
A. Egges. Real-time Animation of Interactive Virtual Humans. PhD Thesis, University of Geneva,
Geneva, Switzerland. August 2006.

UNIVERSITÉ DE GENÈVE
FACULTÉ DES SCIENCES

Département d’informatique Professeur José Rolim

 FACULTÉ DES SCIENCES
 ÉCONOMIQUES ET SOCIALES
Département de systèmes d’information Professeur Nadia Magnenat-Thalmann

Real-time Animation of Interactive
Virtual Humans

THÈSE

présentée à la Faculté des Sciences de l'Université de Genève
pour obtenir le grade de Docteur ès sciences, mention informatique

par

Arjan EGGES
de

Winschoten (Pays-Bas)

GENÈVE

2006

Acknowledgments

First of all, I would like to express my deepest gratitude to Professor Nadia Magnenat-
Thalmann for allowing me to form a part of the MIRALab team and the challenging
and motivating research environment it encompasses. I would like to thank her for her
support and her continuous encouragement to explore new research questions and to
improve my results.

Also, I would like to thank the members of my jury, Professor José Rolim (Uni-
versity of Geneva), Professor Klaus Scherer (University of Geneva), and Prof. Ipke
Wachsmuth (University of Bielefeld), for taking the time to evaluate my thesis work
and for their very insightful evaluation reports.

Thanks to all my colleagues in MIRALab for their collaboration over the last five
years. Without them, this work would not have been possible. I would like to thank
Dr. Laurent Moccozet for his feedback on the thesis and for his assistance in preparing
the French summary. I would like to thank Dr. Tom Molet for his collaboration in the
starting phase of this research by assisting me during the motion capture sessions, as
well as for his feedback and input. Furthermore, my gratitude goes to both Lionel Egger
and Nedjma Cadi for their help in designing the 3D models, editing the animations, and
preparing the demonstrations. To conclude, I would like to thank all other MIRALab
members for the inspiring discussions and their friendship.

On a final note, I would like to express my warm gratitude to all my friends and
family, and especially Nancy, for being there and for their love and support.

Abstract

Over the last years, there has been a lot of interest in the area of Interactive Virtual Humans
(IVHs). Virtual characters who interact naturally with users in mixed realities have many differ-
ent applications, such as interactive video games, virtual training and rehabilitation, or virtual
heritage. The main purpose of using interactive virtual humans in such applications is to in-
crease the realism of the environment by adding life-like characters. The means by which these
characters perceive their environment and how they express themselves greatly influences how
convincing these characters are. The work presented in this thesis aims to improve the expres-
sive capabilities of virtual characters, notably the animation of IVHs.

Because of the complexity of interaction, a high level of control is required over the face
and body motions of the virtual humans. In order to achieve this, current approaches try to
generate face and body motions from a high-level description. Although this indeed allows for
a precise control over the movement of the virtual human, it is difficult to generate a natural-
looking motion from such a high-level description. Another problem that arises when animating
IVHs is that motions are not generated all the time. Therefore a flexible animation scheme is
required that ensures a natural posture even when no animation is playing. Finally, because
of the many different components that an Interactive Virtual Human consists of, the animation
model should be as efficient as possible.

In this thesis, we will present a new animation model, based on a combination of motion
synthesis from motion capture and a statistical analysis of prerecorded motion clips. As opposed
to existing approaches that create new motions with limited flexibility, our model adapts existing
motions, by automatically adding dependent joint motions. This renders the animation more
natural, but since our model does not impose any conditions on the input motion, it can be
linked easily with existing gesture synthesis techniques for IVHs.

In order to assure a continuous realistic motion, a basic layer of motions, called idle mo-
tions, is always present. These motions are generated by sequencing prerecorded motion seg-
ments organised in a graph. The path followed through this graph is controlled by high-level
constraints, such as an emotional state. On top of that, small variations in posture are added so
that the character is never static. Because we use a linear representation for joint orientations,
blending and interpolation is done very efficiently, resulting in an animation engine especially
suitable for real-time applications.

Résumé

Beaucoup d’intérêt a été accordé aux Humains Virtuels Interactifs (HVI) au cours des
dernières années. Des personnages virtuels qui interagissent naturellement avec des
utilisateurs dans des environnements de réalité mixte ont des applications nombreuses et
variées, telles que les jeux vidéo, l’entraı̂nement et la rééducation virtuels ou l’héritage
virtuel. Les moyens par lesquels ces personnages perçoivent leur environnement et
par lesquels ils s’expriment influent grandement sur leur capacité à convaincre. Beau-
coup de recherches ont été menées pour améliorer l’interaction entre les humains et les
personnages virtuels, par exemple en utilisant des modèles élaborés de reconnaissance
de modèles et de génération de réponses ou en utilisant des méthodes basées sur les
conversations réelles ou des chats. Il est aussi maintenant possible d’interagir avec un
ordinateur en utilisant la parole et le langage naturel, et même les informations visuelles
telles que les mouvements de la tête, les expressions faciales et les gestes peuvent être
reconnus et interprétés. Bien que l’état de l’art dans le domaine des technologies de la
perception ne permette pas encore une interprétation sans faille de toutes ces données,
de nombreuses techniques sont d’ores et déjà commercialement exploitées.

Au-delà des capacités en progression des ordinateurs à analyser et à interpréter
l’information, ils peuvent aussi mieux répondre à ce qu’ils perçoivent. La réponse peut
utiliser le texte, la parole ou une sortie visuelle plus élaborée telle que le contrôle d’un
personnage 3D. Le domaine qui bénéficie le plus logiquement de ces techniques est
celui de l’industrie du jeu par ordinateur. Dans de nombreux jeux, des personnages
3D interactifs sont contrôlés par le joueur ou ils se présentent comme des opposants
interactifs faisant partie de l’environnement virtuel. Dans la plupart de ces jeux, ces
personnages sont contrôlés à l’aide de système d’animation par script qui séquencent
et jouent différents segments d’animation ou de son. Quels que soient les avancées
récentes dans ce domaine de recherche, contrôler et animer un personnage virtuel reste
encore une tâche pénible qui nécessite beaucoup de travail manuel de design et de travail
d’animation.

D’un point de vue conceptuel, les techniques perceptuelles (reconnaissance de la
parole, reconnaissance des expressions faciales, etc.) et des techniques de réponses

vi

(synthèse de la parole, animation de personnages virtuels) forment une partie d’un cy-
cle, appelé le cycle Perception-Action. Ce cycle décrit le mécanisme de feedback qui
définit une interaction quelconque entre une entité et son environnement. En agissant
dans un environnement, une entité le modifie. Les changements résultant sont ensuite
perçus et une nouvelle action est exécutée à la suite. Cette thèse se focalise sur l’aspect
expressif du cycle.

Les Humains Virtuels Interactifs peuvent s’exprimer au travers de la parole et de
l’animation du visage et du corps. En général, ces composants génèrent automatique-
ment la parole et les gestes à partir d’une représentation abstraite de la sortie souhaitée.
Cette représentation abstraite peut être par exemple un texte ou une structure XML
complexe. Un système de dialogue produit une telle représentation abstraite selon ce
que l’utilisateur réalise. Comme nous allons le voir, les modèles de personnalités et
d’émotions jouent aussi un rôle important. Un simulateur de personnalité et d’émotion
influence le résultat du dialogue ainsi que l’animation résultante.

Il existe de nombreuses techniques d’animation d’humains virtuels. La représenta-
tion d’une animation dépend de son niveau d’abstraction et de la structure du monde
dans laquelle elle est utilisée. Au niveau le plus général, nous considérons une ani-
mation comme une fonction continue qui associe des instants clés sur des images. La
continuité de cette fonction est une propriété importante, car elle permet d’afficher la
situation courante de l’objet à n’importe quel instant. Parce qu’en pratique il n’est pas
possible de définir une animation comme une fonction continue—ce qui nécessiterait
de définir un nombre infini d’images—la plupart des représentations d’animation sont
basées sur les key-frames ou images-clés. Dans cette approche, une animation est
définie par une séquence discrète d’images-clés associées à des instants clés. Afin de
revenir à la fonction continue d’animation d’origine, une technique d’interpolation est
nécessaire. Le choix de cette technique dépend de la représentation des images-clés.

Pour produire des animations temps réel du corps, une approche commune consiste
à travailler sur le squelette sous-jacent plutôt que sur le modèle lui-même. Lorsqu’on
utilise une approche géométrique, l’animation du modèle est plus précise, mais elle
dépend du modèle. Une approche basée sur le squelette permet de produire des anima-
tions indépendantes du modèle et de l’environnement, mais aussi moins de paramètres
à manipuler. En considérant qu’un Humanoı̈d 3D est contrôlé par l’animation de son
squelette, il est important de choisir la représentation appropriée pour la transformation
des articulations du squelette. La représentation la plus général est une matrice de trans-
formation qui contient une translation et une rotation. Une matrice ne peut représenter
une rotation que si elle est orthonormalisée. Cela signifie que pendant l’animation, des
opérations supplémentaires sont nécessaires pour assurer l’orthonormalité des matri-
ces, ce qui est cher en temps de calcul. En outre, les matrices de rotation ne sont pas
adaptées aux interpolations de rotations. C’est pourquoi d’autres représentations de ro-
tations d’articulations ont été proposées. Quand une rotation est représentée par trois
rotations autour des axes du système de coordonnées, on parle de représentation par an-
gles d’Euler. La représentation par les angles d’Euler est assez efficace car elle utilise
trois variables (angles) pour définir trois degrés de liberté. Cependant, l’interpolation
peut être couteuse en temps de calcul, car elle requiert des intégrations numériques. En
outre, les angles d’Euler ont le problème dit du Gimbal lock ou de la perte d’un degré

vii

de liberté qui apparaı̂t quand une série de rotation à 90 degrés est appliquée. A cause
de l’alignement des axes, ces rotations peuvent s’annuler. Une autre représentation est
appelée l’axe angle. Cette représentation définit un axe de rotation arbitraire et une ro-
tation autour de cet axe. Bien que cette représentation soit assez efficace, elle nécessite
encore beaucoup de charge de calcul pour l’interpolation. Les quaternions sont aussi
une représentation usuelle pour les rotations. Les quaternions sont une extension des
nombres complexes. Des quatre composants, un est un nombre scalaire réel et les trois
autres forment un vecteur dans un espace imaginaire. L’interpolation des quaternions
est réalisée par une approche dite SLERP. Enfin, les rotations peuvent être représentées
par la carte exponentielle. Un avantage décisif de cette approche est qu’elle permet de
réaliser des transformations complètement dans le domaine linéaire. Cela solutionne
de nombreux problèmes dont souffrent les méthodes précédentes. Les rotations sont
représentées par une matrice antisymétrique ou son vecteur 3D équivalent.

Définir des animations sous forme de rotations et de translation d’articulations
plutôt que par manipulations géométriques permet de définir un bon socle pour un
système d’animation temps réel. Cependant, un niveau de contrôle plus élevé est
nécessaire, car animer toutes les articulations à la main requiert beaucoup de manip-
ulations. En outre, il est difficile de produire des animations naturelles en utilisant des
méthodes procédurales, à moins d’y consacrer énormément de temps. Une approche
intéressante consiste à produire de nouvelles animations à partir de données de mou-
vement enregistrée. Cette approche est appelée performance animation et son objectif
principal est de combiner le naturel des mouvements enregistrés avec la flexibilité de
la synthèse procédurale de mouvement. Il existe un grand nombre d’algorithmes pour
synthétiser des mouvements du corps à partir de données. Toutes ces approches sont
très similaires et présentent la même base. Trois étapes sont impliquées :

1. La première étape est la segmentation des données de mouvement capturées
en segments disjoints. Différents chercheurs utilisent différentes techniques et
critères de segmentation qui sont pratiquées soit manuellement soit automatique-
ment. En général, le graphe est étendu avec de nouvelles transitions en utilisant
des segments de mouvements existants du graphe.

2. Les segments d’animation sont stockés dans une structure de graphe. Là encore,
la connectivité et la complexité du graphe résultant dépendent de la méthode qui
est utilisée.

3. Finalement, de nouvelles animations sont construites en suivant un chemin à
travers le graphe des mouvements.

Une des techniques les plus connues pour la synthèse de mouvements est appelée Mo-
tion Graphs développée par Kovar er al. La principale contribution de leur technique est
la construction automatique d’un graphe à partir d’une collection de segments de mou-
vement préenregistrés. Le graphe est construit à partir de deux opérations : éclatement
d’un segment de mouvement et ajout d’une transition entre deux segments de mouve-
ment. L’emplacement de l’éclatement d’un segment de mouvement dépend de savoir
si une transition vers un autre segment de mouvement est favorable ou non selon un

viii

critère de distance. Ce travail met en avant un problème important qui apparaı̂t quand
on veut comparer différentes animations : quel critère doit être utilisé afin de déterminer
la distance entre deux postures ? A critère simplement basé sur les distances entre les
angles des articulations n’est pas suffisant à cause de plusieurs raisons :

1. La norme simple des vecteurs ne permet pas de prendre en compte la sémantique
des paramètres : dans la représentation de l’angle de l’articulation, certains para-
mètres ont beaucoup plus d’impact que d’autres sur le personnage (par exemple
l’orientation de la hanche par rapport à celle du poignet). En outre, il n’existe
pas de façon appropriée d’associer des poids fixes à ces paramètres, car l’effet
d’une rotation d’articulation sur la forme du corps dépend de la configuration
instantanée du corps.

2. Un mouvement est définit seulement à une transformation de coordonnées 2D
près. Ce qui signifie que le mouvement reste fondamentalement inchangé si on
le translate à la surface du plan du sol ou si on lui applique une rotation autour
de l’axe vertical. Ainsi, comparer deux mouvements nécessite d’identifier des
systèmes de coordonnées compatibles.

3. Une combinaison continue nécessite plus d’information qu’on ne peut en obtenir
d’images individuelles. Une transition continue doit tenir compte non seulement
des différences de postures des corps, mais aussi de la vitesse des articulations,
de leur accélération et éventuellement des dérivés de plus haut degré.

Au lieu d’utiliser la différence entre les orientations des articulations, Kovar propose
d’utiliser une autre métrique. Il utilise un nuage de points qui représente la forme
de la posture. Bien que la technique du graphe de mouvement soit très utile dans de
nombreuses applications, la méthode présente un certain nombre de limitations qui en
rendent son usage moins adapté pour des personnages interactifs. A cause du choix
d’utiliser le nuage de points, le critère de distance est lourd en termes de calculs. En
outre, le graphe de mouvement nécessite des contraintes précises. A proximité des
points du début et de la fin de l’animation, le chemin lui-même doit être défini. Quand
on a besoin de contrôler un personnage à un plus haut niveau, des contraintes aussi
précises ne sont pas forcément facilement accessibles.

Il y a plusieurs efforts de recherche focalisés sur le contrôle automatique du mouve-
ment du visage et du corps d’un personnage. Des exemples de tels systèmes sont BEAT,
GRETA, REA ou MAX. La plupart de ces systèmes ont une façon plutôt détaillée de
spécifier les séquences d’animation du visage et du corps à jouer. Ce haut niveau de
contrôle est principalement perceptible dans la façon dont les mouvements des mains
et des bras sont construites. Bien qu’un contrôle très précis de ces mouvements est
souhaitable afin d’obtenir un lien fort avec par exemple un système de dialogue, les
animations résultantes ne sont pas très naturelles car elles ne sont définies que pour
quelques articulations. Aussi, parce que ces systèmes ne prennent pas en considération
l’ensemble du corps, les personnages ont l’air statique pendant l’interaction. Actuelle-
ment, il n’existe pas de système qui puisse gérer des animations détaillées du visage et
du corps et qui produise des animations naturelles du personnage.

ix

Dans cette thèse nous nous sommes fixés le but de développer une approche qui
présente suffisamment de flexibilité pour être utilisées avec des humains virtuels inter-
actifs mais permette aussi de synthétiser des mouvements qui sont réalistes. Afin de
créer ce synthétiseur idéal de mouvements pour un humain virtuel interactif crédible,
il est nécessaire d’avoir un système qui permette à la fois un haut niveau de contrôle
et un haut niveau de réalisme. L’objectif global de cette thèse est de développer des
techniques qui permettent d’aller dans la direction de ce synthétiseur idéal de mou-
vements tout en gardant à l’esprit les contraintes du temps réel. Afin d’atteindre cet
objectif global, nous proposons plusieurs contributions spécifiques à l’état de l’art dans
plusieurs domaines de recherche :

Manipulation temps-réel d’animation Nous proposons une nouvelle représentation
d’animation du corps qui permet des manipulations rapides. La représentation
est adaptée à des opérations linéaires comme la carte exponentielle, mais avec
l’avantage additionnel que seulement un petit sous-ensemble du vecteur de pos-
ture est nécessaire pour de nombreuses applications, permettant ainsi d’améliorer
grandement l’efficacité de la gestion de l’animation.

Synthèse flexible de mouvements Nous présentons un synthétiseur flexible de mou-
vements qui adapte complètement automatiquement des segments de mouve-
ments préenregistrés pour créer de nouveaux mouvements réalistes. Le synthé-
tiseur de mouvements est aussi capable d’adapter et de séquencer des mouve-
ments en temps réel en utilisant un critère de distance rapide qui s’appuie sur la
représentation de l’animation proposée.

Gestes réalistes automatisés Nous montrons une nouvelle technique qui permet la
production de gestes réalistes en temps réel à partir de mouvements générés de
façon procédurale définis seulement pour quelques articulations. Nous présentons
une méthode pour déterminer automatiquement les mouvements des articulations
dépendantes à un coût de calcul bas.

Interaction expressive complète du corps Comme preuve de concept de l’adéquation
du gestionnaire d’animation, nous développons un gestionnaire de dialogue capa-
ble de contrôler simultanément l’animation du visage et du corps. Une interface
simple est proposée pour permettre une définition cohérente des mouvements du
visage et du corps, qui seront automatiquement synchronisés avec le signal de la
parole, créé à partir d’un synthétiseur vocal. Cela permettra à un humain virtuel
interactif de répondre à un utilisateur en utilisant des mouvements du visage et
du corps. Etant donné que les expressions émotionnelles du visage et du corps
ont besoin d’être contrôlées, nous présentons un simulateur de personnalité et
d’émotion efficace adapté pour les animations de personnages interactifs.

Nous allons maintenant décrire chacune de ces contributions en détail.

Manipulation temps-réel d’animation Nous allons maintenant présenter une col-
lection de techniques qui permet de synthétiser de nouveaux mouvements en utilisant

x

des mouvements préalablement enregistrés ou produits à la main par un designer. Etant
donné que notre but est de réaliser cette synthèse automatiquement, nous avons besoin
d’une méthode adaptée de représentation de l’animation. Aussi, parce que nous con-
naissons le domaine d’application dans lequel les animations vont être utilisées (mouve-
ments de communication interactive), nous pouvons tirer profit de méthodes qui anal-
ysent statistiquement les mouvements enregistrés afin de déterminer les dépendances
entre différentes variables. Notre approche pour la représentation des mouvements
du corps consiste à utiliser une représentation par les composants principaux. Nous
avons choisi cette approche parce qu’elle permet de déterminer les dépendances en-
tre les différentes variables (dans notre cas, les rotations des articulations). Comme
nous le montrerons, c’est une propriété puissante qui permet de nombreuses optimisa-
tions dans la représentation des données et leur traitement. Parce que la méthode de
l’analyse par les composants principaux n’opère que sur des données exprimées dans
un espace linéaire, nous devons utiliser une représentation des orientations dans un tel
espace, comme avec les cartes exponentielles. Alexa a déjà proposé la carte expo-
nentielle comme une représentation valide des animations et il a aussi montré que des
transformations linéaires et d’autres opérations matricielles sont possibles avec une telle
représentation. C’est pourquoi nous avons choisi de représenter nos animations dans ce
format. Nous avons acquis un grand ensemble de postures à partir d’animation enreg-
istrées avec le système de capture du mouvement VICON. Nous représentons chaque
orientation avec ses trois valeurs définissant la matrice antisymétrique de la carte ex-
ponentielle. En plus, une rotation globale (racine) est définie. Etant donné que nous
utilisons les 25 articulations H-Anim pour chaque posture, notre échantillon de données
est de dimension 78. Pour les composants principaux on obtient une matrice de trans-
formation 78×78. Dans les paragraphes suivants, nous allons expliquer comment cette
représentation est utilisée pour la synthèse du mouvement ainsi que pour la synthèse
automatique des mouvements des articulations dépendantes.

La représentation d’animation à base de carte exponentielle est encapsulée dans
notre moteur d’animation appelé MIRAnim. L’architecture de l’application est une ap-
proche multipistes, dans laquelle plusieurs flux doivent être mélangés en une animation
finale. L’objectif de notre moteur d’animation est de fournir une structure générique
qui permette l’implémentation de différentes stratégies de mélanges. Ceci est partic-
ulièrement important respectivement aux différentes représentations des animations en
fonction de l’application. Par exemple, les mouvements obtenus par synthèse de mou-
vement sont fusionnés en utilisant la représentation par les composants principaux. Pour
des fusions plus génériques, dans lesquels différents flux d’animation doivent se jouer
sur différentes parties du corps, une méthode basée sur les articulations est nécessaire.
De plus, dans le système final, nous aurons besoin de réaliser des opérations de fu-
sion à la fois sur le visage et le corps qui sont deux formats d’animation complètement
différents et qui nécessitent différentes stratégies. L’approche que nous allons présenter
est adaptée pour n’importe laquelle des situations présentées précédemment. Un grand
ensemble d’outils de fusion, par exemple, distorsion, éclatement et atténuation du temps
sont disponibles. L’avantage de cette approche générique est qu’une fois qu’un outil de
fusion a été défini, il peut être utilisé pour n’importe quel type d’animation, indépen-
damment de son type. Pour pouvoir utiliser ces outils de fusion, une seule interface

xi

a besoin d’être établi entre la structure de donnée utilisée pour la fusion et la struc-
ture d’animation d’origine. La structure de base utilisée dans le moteur de fusion est
l’interface dénommée BlendableObject. Un objet fusionnable est la représentation
d’une animation qui peut être fusionnée avec d’autres animations. La principale fonc-
tionnalité de cet objet est une fonction qui associe des instants clés à des images-clés.
Une image-clé dans le moteur de fusion est appelée une AbstractFrame. Une image
abstraite est constituée d’un ensemble d’éléments appelés les objets AbstractFrame-
Element. Chacun de ces éléments est une liste de valeurs en virgule flottante. Par
exemple, dans le cas d’animations du corps, un AbstractFrameElement pourrait
être une liste de 3 valeurs représentant une carte exponentielle de rotation, ou une liste
de 3 valeurs représentant une translation 3D. Une image abstraite pourrait alors con-
sister en une combinaison d’éléments qui sont soit des rotations soit des translations.
Dans le cas d’une animation faciale, les éléments pourrait être une liste de 1 valeur,
représentant une valeur de FAP dans le standard MPEG-4. Au travers de l’interface du
BlendableObject chaque animation est définie comme une fonction A : t → K, où
t est un instant clé compris entre ts et te, tel quel 0 ≤ ts < te < ∞ et K est l’image cor-
respondante dans l’animation. Il faut maintenant une structure qui permette de prendre
un certain nombre de ces pistes d’animation et de les fusionner ensemble selon certains
paramètres. Ces paramètres sont définis au travers de l’interface BlendingParams.
Le paramètre le plus général est une valeur de poids utiliser pour le mélange. Outre une
liste de poids, l’interface BlendingParams propose aussi une liste de coefficients de
changement d’échelle, des scales. L’évolution des poids et des scales au cours du temps
est contrôlé par une courbe paramétrable. Différents type de BlendingParams peu-
vent être multiplexés et des objets de paramètres de fusion ajustés peuvent être définis.
Par exemple, un objet BlendingParams peut être définis spécifiquement pour une an-
imation du corps, qui définit un masque les articulations. Quand il est multiplexé avec
un objet BlendingParams définissant une courbe de poids, le résultat est un ensemble
de courbes définies pour chaque articulation activée dans le masque. N’importe quelle
combinaison arbitraire de ces paramètres de fusion est possible, permettant une struc-
ture de paramétrisation flexible de la fusion. Ici, l’avantage de l’indépendance de la
stratégie de fusion revient. Une fois qu’un paramètre de fusion tel qu’une courbe de
fusion est implémenté, il peut être appliqué sur n’importe quelle animation.

Synthèse flexible de mouvements Maintenant que nous avons représenté les pos-
tures du corps dans l’espace des composants principaux, nous pouvons commencer à
utiliser les puissantes propriétés d’une telle représentation pour la synthèse de mouve-
ment. Afin de créer de nouveaux mouvements à partir d’une collection de mouvements
existants, il y a deux opérations principales qui seront souvent appliquées sur les images
de ces animations :

1. Calcul de distance entre deux images.

2. Interpolation entre deux images.

La conformité de la première opération est très importante en synthèse du mouvement,
car elle définit quand et où des transitions ou des adaptations appropriées de segments

xii

de mouvement pourront être réalisées. L’interpolation entre images est utilisée quand
un segment de l’animation d’origine est adapté de façon à respecter un ensemble de
contraintes. Des exemples de telles contraintes sont une nouvelle posture cible, ou une
translation du mouvement d’origine pour une autre position et/ou orientation. Le cal-
cul de distance entre deux images est tout spécialement pratiqué dans les méthodes de
synthèse de mouvement. Quand on utilise un critère de distance basé sur la géométrie
en combinaison avec une telle approche, le temps nécessaire pour le pré-calcul est im-
portant. Notre critère de distance entre images est basé sur la représentation des pos-
tures en composants principaux. Comme discuté précédemment, une représentation
par les composants principaux regroupe ensemble les mouvements des articulations
dépendantes. Ainsi, en définissant la distance entre deux postures P et Q comme la
distance Euclidienne pondérée entre les deux vecteurs correspondants des composants
principaux p et q, les dépendances des articulations seront prises en compte comme
partie intégrante du calcul de distance. Les valeurs des poids sont choisis comme les
valeurs propres déterminées durant l’analyse par les composants principaux. L’espace
des composants principaux étant linéaire, le calcul de la distance peut être effectué
aussi rapidement (plus rapidement) que dans les méthodes basées sur les articulations
précédemment évoquées. Cependant, l’utilisation des composants principaux a une
autre propriété qui va permettre une augmentation significative du temps de calcul
de la distance : la réduction de dimension. Alors que les composants principaux
les plus élevés représentent les postures qui apparaissent le moins, elles sont à peu
près nulles et donc ne contribue pas significativement au facteur de distance. Ce qui
signifie qu’en faisant varier le nombre de composants principaux utilisés, nous pou-
vons atteindre un compromis raisonnable entre rapidité et précision. En comparant
les différentes distances obtenus à partir d’un nombre variable de composants, nous
avons déterminé qu’en utilisant un vecteur de composants composé seulement des 10
premières valeurs, dans 80% des cas, aucune erreur de distance ne se produit, alors
que dans les 20% restants, l’erreur de distance ne sera pas visible en moyenne. Ainsi,
en utilisant l’approche des composants principaux, une accélération substantielle est
obtenue tout en maintenant des résultats visuellement équivalents.

Notre système de synthèse de mouvement utilise une représentation par graphe pour
relier les différents segments d’animation enregistrés dans la base de données. Comme
le système va être utilisé pour simuler un humain virtuel interactif, nous allons utiliser
comme base uniquement des mouvements qui seront utiles pour ce type de personnage.
La plupart de ce genre de systèmes se concentre sur la création de gestes du haut du
corps (buste). L’exception à cette situation est le travail de Cassel et al. Ils montrent
que non seulement le buste est important pour la communication, mais qu’en fait c’est
tout le corps qui l’est. Ils notent aussi que le changement d’appui (balancement d’un
pied sur l’autre) est une des fonctions les plus importantes dans la communication cor-
porelle et qu’il indique un changement de sujet. Bien qu’ils aient implémenté de tels
mouvements dans REA, leur intérêt était clairement orienté vers l’expressivité commu-
nicante du personnage et beaucoup moins dans le réalisme de ses mouvements. Notre
but est de synthétiser des mouvements réalistes de tout le corps en nous focalisant sur les
mouvements de changement d’appui. Ces mouvements sont générés automatiquement
à partir d’une base de données de séquences d’animation préenregistrées. A cause des

xiii

différentes postures de départ et de fin dans chaque segment, cette base de données ne
contient pas toutes les transitions possibles entre les postures de départ et celles de fin.
C’est pourquoi nous avons développé une technique qui permet de projeter une anima-
tion sur un ensemble de différentes postures clés. Afin que cette technique puisse être
aussi réaliste que possible, nous devons déterminer laquelle des animations s’adaptera le
mieux à une posture de départ p et une posture de fin q. Afin de le déterminer, le système
doit choisir l’animation dont la première et la dernière images sont respectivement les
plus proches des postures p et q. Afin de déterminer la distance entre les images,
nous utilisons la méthode de calcul déjà décrite précédemment. Afin de sélectionner
l’animation qui s’adaptera le mieux entre p et q, on calcule pour chaque animation
a ∈ A le maximum Ma des distances da0,p et dae,q. L’animation que nous utiliserons
sera celle qui a la valeur Ma minimale. En interpolant dans l’espace des composants
principaux, nous adaptons l’animation sélectionnée de façon à ce qu’elle démarre avec
la posture p et finisse avec la posture q. En appliquant cette approche, une nouvelle
séquence d’animation est produite en connectant différents segments d’animation avec
des postures de départ et de fin similaires.

A part les postures de changement d’appui, les petites variations de postures ap-
portent grandement au réalisme d’une animation. A cause de facteurs tels que la res-
piration, les petites contractions musculaires. . . les humains ne peuvent jamais exacte-
ment tenir la même posture. Il n’y a pas eu beaucoup de recherche dans ce domaine,
à l’exception du travail de Perlin, qui est basé sur l’application de bruit de Perlin sur
le coude, le cou et la hanche. Cette méthode produit des animations bruitées assez
réalistes alors que le bruit n’est appliqué qu’à quelques articulations. Cependant, les
variations de postures affectent l’ensemble des articulations, ce qui ne peut pas être
simplement généralisé en appliquant des fonctions de bruits sur toutes les articulations
à cause des dépendances entre les articulations. Contrairement à l’approche de Perlin,
nous utilisons la représentation par les composants principaux pour chaque image-clé.
Etant donné que les variations sont appliquées sur les composants principaux et pas
directement sur les articulations, cette méthode produit des variations aléatoires tout en
conservant la dépendance entre les articulations. En plus, parce que les composants
principaux représentent les dépendances entre les variables dans les données, les com-
posants principaux sont les variables qui ont le maximum d’indépendance. En tant
que tel, nous pouvons les traiter séparément pour générer des variations de postures.
Une méthode pour générer directement des variations est d’appliquer une fonction de
bruit de Perlin sur un sous-ensemble de composants. Une autre méthode qui produit
ces petites variations est basée sur la forme des courbes dans les données de mouve-
ment capturé. Cette méthode applique un modèle statistique pour générer des courbes
(aléatoires) similaires. Cette approche permet de maintenir certaines tendances dans les
variations qui sont propres à certaines personnes (tels que des mouvements typiques de
la tête). Un avantage supplémentaire par rapport au bruit de Perlin est que cette ap-
proche est complètement automatique et qu’elle évite d’avoir à définir les fréquences et
les amplitudes pour générer le bruit, bien que ces paramètres puissent être automatique-
ment extraits par analyse du signal. Dans notre méthode, nous analysons les segments
d’animation qui ne contiennent pas de changement d’appui ou de mouvements autres
que de petites variations. Les mouvements de bruit résultant sont appliqués sur les

xiv

mouvements synthétisés. Dans notre application, la méthode de synthèse de bruit est
appliquée à un sous-ensemble de valeurs de composants. Pour chaque composant, les
variations sont générées indépendamment. Cela ne donne pas de résultats irréalistes
car la dépendance entre les composants principaux est relativement faible. Le résultat
final de la synthèse de variation ne montre pas de répétition grâce au bruit aléatoire et
au traitement séparé des composants principaux. Le mouvement final sera utilisé pour
contrôler le personnage de façon à ce qu’une couche de base de mouvement, appelés
les mouvements d’inactivité (idle motions), soit toujours présente.

