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Figure 1: Left: A dense crowd of agents collaboratively moves through a narrow doorway. Right: A 2D repre-
sentation of the doorway shows that each agent interpolates between individual behavior (green) and coordinated
behavior (red).

Abstract

We present a novel crowd simulation model that combines the advantages of agent-based
and flow-based paradigms while only relying on local information. Our model can handle
arbitrary and dynamically changing crowd densities, and it enables agents to gradually in-
terpolate between individual and coordinated behavior. This interpolation is based on a
dynamically changing incentive value for each agent. The incentive value reflects an agent’s
willingness to coordinate with the crowd. A central new concept in our model is the no-
tion of a stream of agents. Our model lets agents automatically form multiple streams with
nearby agents as the density of the crowd increases. Our model can be used with any existing
global path planning and local collision-avoidance method. Experiments show that our model
yields energy-efficient and visually convincing crowd behavior for high-density scenarios while
maintaining individual agent behavior at lower densities.

1 Introduction

Virtual crowds have become increasingly prominent in the movie industry and in video games.
Realistic crowd behavior is also required for urban planning [1], as well as simulation software for
safety training and evacuation scenarios [2, 3].

State-of-the-art techniques for crowd simulation can be divided into agent-based simulations and
flow-based simulations. Agent-based simulations focus on the behaviors of each individual in the
crowd. Among these are methods using velocities [4] and social force models [5]. While these
methods usually work well at low to medium densities, they struggle when handling high crowd
densities due to a lack of coordination between the agents. By contrast, flow-based simulations aim
at simulating collective emergent phenomena by treating the crowd as one large entity. Among



these are regression-based models [6] and techniques based on fluid dynamics [7] or gas-kinetics [8].
These techniques typically perform well with high-density scenarios because they facilitate a high
level of coordination among the agents. However, they struggle to handle low- to medium-density
scenarios because they omit the individuality of the crowd members.

Contributions. In this work, we propose a new model that combines the advantages of agent-
based and flow-based paradigms while only relying on local information. It enables the simulation
of large numbers of virtual agents at arbitrary and dynamically changing crowd densities. Our
technique preserves the individuality of each agent in any virtual 2D or multi-layered 3D en-
vironment. The model performs as well as existing agent-based models that focus on low- to
medium-density scenarios, while also enabling the simulation of large crowds in highly dense situ-
ations without any additional requirements or user interference. Compared to existing agent-based
models, our model significantly reduces the occurrence of deadlocks in extremely dense scenar-
ios. Our model is flexible and supports existing methods for computing global paths, simulating
an agent’s individual behavior, and avoiding collisions with other agents. Furthermore, it yields
energy-efficient and more realistic crowd movement that displays emergent crowd phenomena such
as lane formation and the edge effect [9].

2 Related Work

For a general overview of crowd simulation topics, we refer the reader to the books by Thalmann
and Musse [10] and Pelechano et al. [11]. In the remainder of this section, we focus on selected
work that is related to our model.

One of the first flow-based models was proposed by Hughes [12]. Hughes represented pedestrians as
a continuous density field, and crowd dynamics were described using partial differential functions.
Treuille et al. [7] proposed a continuum-based crowd simulation model. They used a dynamic
potential field to simulate large crowds in real-time. This model yields emergent phenomena such
as lane formation. Single autonomous agents can be added to the crowd as dynamic obstacles.
Lee et al. [6] present a regression-based model that is able to simulate particular crowd behavior
that has been learned from recorded video data of real crowds. Other flow-based approaches come
from the robotics community. Kerr and Spears [8] use a simulation model based on gas-kinetics for
mobile robots. Pimenta et al. [13] propose a method for swarms of mobile robots that is based on
Smoothed Particle Hydrodynamics. All of these flow-based models are able to solve high-density
scenarios, but they are not well-suited for low- to medium-density scenarios where the individu-
ality of single agents has a large impact on the overall behavior of the crowd. In addition, these
flow-based methods usually have high computational costs when many different goal states are
involved.

