changes in the AST. Although this chapter forms an important part of the
final solution, the techniques described here do not work for higher order attributes.
We postpone the discussion for higher order attributes to Chapter 6.

The basic idea of our incremental evaluation technique is to cache the visit func-
tions: we store the previous input and output of a visit, and whenever the inputs are
unchanged the previous output is returned without recomputation. Because visits
can invoke visits of the children, this can lead to superlinear speedups. Because the
AST can change, we also need to keep track of changes to child nodes for deciding
when to recompute, complicating matters a bit.

5.1 Overview

We start this chapter by giving an informal overview of the representation and im-
plementation of our incremental attribute grammar evaluation machinery. An im-
portant feature of our implementation is that it is purely functional; there are no
side effects or global state. In our informal explanation we do however use the
concept of global state, as we believe that it is more intuitive to explain our tech-

101

102 CHAPTER 5. INCREMENTAL AG EVALUATION

niques in such a way. Furthermore, we have used the concept of a global state in
the definition of incrementality.

The evaluator for a given AST is represented by a data type which has the same
tree structure as the AST, extended with additional information. This extra informa-
tion is stored within closures that can be invoked for each node. For example, every
node contains a function for each of its visits which, given the inherited attributes
for that visit, computes the synthesized attributes of that visit, possibly by invoking
visits of its children.

After a visit for a certain node has been evaluated, the inherited attributes passed
to and synthesized attributes returned by this visit are stored. Whenever the visit
is invoked again with the same inherited attributes, which can happen because of
changes elsewhere in the AST, the stored synthesized attributes are directly returned
and therefore no duplicate computations occur. This is a form of memoization with
a cache size of one, because only the immediate previous parameters and result are
stored. This memoization is where the speedup comes from, since this may result
in a large part of the AST not being revisited after a (small) change.

Another function serves to propagate a change to the AST, in such way that the
resulting evaluator tree is updated in the same way as the AST changes. However,
this updating leaves unchanged parts of the AST in their original state in order to
retain the incremental behaviour.

There are two design principles used to store this information. The first is that
we use closures in which the previous inputs and outputs are stored to represent
the memoized visit functions. These values are therefore not inspectable from the
outside, but can only be used by the invoked closure.

The second design principle is that these functions are stored in a way similar
to the state monad, except that each node has its own state. We simulate this by
giving the current state as an argument to each function and return the (possibly
updated) state from each of these functions. For example, when invoking a child
visit the current state is updated with the new state of the children, such that future
invocations of functions of those children can be handled more efficiently. Here
the state is a collection of closures for the visit functions of that node together with
some other data as explained later.

5.2 Representation

Before describing the functional implementation of the incremental evaluation ma-
chinery, we introduce the data types and function signatures that are used for repre-
senting attribute grammar evaluators at runtime. For convenience we use Haskell’s

5.2. REPRESENTATION 103

data TGuestbook top= TGuestbookEmpty {. . . } | TGuestbookArrive {
tguestbook_v0 :: TGuestbook top→

((Set Name, DL), TGuestbook top),
tguestbook_v0_dirty :: Bool,
tguestbook_lookup ::∀ t. TGuestbook top→

Path Guestbook t→
SemType t top,

tguestbook_change ::∀ r. TGuestbook top→
(∀ t. Path top t→ SemType t top)→
Path Guestbook r→
ReplType r top→
TGuestbook top,

tguestbook_tl :: TGuestbook top
} | TGuestbookLeave {. . . }

Figure 5.1: Representation for the Arrive production of the Guestbook nonterminal

record syntax, which allows us to give a name to each child of a constructor. A
Haskell compiler usually generates a function for each name which can be used to
retrieve the corresponding child from the constructor.

As an example, the representation of the evaluator for the AST of the guestbook
example is shown in Figure 5.1. The type TGuestbook represents the internal state
of an evaluator for the attribute grammar version of Guestbook from Figure 2.1 and
contains a constructor for each of the productions. We have only shown the case
for the Arrive production here but the others are similar, except for the fields for the
nonterminal children, which is tl in this case. The first four functions and types are
the same for all productions of the Guestbook nonterminal.

To give an overview we mention each field shortly first, and we give a more
detailed explanation below. The data type has a type level parameter top, which is
propagated to all evaluators. This parameter is instantiated at the time of the top
level invocation of the attribute grammar machinery to the type of the top level node
of the AST. The parameter is used in the representation of the trees with references,
as references are always paths starting at the top of the AST, which can have a type
different from other nodes. For this same reason the type families SemType and
ReplType are used to construct the right types. In this particular guestbook example
the top parameter and type families can be avoided as the AST consists of the single

104 CHAPTER 5. INCREMENTAL AG EVALUATION

type Guestbook only, but we have included them here for explanatory reasons to
show how the machinery works for a family of mutually recursive data types such
as the C] example.

The record constructor of the evaluator state for an arbitrary production P of
nonterminal N contains fields for the visit functions, flags indicating which visits
needs to be recomputed, a function for retrieving the evaluator of a subtree, a func-
tion for propagating a change into a subtree, and a field for each of the nonterminal
children of the production P.

Visit functions For each visit X of the nonterminal N we have a visit function vX,
which corresponds to visit X and computes the synthesized results of that visit. The
function takes the current state of the evaluator and the inherited attributes of that
visit and returns the synthesized attributes of that visit and the updated state.

For the Guestbook nonterminal our only visit has no inherited attributes so the
v0 function takes only a single parameter.

Dirty flag For each visit of N we have a dirty flag indicating that a visit should be
re-evaluated. When the dirty flag is set to True this means that the state used by this
visit changed since the last evaluation and that the visit may return a different result
when invoked. This state change can both occur in the production itself as well as
(deep down) in its children. A False dirty flag indicates that the visit is guaranteed
to return the same results when passed the same inherited attributes as last time.
When the values of the inherited attributes have changed due to changes elsewhere
in the tree, the visit needs to be recomputed regardless of the dirty flag.

Lookup function The lookup function is used to retrieve the evaluator for the node
at the location given by its parameter. The first parameter of this lookup function
is again the current state of the evaluator, and its second parameter is the Path
describing for which node the evaluator should be returned. As the type of the
result depends on the Path, this function is universally quantified over the target
type t of the Path. The return value of lookup is the evaluator for the node of type
t referred to by the path.

Looking up an evaluator for a certain node is used when the AST is changed
and a reference is inserted, where the AST referred to originates from a different
location than the location where it is inserted. For the inserted reference we want
to use the existing evaluator of that node and we therefore retrieve the evaluator
for a given path with the lookup function.

5.3. FUNCTIONAL IMPLEMENTATION 105

Change function For the implementation of the actual transformation of the AST,
the change function is used. The first parameter of the change function is again
the current state of the evaluator. The third and fourth parameters contain a Path
for the location of the change and a replacement value for that location, and the
function returns the new state of the evaluator for the current node such that the
change has been applied. The second parameter is the lookup function for the top
level node, such that an evaluator can be retrieved for a Path relative to the top of
the AST.

Children Finally, the constructor contains a field for the state of the evaluator of
each child. These are used in all previous functions: to compute visits the visits of
the children may need to be invoked, the dirty flags depend on the dirty flag of the
child visits, the lookup may need to be propagated to children and changes may
need to be propagated to children.

The children are the only fields that differ for different productions of the same
nonterminal. The children are only used “internally” by the previously described
functions and are never directly retrieved by other nodes like the parent node.

5.2.1 Nonterminal and evaluator types

In order to make a connection between the type of a nonterminal and its corre-
sponding evaluator type, we use another type family. The type SemType maps the
nonterminal types to the corresponding evaluator types in the following way.

type family SemType a :: ∗ → ∗
type instance SemType DL = TDL
type instance SemType Guestbook= TGuestbook
type instance SemType Top = TTop

One place where the SemType family is used is in the change function, which is
polymorphic in the target type of the change.

5.3 Functional implementation

In this section we describe our purely functional implementation of the incremental
evaluation machinery. We illustrate the implementation with the Arrive constructor
of the example. The production semantic function is implemented as follows, with
lookup, change and v0 bound in the where-clause:

106 CHAPTER 5. INCREMENTAL AG EVALUATION

semGuestbookArrive :: Name→ TGuestbook top→ TGuestbook top
semGuestbookArrive _name _tl=

TGuestbookArrive {
tguestbook_lookup = lookup,
tguestbook_change = change,
tguestbook_v0 = v0,
tguestbook_v0_dirty = True,
tguestbook_tl = _tl
}where

. . .

The actual visit code is implemented in the code below as part of the where-
clause above, in a function called realv0. In each visit it takes the state of the children
and the inherited attributes if applicable and returns the synthesized attributes and
the new state of the children. These functions are then wrapped in other functions
to support incremental evaluation in case nothing has changed.

realv0 :: TGuestbook top→ ((Set Name, DL), TGuestbook top)
realv0 tl0 = ((_lhsOsignedIn, _lhsOtrueReviews), tl1)where
((_tlIsignedIn, _tlItrueReviews), tl1) = (tguestbook_v0 tl0) tl0
_lhsOsignedIn = _name ‘Set.insert‘ _tlIsignedIn
_lhsOtrueReviews= _tlItrueReviews

For the computation of the signedIn and trueReviews values of the child tl the visit v0
of the child is invoked, with the current state of the child as argument (in addition
to the first occurrence of tl0 used to retrieve the visit function from that current
state) and returning the new state of the child. Finally, together with the signedIn
and trueReviews values for the current node the new state of the child is returned.

The wrapping code for a visit first performs the visit as usual by calling the realv0
function. After that the visit function in the evaluator is replaced by a memoizing
version that directly returns the synthesized attributes in case nothing has changed.
This memoizing version stores in its closure the values of the current inherited and
synthesized attributes such that in future calls these can be used for the memoiza-
tion.

v0 :: TGuestbook top→ ((Set Name, DL), TGuestbook top)
v0 cur= ((_lhsOsignedIn, _lhsOtrueReviews), res)where
((_lhsOsignedIn, _lhsOtrueReviews), tl) = realv0 (tguestbook_tl cur)
res= update $ cur {

tguestbook_v0 =memv0,

5.3. FUNCTIONAL IMPLEMENTATION 107

tguestbook_v0_dirty = False,
tguestbook_tl = tl
}

memv0 :: TGuestbook top→ ((Set Name, DL), TGuestbook top)
memv0 cur′ = if ¬ (tguestbook_v0_dirty cur′)

then ((_lhsOsignedIn, _lhsOtrueReviews), cur′)
else v0 cur′

In this case there are no inherited attributes so no equality checks on the inherited
attributes need to be performed. When inherited attributes are present the condi-
tion of the if in memv0 also includes an equality check between the old and new
values of the inherited attributes.

The update function is a helper function that is used to update the dirty flags after
evaluation has completed, either in visits of the current node or in its children. The
static dependency graph generated by the scheduling algorithm is used to generate
this function, such that the dirty flag of a visit is only updated when one of its
dependencies has changed.

update :: TGuestbook top→ TGuestbook top
update cur= cur {

tguestbook_v0_dirty = tguestbook_v0_dirty cur
∨ tguestbook_v0_dirty (tguestbook_tl cur)

}

To get the evaluator residing at a given Path the lookup function is used. This func-
tion is implemented by propagating the request to the given Path and then returning
the evaluator. Note that on the type level the target type t of the path is already
present, and at the end of the path we can return the current evaluator since the
End constructor is the witness to the fact that t∼Guestbook in this case. Actually, as
the Guestbook example consists of a single data type these type arguments could
have been avoided, but we keep them for a complete explanation that holds for a
family of mutually-recursive data types too.

lookup ::∀ t. TGuestbook top→ Path Guestbook t→ SemType t top
lookup cur End = cur
lookup cur (GuestbookArrive_tl ps) =

tguestbook_lookup (tguestbook_tl cur) (tguestbook_tl cur) ps

The change function is used to propagate a change to the evaluator. When the
current evaluator is changed we replace the full evaluator with the new one, and

108 CHAPTER 5. INCREMENTAL AG EVALUATION

otherwise we propagate the change to the corresponding child. After propagating
the type we update the dirty flags.

change ::∀ r. TGuestbook top→ (∀ t. Path top t→ SemType t top)→
Path Guestbook r→ ReplType r top→ TGuestbook top

change cur lu End repl= semGuestbookR lu repl
change cur lu (GuestbookArrive_tl ps) repl= update_tl ps $

cur {
tguestbook_tl= tguestbook_change (tguestbook_tl cur)

(tguestbook_tl cur) lu ps repl
}

The updating of the dirty flags is slightly less trivial; one may think that we need to
invalidate all visits in which the child e is used because somewhere in that subtree
something has definitely changed. However, it may be the case that no information
from that changed node is ever used. Therefore, we adopt the following strategy:
whenever the direct child of a node is replaced all visits in which that child is used
are invalidated, and otherwise we use the update function to propagate changes.
This is implemented as follows.

update_tl :: Path f t→ TGuestbook top→ TGuestbook top
update_tl End cur= cur {tguestbook_v0_dirty = True}
update_tl cur= update cur

Finally, for the changed child the new evaluators have to be constructed or reused.
We implement this in the following function, which resembles the semGuestbook
function, except for the fact that it takes a lookup function as first argument to
retrieve the evaluators for the reused nodes.

semGuestbookR :: (∀ t. Path top t→ SemType t top)→
GuestbookR top→ TGuestbook top

semGuestbookR lu (Guestbook_Ref p) = lu p
semGuestbookR lu (GuestbookEmptyR) = semGuestbookEmpty
semGuestbookR lu (GuestbookArriveR name tl) =

semGuestbookArrive name (semGuestbookR lu tl)
semGuestbookR lu (GuestbookLeaveR name grade review tl) =

semGuestbookLeave name grade review (semGuestbookR lu tl)

5.3. FUNCTIONAL IMPLEMENTATION 109

5.3.1 Example invocation

To illustrate the usage of our evaluation machinery we show with some concrete
values how the functions are invoked and what the results of those calls are. We
use the example guestbook from the introduction which is represented as follows.

example :: Guestbook
example=

Leave "Bransen" 7.6
"I liked the fast internet connection" $

Leave "Dijkstra" 8
"The atmosphere is great for taking pictures!" $

Arrive "Dijkstra" $
Leave "Swierstra" 6
"Nice hotel, but the beds are too short" $

Arrive "Bransen" $
Arrive "Swierstra" $
Empty

Note that the $ operator is function application but associating to the right which
is used to avoid many parentheses.

To perform the initial evaluation of the attributes the semantic wrapper function
needs to be invoked. This returns the evaluator for which the top level visit can be
invoked to retrieve the result and the new state of the evaluator.

st1 = semTop (Top example)
(grade, st2) = (ttop_v0 st1) st1

The value of grade is 7.2 as expected.
Now let us delete the Leave "Swierstra" entry from the guestbook. We rep-

resent that change by a path and a replacement value. The path needs to point to
the fourth entry and can thus be represented as follows.

path= Top_gb (Leave_tl (Leave_tl (Arrive_tl End)))

The replacement needs to be of type GuestbookR and contains a reference to the rest
of the guestbook. We represent this by using a path to the entry after the deleted
entry as follows.

repl= Guestbook_Ref
(Top_gb (Leave_tl (Leave_tl (Arrive_tl (Leave_tl End)))))

110 CHAPTER 5. INCREMENTAL AG EVALUATION

To push this change to our evaluator we call the change function, which takes as an
argument the lookup function of the top level node.

st3 = (ttop_change st2) st2 ((ttop_lookup st2) st2) path repl

Finally, we can retrieve the result by calling the top level visit function.

(grade2, st4) = (ttop_v0 st3) st3

The result is that grade2 now has the value 7.8, and for computing this value the
evaluation machinery only traversed the AST up to the deleted element. However,
the overall complexity of this evaluation is still linear in the number of entries in
the full guestbook, due to the use of the higher order attribute. This problem is
explained and solved in the next chapter.

5.3.2 Intra-visit attributes

One difficulty that does not occur in our running example is that of so called intra-
visit attributes. In linearly ordered attribute grammars the computation of the syn-
thesized attributes may depend on inherited attributes of that visit or earlier visits.
However, with the implementation that we propose the inherited attributes of pre-
vious visits are not in scope and need to be explicitly passed to the visit in which
such an attribute is used.

For the standard non-incremental evaluation the UUAGC uses a visit-tree ap-
proach [Saraiva et al., 2000]. With a visit-tree approach it is statically computed
which attributes from the earlier visit are used in subsequent visits, and these are
passed as extra arguments to the second visit. For the second visit the attributes
used in later visits are passed on to the third visit, and so on.

In our implementation we can do better. Since we are already explicitly encod-
ing the current state of a node, the attributes used in later stages can be stored
inside this record. Whenever such an attribute is updated due to the recomputation
of the visit in which the attribute was declared, the visits in which the attribute is
used are invalidated by setting their corresponding dirty flag to True. The result of
this is that only visits that really use the intra-visit attribute are recomputed and no
intermediate visits that only pass such value on to a subsequent visit.

5.4 Conclusion

As indicated in the introduction of this chapter the described technique does not
support higher order attributes. For example, for the guestbook computation the

5.4. CONCLUSION 111

result of the first visit is incrementally computed and the list of true grades can be
therefore quickly be updated after a small change. However, for the computation
of the average this full new list is traversed to compute the sum and length for the
average, similar to the code in Figure 1.5. In other words, the connection between
the constructed list of grades and the decorated list of grades is lost, and after a
change the list needs to be fully redecorated. We solve that problem in the next
chapter.

112 CHAPTER 5. INCREMENTAL AG EVALUATION

6
Higher-order attributes

In the previous chapter we have described a runtime evaluator for the incremental
evaluation of attribute grammars based on change propagation and memoisation.
However, when higher-order attributes [Vogt et al., 1989] are used the increase in
efficiency of that evaluator is lost. In this chapter we therefore extend the incremen-
tal attribute grammar evaluator such that the expected speedups also apply when
using higher-order attributes. This chapter describes the main contribution of this
thesis.

As expected, our new runtime evaluator that can efficiently handle changes to
higher-order attribute grammars as described in this chapter does not come for free.
In order for our technique to apply an attribute grammar should satisfy certain
restrictions, which we describe later in this chapter. Unfortunately this means that
for many attribute grammars this technique is not directly applicable, but that the
attribute grammar must be changed to satisfy these restrictions. In Chapter 7 we
discuss in what way exactly an attribute grammar can be changed.

In Section 6.1 we describe the problem with higher-order attributes in more
detail. In Section 6.2 and Section 6.3 we show how to alter the runtime evaluator
such that the incremental speedups are retained for higher-order attributes. Finally
in Section 6.4 we describe the restrictions that apply and potential shortcomings of
our new approach.

113

114 CHAPTER 6. HIGHER-ORDER ATTRIBUTES

Figure 6.1: Instantiation of a higher-order child

6.1 Problem

The problem with higher-order attributes is similar to the first incremental version
of the guestbook as described in the introduction in Section 1.3.3. When the code
is changed to an incremental version, the list of true grades is built up efficiently.
However, nothing is gained because the full list of grades still needs to be traversed
in order to compute the average!

Figure 6.1 is a visualisation of the instantiation of a higher-order child. The root
node has a single regular child, which is the subtree on the left. In a synthesized
attribute of this subtree a value is computed which itself is also an AST. At the
root node this AST is instantiated as a higher-order child, which is the subtree in
the grey rectangle. The instantiation is implemented by calling the nonterminal
semantic function corresponding to the type of the higher-order child, and after
instantiation attributes are computed for the higher-order child in the same way
as for regular children; inherited attributes of the higher-order child need to be
defined by the node at which the child is instantiated, and synthesized attributes of
the higher-order child are available to that node.

The problem with an incremental change to a higher-order child is illustrated
in Figure 6.2. The change representation is visualised as δ, and the changed parts
are coloured grey. In this picture only one node of the left subtree has changed, as
a result of which the corresponding synthesized attribute has changed. At the root
node, where the higher-order child is instantiated, the only available information

6.2. SOLUTION 115

Figure 6.2: Illustration of the problem with a change to a higher-order child, where
the fine-grained changes are lost and the whole higher-order child is
replaced

is that the value for the higher-order child has changed. The higher-order child is
therefore instantiated again and completely redecorated; the internal state of that
higher-order child is lost and the fine-grained change propagation as we had in
place for the initial AST is lost.