Gestes réalistes automatisés Les systèmes de synthèse de mouvements du corps
produisent souvent des gestes qui sont définis comme des mouvements spécifiques
du bras provenant d’une représentation plus conceptuelle du mouvement. Traduire
de telles spécifications de haut niveau de gestes en animations résulte souvent en des
mouvements qui semblent mécaniques. Ceci est du au fait que les mouvements ne
sont spécifiés que pour quelques articulations alors que dans les captures de mouve-
ment, chaque mouvement d’articulation a une influence sur celui d’autres articulations.
Par exemple, en bougeant la tête de gauche à droite, des mouvements de la colonne
vertébrale et des épaules vont être induits. Cependant, les animations basées sur les
captures de mouvements n’offrent pas la flexibilité requise par un système de synthèse
de gestes. De tels systèmes bénéficieraient grandement d’une méthode qui puisse au-
tomatiquement et en temps réel calculer des mouvements crédibles pour les articula-
tions qui sont dépendantes du geste. Notre méthode utilise les composants principaux
pour produire des mouvements paraissant plus naturels. Les composants sont ordonnés
de façon à ce que les composants les plus bas indiquent une forte occurrence dans les
données alors que les composants les plus élevés indiquent une faible occurrence dans
les données. Cela permet par exemple de compresser les animations en ne retenant que
les indices des composants les plus bas. Les animations qui sont proches de celles qui
sont dans la base de données qui ont été utilisées pour l’analyse par les composants prin-
cipaux auront des indices de composants élevés proches de zéro. Une animation qui sera
très différente de celles qui sont dans la base de données aura plus de bruit dans les in-
dices des composants élevés pour compenser la différence. Si on suppose que la base de
données qui est utilisée pour l’analyse par les composants principaux est représentative
des mouvements généraux qui sont exprimés par des humains pour communiquer, alors
les indices de composants élevés représentent la partie de l’animation qui n’est pas na-
turelle (ou : qui n’apparaı̂t pas fréquemment dans la base d’animations). Quand on
retire ces indices de composants élevés ou qu’on leur applique un filtre de changement
d’échelle, cela produit une erreur dans l’animation finale. Cependant, étant donné que
le filtre retire la partie non naturelle de l’animation, le résultat est un mouvement qui
contient précisément les mouvements des articulations dépendantes. En variant les in-
dexes des composants principaux auquel le filtre d’échelle démarre, on peut contrôler
la proximité de l’animation résultat par rapport à l’animation par images-clés d’origine.
Pour calculer les mouvements des articulations dépendantes, il suffit d’appliquer une
fonction de changement d’échelle. Ainsi cette méthode est particulièrement adaptée
pour les applications temps réel.

xv

Interaction expressive complète du corps Pour qu’un système d’animation soit a-
dapté pour des humains virtuels interactifs, il est crucial de pouvoir appliquer des con-
traintes sur le synthétiseur de mouvements. Ces contraintes pourraient être définies par
exemple par un gestionnaire de dialogue qui contrôle les sorties et les expressions d’un
personnage. Comme cas d’étude, nous allons présenter une extension du synthétiseur
de mouvement qui sélectionne différents mouvements en fonction de différents états
émotionnels. Afin de réaliser cette extension, nous devons tout d’abord décider de la
représentation des émotions à utiliser. Il existe plusieurs représentations des émotions,
mais elles ne sont pas toutes adaptées pour représenter des postures émotionnellement
expressives. Par exemple, la liste d’émotions proposée dans le modèle OCC est trop
détaillée par rapport à ce que les gens peuvent effectivement percevoir. Coulson a
démontré que seulement quelques émotions sont faciles à distinguer à partir d’une seule
posture du corps. Ainsi il semble logique d’utiliser une représentation des émotions
qui s’appuie sur cette observation. Nous avons choisi d’utiliser l’espace activation-
évaluation comme espace représentatif des émotions pour le contrôle des mouvements
du corps, à cause de la similarité avec la précision perceptive telle qu’établie par Coul-
son. Le disque activation-évaluation est une représentation bidimensionnelle qui définit
un disque avec deux axes : un axe activation et un axe évaluation. Un avantage
supplémentaire à utiliser cette représentation est que les autres modèles multidimen-
sionnels peuvent être facilement projetés sur le disque, en exprimant les différentes
émotions sous forme de paires activation-évaluation.

Avant qu’une nouvelle animation soit créée, les animations qui sont dans la base de
données doivent être annotées avec des informations émotionnelles supplémentaires.
Pour chaque segment d’animation, nous définissons le changement de contenu émo-
tionnel en spécifiant le début et la fin de l’animation sous forme d’un intervalle bidi-
mensionnel sur le disque activation-évaluation. Etant donné un état émotionnel [ee, ea],
le synthétiseur de mouvement sélectionne alors automatiquement les animations qui ont
un intervalle cible qui contient ce point dans l’espace émotion. Afin de s’assurer qu’il
est toujours possible d’effectuer une transition quelque soit le contenu émotionnel, un
ensemble de transitions sans contraintes est ajouté aussi, de telle sorte que lorsqu’aucun
intervalle cible ne peut être sélectionné, une transition neutre est toujours possible. Sans
compter que les transitions elles-mêmes changent en fonction de l’état émotionnel. Une
option additionnelle fournie par le synthétiseur est l’adaptation automatique de la durée
de la pause entre les transitions selon le niveau d’activation. Des niveaux d’activations
plus élevés résulteront en des pauses plus courtes (et ainsi en plus de transitions).

Maintenant qu’un mécanisme de contrôle de haut-niveau a été établi pour l’état
émotionnel, l’animation finale peut être construite en combinant différentes animations
en utilisant le moteur MIRAnim. Nous avons intégré le moteur d’animation dans un
prototype de système de dialogue qui produit des réponses annotées à partir des in-
formations de l’utilisateur. Associés à l’animation faciale produite pour la parole, les
annotations dans le texte indiquent quelles actions supplémentaires du visage et du
corps devraient être jouées, synchronisées avec la parole. Associé aux mouvements et
aux gestes, le synthétiseur tourne continuellement, fournissant ainsi à l’humain virtuel
interactif des mouvements d’inactivité. Ces mouvements d’inactivité changent selon
l’état émotionnel obtenu à partir du système de dialogue en utilisant la méthode décrite

xvi

précédemment. Finalement, les mouvements d’inactivité et les gestes sont fusionnés à
la volée.

Conclusions Nous avons présenté une nouvelle représentation pour les animations,
basée sur l’analyse par les composants principaux de segments de mouvements obtenus
par capture. L’analyse par les composants principaux est une technique bien connue
qui a déjà été appliquée dans de nombreux contextes. Cependant les applications sur
les mouvements du corps ont été rares à cause des contraintes sur la représentation
des orientations. Nous avons montré que les composants principaux peuvent être ap-
pliqués avec succès sur une représentation des orientations basée sur la carte exponen-
tielle. Nous avons décrit des algorithmes efficients basés sur les composants princi-
paux pour la manipulation rapide d’animations, particulièrement le critère de distance
et l’adaptation temps réel des animations. La moteur d’animation MIRAnim est con-
struit autour de cette structure et permet de fusionner et de jouer des animations de tous
types. Le gestionnaire d’animations est adapté pour différents types d’applications et
il permet de basculer entre des personnages contrôlés par scénario ou des personnages
interactifs contrôlés en continu sans interrompre les animations qui sont jouées.

Sur la base des performances du critère de distance et de l’adaptation des anima-
tions, nous avons démontré une technique de synthèse de mouvement qui ne nécessite
pas de cycle de pré-calcul contrairement aux techniques existantes, notamment celle du
Motion Graph. Ce qui offre la possibilité d’adapter dynamiquement le graphe de mou-
vements. En outre, notre méthode est basée sur un graphe dont les sommets ont une
sémantique. Par conséquent, un mécanisme de contrôle a pu être établi qui permet de
choisir un chemin dans le graphe, une option qui n’est pas possible dans les méthodes
existantes. Nous avons aussi présenté un contrôle de haut-niveau pour les postures
émotionnelles en définissant une stratégie qui assigne des contraintes sur les arêtes du
graphe. Notre technique est indépendante du type de mouvement, contrairement aux
systèmes existants qui se focalisent sur des types de mouvements particuliers, comme
la marche.

Nous avons présenté une méthode efficace pour générer automatiquement les mou-
vements des articulations dépendantes en temps-réel à partir des mouvements de quel-
ques articulations. Le filtre des composants principaux est simple à implémenter et les
paramètres peuvent être choisis de façon à adapter la quantité de mouvement à ajouter.
Notre approche ne place aucune limitation sur le mouvement en entrée. En outre, grâce
à l’intégration avec le synthétiseur automatique de mouvement, notre approche garantit
une posture naturelle, même quand aucun mouvement n’est activé. Cela ajoute de la
vie au personnage qui n’est pas disponible dans les systèmes actuels.

Nous avons développé un système interactif qui génère des réponses appropriées en
fonction des entrées de l’utilisateur. Notre approche permet la spécification des mou-
vements du visage et du corps qui sont joués de façon synchronisée avec le signal de
la parole. Là encore, les mouvements résultat sont fusionnés avec les mouvements en
cours. Grâce à la gestion indépendante des animations, notre approche peut être facile-
ment intégrée dans des systèmes interactifs existants. En outre, nous avons présenté
un système pour la simulation de la personnalité et des émotions. L’état émotionnel

xvii

est utilisé pour exprimer automatiquement les émotions sur le visage et le corps, ce qui
n’était pas encore disponible pour des personnages interactifs.

Enfin, nous avons développé un prototype fonctionnel du système intégré com-
plet. Plusieurs logiciels sont disponibles pour tester les différentes méthodes qui ont été
décrites dans cette thèse. Une boı̂te à outils simple à utiliser à été développée, pour per-
mettre de jouer et d’adapter des animations selon les besoins de l’animateur. En outre,
le prototype a été intégré avec un outil d’exécution de scénario afin de permettre au
moteur d’animation de jouer un scénario d’animation avec plusieurs personnages dans
un environnement 3D. Le service d’interaction ajoute la possibilité d’interagir avec ces
personnages à tout moment.

Travail futur Bien que nous ayons proposé plusieurs contributions par rapport à l’état
de l’art dans cette thèse, beaucoup de travail reste encore à faire dans le domaine.
Comme dans toute recherche, la nôtre à ses limitations. Nous pensons que l’utilisation
des technologies que nous avons décrites dans les précédents chapitres représente un
pas dans la bonne direction, mais nous avons identifié plusieurs thèmes de recherche
dans ce domaine passionnant.

Dans l’implémentation actuelle de notre système, la séquence d’animation est pro-
duite à partir d’un texte annoté. Bien qu’une telle approche est suffisante pour évaluer
le moteur d’animation qui contrôle les mouvements de l’humain virtuel, elle représente
une tâche particulièrement consommatrice de temps si un script complexe doit être pro-
duit. Afin de permettre de développer facilement des humains virtuels interactifs, il est
nécessaire de développer un système qui le fasse automatiquement. Il y a déjà eu des
recherches dans ce domaine, notamment BEAT ou MAX, mais ces systèmes ont besoin
de beaucoup de prétraitement et d’annotations. Une direction de recherche intéressante
consisterait à annotés automatiquement les données de mouvement capturées pendant
les conversations, puis, à partir de ces données, d’essayer de générer automatiquement
de nouveaux mouvements synchronisé avec la parole produite par un système de texte-
vers-parole. Une telle approche permettrait aussi d’inclure des gestes du corps plus
complexes.

Bien que la fusion entre les différents types de mouvements soit simple à réaliser
dans notre système, il ne repose pas sur des paramètres physiques. Ainsi, des colli-
sions des pieds ou des glissements peuvent se produire. Nous avons proposé quelques
solutions simples approximatives pour ces problèmes, mais le système n’a pas encore
un contrôle complet sur le corps. Des actions plus complexes, telles que courir, sauter
ou s’asseoir, sont très complexes à gérer à partir d’un texte annoté. Un mécanisme
de sélection d’actions plus complexe doit être proposé qui puisse contrôler ce type
d’actions tout en restant suffisamment flexible.

Un point très important qui n’est pas traité dans ce travail est les interactions avec
des objets dans l’environnement. Fréquemment pendant des interactions, on pointe des
objets, on prend des objets ou on les utilise pour réaliser des tâches. Il est aussi indis-
pensable d’ajouter le contrôle du regard de l’humain virtuel, pour lequel l’intégration
avec la position de la caméra dans l’environnement est requise. Contrôler les interac-
tions avec les objets dans un environnement virtuel est un thème de recherche complexe

xviii

qui en est encore à ses prémices. Les méthodes d’animation basées sur les articulations
n’ont pas une représentation spatiale immédiate des effecteurs finaux du corps, ce qui
rend difficile la définition de mouvements qui interagissent avec des objets tels qu’une
porte ou un tiroir. L’interaction avec des objets en combinaison avec un système in-
teractif est rendue encore plus complexe. Afin d’y arriver, il est nécessaire d’intégrer
un système de perception virtuel afin que l’humain virtuel obtienne un feedback de ce
qui se passe dans son environnement virtuel. Ce feedback perceptif aura un effet sur le
comportement de l’humain virtuel.

La plupart des humains virtuels sont des modèles géométriques 3D dont le mou-
vement est contrôlé par la manipulation du squelette. L’ ‘intérieur’ de ces humains est
vide. Un vrai challenge consisterait à modéliser cette partie interne. Nous avons déjà
effleuré cet aspect en modélisant la personnalité et les émotions. Cependant de vrais
êtres humains adaptent leur comportement selon de nombreux signaux physiologiques.
Ces signaux affectent non seulement le comportement des humains, mais aussi leur
apparence, par exemple, rougir, transpirer, pleurer. . . Ces processus physiologiques
représentent un aspect clé de nos expressions et de notre système comportemental, mais
il n’y a actuellement quasiment aucune recherche pour intégrer ces signaux dans le com-
portement des humains virtuels. En outre, des motivateurs généraux tels que l’appétit
ou la fatigue pourraient être implémentés. Au final, un humain virtuel ne cesserait plus
d’exister quand l’application se termine, mais il/elle pourrait aller se coucher ou faire
d’autres choses, ce qui en retour inspirerait d’autres conversations avec l’utilisateur lors
de nouvelles sessions d’application.

Contents

1 Introduction 1

2 State of the Art 5
2.1 Virtual Human Animation . 6

2.1.1 Facial Animation . 8
2.1.2 Body Animation . 9

2.2 Performance Animation . 15
2.3 Interactive Virtual Human Systems . 22

2.3.1 Interaction . 22
2.3.2 Personality and Emotion Simulation 23
2.3.3 Expressive Agents . 27

2.4 Motivation . 33
2.5 Specific Objectives . 34
2.6 Organization . 36

3 Motion Synthesis 39
3.1 Getting the Data . 40

3.1.1 Motion Capture . 40
3.1.2 Motions in Linear Space . 41

3.2 Principal Component Analysis . 42
3.2.1 Statistics . 42
3.2.2 Matrix Algebra . 43
3.2.3 Performing the Principal Component Analysis 43
3.2.4 Principal Components of Body Postures 44

3.3 Creating New Motions . 45
3.3.1 The Distance Criterion . 45

xx CONTENTS

3.3.2 Synthesizing New Motions . 47
3.4 Adding Noise . 54

3.4.1 Normalisation of the Data . 55
3.4.2 Variation Prediction . 56

3.5 Summary . 58

4 Motion Control 59
4.1 Emotional Motion Synthesis . 60

4.1.1 Motion Segment Selection . 61
4.1.2 Adapting the Pause Length . 62

4.2 The MIRAnim Animation Engine . 62
4.2.1 Blendable Object . 63
4.2.2 Blending Schedule . 64
4.2.3 Additional Blending Tools . 66

4.3 Real-Time Animation Adaptation . 66
4.3.1 PC Ranges . 67
4.3.2 Motion Damping . 68
4.3.3 Results . 70

4.4 Automatic Dependent Joint Motion Synthesis 70
4.5 Summary . 72

5 Interactive Virtual Humans 75
5.1 Dialogue Management . 75

5.1.1 Finite State Machines . 76
5.1.2 FSMs and Dialogue . 77
5.1.3 The Parallel FSM Algorithm 79
5.1.4 Dialogue Modules . 80

5.2 Simulating Emotions and Individuality 80
5.2.1 Definitions . 80
5.2.2 Updating the Emotional State 82
5.2.3 Integration with Dialogue Manager 83

5.3 From Dialogue to Animation . 84
5.3.1 From Dialogue to Facial Animation 85
5.3.2 From Dialogue to Body Animation 88

5.4 Summary . 88

6 Implementation 91
6.1 The VHD++ Real-Time Animation Framework 91
6.2 The Animation Service . 93
6.3 The Interaction Service . 95
6.4 Summary . 97

CONTENTS xxi

7 Conclusion 99
7.1 Contributions . 99
7.2 Limitations and Future Work . 101

A Publications 115
A.1 Journal Publications . 115
A.2 Proceedings Publications . 115
A.3 Book Chapters . 116

B The animblender Manual 117
B.1 The Blending Schedule . 118
B.2 Blending actions . 118
B.3 Animation modifiers . 119
B.4 Blending animations . 120
B.5 Smoother blending . 122
B.6 Idle motion blending . 123

C Blending Schedule Examples 125
C.1 Example 1 . 125
C.2 Example 2 . 125
C.3 Example 3 . 126
C.4 Example 4 . 126
C.5 Example 5 . 127

D Visemes 129
D.1 SAPI5.1 Viseme List . 129
D.2 Coarticulation Curve definition . 129

List of Figures

1.1 The Perception-Action loop. 2

2.1 Main components of an Interactive Virtual Human simulator. 6
2.2 Facial expressions generated by a pseudo-muscle spline approach [125]. 8
2.3 Facial expressions based on the MPEG-4 standard applied on different

3D models [44]. 9
2.4 The H-Anim standard defines a joint skeleton structure for humanoids. . 11
2.5 Two different angular representations of rotations: (a) Euler Angles (b)

Axis Angle. 11
2.6 Results of skinning algorithms by Sloan et al. [117], Allen et al. [4] and

Magnenat-Thalmann et al. [84]. 16
2.7 Generic pipeline in a motion synthesis system that uses motion cap-

tured segments. Motion captured data is segmented and represented in
a graph like structure. New motions are then synthesized by traversing
a path in the graph. 16

2.8 Measurement values by Ahn et al. [2]. 17
2.9 Example error function output for a distance comparison between two

animations. The points indicate error minima and they correspond to
frame combinations that could be used to form a transition [66]. 20

2.10 Plutchik [104] defines eight basic emotions. He states that emotions are
like colors. Every color of the spectrum can be produced by mixing the
primary colors. 26

2.11 Activation-evaluation emotion disc. 26
2.12 Example image results of different gesture synthesis systems: (a) the

BEAT system [19] (b) the REA system [17] (c) the MAX system [64]
(d) the GRETA system [54]. 29

xxiv LIST OF FIGURES

2.13 Some example postures of the Real Estate Agent [17, 18]. 30
2.14 Example of a multimodal sequence of text to be spoken in synchrony

with gestures using MURML. 32
2.15 (Simplified) example of an audio signal to be played in synchrony with

gestures using RRL. 32
2.16 Performance animation methods and IVH simulation system, in a graph

depicting control versus realism of animations. 35

3.1 The Vicon motion capture system [124]. 40
3.2 Conversion between different representations for postures. 44
3.3 Success percentages of same selected closest frame for 4 different pos-

ture sets, ranging from using only the first PC value, the first and the
second PC value, until using the full PC vector (and thus 100% success). 46

3.4 The average distance error when another closest frame was selected for
4 different posture sets, ranging from using only the first PC value, until
using the full PC vector. 47

3.5 The maximum distance error when another closest frame was selected
for 4 different posture sets, ranging from using only the first PC value,
until using the full PC vector. 48

3.6 A collection of posture pairs with varying posture distances e = 0.1,
e = 0.4, e = 0.7 and e = 1.0. 48

3.7 This figure illustrates what the estimated translation offset is in the
(x, z)-plane (frontal-lateral plane) for an animation sequence. 50

3.8 A simple example of a category transition graph. In this case, there are
two categories: balance on the left foot and balance on the right foot.
For both the categories, a minimum and maximum time is determined
from the data (written in milliseconds). 50

3.9 An example of fitting an animation from postures (a0, ae) to postures
(p, q). 51

3.10 Overview of the user evaluation results. 54
3.11 Definition of an animation in Perlin’s [99] animation system. This

script defines a noise function on the elbow, neck and pelvis joints, in
order to avoid static, unrealistic standing of virtual characters. 55

3.12 This example shows the values of a Principal Component for an ani-
mation segment. The offset is estimated by the mean value (which is
around 0.045). 56

3.13 This figure shows a sequence of maxima and minima for a Principal
Component. Each maximum and minimum is specified by defining the
distance to its predecessor and its PC value. 57

4.1 A motion graph with additional constraints on its transitions. 60

LIST OF FIGURES xxv

4.2 Coulson confusion matrix and activation-evaluation disc 61
4.3 Different intervals of emotional states together with example postures. . 62
4.4 Overview of the blending engine data structure. 64
4.5 The abstract frame implementation for both body and facial animation. . 64
4.6 Various basic curve structures are available, such as (a) linear fading

(b) cubic fading, (c) linear attack-decay-sustain-release, or (d) cubic
attack-decay-sustain-release. 65

4.7 The scaling function u(x) defined between αt and αmax. 68
4.8 Result of applying the scaling function u(x) onto a PC signal. 68
4.9 Result of applying the damping function D(x) onto a PC signal (in green). 69
4.10 Animation frames with and without the damping function applied on

them. 70
4.11 (Absolute) PC values of a posture extracted from a motion captured

animation sequence. 71
4.12 (Absolute) PC values of a posture modeled by hand for a few joints. . . 71
4.13 An example of a scaling filter that is applied on the PC vector represen-

tation of a posture. 72
4.14 Some examples of key frame postures designed for a few joints and the

same postures after application of the PC scaling filter. 73
4.15 Animation pipeline with blending and real-time collision removal. . . . 74

5.1 An example of a simple dialogue FSM. 78
5.2 An overview of the dialogue system architecture. 78
5.3 Coarticulation base function with different α values: (a) α = 0 (b)

α = 2 (c) α = 5 and (d) α = 10. 86
5.4 Example of complete coarticulation functions with different α parame-

ters: (a) α = 2 and (b) α = 5. 86
5.5 Facial animation for hello that takes tongue movement into account. . . 87
5.6 Possible mapping of OCC emotions and surprise+disgust on the activation-

evaluation disc. 89
5.7 Integration of gesture animations, dependent joint motion synthesis and

idle motion synthesis. 89
5.8 Some example postures that show emotional idle motions mixed with

gestures with automatic dependent joint motions. 90

6.1 VHD++ real-time virtual environment framework. 92
6.2 The animation service GUI. The GUI includes facilities to easily acti-

vate and deactivate actions, as well as player control. 93
6.3 The animation toolkit. 94
6.4 Example animations played using the animation engine. Images (a) and

(b) are taken from the example scenario. 96

xxvi LIST OF FIGURES

6.5 The Interactive Virtual Human interface. 98

B.1 The four types of blending curves. 122

List of Tables

2.1 The Big Five personality traits and their desirable and undesirable qual-
ities (from Hampson [51]). 24

5.1 The emotions used in the dialogue system, defined by the OCC emo-
tions [93] and surprise+disgust. 84

5.2 Mapping of OCC emotional on facial expressions [71]. 87

D.1 Overview of the visemes as defined in SAPI5.1 [81] 130

CHAPTER 1

Introduction

ELIZA: Hello, How do you do. Please state your problem.
User: I don’t want to talk about my problems.
ELIZA: Your problems?
User: Yes.
ELIZA: You seem to be quite positive.
...

This small fragment of text is an example of an interaction between a user and one of
the first interactive programs, ELIZA [127], developed in 1966 by Joseph Weizenbaum.
Interacting with ELIZA was done by typing text on a keyboard. The program recog-
nized words and patterns from the phrase that was entered, like ‘problem’ or ‘mother’
and based on that, a predefined response was given. The development of this program
has spawned a big area of research, oriented toward the creation of human-computer
interaction that levels human-human interaction. The main idea behind this research
is that humans should not adapt to different computer interfaces, but that computer in-
terfaces should adapt to humans. Since 1966, a lot of progress has been made. The
interaction itself has been improved by using more elaborate pattern recognition and
response generation [1], or by using heuristic methods based on real conversations or
chats between humans [56]. Also, it is now possible to interact with a machine using
speech and natural language, and even visual information like head movements, facial
expressions and gestures can be recognized and interpreted. Although the current state-
of-the-art of perceptual technologies does not yet allow for a flawless interpretation of
all this data, a lot of these techniques are already commercially exploited.

Next to the improved capability of computers to analyse and interpret information,
computers can also better respond to what is perceived. This can be a response using

2 CHAPTER 1. INTRODUCTION

Figure 1.1: The Perception-Action loop.

text, speech, or more elaborate visual output such as controlling a character in 3D. The
most evident area that profits from these techniques is the area of computer entertain-
ment industry. In many games, interactive 3D characters are controlled by the player or
they form an interactive component as a part of the 3D gaming environment. In most
games, such characters are controlled using scripted animation systems that sequence
and play different animation and sound clips. Regardless of the recent advancements
in this research area, controlling and animation virtual character still remains a tedious
task and it requires a lot of manual design and animation work.

On a conceptual level, the earlier mentioned perceptual techniques (speech recog-
nition, facial expression recognition, etc.) and responsive techniques (speech synthe-
sis, virtual character animation) form a part of a loop, called the Perception-Action
loop [33]1, see Figure 1.1. This loop describes the feedback mechanism that defines
any interaction of an entity with its environment. By acting in an environment, an en-
tity changes it. These changes are then perceived and a new action is commenced (or
not).

This thesis focuses on the expressive part of this loop. The main objective of the
work that will be presented in the following chapters is to provide for an efficient
method to control both face and body movements of virtual characters, as well as tech-
niques that increase the realism of character motions without impinging the tractability
of the character control method. In fact, the research that will be presented constitutes
an elaborate realism-adding filter that can be placed between an automatically gener-

1This is a term originating from the Robotics and Sensor research area.

3

ated animation and the target character.
In the following chapter, we will start with discussing related research that is rele-

vant to this thesis. We will also explain where our contributions fit in with the existing
work. The Chapters 3, 4 and 5 contain the detailed presentation of our approach. Chap-
ter 6 covers some implementation issues and we present our conclusions in Chapter 7.

CHAPTER 2

State of the Art

In this chapter, we will present an overview of relevant research related to the devel-
opment of Interactive Virtual Humans (IVHs). Virtual Humans can express themselves
through speech, facial animation and body animation. Generally, these components
automatically generate the speech and the motions from an abstract representation of
the desired output. This abstract representation can be for example a text or a complex
XML structure. A dialogue system outputs such an abstract representation depending
on what the user is doing. As we will show in the coming sections, personality and
emotion models also play an important role as a part of IVH. A simulator of personality
and emotions will influence the dialogue output, as well as the resulting animations.
Figure 2.1 shows an overview of the main components that together form an IVH sim-
ulator. Since the work in this thesis focuses mainly on the expressive side of IVHs, the
diagram shows the different expressive components that are required. The choice of
these components is not a random one, but they form a commonly accepted structure
of an IVH that is used with minor varieties throughout the literature discussed in this
chapter. In this chapter, we will discuss existing work in each of the relevant areas of
research. Each section will be concluded with a short discussion about the limitations
and open problems.

This chapter is divided in the following sections. First, we will present the back-
ground on virtual human animation in general in Section 2.1. We will discuss different
representations of animations, how they can be edited and how an animation is played
on a 3D model of a virtual human. Then, we will discuss some methods that allow for
a higher level control of virtual humans by using motion capture techniques, in Sec-
tion 2.2. We will discuss how motion captured animations can be adapted and used to
create new animations that look realistic. Subsequently, we will present existing IVH

6 CHAPTER 2. STATE OF THE ART

Figure 2.1: Main components of an Interactive Virtual Human simulator.

systems in Section 2.3. We will show how these systems can create an animation from
an abstract representation of the desired output. We will also discuss various relevant
aspects of body and face animation that need to be taken into account, such as person-
ality, emotion, body posture, facial expressions and gestures. In Section 2.4, we will
present the motivations behind the work that is presented in this thesis. Section 2.5
introduces a list of specific objectives, each of them proposing a contribution to a field
of research.

2.1 Virtual Human Animation

There exist many different techniques to animate virtual humanoids. In this section, we
will give an overview of the different approaches that exist. Both the architecture and
the performance of any animation pipeline will greatly be influenced by the approaches
that are chosen.

The representation of an animation depends on its level of abstraction and the struc-
ture of the world that it is used in. At the most basic level, we consider an animation as
a continuous function A : t 7→ F , where t is a timekey ∈ [ts, te] with 0 ≤ ts < te < ∞,
and F is the corresponding frame of the animation. The continuity of this function is
an important property, because it allows to display the object’s current state at any de-
sired time. Because in practice it is not possible to define an animation as a continuous
function—one would need to define an infinite amount of frames—most of the ani-
mation approaches rely on key-frames. In this approach, an animation is defined by
a discrete sequence of key-frames, related with a timekey. In order to go back to the
original continuous function, an interpolation technique is required. The choice of the

2.1. VIRTUAL HUMAN ANIMATION 7

interpolation approach depends on the representation of key-frames. In the following
section, we will talk about different representations of animations, in combination with
interpolation techniques. Most of the animation models are restricted to the spatial
domain, but one could also imagine animations that change the color or texture of the
3D object (in the case of facial animation, think of blushing for example). In principle,
any animation can be coded as a direct manipulation of the geometry of the target 3D
object. However, there clearly are many disadvantages to this approach:

• it is a lot of work to develop low-level animations; this also makes it difficult to
retain a reasonable level of realism;

• animations are not easy to transfer from one model to another as the animations
will be dependent on the 3D model;

• editing the animations afterward is a difficult task; common operations on ani-
mations (scaling, masking, and so on) are difficult to apply.

Different animation techniques have been developed, that allow describing an animation
in more abstract terms, while being easily adaptable to different 3D objects. In the
following sections, we will look into such higher-level approaches for virtual humanoid
animation. Especially when one wants to develop a (semi-)automatic animation system,
these techniques form a crucial part of the animation pipeline.

Another important point to consider when one conceives an animation system, is
its usability from a designer point-of-view. When we look at the design process for
animations, there are two commonly used techniques:

• Manual approach: an animation is constructed from a set of key-frames, man-
ually designed by an animator. Many commercial packages are available that
allow an animator to create key-frames (or postures in the case one is dealing
with virtual characters). Since the animator has a complete control over the re-
sulting animation, this is a very popular approach. However, unless a lot of time
is invested, the realism of the resulting animation is rather low.

• Pre-recorded animations: an animation is recorded using a motion capture or
tracking system (such as Vicon [124] or MotionStar [82]). The MotionStar sys-
tem uses magnetic tracking and it is much faster than the Vicon tracking system,
which uses a multi-camera optical tracking approach. The Vicon however pro-
duces much more precise animations. This is why in many commercial appli-
cations, such as games or movies, an optical motion capture system is used to
drive the character motions. A motion capture system is an excellent time-saver,
because a lot less manual work is required to produce animations. A major disad-
vantage of using such a system, is that the animations need to be adapted so that
they look good on different characters. Also, when using recorded motion clips,
one must address the problem of unnatural transitions between the different clips.

8 CHAPTER 2. STATE OF THE ART

Figure 2.2: Facial expressions generated by a pseudo-muscle spline approach [125].

In Section 2.2, we will discuss a few research efforts that try to combine these two
approaches. Although we generally consider a human being as a single object, strangely
enough this is not the case in the existing research. Animation systems for virtual
humans generally focus either on facial animation or body animation. The reason for
this separation is the different type of animation that is required for the face and the
body, as will be shown in the following section.

