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Abstract  
This paper shows that Rubinstein’s results on the two-player electronic mail game do 
not extend to the N-player electronic mail game. 
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1. Introduction 
 

In the two-player electronic mail game (Rubinstein, 1989), an informed player 1 
knows whether or not there is an opportunity for coordinated action. If there is, an 
automatic communication network sends a message to an uninformed player 2, who 
then automatically sends a confirmation of receipt to 1, after which 1 sends a 
confirmation of the confirmation to 2, etc. In one variant of the game, this process 
continues indefinitely, as long as no message gets lost. In this case, coordinated action 
never takes place. In a second variant of the game, which is the focus of our paper, the 
process stops when a message gets lost or when a final stage is reached. In this case, 
coordinated action only takes place when the maximum possible number of messages 
is received.1 The current paper shows that the latter result does not extend to three 
versions of an N-player electronic mail game, differentiated by the network assumed, 
and by the manner in which the players’ strategies are defined.2 

Our N-player electronic mail game takes the following form. There are two states of 
nature, state a and state b. State a occurs with probability 2/1)1( >− p . The N players 
can choose from two actions, namely actions A and B. If all N players choose action A 
(B) in state a (b), then each player obtains payoff M. If all N players choose action A 
(B) in state b (a), then each player obtains payoff 0. If players choose different actions 
then those who choose action A obtain 0, and those who choose action B incur a loss 
of L. It is assumed that 0>> ML .3 Only player 1 knows the state of nature.4 
 
2. Maximal communication network, strategies in terms of knowledge 
 

In the spirit of Rubinstein (1989), the following automatic communication network 
allows players to achieve tth-order knowledge at stage t.5 At stage 1, when observing 
state b, player 1 automatically sends an e-mail to each uninformed player. At all 
further stages up to the final stage z, each player automatically forwards each message 
received to each other player. Each e-mail gets lost with small probability ε . Thus, at 
any particular stage t, up to tN )1( −  e-mails are sent. 
                                                 
1 Rubinstein’s (1989) treats the case without a final stage for the following reason. For small 
probability that the message gets lost, the communication network lets players approach a situation of 
common knowledge (approximate common knowledge). However, as long as the probability that a 
message gets lost is positive, coordinated action never takes place. This shows that approximate 
common knowledge is different from common knowledge. Our focus is not on common knowledge, 
which is why we treat the more realistic case of a finite number of stages. 
2 The paper can also be interpreted as a comparison of exogenously given networks. In this sense, a 
related exercise is shortly analysed by Chwe (1995) for a particular example, namely a three-player 
three-action electronic mail game with one informed player. Chwe compares a communication network 
where the informed player informs each of the uninformed players separately to one where the 
informed player informs one uninformed player, who then informs the other uninformed player. 
3 Together with the assumption that 2/1)1( >− p , this implies that, if all other players would play A 
in state a and B in state b, an individual player plays A. 
4 Morris (2001) treats an N-player electronic mail game where only n players, with n < N, need to act to 
make coordination beneficial. In Morris’s communication network, a random m players find out the 
state of nature at stage 0. With probability )1( ε− , at stage 1, another random m players find out what 
the random m players found out at stage 0. And so on, ad infinitum. Morris shows that under certain 
conditions, coordinated action is never achieved in this game. See also Footnote 7. 
5 Everybody knows that state b occurs by state 1, everybody knows that everybody knows that state b 
occurs by stage 2... 
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By scrolling down an e-mail, one can observe the sequence of players through 
which a message was forwarded. Thus, when player i receives a particular message  
from player j at stage t, player i knows that j knows that k knows that l knows that … 
1 knows that state b occurs, or )(... 0

1
321 bKKKKK t

l
t
k

t
j

t
i

−−− . Superscripts refer to stages, 
where player 1 learns the state of nature at stage 0. This same message also implies 

)(... 0
1

321 bKKKK t
l

t
k

t
j

−−− )(... 0
1

32 bKKK t
l

t
k

−− , etc.  
Let a pure strategy for player i consist of a minimal amount of interactive 

knowledge, in the form of a minimal set Si of statements player i must know to play B. 
A separating equilibrium is defined as a profile of minimal sets ( ) NiiS ∈