6.2 Solution

To solve this problem we can use the same technique for higher-order children as
we use for the initial AST: after a change to a higher-order child, use a diff algorithm
to compute the difference between the old and the new child, and propagate the
change representation coming from the diff into the higher-order child in the same
way as to the initial AST. Computing the diff is expensive, however, and we therefore
do not expect any efficiency gains from such an approach. Furthermore, in our
setting we can do better: we have information about the construction of the higher-
order child, in particular we already know where differences occur in the attributes
used for the construction of the higher-order child.

Instead of using a diff algorithm to find the changes, we track, for each attribute

116 CHAPTER 6. HIGHER-ORDER ATTRIBUTES

Figure 6.3: Illustration of change propagation to the higher-order child c by tracking
the changes to a in d

used in the construction of a higher-order child, in what way its value changed in
comparison with the previous evaluation, as visualised in Figure 6.3. We represent
a change to such attributes in the same way as a change to the initial AST, by means
of a replacement value. The first time that a higher-order child is instantiated it is
decorated as usual, but after changes to the AST the replacement values are used
to propagate the incremental changes to the higher-order child.

Our approach is similar to that of [Cai et al., 2014], who discuss the automatic
generation of incremental evaluators for higher-order languages by statically con-
structing derivatives of functions. To obtain incremental speedups they assume
the existence of certain user-defined change structures that specify for all base-
types how changes can be constructed and represented. The change tracking for
our incremental evaluation of higher-order attributes resembles the construction of
derivatives for higher-order functions. However, in our case the regular incremen-
tal attribute grammar forms the basic change structure, and therefore there is no
need for the user to specify any extra information to obtain incremental speedups.

Solution overview Concretely, we extend our approach from the previous chapter
in the following way. First we perform an analysis to find all attributes that are used
to construct a higher-order child, called higher-order attributes. In Figure 6.3 the

6.2. SOLUTION 117

higher-order attributes are depicted as synthesized attributes containing a small
tree and are named a.

For these higher-order attributes we track the changes relative to the last time
their value was computed. These changes are represented by replacement values
which we synthesize as an extra attribute; we call this the derived change. In Fig-
ure 6.3 the derived change of a is depicted by the synthesized attribute d containing
a δ.

At the place where a higher-order child is instantiated, the derived change is
propagated to the higher-order child in the same way as changes to the initial AST
are propagated. In Figure 6.3, the higher-order child c can by itself be regarded as
a first-order AST to which the change d is propagated; whether d comes from a diff
algorithm or from another source does not matter for the propagation of changes
to c.

Note that we distinguish between two different yet similar parts of the incre-
mental computation: changes to the initial AST, and changes to higher-order chil-
dren. The changes to these two parts are propagated equivalently; in both parts
a given change representation describes in what way the AST is to be changed,
and the attributes are updated correspondingly, which is implemented efficiently
with memoized visit functions as described in the previous chapter. The difference,
however, lies in how the change representation is obtained; for the initial AST the
change representation is obtained from an external source such as a diff algorithm
or a structure editor, while the change representation for a higher-order child is
derived from the construction of the higher-order attribute from which the child is
instantiated.

Higher-order children can of course also contain higher-order children them-
selves, and those higher-order children can again contain other higher-order chil-
dren, and so forth. In that case only the change representation for the initial AST is
obtained from an external source, and for all other higher-order children the change
is derived from their construction. To keep this explainable we only describe our
technique for an initial AST with a single higher-order child, but the technique ap-
plies to more complex AGs as well.

Localised changes Another small difference between the change representation
for the initial AST and the derived change for a higher-order attribute, is that the
former consists of a pair of a path and a tree with references, while the latter consists
only of a tree with references. The path which is part of the change representation
for the initial AST gives the location of the change; a change to a higher-order child
however always happens relative to the root of that child because of the way in

118 CHAPTER 6. HIGHER-ORDER ATTRIBUTES

which it is constructed.
This difference has no effect on the incremental evaluation; when a change

to the initial AST conceptually introduces a local change to a higher-order child,
the derived change only contains the nodes on the path of the higher-order child
towards the location where the change happens, and all other children of those
nodes are references to existing parts of the higher-order child. This representation
is less compact than the pair, but has exactly the same result in terms of visits that
are recomputed.

6.3 Implementation

We now discuss the implementation for the support of higher-order children using
the example, in the same way as we did in the previous chapter. In Section 6.3.1 we
show how the paths used in the derived changes are constructed, in Section 6.3.2
we show the construction of the derived changes, and in Section 6.3.3 we show
how the derived changes are propagated to the higher-order child.

6.3.1 Paths

The derived changes contain references to the original value of the corresponding
higher-order attribute in case nothing has changed. Such references must contain
a path relative to the root of the higher-order child in which the derived change is
used. However, a higher-order attribute may be instantiated in multiple places, and
such a path is therefore dependent on the specific instantiation of a higher-order
child. We thus construct the derived changes using relative paths, which later are
completed to become absolute paths for a concrete higher-order child.

Conceptually, the resulting derived change is a function from a path to a re-
placement value. The path argument gives the location in the higher-order child at
which this replacement value is used, and based on that path the derived change
can be constructed containing references relative to the root of that higher-order
child. The same path may however also be used in future calls to the same visit
function, when the higher-order attribute is unchanged and a reference can be re-
turned. The path argument is therefore an extra argument to the evaluator, instead
of only an argument to the derived change itself.

Concretely, for each higher-order attribute we add an extra path argument to
the visit function in which that attribute is computed. This path is then extended in
every visit function call, to reflect the (relative) location in the higher-order child
in which it is used.

6.3. IMPLEMENTATION 119

Path as a difference list Because paths are extended at the end, we do not directly
pass the path itself, but instead we use a construction similar to a difference list. The
path is represented as a function from Path to Path, which given the rest of the path
returns the complete path.

In our case the paths carry on the type level information about the types of
their origin and target node. When a (partial) path is passed as an argument to a
child, the type of the target of the final path is not yet known, and the function is
therefore polymorphic in the target type of the path. For example, the type of a
partial path starting at a node of type X and currently pointing at a node of type Y
is the following.

∀ t. Path Y t→ Path X t

In other words, given the rest of the path from the node of type Y towards the
target node of type t, this function constructs a path from the starting node of type
X towards the target node of type t.

Example For the guestbook example the type of the visit function is now the fol-
lowing.

tguestbook_v0 :: TGuestbook top
→ (∀ t. Path DL t→ Path DL t)
→ ((Set Name, DL, DLR DL), TGuestbook top)

The second argument of this visit is the path, represented as a difference list, indi-
cating in which location in the higher-order child the list of true grades is used. The
DLR DL which has been added to the result is the derived change and is discussed
in the next section.

One might be inclined to think that it is possible to move the path argument
inside the pair, as the derived change is the only value that depends on it, as follows.

tguestbook_v0 :: TGuestbook top
→ ((Set Name, DL

, (∀ t. Path DL t→ Path DL t)→ DLR DL
), TGuestbook top)

This is not possible because it is not the case that only the derived change depends
on it: the next value of the derived change, which is returned after a change to this
subtree of the initial AST, also may depend on it. As the (memoized) visit function
is stored in the internal state, the TGuestbook top also indirectly depends on the
path argument.

120 CHAPTER 6. HIGHER-ORDER ATTRIBUTES

v0 :: TGuestbook top
→ (∀ t. Path DL t→ Path DL t)
→ ((Set Name, DL, DLR DL), TGuestbook top)

v0 cur pDL_trueReviews= . . . where
. . . = realv0 (tguestbook_tl cur) pDL_trueReviews
memv0 cur′ pDL_trueReviews′ =

if ¬ (tguestbook_v0_dirty cur′)
then ((_lhsOsignedIn, _lhsOtrueReviews

, List_Ref (pDL_trueReviews End)), cur′)
else v0 cur′ pDL_trueReviews′

realv0 tl0 pDL_trueReviews= . . . where
pDL_trueReviews_tl = if _name ∈ _tlIsignedIn

then pDL_trueReviews ◦ PathL_tl
else pDL_trueReviews

. . . = tguestbook_v0 tl0 tl0 pDL_trueReviews_tl
_lhsOsignedIn = _name ‘Set.delete‘ _tlIsignedIn
_lhsOtrueReviews = if _name ∈ _tlIsignedIn

then _grade : _tlItrueReviews
else _tlItrueReviews

_lhsOtrueReviewsRDL= if _name ∈ _tlIsignedIn
then ListConsR _grade _tlItrueReviewsRDL
else _tlItrueReviewsRDL

Figure 6.4: Relevant part of the semGuestbookLeave function to illustrate how the
derived change is computed

6.3.2 Derived change construction

We use the guestbook example again to illustrate in what way the paths are propa-
gated and how the derived changes are computed. The relevant code, in this case
for the Leave production, is shown in Figure 6.4. The if-then-else construction that
appears three times can be combined into one with tupling; we use the current
version for clarity.

The first thing to notice is the propagation and usage of the path. In the realv0
function the path pDL_trueReviews is extended with the PathL_tl constructor in case
a grade is added to the corresponding list. This results in the desired behaviour:
when the list of true grades is passed unaltered to the parent, the path that is passed

6.3. IMPLEMENTATION 121

to the child should also be unaltered. However, when an element is inserted at the
head of the list, the path should point one element further in the list. In that case
the PathL_tl constructor is appended to the path by means of function composition,
which can be used because of the difference list structure.

Note that this definition is cyclic, as the expression for the if uses the attribute
_tlIsignedIn, which comes from the child. However, as the path is never used to
construct the synthesized attributes but only in future evaluations of the same visit
this construction works out. Here it is essential to have lazy evaluation, as the cyclic
definition only works in a lazy setting.

Furthermore, in the memv0 definition the path is used to construct the derived
change in case nothing has changed. The End constructor is passed as an argument
to change the difference list into an actual path, and then the path is wrapped
in the List_Ref constructor to point to the existing list at the given position in the
corresponding higher-order attribute. However, if the visit needs to be performed
again the new value of the path is used.

Also, in the realv0 function a derived change called trueReviewsRDL is built in
case the visit needs to be performed again. This derived change has the same struc-
ture as the value it represents (trueReviews in this case) but the constructors are
changed to the ones for the change representation, such that its children can con-
tain references. Note that in this case the : (cons) of the list is replaced by the
ListConsR constructor.

6.3.3 Change propagation

At the place where the higher-order child is instantiated, which in the case of the
guestbook is at the top level node, extra work needs to be done to use and propagate
the derived change to the higher-order child. We implement this in the following
way.

In the internal state for the top level node we store the state of the higher-
order child in a Maybe. Initially its value is set to Nothing as the child has not
been instantiated yet. After the first evaluation, for which the higher-order child is
instantiated based on the corresponding higher-order attribute, the internal state is
saved as a Just in this field, such that this state can be used in the future to propagate
the derived changes into.

Figure 6.5 shows the relevant code for the Top production. The first thing to
notice is that the third argument passed to tguestbook_v0, which is the path used
in the change, is the identity function. The identity function here represents the
empty path and is used because of the difference list structure.

122 CHAPTER 6. HIGHER-ORDER ATTRIBUTES

realv0 :: (Maybe (TDL DL), TGuestbook top)
→ (Double, TDL DL, TGuestbook top)

realv0 (_revs, gb0) = (_lhsOaverage, revs1, gb1)where
((_gbIsignedIn, _gbItrueReviews, _gbItrueReviewsRDL), gb1)
= (tguestbook_v0 gb0) gb0 id

_inst_revs = _gbItrueReviews
_inst_revsRDL= _gbItrueReviewsRDL
revs0 = case _revs of

Nothing→ semDL _inst_revs
Just v → (tdl_change v) v ((tdl_lookup v) v) End _inst_revsRDL

((_revsIaverage, _revsIlength, _revsIsum), revs1) = (tdl_v0 revs0) revs0
_lhsOaverage= _revsIaverage

Figure 6.5: Visit code for the top level node

The most important part of the code is the usage of the _revs argument, which
is the state of the higher-order child. When decorating the child there are two
options: when its value is Nothing and the child has never been decorated and the
semantic function is called on the higher-order attribute as before. When there
is a Just value the derived changes (in _inst_revsRDL) are propagated to the child
before performing the visit. Finally, note that the resulting state of the child, which
is called revs1, is returned and saved by the wrapper code in a Just to be used in
subsequent rounds of evaluation.

6.4 Restrictions and drawbacks

As mentioned before our approach has some restrictions and drawbacks that we
discuss in this section.

6.4.1 Inspectability

An important limitation of our technique is that it requires knowledge of the con-
struction of the higher-order attributes. In particular, when a higher-order attribute
a is used to construct a new value of a higher-order attribute, a path needs to be
constructed to indicate in which part of the new AST a ends up. Because our ex-
pressions can be arbitrary Haskell, we can write attribute grammars for which we

6.4. RESTRICTIONS AND DRAWBACKS 123

can not (automatically) find out this information.
For our technique to work we therefore require the construction of higher-order

attributes to be of a restricted form in which only constructors, attribute references,
and constants are used. In particular, pattern matching is not allowed as it would
highly complicate dependency analysis.

In practice there are of course cases where more complicated code is written
to construct the higher-order child. Another possibility is to mix observable and
non-observable construction of higher-order attributes and only get incremental
behaviour when enough attributes can be observed. A concrete example of this is
a type inference algorithm, where the AST describes expressions of the untyped
lambda calculus and the result is a term in the typed lambda calculus. In that case,
the spine of the result, which is the expression itself, can be constructed in an observ-
able way for which incremental behaviour is retained, but the types themselves are
considered black boxes for which all information is lost after they are reconstructed.

6.4.2 Overhead

One common problem of incremental evaluation is that there is always overhead
involved. In our case the initial evaluation is slower because of the extra state that is
built up next to the actual evaluation, and in some cases the overhead can actually
be larger than the actual computation. It is therefore not desirable to apply this
technique to all attribute grammars.

A possible solution for this problem is to rely on Haskell’s lazy evaluation mech-
anism to perform the extra work to achieve incremental speedups at the moment
that the incremental step happens, resulting in practically no extra runtime in the
first evaluation. In earlier work we found promising results in that direction, but
in order to support higher-order attributes we need to do more work and evaluate
some part of the state in a slightly stricter way.

6.4.3 Memory consumption

The price that is paid for the decrease of runtime in incremental evaluation usu-
ally is the increase of memory consumption. As expected our incremental evalua-
tion machinery consumes more memory than the non-incremental version, but the
memory consumption increases only by a constant amount per node in the AST. Be-
cause memory is relatively cheap and the order of magnitude of the total memory
consumption for the application does not change with our approach, we think that
this increase is not a problem.

124 CHAPTER 6. HIGHER-ORDER ATTRIBUTES

6.4.4 Equality and granularity

In order to decide whether or not a visit needs to be performed after an incremental
update, we check for equality of inherited attributes and propagate the dirty flags
for every node. These equality checks may however take more time than the actual
attribute computation; our method is too fine-grained.

For our technique to be usable in practice we therefore intend to make it more
coarse-grained and run these checks only at certain nodes, for example only on
nodes where some expensive computation is run. Although this leads to more ac-
tual attribute evaluation, it can be much faster in practice. To decide on which
nodes to perform the computation we could apply a technique similar to that of
[Söderberg and Hedin, 2011], who describe the incremental evaluation of refer-
ence attribute grammars based on caching in an imperative setting. To improve
the caching behaviour they use a selective caching mechanism based on profiling,
thereby optimising the caching to specific use cases.

6.4.5 Cache size

The memoization technique we use to store the inherited and synthesized attributes
only stores the immediate previous values. This technique can therefore be re-
garded as using a cache of size one per node. As a result of this, when the AST is
changed and then changed again to some previous state, the synthesized attributes
need to be computed again.

6.5 Conclusion

We have extended the evaluation machinery with the support for higher-order at-
tributes. There is some overhead due to extra information tracking that needs to be
performed in order to efficiently handle changes to higher-order children, but the
technique can lead to a large decrease in the number of attribute values that need
to be computed after a change. The technique does not come for free however, as
it must be possible to test for equality on all inherited attributes and the attributes
which are used for the construction of higher-order children must be inspectable.

7
Supporting incrementality

As explained in the previous chapters our incremental evaluation machinery im-
poses restrictions on the attribute grammars. We require that we can check for
equality of inherited attributes and that the higher-order attributes are constructed
in an inspectable way. These restrictions make the technique not widely applicable.

Also specific styles of using attribute grammars will have a negative influence
on the effectiveness of our approach to incremental evaluation, such as the use of
chained attributes that correspond to the use of state monads. There are several
improvements, either manually or (semi-)automatically, that can be made to an
attribute grammar to overcome the limitations and improve the effectiveness.

This chapter consists of two parts. In the first part we discuss such improve-
ments and describe how they can be applied manually. As the improvements are
not exclusively necessary for the incremental evaluation but can also improve effi-
ciency in general, the first part of this chapter can also be seen as a guideline on
how to structure an attribute grammar. The second part of this chapter describes
how such improvements can be automatically performed by the AG compiler.

Concretely, in the first part of this chapter we discuss the following improve-
ments:

• Unique value generation: in Section 7.1 we discuss why generating unique

125

126 CHAPTER 7. SUPPORTING INCREMENTALITY

values using chained attributes has a negative influence on the effectiveness
of the incremental evaluation. We explain a different way in which unique
values can be generated such that the effectiveness of the incremental evalu-
ation is retained.

• Projection of inherited attributes: in Section 7.2 we discuss a related issue with
inherited attributes. For certain types of inherited attributes such as environ-
ments, in most subtrees only a part of the value is used in the computation of
other attributes. By projecting out the relevant part of the inherited attribute
we ensure that its value stays the same for many subtrees after a change to
the AST, thereby avoiding recomputations.

• General insights: in Section 7.3 we generalise the insights from the previous
two improvements to explain in what way an AG has to be written to support
the incremental evaluation machinery.

• Equality: the first hard requirement on the attribute grammars is the need
to be able to check for equality on inherited attributes, which we discuss in
Section 7.4. One problem is that these equality checks may be impossible or
expensive, and we show how they may be avoided.

• Inspectability: the restriction that every higher-order attribute must be in-
spectable is discussed in Section 7.5. The semantic rules for the construction
of higher-order attributes cannot consist of arbitrary Haskell expressions but
must consist of constructors and attribute references only. For the two running
examples of this thesis this restriction was not problematic, but in general it
is often desired to use more complex expressions for the construction.

The second part of this chapter starts with Section 7.6 where we discuss in what way
the AG compiler can analyse the grammar to automatically perform projections on
inherited attributes as discussed in Section 7.2. It is future work to implement such
an analysis and Section 7.6 therefore consists of ideas only. In Section 7.7 we de-
scribe how arbitrary Haskell programs can be translated to AGs; this technique can
be used to solve the problem of the inspectability of higher-order attributes as ex-
plained in Section 7.5. Furthermore, such a translation can also be used to achieve
automatic tupling and to get incremental evaluation for arbitrary Haskell programs
for free, as we discuss in the future work in Section 9.2. Finally, in Section 7.8 we
conclude this chapter.

7.1. UNIQUE VALUE GENERATION 127

7.1 Unique value generation

In many program analyses and transformations there is a need for fresh variables.
The standard way of implementing fresh variable generation in attribute grammars
is to use a chained attribute counter of type Integer, which holds the value that
is used to uniquely label the next fresh variable. At each use of the counter it is
updated and passed on (as are all chained attributes).

This design pattern can be directly expressed in AG notation and no special back
end support is needed. With incremental evaluation, however, this method of gen-
erating fresh variables has a negative effect on the effectiveness of the incremental
evaluator, because the chained behaviour propagates changes through the whole
AST. Chained behaviour in general has a negative effect on incremental evaluation;
a chained attribute is a combination between an inherited and synthesized attribute,
and the value of the inherited attributes is used to decide whether a visit should be
computed again after a change. Therefore, whenever the value of a chained at-
tribute changes all visits later in the AST using that chained attribute are computed
again. Especially in the case where we use it to generate unique numbers the fact
that a value has changed with respect to a previous evaluation is not particularly
relevant; as long the numbers handed out are unique we are fine.

For example, imagine a type inference algorithm for the lambda calculus with a
Hindley-Milner style type system [Hindley, 1969, Milner, 1978], implemented with
attribute grammars. Now suppose that an expression e is extended with a let bind-
ing at top level, and thus is converted to let x = . . . in e where x does not appear in
e. It is clear that the type of e has not changed due to this edit action and should not
be computed again. However, when the fresh type variables are first generated for
the binding of x, the chained attribute for the variable generation that is passed to e
is different from the first evaluation, so all fresh type variables used in e change! As
a result of this not only are all types inferred again, but there is also some overhead
involved which results in the incremental evaluation being slower even in such a
simple case.

