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Abstract

The TEXH
86 paleothermometer based on isoprenoid glycerol dialkyl glycerol tetraethers (isoGDGTs) has widely been

applied in various marine settings to reconstruct past sea surface temperatures (SSTs). However, it still remains uncertain
how well this proxy reconstructs annual mean SSTs. Here, we assess environmental factors governing the TEXH

86 paleother-
mometer in the Mediterranean Sea, by studying the distribution of isoGDGTs in surface sediments, suspended particulate
matter (SPM), and two sediment cores. A redundancy analysis using the fractional abundance of the six major isoGDGTs
indicates that the sedimentary isoGDGTs are mostly influenced by three environmental factors explaining a large part
(74%) of the variance in isoGDGT distribution. In order of decreasing significance, these factors are annual mean SST,
continental organic matter input as indicated by the BIT index, and water depth. However, when considering only the four
isoGDGTs that are used for the TEXH

86 proxy, water depth is the most significant parameter, explaining 63% of the variance.
Indeed, a strong positive relationship between water depth and TEXH

86 is observed in both surface sediments and SPM from
the Mediterranean Sea. This is driven by an increase in fractional abundances of GDGT-2 and crenarchaeol regio-isomer and
a decrease in the fractional abundances of GDGT-1 and GDGT-3 with increasing water depth, leading to a bias to higher
temperatures of TEXH

86 in deep-water surface sediments. The fact that the water-depth trend is also apparent in SPM suggests
that this change might be due to a change in thaumarchaeotal community thriving below surface mixed-layer waters and that
this signal is, at least partly, incorporated into sedimentary isoGDGTs. Interestingly, surface-sediment TEXH

86 values from
>1000 m water depth do not show a correlation with water depth anymore and instead are correlated to annual mean SSTs.
A composite deep-water TEXH

86 dataset of surface sediments from both the Mediterranean Sea and the Red Sea, intercon-
nected regional restricted basins with relatively high bottom-water temperatures and high salinity, forms a distinctive corre-
lation line, statistically distinct from that of the general global correlation. Application of this correlation on two sedimentary
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records from the western Mediterranean Sea covering the last deglaciation yields SSTs nearly identical to those obtained with
the UK0

37 paleothermometer, whereas the global calibration substantially overestimates SSTs. Our results show that the warm
bias of the TEXH

86 proxy in the Mediterranean Sea is not due to seasonality, as previously suggested. Further research is
needed to elucidate the mechanism behind the strong water depth trend of TEXH

86 in the Mediterranean Sea which is not
apparent in open ocean settings.
� 2014 Elsevier Ltd. All rights reserved.
1. INTRODUCTION

Thaumarchaeota, formerly known as Group I Cre-
narchaeota (e.g., Brochier-Armanet et al., 2008; Spang
et al., 2010), produce membrane-spanning isoprenoid glyc-
erol dialkyl glycerol tetraethers (isoGDGTs). There are dif-
ferent types of isoGDGTs containing 0 to 3 cyclopentane
moieties (GDGT-0 to GDGT-3; Fig. 1) and crenarchaeol,
which in addition to 4 cyclopentane moieties has a cyclo-
hexane moiety (Schouten et al., 2000; Sinninghe Damsté
et al., 2002). Relatively small quantities of a regio-isomer
of crenarchaeol are also biosynthesized. Schouten et al.
(2002) found that the number of cyclopentane moieties in
marine sediments increased with rising sea surface temper-
atures (SSTs) and introduced the TEX86 (TetraEther indeX
of tetraethers consisting of 86 carbon atoms) as a SST
proxy. Subsequently, this proxy has slightly been modified
as TEXH

86, i.e., defined as the logarithmic function of
TEX86, for (sub)tropical oceans and greenhouse periods,
Fig. 1. Structures of isoprenoid and branched GDGTs used in this
study.
and as TEXL
86, with a logarithmic function that does not

include the crenarchaeol regio-isomer, for (sub)polar
oceans (Kim et al., 2010a). On a global scale, both TEXH

86

and TEXL
86 correlate well with annual mean SSTs (Kim

et al. 2010a) as well as with depth-integrated annual mean
temperatures from 0 to 200 m water depth (Kim et al.,
2012a,b). Mesocosm experiments confirmed that Tha-
umarchaeota changed their membrane composition with
growth temperature and showed that changes in salinity
and nutrients do not substantially affect the temperature
signal (Wuchter et al., 2004; Schouten et al., 2007a).

Although applications of the isoGDGT-based tempera-
ture proxies in various marine sediment core sites have
shown their potential, especially where the application of
other proxies was limited (e.g., Schouten et al., 2003; Liu
et al., 2009; Littler et al., 2011; Bijl et al., 2013), it still remains
uncertain how well these proxies reconstruct annual mean
SSTs due to several complicating factors (Pearson and
Ingalls, 2013; Schouten et al., 2013 and references therein).
In particular, it has been shown that Thaumarchaeota, the
major producer of the isoGDGT membrane lipids in the
marine water-column, are not light-dependent as they use
ammonia as their energy source, i.e., they are chemoauto-
trophs (e.g., Wuchter et al., 2003; Herndl et al., 2005;
Könneke et al., 2005). Hence, they occur throughout the
water-column (e.g., Karner et al., 2001; Herndl et al., 2005)
and in the underlying sediments (e.g., Francis et al., 2005;
Dang et al., 2013). Several studies for both modern condi-
tions (e.g., Huguet et al., 2007; Lee et al., 2008; Jia et al.,
2012) and paleoenvironments (e.g., Lopes dos Santos et al.,
2010; Kim et al., 2012a,b) have actually shown that iso-
GDGT-based temperature proxies in some regions may bet-
ter reflect subsurface temperatures (ca. 30–200 m water
depth) rather than annual mean SSTs (upper mixed layer
of ca. 30 m). Furthermore, the D14C of isoGDGTs have dem-
onstrated that the deep-water residing Thaumarchaeota, i.e.,
below the euphotic zone, may have the potential to substan-
tially contribute to sedimentary isoGDGTs (Pearson et al.,
2001; Smittenberg et al., 2004; Ingalls et al., 2006; Shah
et al., 2008). Recently, Taylor et al. (2013) have suggested
that Thaumarchaeota thriving in the deeper, bathypelagic
water-column (>1000 m water depth) are responsible for
increased contributions of GDGT-2 over GDGT-3 to sedi-
mentary isoGDGTs. Consequently, they have argued that
the contribution of deep-water derived isoGDGTs may
cause a warm bias of isoGDGT-based temperature proxies.
Therefore, it is timely to constrain other environmental
factors rather than just annual mean SSTs that control iso-
GDGT distributions and thus influence the isoGDGT-based
temperature proxies.
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The Mediterranean Sea is a marginal, landlocked sea
and shows a rapid and amplified response to climate
changes (e.g., Rohling et al., 2002; Kotthoff et al., 2008;
Marino et al., 2009). Some previous studies in this region
showed that TEXH