In addition to flow-based models, a wide range of agent-based crowd simulation models are avail-
able. Helbing et al. introduced a social-force model for pedestrian dynamics in [5] and subsequent
work [2, 14, 15]. Torrens [16] has proposed a crowd simulation framework that aims at handling
higher-level trip planning computations, medium-level computations such as vision and steering,
and low-level computations for locomotion and physical collision detection. The HiDAC system
by Pelechano et al. [17] combines psychological and geometrical rules with a social- and physical-
forces model. Shao and Terzopoulos [18] show how to integrate motor, perceptual, behavioral and
cognitive components within one model to simulate pedestrians in an urban environment. Unlike
flow-based models, the above social-force models struggle when coordinating the movements of
dense crowds. This can lead to non-desired phenomena such as deadlocks, oscillations, slow move-
ments with unnecessary turns and detours, or a high number of collisions.

Lemercier et al. [19] have conducted an experimental study on herding and following behaviors.
Models based on real-world pedestrian movements have been proposed by Antonini et al. [20]
and Paris et al. [21]. Vizzari et al. [22] combine a group cohesion force with a goal force. Their
environment is discrete and uses a floor-field to guide the pedestrians.

An approach similar to ours is the PLEdestrians algorithm by Guy et al. [9]. Based on the Principle
of Least Effort [23], the authors propose a local greedy strategy that approximates the minimum



Figure 2: Agent A’s field of view with a maximum viewing angle ¢ and a maximum look-ahead distance dmaqz,
centered around A’s velocity v 4.

of a biomechanical energy function in order to compute trajectories for individual agents. By
comparison, our model uses a small set of local and easy to compute factors to guide agents along
their paths. Both our technique and the technique of Guy et al. [9] exhibit desirable emergent
behaviors.

Due to the gap between flow-based models and agent-based models, hybrid methods combining
both paradigms have recently been considered. The method by Narain et al. [24] uses a dual
representation of the crowd that is based on both individual agents and continuum dynamics.
Like our model, agents have individual goals, but they can be forced to deviate from their pre-
ferred direction by the flow of the crowd. Contrary to their approach, our model omits continuum
dynamics and simulates the tendency of humans to follow each other on a local and agent-based
level. Our resulting herding behavior can therefore be related to Reynold’s well-known model on
flocks, herds and schools [25], while still allowing individual agent behaviors. Furthermore, our
model measures local crowd density based on an agent’s vision, and this overcomes problems that
can occur with a grid-based approach. Kountouriotis et al. [26] proposed to combines flow-based
models and agent-based models with a local approach that is similar to ours. In their work, the
interpolation between individual and coordinated movement is based solely on crowd density. By
computing a perceived local crowd flow that can differ per agent, we achieve a more extensive
yet simple interpolation. Our model also allows the inclusion of different collision avoidance and
global path-planning methods.

Other related works involve global path planning and collision avoidance among agents. These
methods can be used as black boxes within our model. A global path planning method related to
our work is the Indicative Route Method (IRM) by [4]. Given a global indicative route from an
agent’s start position to a goal position, the IRM computes an attraction point on the route in each
step of the simulation and makes the agent approach this point using steering forces. Collision
avoidance among agents is available via a range of velocity-based methods. One of the more pop-
ular ones is the ORCA method by [27], which is based on reciprocal velocity obstacles. A similar
method has been introduced by [28]. It predicts future collisions for each agent and lets an agent
take an action that guarantees collision-free movement. Park et al. [29] predict future collisions
using a gaze movement angle. Vision-based approaches by [30, 31] use a field of view (FOV) for
each agent to detect and prevent collisions. In this work, we combine our model with the IRM,
and we test it with several velocity- and vision-based collision avoidance methods [27, 28, 30].

3 Preliminaries

We represent each agent as a disk with a variable radius. The center of the disk is the current
position of the agent.