The general problem with fresh variable generation as a chained attribute is that
it is overspecified; more restrictions than necessary are imposed. Instead of defining
that we need a unique variable at each node, we have defined a strict order in which
the variables are to be generated. This results in extra dependencies that in case of
incremental evaluation leads to redundant recomputations.

The solution we propose is to abstract over fresh variable generation at attribute
grammar level and use a different mechanism for generating fresh variables. One
way of handling this is by producing a fresh variable generator for each node in the
parsing stage, using the path from the root to the node as seed.

128 CHAPTER 7. SUPPORTING INCREMENTALITY

newtype Unique a= Unique {runUnique :: Integer→ (a, Integer)}
instance Monad Unique where

f >>= g= Unique $λn→
let (a, n′) = runUnique f n
in runUnique (g a) n′

return a= Unique $λn→ (a, n)
getUnique :: Unique Integer
getUnique= Unique (λn→ (n, n+ 1))

Figure 7.1: Implementation of the Unique monad for fresh value generation

We propose a different approach: we generate fresh variables in a more imper-
ative way using some form of global state. In a pure setting this can be achieved by
running the evaluation in a monadic environment [Wadler, 1990]. We use a monad
Unique with a function getUnique :: Unique Integer for fresh variable generation, for
which a possible implementation is shown in Figure 7.1. The Unique monad can
also be implemented using the Haskell State monad.

To use this monad the visit functions have to be written in monadic style and
the types of the functions need to be altered correspondingly. The type of the eval-
uator for the Arrive production is shown in Figure 7.2. Because the state of the
unique number is now not implemented anymore as an attribute, its value does not
influence the decision whether a visit needs to be recomputed. Hence, a visit is
only recomputed for other reasons and in that case also new unique numbers are
generated. When the visit is not recomputed no new numbers are generated and
all attributes in which the unique numbers are used stay unchanged.

As a result of this change, the outcome of an incremental evaluation is not nec-
essarily equal to the usual evaluation anymore; they are however equivalent under
alpha renaming, which is fine for practical cases where fresh variables are used.
In the particular case of type inference a normalisation step could be added which
does alpha renaming to some normal form for observational equality.

Unfortunately, there is another problem with this way of generating fresh vari-
ables: when a subtree is duplicated due to a transformation and no recomputation
happens in the resulting subtrees, their fresh variables are shared. In usual applica-
tions this is undesirable and could lead to wrong results. This technique does there-
fore not work when duplication is allowed in the transformations, but improves the
incremental behaviour otherwise.

7.1. UNIQUE VALUE GENERATION 129

TGuestbookArrive {
tguestbook_v0 :: TGuestbook top→

(∀ t. Path DL t→ Path DL t)→
Unique ((Set Name, DL, DLR DL)

, TGuestbook top),
tguestbook_v0_dirty :: Bool,
tguestbook_lookup ::∀ t. TGuestbook top→

Path Guestbook t→
SemType t top,

tguestbook_change ::∀ r. TGuestbook top→
(∀ t. Path top t→ SemType t top)→
Path Guestbook r→
ReplType r top→
Unique (TGuestbook top),

tguestbook_tl :: TGuestbook top
}

Figure 7.2: Representation for the Arrive production using the Unique monad

130 CHAPTER 7. SUPPORTING INCREMENTALITY

7.2 Projection of inherited attributes

Our incremental attribute grammar evaluation machinery uses equality of inherited
attributes to decide when to recompute. However, changes in inherited attributes
do not necessarily imply changes in synthesized attributes, because it can be the
case that the computations for the synthesized attributes only use an unchanged
part of the inherited attribute.

For example, the env attribute in our C] compiler contains a mapping from vari-
ables (both local variables and parameters) to their (relative) location on the stack.
In the SSM code generation for a function, each variable that occurs is lookup up
in this environment to find its location. When a new local variable declaration is
added to the function body, the environment changes and the SSM code for the
complete function body is recomputed. This recomputation could be avoided, how-
ever, because the location of all other variables is unchanged and the new variable
is never looked up.

To accomplish this we may decide to pass only a projection of an attribute, con-
taining the information that interests us here, instead of the complete attribute.
Such projections are more likely to remain unchanged. The only variables that are
ever looked up env are the variables that appear in the function body. Therefore,
when a variable is added to env which is not used in the body, this does not change
the result of the SSM code generation. It does however have a negative influence
on the incremental behaviour, since the inherited attributes have changed and re-
computation happens.

Concretely, the solution is to switch to a two-visit approach. In the first visit a set
of used variables is collected in a synthesized attribute. In the second visit the rest
of the attributes are computed based on the inherited env similar to the standard
approach. Because the used variables are already available for all children at the
beginning of the second visit, they can be used to perform a projection on env. At
every node, only that part of env containing information about the variables that are
actually used in each child is passed to that child. As a consequence the inherited
attribute changes only when the location of one or more of the used variables has
changed, in which case different SSM code is indeed to be generated.

7.3 General suggestion

As we have discussed in Section 7.1 using a chained attribute for generating fresh
variables is bad for the performance of our incremental evaluation machinery. For
fresh variable generation we have used a special implementation to ameliorate this

7.4. EQUALITY 131

loss of performance, but the same reasoning holds for other chained attributes from
which we draw a more general conclusion: chained attributes are bad for incremen-
tal performance.

Furthermore, Section 7.2 describes how a projection of an inherited attribute
can improve the performance. The observation from that section is that changes to
inherited attributes result in recomputations, and that doing more work in an earlier
phase (gathering the used variables and projecting) can avoid recomputations later.

To support the incremental evaluation machinery we suggest a general pattern:
computations must be done as early as possible, by which we mean early in the
control flow. In attribute grammar terms this means that operations on inherited
attributes should happen as close to the root of the tree as possible, while operations
on synthesized attributes should happen as close to the leaves of the tree as possible.

The motivation behind this idea is that in this way we keep the number of values
that change after an incremental update to the AST as small as possible. When some
computation relies on a value that is changed, it has to be recomputed at some point.
Therefore, when that recomputation happens earlier, recomputation of other values
that are “in between” may be avoided.

7.4 Equality

Our approach uses equality checks on inherited attributes to decide whether the
value of the inherited attributes has changed. Such equality checks can however be
expensive, in particular more expensive than the recomputation of the attributes in
the corresponding visit.

For the correctness of the incremental evaluation machinery it is not essential
that the equality check is precise. In particular, the pessimistic approach of always
returning False still leads to correct results, albeit not so efficiently computed. In
some cases it may be a viable approach to avoid equality checks on some inherited
attributes for which the checks are expensive. This will lead to more attribute evalu-
ation, but can still be cheaper than checking equality and thus will lead to increased
efficiency. The decision on where to apply such a trick is hard though and one may
be forced to fall back on using profiling techniques.

Another possible way in which the efficiency of the equality checks may be im-
proved is by using hash-consing. With hash-consing the runtime machinery ensures
that for each value there is a unique representation in memory. Consequently, equal
values are shared in memory and equality checks for any type are reduced to check-
ing pointer equality. Unfortunately, implementing hash-consing efficiently is hard,
especially for a lazy language such as Haskell, and we have therefore not tried to

132 CHAPTER 7. SUPPORTING INCREMENTALITY

use this technique. [Saraiva et al., 2000] did however find promising results with
such an approach.

7.5 Inspectability

A major restriction for the higher-order attributes is that we need to have inspectable
construction of those attributes. For simple examples such as the guestbook this is
not problematic, but the higher-order child for the C] compiler from Figure 2.8 al-
ready breaks this restriction. The instantiation of the higher-order child was done
as follows.

inst.block :: Stat
inst.block= StatBlock [

StatDecl @init.copy,
StatWhile @cond.copy (StatBlock [

@body.copy,
StatExpr @incr.copy
])

]

At first glance it may look like we use only constructors and attribute references, but
in this expression we also use the special Haskell notation [. . . , . . .] to construct
lists. Automatically analysing this expression to find out in which location in the
higher-order child certain attributes are used is currently not possible.

Adding support for this special list syntax solves the problem for this example,
but not the general inspectability problem. There are many other Haskell functions
that can make the expressions shorter or easier to understand, and supporting all
of them would require a full Haskell compiler.

For now we put the burden on the attribute grammar programmer and require
that all higher-order attribute rules are inspectable. The C] example above thus
needs to be written in an inspectable way as follows.

inst.block :: Stat
inst.block= StatBlock (

(:) (StatDecl @init.copy)
((:) (StatWhile @cond.copy (StatBlock (
(:) @body.copy
((:) (StatExpr @incr.copy) []))))

[]))

7.6. AUTOMATIC PROJECTION 133

For more advanced compilers like the UHC it is however much harder to work
around this restriction manually, and in Section 7.7 we therefore propose an au-
tomatic translation to solve this problem.

7.6 Automatic projection

As discussed in Section 7.2 the effectiveness of our approach is dependent on the
changes to the AST and to the inherited attributes, and projection of inherited at-
tributes can help to avoid redundant computations. We have made some sugges-
tions to attribute grammar programmers about how to use projections to improve
the effectiveness of the incremental evaluation. It is however to be preferred that
the attribute grammar compiler performs such projections automatically, possibly
based on manual annotations.

The projection of inherited attributes usually follows the same pattern, and the
correctness depends on certain algebraic properties. For example, in the case of
an environment in which the type of a variable is looked up we have the following
property.

v 6≡ w→ lookup v (insert w t env)≡ lookup v env

Here v and w are variables, env is an environment, t is some type and lookup is the
lookup function. This property specifies that the insertion of another variable into
the environment does not influence the result of the lookup. Using this property
we can project out for each subtree that part of the environment containing the
variables being actually looked up in that subtree, as we can be sure that the other
variables do not influence the result.

We believe that such algebraic properties, either manually specified or coming
from a library with properties for common types, can be used to do projections
automatically. For instance, for every inherited attribute of type Map a b the pattern
for projections is similar: a synthesized attribute of type Set a contains all used keys,
which are inserted in every node where a lookup is performed. In every place where
the Map is passed to a child node, only the keys from the Set for that child are passed,
as a result of which the inherited attribute only changes when the value for a key
that is actually used has changed.

We have not implemented this technique for automatically performing projec-
tions, and the idea posed in this section is therefore future work.

134 CHAPTER 7. SUPPORTING INCREMENTALITY

7.7 Haskell to AG translation

In this section we propose an automatic approach to overcome the inspectability
problem. We do so by translating all Haskell expressions to attribute grammars
such that the full program is represented as a minimal higher-order attribute gram-
mar. As a result of this we do not only get inspectable construction of higher-order
attributes, but we may also gain efficiency on the rest of the program due to tupling
which is done automatically in attribute grammars.

In the following sections we introduce a functional language (similar to Haskell)
which is the source of the translation, an example, and the translation to minimal
higher-order attribute grammars. We describe the approach by giving a translation
from a complete functional program to attribute grammars. This translation can
also be used for single attribute expressions to automatically obtain inspectable
construction of higher-order attributes.

7.7.1 A simple functional language

Instead of taking full Haskell as a source for the translation we define a language
that we call λ: the simply typed lambda calculus extended with algebraic data
types, recursive let and primitive types and functions. The syntax of λ is defined in
Figure 7.3, where the g construct in the figure denotes zero or more occurrences of
some g.

Algebraic data types Next to primitive types such as Int, we use algebraic data
types as base types. At top level we have a list of data type definitions, each in-
troducing a new type with a set of constructors. Each constructor has a name and
field, which we call children, each with their own type. The data type definitions
can be (mutually) recursive and the types of the children therefore are allowed to
refer to any of the data types that are declared at top level.

The expression language allows construction of data types via data type con-
structors. Furthermore, case distinction is used to pattern match on the values.
Each case alternative matches on a constructor and binds the values of the children
to the given variables in the body of that alternative.

Recursive let The recursive let defines a set of mutually recursive functions. As
with abstractions, all defined variables must have an explicit type annotation.

7.7. HASKELL TO AG TRANSLATION 135

T, C, P, x, f -- Type, constructor, primitive type, variable
-- and function names respectively

λ ::= d e -- Lambda term
d ::= data T c -- Data type definition
c ::= | C τ -- Constructor with children
e ::= x -- Variable
| λx :τ.e -- Lambda abstraction
| e e -- Application
| C -- Constructor
| case e of a -- Case distinction
| let t in e -- Recursive let
| f :τ→ τ -- Primitive function

τ ::= T -- Type of data type
| τ→ τ -- Function type
| bP -- Primitive type

t ::= x : τ
x = e -- Let definition

a ::= C x→ e -- Case alternative

Figure 7.3: Functional language λ

136 CHAPTER 7. SUPPORTING INCREMENTALITY

data Tree | Leaf cInt | Bin Tree Tree
data Ordering | EQ | GT | LT

let depth : Tree→ cInt
depth= λt : Tree. case t of

Leaf n→ 0
Bin l r→ succ (max (depth l) (depth r))

dleaves : Tree→Ö[Int]
dleaves= λt : Tree. case t of

Leaf n→ singleton n
Bin l r→ case compare (depth l) (depth r) of

EQ→ dleaves l ++ dleaves r
GT→ dleaves l
LT → dleaves r

in dleaves

Figure 7.4: Deepest leaves in a binary tree (straightforward version)

Primitive functions Allowing primitive functions is not strictly necessary, but to
make the example concise and to be able to leave out irrelevant details primitive
functions and types are supported. Type annotations are also needed for primitive
functions, but in our example we leave out these type annotations because we be-
lieve the reader can easily infer them from the name of the function. Furthermore,
we restrict ourselves to first-order functions only; the τ’s in the primitive function
calls may only be T or bP.

7.7.2 Example

To illustrate the translation we use an example that is written in λ. The code is
implemented in the way that we feel is the most intuitive and elegant. There exist
however more efficient but less elegant implementations. In this section we show
both the elegant and the (derived) efficient implementation and in later sections
we show how the translation to attribute grammars can result in the automatic
construction of the efficient version.

In the example we construct a list containing the deepest leaves from a binary

7.7. HASKELL TO AG TRANSLATION 137

tree. The deepest leaves are all leaves that have a maximum distance to the root of
the tree. A straightforward implementation is presented in Figure 7.4.

Two algebraic data types are defined, Tree for binary trees and Ordering for the
result of comparing two integers. The constructor Leaf has a single child of type
cInt which is a primitive type which cannot be inspected but only be passed as an
argument to a primitive function or as a return value.

The program itself consists of a let definition in which two functions are defined.
The function depth computes the depth of the binary tree in a straightforward way.
The underlined functions are primitive functions and are thus left abstract. The
functions do what their names suggest; max computes the maximum of two inte-
gers, succ the successor of an integer, singleton constructs a singleton list from its
argument and ++ concatenates two lists.

For the actual translation typing information is needed for every part of the
program, including the primitive functions. We therefore assume that the types are
known for all primitive functions, but we leave them implicit to make the example
more concise.

The dleaves function computes the list of deepest leaves of the tree, thereby using
the depth function to compute the depth of its children in the binary case. If the
depths are not equal then the deepest leaves of the deepest subtree are returned,
otherwise the two lists of deepest leaves are combined into the result list. In the
leaf case the value is returned as a singleton list.

One problem with this definition is in the calls to depth in dleaves. For every
call to dleaves, which in the worst case is once for each node x, the full subtree
of x is traversed by depth. This makes the complexity of the algorithm quadratic1,
while a linear solution is possible. With the translation to AGs a linear solution is
obtained automatically, because of the tupling of depth and dleaves which is done
automatically in AGs [Kuiper and Swierstra, 1987].

Efficient version Before showing the resulting MHAG code, we first show the
result of translating the example to an AG and back in Figure 7.5. Note that the
code shown here is not the direct output of translating the MHAG code back to λ,
but has been manually prettified to make clear what is going on. The variable and
function names have been changed to more meaningful names and some parts have
been inlined and β-reduced to make the code shorter.

The type TreeSyn is the carrier type of the algebra and consists of the results for
the two recursive functions; depth and dleaves are now simple projection functions
to get the corresponding value. The semTree function is a standard nonterminal

1For the sake of the example, we assume that ++ takes constant time.

138 CHAPTER 7. SUPPORTING INCREMENTALITY

data Tree | Leaf cInt | Bin Tree Tree
data Ordering | EQ | GT | LT

data TreeSyn | TreeSynÖ[Int] cInt

let depth : TreeSyn→ cInt
depth = λts : TreeSyn. case ts of TreeSyn l d→ d

dleaves : TreeSyn→Ö[Int]
dleaves = λts : TreeSyn. case ts of TreeSyn l d→ l
semTree : Tree→ TreeSyn
semTree = λd : Tree.

case d of Bin l r → semBin (semTree l) (semTree r)
Leaf n → semLeaf n

semLeaf : cInt→ TreeSyn
semLeaf = λn : cInt. TreeSyn (singleton n) 0
semBin : TreeSyn→ TreeSyn→ TreeSyn
semBin = λl : TreeSyn. λr : TreeSyn.

let de : cInt
de = succ (max (depth l) (depth r))

le : Ö[Int]
le = semOrd ho1 (dleaves l) (dleaves r)
ho1 : Ordering
ho1 = compare (depth l) (depth r)

in TreeSyn le de

semOrd : Ordering→Ö[Int]→Ö[Int]→Ö[Int]

semOrd = λc : Ordering. λdll :Ö[Int]. λdlr :Ö[Int].
case c of EQ→ dll ++ dlr

GT→ dll
LT → dlr

in λt : Tree. dleaves (semTree t)

Figure 7.5: Deepest leaves in a binary tree (efficient version)

7.7. HASKELL TO AG TRANSLATION 139

semantic function, and semLeaf and semBin the production semantic functions for
the corresponding productions.

The case for Leaf is the trivial tupling of the two results. The case for Bin is
slightly more complex, yet similar to the original version. The value de, for the depth
case, is identical to the original formulation. However, it is important to notice
that its definition is no longer recursive; the calls to depth are simple projection
functions retrieving the corresponding value from the tuples. The same holds for
the computation of the deepest leaves.

For the result of the call to compare there is an extra indirection compared to the
original formulation. This indirection can be removed by inlining the semOrd func-
tion which thus makes the dleaves case also similar to the original formulation. The
current presentation is however closer to the attribute grammar version of this code,
in which a higher-order child is instantiated, so we use that for didactic reasons.

7.7.3 Example translation

In Figure 7.6 we show the minimal higher-order attribute grammar code that is
the result of translating the example. The first two data types are present in the
original as well as in the final λ code. The Ordering′ and Ordering′′ data types are
intermediate data types that are generated as the result of the translation process
for storing intermediate values.

The Tree data type has, as expected, two synthesized attributes: depth and
dleaves. The Ordering data type has a synthesized attribute cmpres which contains
a value of type Ordering′. This Ordering′ has an inherited attribute arg (the func-
tion argument) and a synthesized attribute of type Ordering′′, which again takes an
inherited attribute arg and finally returns a synthesized attribute res of type Ö[Int].
This pattern can be thought of as a function taking two Ö[Int] arguments and re-
turning an Ö[Int]. In the resulting λ code as presented in Figure 7.5 the semantic
functions for Ordering, Ordering′ and Ordering′′ are combined and called semOrd.

This indirection is a result of the way the translation scheme is formulated;
it can however easily be avoided. We have decided to keep the example results
close to the actual translation scheme as it is presented later to help the reader in
understanding the described approach.