86-derived SSTs were generally higher
than those of UK0

37 , an organic-based SST proxy based on
the ratio of long-chain diunsaturated and triunsaturated
alkenones produced by Haptophyte algae (Brassell et al.,
1986; Prahl and Wakeham, 1987), likely because the
TEXH

86 record was predominantly skewed toward recon-
structed temperatures warmer than annual mean SSTs
(Castañeda et al., 2010; Leider et al., 2010; Huguet et al.,
2011; Grauel et al., 2013; Nieto-Moreno et al., 2013). In
contrast, Menzel et al. (2006) showed that UK0

37 -based SSTs
were virtually constant while TEX86-based SST estimates
decreased substantially during Pliocene sapropel deposi-
tion, an interval of strong (upper) water-column stratifica-
tion. They attributed the difference to Thaumarchaeota
thriving at depths corresponding to the deep and cold
chemocline. Hence, it appears that the Mediterranean Sea
is an ideal test-bed to assess whether environmental factors
other than annual mean SST control the TEXH

86

paleothermometer.
In this study, we investigated a large number of new

core-top samples (n = 146) and six suspended particulate
matter (SPM) samples collected from shallow- and deep-
water masses at three different stations in the Mediterra-
nean Sea. In addition, we analyzed two gravity cores from
the Alboran Sea, the westernmost Mediterranean Sea,
which cover the last 20 kyr (thousand years) (Rodrigo-
Gámiz et al., 2014). Based on the integration of these new
data with previously published data, we assess the influence
of environmental factors such as SSTs, continental-derived
organic matter input, water depth, and primary productiv-
ity on the isoGDGT distributions. Our study sheds light on
applicability of the TEXH

86 paleothermometer in the Medi-
terranean Sea and potentially other deep restricted basins.

2. MATERIAL AND METHODS

2.1. Sample collection and environmental data acquisition

Mediterranean core-tops analyzed in this study
(n = 146) were mostly collected using box- and multi-corers
from a variety of locations and different water depths
(Fig. 2, Appendix 1). They represent the uppermost surface
sediments with a depth from 0 to 2 cm. The core-top sam-
ples from the Gulf of Lions were retrieved through several
French (River dominated Ocean Margins) and interna-
tional (European Margin Strata Formation and Hotspot
Ecosystem Research on the Margins of European Seas)
research programs. The samples from the Balearic Sea were
collected at sites situated northwest of Balearic Island and
southwest of Mallorca Island during the cruise IDEA with
R/V Garcia del Cid in 2004 and the rest of the samples dur-
ing the R/V Meteor cruise M51/3 in 2001.

Six SPM samples were taken at three different stations
during the Bonifacio2011 and MAMBA_C 2011 cruises
with R/V URANIA between 14 and 29 March 2011 and
between 9 and 22 September 2011, respectively (Fig. 2,
Appendix 2). They were collected at water depths of 50 m
and 2000–3000 m (Fig. 2). To collect SPM, 170 to 240 L
of water at 50 m water depth and 3400 to 5000 L of water
at 2000–3000 m water depths were filtered over ashed
glass-fiber filters (Whatman GF-F, 0.7 lm pore size,
142 mm diameter) with a McLane in-situ pump system
(WTS 6-1-142LV, McLane Labs, Falmouth, MA) installed
in a conductivity, temperature, and depth (CTD) rosette
frame. Even though the nominal pore size of the filters is
larger than thaumarchaeotal cells (typically <0.6 lm;
Könneke et al., 2005), previous studies have shown that
the concentration profiles of isoGDGTs obtained from
0.7 lm filters correspond well with those of thaumarchaeot-
al DNA obtained from 0.2 lm filters and that isoGDGT
distributions are likely representative (e.g., Herfort et al.,
2007; Schouten et al., 2012).

We also analyzed two gravity cores 434G and 293G
(Fig. 2A). Core 434G (252.5 cm long; Rodrigo-Gámiz
et al., 2014) was retrieved in the West Alboran Sea
(36�12.313 N, 4�18.735 W; 1108 m water depth) during the
Training Through Research (TTR) 17 cruise with the R/V
Professor Logachev. Core 293G (402 cm long; Rodrigo-
Gámiz et al., 2014) was recovered from the East Alboran
Sea (36�10.414 N, 2�45.280 W; 1840 m water depth) during
the TTR 12 cruise with the R/V Professor Logachev.

Following the study by Kim et al. (2010a), SST data for
each core-top sampling site were retrieved from the NSIPP
(NASA Seasonal-to-Interannual Prediction Project)
AVHRR (Advanced Very High Resolution Radiometer)
9.28 km resolution monthly Pathfinder + Erosion SST cli-
matology dataset for the period of 1985 to 1995 from the
Physical Oceanography Distributed Active Archive Center
at NASA Jet Propulsion Laboratory, Pasadena, CA
(Casey and Cornillon, 1999). We used 10-yr average values
of the annual mean climatology SST data to explore the rela-
tionship of the isoGDGT distributions with SSTs. In addi-
tion, annual mean temperatures from different water
depths were obtained from the World Ocean Atlas 13
(WOA13) dataset (Locarnini et al., 2013). Depth-weighted
annual mean temperatures from 0 to 200 m water depth were
calculated following to the approach by Kim et al. (2008).

Primary productivity data used were monthly mean sets
of the vertically generalized production model data
(Behrenfeld and Falkowski, 1997) retrieved from Oregon
State University (site: http://www.science.oregonstate.edu/
ocean.productivity/index.php).

2.2. Lipid extraction and purification procedure

Core-top and down-core sediments (1–5 g) were freeze-
dried and homogenized with a mortar and a pestle. The sed-
iments were extracted by Dionexe accelerated solvent
extraction (DIONEX ASE 200) using a mixture of dichlo-
romethane (DCM):methanol (MeOH) (9:1, v:v) at a tem-
perature of 100 �C and a pressure of 7.6 � 106 Pa. The
supernatants were combined, the solvents were removed
by rotary evaporation, and the extracts were taken up in
DCM and blown down under a stream of nitrogen.

Freeze-dried SPM samples were first saponified by
refluxing for 1 h with 1 M KOH in MeOH (96%). After

