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EMBEDDING TRUST: A GAME-THEORETIC MODEL
FOR INVESTMENTS IN AND RETURNS
ON NETWORK EMBEDDEDNESS

Vincenz Frey, Vincent Buskens, and Werner Raub
Department of Sociology=ICS, Utrecht University, Utrecht,
The Netherlands

Social relations through which information disseminates promote efficiency in social and

economic interactions that are characterized by problems of trust. This provides incentives

for rational actors to invest in their relations. In this article, we study a game-theoretic

model in which two trustors interact repeatedly with the same trustee and decide, at the

beginning of the game, whether to invest in establishing an information exchange relation

between one another. We show that the costs the trustors are willing to bear for establishing

the relation vary in a non-monotonic way with the severity of the trust problem. The will-

ingness to invest in the information exchange relation is high particularly for trust problems

that are neither too small nor too severe.

Keywords: embeddedness, game theory, network formation, reputation, social dilemmas

1. INTRODUCTION

The idea that social relations are a resource for actors to achieve various goals
is widely accepted. It is due to this idea that social relations are often referred to as
‘‘social capital’’ (Lin, 2002). People receive information about job openings through
their weak ties (Granovetter, 1973; Ioannides & Loury, 2004). Firms profit from
close and committed relations to their buyers and suppliers (Kirman, 2001; Uzzi,
1996). And information exchange relations with third parties mitigate problems of
trust (Buskens & Raub, 2002; Coleman, 1990; DiMaggio & Louch, 1998). Often,
however, social relations are not simply an exogenously given constraint. If they
have instrumental value, actors have incentives to actively establish and maintain
relations with an eye on returns that can be expected (Flap, 2004; Lin, 2002, Chap.
8). People have incentives to maintain weak ties in order to gain access to valuable
information. Firms have incentives to engage in committed buyer–seller relations.
And in situations in which we need to trust others, we have incentives to establish
information exchange relations.

In this article, we devise and analyze a game-theoretic model for the
simultaneous study of investments in and returns on social relations. How infor-
mation exchange relations with third parties facilitate trust will be our focus. We
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model how social structure in the sense of relations through which information
about reputations can spread mitigates the social dilemma that is inherent to
situations characterized by trust problems. We simultaneously endogenize the
social structure by modeling actors’ incentives to establish information exchange
relations.

We want to be specific about what we mean with a ‘‘situation characterized
by trust problems’’ and about the benefits that social relations have in this context.
In a trust situation, a trustor first decides whether to place trust in a trustee. If the
trustor places trust, the trustee can choose between honoring and abusing trust.
The trustor regrets having placed trust if the trustee abuses trust but benefits if
the trustee honors trust. The trustee likewise benefits from honored trust compared
to no trust being placed, but it is likely that he could earn an extra profit by abus-
ing trust. Therefore, if the interaction is happening in isolation (that is, if the trus-
tor has no information about the trustee’s behavior in past interactions and
behavior in the current interaction will not affect future interactions), the trustee
is expected to take this extra profit if he has the possibility. Anticipating this,
the trustor is expected not to place trust. Because both actors would be better
off if trust was placed and honored, such a trust situation represents a social
dilemma. The trust game (Dasgupta, 1988; Kreps, 1990), which we will introduce
in Section 2, provides a formal model for trust situations.