The semantic rules for the Leaf case are straightforward and directly follow the
structure of the original functions. In the Bin case, the computation of depth is
also a direct mapping from the original. The small difference is that in MHOAGs
(Section 2.6) the right-hand side of an expression can only be exactly one primitive
function call, which means that in order to compose functions the intermediate

140 CHAPTER 7. SUPPORTING INCREMENTALITY

data Tree | Leaf n :: cInt | Bin l :: Tree r :: Tree
data Ordering | EQ | GT | LT
data Ordering′ | EQ′ | GT′ | LT′

data Ordering′′ | EQ′′ dl ::Ö[Int] | GT′′ dl ::Ö[Int] | LT′′ dl ::Ö[Int]

attr Tree syn depth :: cInt syn dleaves ::Ö[Int]
attr Ordering syn cmpres :: Ordering′

attr Ordering′ inh arg ::Ö[Int] syn res :: Ordering′′

attr Ordering′′ inh arg ::Ö[Int] syn res ::Ö[Int]
sem Tree | Bin lhs.dleaves= @ho3.res

inst.ho1 :: Ordering
inst.ho1 = compare @l.depth @r.depth
inst.ho2 :: Ordering′

inst.ho2 = @ho1.cmpres
ho2.arg = @l.dleaves
inst.ho3 :: Ordering′′

inst.ho3 = @ho2.res
ho3.arg = @r.dleaves
lhs.depth = succ @loc.a1

loc.a1 :: cInt
loc.a1 =max @l.depth @r.depth

| Leaf lhs.dleaves= singleton @n.self
lhs.depth = 0

sem Ordering | EQ lhs.res = EQ′

| GT lhs.res = GT′

| LT lhs.res = LT′

sem Ordering′ | EQ′ lhs.res = EQ′′ @lhs.arg
| GT′ lhs.res = GT′′ @lhs.arg
| LT′ lhs.res = LT′′ @lhs.arg

sem Ordering′′ | EQ′′ lhs.res = @dl.self ++ @lhs.arg
| GT′′ lhs.res = @dl.self
| LT′′ lhs.res = @lhs.arg

Figure 7.6: Minimal higher-order attribute grammar code corresponding to deepest
leaves example

7.7. HASKELL TO AG TRANSLATION 141

value has to be given a name explicitly (loc.a1 in this case).
For the computation of dleaves the result of the compare function is instantiated

as a higher order child ho1. The synthesized attribute cmpres represents the function
that, given the deepest leaves of the left and the right child, returns the deepest
leaves. This value is instantiated as a higher order child ho2 and the deepest leaves
of the left child are passed as an argument. The result is again instantiated as a
higher order child ho3 and the deepest leaves of the right child are passed as the
second argument. The synthesized dleaves value is finally the result of ho3.

7.7.4 Translation

Before going into details we give an intuitive description of the construction used
to translate λ expressions to minimal higher-order attribute grammars. We assume
that in all cases the initialλ expression is well-typed. We illustrate the overview with
the minimal higher-order attribute grammar code for the example in Figure 7.6.

Functions are represented by trees which have one inherited attribute for the
argument and one synthesized attribute for the result. In the example, Ordering′

and Ordering′′ are such trees. Note that depth and dleaves are special functions that
are handled in a different way which is explained in Section 7.7.6.

We introduce a new nonterminal for every function type, and a new constructor
is added to the corresponding nonterminal for each lambda abstraction. In the ex-
ample EQ′, GT′, LT′, EQ′′, GT′′ and LT′′ are such constructors. Note that the lambda
abstractions corresponding to these constructors are not visible in the original λ
code but are introduced in the step described in Section 7.7.8.

For each free variable in the body of the abstraction we add a child to the cor-
responding constructor to store the value of the corresponding variable. In the
example dl is such a child, which is introduced for all constructors of Ordering′′.

For each case distinction a synthesized attribute is added to the correspond-
ing nonterminal. In the example depth, dleaves and cmpres are such synthesized
attributes.

A function is represented by a production of a nonterminal for functions of that
type. To simulate function application using attribute grammars, the function is
instantiated as higher-order child and the argument is passed as an inherited at-
tribute. The result of the function application is returned as a synthesized attribute.
In the example the higher order children ho2 and ho3 are used for simulating func-
tion application.

For lambda abstractions the corresponding constructor is returned, which is il-
lustrated in the semantic rules of Ordering. For case distinction, the argument is

142 CHAPTER 7. SUPPORTING INCREMENTALITY

instantiated as a higher order child and the result is the corresponding synthesized
argument of this child. In the example this is the case for ho1 and its synthesized
attribute cmpres.

7.7.5 Top level declarations

We define top level declarations as the set of variables that are bound by a recur-
sive let not inside an abstraction or case distinction. In other words, a top level
declaration is a let bound variable such that all its free variables are also top level
declarations. In our example, the top level declarations are depth and dleaves.

We let top level declarations be available everywhere and thus depend on the
MHOAG semantics to tie the knot. Although this is not an essential step in the
translation process, this can avoid explosion of the size of the resulting MHOAG
because otherwise all top level declarations are passed around explicitly at every
function call.

7.7.6 Recognising folds

We define folds to be expressions of the form

λt :τ. case t of as

such that the set of free variables of the alternatives as is empty. Intuitively, such a
computation can be written in MHOAGs using a synthesized attribute and thus can
be efficiently used to achieve better sharing behaviour.

The success of the overall approach depends on the number of functions that can
be efficiently represented in MHOAGs. It is therefore important that the functions
in the input are written as folds or can automatically be transformed into folds.

Automatically transforming the input into this form is a separate problem that
we do not solve here. However, with some simple rules like the following one
can already achieve good results. When u 6≡ t the λu : τ can be moved inside the
alternatives:

λu :τ. case t of
p1→ e1
pn→ en

case t of

p1→ λu :τ. e1
pn→ λu :τ. en

7.7. HASKELL TO AG TRANSLATION 143

7.7.7 Identifying recursive calls

A call of the form f a where a is a variable and f is a fold should have special treat-
ment. This is where the better sharing behaviour is obtained. Intuitively, usually a
function is represented by some tree structure in the MHOAG code. For evaluating
the application the function is instantiated as a higher order child and its argument
is passed as an inherited attribute.

In the case that the function is a fold, its argument is a tree itself and thus a
copy of this tree needs to be passed as inherited attribute. However, this copy of
the tree is then immediately instantiated as a higher order child to retrieve the syn-
thesized attribute for the case distinction. But when the argument is a child of the
current node, the synthesized attribute for the case distinction is already available.
Furthermore, when multiple computations use the same synthesized attribute the
result is now shared. One place where is happens is when the same function is
called multiple times with the same argument.

7.7.8 Lambda lifting in case alternatives

Case expressions are translated by instantiating the expression as a higher order
child and adding the semantics of the alternatives to the data type using a synthe-
sized attribute. The result is that the semantic functions of the alternatives are in a
different context and thus the variables that are bound by the environment of the
case are not in scope anymore.

The solution for this is to perform lambda lifting of the alternatives. First all
free variables of the alternatives together are gathered. Then a lambda abstraction
is introduced in each alternative for each free variable. Finally, the variables that
contain the values in the context of the case are applied to the result of the case
expression.

As an example, consider the following expression, where v1 : τ1 and v2 : τ2 are
bound in the context of the case:

case e of C1 . . . → . . . v1 . . .
C2 . . . → . . . v2 . . . v1 . . .

This example is translated to the following, operationally equivalent, code:

(case e of C1 . . . → λv1 :τ1. λv2 :τ2. . . . v1 . . .
C2 . . . → λv1 :τ1. λv2 :τ2. . . . v2 . . . v1 . . .) v1 v2

For recursive calls of the form f a as identified in Section 7.7.7 where a is a free
variable in the alternative, a specialised rule is defined. Instead of abstracting over

144 CHAPTER 7. SUPPORTING INCREMENTALITY

the free variable itself, we abstract over f a. This specialised rule will make sure
that whenever a folding function is called on a substructure, this fold will not be
performed again. If we would not have this specialised rule it could be the case that
a copy of the substructure needs to be passed to one of the case alternatives after
which it is instantiated again as a higher-order child.

7.7.9 Translation rules

In Figure 7.7 we show the translation rules for the translation we have described.
The translation scheme is of the form Γ ;∆ `P

N e ϕ;ψ and consists of seven
elements; Γ is the environment in which λ variables are mapped to attribute refer-
ences, ∆ is an application context containing an ordered list of attribute references
that still need to be applied, P and N are the current production and nonterminal
respectively, e is the λ expression that is being translated, ϕ is the resulting attribute
reference and finally ψ is the resulting MHOAG.

Some details in the rules have been omitted. In the translation process a non-
terminal is introduced for every function type in the λ expression. The function ntp
is used in the translation rules to get the nonterminal name for the given expres-
sion. However, as the expression can contain variables that are bound outside this
sub expression, this must also depend on some environment containing all bound
variables and types. As this environment needs to be passed around in all rules but
is not an essential part of the translation itself, we have not made it explicit.

In the generated MHOAG code type signatures for the inst and loc cases are
left out. Again, the type information can in all cases be inferred, but is left out to
keep translation rules simpler. Furthermore, only the MHOAG code for generating
semantic terms is shown, and we leave the generation of the data types correspond-
ing to the λ data types and the attribute declarations implicit.

Variables When the application context is empty, for variables the rule VAR.E is
used, which performs a lookup of the variable in the environment.

In case of a nonempty application context, the rule VAR.A is used. In this case the
variable represents a function and can thus be instantiated as a higher order child.
The argument of the function, which is the first value from the application context,
is passed as an inherited attribute arg. The result of the application is returned in
the synthesized attribute res.

Lambda abstraction For a lambda abstraction and a nonempty application con-
text the rule LAM.A is used to bind the abstracted variable to the variable reference

7.7. HASKELL TO AG TRANSLATION 145

Γ ;ε `P
N x Γ (x);ε

VAR.E

[x 7→ y] Γ ;∆ `P
N e ϕ;ψ

Γ ; y∆ `P
N λx :τ.e ϕ;ψ

LAM.A

Γ ;ε `P
N e2 ϕ′;ψ′

Γ ;ϕ′ ∆ `P
N e1 ϕ;ψ

Γ ;∆ `P
N e1 e2 ϕ;ψψ′

APP

α,β fresh
ψ′′ = data N′ | Pα x1 ... xn

Γ ′;ε `Pα
N′ e ϕ′;ψ′

x1 ... xn = fv (e)
Γ ′ = [x 7→@loc.α ... xn 7→@xn.self]

N′ = ntp (e)

ψ=
sem N | P
loc.β = Pα Γ (x1) ... Γ (xn)

Γ ;ε `P
N λx :τ.e ϕ;ψψ′ ψ′′

LAM.E

α fresh

ψ=
sem N | P
inst.α= ϕ′

α.arg= y

Γ ;∆ `P
N x ϕ′;ψ′

Γ ; y∆ `P
N x @α.res;ψψ′

VAR.A

α,β fresh

ψ=
sem N | P
inst.α= ϕ′

α.arg= y

Γ ;∆ `P
N case e of a ϕ′;ψ′

Γ ; y∆ `P
N case e of a @α.res;ψψ′

CASE.A

α,β fresh
(P1a1

1 ... ak
1→ e1) ... (Pn a1

n ... am
n → en) = as

Γ ′i ;ε `Pi
N′ ei ϕi;ψi

Γ ′i = [a
1
i 7→@ch1.self, ..., ak

i 7→@chk.self] Γ
Γ ;ε `P

N e ϕ′;ψ′

N′ = ntp (e)

ψ=
sem N | P
inst.α= ϕ′ ψ′′ =

sem N′ | Pi
lhs.β = ϕi

Γ ;ε `P
N case e of as @α.β;ψψ′ ψ′′ ψ1 ...ψn

CASE.E

α fresh

ψ=
sem N | P
loc.α= C y1 ... yn

Γ ; y1 ... yn `P
N C @loc.α;ψ

CON

α fresh

ψ=
sem N | P
loc.α= f y1 ... yn

Γ ; y1 ... yn `P
N f @loc.α;ψ

PRIM

f is a fold
β = fsa (f)

Γ ;ε `P
N a @α.self;ψ

Γ ;ε `P
N f a @α.β;ψ

FOLD

(f1 = e1) ... (fn = en) = fs
Γ ′;∆ `P

N e ϕ;ψ
Γ ′ = [f1 7→ ϕ1, ..., fn 7→ ϕn] Γ

Γ ′;ε `P
N ei ϕi;ψi

Γ ;∆ `P
N let fs in e ϕ;ψψ1 ...ψn

LET

Figure 7.7: Translation from λ to a minimal higher-order attribute grammar

146 CHAPTER 7. SUPPORTING INCREMENTALITY

from the application context. This is essentially β-reduction, but it is important to
note that sharing is retained.

For an empty application context, the rule LAM.E constructs a new production
Pα representing the abstraction. The function fv returns all free variables of the
expression. The set of free variables returned by fv never contains top level declara-
tions as defined in Section 7.7.5. For this an environment containing all top level
declarations is available, which again we leave implicit.

For each of the free variables a child is introduced to store the value of the vari-
able, and the environment for the translation of the rest of the expression contains
exactly these variables. The return value is the instantiation of the new production
with the corresponding values of the variables as children.

Application The rule APP translates the arguments of the application and adds
the resulting attribute reference to the application context. In the translation of e1
this might result in instantiating e1 as a higher order child and pass the argument
value as an inherited attribute.

Recursive let For translating a set of recursive let definitions, the rule LET trans-
lates each definition and adds all resulting attribute references to the environment
which is passed to all definitions as well as the body of the let. The resulting at-
tribute reference of the body is used as the result of the translation of the let.

Case distinction For case distinction there are two rules. The rule CASE.A is used
in case of a nonempty application context. This rule is similar to the rule VAR.A
and passes the attributes from the application context one by one as an inherited
attribute to the result of the translation of the case itself.

The rule CASE.E is the most complicated one. A case distinction is implemented
by introducing a new synthesized attribute β for the result. The result of the ex-
pression itself is instantiated as a higher order child α and the semantics of the
alternatives are added to the corresponding productions.

Constructor For a constructor the rule CON instantiates this constructor with the
application context. The type correctness of the λ expression guarantees that the
number of arguments in the application context is exactly the number of children
for this constructor.

7.8. CONCLUSION 147

Primitive functions Primitive function calls are translated by the rule PRIM to
MHOAG primitive function calls. When the input λ expression is type correct, we
know that the number of arguments that are applied to the function are exactly
the number of arguments that the primitive function takes. Hence, we take the full
application context as the arguments for the primitive function.

Special rules for folds This set of rules is an embedding of λ expressions into
MHOAGs. However, to obtain better sharing behaviour the rule FOLD is a spe-
cialised rule for the recursive positions as identified in Section 7.7.7. As folds are
implemented by case distinctions and case distinctions are translated to a synthe-
sized attribute, the result of a fold call is the value of the corresponding synthesized
attribute. The function fsa is a lookup function for finding the name of the synthe-
sized attribute corresponding to the fold.

7.8 Conclusion

In this chapter we described several ways in which attribute grammars can be struc-
tured to improve the incremental behaviour. The unique value generation and in-
spectability can be handled automatically, but have not been implemented in the
UUAGC yet. For the projection of inherited attributes automatic analyses may be
possible, but manually transforming attribute grammars to that shape is the best
possibility so far. The same holds for avoiding the usage of chained attributes,
which is best taken into account by the attribute grammar writer while developing
the attribute grammars.

One important remaining question is how much overhead is introduced with the
automatic translation from Section 7.7. The automatic translation of functions with
multiple parameters introduces many layers of higher-order children, for which our
incremental evaluation machinery has to track dependencies. It is therefore not
clear if the translation described in this chapter combined with our incremental
evaluation technique leads to the desired speedups.

148 CHAPTER 7. SUPPORTING INCREMENTALITY

8
Benchmarking

In this chapter we illustrate the effectiveness of the described technique for the
incremental evaluation of higher-order attribute grammars. We start this chapter
by giving several problems one may encounter during benchmarking which may
influence the results either positively or negatively. We then present the results of
the time benchmarks and end with memory benchmarks.

The first problem is finding the right input data, which we discuss in Section 8.1.
Finding the right input data for benchmarks is not trivial, and we discuss three
properties of the data that we believe to be important for reliable benchmarks,
and two ways of obtaining such input data. The second problem we discuss is
measuring execution time with the interplay of lazy evaluation (Section 8.2), and
the last problem is overhead (Section 8.3). We continue this chapter with solutions
to these problems and present the benchmarking results, both time measurement
and a more abstract measure, for our two running examples in Section 8.4.

Another property of interest is the memory consumption of our incremental
machinery compared to the non-incremental code. As extra information is stored
to avoid redundant computations it is expected that the memory consumption is
higher. We have claimed that, based on the implementation, the memory usage
should only increase by a constant factor, which we verify with a simple memory
benchmark in Section 8.5.

149

150 CHAPTER 8. BENCHMARKING

8.1 Input data

The choice of input data for benchmarking is important as it can have a large impact
on the results. For example, when benchmarking sorting algorithms by giving only
sorted lists as input, most algorithms are expected to finish in short time with a low
memory usage. From a comparison point of view that is uninformative however,
as the algorithms usually differ much more on unsorted inputs. To compare the
algorithms one should therefore provide all kinds of permutations of the lists, for
example also including duplicate elements.

We identify three properties of the input data that we consider to be important
for constructing benchmarks: correctness (Section 8.1.1), appropriateness (Sec-
tion 8.1.2), and distribution (Section 8.1.3) of the data. From our experience with
benchmarking our incremental evaluation machinery we found that satisfying these
three properties is important in order to prevent drawing wrong conclusions, and
that satisfying these properties seems to be sufficient for creating reliable bench-
marks. Furthermore, we describe how we can obtain input data using existing data
(Section 8.1.4) and using data generation (Section 8.1.5), and the types of problems
arising from obtaining data in such ways.

8.1.1 Correctness

The input data should be correct with respect to the input specification of the pro-
gram to be tested, by which we mean that it should lead to a positive execution
result. This property may seem obvious, but in the context of attribute grammars
we found that it is important to make sure that this property holds.

A problem with the AST definitions as a data type is that only syntactic structure
is enforced. However, programs often put more semantic restrictions on the input
data that are not enforced by the AST structure. For example, benchmarking a
program that expects sorted lists as input by generating random lists will not result
in a fair benchmark as random lists are likely to be unsorted. For unsorted lists
such programs usually give an error quickly, resulting in a short yet uninformative
runtime. It is obvious that it is easier to generate an arbitrary program that conforms
to the context-free grammar of a language, than to generate a well-typed program.

One solution to this problem is to use more precise types such as dependent
types [Bove and Dybjer, 2009]. With dependent types it is possible to restrict the
AST to precisely capture semantic restrictions like the sortedness of a list. The use
of attribute grammars in combination with dependent types has been explored in
[Middelkoop et al., 2011] but is outside the scope of this thesis. Here we therefore

8.1. INPUT DATA 151

rely on the programmer creating the benchmark to take the correctness of the input
into account.

8.1.2 Appropriateness

The second property that input data should satisfy is that is should be appropriate:
to get benchmark results that reflect actual use of the program the input data needs
to be similar to that of actual use. There are often many valid changes that are
not expected to occur in actual use, and for informative results we do not want to
include those changes in the benchmarks.

For example, in our case of an incremental compiler the changes to the input
are the changes that the programmer makes to the source code. In practice we
expect such changes to be either local, for example one function definition that has
changed, or a global refactoring like the renaming of a single function.

8.1.3 Distribution

Related to the appropriateness property is the distribution of the input data. For
most programs not every correct and appropriate input is equally likely to appear
in practice, which needs to be taken into account in benchmarking in order to get
results similar to practical use of the program.

For example, for the guestbook example one expects that inconsistencies such
as a guest leaving while he was not signed in are rare in practice. Such a change is
correct an appropriate because it does happen in practice, but for a good distribution
we expect such change to occur only seldom. Furthermore, we expect the hotel to
have maximum number of guests that can be signed in at the same time. This means
that a random list of Arrive and Leave entries is not representative for the actual
usage of the guestbook, even though the data is correct and the inconsistencies are
appropriate in a certain sense.

8.1.4 Existing data

One way of obtaining appropriate input data is to take an existing data set. Such a
data set can be obtained from actual usage of the program itself, or from programs
that have similar inputs. For example, in the case of the UHC the input data consists
of Haskell programs with changes to the source code, of which large codebases exist
on websites such as https://github.com which hosts code repositories for the
version control system Git.

https://github.com

152 CHAPTER 8. BENCHMARKING

Existing data usually satisfies the first two properties. When the data is taken
from the actual usage of the program, the data is correct and appropriate by defini-
tion. Whether the data has a proper distribution depends on the way the data was
obtained. For example, when the data is taken from a code repository the changes
are expected to be larger between subsequent commits than the changes between
subsequent compilation runs. Hence, to test an incremental compiler the data needs
to be gathered in a different way than from the commit history.

8.1.5 Data generation

Another way in which input data can be obtained is by generating it with the aid
of some randomised data generation tools. The main benefit of data generation is
that the user has full control over the generated data and more data can easily be
obtained when desired. The problem, however, is that the user needs to make sure
that the properties are satisfied, which is not an easy task as we will illustrate.