http://www.science.oregonstate.edu/ocean.productivity/index.php
http://www.science.oregonstate.edu/ocean.productivity/index.php
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Fig. 2. Spatial distribution pattern of the 10-yr average satellite-derived SSTs in the Mediterranean Sea (based on data from Casey and
Cornillon, 1999): (A) annual mean, (B) spring (March–May), (C) summer (June–August), (D) autumn (September–November), and (E) winter
(December–February). Black open circles indicate newly analyzed core-tops in this study and open triangles and squares show the positions of
the core-tops previously analyzed by Kim et al. (2010a) and Leider et al. (2010), respectively. Three filled purple squares indicate the SPM
sampling sites. Two filled diamonds show the sediment core positions (cores 434G and 293G) considered in this study. GOL indicates the Gulf
of Lions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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cooling, solvents were neutralized using 4 M HCl:MeOH
(1:1, v:v) and transferred to separatory funnels containing
bidistilled H2O. Subsequently, filters were extracted using
MeOH:H2O (1:1, v:v), MeOH, and DCM (3�) and all sol-
vents were collected in the separatory funnels. The DCM
layers were separated from the H2O:MeOH layers and the
remaining H2O:MeOH layers were extracted (3�) with
DCM. The DCM extracts were combined for the different
samples, and rotary evaporated to near dryness. Thereafter,
both filters and obtained extracts were saponified again,
this time by refluxing for 3 h with 4 M HCl:MeOH (1:1,
v:v). After cooling, the solvents were neutralized using
1 M KOH. For the saponified filters, the solvents were
again transferred to separatory funnels containing bidis-
tilled H2O. Subsequently, filters were extracted using
MeOH:H2O (1:1, v:v), MeOH, and DCM (3�) and all sol-
vents were collected in the separatory funnels. The DCM
layers were separated from the H2O:MeOH layers and the
remaining H2O:MeOH layers were extracted (3�) with
DCM. The DCM extracts were combined for the different
samples and rotary evaporated to near dryness. For the
saponified extracts, bidistilled H2O was added and the
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H2O:MeOH layers were extracted (4�) with DCM. All
extracts were combined for the different samples, eluted in
DCM over pipette-columns containing Na2SO4 to remove
remaining salts and H2O, and dried under N2.

The total extracts were separated by Al2O3 column chro-
matography using hexane:DCM (9:1, v:v), hexane:DCM
(1:1, v:v), and DCM:MeOH (1:1, v:v) as subsequent elu-
ents. The polar (DCM:MeOH) fractions were concentrated
under N2, dissolved in hexane:propanol (99:1, v:v), and fil-
tered using a 0.4 lm PTFE filter prior to injection.

2.3. GDGT analysis and temperature estimation

All GDGT analyses were conducted at NIOZ. The fil-
tered polar fractions were analyzed using high performance
liquid chromatography/atmospheric pressure positive ion
chemical ionization-mass spectrometry (Agilent Technolo-
gies 1100 series, Palo-Alto, CA, USA) equipped with an
auto-injector and Chemstation chromatography manager
software. Separation was achieved on a Prevail Cyano col-
umn (2.1 � 150 mm, 3 lm; Alltech, Deerfield, IL, USA),
maintained at 30 �C. Injection volumes varied from 1 to
20 ll. GDGTs were eluted isocratically with 99% A and
1% B for 5 min, followed by a linear gradient to 1.8% B
in 45 min, where A = hexane and B = propanol. Flow rate
was 0.2 ml min�1. After each analysis the column was
cleaned by back-flushing hexane:propanol (90:10, v:v) at
0.2 ml min�1 for 10 min. GDGTs were detected by single
ion monitoring of their [M+H]+ ions (dwell time 237 ms)
(Schouten et al., 2007b). Fractional abundances of each iso-
GDGT component were obtained by normalizing each
peak area to the summed area of all six isoGDGTs.

The TEXH
86 (Kim et al., 2010a) and the BIT (Branched

and Isoprenoid Tetraether) index (Hopmans et al., 2004),
a proxy for input of continental-derived GDGTs were cal-
culated as follows:

TEXH
86 ¼ log

½GDGT-2� þ ½GDGT-3� þ ½Cren0�
½GDGT-1� þ ½GDGT-2� þ ½GDGT-3� þ ½Cren0�

� �

¼ logðTEX86Þ ð1Þ

BIT index¼ ½I� þ ½II� þ ½III�
½I� þ ½II� þ ½III� þ ½Cren� ð2Þ

GDGT-1, GDGT-2, and GDGT-3 indicate isoGDGTs
containing 1, 2, and 3 cyclopentane moieties, respectively
(Fig. 1). The roman numerals (I, II, and III) refer to
branched GDGTs while Cren and Cren0 indicate crenar-
chaeol and its regio-isomer, respectively (Fig. 1). TEXH

86 val-
ues were converted into temperature values using the global
core-top calibration for satellite-derived annual mean SST
(Eq. (3), Kim et al., 2010a):

T ¼ 68:4� TEXH
86 þ 38:6 ðr2 ¼ 0:87; n ¼ 255;

p < 0:0001; 0 m water depthÞ ð3Þ
2.4. Statistical analysis

To examine the relationship between TEXH
86 and temper-

ature among different datasets, the homogeneity of slopes
and the difference in intercept were tested with an analysis
of covariance (ANCOVA). Principal component analysis
(PCA) was performed on the fractional abundances of iso-
GDGTs to provide a general view of the variability within
the distribution of isoGDGTs. Fractional abundances of
each isoGDGT component were obtained by normalizing
each peak area to the summed area of all isoGDGTs consid-
ered. The relationships between isoGDGTs and environ-
mental variables such as SST (annual mean, spring,
summer, autumn, and winter), primary productivity (annual
mean, spring, summer, autumn, and winter), water depth,
and BIT (an indicator of continental-derived organic matter
input) were assessed by applying redundancy analysis
(RDA). Multicollinearity between environmental variables
was examined using variance inflation factors (VIFs). Large
VIFs (>150) indicate that a variable is highly correlated with
other variables, and thus contributes little information to
the ordination. Preliminary ordinations revealed that
annual mean primary productivity had a high VIF value.
Therefore, this variable was excluded in the RDA. All statis-
tical analyses were performed using the R-3.0.1 packages.

3. RESULTS

3.1. GDGT distributions in surface sediments, SPM, and

sediment cores

We analyzed 146 core-tops collected from Alboran Sea
(n = 2), Balearic Sea (n = 39), Gulf of Lions (n = 72), Adri-
atic Sea (n = 6), Aegean Sea (n = 14), Ionian Sea (n = 3),
Libyan Sea (n = 4), and Levantine Sea (n = 6). TEXH

86 val-
ues ranged from �0.45 to �0.15 (Appendix 1). The recon-
structed SSTs varied between 7.7 and 28.6 �C using the
global core-top calibration for 0 m water depth (Eq. (3))
from Kim et al. (2010a). TEXH

86-derived SSTs strongly devi-
ated from satellite-derived SSTs for annual mean, spring,
summer, autumn, and winter seasons (Fig. 3). The differ-
ence between TEXH

86-derived SST and annual mean temper-
ature (DT) ranged from �10 to 9 �C, substantially larger
than the error range of the TEXH

86 temperature estimates,
i.e., ±3 �C, which includes the uncertainty associated with
the calibration (±2.5 �C; Kim et al., 2010a) and the analyt-
ical error (0.2 �C). The BIT index in surface sediments var-
ied between 0.0 and 0.85, with higher values in the Rhône
prodelta (>0.4; Appendix 1).

We also analyzed six SPM samples collected at three dif-
ferent stations in the central Mediterranean Sea (Fig. 2A),
three at a water depth of 50 m and three at water depths
between 2000 and 3000 m. TEXH

86 values varied between
�0.19 and �0.17 in the shallow water masses and between
�0.12 and �0.11 in the deep-water masses (Appendix 2).
The converted temperatures using the global core-top cali-
bration (Eq. (3)) corresponded to an average temperature
of 26.3 ± 0.7 �C for the shallow SPM samples and
31.0 ± 0.2 �C for the deep SPM samples. Values for the
BIT index were on average 0.01 ± 0.01 for the shallow water
SPM and 0.03 ± 0.02 for the deep-water SPM (Appendix 2).