It is well established theoretically and as an empirical finding that the cooper-
ative outcome with trust being placed and honored can be reached if the interaction
is embedded in a long-term relation and, especially, if it is embedded in a network
through which information about behavior disseminates (Buskens, Raub, & Van
der Veer; 2010; Coleman, 1990; DiMaggio & Louch, 1998; Huck, Lünser, & Tyran;
2010; Raub & Weesie, 1990; for a survey, see Buskens & Raub, 2013). Buskens
and Raub (2002) distinguish two mechanisms through which ‘‘embeddedness’’
(Granovetter, 1985) can promote trust and trustworthiness, namely, learning and
control. In a long-term relation, a trustor can learn from her experiences about
the behavior of the trustee. In addition, the trustor has the possibility to sanction
an abuse of trust by not placing trust again in future interactions. This gives the trus-
tor some control over the trustee: it creates a ‘‘shadow of the future’’ (Axelrod, 1984)
that can deter untrustworthy behavior and, therefore, make trust warranted.
Embeddedness in a network through which information spreads amplifies these
effects: it allows a trustor to learn also from the experiences of other trustors and
a trustee may be sanctioned for an abuse of trust also by other trustors who receive
information about his behavior. Therefore, embeddedness in an information net-
work can mitigate the social dilemma, making high levels of trust and trustworthi-
ness possible that could not be reached without the network.

In this article, we move beyond the analysis of the returns on information
exchange relations. We treat such relations as endogenous and assume that actors
establish them with an eye on the returns that can be expected. We thus model
the co-evolution of relations for information exchange and behavior in trust
situations. The question that we pose is: Under what circumstances are trustors
who interact with the same trustee most likely to invest in an information exchange
relation between one another in order to reap the benefits of trust and trustworthiness?
To derive theoretical answers to this question, we focus on the smallest possible
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scenario, namely, a triad. The game-theoretic model that we devise assumes two trus-
tors who both interact a finite number of times with the same trustee and who are
uncertain about whether the trustee has an incentive to abuse trust. Before interacting
with the trustee, the two trustors can decide whether or not—at costs—to establish
a relation between one another. If they establish the relation, they subsequently
communicate about the behavior of the trustee after every interaction. Consequently,
each trustor can learn about the trustee also from the other trustor’s past interactions
and each trustor benefits also from the other trustor’s opportunities to sanction
the trustee.

In our analysis, we first establish the returns on the information exchange
relation. To this end, we identify the sequential equilibrium of the interactions
between the trustors and the trustee after the trustors have or have not established
the information exchange relation. We, thus, model the effects of network embedd-
edness building on the theory of reputation building in a sequential equilibrium of a
finitely repeated game with incomplete information that was pioneered by Kreps,
Milgrom, Roberts, and Wilson (1982) and Kreps and Wilson (1982a). This approach
assumes fully rational actors and accounts for effects of learning as well as effects of
control. Related models for reputation building and embeddedness effects often
consider only control effects (Raub & Weesie, 1990; Eguı́luz, Zimmermann,
Cela-Conde, & San Miguel, 2005; Vega-Redondo, 2006) or assume boundedly
rational, backward-looking actors and consider only learning effects (Macy &
Flache, 2002; Nowak & Sigmund, 2005; Roca, Sánchez, & Cuesta, 2012). After hav-
ing established the returns on the information exchange relation, we identify under
what conditions the trustors will establish this relation. We assume fully rational
behavior also at this stage of the game, while models for the co-evolution of net-
works and behavior typically assume that actors choose to create, maintain, or sever
a link based on some simple backward-looking criterion (Skyrms & Pemantle, 2000;
Pujol, Flache, Delgado, & Sangüesa, 2005). Finally, by means of a comparative stat-
ics analysis, we show that the maximum cost that the trustors are willing to bear for
establishing the information exchange relation, that is, the trustors’ willingness to
invest, varies in a nonmonotonic way with the size of the trust problem. The trustors’
willingness to invest first increases as the trust problem becomes more severe and
then decreases again as trust gets ever more problematic. This suggests that the
formation of information exchange relations as a means to support trust and trust-
worthiness is most likely in trust problems that are neither too small nor too severe.

The article is organized as follows. In Section 2, we present the model in detail.
In Section 3, we analyze the model and present our results. Finally, in Section 4, we
conclude and point out directions for future research. Sections A.1 through A.7
provide additional results and the proofs.