As a concrete example let us consider a type inferencer for the simply typed
lambda calculus. To generate correct input data for such type inferencer we need
to generate closed well-typed lambda expressions. The generation of closed lambda
expressions, where all variables are bound, is not hard, but many of such expres-
sions are ill-typed and thus not correct input for the type inferencer. A possible
solution is to use the type inferencer as a checker for the data generation by filter-
ing out the ill-typed expressions, and use the remaining expressions for time and
memory benchmarks.

Unfortunately, such a set of expressions does not meet the appropriateness and
distribution properties. The problem is that the fraction of closed lambda expres-
sions being well-typed is small, and that this fraction becomes even smaller when
the expressions grow. As a result of this, the filtering of well-typed expressions
among randomly generated ones is likely to result in only small and simple closed
lambda expressions. Hence, the distribution property is not met, because we expect
larger expressions in practical usage of the type inferencer. And even when some-
what larger expressions are generated, it is likely that they are not appropriate as
one would expect human written expressions to have more complex forms while
the randomly generated well-typed terms are likely to be of some simple form, for
example where each bound variable is used at most once.

A solution to this problem is to use the approach by [Claessen et al., 2014],
using a property-based data generation tool that generates random instances of
data types satisfying the property which are uniformly distributed over for each
size. With such an approach it is possible to generate data of a specific size that
is correct, appropriate and well distributed. Unfortunately, at the time of writing

8.2. LAZY EVALUATION 153

this thesis the code corresponding to the paper was not yet available and hence we
were not able to use such an approach here.

One remark on the previous paragraphs is that for benchmarking a type infer-
encer it is actually not the case that ill-typed expressions are useless: in practice the
type inferencer is confronted with ill-typed expressions and it is therefore useful to
include those in a benchmark. However, we do think that mixing these with well-
typed expressions skews the results, and we suggest to run separate benchmarks in
order to test the behaviour of the type inferencer when given ill-typed expressions.

8.2 Lazy evaluation

The lazy evaluation semantics of Haskell can be of great use, for example for con-
structing circular programs, but at the same time laziness can be problematic for
measuring execution time. We discuss three problems with time measurement of
Haskell programs.

Evaluation only happens when strictly necessary, which means that for the pur-
pose of time measurement we need to force the evaluation of the result of the com-
putation. In Haskell this can be done using the function deepseq from the package
deepseq1 which evaluates its argument to normal form. If seq or a similar function
is used the argument is only evaluated to weak head normal form, meaning that
only the outermost constructor is forced. In our case of the C] compiler this would
mean that only the first : of the list of instructions is forced, instead of the full list
of instructions as happens with deepseq. The evaluation to weak head normal form
usually takes only a fraction of the time of the full computation, which means that
not forcing the result properly can lead to completely wrong benchmark results.

Another problem is that Haskell shares computation results to avoid redundant
computations. In normal applications such behaviour can be beneficial, but with
benchmarking it is often desired to explicitly perform the same computation mul-
tiple times in order to get more accurate timings. However, when the benchmark
function is invoked as benchmark (f a) and evaluates its argument multiple times,
the call f a is only computed once. To avoid this problem the benchmarking library
criterion, which we introduce in Section 8.3, takes both f and a as separate pa-
rameters and performs the function application multiple times to avoid sharing of
the result.

A problem specifically arising with the benchmarking of incremental computa-
tion is that we want separate measurements of different parts of the computation.

1http://hackage.haskell.org/package/deepseq

http://hackage.haskell.org/package/deepseq

154 CHAPTER 8. BENCHMARKING

However, these different parts are not completely independent as the result of an
incremental change can only be computed from the state that is produced by the
initial computation. Because of lazy evaluation the state is only computed the first
time it is used, and separate measurements of the initial run and the incremental
change can therefore lead to wrong result in which the time for evaluating the state
is measured only once instead of in every benchmark run.

The solution we use is to perform two benchmarks: one benchmark for the ini-
tial computation, and one benchmark for the initial computation followed by an
incremental change. The time spent on the incremental change (and because of
the lazy semantics the time spent on actually building up the state from the initial
computation) can then be computed from the difference between these two mea-
surements.

8.3 Overhead

The intended use of the benchmarking is to compare the runtimes of our incremen-
tal evaluation machinery to the non-incremental evaluation machinery in order to
evaluate the effectiveness of the incremental approach. To run reliable benchmarks
extra boilerplate code is used, which can introduce runtime overhead and thus have
a negative influence on the result. We discuss two sources of overhead and how we
avoid problems with these sources of overhead.

8.3.1 Diff overhead

Throughout this thesis we have assumed that changes to the AST are given by an
external process, for instance a structure editor. In order to run reliable benchmarks
we need a static data set, which means that the changes can not come directly from
a structure editor. Instead, we either obtain data from a data source or generate it,
and then use this data to perform time measurements.

To obtain changes from static data we can use a diff algorithm such as the one
described in Section 4.6.3. For example, in the case of the C] example such diff
function can return the changes between the ASTs of two files. The attribute gram-
mar evaluation machinery can then be given the AST of the first file and the change,
such that the resulting SSM code for the second file can be computed incrementally.

Using a diff algorithm does however not come for free: it uses time and memory
to compute the difference. When the time used for computing the diff is only a small
fraction of the time used for the attribute evaluation there is no problem, but when
the diff is expensive and dominates the total runtime the benchmark results are

8.4. RESULTS 155

skewed. As the diff we have implemented is of the latter kind, we do not include it in
the time measurements at all. Instead, before running the benchmark we compute
the difference and force its evaluation, such that in the attribute evaluation the
changes to the AST are already computed.

8.3.2 Benchmarking overhead

To measure the runtime of different programs in a reliable way, each of them is run
many times on the same input and the average runtime is used for comparison. Fur-
thermore, statistics on the distribution of runtimes such as standard deviation are
computed to ensure that no unpredictable side effects occur. In our experience this
has proven to be useful for the discovery of the problems discussed in Section 8.2.

The boilerplate code used to run benchmarks in such way can introduce over-
head. We use the criterion2 package for running the benchmarks, which per-
forms all of the time measurement and statistics computation, and avoids the prob-
lem of including benchmarking overhead in time measurements. Furthermore, it
ensures that benchmarks results are evaluated to normal form and mitigates the
problems with undesired sharing.

8.4 Results

In this section we show the results of the time benchmarks for our two examples.
As indicated we use the criterion package for running the benchmarks, and we
use the barchart3 package for visualising the results. We show for each of the two
benchmarks in what way the data was constructed, what the runtimes of the differ-
ent approaches are as measured with criterion, and a table with the number of
evaluation steps.

An evaluation step is a measurement unit that we define in order to estimate the
potential effectiveness of our incremental evaluation machinery. The problem with
time measurement is that all runtime evaluation is measured at once, which does
not give a good indication of where the time is spent. Instead, our evaluation steps
specify three different types of operations that occur at runtime: the evaluation of a
semantic rule, the equality check on an inherited attribute, or an attribute grammar
step. Attribute grammar steps are all other operations that the attribute grammar
evaluation machinery performs, for example the invocation of a visit or the propa-
gation of a change. The purpose of the evaluation steps is to give a different view

2http://hackage.haskell.org/package/criterion
3http://hackage.haskell.org/package/barchart

http://hackage.haskell.org/package/criterion
http://hackage.haskell.org/package/barchart

156 CHAPTER 8. BENCHMARKING

on the type of operations occurring at runtime, and we do not know the relation
between the different operations and the actual runtime.

8.4.1 Guestbook example

The guestbook example has been constructed for the use in this thesis and therefore
there is no existing data. Although there probably exist similar examples for which
data can be found, it can be hard to convert the data to the correct format and get
the expected distribution. We have therefore generated the data ourselves.

Data generation The first challenge in generating an arbitrary guestbook is to
generate names. While it is not important for our application that the names are
existing names, we do want that duplicate names appear sometimes. We have there-
fore chosen to use a list of the 1 000 most common surnames in the United States4

and generate names by picking an arbitrary element from that list.
We have generated a list of 50 000 guestbook entries starting with the oldest

entry. For each entry we generate an Arrive entry with frequency 15, a Leave entry
of a guest that is signed in with a frequency of 10, and a Leave entry of an arbitrary
guest with a frequency of 1. We have set the maximum number of guests in the
hotel to 50 and the Arrive entry is only generated when the total number of signed in
guests is smaller than 50. Furthermore, the Leave entry can only be generated when
there are some guests signed in. This method of generating returns a guestbook with
2277 invalid reviews out of the 25461 Leave entries in total.

Timings In Figure 8.1 we show the time benchmark result for the guestbook ex-
ample. We have run four different benchmarks: initial, delete, insert leave and
insert arrive. The initial benchmark is the computation of the grade for the initial
guestbook with 50 000 elements. The other three are changes made to the guest-
book, which is either deleting or inserting an element at the beginning of the list,
in an arbitrary position between the tenth and twentieth element. Each of those
changes is relative to the initial guestbook.

We have run three different approaches on these benchmarks.
GuestbookAG_Lazy is the lazy translation of the attribute grammar definition of

the guestbook and has no support for incremental changes. In order to perform an
incremental step the initial guestbook is first altered and then the attribute grammar

4http://www.census.gov/topics/population/genealogy/data/2000_surnames.
html

http://www.census.gov/topics/population/genealogy/data/2000_surnames.html
http://www.census.gov/topics/population/genealogy/data/2000_surnames.html

8.4. RESULTS 157

Figure 8.1: Benchmark results of the guestbook example

evaluator is called again with the new guestbook. As expected, all four runs take
roughly the same time.

GuestbookAG_nonHO is the approach from Chapter 5 which performs incremen-
tal evaluation, but does not track changes to higher order children. Hence, in this
case the construction of the list of true grades is incremental but the list is always
completely traversed in order to compute the average. As we see, the initial run
takes about twice as much time as the initial run of the lazy evaluation, which is
the overhead introduced by the extra bookkeeping.

Finally, GuestbookAG is the incremental evaluator resulting from the technique
described in Chapter 6 which is the final result of this thesis. Again, the initial
run takes much more time than the lazy version because of the overhead. The
computation of the results for the changes are however much faster and after three
changes the incremental version is faster than the non-incremental version.

What is not visible is the figure is that the incremental code is actually several
orders of magnitude faster. All changes are relative to the initial run and to measure
these times we have performed the initial run together with one of the changes
and subtracted the runtime of the initial run. However, because of lazy evaluation
the state that is build up in the initial run is not actually evaluated in the initial

158 CHAPTER 8. BENCHMARKING

Semantic rules AG steps Equality checks
initial 243169 146588 0
delete 38 146749 0
insert leave 42 146745 0
insert arrive 30 146687 0
insert + delete 60 146956 0

Table 8.1: Evaluation steps for the guestbook example

run. After a change the code still needs to evaluate that state, and thus needs to
traverse a data structure with a size linear in the length of the input guestbook.
The incremental change is therefore a linear computation. However, this is only
the case for the first incremental change, and subsequent changes are much faster.
For example, a delete after an insert takes only 40 µs, which is a 4500x speedup
compared to the lazy variant. Note that such large speedups can only occur in this
example when the change happens to be at the beginning of the list.

Evaluation steps Apart from the time measurements, we have gathered statistics
on the evaluation steps in a separate benchmark run (Table 8.1). The first four
benchmarks are the same as the time benchmarks, the last line is an example of
two subsequent changes. For each of the changes the number of attribute grammar
steps taken is in the same order of magnitude as the initial run, due to the fact that
because of lazy evaluation the internal state needs to be evaluated. However, only
a small number of semantic rules is evaluated, which is where the speedup comes
from. Note that no equality checks occur because there are no inherited attributes
in the guestbook example.

Note that for the two subsequent changes the numbers are combined, which
means that for the delete after an insert only 146956−146745= 211 additional at-
tribute grammar steps are taken and 30 semantic rules are evaluated. When future
changes happen at the beginning of the list similar numbers are expected, leading
to large speedups.

8.4.2 C] example

We have used the C] compiler throughout this thesis as an example that is closer to
the real-world use of attribute grammars for compiler construction than the guest-
book example. For the benchmarks we therefore want to use real-world data, which

8.4. RESULTS 159

int numdivisors (int n) {
int c;
int j= 2;
int ret= 1;
while (j ∗ j¶ n) {

if (n % j≡ 0) {
c= 0;
while (n % j≡ 0) {

c= c+ 1;
n= n / j;
}
ret= ret ∗ (c+ 1);
}
j= j+ 1;
}
if (n> 1) ret= ret ∗ 2;
return ret;
}

Figure 8.2: C] function for computing number of divisors

in this case are C] programs. Unfortunately, our toy compiler only supports a lim-
ited subset of C], for example the support for Strings is missing, and thus only a
very limited set of C] programs can be used for benchmarking. We have not been
able to find any non-trivial C] programs that are supported by our compiler, and we
have used data generation instead.

Data construction As described in Section 8.1.5 the automatic generation of pro-
grams is not an easy task. Writing generators for C] programs that generate valid
programs that are similar to those appearing in real-world use of C] is a hard task.
For illustration purposes of the techniques from this these we have therefore chosen
to write several C] files by hand.

We started by constructing a moderately large file (260 lines) containing several
arithmetic functions. The largest of those functions is numdivisors which computes
the number of divisors of its int parameter (Figure 8.2). From this file we have then
created three new files that each differ from the initial file in a specific way. The first

160 CHAPTER 8. BENCHMARKING

Figure 8.3: Benchmark results of the C] example

change is the addition of a new function to the file, the second is the deletion of a
function from the file, and the last is the refactoring of changing all while constructs
to for constructs. The initial file contains a total of 16 while loops, and the result
of computing the diff between the version with while and with for loops contains
77 insertions.

Timings The results of the time benchmarks are shown in Figure 8.3. The three
different approaches are similar to those of the guestbook example, and the initial
run with the three different types of changes have been explained in the previous
paragraph. From this figure our incremental evaluation machinery does not look
promising: the runtime has increased up to a factor 15.

Evaluation steps In Table 8.2 we show the evaluation steps for these benchmarks,
which are more promising than the time measurements. For the insert and delete
the number of evaluated semantic rules and the number of attribute grammar steps
have decreased, while only a few equality checks need to be performed.

For the change from while to for the number of semantic rules that are evaluated
is actually lower than necessary; in a normal run on the file with all whiles replaced

8.5. MEMORY CONSUMPTION 161

Semantic rules AG steps Equality checks
initial 1919 6933 0
insert 46 3220 5
delete 52 3094 4
while→for 2308 15556 148

Table 8.2: Evaluation steps for the C] example

by for there are 3511 semantic rules evaluated and 8509 attribute grammar steps
taken. The number of evaluated semantic rules has thus decreased by 35%, but the
price that is paid is that many more attribute grammar steps are taken and many
equality checks are performed.

From the benchmark results for our two example we can not draw reliable con-
clusions, but the results suggest that the equality checks are too expensive. In order
to get actual speedups it is therefore essential to have more efficient equality checks,
for example using a technique such as hash-consing.

8.5 Memory consumption

The main goal of this thesis is to minimise the time needed for recomputing the
attributes after a change to the AST. To achieve that goal visits are memoized and
thus more memory is used. We have claimed that the memory usage only increases
by a constant factor when using our techniques for incremental evaluation, which
we evaluate in this section.

In order to check the memory usage over time we create a memory benchmark
based on the guestbook used for time measurements with 50000 entries. During the
executing of the memory benchmark we alternate between inserting and deleting
an entry in the guestbook, such that the total size of the guestbook stays constant.

In Figure 8.4 we show the heap profile of the benchmark. There is a peak in
memory usage after the initial run, where about 60 megabytes of data is used. This
peak is due to lazy evaluation, which results in the internal state not being evaluated
until it is used when the first incremental change happens. After that change has
happened the memory usage stays constant at about 35 megabytes. In comparison,
the lazy translation of the evaluator uses about 25 megabytes of memory at its peak,
which means that the memory usages is indeed within a constant factor and stays
constant over time when the size of the AST stays constant.

162 CHAPTER 8. BENCHMARKING

GuestbookMem +RTS -h 349,504,558 bytes x seconds

seconds0.0 2.0 4.0 6.0 8.0

b
y
te

s

0M

5M

10M

15M

20M

25M

30M

35M

40M

45M

50M

(107)Main.CAF

Figure 8.4: Memory profile for the guestbook example with a sequence of 1000
delete and inserts

9
Discussion and conclusion

In this thesis we have described our technique for the incremental evaluation of
higher-order attribute grammars. We have illustrated and evaluated the technique
using two running example. For the guestbook example the results are promising,
while for the C] example the time benchmarks do not show the desired results.
The measurements for the evaluation steps do show that certain computations are
avoided, but it is clear that more work is necessary in order for this approach to be
usable in practice.

We start this chapter by discussing the relevant related work (Section 9.1) and
other approaches to the incremental evaluation of attribute grammars. Future work
is discussed in Section 9.2 and Section 9.3 and finally we conclude this thesis in
Section 9.4.

9.1 Related work

The automatic construction of incremental programs from declarative specifications
such as attribute grammars is not a new research topic and many papers related to
this topic have been written. In this section we highlight the most important related
work and describe the relation to the work in this thesis.

163

164 CHAPTER 9. DISCUSSION AND CONCLUSION

9.1.1 Simple change propagation

[Demers et al., 1981] and [Yeh, 1983, Yeh and Kastens, 1988] describe a similar
technique for the incremental evaluation of attribute grammars by constructing the
dependency graph for the attributes and propagate changes through this graph in
a breadth-first way. Conceptually this approach is similar to our approach, but it
has a major drawback: higher-order attributes are not supported. Note that this
restriction is not surprising as these papers were written before the introduction of
higher-order attribute grammars.

The problem with this approach in combination with higher-order attributes
is the same as the one we have described in this thesis. Whenever a higher-order
attribute changes the connection with the previous instantiation of the higher-order
child is lost and all attributes are recomputed.

A difference with our approach is that only full subtree replacements are sup-
ported, and extending the approach with derived dependency tracking for higher-
order children as we do in this thesis is therefore not expected to be effective.

9.1.2 Synthesizer generator

A tool for constructing structure editors from declarative attribute grammar specifi-
cations is the synthesizer generator [Reps and Teitelbaum, 1984]. The incremental
evaluation of higher-order attribute grammars in the context of the synthesizer gen-
erator is described by [Teitelbaum and Chapman, 1990]. Their algorithm performs
a restricted form of derived dependency tracking for higher-order children to en-
sure sharing of previously computed attributes for higher-order children, such that
if a subtree of a higher-order child is unchanged then no recomputation happens.

Although this approach does support higher-order attributes, it is not optimal:
for some types of changes the higher-order children change in such way that re-
computation happens for attributes that have not changed, while our approach is
optimal in the number of attribute values being recomputed. However, the over-
head of our approach is high and it is not known how often in practice changes
occur for which the synthesizer generator does redundant recomputations.

9.1.3 Function caching

In the context of a purely functional implementation of higher-order attribute gram-
mars, [Vogt et al., 1991] and [Saraiva et al., 2000] describe a technique for the in-
cremental evaluation of higher-order attribute grammars using function caching.
With function caching a global memoization table is constructed in which every

9.1. RELATED WORK 165

visit function call is cached. Whenever a visit is performed an entry is inserted into
the table with as key the subtree for which the visit was performed and the inherited
attributes, and as value the synthesized attributes. For the next visit to the same
the subtree, this subtree and inherited attributes are used for a table lookup, and
the visit is only performed when no cache entry exists.

The advantage of function caching is that higher-order attributes are supported
in a natural way without restrictions on their construction. However, there are sev-
eral drawbacks to this approach. First of all there is the overhead of the lookup,
which uses the whole subtree and the values of the inherited attributes as key in a
large table and thus needs to perform comparisons between subtrees and attributes
in order to find the corresponding element in the table. The comparison between
the subtrees is however done very efficiently since all values are constructed us-
ing hash-consing, which ensures a unique representation in memory for each sub-
tree such that instead of comparing the values of the subtrees themselves, only the
pointers need to be compared. However, even with hash-consing many comparisons
need to be performed.

Another drawback of this approach is the memory consumption. Whenever a
visit is performed because its arguments are different from the previous evalua-
tions, an entry is added to the memoization table. To avoid infinite growth of this
table during the execution a purging strategy is used to delete entries from the table
and keep its memory usage limited. Such a purging strategy can never predict fu-
ture lookups to the memoization table and can therefore never be perfect; for each
strategy there exist cases in which entries are removed which could have avoided
recomputation.