*  containing 
mutual best responses (“*” refers to an equilibrium). Denote by t

iS  the set of 
statements that player i needs to find out at stage t in order to play B, and by ( ) Ni

t
iS ∈  a 

profile of such sets. 
Proposition 1 shows that equilibria exist where players play B when receiving only 

a few messages at the stages before z. However, at stage z, each player only plays B 
when receiving a confirmation of each message sent at stage )1( −z . The intuition for 
this is the following. Suppose that at stage z, player i does not receive a confirmation 
from player j that at stage )1( −z , j received a message m required by j for playing B. 
Then the events “j did not receive m” and “j received m but her confirmation of it got 
lost” are about equally likely. Given that playing B by oneself is costly, i plays A. 
However, suppose that at stage zt < , i does not receive a confirmation that j received 
at stage )1( −t  a message m’ required by j for playing B. Also, assume that no other 
player requires a confirmation that i received j’s confirmation of m’ at stage t. If some 
player now informs i at stage z that j received m’ at stage )1( −t , then i plays B even 
though she did not receive a confirmation of m’ from j at stage t.6 
 
Proposition 1 

                                                 
6 For a simple example, consider the case 3=N , 2=z . We show that an equilibrium exists where 
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(i) Let *0
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(iv)  For sufficiently small ε , every possible ( ) Ni
z
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separating equilibrium. 
Proof: 
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both claims (i) and (ii). 
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(iv) Claims (ii) and (iii) together imply that a given profile of sets ( ) Ni

z
iS ∈
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determines a range of statements that must at least be included in the sets *
iS  for all 

Ni∈ . It remains to be shown that no other statements are included in these sets. We 
show that, if all players hf ≠  follow the candidate equilibrium, then it is a best 
response for player h to play B when receiving only the messages implied through (iii) 
by a given ( ) Ni
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7 It should be noted that this part of the proposition shows that, if ∞=z , then Rubinstein’s (1989) 
result that coordinated action never takes place in state b is confirmed. An extra message is always 
requested, but for an infinite number of stages the probability that all the requested messages are 
received is zero. This result is similar to the result obtained by Morris (2001) in his N-player electronic 
mail game (see Footnote 4).  
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It remains to be checked that a player i who receives all messages in *
iS  plays B. Let 

players i¬  in total need to receive x messages for coordinated action to take place in 
state b. Then it is a best response for player i to play B when 

[ ] 0)1(1)1( >−−−− LM xx εε . This is the case for sufficiently small ε . QED 
 
Proposition 1 shows that, at one extreme, a separating equilibrium exists where 

arrival of [ ])1()1( −+− Nz  messages suffices for coordinated action to take place in 
state b. In particular, for stages zt < , a single message received by a single player 
suffices. However, at stage z, each player needs to receive a confirmation of the 
message sent at stage )1( −z . At the other extreme, a separating equilibrium exists 
where coordinated action in state b requires receipt of the maximum number of 

messages (or a total of ∑
=

−
z

t

tN
1

)1(  messages).9 In between these two extremes, a 

whole range of equilibria exists, which are uniquely described by the number of 
messages players require at stage )1( −z . 

If z is a matter of design, then player 1≠i  is best off in the network with 1=z  (a 
“star”10 with player 1 at the centre). In any other network, player i plays B less often, 
but when she does, she is not less likely to incur cost L. The best possible situation for 
player 1 is 2=z , with a single message sent at stage 1 (a “star” with an uninformed 
player at its centre arising once the informed player has informed this uninformed 
player11). Compared to the case 1=z , player 1 plays B less often, but is less likely to 
incur cost L when she does play B. 
 
 
3. Sequential communication network 
 

In the communication network described in Section 2, t-th order knowledge is 
achieved at stage t. Consider now instead a network where, whenever receiving an e-
mail, player Ni ≠  sends an e-mail to )1( +i , and player N sends an e-mail to 1. The 
process starts with player 1 sending a message in state b, and continues until a 
message gets lost (which occurs with probability ε ), or until stage z is reached (where 

)1( −≥ Nz ). xth-order knowledge is now achieved if )1( −Nx  messages arrive.12 
As there is only a single path along which messages can travel, Rubinstein’s (1989) 

result fully extends here, and coordinated action in state b is only achieved when each 