2.1.1 Facial Animation

Facial Animation is a research domain that started around the 1970s with the pioneer-
ing work done by Parke [96]. Similar to the body animation techniques discussed in
the previous section, facial animation techniques have also been developed that try to
abstract from the geometrical model. Apart from basic key-frame animation, models
have been developed based on muscle physics as well as a ‘pseudo-muscle’ approach.
We will describe each of these techniques in short.

Muscle-based methods of facial animation try to model the physics of the skin, fat,
bone and muscle tissue on the face. This results in a physical simulation of the face
that is controlled by applying muscle contractions. There are several researchers who
have proposed systems based on this approach, such as the work done by Platt and
Badler [103] or Waters [126].

Although such an approach can result in realistic deformations for the face, it is
also a computationally heavy method. Several methods have been proposed that try to
integrate geometric deformation of a polygon mesh with muscle-based models. These
methods are for example based on splines [125] (see also Figure 2.2, Free Form Defor-
mation (FFD) [61] or Radial Basis Functions [91].

Not only the model used to deform the face is of importance. Also a system of
parameterization is required so that animations can be played on different faces. There
have been principally three different parameterization systems. The first one is called
Facial Action Coding System (FACS) and was developed by Ekman and Friesen [38].
FACS defines face regions—so-called Action Units—that allow expressing each type
of facial movement. Another parameterization system is MPA, which stands for Mini-

2.1. VIRTUAL HUMAN ANIMATION 9

Figure 2.3: Facial expressions based on the MPEG-4 standard applied on different 3D
models [44].

mum Perceptible Action [60]. In this approach, each MPA defines a collection of visible
characteristics on the face (such as eyebrows or lips) together with the proper interde-
pendent deformations of these characteristics. Finally, the MPEG-4 standard defines a
widely used system for standardized face modelling and animation. MPEG-4 defines
84 Face Definition Parameters (FDPs) that are used to shape the face. A subset of these
FDPs can be animated, resulting in 68 Facial Animation Parameters (FAPs) of which
2 are used to define high-level expressions. A more detailed overview of the MPEG-
4 standard for facial animation can be found in the research done by Garchery [44]
and Kshirsagar [72, 71] at MIRALab—University of Geneva. Figure 2.3 shows some
examples of MPEG-4 compliant facial expressions applied on different models.

2.1.2 Body Animation

Although the issues of realism play an important role in both face and body animation,
the lack of realism is most apparent in body animation systems. This is because of
several reasons:

• Since body motions are generally described by joint rotations and translations,
there are many degrees of freedom to control, thus creating more room for errors.
Facial animation systems generally work with a smaller set of control points, with
less degrees of freedom.

• Many rotation representations are not in linear space (as for example rotation ma-
trices or quaternions), resulting in possible Gimbal locks (see page 12) or inter-
polation problems. Generally, facial animation control points can be manipulated
in linear space.

• Certain physical constraints apply to body motions, because they involve an ac-
tual movement in space as well as the deformation of a concave object. For
example self-collisions or foot sliding artefacts need to be avoided. Facial ani-
mation systems only have to take care of such constraints on a very limited basis
(for example: self-collision in the lip area).

In this section, we will describe various representations and standards that are used to
animate a 3D body. We will show the advantages and disadvantages of the different

10 CHAPTER 2. STATE OF THE ART

representations. We will also discuss some techniques to interpolate and mix different
postures.

Skeleton-Based Animation

For producing real-time body animations, it is common practice to work on the un-
derlying skeleton instead of the model itself. When using a geometry-based approach,
the animation model is more precise, but the animation is dependent on the model. A
skeleton-based approach allows for model- and environment-independent animations as
well as fewer parameters to manipulate. There are currently two well known standards
for body animation: MPEG-4 and VRML H-Anim. We will now shortly discuss each
of these standards.

The H-Anim specification of animatable humanoids forms a part of the VRML
language [50]. H-Anim defines a hierarchy of joints, with as a root node the so-called
HumanoidRoot. The latest upgrade of the standard (H-Anim 200x), defines four
levels of articulation (0-3). In Figure 2.4, an overview of the joint rotation centres
defined in H-Anim is depicted. Since the H-Anim 200x standard is quite new, a lot of
recent work is based on the H-Anim 1.1 standard.

MPEG-4 does not only define a standard for face modelling and animation, it also
defines one for bodies. Similarly to the facial animation, two sets of parameters are
defined for describing and animating the body: the Body Definition Parameter (BDP)
set, and the Body Animation Parameter (BAP) set. However, this standard is far less
used than the H-Anim standard.

Representation of Skeleton Posture

Given that a 3D Humanoid model is being controlled through a skeleton motion, it
is important to choose the right representation for the transformations of the skeleton
joints. The most basic representation is to define a 4×4 transformation matrix that con-
tains a translation and a rotation component1, where the rotation is defined as a 3 × 3
matrix. Transforming a skeleton joint becomes tricky when looking at the rotation com-
ponent. A rotation involves three degrees of freedom (DOF), around the x, y and z axis,
whereas a rotation matrix defines 9 (as a 3 × 3 matrix). A matrix can only represent
a rotation if it is orthonormalised. This means that during animation, additional opera-
tions are required to ensure the orthonormality of the matrix, which is computationally
intensive. Furthermore, rotation matrices are not very well suited for rotation interpola-
tion. Therefore, other representations of joint rotations have been proposed. For a more
detailed discussion of each of the representations, we refer to Grassia [48].

When a rotation is represented as three rotations around the three coordinate axes, it
is called the Euler Angle representation (see Figure 2.5). An Euler angle can be written

1For a more detailed description, please see any standard textbook on Computer Graphics, such as
Hearn and Baker [55].

2.1. VIRTUAL HUMAN ANIMATION 11

Figure 2.4: The H-Anim standard defines a joint skeleton structure for humanoids.

Figure 2.5: Two different angular representations of rotations: (a) Euler Angles (b)
Axis Angle.

12 CHAPTER 2. STATE OF THE ART

as (rx, ry, rz), meaning: “Rotate a point counter clockwise around the x axis by rx

degrees, followed by a rotation around the y axis by ry degrees, followed by a rotation
around the z axis by rz degrees. The Euler angle representation is quite efficient since it
uses three variables (angles) to define three degrees of freedom. However, interpolation
can be computationally expensive, since it requires numerical integration. Furthermore,
Euler Angles have a Gimbal lock problem (or: the loss of one degree of freedom), that
occurs when a series of rotations at 90 degrees are performed. Due to the alignment of
the axes, these rotations can cancel out each other.

Another representation of rotation is called Axis Angle (see also Figure 2.5). This
representation defines an arbitrary axis and a rotation around this axis. Although this
representation is quite efficient, it still requires a lot of computational efforts for inter-
polation.

Quaternions are also a common way to represent rotations. Quaternions are actually
an extension to complex numbers. Of the 4 components, one is a real scalar number w,
and the other 3 form a vector in imaginary ijk space:

q = w + xi + yj + zk (2.1)

From now on, we denote the complete quaternion space as H. We define a unit quater-
nion as a quaternion with norm 1:

‖ q ‖=
√

w2 + x2 + y2 + z2 = 1 (2.2)

The unit quaternion space corresponds to the set of vectors that form the ‘surface’ of a
4D hypersphere of radius 1, and it corresponds exactly to the 3D rotation space. The
4D hypersphere space is generally denoted as S3, where

S3 = {q ∈ H; ‖ q ‖= 1} ⊆ H (2.3)

A quaternion can represent a rotation by an angle θ around a unit axis a:

q = cos
θ

2
+ ax sin

θ

2
+ ay sin

θ

2
+ az sin

θ

2
(2.4)

also written as:
q = cos

θ

2
+ a sin

θ

2
(2.5)

Given a vector v ∈ R3, it can then be projected in the quaternion space H by defining
v′ = (0, v). The vector resulting from the rotation defined by a quaternion q applied
on v′ is then defined as q · v′ · q−1. There are some well-known interpolation methods
for quaternions that will be covered later on. Quaternions provide for a simple way to
represent rotations and they are suitable for real-time applications. A disadvantage of
quaternions is that they are difficult to visualize.

2.1. VIRTUAL HUMAN ANIMATION 13

Finally, rotations can be represented using the exponential map. Alexa [3] has de-
scribed a method using the exponential map to allow for transformations that are per-
formed completely in the linear domain, thus solving a lot of problems that the previous
methods are suffering from. Rotations are represented by a skew-symmetric matrix.
For every real skew-symmetric matrix, its exponential map is always a rotation matrix
(see for example Chevalley [21]). Conversely, given a rotation matrix R, there exists
some skew-symmetric matrix B such that R = eB . The skew-symmetric matrix rep-
resentation of a rotation is very useful for motion interpolation [95], because it allows
to perform linear operations on rotations. A three-dimensional real skew-symmetric
matrix has the following form:

B =

 0 −c b

c 0 −a

−b a 0

 (2.6)

Such an element can also be represented as a vector r ∈ R3 where:

r =

a

b

c

 (2.7)

The exponential map representation r represents a rotation of θ =
√

a2 + b2 + c2 de-
grees around axis r. The exponential of a matrix B is defined by Rodrigues’ formula:

eB = I3 +
sin θ

θ
B +

(1− cos θ)
θ2

B2 (2.8)

Similarly, methods exist that define how to calculate a determination of the (multival-
ued) matrix logarithm. For example, Gallier and Xu [43] present methods to calculate
exponentials and logarithms, also for matrices with higher dimensions.

Although the exponential map representation of orientation does allow for easy ma-
nipulation and interpolation, there are singularities in the domain. A log map can map
each orientation to an infinite number of points, corresponding to rotations of 2nπ + θ

about axis v and 2nπ − θ about axis −v for any n ∈ N [48]. Consequently, measures
have to be taken to ensure that these singularities do not interfere with the interpolation
(please see the paper by Grassia [48] for a more detailed discussion).

Interpolation

The most basic method to interpolate between two animations is linear interpolation:

R(t) = α(t)R0(t) + (1− α(t))R1(t) (2.9)

14 CHAPTER 2. STATE OF THE ART

where α(t) =
te − t

te − ts
and t ∈ [ts, te]

with R0(t) and R1(t) the two values to be combined at time t, R(t) the resulting value,
α(t) ∈ [0, 1] the interpolation coefficient, and ts and te are respectively the start and
end time of the interpolation. Such linear interpolations ensure a C0 continuity, are
easy to use and are computationally cheap. Such linear interpolations are only suitable
for representations of rotations in the linear domain, such as the exponential map.

However, for animation data such as rotation or position, a C0 continuity is not
sufficient due to the important impact of the velocity on the visual output. A cubic
interpolation method can be of help here. A very well-known cubic interpolation tech-
nique is called cubic Hermite interpolation, which is defined as follows:

R(t) = h0(t)R0(t) + H0(t)R′
0(t) + h1(t)R1(t) + H1(t)R′

1(t) (2.10)

where R′
0(t) and R′

1(t) are time derivatives of R0(t) and R1(t), e.g. linear or angu-
lar velocities. The Hermite interpolation method uses four Hermite basis functions.
Example basis functions are:

h0(t) = 2α3(t)− 3α2(t) + 1

H0(t) = α3(t)− 2α2(t) + α(t)

h1(t) = −2α3(t) + 3α2(t)

H1(t) = α3(t)− α2(t)

(2.11)

Since quaternions are not linear, an alternative interpolation method, such as SLERP
(Spherical Linear intERPolation) [114] is required. When SLERP is applied to unit
quaternions, the quaternion path maps to a path through 3D rotations in a standard
way. The effect is a rotation with uniform angular velocity around a fixed rotation axis.
SLERP gives a straightest and shortest path between its quaternion end points. SLERP
uses the following equation to interpolate between q0 and q1, which interpolation coef-
ficient t:

SLERP(t, q0, q1) = (q1 · q−1
0)t · q0 (2.12)

As can be observed, for t = 0 and t = 1, q = qo or q1 respectively. Since rotations
are represented by unit quaternions (and thus |q| = 1), the quaternion power is relatively
simple to calculate:

qt = cos
tθ

2
+ a sin

tθ

2
for q = cos

θ

2
+ a sin

θ

2
(2.13)

When interpolating between two quaternions, it is important to make sure that the short-
est possible path on the hypersphere—also called the geodesic—is taken. This can be
achieved by negating one of the quaternions (q and−q map to the same rotation) if their

2.2. PERFORMANCE ANIMATION 15

dot product has a negative sign.
A similar scheme to Hermite cubic interpolation exists for quaternion interpolation.

This approach is called Spherical Cubic Interpolation (SQUAD) [14]. The idea behind
it is to specify not only the start and end rotations, but also the rotational speeds at these
points. This allows one to pass smoothly through the interpolation points by specifying
the same leaving speed as your arrival speed. Spherical cubic interpolation is defined
within the quadrilateral a, p, q, b as:

SQUAD(t, q0, p, q, q1) = SLERP(2t(1−t), SLERP(t, q0, q1), SLERP(t, p, q)) (2.14)

where q0 and q1 are the start and end quaternions, and p and q are quaternions defining
the path of the curve (the curve touches the midpoint of the geodesic pq when t = 0.5).

Deforming the Body from Skeleton Posture

The final step in obtaining a character motion is the conversion from the skeleton-based
animation into a deformation of a 3D mesh, representing a virtual character. This pro-
cess is generally called skeleton-driven deformation, or SDD. In research literature, an
early version was presented by Magnenat- Thalmann et al. [85], who introduced the
concept of Joint-dependent Local Deformation (JLD) operators to smoothly deform the
skin surface. This technique has been given various names such as Sub-Space Defor-
mation (SSD), linear blend skinning, or smooth skinning. Several attempts have been
made to overcome the limitation of geometric skin deformation by using examples of
varying postures and blending them during animation. Pose space deformation [77] ap-
proaches the problem by using artistically sculpted skin surfaces of varying posture and
blending them during animation. More recently, Kry et al. [70] proposed an extension
of that technique by using Principal Component Analysis (PCA), allowing for optimal
reduction of the data and thus faster deformation. Sloan et al. [117] have shown similar
results using RBF for blending the arm models. Their contribution lies in that they make
use of equivalent of cardinal basis function. Allen et al. [4] present another example-
based method for creating realistic skeleton-driven deformation. More recently, Mohr
et al. [90] have shown the extension of the SDD by introducing pseudo joints. Finally,
Magnenat-Thalmann et al. [84] propose an extension of the SDD that overcomes the
undesirable effect of vertex collapsing (see Figure 2.6).

2.2 Performance Animation

Defining animations as joint rotations and translations as opposed to direct geometry
manipulation, already gives a good basis for a real-time animation system. However, a
higher level control is needed, since animating all the joints by hand still is a lot of work.
Furthermore, it is difficult to create natural motions using only procedural methods,

16 CHAPTER 2. STATE OF THE ART

Figure 2.6: Results of skinning algorithms by Sloan et al. [117], Allen et al. [4] and
Magnenat-Thalmann et al. [84].

Figure 2.7: Generic pipeline in a motion synthesis system that uses motion captured
segments. Motion captured data is segmented and represented in a graph like structure.
New motions are then synthesized by traversing a path in the graph.

unless a lot of time is invested. An interesting approach is to create new motions using
recorded motion data. This approach is called performance animation and its main
goal is to try to combine the naturalness of recorded motions with the flexibility of
procedural motion synthesis. Although recorded motions are regularly used for facial
animation [72], the performance animation technique is the most popular for controlling
the body. We will now present some different performance animation techniques for the
body.

There is a broad number of algorithms for body motion synthesis from motion data
(see Figure 2.7). All of these approaches are very similar at the basis. Mainly three
steps are involved:

1. The first step is the segmentation of motion captured data into separate motion
segments. Different researchers use different methods and criteria of segmenta-
tion, and it is performed either manually or automatically. Generally, the graph
is extended with new transitions, using existing motion segments in the graph.

2.2. PERFORMANCE ANIMATION 17

Figure 2.8: Measurement values by Ahn et al. [2].

2. The animation segments are stored in a graph-like structure. Again the connec-
tivity and complexity of the resulting graph depends on the method that is used.

3. Finally, new animations are constructed by traversing a path through the motion
graph.

We will now discuss a few research efforts in particular. Kovar et al. [66] proposed
a technique called Motion Graphs for generating animations and transitions based on a
motion database. The main contribution in their technique is the automatic construc-
tion of a motion graph from a collection of pre-recorded motion segments. The graph
is constructed using two operations: splitting a motion segment, and adding a transition
between two motion segments. Where a segment is split depends on whether or not
a transition to another motion segment is favourable according to a distance criterion.
This work therefore touches an important problem that arises when one wants to com-
pare different animations: what criterion should be used to define the distance between
two body postures?

Before talking about the methods proposed by Kovar et al., we will first give an
overview of more straightforward methods of frame distance calculation. Several meth-
ods have been proposed to compute distances between frames different motion error
metrics have been investigated. The approach proposed by Ahn et al. [2] aims to con-
struct clusters of frames that are close to each other, based on a cost function that is
defined as follows:

Ej(t, tref) = Epos,j(t, tref) + α · Eori,j(t, tref) (2.15)

18 CHAPTER 2. STATE OF THE ART

The cost is the sum of the position and the orientation difference. The time t is the
current frame and tref the estimated key frame. The constant α is the weighting value
of the orientation difference. Position and orientation difference are formulated by
measurement values as shown in Figure 2.8. In addition to these measures, a weighting
factor rj(t) depending on the amount of joint children of the joint, is defined as follows:

rj(t) =
leaf∑

c

lj,c(t) (2.16)

The angle difference between two frames is calculated as follows:

θj(t, tref) = arccos
v′
j(t) · v′

j(tref)
‖ lj,c(t) ‖2

(2.17)

where lj,c is the segment length between joint j and its child joint c, and v′
j the trajectory

of joint j. The position error between two frames t and tref is then given as follows:

Epos,j(t, tref) =‖ rj(t) · θj(t, tref) ‖ (2.18)

and the orientation error is defined as:

Eori,j(t, tref) = 2 ‖ log(qj(t)−1 · qj(tref)) ‖ (2.19)

Per cluster, they then determine the key posture by solving a lowest-cost optimization
problem formulated as follows (m is the range of the optimal cluster):

min
tref

(
m∑
t

Ej(t, tref)) (2.20)

Lee et al. [75] propose a two-layer representation for motions. The higher layer is
a statistical model that provides support for the user interfaces by clustering the data to
capture similarities among character states. The lower layer is a Markov process that
creates new motion sequences by selecting transitions between motion frames based on
the high-level directions of the user. This is very similar to the motion graph approach
where new motions are generated by following a path through the graph, based on high-
level constraints.

The Markov process is represented as a matrix of probabilities with the elements Pij

describing the probability of transitioning from frame i to frame j. The probabilities are
estimated from a measure of similarity between frames using a exponential function:

Pij = e
Di,j−1

σ (2.21)

2.2. PERFORMANCE ANIMATION 19

The distance between frame i and frame j is defined as follows:

Dij = d(pi, pj) + νd(vi, vj) (2.22)

The first term d(pi, pj) describes the weighted differences of joint angles, and the sec-
ond term d(vi, vj) represents the difference of joint velocities. Parameter ν is a weight
value. The position distance is computed as follows:

d(pi, pj) =‖ pi,0 − pj,0 ‖2 +
m∑

k=1

wk ‖ log(q−1
j,k , qi,k) ‖2 (2.23)

where pi,0 ∈ R3 is the root position at frame i and qi,k ∈ S3 is the orientation of joint
k with respect to its parent in frame i. The joint rotations are summed over m joint
orientations, with manually defined weights wk for each joint. Both of these methods
use weighted joint angle differences as a basis for the distance criterion, which on the
first impression does seem like a logical choice. However, Kovar et al. [66] notice
several problems with such joint-based approaches:

1. Simple vector norms fail to account for the meanings of the parameters. Specif-
ically, in the joint angle representation some parameters have a much greater
overall effect on the character than others (e.g., hip orientation vs. wrist orien-
tation). Moreover, there is no meaningful way to assign fixed weights to these
parameters, as the effect of a joint rotation on the shape of the body depends on
the current configuration of the body.

2. A motion is defined only up to a rigid 2D coordinate transformation. That is, the
motion is fundamentally unchanged if we translate it along the floor plane or ro-
tate it about the vertical axis. Hence comparing two motions requires identifying
compatible coordinate systems.

3. Smooth blends require more information than can be obtained at individual frames.
A seamless transition must account not only for differences in body posture, but
also in joint velocities, accelerations, and possibly higher-order derivatives.

Instead of using the joint orientation differences to estimate the pose, Kovar et al. pro-
pose another distance metric. They use a point cloud that assumes the shape of the body
posture. Additionally, in order to address the second point in the distance criterion se-
lection, they propose the calculation of the distance as an minimal cost problem:

min
θ,x0,z0

∑
i

wi ‖ pi − Tθ,x0,z0p
′
i ‖2 (2.24)

using the variables x0, z0 and θ (position and orientation in the frontal-lateral plane).
Fortunately, there is a closed form solution to this optimization problem:

20 CHAPTER 2. STATE OF THE ART

Figure 2.9: Example error function output for a distance comparison between two ani-
mations. The points indicate error minima and they correspond to frame combinations
that could be used to form a transition [66].

θ = arctan

∑
i
wi(xiz

′
i − x′

izi)− 1P

i
wi

(xz′ − x′z)∑
i
wi(xix′

i + z′izi)− 1P

i
wi

(xx′ + zz′)
(2.25)

x0 =
1∑

i
wi

(x− x′ cos θ − z′ sin θ) (2.26)

z0 =
1∑

i
wi

(z + x′ sin θ − z′ cos θ) (2.27)

where x =
∑

i wixi and the other barred terms are defined similarly. Using this dis-
tance criterion, it is now possible to define an error function that displays the distance
between each pair of frames for two animations. A segmentation and transition is then
chosen according to the minima of this error function (the green dots in Figure 2.9), in
combination with a threshold error value.

Similar to the point clouds of Kovar et al., Loy et al. [80] compute distance matri-
ces with shape matching between each pair of frames of an animation. Both families of
approaches have advantages and drawbacks. Although joint-based methods are faster
than geometry-based methods, the latter one provides a more precise distance. How-
ever, geometry-based methods are computationally expensive.

2.2. PERFORMANCE ANIMATION 21

Next to the previously mentioned approaches, there is some similar work that tries
to segment pre-recorded motion clips in order to automatically create new motions. Li
et al.[78] propose a method that ‘learns’ a motion texture from sample data. Using the
motion texture, they then generate new motions. This method only synthesizes motions
that are similar to the original motion. The system is mostly useful for rhythmic motions
with repeating segments, such as dance. Similarly, Kim et al.[63] propose a method of
control for motions, by synthesizing motions based on rhythm. Pullen and Bregler
[106] proposed to help the process of building key-frame animation by an automatic
generation of the overall motion of the character based on a subset of joints animated
by the user. There the motion capture data is used to synthesize motion for joints
not animated by the user and to extract texture (similar to noise) that can be applied
on the user controlled joints. Finally, relevant work has been done by Arikan et al.
[9, 10] that defines motion graphs based on an annotated motion database. They also
present an automatic annotation method that can be used to segment motion capture
data automatically. However, since motion captured clips often contain unwanted joint
movements, clear constraints have to be defined during the annotation process.

Discussion and Open Problems

Although the motion graph technique can be very useful in some applications, there are
some limitations to the method that make it less suitable for interactive characters:

• Due to the choice of using point clouds, the distance criterion is a computation-
ally expensive one. This is not necessarily a problem, because the distances and
transitions only need to be calculated once.

• When traversing the motion graph, a set of constraints is required that defines
what path should be taken. The choice of such constraints will have a big influ-
ence on the real-time performance.

• The vertices and edges do not have any meaning, since they are generated directly
from the error function. This will make it more difficult to control the animation.

• The motion graph approach needs precise constraints. Next to the begin and
end points of the animation, the path itself should be defined. When we need to
control a character from a higher level, such precise constraints may very well
not be available.

As we will show in the following section, the control of the character is very important
for IVH systems. This means that some crucial problems need to be overcome in order
for motion synthesis techniques to be useful for our intended application.

22 CHAPTER 2. STATE OF THE ART

2.3 Interactive Virtual Human Systems

In this section, we will discuss systems that simulate interactive virtual humans. We will
first start by giving an introduction to dialogue management systems. These systems
are responsible for selecting an appropriate response, given an event. Then, we will
present an overview of the research in personality and emotion simulation. Section 2.3.3
will provide an overview of systems that control face and body movements of virtual
characters.

2.3.1 Interaction

Dialogue Management Systems

One of the first attempts to create a system that interacts with a human through natural
language dialogue, was ELIZA [127]. It used pattern-matching techniques to extract
information from a sentence. ELIZA had no sophisticated dialogue model; it just had
a simple trigger-reaction mechanism. Although such a system is very limited and di-
alogue systems have evolved a lot since then, this approach is still popular, because
of the ease of implementation and use. A well-known extension of the ELIZA sys-
tem is Alice [1]. Alice uses a pattern-response mechanism coded in AIML (Artificial
Intelligence Modelling Language), an XML-based language. However, in many dia-
logue systems, a simple question-answer structure is not sufficient. As a result, there
are many different systems developed that used finite state machines [25]. Also, dia-
logue systems are being integrated with more generic models of agents, such as the BDI
model [15, 107]. BDI stands for belief, desire, intention, which are the three possible
kinds of statements that can occur in an agent’s state. A lot of BDI systems use some
kind of extension of logic to express beliefs, desires and intentions. This is called a
BDI logic (for an example of this, see the text book by Wooldridge [130]). Examples
of applications that use the BDI model to develop a conversational agent are the work
done by Sadek et al. [110] and Ardissono et al. [7]. Finally, there is a more or less black
box approach to dialogue management, that uses statistical data obtained from a corpus
of existing conversations to select the best answer given an input from the user, see for
example Jabberwacky [56].

Discussion and Open Problems

Although many different approaches to dialogue management exist, there are only a
few systems that try to incorporate the control of virtual characters. Also, emotions
and personality are generally not included in dialogue systems, although there are some
systems that propose a so-called ‘BDI-E’ model, which is an extension of the BDI
model with emotions. Recent work by Och et al. [92] shows an expressive face, that is
linked with such an emotion model. However, this system only works for the face and

2.3. INTERACTIVE VIRTUAL HUMAN SYSTEMS 23

there is not yet any control over the body.
In the next section, we will discuss the theory of personality and emotion and how

that can be used as a part of IVHs. Then we will present various systems for simulating
the visual front-end (both body and face) for IVHs.

2.3.2 Personality and Emotion Simulation

Recent research in the area of interaction has acknowledged the importance of emotions
as a crucial part of IVHs [100]. In this section, we will give a short overview of the
research related to personality and emotions.

When discussing theory and simulation of personality and emotion, we have to
address work done in both Computer Science and Psychology. Psychology tries to dis-
cover the nature of emotions and personality. It describes the structure of each of these
notions, how it can be attributed and what their effect is on human behaviour. Computer
Science tries to simulate the effects that personality and emotion has on human beings
and use it to make Human Computer Interaction (HCI) more natural. The research that
is a part of HCI and that tries to use emotion—and in a lesser way personality—to
increase naturalness of HCI, is called Affective Computing [100].

Personality

The study of personality investigates how individuals differ from each other. The
most commonly accepted form of personality study is based on trait theory. Person-
ality traits are relatively stable dispositions that give rise to characteristic patterns of
behaviour [51]. Although trait-based personality models have been criticized in the
past [87], they are still one of the most popular representations of personality. Among
personality researchers, there is still debate on how many traits are needed to provide a
comprehensive description of personality. For example, Eysenck proposes three traits
of personality: extraversion, neuroticism and psychoticism [41, 42], whereas Cattell et
al. advocates 16 traits [20]. However, the most widely accepted theory is a structure
consisting of five factors (also called the Big Five)2. One of the advantages of the Big
Five framework is that it can assimilate other structures. An empirical demonstration of
this property is given by Goldberg and Rosolack [47] by integrating Eysenck’s three-
factor system into the Big Five. Each of the five dimensions is defined by its desirable
and undesirable qualities. Table 2.1 summarizes the Big Five model and the desirable
and undesirable qualities of each trait.

Not all personality researchers believe that personality is a static set of traits that
can be described independently of behaviour and situations. In fact, Mischel and Shoda
[88, 89] have developed a personality theory, that accounts for variability patterns across
different situations. Although the trait-based approach to modelling personality does

2See for example Digman [32], Goldberg [46] and Costa and McCrae [28].

24 CHAPTER 2. STATE OF THE ART

Trait Desirable Undesirable
Extraversion outgoing, sociable, as-

sertive
introverted, reserved, pas-
sive

Agreeableness kind, trusting, warm hostile, selfish, cold
Conscientiousness organised, thorough, tidy careless, unreliable,

sloppy
Emotional stability calm, even-tempered, im-

perturbable
moody, temperamental,
nervous

Intellect or Openness imaginative, intelligent,
creative

shallow, unsophisticated,
imperceptive

Table 2.1: The Big Five personality traits and their desirable and undesirable qualities
(from Hampson [51]).

have some disadvantages (for a more detailed discussion of this see Hampson [51]),
it is still quite useful for IVH development, because the concept of personality traits
can be easily translated into a computational model (for an example, see Johns and
Silverman [58]). Furthermore, a lot of resources (such as five factor personality tests)
are available, so that any research performed can be easily evaluated and adapted.

The effect of personality on human motion has been researched as well. Kozlowski
and Cutting [31, 67] have shown in their work on the perception of human walking that
one can recognise the gender and sometimes even the person from a walking human.
They use point-light displays to remove any familiarity cue, so that their experiments
only concern the movement itself. Animating 3D humanoids with motion captured data
has a similar effect.

Emotion

The concept of emotion has been widely researched in the psychology field. Many
approaches and theories exist, but according to Cornelius [27], they can be broadly
organised in four different theoretical perspectives: the Darwinian, Jamesian, cognitive,
and social constructivist perspectives.

According to the Darwinian perspective, emotions are based on important sur-
vival functions that have been selected because they have solved certain problems we
have faced as a species. As such, we should see the same emotions, more or less, in
all humans. Many recent research efforts are following Darwin’s approach in trying
to understand emotions from an evolutionary perspective. For example, the work by
Ekman [37] or LeDoux [74] can be named. Notably, Ekman has mostly been working
on demonstrating the universality of certain human facial expressions of emotion.

Theory and research from the Jamesian perspective follows the perspective that it
is impossible to have emotions without bodily changes and bodily changes always come
first. Like Darwin, James considered emotions to be more or less automatic responses

2.3. INTERACTIVE VIRTUAL HUMAN SYSTEMS 25

to events in an organism’s environment that helped it to survive. Studies by Levenson
et al. [76], Laird et al. [73], and Strack et al. [120], have shown that emotions indeed
follow facial expressions. Stepper and Strack [118] have shown that postural feedback
may drive emotional experience as well.

The cognitive approach to the study of emotions starts with the work of Arnold [11].
The central assumption of the cognitive perspective is that thought and emotion are in-
separable. More specifically, all emotions are seen within this perspective as being
dependent on appraisal, the process by which events in the environment are judged as
good or bad for us. The most well-known attempt to construct a computational model
of appraisal is the work by Ortony, Clore and Collins [93]. Their model of appraisal is
called the OCC model. This model specifies how events, agents and objects from the
universe are used to elicit an emotional response depending on a set of parameters: the
goals, standards and attitudes of the subject. The appraisal approach shows the impor-
tance of the dynamics of emotions. The work by Scherer [112] discusses the actual
processes that form the appraisal of an event or a situation, and how that affects the
emotional state.

Finally, the social constructivist approach follows the idea that emotions are cul-
tural products that owe their meaning and coherence to learned social rules. Culture,
for social constructivists, plays a central role in the organization of emotions at a variety
of levels. Most importantly, culture provides the content of the appraisals that generate
emotions. The most relevant studies based on this approach are the work by Averill [12]
and Harré [52].