Core 434G had TEXH
86 values between �0.32 and �0.18

over the last 14 kyr and core 293G between �0.40 and
�0.18 over the last 20 kyr (Appendix 3). When TEXH

86

values were translated to SSTs using the global core-top



0 10 20 30 40
Longitude

30

35

40

45

La
tit

ud
e 

0 10 20 30 40
Longitude

D E

T 
(C

)

Autumn Winter

30

35

40

45

La
tit

ud
e 

Spring Summer

B C

30

35

40

45

La
tit

ud
e 

A

Annual mean -10

-8

-6

-4

-2

0

2

4

6

8

10

Fig. 3. Temperature differences (DT) between TEXH
86-derived temperatures using Eq. (3) and satellite-derived SSTs: (A) annual mean, (B)

spring (March–May), (C) summer (June–August), (D) autumn (September–November), and (D) winter (December–February). Black open
circles indicate core positions where the TEXH

86 data were available in this study. The spatial distribution pattern is based on variogram
analysis and ordinary kriging, interpolating the data to a 0.5� � 0.5� grid with 2� � 2� searching radius. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

130 J.-H. Kim et al. / Geochimica et Cosmochimica Acta 150 (2015) 125–141
calibration (Eq. (3)), TEXH
86-derived SSTs ranged from 17

to 26 �C for core 434G and from 11 to 26 �C for core
293G. The BIT index values were low in both cores, varying
between 0.01 and 0.04 for core 434G and between 0.01 and
0.17 for core 293G.

3.2. Statistical data treatment of isoGDGT distributions in

surface sediments

The newly obtained data for surface sediments were com-
bined with previously published GDGT data from the Tyr-
rhenian Sea (n = 2; Kim et al., 2010a) and the Adriatic Sea
(n = 46; Leider et al., 2010) to establish a Mediterranean
core-top dataset (n = 194; see Fig. 2 for all sample locations).
An instrumental offset between the data obtained at the
NIOZ and those by Leider et al. (2010), although possible,
would likely have minor consequences for the results, as
recently shown by a large interlaboratory study of TEX86

analysis (Schouten et al., 2014). The comparison of TEXH
86

values with annual mean SST using our Mediterranean
core-top dataset showed a lower slope of the calibration line
and a weaker correlation with considerable scatter (r2 = 0.5,
p < 0.0001, black line, Fig. 4) than the global core-top corre-
lation of Kim et al. (2010a) (r2 = 0.87, p < 0.0001; Fig. 4,
stippled line). The ANCOVA results showed that differences
between two datasets were significant for both the slope
(homogeneity of regressions, p < 0.0001) and the intercept
(p < 0.0001). This indicates that the TEXH

86 values in the
Mediterranean Sea must be influenced by additional factors
rather than only annual mean SST.

To examine the distribution of isoGDGTs, principal
components analysis (PCA) on the fractional abundances
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referred to the web version of this article.)
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of all isoGDGTs was performed. The first two components
explained a cumulative 88% of the variance (Fig. 5A). On
the first principal component (PC1, explaining 72% of the
variance) the loading of GDGT-0 was opposite to that of
all other isoGDGTs. Crenarchaeol positively loaded
on the second principal component (PC2, explaining
16% of the variance), against all other isoGDGTs.
GDGT-1, -2, -3, and the crenarchaeol regio-isomer were
clustered together in the same quadrant in the PCA biplot.
Interestingly, these are the components used for the TEXH

86

proxy.
To examine which environmental factors controlled the

variability in isoGDGT distributions, we performed redun-
dancy analysis (RDA) using all six isoGDGTs (data not
shown). The RDA results showed that among the environ-
mental variables annual mean SST (AM SST), the BIT
index (a proxy for continental-derived organic matter
input) and water depth explained most of the variability
in isoGDGT distributions (Table 1). Therefore, we limited
the RDA to only these three environmental variables
(Fig. 5B). The explanatory (i.e., environmental) variables
explained 74% of the variation in the response (i.e., frac-
tional abundance of isoGDGTs) variables. Similar to the
PCA results, GDGT-0 was positively loaded on the first
axis of RDA (RDA1, explaining 65% of the variance),
opposite to all other isoGDGTs. The second axis of RDA
(RDA2) explained 9% of the variance. GDGT-1 and cren-
archaeol were positively loaded on the RDA2, while
GDGT-2, -3, and crenarchaeol regio-isomer were nega-
tively loaded. The RDA results indicated that the iso-
GDGTs were mostly influenced by three environmental
factors, i.e., annual mean SST (49%), continental-derived
organic matter input (15%), and water depth (9%).

To examine the environmental factors controlling the
TEXH

86 proxy, we also performed RDA using only the four
isoGDGTs used for the TEXH

86 calculation (Fig. 5C).
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Table 1
(A) Numerical output of the RDA applied for all six isoGDGTs.
The sum of all canonical eigenvalues is 0.8 and the total variance is
1. k (eigenvalue) is the standard deviation of the scores. k as % of
sum of all canonical eigenvalues is obtained by multiplying 0.8 (the
sum of all canonical eigenvalues) with the variation explained by
the first two axes. (B) The results of the forward selection. % of
variance indicates the total sum of eigenvalues after including new
explanatory variables. T and PP indicate temperature and primary
productivity. Significance level: p < 0.05.

RDA
axis

k k as %
of total
inertia

k as
cumulative%
of total
inertia

k as % of sum
of all canonical
eigenvalues

A

1 0.65 65 65 82.1
2 0.09 9 74 93.9

B

Order Explanatory
variable

% of
variance

F-Statistic p-Value

1 AM SST 49 186.9 0.005

2 BIT 15 77.9 0.005

3 Water depth 9 60.9 0.005

4 Fall PP 2 17.8 0.005
5 Spring PP 2 12.8 0.005
6 Summer T 1 7.1 0.005
7 Winter PP 1 7.4 0.005
8 Winter T 1 5.9 0.005
9 Spring T 0 2.5 0.060
10 Summer PP 0 1.2 0.305
11 Fall T 0 0.7 0.590
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GDGT-1 and GDGT-3 were positively loaded on the
RDA1, as opposed to GDGT-2 and crenarchaeol regio-iso-
mer, explaining 76% of the variance. RDA2 explained only
2% of the variance. Considering only four isoGDGTs,
water depth explained 63% of the variance, while annual
mean SST and continental-derived organic matter input
accounted for another 14% and 2% of the variance in iso-
GDGT distributions, respectively (Table 2). The differences
Table 2
As Table 1 but using only four isoGDGTs: (A) numerical output of
the RDA and (B) the results of the forward selection. Significance
level: p < 0.05.