Each agent has a field of view (FOV), and an agent’s steering behavior is based on a number
of perceived neighboring agents. This is a fundamental difference from continuum-based and
other flow-based methods [7] as these methods assume global knowledge of the environment. We
assume that real people mainly execute and adapt their movement to visual input without global



knowledge of the crowd. We therefore believe that a local vision-based approach is well-suited
for approximating realistic crowd behavior and simulating emergent phenomena observed in real
crowds. Similar to Moussaid et al. [30], we assume that an agent’s FOV is a cone stretching out
from the agent’s current position, centered on the agent’s current velocity vector and bounded by
both a maximum look-ahead distance d,,,, = 8 meters and a maximum viewing angle ¢ = 180°.
The latter reflects the approximate viewing range people can perceive in real life [32].

4 Overview of our model

In each cycle of the simulation, we compute a force vector for each agent. This force vector is then

applied to an agent’s current velocity using a time-integration scheme such as Euler integration

[33], which guarantees smooth paths [34].

Let A be an arbitrary agent. We perform the following five steps in each simulation cycle:

1. We compute an individual velocity for agent A. It represents the velocity A would choose if no
other agents were in sight. Our model is independent of the exact method that is used.

2. We compute the local crowd density that agent A can perceive; see Section 5.1.

We compute the locally perceived stream velocity of agents near A; see Section 5.2.

4. We compute A’s incentive X\. This incentive is used to interpolate between the individual
velocity from step 1 and the perceived stream velocity from step 3; see Section 5.3.

5. The interpolated velocity is passed to a collision-avoidance algorithm. Our model is independent
of the exact method that is used.

©w

5 Streams

A central concept we introduce is the notion of local streams of agents. Intuitively, streams
are flows of people that coordinate their movement by either aligning their paths or following
each other. Streams can be observed in real-life situations as crowd density increases; see Figure
3. We base our model on the assumption that people tend to move by following a least-effort
principle of energy-minimization [9, 35]. We postulate that actively forming and following streams
at high densities is a more energy-eflicient strategy compared to pursuing individual goals. This
follows because the use of streams leads to fewer collisions and abrupt changes in the direction of
movement.

Local crowd density is important for determining an agent’s behavior in our model. Section 5.1
describes how we compute local density information using an agent’s FOV. In subsequent sections,
we discuss how to compute an agent’s perceived stream velocity (Section 5.2) and incentive (Section
5.3).

5.1 Computing local density information

After agent A’s individual velocity has been computed as an initial step, we calculate the crowd
density p € [0,1]. We have tested three different density measurements in a set of preliminary
experiments. In this section, we present the method that turned out to be best-suited for our
model.

We use the agent’s FOV to compute p. We determine the set A/ of neighboring agents that have
their current position inside A’s maximum FOV of 180°. By summing up the area A(N) occupied
for each agent N € N and dividing it by the total area A(FOV) of A’s FOV, we determine how
much of the FOV is being occupied. Fruin [36] was the first to formalize the impact crowd density
has on the safety of pedestrians. Fruin introduced a six-stage Level-of-Service system, ranging from
free movement without collisions to highly dense situations. According to this system, an FOV
occupied to one third can already be considered a highly crowded situation. Thus, we multiply
our result by 3 and cap it at a maximum of 1. This yields a maximum density value of 1 as soon as
at least one third of A’s FOV is occupied by other agents. Formally, we define the crowd density



Figure 3: Example of stream formation in real life situations. People between arrows of the same color belong to
the same stream.

p as follows:

:= min (1)
P ( A(FOV) Z%/ )

5.2 The perceived stream velocity

The next step is to compute the direction and speed of the stream as perceived by agent A. In
situations where A is willing to coordinate with the crowd, our model lets A approach the perceived
stream whenever the distance from A to the stream members is still large. If, by contrast, A is
close to the stream, it will align its direction with the other members and follow the stream. We
motivate this in Section 5.2.1, where we initially consider the case where only one single agent is
perceived. In Section 5.2.2; we iterate the single agent procedure on each perceived agent. The
overall perceived stream velocity is the average of the single stream directions and speeds for each
agent.