In each of these perspectives, it is generally assumed that an emotional state can be
viewed as a set of dimensions. The number of these dimensions varies among different
researchers. Ekman [37] has identified six common expressions of emotion: fear, dis-
gust, anger, sadness, surprise and joy, Plutchik [104] proposes eight (see Figure 2.10),
and in the OCC appraisal model [93], there are 22 emotions. We would also like
to mention a 2-dimensional emotion representation called the activation-evaluation
space [113], which defines emotions along two axes on a circle (see Figure 2.11), where
the distance from the centre defines the power of the emotion. The advantage of this ap-
proach is that different discrete emotions can be placed on the disc [30], which provides
for a possibility to link the activation-evaluation model with different multidimensional
emotion models, such as the OCC emotions or Ekman’s expressions.

Discussion and Open Problems

There is a lot of ongoing research that tries to include emotion/personality models as
a part of the decision process [101]. For example, the OCC model has been imple-
mented as a part of a affective reasoning system in the PhD work done by Clark D.
Elliott [40]. On the level of implementation, there are various approaches to how emo-
tions are implemented as a part of an interactive system, whether it concerns a general

26 CHAPTER 2. STATE OF THE ART

Figure 2.10: Plutchik [104] defines eight basic emotions. He states that emotions are
like colors. Every color of the spectrum can be produced by mixing the primary colors.

Figure 2.11: Activation-evaluation emotion disc.

2.3. INTERACTIVE VIRTUAL HUMAN SYSTEMS 27

influence on behaviour [86], or a more traditional planning-based method [58]. Also,
rule-based models [5], probabilistic models [13, 23] and fuzzy logic systems [39] have
been developed.

In the next section, we will present and discuss the existing research in the creation
of Interactive Virtual Humans. As will be shown, the expression of emotions is mainly
done by synthesizing facial expressions as a part of the interaction [72, 71]. The work
by Mark Coulson [29] however shows that people are indeed capable of recognising
emotions from body postures. Currently, Interactive Virtual Human systems do not
yet include the expression of emotions through different body postures. Some work has
been done by Sloan et al. [116] to synthesize happy or sad walking sequences. Also
Unuma et al. [122] have defined an emotion-based character animation system. Both
these approaches focus mainly on happy/sad or brisk/tired walking sequences, which
is still very far from a complete emotional body animation system. Another impor-
tant point is that there is no consensus within the IVH research community on which
emotion model to use, which makes it difficult to compare the different systems and to
define a ‘best practice’. Finally, most systems do not include a personality model, and
there are not many systems that implement an integrated personality/emotion approach
to face and body animation.

2.3.3 Expressive Agents

In this section, we will discuss different approaches to the expression of behaviour by
virtual agents. First, we will describe methods for automatically synthesizing expres-
sive body behaviour. Then we will describe methods for synthesizing expressive face
behaviour.

Posture and Gesture Synthesis

While engaged in a conversation, a human can produce gestures consciously or uncon-
sciously. Conscious gestures are composed of two groups [8]: emblematic gestures and
propositional gestures. Emblematic gestures can have a different meaning depending
on the culture. Examples of western emblematic gestures are the thumb-and-index-
finger ring gesture that signals okay or good or the thumbs-up gesture. Propositional
gestures relate to size, shape, direction or relation, for example: pointing at an object
with the index finger, or using the hands to show the size of an object.

The gestures that are produced unconsciously, are of four types [16]:

Iconic gestures the form of the gesture describes a feature, action or event; for example
turning the wrist while the fingers are bent to depict a ‘pouring’ action;

Metaphoric gestures similar to iconic gestures, only the concept that they represent
has no physical form; for example a rolling motion of the hand while saying ‘the
meeting went on and on’;

28 CHAPTER 2. STATE OF THE ART

Deictic gestures these gestures visualize different aspects of the discourse in physical
space in front of the narrator; for example pointing to a fictional position to the
left, while saying ‘...so when the train arrived in Geneva...’;

Beat gestures small baton like movements that mainly serve a pragmatic function as
an orienting or evaluative comment on the discourse; for example saying ‘she
talked first, I mean second’ accompanied by a hand flicking down and then up.

There are several research endeavours towards the development of a gesture synthe-
sizer. The BEAT project [19] allows animators to input typed text that they wish to be
spoken by an animated human figure, and to obtain as output speech and behavioural
characteristics. Another project at MIT that concerns gesture synthesis is REA [17].
REA (or: the Real Estate Agent) is based on similar principles as the BEAT system.
The MAX system, developed by Kopp and Wachsmuth [64], automatically generates
face and gesture animations based on an XML specification of the output. This sys-
tem is also integrated with a dialogue system, allowing users to interact with MAX in
a construction scenario. Finally, we would like to mention the work of Hartmann et
al. [53, 54], which provides for a system—called GRETA—to automatically generate
gestures from conversation transcripts using predefined key-frames. Examples of the
visual results of these systems are shown in Figure 2.12.

These systems produce gesture procedurally. As such, the animator has a lot of
control on the global motion of the gesture, but the resulting motions tend to look me-
chanic. This is the effect of an interface problem that exists between high-level gesture
specifications and low-level animation. When humans move their arm joints, this also
has an influence on other joints in the body. Methods that can calculate dependent joint
motions already exist, see for example the research done by Pullen and Bregler [106].
In their work, they adapt key-framed motions with motion captured data, depending on
the specification of which degrees of freedom are to be used as the basis for comparison
with motion capture data. However the method they propose is not fully automatic: the
animator still needs to define the degrees of freedom of the dependent joints.

Recent work from Stone et al. [119] describes a system that uses motion capture
data to produce new gesture animations. The system is based on communicative units
that combine both speech and gestures. The existing combinations in the motion capture
database are used to construct new animations from new utterances. This method does
result in natural-looking animations, but it is only capable of sequencing pre-recorded
speech and gesture motions. Many IVH systems use a text-to-speech engine, for which
this approach is not suitable. Also, the style and shape of the motions are not directly
controllable, contrary to procedural animation methods.

Especially when one desires to generate motions that reflect a certain style, emotion
or individuality, a highly flexible animation engine is required that allows for a precise
definition of how the movement should take place, while still retaining the motion re-
alism that can be obtained using motion capture techniques. The EMOTE model [22]

2.3. INTERACTIVE VIRTUAL HUMAN SYSTEMS 29

Figure 2.12: Example image results of different gesture synthesis systems: (a) the
BEAT system [19] (b) the REA system [17] (c) the MAX system [64] (d) the GRETA
system [54].

30 CHAPTER 2. STATE OF THE ART

Figure 2.13: Some example postures of the Real Estate Agent [17, 18].

aims to control gesture motions using effort and shape parameters. As a result, gestures
can be adapted to express emotional content or to stress a part of what is communicated.
Currently no method exists that allows such expressive gestures, while still having a
natural-looking final animation.

Most of the previously mentioned systems only focus on gestures performed by the
hand and arms. However, there are many indications that the whole body is used during
communications. For example, Kendon [62] shows a hierarchy in the organization of
movements such that the smaller limbs such as the fingers and hands engage in more
frequent movements, while the trunk and lower limbs change relatively rarely. More
specifically, posture shifts and other general body movements appear to mark the points
of change between one major unit of communicative activity and another [111]. Also,
posture shifts are used as a means to communicate turn-taking3 during dialogues [49].
Cassell et al. [18] describes experiments to determine more precisely when posture shift
should take place during communication and they applied there technique to the REA
Embodied Conversational Agent [17], resulting in a virtual character being capable of
performing posture shifts (of limited animation quality, however). Figure 2.13 shows
some example images of postures in the REA system.

Facial Expression and Speech Synthesis

In Section 2.1.1, we have discussed different approaches to simulate facial movements
on a 3D face model. Also, we have shown some methods to parameterize these ap-
proaches so that the control mechanism of the face (for example MPEG-4) is indepen-
dent of the 3D model. However, a higher level control is required when one wants to

3They are called situational shifts by Blom and Gumperz [49].

2.3. INTERACTIVE VIRTUAL HUMAN SYSTEMS 31

control a face as a part of an IVH. One of the main output formats of an IVH is speech.
Therefore a mechanism is required that can convert this speech into an accurate facial
animation signal. Additionally, emotional expressions need to be blended with a speech
signal, as well as other face motions, such as head movements, gaze and eye blinking.
More specifically, Ekman [37] defines several different groups of facial expressions dur-
ing speech: emblems, emotion emblems, conversational signals, punctuators, regulars,
manipulators and affect displays. These groups serve either as communicative signals
or as movements corresponding to a biological need (eye blinking, wetting the lips, and
so on).

For a more detailed description of facial animation systems and their integration
with speech, we refer to the work done by Kalra and Garchery [60] and Kshirsagar [72,
71] at MIRALab—University of Geneva.

Virtual Human Control Mechanisms

In order to control IVHs, a language is necessary that describes what the IVH should
do exactly. The level on which this language should specify what the agent should
do, depends on the design and requirements of the intended application. For example,
some systems produce gestures procedurally using very detailed tags in the utterance
specification, whereas other systems require simply a high-level indication of which
animation file to load. Also, some languages might depend on the technology that is
behind them. Because of all these variables, a lot of different mark-up languages for
IVHs exist and they are all on different levels of abstraction and restrained to a certain
domain of applications. For a recent overview of such languages, we refer to the paper
by Arafa et al. [6].

Since our work focuses on the application of animation techniques in Interactive
Virtual Humans, a lot of these mark-up languages are not suitable since they are either
on a too conceptual level or they do not allow for the specification of multimodal dis-
course elements. The two mark-up languages of particular interest are RRL [102] and
MURML [68]. MURML is the mark-up language that is used to control the MAX mul-
timodal agent [64]. This language provides for a specification of a discourse utterance
(text to be spoken by an IVH), in synchrony with gesture motions. The gesture motions
are defined in the XML structure and are generated afterwards by a gesture synthesizer
(see Figure 2.14). RRL defines the multimodal control on different levels. An example
of the input to an animation system is given in Figure 2.15. The GRETA and BEAT
systems define a very similar kind of language.

Discussion and Open Problems

Most of the IVH systems discussed in this section have a rather detailed way of spec-
ifying the body and face animation sequence to be played. This high level of control

32 CHAPTER 2. STATE OF THE ART

<utterance>
<specification>

And now take <time id="t1"/> this bar. <time id="t2"/>
</specification>
<behaviorspec id="gesture_1">
<gesture>
<affiliate onset="t1" end="t2" focus="this"/>
<function name="refer_to_loc">
<param name="refloc" value="Loc-Bar_1"/>

</function>
</gesture>

</behaviorspec>
</utterance>

Figure 2.14: Example of a multimodal sequence of text to be spoken in synchrony with
gestures using MURML.

<animationSpec>
<seq>

<par>
<gesture begin="0" dur="400"

id="g3" identifier="f_smileopen"/>
<par>

<gesture begin="0" dur="655"
id="g4" identifier="g_positive_greeting"/>

<audio dur="1502" src="hello.mp3"/>
</par>

</par>
</seq>

</animationSpec>

Figure 2.15: (Simplified) example of an audio signal to be played in synchrony with
gestures using RRL.

2.4. MOTIVATION 33

is mostly visible in the way that the arm and hand motions are being constructed. Al-
though a precise control of such motions is desirable in order to provide a strong link
with for example a dialogue system, the resulting animations do not look very natural
since they are only defined for a few joints. Also, because these systems do not take the
whole body into account (except for REA in a limited way), the 3D characters are rather
static during the interactions. Currently, there is no IVH system that can handle detailed
face and body gesture definitions and that will produce a natural looking animation of
the character.

2.4 Motivation

In the previous sections, we have discussed many different aspects of research related
to the simulation of Interactive Virtual Humans. Since IVHs are an integration of many
different research efforts, it is difficult to define a coherent goal by only looking at one
research area. On the other hand, when looking at the virtual humans themselves in
such systems, it is clear that many problems still need to be overcome. We have seen
in the previous sections, that current IVH systems can generate detailed upper body
motions, but that those motions are generally only defined for a few joints. Addition-
ally, these motions are often generated procedurally, and thus lack the precision and
naturalness of real human motions. As a result, the generated motions generally do not
look convincing. We have presented several candidate techniques that try to use mo-
tion captured clips to produce new motions, according to some constraints. We believe
that such techniques are very promising for a wide variety of uses, including interactive
virtual humans. However, many of such systems have strong limitations to the level of
control over the character, as we have discussed in Section 2.2. The problem with IVHs
is exactly that they require a very high level of control over their motions.

In this thesis, we set out the goal to develop a technique that has sufficient flexibility
in order to be used for IVHs, but that allows for the synthesis of motions that are real-
istic [35, 34]. Such a goal is particularly challenging because generally IVH systems
are already computationally expensive, since they will often include speech processing
and synthesis software, a dialogue manager, a personality and emotion simulator, and
many more components. Each of these components is inspired from different fields of
research and has its own complex architecture. If one does not pay extreme attention,
placing many of such components together in one system will result in a software with
astronomical computational requirements. Indeed, if we intend to develop an anima-
tion system for real-time interactive virtual humans, then it is indispensable that such a
system is as fast as possible and that the architecture behind the system is logical and
transparent. If we want to adapt and sequence pre-recorded motion clips in real-time,
we can’t simply use traditional methods for motion synthesis as described before, be-
cause these methods are not fast enough. Not only do we need to adapt motion clips,

34 CHAPTER 2. STATE OF THE ART

but our animation system will also need to handle different animation tracks playing
at the same time, synchronization between animation and speech, and certainly many
other operations that allow for the level of control required by IVHs. The only way to
achieve such complex animation management in real-time, is to come up with an ani-
mation representation that is extremely fast, but flexible enough to be suitable for the
job.

In MIRALab—University of Geneva, the research done by Kshirsagar [72, 71] and
Kalra and Garchery [60, 44] provided for a real-time facial communication system, that
was integrated with a dialogue manager and a speech synthesizer. At the same time,
VHD++ [105] was being developed by both MIRALab and VRLab—EPFL. VHD++
is a real-time scenario simulation tool for multiple virtual humans in a virtual environ-
ment. For each virtual human, a scenario can be defined that plays facial animations,
body animations, and audio files at the same time. This system was quite successfully
used in the LIFEPLUS project4, where a scenario and environment were created to
simulate the life in the ancient city of Pompeii [94]. However, there was no integration
between the facial communication system developed by Kshirsagar and the VHD++
system. This was mainly because Kshirsagar’s system was designed from an interactive
point-of-view, where motions and actions need to be shown on-the-fly, whereas play-
ing predefined scenarios is a very different type of approach. Since European research
projects are a very important driving force behind the research done in MIRALab, it
was clear that any full-body and face interactive system would need to be integrated
in the VHD++ framework, so that it could be used in demonstrations of such projects.
However, neither the animation manager inside VHD++ nor the system responsable for
creating the expressive content was suited for controlling both the body and face of an
interactive human. In this thesis, we will need to propose a more generic animation
manager that can handle both the scenario-based animations as well as the interactive
virtual human animations. Additionally, if we want the system to be usable as a part of
the various project demonstrations, it is necessary that such a system can dynamically
switch between the different animation types without having to interrupt the animation
cycle.

2.5 Specific Objectives

Given the previously mentioned considerations, we will now define the objectives of
this thesis more specifically. As discussed before, performance animation methods
provide for natural looking motions, but they provide only a limited level of control
over the final animation. On the other hand, current IVH systems generate detailed
upper body motions, which are not very realistic because of the procedural approach.

4LIFEPLUS is a European Union funded project (contract number IST-2001-34545). Project home-
page: http://lifeplus.miralab.unige.ch.

2.5. SPECIFIC OBJECTIVES 35

Figure 2.16: Performance animation methods and IVH simulation system, in a graph
depicting control versus realism of animations.

In order to create the ideal motion synthesizer for a believable IVH, one would need
a system that allows for both a high level of control and a high level of realism (see
Figure 2.16). The global goal of this thesis is to develop techniques that allow us to
move more into the direction of this ideal motion synthesizer, while keeping in mind
the real-time constraint. In order to achieve this global goal, we will propose several
specific contributions to the state of the art in various research areas:

Real-time animation manipulation We will propose a novel body animation repre-
sentation that allows for fast and reliable real-time manipulation. The representation
will be suitable for linear operations, just like the exponential map (see Section 2.1.2),
but with the additional advantage that only a small subset of the posture vector is re-
quired for many applications, thus greatly increasing the efficiency of animation han-
dling. This animation representation will be encapsulated in a real-time animation man-
ager that will be able to handle any kind of motion, whether it is generated on-the-fly
using existing motions, generated automatically by a gesture synthesis system, or key-
frame animations. The manager will be usable for different types of animation control
and it allows to dynamically switch between different motion control techniques with-
out interrupting the performance of the system during run-time, as opposed to existing
techniques that focus on either scenario-based animation or interactive character ani-
mation.

Flexible motion synthesis We will present a flexible motion synthesizer that fully
automatically adapts recorded motion clips to create new, realistic motions. The motion
synthesizer will be able to adapt and sequence motions in real-time by using a fast

36 CHAPTER 2. STATE OF THE ART

frame distance criterion that profits from the animation representation that we propose.
As an advantage over previously discussed distance criteria [2, 66, 80], our approach
will be both fast and taking into account dependencies between joints. In contrast to
the existing approaches [66], our motion synthesizer will use a graph with meaningful
vertices. This results in a more precise control over the target motion. Additionally, no
pre-computation is required: the motions are adapted and generated during run-time,
due to the efficient distance criterion and rapid motion fitting algorithm.

Automatic realistic gestures We will show a new technique that allows for creating
realistic gesture motions in real-time from procedurally generated motions defined only
for a few joints. We will present a method for automatically calculating the motions
of dependent joints, at an extremely low computational cost. Existing methods for
generating realistic gestures, such as the one proposed by Stone et al. [119] are only
able to generate gestures from a pre-recorded database of motions. Our approach will
not place any limitations on the input motion, making the technique suitable to be used
with any type of gesture synthesizer.

Full-body expressive interaction As a proof of concept for the adequacy of the ani-
mation manager, we will develop a dialogue manager that is capable of controlling both
face and body motions. A simple interface will be provided that allows for a coherent
definition of face and body motions, which will be automatically synchronized with a
speech signal, created using a text-to-speech synthesizer. This will allow an IVH to re-
spond to a user, by employing full face and body motions. Since emotional expressions
on both the face and the body need to be governed, we will present an efficient emotion
and personality simulator that is suitable to be used for interactive virtual characters.
Because of the generic approach, the emotional state can be used to drive both face and
body animation.

The only way to demonstrate that our approach is valid, is by developing a proto-
type that shows the various features of the system. We will build a prototype IVH that
includes speech recognition, speech synthesis, emotion and personality simulation, di-
alogue management, and fully automatic realistic face and body motion synthesis. All
these system parts will be integrated inside VHD++ [105] and they will run simultane-
ously in real-time.

2.6 Organization

In this chapter, we have presented the state of the art in Interactive Virtual Human
research. We have also presented the motivations and objectives of this thesis. In Chap-
ter 3, we will present our animation representation and motion synthesis technique.

2.6. ORGANIZATION 37

The animation representation is based on a statistical analysis of human motion. As
we will show in this chapter, this representation allows for a fast adaptation of existing
motions, as well as the synthesis of new motions. Chapter 4 will show various ways
of controlling the motion of a character. We will show how high-level face and body
motion control from an emotional state is possible. In this chapter we will also present
the main architecture of MIRAnim, our multi-purpose animation engine. We will show
a simple means to correct motions that contain collisions, and finally we will show how
to automatically calculate dependent joint motions. In Chapter 5, we will present the
dialogue manager that is capable of controlling the 3D character, corresponding to the
personality and emotional state of the character. We will also show how the dialogue
system output is translated into speech and character motion. Chapter 6 discusses vari-
ous implementation issues. It will also present the IVH prototype that we built. Finally,
we will conclude in Chapter 7 with some potential applications of the research and an
overview of where to go next.

CHAPTER 3

Motion Synthesis

In this chapter, we will present a collection of techniques that allows for the synthesis
of new motions, using a set of previously recorded motions or motions designed man-
ually by an animator. As seen in Chapter 2, such techniques can be very useful for
the synthesis of realistic motions, while saving a lot of time. After a short overview
of how motion capture works, we will propose a methodology based on a statistical
analysis of recorded motion segments, called Principal Component Analysis (PCA).
Then within this framework, we will address the various problems that exist in motion
synthesis systems and we will show how the PCA approach allows solving these prob-
lems in a fast and efficient way. One of the most computationally expensive parts of
any motion synthesis system is the calculation of distances between frames. We will
present our approach, which significantly reduces the computational cost for these op-
erations, while taking into account the conditions that are required for a meaningful
distance calculation. Next, we will show how our approach is used to synthesize new
motions from pre-recorded segments, using the distance criterion and a fast animation
fitting algorithm. Together, the proposed methods will allow for a so-called dynamic
motion graph: a motion database that allows for the dynamic addition and removal of
animation segments, with a low computational impact. Finally, we will present a novel
method for producing noise on dependent joint sets. Adding noise to motions solves
the problem of characters that remain static between different motion clips and it will
increase the realism and smoothness of the resulting animations. Contrary to existing
methods, our approach takes into account the dependencies between joints, allowing
for a more prominent noise component, while retaining a realistic body motion.

40 CHAPTER 3. MOTION SYNTHESIS

Figure 3.1: The Vicon motion capture system [124].

3.1 Getting the Data

In order to perform motion synthesis, a database of realistic motions is required in a
format that is usable. The easiest way to get such motions, is by using a motion capture
system. We will first give a short overview of how motion capture works. Then we will
show how animations are represented in our system.

3.1.1 Motion Capture

Motion capture is a process that allows recording the movements of a person’s body
and translating them into a representation that can later on be used to animate a 3D
model. There are different types of systems, with different ranges of applications. The
most well-known techniques used for motion capturing is optical motion capturing and
magnetic motion capturing. Magnetic motion capture systems, such as MotionStar [82],
are very well suited for real-time applications, however they are less precise than optical
motion capturing systems, such as Vicon [124]. As a basis for our research, we have
used the latter system (see Figure 3.1).

In order to record a person’s motions with the Vicon system, a set of markers need
to be placed on the body. The markers are tracked by multiple cameras—in our sys-
tem, there are 8—and the marker coordinates are triangulated from the different camera
images. The marker positions are converted into an H-Anim skeleton animation rep-
resented by joint angle rotations and a global (root) translation. Section 2.1.2 presents
a more detailed overview of skeleton-based animation. The advantage of representing
animations using the underlying skeleton is that they are independent of the 3D model
geometry. However, other problems occur when the animation is played on different
models, such as collisions and foot skating. We will show later on how these problems
can be addressed (semi-)automatically.

Clips recorded by motion capture are usually bound to a specific coordinate frame
of the tracking system and/or start each at different global position and orientation. In
order to remove those irrelevant initial conditions, we apply a data alignment procedure

3.1. GETTING THE DATA 41

on the root joint. Depending on the clip, we align position and orientation (2 + 3 DOF1),
position and turn (2 + 1 DOF), or only position (2 DOF). In all of these procedures the
vertical displacement is kept unchanged because it is valuable information. The first
solution is the most severe since it resets the initial global posture back to the world’s
origin. This is the best choice solution as long as no relevant initial orientation must be
preserved. However, in cases where the clips start with meaningful tilt, roll orientation,
such as in a laying down posture, the second correction—align position and turn—is
preferred. These two alignment procedures cover most of the situations because the
initial heading posture is rarely relevant unless being part of the design of the motion
clip, in which circumstance we can either align only the position or use no correction at
all.

3.1.2 Motions in Linear Space

Since our goal is to perform motion synthesis using these pre-recorded animation seg-
ments, we need a smart way to represent the animations. Also, because we know the
domain of the animations that we will use (interactive communicative motions), we can
profit from methods that statistically analyse recorded motions in order to find depen-
dencies between different variables.

For the interpolation and adaptation of motions, we have seen in Chapter 2 that fast
techniques exist for various representations of orientations. In many systems, quater-
nions are used since they do not have any Gimbal lock problems, and fast methods such
as SLERP and SQUAD are available for interpolating between different joint angles.
However, many statistical methods only operate on data that is represented in linear
space. To that end, we need to use a representation of orientations in linear space,
such as the exponential map. Alexa [3] already has proposed the exponential map
as a valid representation for animations, and he has also shown that linear transforma-
tions and other matrix operations are possible on such a representation. Therefore, we
choose to represent our animations in the exponential map format. Fast methods for the
translation between quaternion/rotation matrix representation and exponential map are
available, as discussed in Section 2.1.2.

In the next section, we will present a useful statistical analysis tool, the Principal
Component Analysis. We have chosen this approach, because it allows for the detection
of dependencies between different variables (in our case joint rotations). As will be
shown in the following sections, this is a very powerful property, since it allows for
many optimalisations in the data representation and treatment. We will first discuss
how this analysis works, and then how the results that it yields can be useful for body
animation processing.

1Degrees Of Freedom.

42 CHAPTER 3. MOTION SYNTHESIS

3.2 Principal Component Analysis

A Principal Component Analysis (or: PCA) is a statistical analysis method that re-
sults in an equivalent linear space for a collection of data vectors. If a data vector is
transformed into this alternative linear space, the new variables are called the Princi-
pal Components (PCs). These variables have a minimized correlation and are ordered
so that the first few PCs retain most of the variations present in the original dataset.
In order to explain how this analysis works, we need to look at the two mathematical
paradigms that it combines: statistics and matrix algebra. For a more detailed expla-
nation of the Principal Component Analysis, as well as the mathematical proofs of its
underlying theorems, we refer to the book by Jollife [59].

3.2.1 Statistics

The main idea of statistics is that given a large set of data, we would like to say some-
thing meaningful about the relationship between the individual points in the dataset.
We will now briefly look at a few existing measures for that from the statistics domain.

Consider the following set of (one-dimensional) data:

X = 〈X1, X2, . . . , Xi, , . . . Xn−1, Xn〉 (3.1)

The mean value of this sample is calculated as follows:

X =
∑n

i=1 Xi

n
(3.2)

and the standard deviation is defined as follows:

s =

√∑n
i=1(Xi −X)2

n− 1
(3.3)

Variance is another measure of the spread of data in a data set. It is defined as the
standard deviation squared s2.

The previously mentioned measures operate in one dimension only. In order to treat
multidimensional data, the covariance measure is useful. Covariance is always mea-
sured between two dimensions. The covariance expresses how much two dimensions
vary from the mean with respect to each other. The covariance between two statistical
variables X and Y is expressed as follows:

cov(X, Y) =
∑n

i=1(Xi −X)(Yi − Y)
n− 1

(3.4)

In the case of data sets of more than two dimensions, the covariance can be cal-
culated between each combination of dimensions, resulting in a so-called covariance

3.2. PRINCIPAL COMPONENT ANALYSIS 43

matrix. This matrix is the basis of the Principal Component Analysis, as we will show
in the next section.

3.2.2 Matrix Algebra

Given an n × n matrix A, then its n eigenvalues λ1, λ2, . . . , λn−1, λn are the real and
complex roots of the characteristic polynomial p(λ) = det(A − λI). Since we are
dealing with real data, we are mainly interested in the solutions where ∀n

i=1λi ∈ R3. If
λ is an eigenvalue of A and the nonzero vector V has the following property:

AV = λV (3.5)

then V is called an eigenvector of A corresponding to the eigenvalue λ.
There are some interesting properties of the eigenvectors that are used later on in

the PCA. First of all, eigenvectors can only be found for square matrices. Not all square
matrices do have eigenvectors, but if they do, an n× n matrix will have n eigenvectors
(and corresponding eigenvalues). Because of Equation 3.5, a scaled eigenvector is still
an eigenvector and its scaled version multiplied with the base matrix will still give the
same result. Therefore, an eigenvector is generally represented as a unit eigenvector,
with a length of 1. A final and important property of the eigenvectors of a given ma-
trix, is that they are orthogonal. This means that the data can be expressed using the
perpendicular eigenvectors, instead of the original axes.

3.2.3 Performing the Principal Component Analysis

The first step of the PCA is to calculate the covariance matrix for a given dataset. Since
this covariance matrix is square, we can then try to find the eigenvalues and eigenvectors
of the matrix. The strength of the PCA is that in fact, the eigenvectors of the covariance
matrix represent an equivalent linear space, where the correlation between the new vari-
ables is minimalized. Additionally, the eigenvector with the highest eigenvalue is the
principal component of the data set. This means that it represents the most significant
relationship between the data dimensions.

Once the eigenvalues and eigenvectors are found, the next step is to order them,
from highest to lowest. This results in the components in order of significance. In
order to reduce the dimension of the data, it is possible to remove the least significant
eigenvectors/values. This results in a loss of data, but depending on the strength of the
relationship between the different variables, a reasonable size of the PC vector can be
chosen to accurately represent the data.

The original data can be rigidly transformed to the Principal Component represen-
tation of the data by multiplying each data vector with a transformation matrix, which
columns are the eigenvectors, ordered by decreasing eigenvalue. This transformation

44 CHAPTER 3. MOTION SYNTHESIS

Figure 3.2: Conversion between different representations for postures.

matrix P additionally has the following property:

P−1 = P t (3.6)

Therefore, the original data vectors are obtained again by multiplying the PC vectors
with the transposed transformation matrix.

3.2.4 Principal Components of Body Postures

In the case of body animation, we have obtained a large set of body postures from the
recorded animations. In our case, we represent each orientation by the 3 values defin-
ing the skew-symmetric matrix of the exponential map. Additionally, a global (root)
translation is defined. Since we use 25 H-Anim joints for each posture, our dataset has
a dimension of 78. The PCA therefore results in a 78 × 78 transformation matrix. As
we will show in the following sections, this PC representation of the full body posture
is quite powerful and we will show its use for different applications. However, since the
PCA is a statistical analysis tool that does not take into account the physical properties
of body motions, it is also quite useful to have a PC representation only for the upper or
lower body. In some cases, using these representations separately avoids foot skating
problems or it allows for a more precise adaptation of motion, as will be shown later
on. We have performed these PCAs separately on the dataset. Conversion from and to
different representations (exponential map, global PCs, upper and lower PCs) is quite
fast since they only involve a single matrix multiplication (see Figure 3.2).

3.3. CREATING NEW MOTIONS 45

3.3 Creating New Motions

Now that we have done the work of representing body postures in PC space, we can start
using the powerful features of such a representation for motion synthesis. In order to
create new motions from a collection of existing motions, there are two main operations
that will often be performed on the frames of these animations:

• calculating the distance between two frames

• interpolating between two frames

The accuracy of the first operation is very important in motion synthesis systems, since
it will define when and where proper transitions or adaptations of motion segments
can be made. We have also seen in Chapter 2 that there are various ways to define
the distance between two frames. The interpolation between frames is used when an
original animation segment is adapted so that it follows a set of constraints. Examples
of such constraints are a new target posture, or a translation of the original motion to
another position and/or orientation.

Especially the calculation of the distance between two frames is very often per-
formed in motion synthesis methods. In the case of Kovar et al. [66] for example, the
distance is calculated for every pair of frames for every combination of animation seg-
ments. When using a geometry-based distance criterion in combination with such an
approach, the time required for pre-processing is extensive. In the next section, we will
propose a novel criterion to be used for distance calculations with similar properties as
geometry-based methods, but that can be performed at a fraction of the computational
cost. After that, we will show how interpolation techniques can benefit from the PC
representation and how we use that to generate new animations from existing motion
clips.

3.3.1 The Distance Criterion

Our frame distance criterion is based on the PC representation of postures. As discussed
previously, a PC representation groups together dependent joint motions. Therefore,
by defining the distance between two postures P and Q as the (weighted) Euclidean
distance between the two corresponding PC vectors p and q, joint dependencies will be
taken into account as a part of the distance calculation:

dp,q =

√√√√ N∑
i=1

wi · (pi − qi)2 (3.7)

The weight values wi are chosen as the eigenvalues found during the PCA. Because the
PC space is linear, calculating this distance can be done as fast (or faster) as the previ-
ously mentioned joint-based methods. However, the use of the PC space has another

46 CHAPTER 3. MOTION SYNTHESIS

Figure 3.3: Success percentages of same selected closest frame for 4 different posture
sets, ranging from using only the first PC value, the first and the second PC value, until
using the full PC vector (and thus 100% success).

property that will allow for a significant speedup of the distance calculation: the di-
mension reduction. Since higher PCs represent lesser occurring body postures, they are
mostly 0 and therefore they do not contribute significantly to the distance factor. This
means that by varying the amount of PCs used, we can look for a reasonable trade-off
between speedup and precision.