RDA
axis

k k as% of
total
inertia

k as
cumulative%
of total
inertia

k as% of sum
of all canonical
eigenvalues

A

1 0.76 76 76 97.4
2 0.02 2 78 99.6

Order Explanatory
variable

% of
variance

F-Statistic p-Value

B

1 Water depth 63 328.6 0.005

2 AM SST 14 112.6 0.005

3 BIT 2 13.9 0.005
between the two RDA analyses are likely due to the
overpowering effect of GDGT-0 and crenarchaeol, which
are the two dominant isoGDGTs. GDGT-0 may also have
multiple archaeal sources and including this isoGDGT will
make the RDA analysis less sensitive to factors which influ-
ence the subtle changes in distribution of the minor
isoGDGTs.

4. DISCUSSION

Our results show that TEXH
86 does not correlate well with

annual mean SST in the Mediterranean Sea. We discuss
potential environmental factors affecting the isoGDGT dis-
tributions and thus the TEXH

86 paleothermometer in the fol-
lowing sections.

4.1. Influence of continental isoGDGTs

The surface sediments from the shallow Rhône prodelta
area (<100 m water depth) have positive scores on the
RDA1, along with the BIT index (green filled data points;
Fig. 5B and C). The RDA results thus suggest that conti-
nental-derived, i.e., soil- and/or river-derived (cf.
Hopmans et al., 2004; Zell et al., 2013a,b; De Jonge
et al., 2014) organic matter input, as reflected in the BIT
index (e.g., Hopmans et al., 2004), influences the distribu-
tion of isoGDGTs (Tables 1 and 2; Fig. 5). The BIT index
values are, in general, substantially higher in surface sedi-
ments of the continental shelf (<200 m water depth) than
in sediments of the continental slope and rise (>200 m water
depth) (Fig. 6A) and are especially elevated in the prodeltas
of the Rhône River and Po River (Fig. 7A and B, respec-
tively). SPM collected along the Rhône River (SE France)
in May 2010 have a high average BIT value of 0.89, and
SPM sampled at the Rhône River mouth influenced by
the seawater have an average BIT value of 0.65 (Kim
et al., 2014). Soils often contain isoGDGTs derived from
diverse soil archaea such as Euryarchaeota and Tha-
umarchaeota (e.g., Leininger et al. 2006; Weijers et al.,
2006; Tourna et al., 2011; Sinninghe Damsté et al., 2012).
Taken together with previous studies in this region (e.g.,
Kim et al., 2010b; Tesi et al., 2011), the elevated BIT values
in the coastal zones of the Gulf of Lions and the Adriatic
Sea indicate that the contribution of continental-derived
isoGDGTs is probably higher in the inner shelf areas than
the outer shelf areas (Fig. 7A and B). Hence, TEXH

86 values
of coastal marine sediments that receive continental-derived
organic matter, especially near river outflows, may be
affected by continental isoGDGTs in the Mediterranean
Sea.

Surprisingly, the reconstructed TEXH
86 temperatures off

the Rhône and Po River mouths, where BIT values are
highest (>0.4; Fig. 7A and B), are still well within the error
range of the TEXH

86 proxy (Fig. 7C and D), with the average
DT (the difference between TEXH

86-derived temperatures
using Eq. (3) and satellite-derive SSTs) value of
�0.5 ± 1.3 �C (n = 10). This is somewhat unexpected given
that previous studies in the equatorial Atlantic and the
North Sea showed that the high inputs of continental
isoGDGTs (i.e., high BIT values) were associated with a



Fig. 6. Vertical water depth profiles of (A) the BIT index, (B) TEXH
86, (C) TEXH

86-derived temperatures using Eq. (3), (D) satellite-derived
annual mean SSTs, (E) DT between TEXH

86-derived SSTs using Eq. (3) and satellite-derived annual mean SSTs, (F) fractional abundances of
isoGDGTs (based on the four isoGDGTs that are used in TEXH

86) and the [2]/[3] ratio (Taylor et al., 2013) for the entire Mediterranean
dataset, and (G) fractional abundances of isoGDGTs and the [2]/[3] ratio for the dataset of the Balearic Sea. Blue open circles indicate the
data from the shallow shelf areas (<200 m water depth) and black open circles from deeper water depth (>200 m water depth). Logarithmic
(solid) or linear (dashed) regression lines are plotted for the Mediterranean Sea (red line) and the Balearic Sea (blue line) datasets.
Determination coefficient (r2) values are given. Filled purple squares indicate the SPM data. The SPM data were not used for the regression of
the data. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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substantial bias in TEXH
86-derived SSTs (Herfort et al.,

2006; Weijers et al., 2006). Our study indicates that influ-
ence of continental-derived isoGDGTs on the TEXH

86 proxy
may depend on the end-member GDGT distribution of the
river drainage basin, i.e., if the TEXH

86 distributions of soils
or river SPM in the drainage basin are similar to those in
the coastal marine waters the bias might be relatively minor
(cf. Schouten et al., 2013). Interestingly, much larger
temperature deviations with negative DT values (i.e.,
TEXH

86-derived SSTs < satellite-derived SSTs) are observed
on the continental shelves (Fig. 7C and D), where BIT val-
ues (<0.05) are much below the cut off value (0.3) proposed
earlier (Weijers et al., 2006). Hence, it seems that the conti-
nental-derived isoGDGT input is not the main cause for the
cold bias of the TEXH

86 estimates observed along the coasts
of the Gulf of Lions and the Adriatic Sea.
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4.2. Seasonal influences

In previous studies, the predominant production and
export of Thaumarchaeota during warm (summer/autumn)
seasons have been invoked to explain TEXH

86 results from
surface sediments and paleorecords (Menzel et al., 2006;
Castañeda et al., 2010; Leider et al., 2010; Huguet et al.,
2011; Grauel et al., 2013; Nieto-Moreno et al., 2013) in
the Mediterranean Sea. For spring and winter, temperature
differences (DT) between TEXH

86 – and satellite-derived SSTs
in our Mediterranean core-top dataset are larger (up to
12 �C) than those for the annual mean (Fig. 3B and E).
However, for summer and autumn, DT is reduced (up to
6 �C), suggesting that TEXH

86-derived SSTs indeed agree
better with warmer summer/autumn SSTs (Fig. 3C and
D). Hence, our results seemingly support previous studies,
which suggested that TEXH

86-derived SSTs were skewed
towards warm (summer/autumn) seasons in most of the
Mediterranean Sea (Menzel et al., 2006; Leider et al.,
2010; Castañeda et al., 2010; Huguet et al., 2011; Grauel
et al., 2013; Nieto-Moreno et al., 2013). However, it should
be noted that for some areas (Fig. 3C and D), TEXH

86 still
overestimates seasonal SSTs for the warm (summer/
autumn) seasons by up to 6 �C. Based on the RDA results,
the satellite-derived annual mean SST is overall the most
significant environmental factor rather than seasonal SSTs
(Table 1). Furthermore, a molecular ecology study con-
ducted in the NW Mediterranean Sea (Blanes Bay Micro-
bial Observatory) found that the abundance of Group I
Crenarchaeota (i.e., Thaumarchaeota) was highest during
winter when water was nutrient-enriched (Galand et al.,
2010). Hence, it appears that seasonal differences between
the timing of the Thaumarchaeota blooms or exports can-
not fully explain a warm bias of the TEXH

86 proxy at
deep-water sites in the Mediterranean Sea.