5.2.1 Perceiving a single agent

Let B be a single agent in A’s FOV, and let x4 and xp be the current positions of A and B,
respectively. We define the perceived velocity Uper(A,B) @S an interpolation between B’s actual
velocity vp and a vector vg;,.(4,) of the same length that points along the line of sight between
A and B. Formally, we let vgr(a,5) = (xB — xa) - [[up|| be the normalized vector between x4 and
xp scaled to the speed of B; see Figure 4. A factor fa,p = p-da,p is used to angularly interpolate
between the two vectors. Here, p € [0, 1] is the local density in A’s FOV, and d4 p = M is
the relative distance between A and B. Thus, fa 5 € [0, 1], and we use it to interpolate between
vp and vg;, along the smallest angle between the two.

If we assume a density of 1 in the above definition, the factor f4 p only depends on the relative
distance between A and B. If B is on the edge of the view-distance of A, i.e. ||z — zA|| = dmaz,
then vper(a,p) equals vg;.4,p). This makes A pursue a follow strategy because A is attracted to
B’s current position [25]. If, by contrast, A is close to B, then vp.,(4,p) is close to vp, and A picks
an alignment strategy.

The local density p is an extra factor to interpolate between the follow strategy and the alignment
strategy: The higher the number of agents intersecting A’s field of view, the more A is inclined
to pick the follow strategy. This yields more compact crowd formations at higher densities and



vA

Figure 4: An example of the perceived velocity vper(a,p) based on an interpolation between vp and vgir(a,B)-

a wider crowd spread across the available free space at lower densities, which is a phenomenon
observed in real crowds [14].

5.2.2 Perceiving the local stream

We define the local stream velocity perceived by agent A as the average of all perceived velocities
that are taken into consideration, both with respect to direction and speed. We limit the total
number of potential neighbors of A and only consider its five nearest neighbors that are currently
in its FOV. This comparably small number corresponds to findings in research for flocks of birds
[37], and has been used in related work, e.g. [28].

Let N5 be a set of up to 5 nearest neighbors of A. We define the average perceived stream speed

s for A as follows: )
Si= 7 Z vaer(A.,N)”' (2)
|N5| NENS

The locally perceived stream velocity vsiream Perceived by agent A is then defined as follows:
Z Uper(A,N)
NENs (3)

S.
12 vpercamll’
NeNs

Ustream =

which is the average perceived stream speed times the average direction of all perceived velocities
scaled to unit length.

Since we define the local stream velocity as the average of a set of velocities, it can result in a
null-vector when the corresponding velocities cancel each other out. In this case, agent A cannot
adapt to the stream velocity, even if there is an actual stream of neighboring agents it should
coordinate with. To avoid perceived stream velocities canceling each other out, we restrict the
maximum angle between the velocities of agents A and B to strictly less than 7. Perceived
neighbors yielding a larger angle are not taken into consideration. Furthermore, due to the FOV
with its viewing angle of 7, perceived neighbors reside only in the closed halfplane H*(A) in front
of A, which is induced by the line through z 4 perpendicular to A’s current velocity v 4. If either

of these two restrictions is violated, perceived velocities may cancel each other out.

5.3 Incentive

Now that A’s individual velocity v;,4:, and the perceived stream velocity vstreqm have been com-
puted, we define the incentive A € [0,1] of A to interpolate between v;pgiv and vVsiream. We discuss
how to compute A in Section 5.3.1. In Section 5.3.2, we describe how to interpolate between v, div
and Vsireqm using A.



5.3.1 Computing the incentive

The incentive ) is defined by four different factors: internal motivation v, deviation ®, local density
p, and time spent 7. We simulate the behavior of an agent A in a way such that — aside from the
internal motivation factor — the most dominant factor among ®, p and 7 has the highest impact
on A’s behavior. We define the incentive \ as follows:

Ai=7+(1—7) max(®,(1-p)?° 7). (4)

Internal motivation 7 € [0, 1] determines a minimum incentive that an agent has at all times. This
enables the simulation of various agent profiles such as a hurried agent or a strolling agent.