Finally, implementing function caching efficiently requires language support.
This restriction highly limits the applicability as support for function caching does
not exist in modern functional languages such as Haskell.

9.1.4 Self-adjusting computation

Related to the incremental evaluation of attribute grammars is the technique of self-
adjusting computation [Acar, 2005] which works for arbitrary functional programs.
In a self-adjusting program the parts of the input that can change during the exe-
cution are marked, and each computation that uses such changeable data must use
special primitives for reading and writing the data. During the execution of such
a program the runtime machinery builds up a dependency graph of all changeable
data and propagates changes efficiently through the program using that dependency
graph.

166 CHAPTER 9. DISCUSSION AND CONCLUSION

The main difference to our approach is that, because the approach is more gen-
eral, the dependency graph is built dynamically during execution instead of at com-
pile time. The advantage of using a more restricted form of programs such as at-
tribute grammars is that dependency information is available at compile time, which
can then be used to statically generate more efficient evaluators. Other than this
the approach is quite similar in the sense that the same kind of restrictions apply;
equality is used for deciding whether or not a computation has changed, and com-
putations need to have a specific structure in order for the technique to be effective.

9.1.5 Adapton

The work on Adapton [Hammer et al., 2014], a core calculus for incremental com-
putation and corresponding OCaml library, is a more recent advancement in the
field of incremental computation. The core calculus contains special operations for
propagating changes through computations in a demand driven way. Because this
approach is more recent than most of our work we have not used their approach
in combination with attribute grammars, but it would be interesting future work to
see whether the approaches can be combined.

9.1.6 Computational complexity

For the evaluation of our approach we have used time and memory benchmarks,
and evaluation steps. These measures give a rough indication of the potential im-
provements of our technique, but the computational complexity could be analysed
more precisely using the approach from [Çiçek et al., 2015], who develop a refine-
ment type system for proving asymtotic bounds on incremental computation time.

9.2 Future work

Throughout this thesis we have already discussed several shortcomings of our ap-
proach and possible solutions to these shortcomings. In this section we list the most
important parts of future work that we believe to be necessary for our approach to
become applicable in practice.

9.2.1 Other backend

A major problem with our current approach is that the overhead is large. For the C]

example our incremental evaluation machinery does evaluate fewer attributes than

9.2. FUTURE WORK 167

the non-incremental evaluation machinery, but the price paid is a runtime which is
15x higher in some cases. With such an overhead the technique is not practically
usable, but we believe that there are many improvements to be made.

In particular, we have implemented our evaluation machinery in Haskell using
several compiler extensions specific to the GHC. It can be the case that the time
overhead is related to particular implementation details in Haskell, and not to the
conceptual solution presented in this thesis. Haskell is a general purpose language
and the GHC can therefore fail to optimise some parts of the program for which
more information is known in the attribute grammar compiler. For example, be-
cause our attribute grammars are ordered the attributes may be computed in a
strict way instead of using lazy evaluation.

Another possibility, that we suggest as future work, is to let the attribute gram-
mar compiler generate code in a backend language more tailored towards incre-
mental computation, for example the core calculus of Adapton.

9.2.2 Automatic projection

As discussed in Section 7.6 the automatic projection of inherited attributes can help
to avoid redundant computations. We believe that simple manual annotations from
the attribute grammar programmer specifying properties of the attribute can be
enough to automatically perform the projections. Furthermore, for common types
such as Map these properties can even be even built in to the attribute grammar
compiler. It is future work to investigate such an approach and verify whether
useful results can be obtained in such way.

9.2.3 Inspectability

Our technique works only when all higher-order attributes are inspectable, by which
we mean that the semantic rules for higher-order attributes are of a restricted form
consisting only of constructors, attribute references and constants. In practical ap-
plications this is however not the case, and in Section 7.5 we have shown that
arbitrary Haskell expressions can be automatically translated to attribute grammar
code to solve this problem. The question does however arise whether this approach
is feasible on a real-world scale.

Another possibility is to extend the language that can be used for the semantic
rules to support a wider range of programs. We have already added the support for
if-then-else-statements and it could be extended with for example pattern matching
and standard operators. We suggest that in future work a language is designed
which is inspectable such that the attribute grammar compiler can track changes

168 CHAPTER 9. DISCUSSION AND CONCLUSION

to higher-order attributes, but is also expressive enough for many programs to be
written in an appealing way.

9.2.4 Granularity

Our approach caches visit functions for each node in the AST, but in practice at-
tribute computations are often small and likely to have a low runtime. We expect
that our approach is much more effective when the caching only happens in spe-
cific nodes in the AST. This does result in some redundant computations, but if these
computations are cheaper than the overhead of avoiding them efficiency is gained.

A profiling based approach such as [Söderberg and Hedin, 2011] use can be
beneficial for automatically deciding where in the AST to do the caching. Such an
approach does require real world usage data which is not always easy to obtain as
we have discussed in Chapter 8. In particular, the attribute grammar programmer
should provide such data which can then be used by the attribute grammar compiler
to optimise the program.

9.2.5 Synthesized attribute equality

In our approach we only efficiently handle cases where the inherited attributes have
not changed, but the same trick might be applied to the synthesized attributes. The
inputs of a visit of a node are not only the inherited attributes of that visit, but also
the synthesized attributes for the visits of the children of that node that are invoked.
After a change to a child a visit thus is re-evaluated, even though the values of these
synthesized attributes may be the same. By also requiring equality instances for
our synthesized attributes it would be possible to also avoid such recomputations.
However, the values of the synthesized attributes of the child are only known after
doing the part of a visit in which the inherited attributes of that child are computed
and the child visit is invoked. It is therefore not immediately clear how the visit
functions should be changed to support this form of incrementality.

9.2.6 Serialisation

In this thesis we have considered incremental evaluation as a program for which the
input changes over time during the execution, for example because the user edits
a program in a structure editor. For the use in applications such as an incremental
compiler these changes do however happen in different executions of the program.
In order to support such cases the internal state of the incremental evaluation ma-
chinery needs to be stored in a file, but with our current approach using closures

9.3. LONG TERM FUTURE WORK 169

that is not trivial. It is therefore future work to make sure that our approach sup-
ports the serialisation of the internal state such that it can be written to the file
system to be used in future executions of the program.

9.2.7 Correctness and soundness

An important assumption of the incremental evaluation machinery is that an incre-
mental run returns the same result as its non-incremental counterpart. Although
we have verified that our techniques work correctly for the examples, we have not
yet formally proved soundness or correctness of our incremental transformation.

9.2.8 Utrecht Haskell Compiler

For the concrete case of the UHC there is some more engineering work to be per-
formed next to the above suggestions. In particular, the UHC is not constructed
as a single attribute grammar, but instead consists of separate attribute grammar
computations which are composed at the Haskell level. In other words, higher-
order children are not used for the implementation of different compiler phases but
instead the higher-order kind of construction is manually implemented in Haskell.

This implementation detail is not so important for regular attribute grammar
evaluation because the attribute grammar compiler does not perform optimizations
that need whole program analysis. However, for our incremental evaluation ma-
chinery it is essential that the whole program is written as an attribute grammar in
order to perform the dependency tracking. Unfortunately it is not trivial to rewrite
the UHC in such way as other bookkeeping is performed at the top level in Haskell,
and the restructuring of the UHC to consist of a single attribute grammar is therefore
future work.

9.3 Long term future work

So far we have described the construction of incremental attribute grammar evalu-
ation machinery by using Haskell as a backend to the attribute grammar compiler.
However, when using more low-level runtime machinery we could also go the other
way: use attribute grammars as a backend for the UHC. The theoretical possibility
follows from Section 7.5 in which we have already described how arbitrary Haskell
programs can be translated to attribute grammars, and it would be interesting to
see how well that works in practice.

170 CHAPTER 9. DISCUSSION AND CONCLUSION

Such an approach gives automatic tupling for free already because of the use of
attribute grammars, and if the incremental evaluation works as desired this gives
incremental evaluation of arbitrary Haskell programs for free. With the current
results of this thesis we do not expect any practically usable result from such an
approach, but when some of the issues mentioned above are solved it can be an
interesting research approach to incremental computation for functional languages
in general.

9.4 Conclusion

The work in this thesis provides a new technique for the incremental evaluation of
higher-order attribute grammars. We have shown that it can be effective in some
cases, but that more work is necessary in order for this technique for be usable in
practice. In this chapter we have compared our technique to other approaches and
described the differences. We have suggested several topics for further research
that can improve the technique and we believe that with those suggested improve-
ments attribute grammars are a valuable tool for the construction of programs with
incremental evaluation for free.

Bibliography

[Acar, 2005] Acar, U. A. (2005). Self-Adjusting Computation. PhD thesis, Carnegie
Mellon University.

[van Binsbergen et al., 2015] van Binsbergen, L. T., Bransen, J., and Dijkstra, A.
(2015). Linearly ordered attribute grammars: With automatic augmenting de-
pendency selection. In Proceedings of the 2015 Workshop on Partial Evaluation
and Program Manipulation, PEPM ’15, pages 49–60, New York, NY, USA. ACM.

[Bird, 1984] Bird, R. S. (1984). Using circular programs to eliminate multiple
traversals of data. Acta Informatica, 21:239–250.

[Bove and Dybjer, 2009] Bove, A. and Dybjer, P. (2009). Dependent types at work.
In Bove, A., Barbosa, L., Pardo, A., and Pinto, J., editors, Language Engineering
and Rigorous Software Development, volume 5520 of Lecture Notes in Computer
Science, pages 57–99. Springer Berlin Heidelberg.

[van den Brand and Klint, 2007] van den Brand, M. G. and Klint, P. (2007). ATerms
for manipulation and exchange of structured data: It’s all about sharing. Inf.
Softw. Technol., 49(1):55–64.

[Bransen et al., 2014a] Bransen, J., Dijkstra, A., and Swierstra, D. (2014a). Ex-
ploiting attribute grammars to achieve automatic tupling. Technical Report UU-
CS-2014-013, Department of Information and Computing Sciences, Utrecht Uni-
versity.

[Bransen et al., 2014b] Bransen, J., Dijkstra, A., and Swierstra, S. D. (2014b). Lazy
stateless incremental evaluation machinery for attribute grammars. In Proceed-
ings of the ACM SIGPLAN 2014 Workshop on Partial Evaluation and Program Ma-
nipulation, PEPM ’14, pages 145–156, New York, NY, USA. ACM.

[Bransen et al., 2015a] Bransen, J., Dijkstra, A., and Swierstra, S. D. (2015a). In-
cremental evaluation of higher order attributes. In Proceedings of the ACM SIG-

171

172 BIBLIOGRAPHY

PLAN 2015 Workshop on Partial Evaluation and Program Manipulation, PEPM
’15, New York, NY, USA. ACM.

[Bransen and Magalhães, 2013] Bransen, J. and Magalhães, J. P. (2013). Generic
representations of tree transformations. In Proceedings of the the 9th ACM SIG-
PLAN Workshop on Generic Programming (WGP’13), WGP ’13.

[Bransen et al., 2012] Bransen, J., Middelkoop, A., Dijkstra, A., and Swierstra,
S. D. (2012). The Kennedy-Warren algorithm revisited: ordering Attribute
Grammars. In Russo, C. and Zhou, N.-F., editors, Practical Aspects of Declarative
Languages, volume 7149 of Lecture Notes in Computer Science, pages 183–197.
Springer Berlin Heidelberg.

[Bransen et al., 2015b] Bransen, J., van Binsbergen, L., Claessen, K., and Dijkstra,
A. (2015b). Linearly ordered attribute grammar scheduling using SAT-solving.
In Baier, C. and Tinelli, C., editors, Tools and Algorithms for the Construction and
Analysis of Systems, volume 9035 of Lecture Notes in Computer Science, pages
289–303. Springer Berlin Heidelberg.

[Bryant and Velev, 2002] Bryant, R. E. and Velev, M. N. (2002). Boolean satisfia-
bility with transitivity constraints. ACM Trans. Comput. Logic, 3(4):604–627.

[Cai et al., 2014] Cai, Y., Giarrusso, P. G., Rendel, T., and Ostermann, K. (2014).
A theory of changes for higher-order languages: Incrementalizing λ-calculi by
static differentiation. In Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’14, pages 145–155,
New York, NY, USA. ACM.

[Cheney and Hinze, 2003] Cheney, J. and Hinze, R. (2003). First-class phantom
types. Technical report, Cornell University.

[Çiçek et al., 2015] Çiçek, E., Garg, D., and Acar, U. (2015). Refinement types for
incremental computational complexity. In Vitek, J., editor, Programming Lan-
guages and Systems, volume 9032 of Lecture Notes in Computer Science, pages
406–431. Springer Berlin Heidelberg.

[Claessen et al., 2014] Claessen, K., Duregård, J., and Pałka, M. (2014). Generat-
ing constrained random data with uniform distribution. In Codish, M. and Sumii,
E., editors, Functional and Logic Programming, volume 8475 of Lecture Notes in
Computer Science, pages 18–34. Springer International Publishing.

BIBLIOGRAPHY 173

[Claessen et al., 2009] Claessen, K., Een, N., Sheeran, M., Sörensson, N., Voronov,
A., and Åkesson, K. (2009). Sat-solving in practice. Discrete Event Dynamic
Systems, 19(4):495–524.

[Codish and Zazon-Ivry, 2010] Codish, M. and Zazon-Ivry, M. (2010). Pairwise car-
dinality networks. In Clarke, E. and Voronkov, A., editors, Logic for Programming,
Artificial Intelligence, and Reasoning, volume 6355 of Lecture Notes in Computer
Science, pages 154–172. Springer Berlin Heidelberg.

[Cook, 1971] Cook, S. A. (1971). The complexity of theorem-proving procedures.
In Proceedings of the Third Annual ACM Symposium on Theory of Computing,
STOC ’71, pages 151–158, New York, NY, USA. ACM.

[Demers et al., 1981] Demers, A., Reps, T., and Teitelbaum, T. (1981). Incremental
evaluation for attribute grammars with application to syntax-directed editors. In
Proceedings of the 8th ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages, POPL ’81, pages 105–116, New York, NY, USA. ACM.

[Dijkstra et al., 2009] Dijkstra, A., Fokker, J., and Swierstra, S. D. (2009). The
architecture of the Utrecht Haskell Compiler. In Proceedings of the 2nd ACM
SIGPLAN symposium on Haskell, Haskell ’09, pages 93–104, New York, NY, USA.
ACM.

[Dirac, 1961] Dirac, G. A. (1961). On rigid circuit graphs. Abh. Math. Sem. Univ.
Hamburg, 25:71–76.

[Eén and Sörensson, 2004] Eén, N. and Sörensson, N. (2004). An extensible sat-
solver. In Giunchiglia, E. and Tacchella, A., editors, Theory and Applications of
Satisfiability Testing, volume 2919 of Lecture Notes in Computer Science, pages
502–518. Springer Berlin Heidelberg.

[Engelfriet and Filè, 1982] Engelfriet, J. and Filè, G. (1982). Simple multi-visit
attribute grammars. Journal of computer and system sciences, 24(3):283–314.

[Gibbons, 2007] Gibbons, J. (2007). Datatype-generic programming. In Back-
house, R., Gibbons, J., Hinze, R., and Jeuring, J., editors, Spring School on
Datatype-Generic Programming, volume 4719 of Lecture Notes in Computer Sci-
ence. Springer-Verlag.

[Gibbons, 2013] Gibbons, J. (2013). Accumulating attributes. In Hage, J. and
Dijkstra, A., editors, Een Lawine van Ontwortelde Bomen. Liber Amicorum for S.
Doaitse Swierstra, in celebration of his retirement. Department of Information and
Computing Sciences, Utrecht University, Utrecht, The Netherlands.

174 BIBLIOGRAPHY

[Hammer et al., 2014] Hammer, M. A., Phang, K. Y., Hicks, M., and Foster, J. S.
(2014). Adapton: Composable, demand-driven incremental computation. SIG-
PLAN Not., 49(6):156–166.

[Hedin, 1994] Hedin, G. (1994). An overview of door attribute grammars. In
Proceedings of the 5th International Conference on Compiler Construction, CC ’94,
pages 31–51, London, UK, UK. Springer-Verlag.

[Hedin, 2000] Hedin, G. (2000). Reference attributed grammars. Informatica
(Slovenia), 24(3).

[Heeren et al., 2003] Heeren, B., Leijen, D., and van IJzendoorn, A. (2003). He-
lium, for learning haskell. In Proceedings of the 2003 ACM SIGPLAN Workshop
on Haskell, Haskell ’03, pages 62–71, New York, NY, USA. ACM.

[Hindley, 1969] Hindley, R. (1969). The principal type-scheme of an object in com-
binatory logic. Trans. Amer. Math. Soc, 146:29–60.

[Hinze et al., 2002] Hinze, R., Jeuring, J., and Löh, A. (2002). Type-indexed data
types. In Proceedings of the 6th International Conference on Mathematics of Pro-
gram Construction, MPC ’02, pages 148–174, London, UK. Springer-Verlag.

[Holdermans et al., 2006] Holdermans, S., Jeuring, J., Löh, A., and Ro-
driguez Yakushev, A. (2006). Generic views on data types. In Proceedings of
the 8th International Conference on Mathematics of Program Construction, vol-
ume 4014 of Lecture Notes in Computer Science, pages 209–234. Springer.

[Kastens, 1980] Kastens, U. (1980). Ordered attributed grammars. Acta Informat-
ica, 13:229–256.

[Kennedy and Warren, 1976] Kennedy, K. and Warren, S. K. (1976). Automatic
generation of efficient evaluators for attribute grammars. In Proceedings of the
3rd ACM SIGACT-SIGPLAN symposium on Principles on programming languages,
POPL ’76, pages 32–49, New York, NY, USA. ACM.

[Kiselyov, 2011] Kiselyov, O. (2011). Generic zipper: the context of a traversal.
http://okmij.org/ftp/continuations/zipper.html.

[Knuth, 1968] Knuth, D. E. (1968). Semantics of context-free languages. Theory
of Computing Systems, 2(2):127–145.

[Knuth, 1971] Knuth, D. E. (1971). Semantics of context-free languages: Correc-
tion. Theory of Computing Systems, 5:95–96.

http://okmij.org/ftp/continuations/zipper.html

BIBLIOGRAPHY 175

[Kuiper and Swierstra, 1987] Kuiper, M. F. and Swierstra, S. D. (1987). Using at-
tribute grammars to derive efficient functional programs. In Computing Science
in the Netherlands CSN’87.

[La Poutré and van Leeuwen, 1988] La Poutré, J. and van Leeuwen, J. (1988).
Maintenance of transitive closures and transitive reductions of graphs. In Göttler,
H. and Schneider, H.-J., editors, Graph-Theoretic Concepts in Computer Science,
volume 314 of Lecture Notes in Computer Science, pages 106–120. Springer Berlin
Heidelberg.

[Launchbury and Peyton Jones, 1994] Launchbury, J. and Peyton Jones, S. L.
(1994). Lazy functional state threads. In Proceedings of the ACM SIGPLAN 1994
conference on Programming language design and implementation, PLDI ’94, pages
24–35, New York, NY, USA. ACM.

[Lempsink et al., 2009] Lempsink, E., Leather, S., and Löh, A. (2009). Type-safe
diff for families of datatypes. In Proceedings of the 2009 ACM SIGPLAN workshop
on Generic programming, WGP ’09, pages 61–72, New York, NY, USA. ACM.

[Löh and Magalhães, 2013] Löh, A. and Magalhães, J. P. (2013). Everything you
always wanted to know about Doaitse. In Hage, J. and Dijkstra, A., editors, Een
Lawine van Ontwortelde Bomen. Liber Amicorum for S. Doaitse Swierstra, in cel-
ebration of his retirement. Department of Information and Computing Sciences,
Utrecht University, Utrecht, The Netherlands.

[Magalhães, 2013] Magalhães, J. P. (2013). Optimisation of generic programs
through inlining. In Hinze, R., editor, Implementation and Application of Func-
tional Languages, Lecture Notes in Computer Science, pages 104–121. Springer
Berlin Heidelberg.

[McBride, 2001] McBride, C. (2001). The derivative of a regular type is its
type of one-hole contexts. Unpublished manuscript, available at http://
strictlypositive.org/diff.pdf.