                                                 
9 Note that, in Rubinstein’s (1989) case where 2=N , it is the case that 

[ ])1()1( −+− Nz =∑
=

−
z

t

tN
1

)1( : for finite z, there is only a single equilibrium,  where the two 

players require the maximum number of messages. 
10 These and other names for network structures are borrowed from the network literature (see Goyal, 
to be published). 
11 Note that this star is defined with respect to the minimal set of messages required by players. It is 
likely that players receive more than one message at stage 1. 
12 The number of messages required for increasing levels of higher-order knowledge to achieved now 
increases arithmetically instead of exponentially. 
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player receives a maximum number of messages.13 If z is a matter of design, then the 
uninformed players are collectively best off with a “line”, where )1( −= Nz . 
Individually, uninformed players are better off the further they are down the line. The 
informed player is best off with a “wheel”, where Nz = .14 
 
 
4.  Maximal communication network, strategies in terms of number of required 
messages 
 

The separating equilibria in Sections 2 and 3 are all vulnerable, as one message lost 
can stop coordinated action taking place in state b. In the game in Section 3, this is so 
by assumption. In the game in Section 2, however, there is plenty of redundancy in 
the communication process. We now show that players can exploit this redundancy 
and become even better off than with the sequential communication network. Adopt 
the modified assumption that, in order to play B, players require that they receive a 
certain minimum number of messages over different stages, regardless of the source 
and of the content of the message. Then it is a mutually best response for players to 
play B if they receive only a certain number of messages over stages )1( −z  and z.  
 
Proposition 2. Denote the number of messages received by player i at stage )1( −z  
(respectively z) as 1−zx  (respectively zx ).  Then it is a mutual best response for all 
players i to play B when zz xxx += −1 . 
Proof: 

Let player i receive messages such that xxx zz =+−1 . For small ε , every other 
player than i is likely to receive 1−zx  messages from player i at stage z. Let the zx  
messages be received from a set of players J. Then for small ε , every player in the set 

JN \  is likely also to have received zx  messages at stage z. A player j in set J from 
whom player i received zy  messages at stage z received at least zy  messages at stage 

)1( −z , and for small ε  is likely to receive )( zz yx −  messages at stage z. It follows 
that the sum of messages received by other players than i over stages )1( −z  and z is 
x, meaning that these players choose action B. It follows that it is a best response for i 
to play B. QED 
 

A simple example of an equilibrium in line with Propostion 2 is the case where 
2=z , 3=N . Proposition 2 suggests that a separating equilibrium exists where 

players play B as soon as they receive a single message over stages 1 and 2.15 It 

                                                 
13 This can be shown by following the same procedure as in part (i) of the proof of Proposition 1. 
14 Note that, compared to the “star” centred around the informed player of Section 2, the “line” leaves 
each player at least as well off, as uninformed players down the “line” run less risk. 
15 First, let 1 receive a message from 2, but not from 3. Then 1 knows that 2 sent a message to 3, and 
that this message arrived with high probability. Therefore, if a single message received suffices for 2 
and 3 to play B, then it does so for 1 as well (the same reasoning applies when 1 receives a message 
from 3, but not from 2). Second, let 2 receive a message from 1, but not from 3. Then 2 is able to send 
confirmations to 1 and 3.  If a single message received suffices for 1 and 3 to play B, then 2 plays B 
(the same reasoning applies when 3 receives a message from 1, but not from 2). Third, let 2 receive a 
message from 3, but not from 1. Then 2 knows that 3 received a message from 1. 2 also knows that 3 
sent a message to 1, and that this message arrived with high probability. If a single message received 



 6

remains to be shown, first, that uninformed players play A when not receiving any 
messages. This is evident, as the fact that they do not receive any messages makes it 
even more likely than a priori that state a occurs.16 Second, it remains to be shown 
that player 1 plays A in state b when not receiving any messages. Clearly, for small ε, 
the probability that no player received any messages approaches ¼.17 For large 
enough L, player 1 plays A. It should be noted that separating equilibria where players 
require the maximum number of messages continue to exist. 
 
 
5. Conclusion 
 

Players of the N-electronic mail game may only require a limited number of 
messages to achieve coordinated action. This is because they benefit from the fact, 
when there are more than two players, the same message can travel along different 
paths. 
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