The local density factor p is defined in Section 5.1. For this factor, a non-linear relation with the
incentive is desired, thus we use (1—p)? in Equation 4. The deviation factor ® makes agent A leave
a stream when vgtreqm deviates too much from its preferred individual velocity v;p g, We introduce
a minimum threshold angle ¢,,;,. Whenever the angle between vgeqm and vindip is smaller than
®min, the factor ® will be 0. This yields stream behavior unless the other factors determine a
different strategy. If the angle is greater than ¢,,;,, we gradually increase ® up to a maximum
deviation of 2¢,,;,. Angles greater than this threshold correspond to a deviation factor of 1, thus
yielding individual steering behavior. Let @gey := min(Z(vindiv, Vstream)s 27 — £ (Vindiv, Ustream))
be the angle between the velocities. We define the deviation factor ® as follows:

¢ := min <max (W, 0) ; 1). (5)

The time spent factor 7 is used to make stream behavior less attractive the longer it takes the
agent to reach its goal. We initially calculate the expected time 7., agent A will need to get to
its destination. How this is done depends on how A’s individual velocity is calculated, i.e. what
method is used as a black box in the initial step of our model. If, for instance, an indicative route
is used [4], the expected time can be calculated by weighting the length of the route with the local
density p. This value can then be mapped to an expected time value according to the agent’s
preferred speed. We keep track of the actual simulation time 7y,c,+ that has passed since A has
started moving. We then define the time spent factor 7 as follows:

T := min (max (M,()),l). (6)
Texp

5.3.2 Using the incentive

Given the incentive A\, we interpolate between v;,q4i» and Vgsiream as follows: We rotate vgiream
towards v;n4iv I a similar manner as the interpolation between vg;, and vp is performed for a
single neighbor; see Section 5.2. Let 3 be the smallest angle between the two vectors, and let
Brot = BA be the rotation angle between 0 and S, based on the incentive A\. We then rotate
Vstream tOwWards vingiv by Brot- In this step, however, the lengths of v;,4i0 and vsgreqm are not the
same in general. Therefore, we also linearly interpolate the lengths of these vectors.

We have tested the effects of the incentive on an agent that wishes to cross a large stream of other
agents; see Figure 5. This example can be seen in the video that accompanies this work. We
turned off the time spent computations to enhance the display of the effect of internal motivation
and deviation. With an internal motivation of 1, we get a constant incentive of 1. The agent
pushes through the stream to reach its goal position at the opposite side of the crowd. With an
internal motivation of 0, and a threshold ¢,,;, for the deviation factor of 7, the agent is dragged
away by the stream flow until the deviation factor causes the incentive to rise and makes the agent
leave the stream.



Figure 5: A stream of agents moving from left to right, and an agent trying to follow a path from the bottom left to
the upper right corner. Red path: v = 1. Green path: v = 0, ¢min = 7. We refer the reader to our accompanying
video for an animated sequence.

6 Experiments

Our model has been implemented in a framework based on the Ezplicit Corridor Map (ECM) [38].
The ECM is a time- and space-efficient navigation mesh for crowd simulation. All experiments
have been conducted on a PC running Windows 7 with a 3.1 GHz AMD FX™ 8120 8-Core CPU,

4 GB RAM and a Sapphire HD 7850 graphics card with 2 GB of onboard GDDR5 memory. We
used one CPU core for the computations. To compute a preferred individual velocity for each
agent, we combined our model with the Indicative Route Method by Karamouzas et al. [4]. To
benchmark and validate our model, we use the Steerbench framework by Singh et al. [39]. Our
benchmarking score is defined as follows:

score = 50c + e + t. (7)

It is comprised of the average number of collisions ¢ per agent, the average kinetic energy e, and
the average time ¢ spent by an agent. Throughout all experiments, a lower score is considered to
be a better result.

6.1 Scenarios

We used five different scenarios; see Figure 6. Preferred speeds were randomly chosen between
0.85 and 2.05 meters per second. In the merging-streams scenario, two groups with a total of 250
agents merge to pass through a bottleneck and split again afterward. The goal is to test whether
two streams merge and split as an emergent phenomenon within our model. The crossing-streams
scenario features two groups of 50 agents that approach each other in a perpendicular manner.
The goal is to test whether different streams can cross each other without heavy interference. The
hallway! scenario shows one group of 200 distributed agents, and the hallway2 scenario shows
two groups that each have 100 distributed agents. These agents traverse the hallway in either
one direction (hallwayl) or two opposing directions (hallway2). The goal is to test our model in
medium-density scenarios. In the narrow-z scenarios, we use a narrow hallway of 3m and two
comparably large groups of z agents (z = 50 and z = 100) with a radius of 0.25m each. The agents
try to reach the opposite ends of the hallway. The goal of this experiment is to test our model in
high-density situations.