2. THE MODEL

Before we introduce our model, we want to introduce its main building block,
namely, the trust game (TG; Dasgupta, 1988).1 The TG has two players—a trustor

1Throughout the article, we use standard game theory terminology and assumptions. See, e.g.,

Fudenberg and Tirole (2000) for a textbook.
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(she) and a trustee (he)—and it starts with the trustor’s decision whether or not to
place trust. In the case of no trust, the TG ends and trustor and trustee receive
the payoffs P1 and P2, respectively. In the case of trust, the trustee decides whether
to honor or abuse trust. Honored trust leaves both actors better off compared with
no trust, earning them R1>P1 and R2>P2, respectively. If the trustee abuses trust,
the trustor earns S1<P1 and, hence, regrets having placed trust. Below we use the
TG in different contexts. It depends on the context in which the TG is used whether
it is assumed that the trustee could earn a higher payoff than R2 by abusing trust and
whether the trustor is informed about the incentives of the trustee.

2.1. One-Shot Trust Games With Complete and Incomplete
Information

In the standard trust game with complete information (Dasgupta, 1988; Kreps,
1990), it is assumed that the trustee could earn T2>R2 by abusing trust and that the
trustor knows that the trustee has an incentive to abuse trust. It is easily seen that the
standard trust game has a unique subgame-perfect equilibrium such that the trustee
would abuse trust and the trustor does not place trust. As trust being placed and
honored would leave both actors better off, the standard trust game represents a
social dilemma.

It is known from experiments, however, that a considerable portion of trustees
actually honor trust also if the standard trust game or a similar game is played only
once (see, e.g., Camerer, 2003, Chap. 2, for an overview). Moreover, if the trustor
was certain about the behavior of the trustee, the notion of trust would be superflu-
ous. In fact, one can argue that the trust problem arises from the trustor’s uncer-
tainty about the behavior of the trustee, which will be determined by the trustee’s
preferences and constraints. The trustee might, for example, honor trust because
he derives more utility from honoring trust than from abusing trust due to interna-
lized norms and values that trigger internal sanctions when he abuses trust.2

The possibility that the trustee may have no incentive to abuse trust and the
uncertainty on the side of the trustor is accounted for in the trust game with incom-
plete information (Camerer & Weigelt, 1988; Dasgupta, 1988). The trust game with
incomplete information starts, as shown in Figure 1, with a random move of Nature
that determines the trustee’s incentives (his type). After this move, the trustor and the
trustee play a TG together in which the trustor does not know whether the trustee
does have an incentive to abuse trust. We interpret the actors’ payoffs as utilities
and model the trustee’s type via his payoffs. With probability p the trustee’s payoff
from abusing trust is T2� h<R2 and with probability 1� p the trustee’s payoff from
abusing trust is T2>R2. That is, with probability p the trustee has no incentive to
abuse trust and with probability 1� p he does (just as in the standard trust game)
have an incentive to abuse trust. The trustee knows his incentives, whereas the trus-
tor cannot directly observe the outcome of the move of Nature and is only informed
on the probability p. In Figure 1, the trustor does not know whether she has to move
at the left or the right node. This is indicated by the dashed line that includes these

2Alternatively, the trustee might have the desire but not the opportunity to abuse trust.
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nodes in one information set. The equilibrium solution is straightforward to identify.
A trustee with payoffs T2� h<R2 (a friendly trustee) would always honor trust; a
trustee with payoffs T2>R2 (an opportunistic trustee) would always abuse trust.
Hence, the trustor’s expected payoff from placing trust is pR1þ (1� p)S1 while
her payoff from not placing trust is P1. The trustor’s unique equilibrium strategy
is thus not to place trust if p< (P1�S1)=(R1�S1) and to place trust if p> (P1�
S1)=(R1�S1). If p¼ (P1�S1)=(R1�S1), the game has multiple equilibria because
both strategies of the trustor yield the same expected payoff. The quantity (P1�
S1)=(R1�S1) can be interpreted as a measure of the risk a trustor incurs when pla-
cing trust (see Buskens, 2002; Snijders, 1996). For later use in our analysis, we define
RISK :¼ (P1�S1)=(R1�S1).