[Middelkoop, 2012] Middelkoop, A. (2012). Inference of Program Properties with
Attribute Grammars, Revisited. PhD thesis, Utrecht University.

[Middelkoop et al., 2011] Middelkoop, A., Dijkstra, A., and Swierstra, S. (2011).
Dependently typed attribute grammars. In Hage, J. and Morazán, M., editors,
Implementation and Application of Functional Languages, volume 6647 of Lecture
Notes in Computer Science, pages 105–120. Springer Berlin Heidelberg.

http://strictlypositive.org/diff.pdf
http://strictlypositive.org/diff.pdf

176 BIBLIOGRAPHY

[Middelkoop et al., 2012] Middelkoop, A., Elyasov, A. B., and Prasetya, W. (2012).
Functional instrumentation of actionscript programs with asil. In Gill, A. and
Hage, J., editors, Implementation and Application of Functional Languages, vol-
ume 7257 of Lecture Notes in Computer Science, pages 1–16. Springer Berlin Hei-
delberg.

[Milner, 1978] Milner, R. (1978). A theory of type polymorphism in programming.
Journal of Computer and System Sciences, 17:348–375.

[van Noort et al., 2008] van Noort, T., Rodriguez Yakushev, A., Holdermans, S.,
Jeuring, J., and Heeren, B. (2008). A lightweight approach to datatype-generic
rewriting. In Proceedings of the ACM SIGPLAN workshop on Generic programming,
WGP ’08, pages 13–24, New York, NY, USA. ACM.

[Peyton Jones, 2003] Peyton Jones, S. L. (2003). Haskell 98, Language and Li-
braries. The Revised Report. Cambridge University Press. Journal of Functional
Programming Special Issue 13(1).

[Reps and Teitelbaum, 1984] Reps, T. and Teitelbaum, T. (1984). The synthesizer
generator. SIGPLAN Not., 19:42–48.

[Rodriguez Yakushev et al., 2009] Rodriguez Yakushev, A., Holdermans, S., Löh,
A., and Jeuring, J. (2009). Generic programming with fixed points for mutu-
ally recursive datatypes. In Proceedings of the 14th ACM SIGPLAN international
conference on Functional programming, ICFP ’09, pages 233–244, New York, NY,
USA. ACM.

[Saraiva, 1999] Saraiva, J. (1999). Purely Functional Implementation of Attribute
Grammars. PhD thesis, Utrecht University.

[Saraiva et al., 2000] Saraiva, J., Swierstra, S. D., and Kuiper, M. F. (2000). Func-
tional incremental attribute evaluation. In Proceedings of the 9th International
Conference on Compiler Construction, CC ’00, pages 279–294, London, UK.
Springer-Verlag.

[Söderberg and Hedin, 2011] Söderberg, E. and Hedin, G. (2011). Automated se-
lective caching for reference attribute grammars. In Malloy, B., Staab, S., and
van den Brand, M., editors, Software Language Engineering, volume 6563 of Lec-
ture Notes in Computer Science, pages 2–21. Springer Berlin Heidelberg.

[van Steenbergen et al., 2010] van Steenbergen, M., Magalhães, J. P., and Jeuring,
J. (2010). Generic selections of subexpressions. In Proceedings of the 6th ACM

BIBLIOGRAPHY 177

SIGPLAN Workshop on Generic Programming, WGP ’10, pages 37–48, New York,
NY, USA. ACM.

[Swierstra et al., 1998] Swierstra, S. D., Alcocer, P. R. A., and Saraiva, J. (1998).
Designing and Implementing Combinator Languages. In Advanced Functional
Programming, pages 150–206.

[Teitelbaum and Chapman, 1990] Teitelbaum, T. and Chapman, R. (1990).
Higher-order attribute grammars and editing environments. In Proceedings of
the ACM SIGPLAN 1990 Conference on Programming Language Design and Imple-
mentation, PLDI ’90, pages 197–208, New York, NY, USA. ACM.

[Visser and Löh, 2010] Visser, S. and Löh, A. (2010). Generic storage in Haskell.
In Proceedings of the 6th ACM SIGPLAN Workshop on Generic Programming, WGP
’10, pages 25–36, New York, NY, USA. ACM.

[Vogt et al., 1989] Vogt, H. H., Swierstra, S. D., and Kuiper, M. F. (1989). Higher
order attribute grammars. In Proceedings of the ACM SIGPLAN 1989 Conference
on Programming language design and implementation, volume 24 of PLDI ’89,
pages 131–145, New York, NY, USA. ACM.

[Vogt et al., 1991] Vogt, H. H., Swierstra, S. D., and Kuiper, M. F. (1991). Efficient
incremental evaluation of higher order attribute grammars. In PLILP, pages 231–
242.

[Wadler, 1990] Wadler, P. (1990). Comprehending monads. In Proceedings of the
1990 ACM conference on LISP and functional programming, LFP ’90, pages 61–78,
New York, NY, USA. ACM.

[Xi et al., 2003] Xi, H., Chen, C., and Chen, G. (2003). Guarded recursive datatype
constructors. In Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’03, pages 224–235, New York, NY,
USA. ACM.

[Yeh, 1983] Yeh, D. (1983). On incremental evaluation of ordered attributed gram-
mars. BIT Numerical Mathematics, 23:308–320.

[Yeh and Kastens, 1988] Yeh, D. and Kastens, U. (1988). Improvements of an in-
cremental evaluation algorithm for ordered attribute grammars. SIGPLAN Not.,
23(12):45–50.

178 BIBLIOGRAPHY

Index

absolutely noncircular AG, 47
abstract syntax tree, 18
attribute

chained, 26
eager, 66
higher-order, 27, 116
inherited, 24
intra-visit, 110
local, 23
synthesized, 21

attribute definition, 21
attribute grammar, 17

C] example, 11
catamorphism, 33
change representation, 75, 79
chordal graph, 61
circular program, 35

decoration, 17
dependency

augmenting, 46
direct, 38
induced, 39

dependency graph, 38
extended, 46
nonterminal, 40
production, 38

derived change, 117
difference list, 119

evaluation step, 155
evaluator, 10
execution plan, 48

function caching, 164

guestbook example, 3

hash-consing, 131, 165
higher-order attribute grammar, 27

incremental, 10
incremental computation, 6
input-output graph, 47

K&W algorithm, 47

lhs, 21
LOAG algorithm, 59

minimal higher-order AG, 29
multirec, 92

nonterminal, 18

OAG algorithm, 41

path, 73, 77
production, 18

reference, 74
regular, 80

179

180 INDEX

rule
copy, 23
self, 29
use, 24

scheduling
dynamic, 31, 33, 47
static, 32, 37, 59

self-adjusting computation, 165
semantic function

nonterminal, 33
production, 33

semantic rule, 21
SSM, 11

terminal, 18
transformation, 70, 86
tree with references, 75, 78
tupling, 6
type family, 79

UHC, 2
UUAGC, 18

visit, 37
visit graph, 48
visit interface, 37, 40
visit sequence, 48
visit-tree approach, 110

Samenvatting

Computerprogramma’s doen vaak berekeningen over gegevens die over tijd veran-
deren. Een tekstverwerker kan bijvoorbeeld automatisch een inhoudsopgave ge-
nereren en deze bijhouden terwijl een document bewerkt wordt, een e-mailpro-
gramma kan de lijst met recente e-mails bijwerken wanneer nieuwe e-mails bin-
nenkomen, en een programmeeromgeving kan fouten in de code tonen terwijl de
programmeur de code intypt.

Gebruikers van zulke programma’s verwachten dat deze snel reageren op ver-
anderingen, maar dit levert een probleem op voor de programmeur van deze pro-
gramma’s: wanneer de gegevens over tijd steeds groter worden, duurt de bere-
kening telkens langer. Om dit op te lossen kan de berekening incrementeel gedaan
worden, waarbij kleine wijzigingen in de gegevens leiden tot een korte berekenings-
tijd. Deze kortere berekeningstijd kan worden bereikt door resultaten vanuit een
eerdere berekening te hergebruiken.

Het programmeren van goed werkende programma’s is op zichzelf al moeilijk,
en het maken van een incrementele versie is nog veel moeilijker en foutgevoeli-
ger. In dit proefschrift bekijken we daarom een alternatieve aanpak: het automa-
tisch genereren van een incrementele versie van een programma vanuit een niet-
incrementele declaratieve definitie van dat programma. Met die aanpak kan de
programmeur nadenken over de standaard niet-incrementele versie van het pro-
gramma, en krijgt hij de incrementele versie “gratis”.

Attributengrammatica’s We gebruiken attributengrammatica’s voor het op een
declaratieve manier beschrijven van berekeningen over boomstructuren. Een at-
tributengrammatica beschrijft de decoratie van bomen met attributen, welke aan
knopen in de boom verbonden zijn en gebruikt worden om resultaten van bereke-
ningen door te geven aan een ouder of een kind. Om precies te zijn bestaat een
attributengrammatica uit drie verschillende componenten: een definitie van de ab-
stracte syntaxisboom, een set van attribuutdeclaraties en een set van semantiekregels.

De abstracte syntaxisboom representeert de invoer van een programma. De at-

181

182 SAMENVATTING

tributengrammatica definieert welke vorm deze boom kan hebben door middel van
een algebraïsch datatype. Een ontleder zet de concrete invoer van het programma
om in een instantie van dat datatype, waarover vervolgens de berekening gedaan
kan worden. De berekende waarden worden opgeslagen in attributen, welke van
een kind naar de ouder doorgegeven kunnen worden (een gesynthetiseerd attribuut)
of van ouder naar kind (een overerft attribuut). De attribuutdeclaraties geven per
type knoop aan welke attributen bij dat type knoop horen, en de semantiekregels
definiëren tenslotte hoe de waarde van elk attribuut kan worden berekend uit de
waarden van andere attributen, bijvoorbeeld die van de ouderknoop of van de kind-
knopen.

Het voordeel van het gebruik van attributengrammatica’s voor het automatisch
genereren van incrementele programma’s is dat in een attributengrammatica de
afhankelijkheden tussen verschillende delen van de berekening expliciet gemaakt
zijn. Hierdoor kan een automatische analyse op de attributengrammatica worden
gedaan om te achterhalen welke delen van een eerdere berekening hergebruikt
kunnen worden na een wijziging in de invoer van een programma. Uit eerder on-
derzoek is gebleken dat een dergelijke aanpak effectief kan zijn.

Hogere-orde attributengrammatica’s De focus van dit proefschrift is de incre-
mentele evaluatie van attributengrammatica’s die hogere-orde kinderen bevatten
(hogere-orde attributengrammatica’s). De toevoeging van hogere-orde kinderen
zorgt ervoor dat er meer programma’s zijn die op een aantrekkelijke manier geschre-
ven kunnen worden, maar het zorgt er ook voor dat bepaalde vormen van incremen-
tele evaluatie niet meer leiden tot snelheidswinst. In dit proefschrift ontwikkelen
we daarom een techniek voor de incrementele evaluatie van hogere-orde attributen-
grammatica’s, zodanig dat de snelheidswinst behouden blijft wanneer hogere-orde
kinderen gebruikt worden.

In een hogere-orde attributengrammatica kunnen de waarden van de attributen
boomstructuren zijn waarover ook weer attributen berekend kunnen worden. Deze
boomstructuren worden dus gebouwd door de attribuutberekeningen, en kunnen
worden geïnstantieerd tot hogere-orde kind, waarna er over dat kind attributen
berekend kunnen worden op dezelfde manier als voor reguliere kinderen. De in-
stantiatie van een hogere-orde kind wordt in Figuur 6.1 geïllustreerd. Hogere-orde
kinderen worden bijvoorbeeld gebruikt om meerdere fasen in een programma te
modelleren: in de eerste fase wordt een nieuwe boom opgebouwd, waarover in de
tweede fase weer andere attributen berekend worden.

Het probleem met veel vormen van incrementele evaluatie van attributengram-
matica’s met hogere-orde kinderen is dat alle attributen van een hogere-orde kind

183

herberekend worden wanneer maar een deel van het hogere-orde kind is gewij-
zigd. In Figuur 6.2 is dit probleem gevisualiseerd, waarbij de grijze onderdelen
van de boom de waarden zijn die opnieuw berekend moeten worden na een wijzi-
ging. Alhoewel de kleine wijziging op de originele boom een kleine wijziging op het
hogere-orde kind tot gevolg kan hebben, gaat die informatie verloren en wordt het
volledige kind als nieuw beschouwd, waardoor de snelheidswinst van incrementele
evaluatie verloren gaat.

Aanpak De aanpak die we in dit proefschrift gebruiken is in de eerste plaats ge-
baseerd op een precieze representatie van wijzigingen op boomstructuren. In dit
proefschrift nemen we aan dat de gebruiker met een programma werkt dat bijhoudt
hoe de invoer wijzigt, bijvoorbeeld de tekstverwerker waarin een stuk tekst ver-
plaatst wordt. Wanneer een attributengrammatica gebruikt wordt om de inhouds-
opgave te genereren, moet de tekstverwerker aan de attributengrammatica-evalua-
tor doorgeven op welke manier de invoer gewijzigd is, zodat deze de wijziging kan
doorvoeren en (in veel gevallen) efficiënt de inhoudsopgave kan herberekenen.

Na enkele inleidende hoofdstukken wordt in Hoofdstuk 4 van dit proefschrift
beschreven op welke manier we wijzigingen op boomstructuren representeren. De
representatie is gebaseerd op het vervangen van een deelboom op een bepaalde
locatie door een nieuwe boom. Deze nieuwe boom kan verwijzingen bevatten die
aangeven dat een deel van de originele boom op die plek ingevoegd moet worden.
Bijvoorbeeld, het wisselen van twee kinderen van een knoop kan gerepresenteerd
worden door twee van zulke vervangingen: in het linker kind door een verwijzing
naar het rechter kind, en in het rechter kind door een verwijzing naar het linker
kind. Met deze representatie kan elk type wijziging zodanig worden gerepresen-
teerd dat de attributengrammatica-evaluator deze informatie kan gebruiken om de
benodigde attributen te herberekenen.

Hoofdstuk 5 beschrijft de incrementele evaluatie van attributengrammatica’s
zonder hogere-orde kinderen. Er worden hiervoor twee technieken gebruikt: wijzi-
gingspropagatie en memoisatie. De wijzigingspropagatie neemt de representatie van
de wijziging en zorgt ervoor dat alle attributen die (mogelijkerwijs) gewijzigd zijn
door deze wijzigingen worden herberekend. Memoisatie is de techniek die ervoor
zorgt dat eerder gedane berekeningen worden opgeslagen en hergebruikt wanneer
dat deel van de berekening niet is gewijzigd.

De ondersteuning voor hogere-orde kinderen voegen we toe in Hoofdstuk 6,
door middel van het bijhouden van een afgeleide wijziging. De hogere-orde kinde-
ren zijn een instantiatie van een attribuutwaarde, en in de evaluatie van de attribu-
tengrammatica weten we dan ook op welke manier dat kind wordt gebouwd. Van

184 SAMENVATTING

de wijziging op de originele syntaxisboom kunnen we daarom afleiden op welke
manier het hogere-orde kind is gewijzigd ten opzichte van de vorige berekening.
Deze wijziging wordt gepresenteerd op dezelfde manier als een wijziging op de
originele syntaxisboom, waardoor de wijzigingspropagatie en memoisatie voor het
hogere-orde kind op dezelfde manier kunnen worden toegepast. Dit principe wordt
geïllustreerd in Figuur 6.3.

Alhoewel het idee van onze techniek is dat deze toegepast kan worden op elke
hogere-orde attributengrammatica is dat niet het geval. Er zijn bepaalde restricties
waaraan voldaan moet worden voordat de techniek toepast kan worden, en er zijn
bepaalde patronen die goed of juist slecht kunnen zijn voor de effectiviteit van onze
techniek. Deze restricties en patronen worden beschreven in Hoofdstuk 7.

Resultaat Het resultaat van het toepassen van de beschreven techniek op de twee
voorbeelden die in dit proefschrift worden gebruikt is beschreven in Hoofdstuk 8.
Op het eerste voorbeeld wordt de te verwachten snelheidswinst gehaald, maar op
het tweede voorbeeld is dit niet het geval. In tegendeel: onze techniek voor incre-
mentele evaluatie zorgt ervoor dat de code tot vijftien keer trager wordt!

Het probleem van onze techniek zoals toegepast in deze voorbeelden is dat de
granulariteit te hoog is. Het tweede voorbeeld bevat, net als de meeste attribu-
tengrammatica’s, veel berekeningen die maar weinig tijd kosten. Aangezien de
memoisatie en wijzigingspropagatie ook tijd kosten, is het in een dergelijk geval
beter om de berekening opnieuw te doen dan om te proberen de waardes van de
vorige keer te hergebruiken. Dat laatste zorgt conceptueel weliswaar voor minder
attribuutberekeningen, maar is in de praktijk een stuk trager.

Gelukkig betekent dit niet dat onze techniek onbruikbaar is, maar voordat deze
in de praktijk toepast kan worden is er meer onderzoek nodig, bijvoorbeeld door de
granulariteit kleiner te maken. In Hoofdstuk 9 wordt dit proefschrift dan ook beslo-
ten met een lijst van suggesties voor vervolgonderzoek, waarvan we denken dat het
grote invloed kan hebben op de effectiviteit van onze techniek in de praktijk. Dit
proefschrift kan dus worden gezien als de basis voor een nieuwe vorm van incre-
mentele evaluatie van hogere-orde attributengrammatica’s, al geeft dit nog niet de
eindoplossing voor de incrementele evaluatie van hogere-orde attributengramma-
tica’s met het doel automatisch incrementele versies van programma’s te genereren
uit hun declaratieve specificatie.