In addition, we have measured the running times of our model in two scenarios, denoted as mil-
itary and hallway-stress. Military features a 200 x 200 meters footprint of the McKenna MOUT
training site at Fort Benning, Georgia, USA; see Figure 6 (bottom). It represents a scene with
small passages, open squares and large areas of free space, which could be part of a gaming or
simulation application. Agents are placed at the border and pick random goal positions at the
opposite side of the scene. The goal is to test whether our model performs at interactive rates in
these types of scenarios. In hallway-stress, we use a hallway of 30m to provide enough space for
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Figure 6: The different scenarios in our experiments are (from top to bottom): merging-streams, crossing-streams,
hallway1, hallway2, narrow-50 and military.

a large number of agents. The goal is to test whether our model performs at interactive rates for
large numbers of agents when the environment enforces a high level of coordination.

6.2 Comparing different collision-avoidance methods

We have tested our streams model with three popular collision-avoidance methods [27, 28, 30]. For
each method, we have used three different density measurements methods, and we have computed
the mean Steerbench scores [39], averaged over 50 runs per density measurements and per agent.
The mean scores are depicted in Figure 7. While the method by Karamouzas et al. [28] performs
equally well in low- to medium-density scenarios, the method by Moussaid et al. clearly shows
better scores in high-density scenarios such as the narrow-50 example. By contrast, the ORCA
method [27] struggles with high-density scenarios. This is mainly due to a significantly higher
number of collisions between the agents.

6.3 Testing the effect of streams

We have compared our streams approach to the same scenarios when only individual behavior
is being displayed. We use the Indicative Route Method (IRM) [4] together with the collision-



2500 —
Moussaid et al. ——

2250 Karamouzas et al. === I
2000 - van den Berg et al. == n
1750 —
1500 — —
1250 —
1000 —
750 —

500 ]

==l s oEN

crossing  hallwayl hallway2  merging narrow-50

mean Steerbench scores

Figure 7: Mean Steerbench scores of the three different collision avoidance methods for our test scenarios. The
scores are averaged over 50 runs per density measurements and per agent. In all our experiments, lower scores are
better.

350

with streams =
300 |without streams —= -

250 -

200 I_ ]

150 ]

100 —

mean Steerbench scores

50 |- —

0 -
crossing hallwayl hallway2 merging narrow-50 narrow-100
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averaged per agent over 50 runs.

avoidance method by Moussaid et al. [30] because they yielded the best results in our experiments;
see Section 6.2. We tested both low-density scenarios such as hallway! and hallway?2 and high-
density scenarios such as narrow-50 and narrow-100.

Figure 8 shows the corresponding mean Steerbench scores per agent over 50 runs per scenario.
Both models perform equally well in low- to medium-density scenarios such as crossing-streams,
hallwayl1, hallway2 and merging-streams. This is what we expected because coordination among
crowd members is of minor importance. Streams are formed less often in these types of scenarios,
and our model tends to behave similarly to the IRM with vision-based collision-avoidance. Only
the merging-streams scenario yields slightly higher mean Steerbench scores when streams are being
used. This is caused by a higher number of collisions when the two streams split. Although this
yields higher (worse) Steerbench scores, we believe the behavior matches real-life situations.

In high-density scenarios such as narrow-50 and narrow-100, our model greatly improves crowd
coordination, and the number of collisions is significantly reduced. Turning off stream behavior
frequently results in a complete deadlock as agents try to exploit any small gaps in the crowd
without coordinating with the slowly moving agents in front of them. Figure 9 shows the average
percentage of agents that did not reach their goal in a total time of 200 seconds with stream
behavior turned on and off. Note that 200 seconds are more than enough to let the agents reach
their goal in these comparably small environments when no deadlocks occur. An example of such
a deadlock when stream behavior is turned off appears in the accompanying video. When we turn
on stream behavior, agents align their directions of movement, and deadlocks occur significantly
less often.