In order to quantify this result, we have analysed various distances between postures
using different PC vector sizes. We have performed this analysis on 4 sets of posture
frames coming from various motion captured animations, each set containing around
600-1000 different frames. For each frame, we have calculated the closest frame within
the same set using the PC distance criterion. We have done this calculation for all
possible PC vector sizes (in our case from using only the first PC value until using all 78
PC values). For each PC vector size, we then compare the result with the result obtained
using the full PC vector size. For each frame, we can verify if the same closest frame
was selected as when using the full PC vector size (success). The number of successful
frames can be expressed as a percentage. Figure 3.3 shows these percentages for all
possible PC vector sizes. For each set, the success percentage curve is shown.

As can be seen from the graph, when using only the first 10 PC values, the same
closest frame will be selected in on average 80% of the cases. Although this is quite
high, the first impression is that it is not precise enough to use as a replacement for the
full PC vector distance calculation. However, the selection of another closest frame in
20% of the cases is not necessarily ‘bad’. We need to investigate which closest frame is
selected in these cases and how far off it is from the originally selected closest frame. By
calculating the full PC vector distance between these two frames, we obtain a distance
error. We have calculated the average and maximum distance errors for all different PC

3.3. CREATING NEW MOTIONS 47

Figure 3.4: The average distance error when another closest frame was selected for 4
different posture sets, ranging from using only the first PC value, until using the full PC
vector.

vector sizes. They are plotted in Figure 3.4 and Figure 3.5 respectively.
When looking at these figures, we see that the average distance error for vectors of

size 10 or bigger drops below 0.1 and the maximum distance error is below 0.4. The
final step is to find out what they values mean visually. Figure 3.6 shows various posture
pairs with different distance error values. As can be seen from this image, a distance
error of 0.1 is almost invisible. A distance error of 0.4 is visible, but it represents a minor
difference in posture. For higher distance errors, the postures become significantly
different.

From these results we conclude that by using a PC vector consisting of only the first
10 values, in 80% of cases, no distance error will occur, whereas in the remaining 20%
of the cases, the distance error will not be visible on average and even in the worst case
it will be minor. Thus, using the PC approach, a huge speedup can be obtained, while
the results will be visually equivalent.

3.3.2 Synthesizing New Motions

Our motion synthesis system uses a graph-like representation to link the various recorded
animation segments in the database. Because the system will be used for simulating an
interactive virtual human, as a basis we will use motions that are useful for such a char-
acter. In Chapter 2, we have seen that most of the interactive virtual human systems
concentrate on the creation of upper body gesture motions. The exception in this case
is the work done by Cassell et al. [18]. They show that not only the upper body is im-
portant for communication, but that in fact the whole body is involved. They also note
that the balance shift is one of the most important full body communicative functions,

48 CHAPTER 3. MOTION SYNTHESIS

Figure 3.5: The maximum distance error when another closest frame was selected for
4 different posture sets, ranging from using only the first PC value, until using the full
PC vector.

Figure 3.6: A collection of posture pairs with varying posture distances e = 0.1, e =
0.4, e = 0.7 and e = 1.0.

3.3. CREATING NEW MOTIONS 49

and it indicates a change of topic. Although they have implemented such motions as
a part of REA [17], their focus clearly was on the communicative expressivity of the
character, and not so much on the realism of its motions.

In the following section, we will show how motion synthesis is used to generate
realistic balance shifting animations. We will also present some other uses for our
motion synthesis system, such as the automatic generation of idle motions.

The Basic Animation Structure

We can identify different categories of balance postures, such as: balance on the left
foot, balance on the right foot or rest on both feet. As such, given a recording of some-
one standing, we can extract the animation segments that form the transitions between
each of these categories. These animation segments together form a database that is
used to synthesize balancing animations. In order for the database to be usable, at least
one animation is needed for every possible category transition. However, more than one
animation for each transition is better, since this creates more variation in the motions
later on. In order to generate new animations, recorded clips from the database are
blended and modified to ensure a smooth transition.

Removing the Translation Offset

Since we will later on use the animations from the database to create balance-shifting
sequences, it is necessary to apply a normalisation step so that the relative translations
between the animations are minimised. Therefore we estimate the translation offset
for each of the animation sequences to the origin (0, 0, 0) by the mean value of the first
and last frames of the animation (see Figure 3.7). In order to remove this offset from the
animation, for each frame we subtract the translation offset from the root translation.
There are other possibilities to estimate the translation offset, for example by searching
the most central key-posture in the animation, or by using the timing information to
determine the middle of the posture shift.

Transition between Categories

We denote the set of categories of resting postures as C. As each animation depicts a
transition from one category to another, we can assign the first and last frame of each
a ∈ A to the category in C that they belong to. Therefore a category c ∈ C corresponds
to a set of postures Qc = q1, . . . , qm. Apart from these postures, we add stand-alone
postures (that are not part of any animation in the database) in order to increase the
variety of resting postures in the category. However, these postures should be within a
limited translation interval to avoid unnatural shifts during the transition. If necessary,
such postures are normalised by setting the translation to the mean translation of the
other postures that are already in the posture set for the corresponding category.

50 CHAPTER 3. MOTION SYNTHESIS

Figure 3.7: This figure illustrates what the estimated translation offset is in the (x, z)-
plane (frontal-lateral plane) for an animation sequence.

Figure 3.8: A simple example of a category transition graph. In this case, there are
two categories: balance on the left foot and balance on the right foot. For both the
categories, a minimum and maximum time is determined from the data (written in mil-
liseconds).

From the original animation data, we also determine what the probability is that a
transition occurs from one category to another by counting the occurrences in the data.
The probability for a transition between category c1 and c2 is denoted by P (c1 ⇒ c2).
Obviously, the sum of the probabilities of one category to others should be 1.

Furthermore, for each category c, we extract from the data the minimum and max-
imum amount of time (denoted by Tc,min and Tc,max) that a person stays in one of
the categories, before performing a transition to another category. Figure 3.8 shows
a simple example of a probability distribution for two categories and their Tc,min and
Tc,max.

Synthesis of Balance Changes

Transition Selection As a first step, we choose a random category c and then a
random posture p ∈ Qc. Furthermore, we choose a random time value t, where
Tc,min ≤ t ≤ Tc,max. This already allows to create an animation consisting of two
key-frames containing posture p at time indices 0 and t.

After the posture at time index t, we need to construct a transition to another cate-
gory. In order to define the next category, we again choose it randomly, but according

3.3. CREATING NEW MOTIONS 51

Figure 3.9: An example of fitting an animation from postures (a0, ae) to postures (p, q).

to the probability distribution as defined in the category transition graph. This gives the
successor category s. Within this category, we choose randomly a posture q ∈ Qs. Now
we have to retrieve the animation from posture p to posture q and add the key-frames
of the animation to the animation that we are constructing.

Animation Fitting The earlier constructed database of animations A may not contain
all possible animations for all the postures. Therefore, we have developed a technique
that allows to map an animation on a set of key-postures. In order for this technique to
be as realistic as possible, we have to determine which animation in the database would
fit best with the start posture p and end posture q. In order to determine this, the system
must choose the animation that has its first frame and last frame as close as possible to
respectively p and q. In order to determine the distances between frames, we use the
approach described in Section 3.3.1 for calculating the distances between frames.

In order to select the best fitting animation between p and q, we calculate for each
animation a ∈ A the maximum Ma of the distances da0,p and dae,q. The animation that
we will use, is the one that has a minimal Ma.

The animation a (=(a0, a1, . . . , ae)) starts at frame 0 and ends at frame e. If we
want to fit the animation so that it starts at posture p and ends at posture q, we have to
transform a so that a0 = p and ae = q (see Figure 3.9). This problem can be solved as
a specific case of a more general problem:

Given an animation a and a list L of tuples (f, p) where f is a frame num-
ber, p is a posture represented by a vector of PC values, and Li = (fi, pi)
is the i-th element in the list L. Furthermore, ∀Li ∈ L : fi < fi+1 (i.e.
the elements in the list are ordered according to increasing frame number).
Finally, ∀Li ∈ L : 0 <= fi <= e. How can we modify the animation a so
that is passes through all the postures in the list L at their specified frame
numbers?

The animation fitting can be done by calculating the offset of the postures (fi, pi) ∈
L with respect to afi

and then interpolating between the offsets of all pairs Li and Li+1.

52 CHAPTER 3. MOTION SYNTHESIS

The algorithm that calculates the modified animation a passing through the key-posture
list L. The main function uses a subroutine fitAnim part that fits an animation seg-
ment between two frames:

fitAnim(a,L)

begin = 0, end = 0

for (i=0; i <size(L); i++)

begin = end

end = fi

if (end!=0)

fitAnim_part(begin,end,afi
,pi,a)

if (fi != e)

fitAnim_part(fi,e,pi,ae,a)

fitAnim_part(fi,fj,pi,pj,a)

oi = pi − ai

oj = aj − pj

for (f = fi; f ≤ fj; f++)

af = af + oi · fj−f
fj−fi

+ oj · fi−f
fi−fj

In order to change the best-fitting animation a so that it starts at posture p and end
at posture q, we can simply use the function fitAnim part(a0,ae,p,q,a). After this,
the key-frames of the updated animation segment a′ is appended to the sequence we
are constructing. Next, a resting posture key-frame is added according to the method
explained before. Then again a balance shift is added, and so on. Fitting an animation
in this way only works if the difference in translation between p and q and the original
starting- and end-point is small. As we are specifically dealing with balance changes
that involve slight translation, this approach works very well. However, when one wants
to add more general categories of motions (such as walking to an object, sitting down
on a chair), more complex methods have to be used, such as retargeting [108, 129].

Synthesizing Other Motions

Although the PCA was performed on a database of standing people, the technique that
we have presented is not limited to only synthesizing standing humans. A more exten-
sive database can be constructed that contains not only motions of standing people, but
also animations of sitting people that for example change their sitting posture or lying
posture. Again, a Category Transition Graph can be constructed that contains anima-
tion sequences between different postures and the animations between categories can
be refitted just like the animations between standing postures. A problem that arises
is the fact that such kinds of postures are relative to one or more objects (a chair or a

3.3. CREATING NEW MOTIONS 53

bed for example). However, these motions can still be played relative to the humans
position in space, after performing the normalisation process as described previously.

Idle Motions

The balance shifting sequences can also be used to increase character realism during
the playing of scenarios. In nature there exists no motionless character, while in com-
puter animation we often encounter cases where no planned actions, such as waiting
for another actor finishing his/her part, is implemented as a stop/frozen animation. We
identify many situations where a flexible idle motion generator can help: from synchro-
nisation of speech/body animation duration, to dynamic creation of stand still variations
in between two active plays. In Chapter 6, we will show how our implementation of
the motion system can indeed successfully be used to automatically generate such idle
motions.

Personality and Motion

The source database used for motion synthesis is constructed from multiple recorded
animations of a person. In Section 2.3.2, we have discussed the work of Kozlowski
and Cutting [31, 67], which indicates that people move in different ways. According
to their research, it even seems to be the case that people can recognize relatives and
friends from recorded motions where the familiarity cues are removed.

In order to test whether or not this notion of individuality is retained during balance
shifts, and if the motions synthesized using our approach have captured (at least a part
of) this notion, we have created a motion database for several different people. We then
performed a user evaluation (15 subjects) of the motion synthesizer. The test subjects
were shown different movies of the virtual character playing either a recorded motion
sequence or a motion sequence that was synthesized using our technique. The movies
contained recorded and generated motions of 8 different people. The subjects were then
asked three questions:

1. what is the gender of the person that performs the animation?

2. who is the person that performs the animation?

3. is the animation recorded using motion capture or automatically generated?

The evaluation results are shown in Figure 3.10. The gender recognition is a bit bet-
ter for the recorded sequences (about 7% higher than the recognition percentage of the
automatically generated motions). Recognising the person from the animation is quite
difficult—in about one-third of the cases success—but it doesn’t make any difference
whether or not the motions are recorded or synthesized. Since this percentage is signif-
icantly higher than a random attribution of persons to motion sequences (12.5%), this

54 CHAPTER 3. MOTION SYNTHESIS

Figure 3.10: Overview of the user evaluation results.

leads us to believe that our technique successfully captures (a part of) the individuality
in the motions. Finally, the recorded motions were correctly identified as recordings
in 73% of the cases, whereas 54% of the automatically generated motions were cor-
rectly identified as fake. From this we conclude that the synthesized animations are
indistinguishable from recorded animations in almost 50% of the cases2.

3.4 Adding Noise

Apart from the balance shifting postures that were discussed in the previous section,
small posture variations also greatly improve the realism of animation. Due to factors
such as breathing, small muscle contractions etc., humans can never maintain the exact
same posture. There has not been a lot of research in this area, except for the work done
by Perlin [99], which is based on the application of Perlin-noise [98] on elbow, neck
and pelvis joints (see also Figure 3.11). This method generates quite realistic anima-
tion noise, while the noise is applied onto a few joints. However, real human posture
variations affect all joints, which cannot easily be solved by using noise functions on
all joints, because of dependencies between joints.

Contrary to Perlin’s approach, we use the Principal Component representation for
each key-frame. Since the variations apply to the Principal Components and not directly

2This percentage is probably higher, since more than 25% of the recorded motions were incorrectly
classified as being automatically generated.

3.4. ADDING NOISE 55

Figure 3.11: Definition of an animation in Perlin’s [99] animation system. This script
defines a noise function on the elbow, neck and pelvis joints, in order to avoid static,
unrealistic standing of virtual characters.

to the joint parameters, this method generates randomised variations that still take into
account the dependencies between joints. Additionally, because the PCs represent de-
pendencies between variables in the data, the PCs are variables that have maximum
independency. As such, we can treat them separately for generating posture variations.

One method to generate variations, is to directly apply a Perlin Noise function [98]
on a subset of Principal Components. We will present another method that generates
these small variations based on the shape of the curves in the motion capture data. This
method applies a statistical model to generate similar (randomised) curves. This ap-
proach also allows keeping certain existing tendencies in the variations that are specific
to certain persons (such as typical head movements, etc.). An additional advantage over
using Perlin noise, is that this approach is fully automatic and it avoids the need to define
frequencies and amplitudes to generate noise, although these parameters could eventu-
ally be determined automatically by analysing the signal. In our method, we analyse
animation segments that do not contain any balance shifts or motions other than the
small variations. The resulting noise motions will be placed on top of the synthesized
motions.

3.4.1 Normalisation of the Data

The selected animation segments need to be normalised, so that only the variations per-
sist and the base postures are removed. This is necessary, since these variations will be
synthesized on top of the balance shifting postures. In order to normalise an animation

56 CHAPTER 3. MOTION SYNTHESIS

Figure 3.12: This example shows the values of a Principal Component for an animation
segment. The offset is estimated by the mean value (which is around 0.045).

segment, we calculate the mean value of each PC in the segment and subtract it from
the PC values in each key-frame, therefore removing the base posture and keeping only
the variations (see Figure 3.12 for an example). Clearly, this approach only works when
dealing with animation sequences where the base posture does not change significantly
during the sequence.

3.4.2 Variation Prediction

In this subsection, we describe the method we use to predict the variations according
to motion capture data. For illustration of our method, we use the PC values of the
animation segment in Figure 3.12. In order to reduce the number of points in the PC
curve while retaining its global shape, we convert the PC values in a set of maxima and
minima. Then, we will show a technique to predict the next maximum/minimum given
its predecessor point.

For estimating the maximum and minimum, a simple algorithm can walk through
the points and—given an error value ε—determine if a point is a maximum or a min-
imum. In order to remove the absolute timing from the data, we specify each max-
imum/minimum by defining its distance (in milliseconds) from the previous maxi-
mum/minimum and the corresponding PC value (see Figure 3.13 for an illustration).

The next step is to construct a system that can, given a (distance, value) pair,
predict the next (distance, value) pair. The generated (distance, value) pairs then
form a new animation sequence. In order to add some randomness to the system, we do
not use the points directly, but we apply a point-clustering algorithm. In our application
we have applied a k-means clustering algorithm, but other clustering algorithms can
also be used (for an overview of different clustering algorithms, see Jain et al. [57]).
From the motion data that we have, we can set up a probabilistic model that defines
the probability of a transition from one cluster of points to another. The result is a
Probability Transition Matrix that defines the probability for any transition between the

3.4. ADDING NOISE 57

Figure 3.13: This figure shows a sequence of maxima and minima for a Principal Com-
ponent. Each maximum and minimum is specified by defining the distance to its prede-
cessor and its PC value.

clusters. This model can be used to generate new animations, according to the following
algorithm:

1. add the neutral position at time t = 0;

2. select randomly a cluster of points;

3. choose randomly a point ((distance, value) pair) within the cluster;

4. add a key-frame to the animation at time t + distance with the specified PC
value;

5. based on the last selected cluster, choose the next cluster according to the Proba-
bility Transition Matrix;

6. choose randomly a point ((distance, value) pair) within the cluster;

7. go to step 4 until desired length of animation is reached.

In our application, the noise synthesis method is applied on a subset of PC values.
For each Principal Component, the variations are generated independently. This does
not give unrealistic results, since the dependency between Principal Components is
relatively small. The final result of the variation synthesis shows little to no repetition,
because of the random choice of points in each cluster, and because of the separate
treatment of PCs.

After the PC noise has been generated, it is mixed with the balance shifting motions.
The noise is only blended with the animation when a waiting state between transitions
takes place. This results in a minimal change in the original animation segments, while
ensuring that the character is never completely static.

58 CHAPTER 3. MOTION SYNTHESIS

3.5 Summary

In this chapter, we have addressed the problem of synthesizing new motions from a
database of existing motion clips. We have presented a novel distance criterion based on
a Principal Component representation of body postures. Our distance criterion allows
for a very fast computation of posture distance, while taking into account the dependen-
cies that exist between joints. By using this distance criterion, we have presented a fast
motion synthesis system, which allows for the real-time synthesis of motions by auto-
matically adapting a set of previously recorded motion clips. By using different motion
databases, we can generate different styles of motions, while a part of the individuality
of the original motion is preserved in the new motion clips. Finally, we have presented
a simple but effective method to generate posture noise that takes into account joint
dependencies. In the next chapter, we will show how such a motion synthesis system
can be controlled by defining constraints. We will also present our animation engine,
which is built around the PC representation of postures.

CHAPTER 4

Motion Control

In the previous chapter, we have presented a novel animation method based on a PC
representation of postures. We have shown how such a representation can be success-
fully used to synthesize motions from pre-recorded motion segments in real-time. An
important next step in the development of such a system is the control mechanism. For
an animation system to be suitable for Interactive Virtual Humans, it is crucial that con-
straints can be applied onto the motion synthesizer. These constraints could be defined
by for example a Dialogue Manager that controls the outputs and expressions of a char-
acter. In this chapter, we will show that it is indeed possible to define such constraints
on the motion synthesizer. To illustrate our case, we will present an extension of the mo-
tion synthesizer that selects different motions according to different emotional states.
However, placing only constraints on the motion synthesizer is not enough. Most of
the IVH simulation systems also need to play other types of motions at the same time,
such as body gestures. This means that a flexible animation engine is required, that can
take multiple animation streams and mix them in a meaningful way. We will present
an animation engine in this chapter that can blend different body animations; including
motions that do not have a specified length and that are generated on the fly, such as
idle motions and/or balance shifting motions. We have adopted a generic approach for
this animation engine, so that it can be used for any type of animation. As we will show
in the following Chapters, the same animation engine also handles the facial anima-
tion. This makes is a lot easier for IVH systems to control the body and the face, since
they are handled by the same interface. Finally, we will show the complete animation
pipeline, including a technique that is capable of removing model-dependent collisions
from animations on-the-fly.

60 CHAPTER 4. MOTION CONTROL

Figure 4.1: A motion graph with additional constraints on its transitions.

4.1 Emotional Motion Synthesis

In this section, we will describe how the motion synthesizer presented in Chapter 3 can
be controlled by defining constraints on the transitions in the motion graph. Because in
our representation, each transition generally represents a meaningful motion segment
(such as a balance shift), we can directly define a condition on each transition. The
motion synthesizer then only selects transitions for which the condition evaluates to
true. The constraints are evaluated by a Constraint Evaluator, which can be linked
with other systems that define the type of high-level control (see Figure 4.1 for an
overview of this approach).

We will illustrate this approach by looking at how motions can be generated ac-
cording to a different emotional state. In order to do this, we first need to decide what
representation for emotions is to be used. There are many different representations
of emotions (as shown in Chapter 2), but not all of them are suitable for representing
emotional expressive body postures. For example, the emotion list used in the OCC
model [93] is too detailed with respect to what people can actually perceive. Coul-
son [29] shows that only a few emotions are easy to distinguish from only a body
posture, so it seems logical to choose an emotion representation that follows this obser-
vation. Figure 4.2 shows the distribution of perceived emotions from body postures as
found by Coulson, next to the activation-evaluation emotion disc. It can be clearly seen
that the latter representation corresponds very closely to the confusion matrix deter-
mined by Coulson. We have therefore chosen to use the activation-evaluation space as
a representative emotion space for controlling body motions. An additional advantage
of using this approach is that other multi-dimensional emotion models can be easily
mapped onto the activation-evaluation disc.

In the evaluation-activation space, an emotional state e is defined as a 2-dimensional

4.1. EMOTIONAL MOTION SYNTHESIS 61

Figure 4.2: The confusion matrix from Coulson [29] compared to the activation-
evaluation emotion disc. Apart from the swapped axes, the representation is the same.

vector:
[ee, ea], where − 1 ≤ ee, ea ≤ 1 and

√
e2
e + e2

a ≤ 1 (4.1)

When using a discrete list of n different emotion dimensions (for example based on
OCC), a mapping function f : Rn → R2 that respects the conditions in Equation 4.1
has to be defined. By using this mapping function, an emotional state that is for example
defined as a part of an IVH (see Chapter 5) will be directly translated into a format that
the motion synthesizer can use to evaluate the transition constraints.

4.1.1 Motion Segment Selection

Before new animations can be created, the animations that are in the animation database
need to be annotated with additional emotional information. For each animation seg-
ment, we define the change of emotional content (if any) by specifying for both the start
and end points of the animation a 2-dimensional interval on the activation-evaluation
circle. Figure 4.3 shows some examples of possible intervals and related postures on the
activation-evaluation circle. Please note that this system is not limited to these specific
intervals, but that we can define any amount and distribution of intervals.

Given an emotional state [ee, ea], the motion synthesizer automatically selects an-
imations that have a target interval including this point in the emotion space. In order
to make sure that it is always possible to make a transition regardless of the emotional
content, a set of transitions with no constraint is added as well, so that when no suitable
target interval can be selected, a ‘neutral’ transition is still possible.

62 CHAPTER 4. MOTION CONTROL

Figure 4.3: Different intervals of emotional states together with example postures.

4.1.2 Adapting the Pause Length

Not only do the transitions themselves change according to the emotional state. An
additional option that the motion synthesizer provides is the automatic adaptation of
pause length between transitions according to the activation level1. Higher activation
level will result in shorter pauses (and thus more transitions). In our system the length
of a pause is determined using a minimum length pm and a maximum offset po. A
random value between pm and pm + po is then chosen as the final pause length. In
order to adapt this value according to the emotional state, the value of po is replaced by
po′, which is calculated as follows:

po′ = (α− ea) · β · po, and α ≥ 1, β ≥ 0 (4.2)

where α and β are parameters that define how the offset length adaptation should be
applied. In our current application these values are set by default to α = 1 and β = 1.
The application of the length adaptation can be dynamically switched on and off, so that
there is no interference when pauses are required to have specific lengths (for example
during speech).

4.2 The MIRAnim Animation Engine

In this section, we will present our animation engine, called MIRAnim. The main ar-
chitecture of the animation engine is a multi-track approach, where several animation

1Although not currently implemented, a similar adaptation function can be applied according to the
evaluation level.

4.2. THE MIRANIM ANIMATION ENGINE 63

streams need to be blended into a final animation. There has been quite some research
in motion blending. Perlin [99] was one of the first to describe a full animation sys-
tem with blending capabilities based on procedurally generated motions. There are
several researchers who have used weight-based general blending to create new ani-
mations [128, 108]. There have also been several efforts to apply motion blending not
directly on the joint orientation domain. For example, Unuma et al. [122] perform the
motion blending in the Fourier domain and Rose et al. [109] used space-time optimiza-
tion to create transitions that minimize joint torque. Kovar et al. [65] use registration
curves to perform blending. Their approach automatically determines relationships in-
volving the timing, local coordinate frame, and constraints of the input motions. Blend-
based transitions have been incorporated into various systems for graph-based motion
synthesis [108, 66].

The goal of our animation engine is to provide for a generic structure that allows
for the implementation of different blending strategies. This is especially important,
since our animations use different representations, depending on the application. For
example, the synthesized balance shifting motions and the small posture variations are
blended using the PC representation. For more generic blending, where different an-
imation stream should play on different body parts, a joint-based method is required.
Additionally, in the final system, we will need to perform blending operations on both
body and face animations, which are two completely different animation formats that
require different blending strategies. The approach that we will present in this Sec-
tion is suitable for any of the previously discussed blending approaches. A large set of
blending tools, for example time warping, splitting, fading, and so on are available. The
advantage of using this generic approach is that once a blending tool has been defined,
it can be used for any type of animation, regardless of its type. In order to be able to use
these blending tools, only an interface needs to be provided between the data structure
used for blending, and the original animation structure. An overview of the blending
engine is provided in Figure 4.4.

4.2.1 Blendable Object

The basic structure used in the blending engine is the so-called BlendableObject

interface. A blendable object is the representation of an animation that can be blended
with other animations. The main functionality of this object is a function that maps
timekeys onto frames. A frame in the blending engine is called an AbstractFrame.
An abstract frame consists of a number of elements, called AbstractFrameElement

objects. Each of these elements is a list of floating point values. For example, in the case
of body animations, an AbstractFrameElement could be a list of 3 floating points,
representing an exponential map rotation, or a list of 3 floating points, representing a
3D translation. An abstract frame could then consist of a combination of abstract frame
elements that are either translations or rotations. In the case of facial animation, the

64 CHAPTER 4. MOTION CONTROL

Figure 4.4: Overview of the blending engine data structure.

Figure 4.5: The abstract frame implementation for both body and facial animation.

abstract frame element could be a list of 1 floating point, representing a FAP value in
the MPEG-4 standard [44, 83]. Figure 4.5 depicts how these structures look like.

In order to provide for a higher flexibility, the blending engine accepts blendable
objects with or without a fixed duration. The latter type is especially practical in the
case of playing an animation controlled by a motion synthesizer. Since these animations
are generated on-the-fly, the duration of the animation may not be known at run-time.
In the case of idle motions, the duration is actually∞, since idle motions should always
be generated.

4.2.2 Blending Schedule

Through the BlendableObject interface, each animation is defined as a function
A : t → K, where t is a timekey ∈ [ts, te] with 0 ≤ ts < te < ∞, and K is the

4.2. THE MIRANIM ANIMATION ENGINE 65

Figure 4.6: Various basic curve structures are available, such as (a) linear fading (b)
cubic fading, (c) linear attack-decay-sustain-release, or (d) cubic attack-decay-sustain-
release.

corresponding key-frame of the animation. A structure is now required that can take
a number of such ‘animation tracks’ and blend them according to different parame-
ters. The parameters are defined through the BlendingParams interface. The most
basic parameter used for blending is a weight value to be used for blending. In ad-
dition to a list of weights, the BlendingParams interface also provides for a list of
scales. The evolution of the weights and scales over time is governed by a parametriz-
able curve. Figure 4.6 shows some examples of curves that can be chosen. Different
types of BlendingParams objects can be multiplexed, and custom blending parameter
objects can be defined. For example, a custom BlendingParams object can be created
for body animations, that defines a joint mask. When multiplexed with a weight curve
BlendingParams object, this results in a set of curves defined for each joint in the
mask. Any arbitrary combination of such blending parameters is possible, allowing for
a flexible blending parameterization structure. Here, also the advantage of the indepen-
dency of the blending strategy comes forward. Once a blending parameter feature such
as curve-based blending is implemented, it can be used for any type of animation.

A BlendingAction object is defined as the blendable object, together with the
blending parameters. This object has a flag indicating if it should be rendered outside
the timekey domain of the blendable object source. This flag is useful when linking the
system with a motion synthesizer, where frames are created during run-time, indepen-
dent of the current length of the animation.

The final step in obtaining a mix of different BlendingAction objects requires
a structure that allows for activating and deactivating different animations according
to the blending parameters. This structure is called a BlendingSchedule. A blend-
ing schedule consists of a list of BlendingAction objects. Each blending action is
associated with a timekey, which defines the time that the blending action should start.

The actual blending itself happens in the FrameBlender object. This object is by
default a linear blender, but it can be replaced by a more complex blender, that allows
for example blending of other—non-linear—data structures, such as quaternions. This
blender can also be replaced if there are different types of frame elements in the same
frame, like for example translations (linear) and rotations (generally non-linear).

66 CHAPTER 4. MOTION CONTROL

The BlendingSchedule is again a blendable object. This allows for performing
animation blending on different levels, with local blending parameters. When key-
frames are obtained from the blending schedule, they are rendered in real-time as a
result of the different activated actions and their blending parameters. So, blending
actions can be added and removed from the blending schedule during runtime, resulting
in a flexible animation blender, adaptable in real-time.

4.2.3 Additional Blending Tools

In addition to the basic data structures and tools used for blending animations, the
blending engine also provides for a few extensions that allow to further parameterize
the animation and blending process. For example, modifiers can be defined which act
as a wrapper around blendable objects. Examples of such modifiers are time stretching,
flipping, or looping of animations. Again, custom modifiers can be defined for different
animation types. To give an example in the case of body animations: a modifier is
available that performs a global transformation on the whole animation. Any sequence
of modifiers can be used, since modifiers are again blendable objects.

Additionally, a blendable object is defined that uses a single frame as a source, and
that applies a custom scaling curve (chosen from the basic curves in Figure 4.6) over
time. This is a useful extension for both facial and body animation, because it allows
for a designer to create a single key-frame, such as raised eyebrows or a simple arm
posture, and the frame will be automatically animated and blended in using the curve
that was defined.

4.3 Real-Time Animation Adaptation

Especially when working with motion captured data in combination with several dif-
ferent characters, retargeting motions to different characters will become necessary. A
major problem during the process is that when an animation is played on characters of
different sizes, collisions may occur because the shape of the characters is different.
During the blending process in the previous section, such problems are not taken into
account, because it would significantly increase the computational cost. In our system,
the motion adaptation takes place at the end of the animation pipeline. This is also more
logical, because in that way, most of the animation and blending process stays character-
independent. However, that means that the motion retargeting filter that should be ap-
plied has satisfy the real-time constraint. There has already been quite some research in
motion retargeting. Gleicher [45] presents a motion retargeting method that uses space-
time constraints to minimize an objective function g(x) subject to the constrains of the
form f(x) = c. The constraints can represent the ranges of parameters, or various
kinds of spatial-temporal relationship among the body segments and the environment.
The objective function is the time integral of the signal displacement between the source

4.3. REAL-TIME ANIMATION ADAPTATION 67

and destination motion:

g(x) =
∫

(msrc −mdest)2dt (4.3)

Since the whole interval has to be integrated to find the optimal solution, this method
cannot be used in real-time. The main obstacle that needs to be overcome for real-time
motion retargeting is finding a cheap way of including the physical properties. Nor-
mally, an Inverse Kinematics (IK) solver will try to find a solution through an optimiza-
tion approach, which is computationally expensive. Choi et al. [24] present a method for
motion retargeting that is suitable for real-time applications. Their technique is based
on inverse rate control, which computes the changes in joint angles corresponding to
the changes in end-effector position. Although this method could be easily linked with
our animation engine, our goal is slightly different: we wish to correct a motion so that
it can be played on a specific 3D model, without assuming that the original motion is
optimized for a given 3D model.