Curriculum Vitae

Jeroen Bransen
Born on 14 September 1987 in Utrecht

1999 – 2005
VWO (High school) – Niftarlake College, Maarssen
Graduation date: 1 July 2005

2005 – 2008
Bachelor Cognitive Artificial Intelligence – Utrecht University, Utrecht
Graduation date: 31 August 2008
Thesis: Statistical methods for Categorial Grammars
Supervisor: Michael Moortgat

2008 – 2010
Master Cognitive Artificial Intelligence – Utrecht University, Utrecht
Graduation date: 31 August 2010, Cum laude
Thesis: On the complexity of the Lambek-Grishin calculus
Supervisors: Michael Moortgat and Rosalie Iemhoff

2010 – 2015
PhD student – Department of Computing and Information Sciences, Utrecht
University, Utrecht
Defense date: 30 June 2015
Thesis: On the Incremental Evaluation of Higher-Order Attribute Grammars
Promotor: Prof. dr. S. Doaitse Swierstra
Copromotor: Dr. Atze Dijkstra

185

186 CURRICULUM VITAE

Titles in the IPA Dissertation Series
since 2009

M.H.G. Verhoef. Modeling and Vali-
dating Distributed Embedded Real-Time
Control Systems. Faculty of Science,
Mathematics and Computer Science,
RU. 2009-01

M. de Mol. Reasoning about Functional
Programs: Sparkle, a proof assistant for
Clean. Faculty of Science, Mathematics
and Computer Science, RU. 2009-02

M. Lormans. Managing Requirements
Evolution. Faculty of Electrical Engi-
neering, Mathematics, and Computer
Science, TUD. 2009-03

M.P.W.J. van Osch. Automated Model-
based Testing of Hybrid Systems. Faculty
of Mathematics and Computer Science,
TU/e. 2009-04

H. Sozer. Architecting Fault-Tolerant
Software Systems. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2009-05

M.J. van Weerdenburg. Efficient
Rewriting Techniques. Faculty of
Mathematics and Computer Science,
TU/e. 2009-06

H.H. Hansen. Coalgebraic Modelling:
Applications in Automata Theory and
Modal Logic. Faculty of Sciences, Divi-
sion of Mathematics and Computer Sci-
ence, VUA. 2009-07

A. Mesbah. Analysis and Testing
of Ajax-based Single-page Web Applica-
tions. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2009-08

A.L. Rodriguez Yakushev. Towards
Getting Generic Programming Ready
for Prime Time. Faculty of Science,
UU. 2009-9

K.R. Olmos Joffré. Strategies for Con-
text Sensitive Program Transformation.
Faculty of Science, UU. 2009-10

J.A.G.M. van den Berg. Reasoning
about Java programs in PVS using JML.
Faculty of Science, Mathematics and
Computer Science, RU. 2009-11

M.G. Khatib. MEMS-Based Storage De-
vices. Integration in Energy-Constrained
Mobile Systems. Faculty of Electrical

187

188 TITLES IN THE IPA DISSERTATION SERIES SINCE 2009

Engineering, Mathematics & Computer
Science, UT. 2009-12

S.G.M. Cornelissen. Evaluating Dy-
namic Analysis Techniques for Program
Comprehension. Faculty of Electrical
Engineering, Mathematics, and Com-
puter Science, TUD. 2009-13

D. Bolzoni. Revisiting Anomaly-based
Network Intrusion Detection Systems.
Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2009-14

H.L. Jonker. Security Matters: Pri-
vacy in Voting and Fairness in Digital
Exchange. Faculty of Mathematics and
Computer Science, TU/e. 2009-15

M.R. Czenko. TuLiP - Reshaping Trust
Management. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2009-16

T. Chen. Clocks, Dice and Pro-
cesses. Faculty of Sciences, Division
of Mathematics and Computer Science,
VUA. 2009-17

C. Kaliszyk. Correctness and Availabil-
ity: Building Computer Algebra on top
of Proof Assistants and making Proof As-
sistants available over the Web. Faculty
of Science, Mathematics and Computer
Science, RU. 2009-18

R.S.S. O’Connor. Incompleteness &
Completeness: Formalizing Logic and
Analysis in Type Theory. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2009-19

B. Ploeger. Improved Verification Meth-
ods for Concurrent Systems. Faculty
of Mathematics and Computer Science,
TU/e. 2009-20

T. Han. Diagnosis, Synthesis and Anal-
ysis of Probabilistic Models. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2009-21

R. Li. Mixed-Integer Evolution Strategies
for Parameter Optimization and Their
Applications to Medical Image Analy-
sis. Faculty of Mathematics and Natural
Sciences, UL. 2009-22

J.H.P. Kwisthout. The Computational
Complexity of Probabilistic Networks.
Faculty of Science, UU. 2009-23

T.K. Cocx. Algorithmic Tools for Data-
Oriented Law Enforcement. Faculty
of Mathematics and Natural Sciences,
UL. 2009-24

A.I. Baars. Embedded Compilers. Fac-
ulty of Science, UU. 2009-25

M.A.C. Dekker. Flexible Access Con-
trol for Dynamic Collaborative Environ-
ments. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2009-26

J.F.J. Laros. Metrics and Visualisation
for Crime Analysis and Genomics. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2009-27

C.J. Boogerd. Focusing Automatic Code
Inspections. Faculty of Electrical Engi-
neering, Mathematics, and Computer
Science, TUD. 2010-01

189

M.R. Neuhäußer. Model Checking Non-
deterministic and Randomly Timed Sys-
tems. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2010-02

J. Endrullis. Termination and Produc-
tivity. Faculty of Sciences, Division
of Mathematics and Computer Science,
VUA. 2010-03

T. Staijen. Graph-Based Specification
and Verification for Aspect-Oriented Lan-
guages. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2010-04

Y. Wang. Epistemic Modelling and Pro-
tocol Dynamics. Faculty of Science,
UvA. 2010-05

J.K. Berendsen. Abstraction, Prices and
Probability in Model Checking Timed Au-
tomata. Faculty of Science, Mathemat-
ics and Computer Science, RU. 2010-06

A. Nugroho. The Effects of UML Model-
ing on the Quality of Software. Faculty
of Mathematics and Natural Sciences,
UL. 2010-07

A. Silva. Kleene Coalgebra. Faculty
of Science, Mathematics and Computer
Science, RU. 2010-08

J.S. de Bruin. Service-Oriented Discov-
ery of Knowledge - Foundations, Imple-
mentations and Applications. Faculty
of Mathematics and Natural Sciences,
UL. 2010-09

D. Costa. Formal Models for Component
Connectors. Faculty of Sciences, Divi-

sion of Mathematics and Computer Sci-
ence, VUA. 2010-10

M.M. Jaghoori. Time at Your Ser-
vice: Schedulability Analysis of Real-
Time and Distributed Services. Faculty
of Mathematics and Natural Sciences,
UL. 2010-11

R. Bakhshi. Gossiping Models: Formal
Analysis of Epidemic Protocols. Faculty
of Sciences, Department of Computer
Science, VUA. 2011-01

B.J. Arnoldus. An Illumination of
the Template Enigma: Software Code
Generation with Templates. Faculty of
Mathematics and Computer Science,
TU/e. 2011-02

E. Zambon. Towards Optimal IT
Availability Planning: Methods and
Tools. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2011-03

L. Astefanoaei. An Executable Theory
of Multi-Agent Systems Refinement. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2011-04

J. Proença. Synchronous coordina-
tion of distributed components. Faculty
of Mathematics and Natural Sciences,
UL. 2011-05

A. Moralı. IT Architecture-Based Con-
fidentiality Risk Assessment in Networks
of Organizations. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2011-06

190 TITLES IN THE IPA DISSERTATION SERIES SINCE 2009

M. van der Bijl. On changing models in
Model-Based Testing. Faculty of Electri-
cal Engineering, Mathematics & Com-
puter Science, UT. 2011-07

C. Krause. Reconfigurable Component
Connectors. Faculty of Mathematics
and Natural Sciences, UL. 2011-08

M.E. Andrés. Quantitative Analysis
of Information Leakage in Probabilistic
and Nondeterministic Systems. Faculty
of Science, Mathematics and Computer
Science, RU. 2011-09

M. Atif. Formal Modeling and Verifi-
cation of Distributed Failure Detectors.
Faculty of Mathematics and Computer
Science, TU/e. 2011-10

P.J.A. van Tilburg. From Computabil-
ity to Executability – A process-theoretic
view on automata theory. Faculty of
Mathematics and Computer Science,
TU/e. 2011-11

Z. Protic. Configuration management
for models: Generic methods for model
comparison and model co-evolution.
Faculty of Mathematics and Computer
Science, TU/e. 2011-12

S. Georgievska. Probability and Hid-
ing in Concurrent Processes. Faculty
of Mathematics and Computer Science,
TU/e. 2011-13

S. Malakuti. Event Composition Model:
Achieving Naturalness in Runtime En-
forcement. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2011-14

M. Raffelsieper. Cell Libraries and Ver-
ification. Faculty of Mathematics and
Computer Science, TU/e. 2011-15

C.P. Tsirogiannis. Analysis of Flow and
Visibility on Triangulated Terrains. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2011-16

Y.-J. Moon. Stochastic Models for Qual-
ity of Service of Component Connectors.
Faculty of Mathematics and Natural
Sciences, UL. 2011-17

R. Middelkoop. Capturing and Exploit-
ing Abstract Views of States in OO Ver-
ification. Faculty of Mathematics and
Computer Science, TU/e. 2011-18

M.F. van Amstel. Assessing and Im-
proving the Quality of Model Transfor-
mations. Faculty of Mathematics and
Computer Science, TU/e. 2011-19

A.N. Tamalet. Towards Correct Pro-
grams in Practice. Faculty of Science,
Mathematics and Computer Science,
RU. 2011-20

H.J.S. Basten. Ambiguity Detection
for Programming Language Grammars.
Faculty of Science, UvA. 2011-21

M. Izadi. Model Checking of Compo-
nent Connectors. Faculty of Mathemat-
ics and Natural Sciences, UL. 2011-22

L.C.L. Kats. Building Blocks for Lan-
guage Workbenches. Faculty of Elec-
trical Engineering, Mathematics, and
Computer Science, TUD. 2011-23

191

S. Kemper. Modelling and Analysis of
Real-Time Coordination Patterns. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2011-24

J. Wang. Spiking Neural P Systems. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2011-25

A. Khosravi. Optimal Geometric Data
Structures. Faculty of Mathematics and
Computer Science, TU/e. 2012-01

A. Middelkoop. Inference of Program
Properties with Attribute Grammars, Re-
visited. Faculty of Science, UU. 2012-02

Z. Hemel. Methods and Techniques
for the Design and Implementation of
Domain-Specific Languages. Faculty
of Electrical Engineering, Mathematics,
and Computer Science, TUD. 2012-03

T. Dimkov. Alignment of Organiza-
tional Security Policies: Theory and
Practice. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2012-04

S. Sedghi. Towards Provably Secure Ef-
ficiently Searchable Encryption. Faculty
of Electrical Engineering, Mathematics
& Computer Science, UT. 2012-05

F. Heidarian Dehkordi. Studies on Veri-
fication of Wireless Sensor Networks and
Abstraction Learning for System Infer-
ence. Faculty of Science, Mathematics
and Computer Science, RU. 2012-06

K. Verbeek. Algorithms for Car-
tographic Visualization. Faculty of

Mathematics and Computer Science,
TU/e. 2012-07

D.E. Nadales Agut. A Composi-
tional Interchange Format for Hybrid
Systems: Design and Implementation.
Faculty of Mechanical Engineering,
TU/e. 2012-08

H. Rahmani. Analysis of Protein-
Protein Interaction Networks by Means
of Annotated Graph Mining Algorithms.
Faculty of Mathematics and Natural
Sciences, UL. 2012-09

S.D. Vermolen. Software Language
Evolution. Faculty of Electrical Engi-
neering, Mathematics, and Computer
Science, TUD. 2012-10

L.J.P. Engelen. From Napkin Sketches
to Reliable Software. Faculty of
Mathematics and Computer Science,
TU/e. 2012-11

F.P.M. Stappers. Bridging Formal Mod-
els – An Engineering Perspective. Faculty
of Mathematics and Computer Science,
TU/e. 2012-12

W. Heijstek. Software Architecture
Design in Global and Model-Centric
Software Development. Faculty of
Mathematics and Natural Sciences,
UL. 2012-13

C. Kop. Higher Order Termination. Fac-
ulty of Sciences, Department of Com-
puter Science, VUA. 2012-14

A. Osaiweran. Formal Development of
Control Software in the Medical Systems

192 TITLES IN THE IPA DISSERTATION SERIES SINCE 2009

Domain. Faculty of Mathematics and
Computer Science, TU/e. 2012-15

W. Kuijper. Compositional Synthesis of
Safety Controllers. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2012-16

H. Beohar. Refinement of Communica-
tion and States in Models of Embedded
Systems. Faculty of Mathematics and
Computer Science, TU/e. 2013-01

G. Igna. Performance Analysis of Real-
Time Task Systems using Timed Au-
tomata. Faculty of Science, Mathemat-
ics and Computer Science, RU. 2013-02

E. Zambon. Abstract Graph Transfor-
mation – Theory and Practice. Faculty
of Electrical Engineering, Mathematics
& Computer Science, UT. 2013-03

B. Lijnse. TOP to the Rescue – Task-
Oriented Programming for Incident Re-
sponse Applications. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2013-04

G.T. de Koning Gans. Outsmart-
ing Smart Cards. Faculty of Science,
Mathematics and Computer Science,
RU. 2013-05

M.S. Greiler. Test Suite Comprehen-
sion for Modular and Dynamic Sys-
tems. Faculty of Electrical Engineering,
Mathematics, and Computer Science,
TUD. 2013-06

L.E. Mamane. Interactive mathemati-
cal documents: creation and presenta-
tion. Faculty of Science, Mathematics
and Computer Science, RU. 2013-07

M.M.H.P. van den Heuvel. Compo-
sition and synchronization of real-time
components upon one processor. Faculty
of Mathematics and Computer Science,
TU/e. 2013-08

J. Businge. Co-evolution of the Eclipse
Framework and its Third-party Plug-ins.
Faculty of Mathematics and Computer
Science, TU/e. 2013-09

S. van der Burg. A Reference Archi-
tecture for Distributed Software Deploy-
ment. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2013-10

J.J.A. Keiren. Advanced Reduction Tech-
niques for Model Checking. Faculty of
Mathematics and Computer Science,
TU/e. 2013-11

D.H.P. Gerrits. Pushing and Pulling:
Computing push plans for disk-shaped
robots, and dynamic labelings for mov-
ing points. Faculty of Mathematics and
Computer Science, TU/e. 2013-12

M. Timmer. Efficient Modelling, Gen-
eration and Analysis of Markov Au-
tomata. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2013-13

M.J.M. Roeloffzen. Kinetic Data Struc-
tures in the Black-Box Model. Faculty
of Mathematics and Computer Science,
TU/e. 2013-14

L. Lensink. Applying Formal Methods in
Software Development. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2013-15

193

C. Tankink. Documentation and Formal
Mathematics — Web Technology meets
Proof Assistants. Faculty of Science,
Mathematics and Computer Science,
RU. 2013-16

C. de Gouw. Combining Monitoring
with Run-time Assertion Checking. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2013-17

J. van den Bos. Gathering Evidence:
Model-Driven Software Engineering in
Automated Digital Forensics. Faculty of
Science, UvA. 2014-01

D. Hadziosmanovic. The Process Mat-
ters: Cyber Security in Industrial Control
Systems. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2014-02

A.J.P. Jeckmans. Cryptographically-
Enhanced Privacy for Recommender Sys-
tems. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2014-03

C.-P. Bezemer. Performance Opti-
mization of Multi-Tenant Software Sys-
tems. Faculty of Electrical Engineering,
Mathematics, and Computer Science,
TUD. 2014-04

T.M. Ngo. Qualitative and Quantita-
tive Information Flow Analysis for Multi-
threaded Programs. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2014-05

A.W. Laarman. Scalable Multi-Core
Model Checking. Faculty of Electrical

Engineering, Mathematics & Computer
Science, UT. 2014-06

J. Winter. Coalgebraic Characteri-
zations of Automata-Theoretic Classes.
Faculty of Science, Mathematics and
Computer Science, RU. 2014-07

W. Meulemans. Similarity Mea-
sures and Algorithms for Cartographic
Schematization. Faculty of Math-
ematics and Computer Science,
TU/e. 2014-08

A.F.E. Belinfante. JTorX: Exploring
Model-Based Testing. Faculty of Electri-
cal Engineering, Mathematics & Com-
puter Science, UT. 2014-09

A.P. van der Meer. Domain Specific
Languages and their Type Systems. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2014-10

B.N. Vasilescu. Social Aspects of Collab-
oration in Online Software Communi-
ties. Faculty of Mathematics and Com-
puter Science, TU/e. 2014-11

F.D. Aarts. Tomte: Bridging the Gap
between Active Learning and Real-World
Systems. Faculty of Science, Mathemat-
ics and Computer Science, RU. 2014-12

N. Noroozi. Improving Input-Output
Conformance Testing Theories. Faculty
of Mathematics and Computer Science,
TU/e. 2014-13

M. Helvensteijn. Abstract Delta Mod-
eling: Software Product Lines and Be-
yond. Faculty of Mathematics and Nat-
ural Sciences, UL. 2014-14

194 TITLES IN THE IPA DISSERTATION SERIES SINCE 2009

P. Vullers. Efficient Implementations
of Attribute-based Credentials on Smart
Cards. Faculty of Science, Mathematics
and Computer Science, RU. 2014-15

F.W. Takes. Algorithms for Analyzing
and Mining Real-World Graphs. Faculty
of Mathematics and Natural Sciences,
UL. 2014-16

M.P. Schraagen. Aspects of Record Link-
age. Faculty of Mathematics and Natu-
ral Sciences, UL. 2014-17

G. Alpár. Attribute-Based Identity Man-
agement: Bridging the Cryptographic
Design of ABCs with the Real World. Fac-
ulty of Science, Mathematics and Com-
puter Science, RU. 2015-01

A.J. van der Ploeg. Efficient Abstrac-
tions for Visualization and Interaction.
Faculty of Science, UvA. 2015-02

R.J.M. Theunissen. Supervisory
Control in Health Care Systems. Fac-
ulty of Mechanical Engineering,
TU/e. 2015-03

T.V. Bui. A Software Architecture for
Body Area Sensor Networks: Flexibil-
ity and Trustworthiness. Faculty of
Mathematics and Computer Science,
TU/e. 2015-04

A. Guzzi. Supporting Developers’ Team-
work from within the IDE. Faculty of
Electrical Engineering, Mathematics,
and Computer Science, TUD. 2015-05

T. Espinha. Web Service Growing
Pains: Understanding Services and Their
Clients. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2015-06

S. Dietzel. Resilient In-network Aggre-
gation for Vehicular Networks. Faculty
of Electrical Engineering, Mathematics
& Computer Science, UT. 2015-07

E. Costante. Privacy throughout the
Data Cycle. Faculty of Mathematics and
Computer Science, TU/e. 2015-08

S. Cranen. Getting the point — Obtain-
ing and understanding fixpoints in model
checking. Faculty of Mathematics and
Computer Science, TU/e. 2015-09

R. Verdult. The (in)security of pro-
prietary cryptography. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2015-10

J.E.J. de Ruiter. Lessons learned in the
analysis of the EMV and TLS security pro-
tocols. Faculty of Science, Mathematics
and Computer Science, RU. 2015-11

Y. Dajsuren. On the Design of an Ar-
chitecture Framework and Quality Eval-
uation for Automotive Software Systems.
Faculty of Mathematics and Computer
Science, TU/e. 2015-12

J. Bransen. On the Incremental Eval-
uation of Higher-Order Attribute Gram-
mars. Faculty of Science, UU. 2015-13

	Preface
	Introduction
	General overview
	Code
	Guestbook example
	Introduction
	Complicating matters
	Incremental computation
	The big picture

	Definitions
	C# example
	Architecture

	Thesis overview
	Dependency graph

	Attribute Grammars
	Abstract Syntax Tree
	Guestbook example
	C# example

	Synthesized attributes
	Guestbook example
	C# example

	Inherited attributes
	C# example

	Chained attributes
	Higher-order attributes
	Guestbook example
	C# example

	Minimal higher-order attribute grammars

	Scheduling
	Lazy evaluation
	Guestbook example
	C# example

	Ordered AGs
	Dependency graphs
	Induced dependencies
	Nonterminal dependency graph
	Visit interfaces
	Code generation
	Counter example
	Augmenting dependencies

	Absolutely Noncircular AGs
	Input-output graph
	Visit graph
	Runtime evaluator
	Functional implementation
	Discussion

	Linearly Ordered AGs
	Backtracking algorithm
	SAT algorithm
	Translation into SAT
	Chordal graph heuristics
	Optimisations
	Code generation

	Runtime comparison
	Conclusion

	Tree Transformations
	Transformation operations
	Localisation
	Diff is not enough

	Guestbook example
	Paths
	Guestbook values with references
	Trees with references
	Full change

	C# example
	Paths
	Trees with references
	Full change
	List support

	Generic programming for regular functors
	Representation
	Functoriality of the representation types
	Embedding user-defined types
	Generic functions

	Zippers and paths
	Generic representation of transformations
	Representation
	Applying transformations
	Generic diff
	Improving the interface

	Family of data types
	Representation
	Generic functions
	Zippers and paths
	Generic representation of transformations

	Discussion and conclusion
	Related work
	Shortcomings
	Future work

	Incremental AG evaluation
	Overview
	Representation
	Nonterminal and evaluator types

	Functional implementation
	Example invocation
	Intra-visit attributes

	Conclusion

	Higher-order attributes
	Problem
	Solution
	Implementation
	Paths
	Derived change construction
	Change propagation

	Restrictions and drawbacks
	Inspectability
	Overhead
	Memory consumption
	Equality and granularity
	Cache size

	Conclusion

	Supporting incrementality
	Unique value generation
	Projection of inherited attributes
	General suggestion
	Equality
	Inspectability
	Automatic projection
	Haskell to AG translation
	A simple functional language
	Example
	Example translation
	Translation
	Top level declarations
	Recognising folds
	Identifying recursive calls
	Lambda lifting in case alternatives
	Translation rules

	Conclusion

	Benchmarking
	Input data
	Correctness
	Appropriateness
	Distribution
	Existing data
	Data generation

	Lazy evaluation
	Overhead
	Diff overhead
	Benchmarking overhead

	Results
	Guestbook example
	C# example

	Memory consumption

	Discussion and conclusion
	Related work
	Simple change propagation
	Synthesizer generator
	Function caching
	Self-adjusting computation
	Adapton
	Computational complexity

	Future work
	Other backend
	Automatic projection
	Inspectability
	Granularity
	Synthesized attribute equality
	Serialisation
	Correctness and soundness
	Utrecht Haskell Compiler

	Long term future work
	Conclusion

	Bibliography
	Index
	Samenvatting
	Curriculum Vitae
	Titles in the IPA Dissertation Series since 2009