10
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agents. Deadlocks frequently occur for more than 1000 agents in military. In the hallway-stress scenario, we could
simulate up to 2000 agents simultaneously without any deadlocks.

6.4 Performance

Our final experiment shows that our model runs at interactive rates. Figure 10 shows the average
running times needed to compute one step of the simulation for an increasing number of agents
in the military and hallway-stress scenarios. Each measurement shows the average step time of
10 runs with a maximum of 5000 steps each. The results show that we could simulate up to
1000 agents at interactive rates in the military scenario. For higher numbers, deadlocks frequently
started to occur, which is what we expected given the size of the scene compared to the number
of agents. In the hallway-stress scenario, we could simulate up to 2000 agents simultaneously at
interactive rates on a single CPU. We conclude that our model runs at interactive rates in typical
gaming or simulation scenarios, even when coordination among the agents is high.

7 Limitations

Many problems with dense crowds are caused by the global path planning step of the simulation
cycle. Whenever the global paths of a large number of agents intersect in the same point of the
environment, the probability for deadlocks and an overall low throughput is high. This happens at
the corners of obstacles when many agents are following the shortest path around these obstacles.
Our model cannot prevent deadlocks entirely because it is designed to resolve problems on a local
level. It is not designed to let agents dynamically re-plan their global path, or to make use of
the full free space around obstacles. Improvements on a higher planning level are the subject of

11



current research. Results in that field may strengthen the applicability of our model even more in
the future.

We have shown that our model allows real-time simulation for up to 2000 autonomous agents in
medium-sized environments that contain both narrow passages and areas of open space; see Figure
10. However, since agents are simulated as individuals, computation is still expensive. When the
application requires tens of thousands of agents with only a few distinct goals, a flow-based model
is the better choice.

Lastly, the coordination of real crowds depends significantly on social factors and group behavior.
Our model provides a general framework of how an agent perceives and reacts to neighboring
agents on a purely geometrical level, and it does not yet take higher-level aspects into account.

8 Conclusion and Future Work

We have introduced a novel crowd simulation model that combines the advantages of agent-based
and flow-based paradigms while only relying on local information. We interpolate an agent’s
steering strategy between individual behavior and coordination with the crowd. Local streams
determine an agent’s trajectory when local crowd density is high. This allows the simulation of
large numbers of autonomous agents at interactive rates. Our model can handle arbitrary and
dynamically changing crowd densities without additional user input. Furthermore, our model
supports existing techniques for computing a global path and derived preferred velocities, as well
as for handling local collision avoidance. This makes our model flexible and easy to integrate into
existing crowd simulation frameworks.

We have validated our model with the Steerbench framework [39] by measuring the average num-
bers of collisions, expended kinetic energy, and time spent. Experiments show that our model
works as well as existing agent-based methods in low- to medium-density scenarios, while showing
a clear improvement when handling large crowds in densely packed environments. The occurrence
of collisions and deadlocks, as well as the average kinetic energy and time spent is significantly
reduced. We conclude that our model yields crowd behavior that matches real-life behavior better
than existing agent-based crowd simulation models for dense scenarios. These conclusions are also
validated in the accompanying video.

Our model is general and flexible enough to be the basis for many interesting future extensions.
While the underlying navigation mesh in our experiments allows for dynamic updates [40], our
model does not yet consider dynamic re-planning for agent navigation. Physical interactions be-
tween the agents and obstacles could be an interesting extension. High crowd density may lead to
breaking fences or walls in emergency situations as discussed in [41]. It would also be interesting
to use our model in heterogeneous environments with various terrain or region types [42].

The flexibility to use any global planning method and any local collision-avoidance method as a
black box makes our model applicable to a wide range of research fields that require the simulation
of autonomous virtual agents. We believe that our model can form a basis for improving crowd
movement in future gaming and simulation applications, in CGl-enhanced movies, in urban city
planning software, and in safety training applications.
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