4.3.1 PC Ranges

In this section, we will present a simple collision removal tool that is based on the PC
representation. Although this method is not as precise as previously mentioned work,
it is very fast and very simple to calculate, which makes it especially suitable for our
application. The main idea behind our approach is limiting the values of the Principal
Components. Since each PC represents an independent movement, we only allow PC
values within a certain range. Because most of the collisions occur due to upper body
movements, and because we do not want to change anything in the lower body motions
to avoid foot skating, we consider the PC representation for the upper body. Since most
of the relevant motion takes place in the first few PCs, it is not necessary to set these
ranges on all the PCs.

The range of values for each PC that needs to be defined, depends on the 3D ge-
ometry of the character that the animation will be played on. As such, every character
will need to have a range specification. Given this range specification and the motion
to be played, the corrected motion can be calculated (see Section 4.3.2). For each PC,
we need to determine the range where no collision takes place for the character.

Determining physical boundaries of PCs Before we can determine the range for
every PC index, we need to know what the domain of physically possible body motions
is for each PC. In order to obtain this information, motion captured data can be used to
analyse a wide range of motions. The maximum and minimum values for every PC can
be determined from this data, and a safety margin should be applied to be sure that all
possible motions are included.

68 CHAPTER 4. MOTION CONTROL

Figure 4.7: The scaling function u(x) defined between αt and αmax.

Figure 4.8: Result of applying the scaling function u(x) onto a PC signal.

Determining the range for every PC index Over the previously determined domain,
we run an algorithm that—at a given sample rate—calculates the posture corresponding
to the PC value. Then, we see if a collision is detected on the character for which we are
establishing the range. By performing this operation over the whole domain for each
PC, we get the range of PC values of physically possible motions, where no collisions
occur. We then devise a damping function, that takes an existing motion and that edits
each PC signal so that the signal stays within the previously determined range. The
detection of ranges only has to be done once for each character.

4.3.2 Motion Damping

Now that the range for every PC value has been established, a damping function must
be applied on each PC signal to ensure that the signal stays within the designated range.
Generally we do not know the exact shape of the curve, because the key-frames are
generated dynamically. We therefore have devised a damping function that treats a point
in time separately by applying a scaling function and then a weighted blending function
between the current PC value and the range maximum or minimum. This damping
function is only applied to the PC value when it reaches a predefined threshold. To
illustrate our approach, we will give an example of a PC value exceeding the maximum.
A similar approach is taken for a PC value approaching a minimum boundary.

4.3. REAL-TIME ANIMATION ADAPTATION 69

Figure 4.9: Result of applying the damping function D(x) onto a PC signal (in green).

Value-based scaling As a first step, a scaling function u(x) is applied on the PC
value, depending on its value. This scaling function is only defined between a threshold
αt and a maximum αmax, with a maximum scaling factor of λ (see Figure 4.7). The
following function defines this curve:

u(x) = 1 + (1− λ) cos(
x− αt

αmax − αt
π) (4.4)

where αt < x < αmax. The result of the application of this scaling function is shown
in Figure 4.8.

Signal damping A damping function D(x) is now applied on the scaled PC signal.
The damping function uses a weight function w(x) that determines the weight of the
maximum value depending on the PC value as follows:

w(x) =
1 + cos(x−αt

αmax−αt
π)

2
(4.5)

where again αt < x < αmax. The complete damping function D(x) applied onto PC
values then looks like this:

D(x) =

x for x ≤ αt

(1− w(x))u(x)x + w(x)αmax for αt < x < αmax

αmax for x ≥ αmax

(4.6)

Figure 4.9 shows the application of this damping function onto a PC signal that exceeds
the maximum αmax. A similar damping function has been defined for managing PC
values reaching the lower boundary. The parameters that need to be chosen are λ and
αt. The former defines how much ‘flattened’ the PC signal should be as soon as it
crosses the threshold. The threshold αt defines how soon the algorithm should start
flattening the curve.

70 CHAPTER 4. MOTION CONTROL

Figure 4.10: Animation frames with and without the damping function applied on them.

4.3.3 Results

We have calculated the PC ranges and have applied the previously mentioned damping
function on several animations. The method that we presented can be applied in real-
time because of the simplicity of the operations. Figure 4.10 shows some frames from
an original animation (with collisions) and the frames after application of the damp-
ing function. The system works in most of the cases, but it is not foolproof. This is
mainly because the absence of collisions in the separate PC values does not necessarily
guarantee no collisions in the final frame, because of minor dependencies between the
PC variables. Also, since our method is based on the PC representations, the results
will become less good for motions that are very different from the intended application.
However, for applications where the types of motions are known, like for example in-
teractive virtual humans, the method works quite well and it is very fast. Generally, we
only need to apply the damping function on the first 10 PCs in order to remove most
of the collisions. A final limitation of this method is that the damping function affects
not only the joints where the collisions occur. This disadvantage can be dealt with by
applying the adapted motion only on the joints that are involved in the collision.

4.4 Automatic Dependent Joint Motion Synthesis

As discussed in Section 2.3.3, body gesture synthesis systems often generate gestures
that are defined as specific arm movements coming from a more conceptual represen-
tation of gesture. Examples are: “raise left arm”, “point at an object”, and so on.
Translating such higher level specifications of gestures into animations often results in
motions that look mechanic, since the motions are only defined for a few joints, whereas
in motion captured animations, each joint motion also has an influence on other joints.
For example, by moving the head from left to right, some shoulder and spine move-
ments normally occur as well. However, motion captured animations generally do not
provide for the flexibility that is required by gesture synthesis systems.

Such systems would greatly benefit from a method that can automatically and in
real-time calculate believable movements for the joints that are dependent on the ges-

4.4. AUTOMATIC DEPENDENT JOINT MOTION SYNTHESIS 71

Figure 4.11: (Absolute) PC values of a posture extracted from a motion captured ani-
mation sequence.

Figure 4.12: (Absolute) PC values of a posture modeled by hand for a few joints.

ture. Methods that can calculate dependent joint motions already exist, see for example
the research done by Pullen and Bregler [106]. In their work, they adapt key-framed
motions with motion captured data, depending on the specification of which degrees
of freedom are to be used as the basis for comparison with motion capture data. Also,
recent work by Liu et al.[79] presents a physics-based approach combined with analy-
sis of motion capture data to automatically adapt motions according to different motion
styles.

We will present a novel method that uses the PCs to create more natural looking mo-
tions. Our method is not as general as the previously discussed work, but it works very
well within the upper body gesture domain. Furthermore, it is a very simple method
and therefore suited for real-time applications.

The PCs are ordered in such a way that lower PC indices indicate high occurrence
in the data and higher PC indices indicate low occurrence in the data. This allows for
example to compress animations by only retaining the lower PC indices. Animations

72 CHAPTER 4. MOTION CONTROL

Figure 4.13: An example of a scaling filter that is applied on the PC vector representa-
tion of a posture.

that are close to the ones that are in the database that was used for the PCA, will have
higher PC indices that are mostly zero (see Figure 4.11) for an example. An animation
that is very different from what is in the database, will have more noise in the higher
PC indices to compensate for the difference (see Figure 4.12). If one assumes that
the database that is used for the PCA is representative for general motions that are
expressed by humans during communication, then the higher PC indices represent the
part of the animation that is ‘unnatural’ (or: not frequently occurring in the animation
database). When we remove these higher PC indices or apply a scaling filter (such as the
one displayed in Figure 4.13), this generates an error in the final animation. However,
since the scaling filter removes the ‘unnatural’ part of the animation, the result is a
motion that actually contains the movements of dependent joints. By varying the PC
index where the scaling filter starts, one can define how close the resulting animation
should be to the original key-framed animation.

To calculate the motions of dependent joints, only a scaling function has to be ap-
plied. Therefore this method is very well suited for real-time applications. A disadvan-
tage is that when applying the scaling function onto the global PC vectors, translation
problems can occur. In order to eliminate these translation artefacts, we have also per-
formed a PCA on the upper body joints only (which does not contain the root joint
translation). The scaling filter is then only applied on the upper body PC vector. This
solution works very well since in our case, the dependent joint movements are calcu-
lated for upper body gestures only, whereas the rest of the body is animated using the
idle motion engine. Figure 4.14 shows some examples of original frames versus frames
where the PC scaling filter was applied.

4.5 Summary

In this chapter, we have presented various methods for a higher-level control of char-
acter motion. We have shown how motion graphs can be extended so that they support
the definition of constraints. As a result, it is now possible to create different motions
according to different emotional states. Secondly, we have presented our animation

4.5. SUMMARY 73

Figure 4.14: Some examples of key frame postures designed for a few joints and the
same postures after application of the PC scaling filter.

74 CHAPTER 4. MOTION CONTROL

Figure 4.15: Animation pipeline with blending and real-time collision removal.

blending engine that can smoothly blend any type of animation, with a large set of
tools available for designers. A collision-removal tool was presented, that can remove
collisions from animations in real-time. Finally, we presented a method for real-time
dependent joint motion synthesis. Figure 4.15 shows the full animation pipeline.

Now that a character can be controlled on a higher level, it becomes possible to use
this system as a visualization component for an Interactive Virtual Human. The next
chapter shows how this is done.

CHAPTER 5

Interactive Virtual Humans

A high level motion control mechanism is a crucial part of an Interactive Virtual Hu-
man. In the previous chapters, we have presented several useful techniques that allow
to automatically generate animations that are realistic and that are highly flexible. In
this chapter, we will show how our animation engine can be successfully linked with
a system for simulating the behaviour and emotions of Virtual Humans. In the pre-
vious chapter, we have already shown how the emotional state can be used to change
parameters of the body animation. In this chapter, we will propose a generic approach
to emotion/personality modelling, which we use to automatically choose different body
motions and facial expressions. We will present a dialogue management system, with
integrated expressive information such as body and face motions. In Chapter 2 we
have seen different representation languages for such kind of content. Using the motion
synthesis and control techniques presented in the previous chapters, we can create a
realistic animation from such a high level representation of movement.

5.1 Dialogue Management

As exhibited in Section 2.3, several approaches exist to automatically generate a re-
sponse from an input given by a user. In order to test the flexibility of the animation
system presented in the previous chapters, we need a simple approach that allows con-
trolling several dialogue scenarios, with a capability to add expressive information. In
order to add such expressive information, a representation of an emotional state is re-
quired. Many existing dialogue managers do not take into account the emotional state.
Some systems have proposed emotions as an extension to the BDI model (this is called
the ‘BDIE’ model [97]). However, such an approach would not suit our needs, because

76 CHAPTER 5. INTERACTIVE VIRTUAL HUMANS

the BDI model requires a (generally complex) logical representation of the environ-
ment, which would complicate the facility to generate different test scenarios. The Jab-
berwacky [56] or ALICE [1] chatbot approach is a suitable candidate for easy scripting
of dialogues, but it does not allow for extensions that govern different emotional states.
In this section, we will present a system using a similar approach as ALICE, but with
a possibility to add extensions such as an emotional state or other systems. Our sys-
tem is based on the principle of finite state machines (FSMs). This approach allows
us to perform a wide range of dialogue script tests, while retaining the flexibility to
adapt the dialogue during run-time according to parameters such as an emotional state.
In the next section, we will give a short overview of FSM theory, after which we will
introduce how a simple dialogue system can be constructed that allows for different
behaviour following an emotional state.

5.1.1 Finite State Machines

A deterministic finite state machine (or deterministic finite automaton, DFA) is a quin-
tuple (Q,Σ, δ, q0, F) where:

• Q is a finite set of states;

• Σ a finite set called the alphabet;

• q0 ∈ Q the start state;

• F a subset of Q called the final or accepting states, and

• δ is the transition function, a total function from Q× Σ to Q.

A nondeterministic FSM is the same as a deterministic FSM, except for the transi-
tion function. A nondeterministic FSM has a transition function δ that is a total function
from Q×Σ to P(Q), thus there can be more than one possible transition with the same
input1.

An extension to this FSM theory can be given by allowing FSMs to generate out-
put. This can be achieved in two ways: either output is associated with states (Moore
machines) or the output is associated with transitions (Mealy machines). A common
extension to the standard nondeterministic FSMs is to allow for the possibility to make
a transition without input being processed. Such a transition is called a λ-transition. As
a result, the transition function δ is a total function from Q× (Σ ∪ λ) to P(Q).

1For a good introductory textbook on formal language theory, which encapsulates finite automata, see
for example Sudkamp [121].

5.1. DIALOGUE MANAGEMENT 77

5.1.2 FSMs and Dialogue

We have chosen to adopt an FSM-based approach for creating dialogue systems. The
main reason for this choice is the fact that FSMs are very easy to define and they allow
for a wide variety of behaviour. In our system, we employ Mealy nondeterministic
finite state machines that allow for λ-transitions.

Each transition in the FSM is linked with a set of conditions and a set of actions.
A transition is only possible if its attached conditions are satisfied. When a transition
is made, the attached actions are executed. Because the conditions and actions can be
linked with modules that perform a task or that can check a statement, this framework
allows for different behaviours depending on what types of conditions and actions are
available.

The most basic dialogue system follows a pattern-response methodology: a user
says/types something and the system responds accordingly. This approach is imple-
mented in well-known systems, such as ALICE [1]. The same behaviour can be achieved
using FSMs by defining a pattern matching condition and an output action, for example:

<condition type="input_match">

hello my name is *
</condition>

<action type="say">

hello how are you doing?

</action>

A small dialogue system can now be constructed with three states q0, q1, q2 where
q0 is the start state and q2 is the end state. There would be two transitions, one from q0

to q1 (linked with the matching condition) and one from q1 to q2 (linked with the action
that generates output). Figure 5.1 shows a graphic representation of this small dialogue
system. The action is linked with a module that provides the interface between FSM
and user in the form of an output buffer. The condition is linked with a pattern matcher
module and input buffer.

In order to achieve the same functionality as existing pattern-response dialogue
systems, our system consists of a collection of these small FSMs, that are running
concurrently. Each of these FSMs is called a dialogue unit. Every unit handles a specific
dialogue between the user and the system. The full dialogue system consists of a kernel
of these FSMs that are running and a set of modules that can each perform specific
tasks and that have an interface with the FSM kernel. For an overview, see Figure 5.2.
The separate modules can be easily added to our system, together with XML readers
for module specific conditions and actions, such as reading variables, check if a logical
statement is valid, and so on.

78 CHAPTER 5. INTERACTIVE VIRTUAL HUMANS

Figure 5.1: An example of a simple dialogue FSM.

Figure 5.2: An overview of the dialogue system architecture.

5.1. DIALOGUE MANAGEMENT 79

5.1.3 The Parallel FSM Algorithm

As our FSMs are concurrently running in one system, we need to extend the definition
of an FSM in order to add extra features that influence how the kernel chooses the
FSM and the transition that has to be made. From now on, we will use F to indicate
a Mealy nondeterministic finite state machine with lambda transitions. We will now
extend the definition of F by defining an additional set of parameters (p, c, s) for it.
Parameter p is an integer value in the interval [0,→〉, that defines the priority of this
FSM in the total system. FSMs with higher priority will be selected for performing a
transition first. The second parameter, c, specifies if an FSM is cyclic or not. An FSM is
called cyclic if it automatically goes to the start state when it reaches an accepting state
(especially useful in dialogues for repeating conversation parts). The final parameter, s,
specifies whether or not an FSM is strong. When an FSM is strong, and it is selected to
perform a transition, it obtains a temporary priority of ∞, until it can no longer make
a transition. This is a feature especially useful for dialogue. In practice it means that
when user and computer are involved in a certain conversation (modelled by one FSM),
then the computer will always interpret a user reply as part of the current conversation,
if possible.

Two of the three parameters have a direct effect on how FSMs are selected dur-
ing run-time: parameters s and p. In the following, we assume that we have a set of
currently running FSMs V . Also there is a currently selected FSM Fs. Finally, the
algorithm uses a set W to store the tentatively selected FSMs in.

W = ∅

for all Fi ∈ V

if Fi can make a transition

if W = ∅
W = W ∪ {Fi}

if ∀k · Fk ∈ W : pi ≥ pk

∀k · Fk ∈ W : pk < pi:

W = W\{Fk}
W = W ∪ {Fi}

if Fs can make a transition and Fs is strong

W = {Fs}

if W 6= ∅
select a random Fr ∈ W

Fs = Fr

If an FSM can be selected by this algorithm, then this FSM is allowed to do a
transition. When the system is started, all FSMs are set into their start state q0. Then

80 CHAPTER 5. INTERACTIVE VIRTUAL HUMANS

we start a thread that checks if an FSM can be selected for transition with a certain time
interval.

5.1.4 Dialogue Modules

Now that the basic architecture for the dialogue system has been established, a number
of modules are available that provide for extra flexibility of the system.

Input Module This module compares an input string to a predefined pattern. It is
related to a condition that evolves to true or false defining whether or not a string follows
the pattern.

Output Module This module consists of an action that produces text output. The text
can be formatted in different way and includes support for XML tags.

Emotion Module The emotion module handles the relation between the emotional
state and the running dialogue. From the dialogue, the emotional state can be updated.
Also, conditions are defined that indicate if a certain emotion is above or below a given
threshold, thus allowing for different behaviour according to different emotional states
(see also Section 5.2).

User Profile Module The goal of this module is to maintain information about the
user, such as name, age, and so on. Also, it can serve as an interface between and
automatic facial expression and emotion tracker [36].

5.2 Simulating Emotions and Individuality

A dialogue system or intelligent agent will require concrete representations of concepts
such as personality and the emotional state so that it can decide what behaviour it will
portray. As such, we need to define exactly what we mean by personality, emotion and
other related concepts in order to describe how they can be simulated and used by other
systems.

5.2.1 Definitions

When we speak of an individual, we always refer to it relative to a time t. The moment
that the individual starts existing is defined by t = 0. The abstract entity that represents
the individual at a time t we will call It from now on. In the simple case, an individ-
ual has a personality and an emotional state. Generally, an individual’s personality is
considered to be constant and initialized with a set of values on t = 0. The emotional
state is dynamic and it is initialized to 0 at t = 0 (we will go in more detail about this

5.2. SIMULATING EMOTIONS AND INDIVIDUALITY 81

later on). Thus we define It as a tuple (p, et), where p represents the personality and et

represents the emotional state at time t.
As discussed in Section 2.3.2, there are many personality models that consist of a set

of dimensions, where every dimension represents a specific property of the personality.
Generalizing from these theories, we assume that a personality has n dimensions. In
most personality models, each dimension can be denoted by a value in the interval
[0, 1]. A value of 0 then corresponds to an absence of the dimension in the personality;
a value of 1 corresponds to a maximum presence of the dimension in the personality.
The personality p of an individual can thus be represented by the following vector:

p =

α1
...

αn

 ,∀i ∈ [1, n] : αi ∈ [0, 1] (5.1)

As an example, we can specify a Five Factor personality (thus n = 5) that is very open,
very extravert but not very conscientious, quite agreeable and not very neurotic:

p =

0.8
0.1
0.7
0.5
0.05

 (5.2)

Emotional state has a similar structure as personality. The emotional state is a set
of emotions with a certain intensity. The size of this set depends on the theory that
is used. For example, in the OCC model, 22 emotions are defined, while Ekman [37]
defines 6 that are used as a basis for facial expression classification. The emotional state
is something that changes over time (for example due to various appraisal processes
or simply a decay factor). Therefore, when we speak about an emotional state, we
speak of it relative to a time t. We define the emotional state et as an m-dimensional
vector. Again, most of the emotion models conform with the m emotion intensities in
the interval [0, 1]. A value of 0 corresponds to an absence of the emotion; a value of 1
corresponds to a maximum intensity of the emotion. Such an emotional state vector is
given as follows:

et =

β1

...

βm

 ,∀i ∈ [1,m] : βi ∈ [0, 1] if t > 0

0 if t = 0

(5.3)

When using the evaluation-activation disc as discussed in Section 2.3.2, the emo-
tional state is represented by a two dimensional vector, with both the intensities in the

82 CHAPTER 5. INTERACTIVE VIRTUAL HUMANS

interval [−1, 1] (see also Equation 4.1):

et =

[
ee

ea

]
, where − 1 ≤ ee, ea ≤ 1 and

√
e2
e + e2

a ≤ 1 (5.4)

Furthermore, we define an emotional state history ωt that contains all emotional states
until et, thus:

ωt = 〈e0, e1, . . . , et〉 (5.5)

5.2.2 Updating the Emotional State

From a dialogue system, intelligent agent or any other A.I. system, the emotion frame-
work will obtain emotional information. This information can, for example, be con-
structed based on the event appraisal model as described in OCC [93] or by the ap-
praisal model as defined by Scherer [112]. We define the emotional information as a
desired change in emotion intensity for each emotion. Then, the final emotion intensity
can be calculated based on different parameters in the emotion framework. If we rep-
resent the desired change of emotion intensity by a value in the interval [0, 1], then the
emotion information a (or emotion influence) can be described by a vector that contains
a desired change of intensity for each of the m emotions:

a =

 δ1
...

δm

 ,∀i ∈ [1,m] : δi ∈ [0, 1] (5.6)

The emotional state can then be updated using a function Ψe(p, ωt, a). This func-
tion calculates, based on the personality p, the current emotional state history ωt and
the emotion influence a, the change of the emotional state as a result of the emotion
influence. A second part of the emotion update is done by another function, Ωe(p, ωt)
that represents internal change (such as a decay of the emotional state). Given these
two components, the new emotional state et+1 can be calculated as follows:

et+1 = et + Ψe(p, ωt, a) + Ωe(p, ωt) (5.7)

Given the basic update model, little is said about how the emotional state is up-
dated over time when an emotion influence has to be processed. There are a lot of
different implementations possible, and more elaborate research should be performed
to determine the ideal update process. In this section we only give a simple linear imple-
mentation of the model that does not take into account the emotion history. The linear
implementation is given by the definition of the function Ψe(p, ωt, a) and the function
Ωe(p, ωt). First, we will give a possible definition for Ψe. As we have a vector p of
length n and a vector et of length m, we define an m × n matrix P0 that we will call

5.2. SIMULATING EMOTIONS AND INDIVIDUALITY 83

the Personality-Emotion Influence Matrix. This matrix indicates how each personality
factor influences each emotion. P0 has to be defined once, depending on which per-
sonality model and emotion model is used. Then, assuming that the personality p will
not change, we can calculate the product of P0 and p, which will give us a vector u

indicating the importance of each emotion depending on the personality dimensions:

u = P0 · p =

 ε1
...

εm

 (5.8)

We use this vector to construct the diagonal matrix P :

P =

ε1 0 · · · 0

0 ε2
...

...
. . . 0

0 · · · 0 εm

 (5.9)

For each emotion, matrix P contains a value that defines how strong an emotion
can be given the personality p. For example, a very agreeable and extravert personality
will have a highly positive value for the ‘joy’ emotion and a very small value for the
’distress’ emotion. Given the matrix P , P · a calculates the change in the emotional
state given the emotion influence a. Thus, the function Ψe can be defined as follows:

Ψe(p, ωt, a) = P · a (5.10)

As can be noted, this implementation makes no use of the emotional state history.
For the Ωe function, we will only show the implementation of a simple, personality-
independent decay. The Ωe function is defined as an m-dimensional vector (there are
m emotions):

Ωe(p, ωt) =

−Ce
...

−Ce

 (5.11)

Ce defines the amount of decay for each emotion.

5.2.3 Integration with Dialogue Manager

Based on the previously linear implementation of the emotion update process, we de-
fined an OCEAN personality (5 dimensions), as well as an emotional state based on the
OCC model. In addition to the 22 emotions defined in the OCC model, we have added
surprise and disgust, following the proposition by Kshirsagar [71]. The complete list of
emotions is given in Table 5.1. The personality and emotion module is interfaced with

84 CHAPTER 5. INTERACTIVE VIRTUAL HUMANS

Admiration Gratification Pride
Anger Gratitude Relief
Disappointment Happy-for Reproach
Disgust Hate Remorse
Distress Hope Resentment
Fear Joy Satisfaction
Fear-confirmed Love Shame
Gloating Pity Surprise

Table 5.1: The emotions used in the dialogue system, defined by the OCC emotions [93]
and surprise+disgust.

the dialogue system through conditions and actions that can be specified in XML. The
FSMs from the dialogue system can generate an emotional influence by specifying the
following action:

<action type="emotional_influence">

<emotion>hate</emotion>

<value>0.6</value>

</action>

Also, an FSM can check if an emotion is below or above a certain threshold by speci-
fying the following condition:

<condition type="above_threshold">

<emotion>fear</emotion>

<value>0.3</value>

</condition>

By using these conditions and actions in the dialogue script, different emotional states
can trigger different dialogue responses.

5.3 From Dialogue to Animation

The dialogue manager generates responses that are tagged using XML. These tags in-
dicate where a gesture should start and end. As we have already discussed in Sec-
tion 2.3.3, there are many different representation languages for multimodal content,
for example the Rich Representation Language (RRL)[69] or the Virtual Human Mark-
up Language (VHML)[123]. In this section, we will give an example of how such a
representation language can be used to control gesture sequences in our system. For
testing purposes, we have defined a simple tag structure that allows for the synchro-
nized playback of speech and non-verbal behaviour. An example of a tagged sentence
looks like this:

5.3. FROM DIALOGUE TO ANIMATION 85

<begin_gesture id="g1" anim="shake_head"/>Unfortunately, I have

<begin_gesture id="g2" anim="raise_shoulders"/>no idea

<end_gesture id="g2"/> what you are talking about.<end_gesture

id="g1"/>

Within each gesture tag, an animation ID is provided. When the gesture animation
is created, these animations are loaded from a database of gestures—also called a Ges-
ticon [69]—and they are blended using the previously described blending engine. The
timing information is obtained from the text-to-speech system. Although this is a very
rudimentary system, we believe that this way of generating gestures can easily be re-
placed with another, more elaborate gesture synthesizer, since the animation system is
completely independent of what happens on the gesture construction level. The anima-
tion system only activates actions at given times with specified animation lengths and
blending parameters. Although our current testing system only generates gestures in
synchrony with speech, this is not a limitation of the animation system. The animation
system is capable of handling any set of actions at any time, even without speech.

5.3.1 From Dialogue to Facial Animation

In this section, we will shortly explain the techniques used to create the facial animation
from the output text and speech. The output text is first converted into a speech signal
by the text-to-speech engine. At the basic level, speech consists of different phonemes.
These phonemes can be used to generate the accompanying face motions, since ev-
ery phoneme corresponds to a different lip position. The lip positions related to the
phonemes are called visemes. There are not as many visemes as phonemes, because
some phonemes revert to the same mouth position. For example, the Microsoft Speech
SDK defines 49 phonemes, but only 21 different visemes. For a more detailed overview
of the different phonemes and visemes, we refer to Appendix D.

For each viseme, the mouth position is designed using the MPEG-4 Face Anima-
tion Parameters (FAPs). Constructing the facial motion is achieved by sequencing the
different mouth position, taking into account the speech timing obtained from the TTS
engine. An important issue to take into consideration when creating facial speech is
coarticulation, or: the overlapping of phonemes/visemes. Generally, coarticulation is
handled by defining a dominance function for each viseme. For example, Cohen and
Massaro [26] use this technique and they define an exponential dominance function.
Similarly, we use the following base function to construct the coarticulation curve:

f(x) = e−αx − x · e−α (5.12)

where 0 < α < ∞. The parameter α governs the shape of the curve. Figure 5.3 shows
the curve for different values of α. Using this base function, the final coarticulation
dominance function is defined as follows:

86 CHAPTER 5. INTERACTIVE VIRTUAL HUMANS

Figure 5.3: Coarticulation base function with different α values: (a) α = 0 (b) α = 2
(c) α = 5 and (d) α = 10.

Figure 5.4: Example of complete coarticulation functions with different α parameters:
(a) α = 2 and (b) α = 5.

Cα(x) = e−α2|x−0.5| − 2|x− 0.5| · e−α (5.13)

Two different examples of the Cα(x) dominance function are given in Figure 5.4. For
each viseme, the value of the α parameter can be chosen. Also, the weight of each
function, as well as its spread (overlap) can be defined for each viseme. Appendix D
shows an example definition of the curves used for the different visemes.

Because of the generic structure of the MIRAnim engine (see Section 4.2), it is
a simple task to create the facial animation from the viseme timing information. We
define a blending action for each viseme, where the dominance function acts as the
weight curve. The blending schedule containing the different blending actions will then
automatically perform the viseme blending. Because we use direct FAP blending, our
approach also handles tongue movements (see Figure 5.5, as opposed to earlier work
by Kshirsagar [72], who used a Principal Component representation of recorded face
motions that didn’t include tongue movements.

Next to the facial speech motion, also any facial gestures need to be added, defined
as tags in the text. An example of an eyebrow raising facial gesture could be defined as
follows:

5.3. FROM DIALOGUE TO ANIMATION 87

Figure 5.5: Facial animation for hello that takes tongue movement into account.

Facial Expression Emotion
Joy Happy-for, Gloating, Joy, Pride, Admi-

ration, Love, Hope, Satisfaction, Relief,
Gratification, Gratitude

Sadness Resentment, Pity, Distress, Shame, Re-
morse, Disappointment

Anger Anger, Reproach, Hate
Surprise Surprise
Fear Fear, Fear-confirmed
Disgust Disgust

Table 5.2: Mapping of OCC emotional on facial expressions [71].

Are you <begin_gesture id="g1" anim="raise_eyebrows"/>really

sure about that?<end_gesture id="g1"/>

In addition to the facial gestures derived from the tagged text, the emotional state is
also shown on the face by mapping the expression onto one of the six facial expression
defined by Ekman [37, 71]. The mapping we use is given in Table 5.2. The intensity
of the emotion is included by applying a corresponding scaling factor in the blending
parameters. Finally, a face blinking generator is added for increased realism. Each face
animation track has different weights for the FAPs. The speech animation has a higher
weight on the mouth area, whereas the face expression weights are higher on the eye
and eyebrow area. By blending the different facial animation tracks, the final animation
is obtained.

88 CHAPTER 5. INTERACTIVE VIRTUAL HUMANS

5.3.2 From Dialogue to Body Animation

Very similar to facial animation synthesis, the body animation is also partly generated
from the tagged text. The same definition is employed for the body animation tags. An
example of a body animation in combination with speech is given as follows:

<begin_gesture id="g1" anim="hello"/>Hello there,

<end_gesture id="g1"/> how are you doing today?

Similar to the facial animation synthesis, the TTS timing information is used to plan
the length of the gesture motions. A blending fade-in and fade-out is applied on the
gesture motions in order to avoid unnatural transitions. Also, the automatic dependent
joint motion filter explained in Section 4.4 is applied on the gesture signal. The filter
is applied on the upper body and starts fading out at PC index 20 with a mute for PCs
> 30 (of a total of 48).

Next to the gesture motions, the idle motion engine is running continuously, there-
fore providing the IVH with continuous idle motions. These idle motions are auto-
matically changed according to the emotional state obtained from the dialogue system,
using the method explained in Section 4.1. Just like for generating the facial expres-
sions, a mapping is required to translate the OCC emotions into a position on the emo-
tion activation-evaluation disc. We have assigned to each OCC emotion, as well as the
surprise and disgust emotion a position on the activation-evaluation disc. Therefore
a correspondence matrix D needs to be defined, that specifies for each emotion i its
position (µa,i, µe,i), as follows:

D =

[
µa,1 µa,2 · · · µa,m

µe,1 µe,2 · · · µe,m

]
(5.14)

A possible distribution of these emotions is given in Figure 5.6. The two-dimensional
activation-evaluation emotional state bt that corresponds to the OCC emotional state et

(see Equation 5.3) is then calculated as follows:

bt = D · et (5.15)

In order to obtain the final animation, the resulting emotional idle motions and the
gesture motions with dependent joint movements are blended on-the-fly by the MI-
RAnim engine (see Figure 5.7). Figure 5.8 shows some examples of full body postures
obtained using our approach.