4.3. Influence of water depth

Surprisingly, the RDA results show that the distribu-
tions in surface sediments of isoGDGTs used in TEXH

86 is
influenced by water depth. Indeed, the TEXH

86 (r2 = 0.77,
Fig. 6B) and its derived SSTs (r2 = 0.77, Fig. 6C) show
strong positive correlations with water depth, while satel-
lite-derived annual mean SST is only weakly correlated with
water depth (r2 = 0.30, Fig. 6D). As a result, the tempera-
ture difference (DT) shows a substantial increase with water
depth (r2 = 0.76, Fig. 6E). This is independent of calibra-
tion models, as a similarly strong water depth trend in
SST estimates based on the Bayesian regression model
BAYSPAR (Tierney and Tingley, 2014) is also apparent
(data not shown). Examination of the RDA results shows
that surface sediments from the meso-bathypelagic zone
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(>200 m water depth) score negatively on RDA1 along with
water depth and the fractional abundances of GDGT-2 and
crenarchaeol regio-isomer, while GDGT-1 and GDGT-3
score positively on RDA1 (Fig. 5C). Indeed, there is a
strong trend when the fractional abundances of the iso-
GDGTs used in TEXH

86 are plotted versus water depth;
decreasing fractional abundances of GDGT-1 and
GDGT-3 and increasing fractional abundances of
GDGT-2 and crenarchaeol regio-isomer with water depth
(Fig. 6F). This water depth dependence is also illustrated
by examining a subset of surface sediments from the Bale-
aric Sea, located within a small geographical area
(Fig. 2A) with similar annual mean SSTs (on average
19.4 ± 0.1 �C) and presumably similar other environmental
factors such as nutrient concentrations. In this region,
strong correlations of the fractional abundances of iso-
GDGTs with water depth are also observed (Fig. 6G).

A recent study by Taylor et al. (2013) suggested that
Thaumarchaeota thriving in deeper waters (>1000 m water
depth) might have a different distribution of isoGDGTs,
with a higher abundance of GDGT-2 relative to GDGT-3
and consequently a high (>5) GDGT-2/GDGT-3 ratio
(i.e., [2]/[3] ratio). They argued that this would explain
the positive correlation of the [2]/[3] ratio with water depth
seen in the Kim et al. (2010a) dataset of surface sediments.
In agreement with this, the [2]/[3] ratio in surface sediments
strongly increases with water depth in the Mediterranean
Sea as well as in the Balearic Sea (Fig. 6F and G). Hence,
our results potentially support the idea that deep-water
dwelling Thaumarchaeota may have different distributions
of isoGDGTs in comparison to those of shallow ones. In
addition to the fractional abundance of GDGT-2, our data
show that the fractional abundance of the crenarchaeol
regio-isomer equally strongly increases with water depth,
which was not observed by Taylor et al. (2013) in the global
core top dataset of Kim et al. (2010a). The higher fractional
abundance of GDGT-2 and crenarchaeol regio-isomer and
the lower fractional abundance of GDGT-1 and GDGT-3,
possibly produced by Thaumarchaeota thriving below the
mixed-layer, explain the higher TEXH

86 values in surface sed-
iments from areas with a deeper water-column (Fig. 6B)
and, consequently, the higher DT.

Molecular biological studies have shown that thaumar-
chaeotal sequences from the meso-bathypelagic (>200 m
water depth) waters are phylogenetically different from
those retrieved from the epipelagic (0–200 m water depth)
waters (e.g., Francis et al., 2005; Hu et al., 2011a,b;
Yakimov et al., 2011; Sintes et al., 2012; Schouten et al.,
2012) and thus may have a different isoGDGT distribution.
Villanueva et al. (2014) showed essential amino acid differ-
ences in geranylgeranylglyceryl phosphate (GGGP) syn-
thase, a key gene of the GDGT biosynthetic pathway,
between ‘shallow water’ and ‘deep water’ Thaumarchaeota
residing in the ocean. They attributed observed differences
in isoGDGT distributions from subsurface to deep waters
to the differences in archaeal population of shallow and
deep waters. Differences in isoGDGT distributions have
been previously documented for different cultivated species
of Thaumarchaeota, e.g., Group 1.1b Thaumarchaeota
produce the crenarchaeol regio-isomer in a higher
fractional abundance than Group 1.1a Thaumarchaeota
(Sinninghe Damsté et al., 2012).

To test the hypothesis of different archaeal populations
in different water masses, we analyzed SPM collected from
shallow (50 m water depth) and deep (2000–3000 m water
depth) water masses of the Mediterranean Sea. Crenarchae-
ol (46 ± 1% of total isoGDGTs) is the most abundant iso-
GDGT in the shallow-water SPM, followed by GDGT-0
(28 ± 2%). The most abundant isoGDGT in the deep-water
SPM is also crenarchaeol (47 ± 2%), but GDGT-0 is less
abundant (18 ± 1%). Interestingly, when we focus on the
fractional abundances of isoGDGTs that are used for
the TEXH

86 paleothermometer, GDGT-2 (51 ± 1%) and
the crenarchaeol regio-isomer (22 ± 1%) are much more
dominant in the deep-water SPM than in the shallow-water
SPM, while the fractional abundances of GDGT-1 and
GDGT-3 show an opposite trend (Fig. 8A and B). This is
in line with the idea that the isoGDGT distribution in dee-
per waters might be different from that in surface waters
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due to presence of a different thaumarchaeotal community.
TEXH

86 values of the shallow-water SPM are on average
�0.18 ± 0.01 while those of the deep-water SPM are higher
with the average value of �0.11 ± 0.004. Accordingly, the
resulting TEXH

86-derived temperature is higher for the
deep-water SPM (with an average value of 31.0 ± 0.2 �C)
than for the shallow-water SPM (on average
26.3 ± 0.7 �C) (end member values in Fig. 6C). These
TEXH

86-derived temperatures differ from the temperature
profile in the water, which drops from �25 �C at 50 m
water depth to �14 �C at water depths >2000 m.

The trend observed in the SPM is identical to the
observed trend in the isoGDGT distribution in surface
sediments with increasing water depth (i.e., increased frac-
tional abundance of GDGT-2 and the crenarchaeol regio-
isomer and increased TEXH

86 values in surface sediments
deposited in deep water; Fig. 6). Our SPM data, therefore,
support the idea that deep-water dwelling Thaumarchaeota
produce isoGDGTs with a higher fractional abundance of
GDGT-2 and the crenarchaeol regio-isomer and a lower
fractional abundance of GDGT-1 and GDGT-3. With
increasing water depth, this deep-water population of Tha-
umarchaeota may increasingly contribute to the pool of
sedimentary isoGDGTs, thereby influencing the TEXH

86

proxy. To further constrain this, we performed a simple
two end-member mixing model, by using the distribution
of isoGDGTs of the shallow-water SPM as the surface
end-member and that of the deep-water SPM as the
deep-water end-member. The results show that the
TEXH

86-derived SST will substantially deviate from the sur-
face end-member value of 26.3 �C with an increasing contri-
bution of isoGDGTs produced in deeper waters (Fig. 8C).