5.4 Summary

In this chapter, we have presented a testing dialogue manager that includes emotional
information. We have shown how such a dialogue system can be used to control the

5.4. SUMMARY 89

Figure 5.6: Possible mapping of OCC emotions and surprise+disgust on the activation-
evaluation disc.

Figure 5.7: Integration of gesture animations, dependent joint motion synthesis and idle
motion synthesis.

90 CHAPTER 5. INTERACTIVE VIRTUAL HUMANS

Figure 5.8: Some example postures that show emotional idle motions mixed with ges-
tures with automatic dependent joint motions.

motions of an interactive character. Our approach overcomes the limitations of exist-
ing gesture synthesis systems, which do not produce realistic motions. We have shown
how motion synthesis and control techniques can be used in combination with gesture
synthesis systems, in order to produce motions that are both flexible and realistic. Fur-
thermore, our approach provides a fully integrated face and body control system that
allows a parameterization depending on the emotional state of the characters. The face
and body motions are generated on-the-fly from a high-level representation and they
are smoothly blended in with other motions, using the animation engine. In the next
chapter, we will discuss some implementation issues of the system. We will also show
how our approach can be used to add interactive virtual characters to a scripted sce-
nario, where one can switch dynamically from scripted character control to interactive
character control, without any glitch in the animation sequence.

CHAPTER 6

Implementation

In this chapter, we will show in short how the previously described techniques are im-
plemented. We will first give an overview of the framework in which our approach has
been integrated. Then we will show the two main components that form the implemen-
tation: the animation service and the interaction service.

6.1 The VHD++ Real-Time Animation Framework

VHD++ is a real-time virtual environment framework developed at MIRALab and VR-
Lab [105] (see Figure 6.1). This framework allows quick prototyping of VR-AR ap-
plications featuring integrated real-time virtual character simulation technologies. The
main advantage of using VHD++ is that it is a component-based framework that allows
the plug-and-play of different human simulation technologies such as: real-time char-
acter rendering in AR (supporting real-virtual occlusions), real-time camera tracking,
facial animation and speech, body animation with skinning, 3D sound, cloth simulation,
scripting of actions, and interaction. The different components may be grouped into the
two following main categories:

• System kernel components responsible for the interactive real-time simulation
initialization and execution.

• Interaction components driving external VR devices and providing various GUIs
allowing for interactive scenario authoring, triggering and control.

The content to be created and used by the system can be anything ranging from mod-
els of the 3D scenes, virtual humans, objects, animations, behaviours, speech, sounds,
python scripts, and so on.

92 CHAPTER 6. IMPLEMENTATION

Figure 6.1: VHD++ real-time virtual environment framework.

The software architecture is composed of multiple software components called ser-
vices, and their responsibilities are clearly defined. They have to take care of rendering
of 3D simulation scenes and sound, processing inputs from the external VR devices, an-
imation of the 3D models and in particular complex animation of virtual human models
including skeleton animation and respective skin and cloth deformation. They are also
responsible for maintenance of the consistent simulation and interactive scenario state
that can be modified with python scripts at run-time. Additionally, a set of very useful
features exist:

• XML interface for reading and initializing system data. This allows the dynamic
loading of scenes, models and animations, or any other type of data required by
a service.

• A Python control interface. This allows users to run scripts that directly access
features of the services, which is very useful for running AR/VR scenarios.

• All services and GUIs are DLLs. This means that it is very easy to integrate and
test various system components.

• CVS based development and availability. CVS is a tool for collaborative software
development. Adding features and libraries to VHD++ is a very simple task.

The advantages of using such a framework are numerous. Not only does it allow for
an easy test bed of the software that is development, it also ensures an easy use of

6.2. THE ANIMATION SERVICE 93

Figure 6.2: The animation service GUI. The GUI includes facilities to easily activate
and deactivate actions, as well as player control.

the software by others. Furthermore, because everyone is developing within the same
framework, it is much easier to establish a ‘best practice’ for software development
within the group of developers.

All of the software related to the work presented in this thesis has been integrated
into the VHD++ environment. We will present a short overview of the software that is
concretely available as a part of VHD++. The software is centred around two VHD++
services. The vhdAnimationService contains all the animation related components: mo-
tion synthesis, blending, loading and saving animations and so on. The vhdInteraction-
Service uses the animation service to control a virtual character. The interaction service
includes speech recognition and synthesis, a dialogue manager and emotion/personality
simulation. In the next sections, we will give an overview of each of these services.

6.2 The Animation Service

The animation service that has been developed consists of the service itself, as well
as two GUIs to control the service. For each virtual human, a vhdAnimationProperty
is defined, that contains a blending schedule, and some settings for each human, such
as an option to choose whether or not facial and/or body animation should be played
or if the translation/orientation of the virtual human was defined on the global (world)
coordinate system or local coordinate system. The service also includes an integrated

94 CHAPTER 6. IMPLEMENTATION

Figure 6.3: The animation toolkit.

player, that plays and blends scheduled animation in a separate thread. Figure 6.2 shows
the GUI that is used to control the animation service.

A second useful GUI that has been developed is the Animation Toolkit (see Fig-
ure 6.3). This is a simple animation loader, player and editor, that is very practical
for testing purposes. Several animations can be loaded in a pool, animations can be
saved in several formats, and many other options available. For example, a single frame
can be saved, a part of an animation can be saved, or global orientation and translation
can be removed if required. Finally, a simple tool is available to test various values of
Principal Components.

The GUIs we have described in this section are not the only means available to
control the characters. In VHD, a Python interpreter is available that allows users to
play scenarios by sending directly commands to the different services. This interface
has also been implemented for the animation service. As such, a script can now be
used to control the characters. In the following example, two characters are controlled
by a script. The script activates pre-recorded actions (such as ‘creon wrk’) and actions
linked with the motion synthesizer (such as ‘creon idle’). These different actions are
blended on the fly and played on the characters. Both sound and body motions are
played in synchrony.

global variables

Antigone="Antigone_vhd_occ_rec"

Creon="Creon_vhd_occ_rec"

cam01Creon_crowd="root.Cam01Creon_crowd"

start the sound

soundService.sndmpPlayMedia(cam01Creon_crowd)

6.3. THE INTERACTION SERVICE 95

no facial animation

animationService.initPlayerScope_face(False)

start the player

animationService.start_player()

animationService.activateAction_body(Antigone,"antigone_idle")

creon monologue

animationService.activateAction_body(Creon,"creon_wrk")

voiceService.activateAction(Creon,

"CreonSpeech.Cam01CreonP1",1.0)

animationService.waitUntilActionHasFinished_body(Creon,

"creon_wrk",-4.0)

animationService.activateAction_body(Creon,"creon_idle")

Antigone answers to Creon

animationService.cutOffAction_body(Antigone,

"antigone_idle",3.0)

animationService.activateAction_body(Antigone,"antigone_wrk")

voiceService.activateAction(Antigone,

"AntigoneSpeech.Cam01CreonP3",1.0)

animationService.waitUntilActionHasFinished_body(Antigone,

"antigone_wrk",-4.0)

animationService.activateAction_body(Antigone,"antigone_idle")

soundService.sndmpStopMedia(cam01Creon_crowd)

Figure 6.4 shows some examples of the resulting animations obtained by playing vari-
ous scenarios, including the one presented in this section.

6.3 The Interaction Service

The interaction service includes a dialogue manager, a speech recognition interface and
a speech synthesizer. The dialogue scripts are read from an XML file, and they can be
dynamically loaded in the GUI. Recording and interpreting speech can be done with
any available microphone and speech is recorded between clicking and releasing a but-
ton. The interaction service is directly linked with the animation services, and it creates
and activates new face and body actions. Because the same service is used for both
scripted and interactive animation, it is possible to first play a script as shown in the
previous section, and then dynamically switch to animation controlled by the interac-
tion service. Since the animation playing itself is handled by the animation service,
the character animation is not disrupted when this switch is made. Figure 6.5 shows
the main interface for interaction with a virtual human. Several options are available,

96 CHAPTER 6. IMPLEMENTATION

Figure 6.4: Example animations played using the animation engine. Images (a) and (b)
are taken from the example scenario.

6.4. SUMMARY 97

including the control over which character to select for interaction, the voice to be used
for the text-to-speech, and the type of PC filter to use for the dependent upper body joint
motion synthesis. Additionally, a direct control is available on the motion synthesizer,
in order to directly instruct it to perform a transition.

6.4 Summary

In this chapter, we have presented the implementation of the techniques shown in the
previous chapters. Since we have chosen to use VHD++ as the main supporting frame-
work for our software, a high accessibility for other users is ensured. All tools and
software that was developed related to this work has been used and tested by various
designers in MIRALab. We have presented an overview of the animation service, which
manages animation of both body and face for all virtual humans in the scene. Next, we
have presented the interaction service, which encloses the dialogue system and emotion
simulator. Because the animation service handles the animation continuously—even
during interaction, a dynamic switch between key-frame scenario playing and real-time
interaction is now possible without interruption of the running animation. The anima-
tion service is currently a crucial part of project demonstrations where scenarios are
played on different virtual humans.

98 CHAPTER 6. IMPLEMENTATION

Figure 6.5: The Interactive Virtual Human interface.

CHAPTER 7

Conclusion

In the previous chapters, we have discussed our research in Interactive Virtual Humans.
Since the field of Interactive Virtual Human research is vast, we have addressed many
different topics and we have proposed various contributions to each of these fields. In
this chapter, we will give an overview of our contributions in the light of the goals that
we set out at the end of Chapter 2. Then, we will discuss limitations of our approach,
as well as interesting avenues for future research.

7.1 Contributions

In this section, we will look in more detail to each of the objectives that we have speci-
fied in Section 2.5.

Real-time animation manipulation We have presented a novel animation represen-
tation, based on a Principal Component Analysis of motion clips obtained using motion
capture techniques. PCA is a well-known technique that has been applied before in
many different contexts. However up until now, PCA on body motions has been rare,
because of the constraints on the representation of orientations. We have shown that a
PCA can be successfully applied on an exponential map representation of orientations.
We have shown very effective PC-based algorithms for fast animation manipulation,
notably the powerful distance criterion (Section 3.3.1) and the real-time animation fit-
ting algorithm (Section 3.3.2). The MIRAnim animation engine is built around this
structure and provides for fast blending and playing of animations of any type. The
animation manager is suitable for various types of applications and it allows switch-
ing between scenario-based character control and interaction-based character control

100 CHAPTER 7. CONCLUSION

during run-time, without interrupting the animations that are being played.

Flexible motion synthesis Drawing on the efficiency of the distance criterion and the
animation fitting algorithm, we have demonstrated a motion synthesis technique that
does not need a pre-computation cycle, as opposed to existing methods, such as the
Motion Graph technique [66]. This allows for a possibility to dynamically adapt the
motion graph. Additionally, our method is based on a graph with vertices that have
a meaning (see Section 3.3.2). As a result, a useful control mechanism is established
that allows to choose a desired path through the graph, a feature which is not available
in existing methods. We have also presented a high-level emotional body posture con-
trol method by employing a strategy that places constraints on edges in the graph (see
Section 4.1). Our technique is independent of the motion type, as opposed to existing
systems that focus on a specific motion type, such as walking [116].

Automatic realistic gestures We have shown an effective method to automatically
generate motions of dependent joints in real-time, given the motion for only a few joints
(Section 4.4). The PC filter is very easy to implement and parameters can be chosen
to adapt the amount of motion to be added. Our approach does not place any limita-
tions on the input motion. Also, because of the integration with the automatic motion
synthesis, our approach ensures a natural posture even when no gesture animation is
being placed. The noise function placed on the PC values guarantees that the character
is never completely static. This adds a liveliness to the character that was not available
in previous systems.

Full-body expressive interaction We have developed an interactive system that gen-
erates proper responses given a user input. Our approach allows for the specification of
both face and body motions that are played in synchrony with a speech signal. Again,
the resulting motions are smoothly blended with already running motions. Because of
the independent animation management, our approach can be easily integrated with ex-
isting interactive systems. Additionally, we have presented a system for the simulation
of personality and emotions. The emotional state is used to automatically show emo-
tions on both the body and face, which was not yet available for interactive characters.

As shown in Chapter 6, we have developed a working prototype of the fully inte-
grated system as a part of VHD++. Several softwares are available to test the various
methods that were developed during this thesis work. An easy-to-use toolkit has been
developed, so that motions can be played and adapted according to the animator’s needs.
Additionally, the prototype has been integrated with a scenario-playing tool, so that the
animation engine can be used for playing an animation scenario with multiple charac-
ters in a 3D environment. The interaction service adds the possibility to interact with
these characters when desired.

7.2. LIMITATIONS AND FUTURE WORK 101

Interactive Virtual Humans have many different applications. Already in many
games, we see the need for such characters, and the level of control that is demanded
over such characters keep increasing. If in earlier games many characters where still
static, or only moving according to a very limited set of motion clips, nowadays we see
complex human motions in games such as The Sims [115]. Not only the entertainment
industry benefits from realistic interactive characters. 3D Virtual heritage applications
define detail scenarios of virtual people in an historic environment. Giving these virtual
people the possibility to interact with for example visitors in a museum will start a new
kind of historic experience, where borders between the virtual and real environment will
become more transparent. Finally, realistic human behaviour in a virtual environment
can aid people to cure social phobia, or it can be used for various training exercises.
The technologies explained in this thesis help to increase the realism of IVHs, bringing
us closer to a truly natural interactive experience with a virtual human.

7.2 Limitations and Future Work

Although we have proposed several contributions to the state of the art in this thesis, a
lot of work still remains to be done in the area. Just like any other research, ours has its
shortcomings. We do believe that the use of the technologies that we have discussed in
the previous chapters is a step in the right direction, but we identify several interesting
avenues of research in this exciting field.

Automatically selecting gestures from generated output text In the current imple-
mentation of our system, the output animation sequence is generated from tagged text.
Although such a method is sufficient for testing the animation engine that control the
virtual human motion, it is a rather time-consuming job if a complex interactive script
needs to be developed. In order to allow for IVHs which are easy to develop, a system
is required to do this automatically. There has already been some research in this area,
notably BEAT [19] or MAX [64], but these systems need a lot of pre-processing and
annotation work. An interesting research direction would be to automatically annotate
motion capture data of people during conversations, and then based on that data, to try
to automatically generate new gesture motions in synchrony with speech generated by
a TTS system. Such an approach would also allow including more complex full-body
gestures.

Integration with more complex motion control Although blending between differ-
ent types of motions in our system is very easy to perform, the system does not rely
on fixed physical parameters. As such, some foot skating or collisions can occur. We
have proposed a few simple approximate solutions for these problems, but the interac-
tive system does not yet have a complete control over the body. More complex actions,

102 CHAPTER 7. CONCLUSION

such as running, ducking, jumping or sitting down, are very difficult to control from
tagged text. A more generic action selection mechanism needs to be developed that can
control such types of motions, but that is still flexible enough.

Interaction with objects in the environment A very important point that is not ad-
dressed in this thesis work is the interaction with objects in the environment. Often
during interactions, one is pointing at other objects, picking up things or using objects
to perform a certain task. Also it is desirable to add look-at behaviour to the virtual hu-
man, for which the integration with the camera position in the environment is required.
The controlled interaction with objects in a virtual environment is a very difficult re-
search problem, which is still in its early stages. Joint-based animation methods do not
have a direct spatial representation of the end-effectors in the body, making it difficult
to define motions that interact with objects such as a door or a drawer. More difficult
even is the interaction with objects in combination with an interactive system. In order
to achieve this, a model of virtual perception needs to be included, so that the virtual hu-
man has a feedback of what is happening in the environment. This perceptive feedback
again will have an effect on the virtual human behaviour.

Modelling the inside of the Virtual Human Most virtual humans are 3D geomet-
rical models, whose motion is controlled by manipulating a skeleton. The ‘inside’ of
these virtual humans is empty. A real challenge would be to model this ‘inside’ part
of a virtual human. We have already addressed this by trying to model emotions and
personality. However, true human beings adapt their behaviour according to many dif-
ferent physiological signals. These signals do not only affect the behaviour of humans,
but it also affects our appearance, for example blushing, sweating, crying, and so on.
These physiological processes form a key part of our expressions and behavioural sys-
tem, but there is almost no research addressed to modelling these signals as an integral
part of virtual human behaviour. Additionally, more basic motivators such as hunger or
sleepiness could be implemented. As a final result, a virtual human will not cease to
exist when an application is terminated, but he/she will go to sleep or do other things,
which in turn would inspire new conversations with the user when the application is
launched again.

Bibliography

[1] Alice webpage. http://www.alicebot.org. Accessed May 2006.

[2] J. Ahn and K. Wohn. Motion level-of-detail: A simplification method on crowd
scene. In Proceedings Computer Animation and Social Agents (CASA) 2004,
pages 129–137, 2004.

[3] M. Alexa. Linear combination of transformations. In Proceedings SIG-
GRAPH 2002, pages 380–387. ACM Press, 2002.

[4] B. Allen, B. Curless, and Z. Popovic. Articulated body deformation from range
scan data. In Proceedings SIGGRAPH 2002, pages 612––619. ACM Press, 2002.

[5] E. André, M. Klesen, P. Gebhard, S. Allen, and T. Rist. Integrating models of
personality and emotions into lifelike characters. In A. Paiva and C. Martinho,
editors, Proceedings International Workshop on Affect in Interactions: Towards
a New Generation of Interfaces, pages 136–149. Springer, October 1999.

[6] Y. Arafa, K. Kamyab, and E. Mamdani. Character animation scripting languages:
A comparison. In Proceedings International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS) 2003, pages 920–921, Melbourne,
Australia, 2003. ACM Press.

[7] L. Ardissono and G. Boella. An agent model for nl dialog interfaces. In Lec-
ture Notes in Artificial Intelligence, volume 1480, pages 14–27. Springer Verlag,
Berlin, Germany, 1998.

[8] M. Argyle. Innate and cultural aspects of human non-verbal communication. In
C. Blakemore and S. Greenfield, editors, Mindwaves: thoughts on intelligence,
identity and conciousness. Oxford: Basil Blackwell, 1987.

104 BIBLIOGRAPHY

[9] O. Arikan and D. A. Forsyth. Interactive motion generation from examples. In
Proceedings SIGGRAPH 2002, pages 483–490. ACM Press, 2002.

[10] O. Arikan, D. A. Forsyth, and J. F. O’Brien. Motion synthesis from annotations.
ACM Transactions on Graphics, 22(3):392–401, 2003.

[11] M. B. Arnold. Emotion and personality. Columbia University Press, New York,
1960.

[12] J. R. Averill. A constructivist view of emotion. In R. Plutchik and H. Kellerman,
editors, Emotion: Theory, research and experience, volume 1, pages 305–339.
Academic Press, New York, 1980.

[13] G. Ball and J. Breese. Emotion and personality in a conversational agent. In
J. Cassell, J. Sullivan, S. Prevost, and E. Churchill, editors, Embodied conversa-
tional agents, pages 189–219. MIT Press, Cambridge, MA, USA, 2000.

[14] W. Boehm. On cubics: a survey. Computer Graphics and Image Processing,
19:201––226, 1982.

[15] M. E. Bratman. Intentions, Plans, and Practical Reason. Harvard University
Press, 1987.

[16] J. Cassell. A framework for gesture generation and interpretation. In R. Cipolla
and A. Pentland, editors, Computer Vision in Human-Machine Interaction, pages
191–215. Cambridge University Press, New York, 1998.

[17] J. Cassell, T. Bickmore, M. Billinghurst, L. Campbell, K. Chang, Vilhjálmsson,
H., and H. Yan. Embodiment in conversational interfaces: Rea. In Proceedings
of the CHI’99 Conference, pages 520–527, 1999.

[18] J. Cassell, Y. I. Nakano, T. W. Bickmore, C. L. Sidner, and C. Rich. Non-verbal
cues for discourse structure. In Proceedings ACL Annual Conference, pages
106–115, Morristown, NJ, USA, July 2001. Association for Computational Lin-
guistics.

[19] J. Cassell, H. Vilhjálmsson, and T. Bickmore. BEAT: the behavior expression an-
imation toolkit. In Proceedings SIGGRAPH 2001, pages 477–486. ACM Press,
2001.

[20] R. B. Cattell, H. Eber, and M. M. Tatsuoka. Handbook for the Sixteen Person-
ality Factor Questionnaire (16PF). Institute for Personality and Ability Testing,
Champaign, IL, 1970.

[21] C. Chevalley. Theory of Lie Groups. Princeton University Press, New York,
1946.

BIBLIOGRAPHY 105

[22] D. Chi, M. Costa, L. Zhao, and N. Badler. The EMOTE model for effort and
shape. In Proceedings SIGGRAPH 2000, pages 173–182. ACM Press, July 2000.

[23] L. Chittaro and M. Serra. Behavioural programming of autonomous characters
based on probabilistic automata and personality. Computer Animation and Vir-
tual Worlds, 15(3–4):319–326, 2004.

[24] K.-J. Choi and H.-S. Ko. On-line motion retargetting. The Journal of Visualiza-
tion and Computer Animation, 11(5):223–235, 2000.

[25] G. E. Churcher, E. S. Atwell, and C. Souter. Dialogue management systems:
a survey and overview. Technical Report 97.6, School of Computer Studies,
University of Leeds, February 1997.

[26] M. M. Cohen and D. W. Massaro. Modeling coarticulation in synthetic visual
speech. In N. Magnenat-Thalmann and D. Thalmann, editors, Models and Tech-
niques in Computer Animation, pages 139––156. Springer Verlag, Berlin, Ger-
many, 1993.

[27] R. R. Cornelius. The science of emotion. Research and tradition in the psychol-
ogy of emotion. Prentice-Hall, Upper Saddle River (NJ), 1996.

[28] P. T. Costa and R. R. McCrae. Normal personality assessment in clinical practice:
The NEO personality inventory. Psychological Assessment, 4:5–13, 1992.

[29] M. Coulson. Attributing emotion to static body postures: Recognition accu-
racy, confusions, and viewpoint dependence. Journal of Nonverbal Behavior,
28(2):117–139, 2004.

[30] R. Cowie, E. Douglas-Cowie, S. Savvidou, E. McMahon, M. Sawey, and
M. Schröder. Feeltrace: An instrument for recording perceived emotion in real
time. In ISCA Workshop on Speech and Emotion, pages 19–24, Northern Ire-
land, 2000. Online proceedings at http://www.qub.ac.uk/en/isca/proceedings/,
accessed May 2006.

[31] J. E. Cutting and L. T. Kozlowski. Recognizing friends by their walk: Gait
perception without familiarity cues. Bulletin of the Psychonomic Society, 9:353–
356, 1976.

[32] J. M. Digman. Personality structure: emergence of the five-factor model. Annual
Review of Psychology, 41:417–446, 1990.

[33] G. Dudek and M. Jenkin. Computational Principles of Mobile Robotics. Cam-
bridge University Press, 2000.

106 BIBLIOGRAPHY

[34] A. Egges and N. Magnenat-Thalmann. Emotional communicative body anima-
tion for multiple characters. In First International Workshop on Crowd Simula-
tion (V-Crowds), pages 31–40. IEEE Computer Society, 2005.

[35] A. Egges, T. Molet, and N. Magnenat-Thalmann. Personalised real-time idle
motion synthesis. In Pacific Graphics 2004, pages 121–130, 2004.

[36] A. Egges, X. Zhang, S. Kshirsagar, and N. Magnenat-Thalmann. Emotional
communication with virtual humans. In Multimedia Modelling, pages 243–263,
Taiwan, 2003.

[37] P. Ekman. Emotion in the human face. Cambridge University Press, New York,
1982.

[38] P. Ekman and W. V. Friesen. Facial action coding system: A technique for the
measurement of facial movement. Consulting Psychologists Press, Palo Alto,
CA, USA, 1978.

[39] M. El-Nasr, T. Ioerger, and J. Yen. PETEEI: a pet with evolving emotional intel-
ligence. In Proceedings International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS) 1999, pages 9–15. ACM Press, 1999.

[40] C. D. Elliott. Using the affective reasoner to support social simulations. In
Proceedings of the Thirteenth Annual Joint Conference on Artificial Intelligence,
pages 194–200, Chambery, France, August 1993. Morgan Kaufmann.

[41] H. J. Eysenck. Biological dimensions of personality. In L. A. Pervin, edi-
tor, Handbook of personality: Theory and research, pages 244–276. New York:
Guilford, 1990.

[42] H. J. Eysenck. Dimensions of personality: 16, 5 or 3?—criteria for a taxonomic
paradigm. Personality and Individual Differences, 12:773–790, 1991.

[43] J. Gallier and D. Xu. Computing exponentials of skew-symmetric matrices and
logarithms of orthogonal matrices. International Journal of Robotics and Au-
tomation, 18(1):10–20, 2003.

[44] S. Garchery, R. Boulic, T. Capin., and P. Kalra. Standards for virtual humans.
In N. Magnenat-Thalmann and D. Thalmann, editors, Handbook of Virtual Hu-
mans, chapter 16, pages 373–391. John Wiley and Sons, Hoboken, NJ, USA,
August 2004.

[45] Michael Gleicher. Retargeting motion to new characters. In Proceedings SIG-
GRAPH 1998, pages 33–42. ACM Press, 1998.

BIBLIOGRAPHY 107

[46] L. R. Goldberg. The structure of phenotypic personality traits. American Psy-
chologist, 48(1):26–34, January 1993.

[47] L. R. Goldberg and T. K. Rosolack. The big five factor structure as an inte-
grative framework: An empirical comparison with eysenck’s PEN model. In
C. F. Halverson Jr., G. A. Kohnstamm, and R. P. Martin, editors, The Develop-
ing Structure of Temperament and Personality from Infancy to Adulthood, pages
7–35. Lawrence Erlbaum, New York, 1994.

[48] F. Sebastian Grassia. Practical parameterization of rotations using the exponen-
tial map. Journal of Graphics Tools, 3(3):29–48, 1998.

[49] J. J. Gumperz and J.-P. Blom. Social meaning in linguistic structure: Code-
switching in norway. In J. J. Gumperz and D. H. Hymes, editors, Directions in
Sociolinguistics, pages 407–434. New York: Holt, 1972.

[50] H-Anim specification for a standard humanoid. http://www.h-anim.org/. Ac-
cessed May 2006.

[51] S. Hampson. State of the art: Personality. The Psychologist, 12(6):284–290,
June 1999. British Psychological Society.

[52] R. Harré, editor. The social construction of emotions. Basil Blackwell, Oxford,
1986.

[53] B. Hartmann, M. Mancini, and C. Pelachaud. Formational parameters and adap-
tive prototype instantiation for mpeg-4 compliant gesture synthesis. In Computer
Animation 2002, pages 111–119, 2002. Computer Graphics Society.

[54] B. Hartmann, M. Mancini, and C. Pelachaud. Implementing expressive gesture
synthesis for embodied conversational agents. In Gesture in Human-Computer
Interaction and Simulation: 6th International Gesture Workshop, Lecture Notes
in Computer Science, pages 188–199. Springer Verlag, Berlin, Germany, May
2005.

[55] D. Hearn and M. P. Baker. Computer Graphics - C version, second edition.
Prentice Hall, New Jersey, 1996.

[56] Jabberwacky chatbot. http://www.jabberwacky.com. Accessed May 2006.

[57] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM
Computing Surveys, 31(3):264–323, 1999.

[58] M. Johns and B. G. Silverman. How emotions and personality effect the utility of
alternative decisions: a terrorist target selection case study. In Tenth Conference
On Computer Generated Forces and Behavioral Representation, Orlando, FL,
USA, May 2001.

108 BIBLIOGRAPHY

[59] T. Jollife. Principal Component Analysis. Springer Verlag, New York, 1986.

[60] P. Kalra, S. Garchery, and S. Kshirsagar. Facial deformation models. In
N. Magnenat-Thalmann and D. Thalmann, editors, Handbook of Virtual Hu-
mans, chapter 6, pages 119–139. John Wiley and Sons, Hoboken, NJ, USA,
August 2004.

[61] P. Kalra and N. Magnenat-Thalmann. Modeling of vascular expressions in facial
animation. In Computer Animation, pages 50–58, 1994.

[62] A. Kendon. Some relationships between body motion and speech: an analysis
of one example. In A. W. Siegman and B. Pope, editors, Studies in Dyadic
Communication, pages 177–210. New York: Pergamon, 1972.

[63] T. H. Kim, S. I. Park, and S. Y. Shin. Rhythmic-motion synthesis based on
motion-beat analysis. ACM Transactions on Graphics, 22(3):392–401, 2003.

[64] S. Kopp and I. Wachsmuth. Synthesizing multimodal utterances for conversa-
tional agents. Computer Animation and Virtual Worlds, 15(1):39–52, 2004.

[65] L. Kovar and M. Gleicher. Flexible automatic motion blending with registration
curves. In Proceedings Symposium on Computer Animation (SCA) 2003, pages
214–224. Eurographics Association, 2003.

[66] L. Kovar, M. Gleicher, and F. Pighin. Motion graphs. In Proceedings SIG-
GRAPH 2002, pages 473–482. ACM Press, 2002.

[67] L. T. Kozlowski and J. E. Cutting. Recognizing the sex of a walker from a
dynamic point-light display. Perception and Psychophysics, 21:575–580, 1977.

[68] A. Kransted, S. Kopp, and I. Wachsmuth. MURML: A multimodal utterance
representation markup language for conversational agents. In AAMAS Workshop
on Embodied Conversational Agents, Italy, 2002.

[69] B. Krenn and H. Pirker. Defining the gesticon: Language and gesture coordina-
tion for interacting embodied agents. In Proceedings of the AISB-2004 Sympo-
sium on Language, Speech and Gesture for Expressive Characters, pages 107–
115, University of Leeds, UK, 2004.

[70] P. G. Kry, D. L. James, and D. K. Pai. Eigenskin: Real time large deformation
character skinning in graphics hardware. In Proceedings Symposium on Com-
puter Animation (SCA) 2002, pages 153–159. Eurographics Association, 2002.

[71] S. Kshirsagar and N. Magnenat-Thalmann. A multilayer personality model. In
Proceedings of the second International Symposium on Smart Graphics, pages
107–115. ACM Press, June 2002.

BIBLIOGRAPHY 109

[72] S. Kshirsagar, T. Molet, and N. Magnenat-Thalmann. Principal components of
expressive speech animation. In Computer Graphics International 2001, pages
38–44. IEEE Computer Society, February 2001.

[73] J. D. Laird. The real role of facial response in the experience of emotion: A
reply to tourangeau and ellsworth and others. Journal of Personality and Social
Psychology, 47:909–917, 1984. American Psychological Association.

[74] J. LeDoux. The emotional brain. Simon & Shuster, New York, 1996.

[75] J. Lee, J. Chai, P. Reitsma, J. K. Hodgins, and N. Pollard. Interactive control
of avatars animated with human motion data. In Proceedings SIGGRAPH 2002,
pages 491–500. ACM Press, July 2002.

[76] R. W. Levenson, P. Ekman, and W. V. Friesen. Voluntary facial action generates
emotion-specific autonomic nervous system activity. Psychophysiology, 27:363–
384, 1990.

[77] J. P. Lewis, M. Cordner, and N. Fong. Pose space deformations: A unified ap-
proach to shape interpolation and skeleton-driven deformation. In Proceedings
SIGGRAPH 2000, pages 165–172. ACM Press, 2000.

[78] Y. Li, T. Wang, and H. Y. Shum. Motion texture: A two-level statistical model for
character motion synthesis. In Proceedings SIGGRAPH 2002, pages 465–472.
ACM Press, 2002.

[79] C. K. Liu, A. Hertzmann, and Z. Popovic. Learning physics-based motion
style with nonlinear inverse optimization. ACM Transactions on Graphics,
24(3):1071–1081, 2005.

[80] G. Loy, J. Sullivan, and S. Carlsson. Pose-based clustering in action sequences.
In Proceedings Workshop on Higher-Level Knowledge in 3D Modeling and Mo-
tion Analysis 2003, pages 66–73. ACM Press, 2003.