4.4. Distribution of isoGDGTs in deep restricted basins

Our results suggest that there are two major isoGDGT
inputs to surface sediments of the Mediterranean Sea: one
derived from shallow-water and the other from deep-water
dwelling thaumarchaeotal populations. This implies that it
will be difficult to predict annual mean SSTs using Eq. (3)
(global core-top calibration) of Kim et al. (2010a), espe-
cially for deep basins in the Mediterranean Sea. Therefore,
we investigated which factors predominantly control the
distribution of isoGDGTs in the Mediterranean deep
restricted basins. We observe that TEXH

86 values in surface
sediments from > 1000 m water depth do not correlate with
water depth (r2 = 0.03, Fig. 9A). Subsequently, we com-
pared TEXH

86 values with temperature at 1000 m water
depth, assuming that isoGDGTs purely originated from
deep waters, but again a weak correlation is observed
(r2 = 0.30; Fig. 9B). Instead, we find that TEXH

86 values
are strongly associated with satellite-derived annual mean
SST (r2 = 0.74; Fig. 9C). Hence, it seems that although sed-
iments deposited in deep waters (>1000 m water depth)
receive a substantial contribution of isoGDGTs from a
deep-water thaumarchaeotal population, they still reflect a
signal which is related to surface water conditions.

It has been observed previously that TEX86 in the north-
ern Red Sea, another regional restricted basin, had a
strongly different correlation with annual mean SST
(Trommer et al., 2009). Notably, most of sediments investi-
gated were taken from deep waters (600–1600 m water
depth), suggesting a similar phenomenon as observed for
the Mediterranean Sea. Therefore, we have established a
composite dataset of deep-water (>1000 m water depth)
surface sediments from deep restricted basins in this inter-
connected region, i.e., the Mediterranean Sea and the
northern Red Sea (data from Trommer et al., 2009). As
observed for the Mediterranean Sea dataset, the composite
dataset shows no significant relationship between TEXH

86

and water depth (r2 = 0.04). However, the composite data-
set also shows a strong correlation between TEXH

86 and
satellite-derived annual mean SST (Fig. 9C) which can be
described by the following equation:

T ¼ 56:3� TEXH
86 þ 30:2 ðr2 ¼ 0:94; n ¼ 45;

p < 0:001; 0 m water depthÞ ð4Þ

The residual standard error in temperature estimates
using this calibration model is only 1 �C. This suggests that
in the northern Red Sea, there may be controlling mecha-
nisms on the distribution of isoGDGTs in surface sedi-
ments common to those operating in the Mediterranean
Sea; i.e., a deep-water population of Thaumarchaeota
affecting the sedimentary isoGDGT signal, but not in such
a way that the influence of surface water temperatures is
eliminated. Interestingly, this deep restricted basin dataset
forms a distinctive correlation line in comparison to that
of the global core-top dataset (Kim et al., 2010a)
(Fig. 9D) with significant differences between both datasets
for both the intercept (df = 1, F = 230, p = <0.001) and the
slope (df = 1, F = 4.06, p = 0.04). We also observe this dif-
ference if we consider only the TEXH

86 data from surface
sediments deposited at >1000 m water depth in the global
core-top dataset (yellow filled circles, Fig. 9D).

When we follow the approach applied by Kim et al.
(2008) and correlate TEXH

86 values of surface sediments
from >1000 m water depth with depth-integrated annual
mean temperatures for 0 to 200 m water depth an equally
strong relation is found:

T ¼ 57:6� TEXH
86 þ 27:1 ðr2 ¼ 0:90; n ¼ 44;

p < 0:0001; 0–200 m water depthÞ ð5Þ

This relationship (Eq. (5); Fig. 9E) also significantly differs
from that of the global core-top dataset (Fig. 9F) for the
intercept (df = 1, F = 116.5, p = <0.001), similar to the
SST calibration (Eq. (4); Fig. 9D), but not for the slope
(df = 1, F = 0.32, p = 0.57).

The reason for this difference between the global core-
top dataset and the deep-water restricted basin dataset
remains to be fully understood. It is noteworthy that these
deep restricted basins are all characterized by higher (i.e.,
�13 �C for the Mediterranean Sea and �22 �C for the
Red Sea) bottom water temperatures than the open ocean
(i.e., 4–6 �C) (Locarnini et al., 2013). Warmer deep waters
in these restricted basins imply that more organic matter
is mineralized in the deeper part of the water column com-
pared to open oceans. This increased break-down of
organic matter in bottom waters will result in a higher
ammonium generation rate. Since Thaumarchaeota are
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Fig. 9. Cross plots of TEXH
86 data for surface sediments from > 1000 m water depth in the Mediterranean Sea (blue circles) and the Red Sea

(red circles) (A) with water depth, (B) with annual mean temperature at 1000 m water depth from the World Ocean Atlas 13 (WOA13) dataset
(Locarnini et al., 2013), (C and D) with satellite-derived annual mean SSTs, and (E-F) with depth-integrated annual mean WOA13
temperature for 0–200 m water depth. The data are compared with the global core-top dataset of Kim et al. (2010a) (D) based on satellite-
derived annual mean SSTs (Eq. (3)) and (F) based on depth-integrated annual mean temperatures for 0–200 m water depth (Eq. (6)). The
global core-top data from >1000 m water depth are indicated as yellow filled circles. RS and MS indicate the Red Sea and the Mediterranean
Sea, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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nitrifiers (e.g., Könneke et al., 2005; Wuchter et al., 2006;
Yakimov et al., 2011) this may sustain a relatively abundant
population of deep water dwelling Thaumarchaeota that
apparently have a different GDGT composition in this type
of deep restricted basins. This may result in a stronger con-
tribution of deep water Thaumarchaeota in sediments com-
pared to open ocean settings where a trend with water
depth is not observed in TEX86 values (Tierney and
Tingley, 2014). This deep water contribution alters the
TEXH

86 values but in such a way that apparently the temper-
ature signal from the upper water column (i.e., epipelagic
zone) remains apparent. However, because of the deep
water contribution, the relationship between TEXH

86 values
and temperatures of the upper water column is now differ-
ent compared to that of open ocean settings.
4.5. Testing the deep-water TEXH
86-SST relationship at

>1000 m water depth sites

Here we examine if the new empirical relationship based
on sedimentary isoGDGT data from >1000 m water depth
in the marginal, landlocked seas (Eq. (4)) would better pre-
dict annual mean SST changes in the deep restricted basins
at water depth >1000 m than the global core-top calibra-
tion (Eq. (3); Kim et al., 2010a). We converted TEXH

86 val-
ues to SSTs using both Eq. (3) (global core-top calibration)
and Eq. (4) (‘deep-water calibration’) for two sediment
cores from the Alboran Sea in the western Mediterranean
Sea (Fig. 2A): core 434G (1108 m water depth) and core
293G (1840 m water depth) and compared them with previ-
ously published UK0

37 -derived SSTs (Rodrigo-Gámiz et al.,
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2014). As an alternative approach to the global core-top
calibration and the regional deep water calibration, we esti-
mated SSTs using the BAYSPAR calibration model, apply-
ing the “standard prediction” mode, which assumes that the
oceanographic conditions are sufficiently similar to present
day, and using the default settings (Tierney and Tingley,
2014).