[81] Microsoft Speech SDK version 5.1 (SAPI5.1).
http://www.microsoft.com/speech/download/sdk51/. Accessed May 2006.

[82] Motionstar. http://www.ascension-tech.com/. Accessed May 2006.

[83] MPEG Motion Picture Expert Group. http://www.chiariglione.org/mpeg/. Ac-
cessed May 2006.

[84] N. Magnenat-Thalmann, F. Cordier, H. Seo, and G. Papagiannakis. Modeling
of bodies and clothes for virtual environments. In Proceedings of the Interna-
tional Conference on Cyberworlds (CW) 2004, pages 201–208. IEEE Computer
Society, July 2004.

110 BIBLIOGRAPHY

[85] N. Magnenat-Thalmann, R. Laperrière, and D. Thalmann. Joint-dependent local
deformations for hand animation and object grasping. In Proceedings Graphics
Interface, pages 26–33. Canadian Information Processing Society, 1988.

[86] S. Marsella and J. Gratch. A step towards irrationality: Using emotion to change
belief. In Proceedings International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS) 2002, Bologna, Italy, July 2002. ACM Press.

[87] W. Mischel. Personality and Assessment. Wiley, New York, 1968.

[88] W. Mischel and Y. Shoda. A cognitive-affective system theory of personality:
reconceptualising situations, dispositions, dynamics and invariance in personal-
ity structure. Psychological Review, 102:246–268, 1995.

[89] W. Mischel and Y. Shoda. Reconciling processing dynamics and personality
dispositions. Annual Review of Psychology, 49:229–258, 1998.

[90] A. Mohr and M. Gleicher. Building efficient, accurate character skins from ex-
amples. In Proceedings SIGGRAPH 2003, pages 165–172. ACM Press, 2003.

[91] J. Y. Noh, D. Fidaleo, and U. Neumann. Animated deformations with radial basis
functions. In Proceedings of the ACM Symposium on Virtual Reality Software
and Technology, pages 166–174. ACM Press, 2000.

[92] M. Ochs, R. Niewiadomski, C. Pelachaud, and D. Sadek. Intelligent expres-
sions of emotions. In 1st International Conference on Affective Computing and
Intelligent Interaction ACII, October 2005.

[93] A. Ortony, G. L. Clore, and A. Collins. The Cognitive Structure of Emotions.
Cambridge University Press, 1988.

[94] G. Papagiannakis, M. Ponder, T. Molet, S. Kshirsagar, F. Cordierand N.
Magnenat-Thalmann, and D. Thalmann. LIFEPLUS: Revival of life in ancient
pompeii. In Virtual Systems and Multimedia (VSMM), October 2002.

[95] F. C. Park and B. Ravani. Smooth invariant interpolation of rotations. ACM
Transactions on Graphics, 16(3):277–295, July 1997.

[96] F. I. Parke. Computer generated animation of faces. In Proceedings ACM Annual
Conference, pages 451–457. ACM Press, 1972.

[97] H. Van Dyke Parunak, R. Bisson, S. Brueckner, R. Matthews, and J. Sauter. A
model of emotions for situated agents. In Proceedings International Joint Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS) 2006, Hako-
date, Japan, May 2006. ACM Press.

BIBLIOGRAPHY 111

[98] K. Perlin. An image synthesizer. In Proceedings SIGGRAPH 1985, pages 287–
296. ACM Press, 1985.

[99] K. Perlin. Real time responsive animation with personality. IEEE Transactions
on Visualization and Computer Graphics, 1(1):5–15, 1995.

[100] R. W. Picard. Affective computing. MIT Press, Cambridge, MA, USA, 1997.

[101] P. Piwek. An annotated bibliography of affective natural language gen-
eration. Technical Report ITRI02-02, University of Brighton, July 2002.
http://www.itri.brighton.ac.uk/projects/neca/affect-bib.pdf, accessed May 2006.

[102] P. Piwek, B. Krenn, M. Schröder, M. Grice, S. Baumann, and H. Pirker. RRL: A
rich representation language for the description of agent behaviour in NECA. In
AAMAS Workshop on Embodied Conversational Agents, Italy, 2002.

[103] S. M. Platt and N. Badler. Animating facial expression. Computer Graphics,
15(3):245–252, 1981.

[104] R. Plutchik. Emotion: A psychoevolutionary synthesis. Harper & Row, New
York, 1980.

[105] M. Ponder, G. Papagiannakis, T. Molet, N. Magnenat-Thalmann, and D. Thal-
mann. VHD++ development framework: Towards extendible, component based
VR/AR simulation engine featuring advanced virtual character technologies. In
Proceedings of Computer Graphics International (CGI), pages 96–104. IEEE
Computer Society, 2003.

[106] K. Pullen and C. Bregler. Motion capture assisted animation: Texturing and
synthesis. In Proceedings SIGGRAPH 2002, pages 501–508. ACM Press, 2002.

[107] A. S. Rao and M. P. Georgeff. Modeling rational agents within a BDI architec-
ture. In R. Fikes and E. Sandewall, editors, Proceedings of Knowledge Repre-
sentation and Reasoning, pages 473––484. Morgan Kaufmann Publishers, April
1991.

[108] C. Rose, M. Cohen, and B. Bodenheimer. Verbs and adverbs: Multidimensional
motion interpolation. IEEE Computer Graphics and Applications, 18(5):32–40,
September/October 1998.

[109] C. Rose, B. Guenter, B. Bodenheimer, and M. Cohen. Efficient generation of mo-
tion transitions using spacetime constraints. In Proceedings SIGGRAPH 1996,
pages 147––154. ACM Press, August 1996.

[110] M. D. Sadek, P. Bretier, and F. Panaget. ARTIMIS: Natural dialogue meets
rational agency. In M. E. Pollack, editor, Proceedings 15th International Joint

112 BIBLIOGRAPHY

Conference on Artificial Intelligence, pages 1030–1035. Morgan Kaufmann Pub-
lishers, 1997.

[111] A. Scheflen. Communicational structure. Bloomington: Indiana University
Press, 1973.

[112] K. R. Scherer. Appraisal considered as a process of multi-level sequential check-
ing. In K. R. Scherer, A. Schorr, and T. Johnstone, editors, Appraisal processes
in emotion: Theory, Methods, Research, pages 92–120. Oxford University Press,
2001.

[113] H. Schlosberg. A scale for judgement of facial expressions. Journal of Experi-
mental Psychology, 29:497–510, 1954.

[114] K. Shoemake. Animating rotation with quaternion curves. In Proceedings SIG-
GRAPH 1985, pages 245–254. ACM Press, 1985.

[115] The Sims web page. http://thesims.ea.com/. Accessed May 2006.

[116] P. P. Sloan, C. Rose, and M. Cohen. Shape and animation
by example. Technical report, Microsoft Research, July 2000.
http://research.microsoft.com/graphics/hfap/shapetr.pdf/, accessed May 2006.

[117] P. P. Sloan, C. Rose, and M. Cohen. Shape by example. In Symposium on
Interactive 3D Graphics, pages 135–143. ACM Press, March 2001.

[118] S. Stepper and F. Strack. Proprioceptive determinants of emotional and nonemo-
tional feelings. Journal of Personality and Social Psychology, 64:211–220, 1993.

[119] M. Stone, D. DeCarlo, I. Oh, C. Rodriguez, A. Stere, A. Lees, and C. Bregler.
Speaking with hands: Creating animated conversational characters from record-
ings of human performance. In Proceedings SIGGRAPH 2004, pages 506–513.
ACM Press, 2004.

[120] F. Strack, S. Stepper, and L. L. Martin. Inhibiting and facilitating conditions of
the human smile: A nonobtrusive test of the facial feedback hypothesis. Journal
of Personality and Social Psychology, 54:768–777, 1988.

[121] Thomas A. Sudkamp. Languages and Machines: an introduction to the theory
of computer science. Addison Wesley, 1994.

[122] M. Unuma, K. Anjyo, and T. Tekeuchi. Fourier principles for emotion-based
human figure animation. In Proceedings SIGGRAPH 1995, pages 91—-96. ACM
Press, 1995.

[123] Virtual human markup language (vhml). http://www.vhml.org/. Accessed
November 2005.

BIBLIOGRAPHY 113

[124] Vicon motion systems. http://www.vicon.com/. Accessed April 2006.

[125] C. L. Y. Wang. Multi-Resolution Surface Approximation for Animation. PhD
thesis, University of British Columbia, 1993.

[126] K. Waters. A muscle model for animating three-dimensional facial expression.
Computer Graphics, 21:17–24, 1987.

[127] J. Weizenbaum. ELIZA—a computer program for the study of natural lan-
guage communication between man and machine. Communications of the ACM,
9(1):36–45, 1966.

[128] D. Wiley and J. Hahn. Interpolation synthesis of articulated figure motion. IEEE
Computer Graphics and Applications, 17(6):39––45, 1997.

[129] A. Witkin and Z. Popovic. Motion warping. In Proceedings SIGGRAPH 1995,
pages 105–108. ACM Press, 1995.

[130] M. Wooldridge. Reasoning about rational agents. MIT Press, 2000.

APPENDIX A

Publications

Following are the publications related to the research done in this thesis:

A.1 Journal Publications

• A. Egges, S. Kshirsagar, and N. Magnenat-Thalmann. Generic Personality and
Emotion Simulation for Conversational Agents, Journal of Computer Animation
and Virtual Worlds. 15(1):1–13. John Wiley and Sons, 2004.

A.2 Proceedings Publications

• A. Egges, G. Papagiannakis, and N. Magnenat-Thalmann. An Interactive Mixed
Reality Framework for Virtual Humans. In Proceedings International Confer-
ence on Cyberworlds 2006. IEEE Computer Society, November 2006. To appear.

• A. Egges and Nadia Magnenat-Thalmann. Emotional Communicative Body An-
imation for Multiple Characters. V-Crowds’05, Lausanne, Switzerland, pages
31–40. November 2005.

• H. Kim, T. Di Giacomo, A. Egges, E. Lyard, S. Garchery, and N. Magnenat-
Thalmann. Believable Virtual Environment: Sensory and Perceptual Believabil-
ity, CAPTECH Workshop: ENACTIVE Session, Zermatt, Switzerland, December
2004.

• A. Egges, R. Visser, and N. Magnenat-Thalmann. Example-based Idle Motion
Synthesis in a Real-time Application. CAPTECH Workshop, Zermatt, Switzer-
land, pages 13–19, December 2004.

116 APPENDIX A. PUBLICATIONS

• A. Egges, T. Molet, and N. Magnenat-Thalmann. Personalised Real-time Idle
Motion Synthesis. In Proceedings Pacific Graphics, pages 121–130. IEEE Com-
puter Society, 2004.

• A. Egges, X. Zhang, S. Kshirsagar, and N. Magnenat-Thalmann. Emotional
Communication with Virtual Humans. Multimedia Modelling, pages 243–263,
Taiwan, 2003.

• A. Egges, S. Kshirsagar, and N. Magnenat-Thalmann. A Model for Personality
and Emotion Simulation. Knowledge-Based Intelligent Information and Engi-
neering Systems (KES2003), pages 453–461. Springer-Verlag, 2003.

• A. Egges, S. Kshirsagar, and N. Magnenat-Thalmann . Imparting Individuality
to Virtual Humans. First International Workshop on Virtual Reality Rehabili-
tation (Mental Health, Neurological, Physical, Vocational). Lausanne, Switzer-
land. November, 2002.

A.3 Book Chapters

• A. Egges, T. Di Giacomo, and N. Magnenat Thalmann. Synthesis of Realis-
tic Idle Motion for Interactive Characters, pages 409–421. Game Programming
Gems 6, Mike Dickheiser (Ed.). Charles River Media. March 2006.

• S. Kshirsagar, A. Egges and S. Garchery. Expressive Speech Animation and
Facial Communication, Chapter 10, pages 230–259. In Handbook of Virtual Hu-
mans, N. Magnenat Thalmann and D. Thalmann (Eds.). John Wiley and Sons,
August 2004.

APPENDIX B

The animblender Manual

This document describes in short how to use the animblender tool to mix and edit WRK
animations. In the same folder you’ll also find some examples of how to use the blender
tool. The main approach of this tool is as follows:

1. There is a number of animations that are going to be used to create the final
animation

2. There is a schedule defining exactly how the animations are going to be edited/-
mixed to produce the final animation

From these two things, the animblender tool creates a new animation file. There
are different options to save the animation. You can save it in different formats (WRK,
XML, etc.) and with different framerate. The animblender tool has the following syn-
tax:

animblender <blendingschedule(*.xml)>

-outputformat <outputfile(*.wrk;*.xml)>

[framerate]

There are 4 parameters. The first one is the xml file defining the blending param-
eters (or: blending schedule). The second one specifies the output format. The third
parameter is the filename of the output file. Finally, you can give an optional framerate
(default is 25). You will see how this works in the different examples that are provided.
We’ll now briefly discuss the structure of the blending parameters (blending schedule).

118 APPENDIX B. THE ANIMBLENDER MANUAL

B.1 The Blending Schedule

The blending schedule XML file has the following main structure:

<blendingschedule>

<actionpool>

Here we define all the blending actions

</actionpool>

<activate id="..." offset="..."/>

</blendingschedule>

The blending schedule consists of two components, the action pool and a list of
¡activate¿ tags. The action pool specifies all the blending actions that are available.
I’ll discuss in more detail what is exactly a blending action later on. The activate tags
specify when each blending action is starting.

B.2 Blending actions

A blending action is the main unit used in the system for blending and editing an ani-
mation. It consists of two parts:

1. An animation (a so-called ”blendable object”)

2. A set of parameters that specify how the animation should be blended with other
animations

A very simple example of a blending action is as follows:

<blendingaction id="action1">

<blendingparams type="none"/>

<blendableobject type="keyframebodyanimation">

neutral_idle.wrk

</blendableobject>

</blendingaction>

Every blending action should have a unique ID. In this case, I chose the simple
id ”action1”. As you can see, there are two tags inside the blending action. The first
one specifies the blending parameters, in this example, there are none. The second one
specifies the animation. In this case, it is a keyframe animation loaded from a file.
Now we place this blending action inside a blending schedule and activate it. The final
blending schedule looks like this:

<blendingschedule>

<actionpool>

<blendingaction id="action1">

B.3. ANIMATION MODIFIERS 119

<blendingparams type="none"/>

<blendableobject type="keyframebodyanimation">

neutral_idle.wrk

</blendableobject>

</blendingaction>

</actionpool>

<activate id="action1" offset="0.0f"/>

</blendingschedule>

This blending schedule loads the keyframe animation ”neutral idle.wrk”. It then
activates this action at time 0.0. You can run example1.bat, which loads this blending
schedule and saves the resulting animation in ”example1.wrk”. Since this blending
schedule only activates the animation at time 0.0, the resulting animation will be exactly
the same as the neutral idle.wrk animation.

The animblender tool saves animations by default with a framerate of 25. How-
ever, you can also save at other framerates. For example, example1a.bat uses the same
blending schedule, but it saves the animation at a framerate 10. You can open the ex-
ample1a.bat file in notepad to see the syntax for doing this.

B.3 Animation modifiers

Instead of loading only an animation, we can place so-called ”modifiers” on top of an
animation, before being used to construct the new animation. There are two modifiers,
that can be applied: stretch and window. The stretch modifier resizes an animation
according to a new duration. This is an example of an animation stretched to a duration
of 5.0 seconds:

<blendableobject type="modifier">

<modifier type="stretch" duration="5.0"/>

<blendableobject type="keyframebodyanimation">

neutral_idle.wrk

</blendableobject>

</blendableobject>

The window modifier only loads a part of an animation. An example of a window
modifier that only loads an animation in the interval [2.0,3.0] seconds:

<blendableobject type="modifier">

<modifier type="window" begin="2.0" end="3.0"/>

<blendableobject type="keyframebodyanimation">

neutral_idle.wrk

</blendableobject>

</blendableobject>

120 APPENDIX B. THE ANIMBLENDER MANUAL

These blendable object modifiers can be nested as well. In the following example,
first, the animation is loaded between interval [2.0,3.0] only and then this animation
segment is resized to a duration of 5.0 seconds:

<blendableobject type="modifier">

<modifier type="stretch" duration="5.0"/>

<blendableobject type="modifier">

<modifier type="window" begin="2.0" end="3.0"/>

<blendableobject type="keyframebodyanimation">

neutral_idle.wrk

</blendableobject>

</blendableobject>

</blendableobject>

You can combine and nest modifiers in this way as often as you want. When you
run example2.bat, it will load a WRK animation, stretch it to 5.0 seconds and save it
in example2.wrk. You can see the complete blending schedule that is used in the file
blendingschedule example2.xml.

B.4 Blending animations

Now let’s take a look at blending two animations. If we want to blend two animations,
we need to create two blending actions. The action pool will look something like this:

<actionpool>

<blendingaction id="ba1">

<blendingparams type="none"/>

<blendableobject type="keyframebodyanimation">

neutral_idle.wrk

</blendableobject>

</blendingaction>

<blendingaction id="ba2">

<blendingparams type="none"/>

<blendableobject type="keyframebodyanimation">

NewMouvement.wrk

</blendableobject>

</blendingaction>

</actionpool>

This simply loads the two animations without any modifiers. Now we can activate these
two actions at different times:

<activate id="ba1" offset="0.0f"/>

<activate id="ba2" offset="1.0f"/>

B.4. BLENDING ANIMATIONS 121

The first action with start at time index 0.0, action ”ba2” will start one second later.
In this particular example, we are blending an full body idle motion sequence (ba1)
with a gesture motion sequence (ba2). With the current settings, both animations will
have an equal influence on all joints. For some blends this might be okay, be we want
the gesture to more or less take over from the idle motion, at least for the upper body!
This is where the blendingparams plays a role. For the gesture animation (ba2), we can
specify a blending parameters object with different weights for different joints. For a
blendingparams object of type ”joints”, we need to specify a default weight and scaling
factor that is initially applied to each joint. This is done by the default tag. Then, we
can specify a set of rotation and translation joint weights and scalings. For example,
here is a blendingparams definition that defines a default weight of 0.0 and that defines
a weight of 1.0 for the root rotation and translation:

<blendingparams type="joints">

<default weight="0.0" scaling="1.0"/>

<rotation id="root" weight="1.0"/>

<translation id="root" weight="1.0"/>

</blendingparams>

When this blendingparams object would be used, only the root translation and ro-
tation would be taken into account as part of the blend. For the gesture animation, we
would need all lower joints including the root translation to be zero, and all the upper
joints to be 1.0 (for example). This would make a huge list of rotation tags. In order to
make things easier, there is also a scope tag, that takes a limited list of joints and that
changes the weight for them. In this example, we can use the ”torso” scope (all upper
body joints) to put a weight of 1.0 on all the upper body joints. This looks as follows:

<blendingparams type="joints">

<default weight="0.0" scaling="1.0"/>

<scope id="torso" weight="1.0" scaling="1.0"/>

</blendingparams>

Scope, rotation and translation tags can be mixed in a blendingparams object. This
generates a weight of 1.0 for the upper body joints, as well as a weight of 0.3 for the
root translation and rotation:

<blendingparams type="joints">

<default weight="0.0" scaling="1.0"/>

<scope id="torso" weight="1.0" scaling="1.0"/>

<rotation id="root" weight="0.3"/>

<translation id="root" weight="0.3"/>

</blendingparams>

When you open the blendingschedule example3.xml, you can see how I applied
two different blending params objects for the idle motions and the gesture motion. The

122 APPENDIX B. THE ANIMBLENDER MANUAL

Figure B.1: The four types of blending curves.

resulting animation is example3.wrk. You can define both weights and scalings in a
similar way. For the root rotation, we can specify a scaling:

<rotation id="root" scaling="0.3"/>

Or both a scaling and weight at the same time:

<rotation id="root" weight="0.3" scaling="1.0"/>

B.5 Smoother blending

When you play the example3.wrk, you have probably noticed that the transition be-
tween idle posture and gesture animation is not smooth. This is because the joint
weights that we specified earlier jump from 0 to 1 and thus create a non-natural motion.
In order to allow for a smoother blend, we can specify a weight fade-in/fade-out curve
in combination with the joint weights. There are currently four types of curves (see
Figure B.1).

The first one (a) is called ”fade” and does a linear fade-in and fade-out. The second
one (b) is called ”goniofade” and it applies a goniometric curve to create a smoother
fade. There is also ”adsr” (c) and ”gonioadsr” (d) to simulate an Attack-Decay-Sustain-
Release curve, but these curves are not yet available in the XML interface. For the fade
curves, you can choose the amount of time that is used for the fade-in and fade-out.
Here is an example of a simple fade blending parameter:

<blendingparams type="fade">

<fadein>20</fadein>

<fadeout>20</fadeout>

</blendingparams>

The fadein and fadeout tags define how much time should be taken for the fade in
and fade out. The numbers are percentages. So in this example, 20% of the time of the
animation in the blending action will be used for the fadein and 20% will be used for
the fade out. Practically speaking, if we have an animation with duration of 5.0 seconds
linked with these blending parameters, 1.0 second will be used for the fadein as well
as the fadeout. In order to mix this curve with the joint weights, a blending parameter

B.6. IDLE MOTION BLENDING 123

object called ”merge” is used. This object can merge as many blendingparams objects
as you want. Here is an example that mixes a goniofade curve together with the earlier
defined joint weights for the gesture motion:

<blendingparams type="merge">

<blendingparams type="goniofade">

<fadein>20</fadein>

<fadeout>20</fadeout>

</blendingparams>

<blendingparams type="joints">

<default weight="0.0" scaling="1.0"/>

<scope id="torso" weight="1.0" scaling="1.0"/>

</blendingparams>

</blendingparams>

This blending params object is used in the last example to create a smooth blend be-
tween the idle motion and the gesture motion. The full blending schedule is contained
in the file ”blendingschedule example4.xml”. You can run the example4.bat and see
the resulting animation example4.wrk.

B.6 Idle motion blending

A special class of motions are idle motions. These motions are generated on the fly from
motion captured data and they can be dynamically blended in with the other motions.
Because such types of motions generally do not have a fixed length, we need to add an
additional parameter to the blending action, saying that it should always be included in
the frame rendering, because the motion will be generated according to the frame that
is rendered. In the fifth example, you will see how such an action looks like:

<blendingaction id="idle" alwaysrender="true">

<blendingparams type="joints">

<default weight="1.0" scaling="1.0"/>

<scope id="torso" weight="0.1"/>

</blendingparams>

<blendableobject type="idlemotion">

<balance>balance_alex_raw.xml</balance>

</blendableobject>

</blendingaction>

The file that is included is an XML file containing the raw motion data, as well as the
motion graph itself. As you can see, we have defined the idle motion to work on the
lower body, and with a low weight on the upper body, to smoothly mix it with a gesture
motion.

124 APPENDIX B. THE ANIMBLENDER MANUAL

APPENDIX C

Blending Schedule Examples

C.1 Example 1

<blendingschedule>

<actionpool>

<blendingaction id="action1">

<blendingparams type="none"/>

<blendableobject type="keyframebodyanimation">

neutral_idle.wrk

</blendableobject>

</blendingaction>

</actionpool>

<activate id="action1" offset="0.0f"/>

</blendingschedule>

C.2 Example 2

<blendingschedule>

<actionpool>

<blendingaction id="action1">

<blendingparams type="none"/>

<blendableobject type="modifier">

<modifier type="stretch" duration="5.0"/>

<blendableobject type="keyframebodyanimation">

neutral_idle.wrk

</blendableobject>

</blendableobject>

</blendingaction>

126 APPENDIX C. BLENDING SCHEDULE EXAMPLES

</actionpool>

<activate id="action1" offset="0.0f"/>

</blendingschedule>

C.3 Example 3

<blendingschedule>

<actionpool>

<blendingaction id="ba1">

<blendingparams type="joints">

<default weight="1.0" scaling="1.0"/>

<scope id="torso" weight="0.1"/>

</blendingparams>

<blendableobject type="keyframebodyanimation">

neutral_idle.wrk

</blendableobject>

</blendingaction>

<blendingaction id="ba2">

<blendingparams type="joints">

<default weight="0.0" scaling="1.0"/>

<scope id="torso" weight="1.0" scaling="1.0"/>

</blendingparams>

<blendableobject type="keyframebodyanimation">

NewMouvement.wrk

</blendableobject>

</blendingaction>

</actionpool>

<activate id="ba1" offset="0.0f"/>

<activate id="ba2" offset="1.0f"/>

</blendingschedule>

C.4 Example 4

<blendingschedule>

<actionpool>

<blendingaction id="ba1">

<blendingparams type="joints">

<default weight="1.0" scaling="1.0"/>

<scope id="torso" weight="0.1"/>

</blendingparams>

<blendableobject type="keyframebodyanimation">

neutral_idle.wrk

</blendableobject>

</blendingaction>

<blendingaction id="ba2">

C.5. EXAMPLE 5 127

<blendingparams type="merge">

<blendingparams type="curve">

<curveshape type="goniofade">

<fadein>20</fadein>

<fadeout>20</fadeout>

</curveshape>

</blendingparams>

<blendingparams type="joints">

<default weight="0.0" scaling="1.0"/>

<scope id="torso" weight="1.0" scaling="1.0"/>

</blendingparams>

</blendingparams>

<blendableobject type="keyframebodyanimation">

NewMouvement.wrk

</blendableobject>

</blendingaction>

</actionpool>

<activate id="ba1" offset="0.0f"/>

<activate id="ba2" offset="1.0f"/>

</blendingschedule>

C.5 Example 5

<blendingschedule>

<actionpool>

<blendingaction id="idle" alwaysrender="true">

<blendingparams type="joints">

<default weight="1.0" scaling="1.0"/>

<scope id="torso" weight="0.1"/>

</blendingparams>

<blendableobject type="idlemotion">

<balance>balance_alex_raw.xml</balance>

</blendableobject>

</blendingaction>

<blendingaction id="wrk">

<blendingparams type="merge">

<blendingparams type="curve">

<curveshape type="goniofade">

<fadein>20</fadein>

<fadeout>20</fadeout>

</curveshape>

</blendingparams>

<blendingparams type="joints">

<default weight="0.0" scaling="1.0"/>

<scope id="torso" weight="1.0" scaling="1.0"/>

128 APPENDIX C. BLENDING SCHEDULE EXAMPLES

</blendingparams>

</blendingparams>

<blendableobject type="keyframebodyanimation">

NewMouvement.wrk

</blendableobject>

</blendingaction>

</actionpool>

<activate id="ba1" offset="0.0f"/>

<activate id="ba2" offset="1.0f"/>

</blendingschedule>

APPENDIX D

Visemes

In this chapter, we provide the list of Microsoft SAPI 5.1 visemes, as employed by our
facial animation system. Additionally, we indicate the coarticulation curve shapes that
we use. These curves are defined in an XML file that can be edited by the animators,
ensuring a maximum flexibility in facial animation design and management.

D.1 SAPI5.1 Viseme List

Table D.1 shows an overview of the visemes as defined in SAPI5.1. Viseme 0 rep-
resents the silence viseme. SAPI defines 21 different visemes, each related to one or
more phonemes. SAPI defines a total of 49 phonemes, including a few miscellaneous
characters such as a comma or a hyphen, which are related to the silence viseme.

D.2 Coarticulation Curve definition

The following (simplified) XML specification defines the coarticulation curves for each
viseme:

<visemes>

<vis id="00" spread="2.0" weight="1.0" alpha="1.0"/>

<vis id="01" spread="5.0" weight="1.0" alpha="1.0"/>

<vis id="02" spread="5.0" weight="1.0" alpha="1.0"/>

<vis id="03" spread="5.0" weight="1.0" alpha="1.0"/>

<vis id="04" spread="5.0" weight="1.0" alpha="1.0"/>

<vis id="05" spread="5.0" weight="1.0" alpha="1.0"/>

<vis id="06" spread="5.0" weight="1.0" alpha="1.0"/>

<vis id="07" spread="5.0" weight="1.0" alpha="1.0"/>

130 APPENDIX D. VISEMES

Viseme Corresponding SAPI phonemes
SP VISEME 0 silence
SP VISEME 1 ae, ax, ah
SP VISEME 2 aa
SP VISEME 3 ao
SP VISEME 4 ey, eh, uh
SP VISEME 5 er
SP VISEME 6 y, iy, ih, ix
SP VISEME 7 w, uw
SP VISEME 8 ow
SP VISEME 9 aw
SP VISEME 10 oy
SP VISEME 11 ay
SP VISEME 12 h
SP VISEME 13 r
SP VISEME 14 l
SP VISEME 15 s, z
SP VISEME 16 sh, ch, jh, zh
SP VISEME 17 th, dh
SP VISEME 18 f, v
SP VISEME 19 d, t, n
SP VISEME 20 k, g, ng
SP VISEME 21 p, b, m

Table D.1: Overview of the visemes as defined in SAPI5.1 [81]

D.2. COARTICULATION CURVE DEFINITION 131

<vis id="08" spread="5.0" weight="1.0" alpha="1.0"/>

<vis id="09" spread="5.0" weight="1.0" alpha="1.0"/>

<vis id="10" spread="5.0" weight="1.0" alpha="1.0"/>

<vis id="11" spread="5.0" weight="1.0" alpha="1.0"/>

<vis id="12" spread="3.0" weight="0.9" alpha="1.0"/>

<vis id="13" spread="3.0" weight="0.9" alpha="1.0"/>

<vis id="14" spread="3.0" weight="0.9" alpha="1.0"/>

<vis id="15" spread="3.0" weight="1.1" alpha="1.0"/>

<vis id="16" spread="3.0" weight="1.2" alpha="1.0"/>

<vis id="17" spread="3.0" weight="0.9" alpha="1.0"/>

<vis id="18" spread="3.0" weight="1.5" alpha="1.0"/>

<vis id="19" spread="3.0" weight="1.1" alpha="1.0"/>

<vis id="20" spread="3.0" weight="1.1" alpha="1.0"/>

<vis id="21" spread="3.0" weight="1.5" alpha="3.0"/>

</visemes>

The spread defines the amount of overlap for each viseme. For example, a spread of
2.0 means that the curve length is twice as much as the corresponding phoneme length
provided by the text-to-speech software. The weight defines the importance of the
viseme in the animation. For example, the weight of viseme 21 (p, b, m) is rather high,
in order to assure that the mouth closes properly. We use a standard coarticulation curve
as exerted by Cohen and Massaro [26]. The alpha value defines the shape of the curve
(see Section 5.3.1).

Index

activation-evaluation disc, 25, 60
AIML, 22
Alice, 22, 76
animation, 6
animation fitting, 51
animation service, 93
appraisal, 25
axis angle, 12

BDI, 22
BEAT, 28
body animation, 88

coarticulation, 85

dependent joints, 70
dialogue systems, 22
distance criterion, 17, 45

ELIZA, 1, 22
emotion, 24

appraisal, 25
emotional motions, 60
Euler angle, 10
exponential map, 13, 41

facial animation, 8, 85
FACS, 8
finite state machines, 76
five factor model, 23, 81

Gesticon, 85
gestures, 27, 84
Gimbal lock, 12
GRETA, 28

H-Anim, 10, 44
Hermite interpolation, 14

idle motions, 53, 88
interaction service, 95
interactive virtual humans, 5, 27, 75, 95

linear interpolation, 13

MAX, 28, 31
MIRAnim, 62, 86
motion blending, 63
motion capture, 40
motion damping, 68
motion graphs, 17
motion retargeting, 66
motion synthesis, 45, 47
motion texture, 21
MPA, 8
MPEG-4, 9, 10, 85
MURML, 31

OCC model, 25, 81, 83

perception-action loop, 2
performance animation, 16

134 INDEX

Perlin noise, 54
personality, 23, 81

five factor model, 23
principal component analysis, 41, 43
Python, 92

quaternions, 12
unit quaternion, 12

REA, 28, 30, 49
rotation matrix, 10
RRL, 31, 84

skeleton-driven deformation, 15
skew-symmetric matrix, 13
SLERP, 14
small posture variations, 54
SQUAD, 15

translation offset, 49

VHD++, 34, 91
VHML, 84
visemes, 85