Cores 434G and 293G from the western and eastern
Alboran Sea (Rodrigo-Gámiz et al., 2014) cover the last
14 and 20 kyr, respectively (Fig. 10A and B). For core
293G, UK0

37 -derived SSTs vary between 10 and 20 �C, with
an SST increase of ca. 7 �C from the end of the Last Glacial
Maximum (LGM) to the Early Holocene (Rodrigo-Gámiz
et al., 2014). For core 434G, UK0

37 -derived SSTs range from
14 to 22 �C, following those observed for core 293G, but
being ca. 2 �C higher during most of the Holocene
(Rodrigo-Gámiz et al., 2014). The higher UK0

37 -derived SSTs
in the western Alboran Sea were interpreted as resulting
from a southeastward migration of cold waters to the east-
ern Alboran Sea during late autumn and spring and a
resulting divergence in the haptophyte blooming seasons
between the western and eastern Alboran Sea (Rodrigo-
Gámiz et al., 2014). TEXH

86-derived SSTs using the global
core top calibration (Eq. (3); Kim et al., 2010a) are much
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Fig. 10. Application of TEXH
86 and UK0

37 proxies and their calibra-
tions to two sediment cores from the western Mediterranean Sea.
Three TEXH

86 records are shown based on the global core-top
calibration (red curve), the Mediterranean deep water calibration
(blue curve), and the BAYSPAR standard prediction model
(purple curve). The UK0

37 values were converted into temperature
values (black curves) applying a global core-top calibration
(ðT ¼ UK0

37 � 0:044Þ=0:033) of Müller et al. (1998): (A) core 434G
(36�12.313 N, 4�18.735 W; 1108 m water depth; Rodrigo-Gámiz
et al., 2014) and (B) core 293G (36�10.414 N, 2�45.280 W; 1840 m
water depth; Rodrigo-Gámiz et al., 2014). The BIT index was
shown as green curves. MIS indicates marine isotope stage. (For
interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
higher (red curve) for both cores, with a range of 11–
26 �C for core 293G and 17–26 �C for core 434G. In con-
trast, when TEXH

86 values are translated into SSTs using
the empirical ‘deep-water calibration’ (Eq. (4); blue curve),
TEXH

86-derived SSTs are much closer to UK0

37 -derived ones,
with a range of 9–20 �C for core 293G and 13–20 �C for
core 434G. Similarly, SST estimates using the BAYSPAR
calibration vary between 7 and 22 �C for core 293G and
between 12 and 22 �C for core 434G. All three TEXH

86-
derived records are quite similar compared to each other,
with the same range of temperatures as the UK0

37 -derived
SSTs from the eastern Alboran Sea during the Holocene.
However, the TEXH

86-derived temperature difference
between the LGM and the Early Holocene is somewhat lar-
ger (9 �C for the deep water calibration, and 11 �C for the
BAYSPAR) than that derived from UK0

37 (7 �C). This is
due to lower TEXH

86-derived SSTs during the LGM than
the UK0

37 -derived SSTs. The BIT values (green curve) are well
below the cut-off value of 0.3 (Weijers et al., 2006). There-
fore, an impact of continental-derived organic matter input
on the TEXH

86 values is likely negligible. Together, this study
shows that the regional relationship between TEXH

86 and
SST for deep-water restricted basins as well as the BAY-
SPAR calibration, which effectively allows for regional
variations in calibrations, may be applicable over glacial
to interglacial time scales. It also supports our finding that
seasonality may not be a primary cause for a warm bias of
the TEXH

86 proxy in the Mediterranean Sea. Further
research is required before this relationship can be confi-
dently applied as a calibration to estimate temperatures in
the Mediterranean Sea and the northern Red Sea.

5. CONCLUSIONS

We investigated isoGDGT distributions of core-top sed-
iments and SPM from the Mediterranean Sea and discussed
potential environmental factors influencing the TEXH

86 pale-
othermometer. We observe that TEXH

86-derived SSTs were
much cooler along the coast than the satellite-derived
annual mean SSTs, while warmer TEXH

86-derived SSTs pre-
vailed at deep-water sites. Our RDA results showed that,
when considering only the four isoGDGTs that are used
for the TEXH

86 proxy, water depth is the most significant
parameter. In fact, one of the most striking features in
our dataset is a strong positive relationship between water
depth and TEXH

86 due to elevated fractional abundances
of GDGT-2 and crenarchaeol regio-isomer and lower abun-
dances of GDGT-1 and GDGT-3 at deep-water sites. Most
likely, Thaumarchaeota thriving in deep-water masses pro-
duce isoGDGTs in different distributions in comparison to
those of surface-dwelling Thaumarchaeota. Intriguingly,
the TEXH

86 data from the deep-water (bathypelagic) part
(>1000 m water depth) are not correlated anymore with
water depth but instead are strongly correlated with annual
mean SSTs. The composite deep-water TEXH

86 dataset com-
posed of the Mediterranean Sea and the northern Red Sea
surface sediments at >1000 m shows a correlation with SST
that is clearly distinct from the global core-top dataset. By
applying this deep-water relationship, the TEXH

86 SST esti-
mates for two sediment cores from the Alboran Sea in the
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western Mediterranean Sea are much closer to UK0

37 -derived
SSTs than those using the global core-top calibration. This
suggests that a regional calibration based on a deep-water
TEXH

86 dataset may be applicable for deep restricted basins
to reconstruct past ocean water temperatures, although the
reason remains unclear. Clearly, more detailed water-col-
umn studies covering different seasons, water depths, and
oceanographic provinces are essential for better under-
standing export dynamics of isoGDGTs and thus the extent
of the influence of deep-water derived isoGDGTs to sedi-
mentary isoGDGT distributions.
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bution of river-borne soil organic carbon to the Gulf of Lions
(NW Mediterranean). Limnol. Oceanogr. 55, 507–518.

Kim J.-H., Romero O. E., Lohmann G., Donner B., Laepple T.,
Haam E. and Sinninghe Damsté J. S. (2012a) Pronounced
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Sinninghe Damsté J. S. (2007b) Analytical Methodology for
TEX86 Paleothermometry by High-Performance Liquid Chro-
matography/Atmospheric Pressure Chemical Ionization-Mass
Spectrometry. Anal. Chem. 79, 2940–2944.

Schouten S., Pitcher A., Hopmans E. C., Villanueva L., van
Bleijswijk J. and Sinninghe Damsté J. S. (2012) Intact polar and
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A. D., Dutta K., Eglinton T., Fosse C., Galy V., Grice K.,
Hinrichs K.-U., Huang Y., Huguet A., Huguet C., Hurley S.,
Ingalls A., Jia G., Keely B., Knappy C., Kondo M., Krishnan
S., Lincoln S., Lipp J., Mangelsdorf K., Martı́nez-Garcı́a A.,
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