2.2. A Game With Investments in Network Embeddedness

We thus far assumed a one-shot interaction between a trustor and a trustee.
In many contexts, however, trust interactions are embedded in long-term relations
and=or in a network of relations through which reputations can spread. In the game
C that we study, we assume that the same trustor and trustee interact together some
finite number (N� 1) of times. Moreover, we assume that the trustee interacts also with
a second trustor and we allow the two trustors to invest in network embeddedness—
a relation between one another through which they can exchange information about
the behavior of the trustee.

2.2.1. The Structure of C. C starts in period 0.1 with a random move of
Nature ‘‘choosing’’ a trustee of the friendly type or of the opportunistic type with
probabilities p and 1� p, respectively. The probability p is common knowledge. In
period 0.2, the two trustors, who are not informed about the outcome of the move
of Nature, can decide whether or not to establish, at costs, the information exchange
relation between one another for the rest of the game. Then, one TG (the stage game)
is played in each of the remaining periods 1, 2,..., 2N. Each trustor i, i¼ 1, 2, plays in

FIGURE 1 Extensive form of a trust game with incomplete information. S1<P1<R1, P2<R2<T2, and

T2� h<R2.
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half of these periods and the trustee plays in every period. Every odd period starts
with a move of Nature that determines with equal and independent probability
whether trustor 1 plays a TG with the trustee in that period while trustor 2 plays
a TG with the trustee in the subsequent even period or vice versa. In which sequence
the two trustors interact with the trustee in an odd and the subsequent even period is
made common knowledge before the TG of the odd period is played.3

The investment decision that the trustors take in period 0.2 is specified as
follows. Each trustor chooses independently to propose to invest or not to propose
to invest. If both trustors propose to invest, the information exchange relation
(henceforth, often simply referred to as relation) gets established and each trustor
carries half of the total investment cost C> 0 that is necessary to establish the
relation. If only one trustor proposes to invest, the relation does not get established
(as if no trustor proposed to invest) but also the trustor who proposed to invest
incurs no cost. We thus assume that a trustor cannot freeride on the investment of
the other trustor. This investment rule corresponds to a prevalent assumption in
the literature on network formation, namely, two-sided link formation with shared
costs of creating a link (Jackson, 2008, Chap. 6).

Whether or not the relation got established has the following consequences
for the information available to each trustor in periods 1 to 2N. If the trustors
established the relation in period 0.2, they subsequently exchange information
about the outcomes of their interactions with the trustee directly after every
TG. So, when making her choice in a given TG, a trustor knows the outcomes
(the realized moves) of all TGs that have been played prior to that TG. On
the other hand, if the trustors have not established the relation, the trustors never
exchange information and, hence, the trustor at play in a given TG knows
the outcomes of her own previous TGs but does not know the outcomes of
the previously played TGs in which the other trustor participated. Note that
we assume that information is always truthful.

The outcome of the trustors’ investment decision is made common knowledge
before the trustors interact with the trustee. Hence, when choosing whether to
honor or abuse trust in a given TG, the trustee knows whether only the trustor with
whom he is playing the current TG will be informed on his choice or whether the
other trustor will be informed too. The trustors know that the trustee knows this
and so forth.

2.2.2. Further Assumptions on C and an Illustrating Example. We
assume that the structure of C is common knowledge and that C is played as
a non-cooperative game. We also assume that the two trustors’ stage-game payoffs
are identical and we continue denoting them with R1, P1, and S1. The trustee’s
stage-game payoffs (indexed with 2) may differ from the trustors’ payoffs in the sense
that, for example, P1 6¼ P2. An actor’s total payoff in C is the sum of the undis-
counted payoffs that the actor received in the TGs, minus the cost of an investment
in period 0.2. For instance, consider the situation that N¼ 3 and both trustors

3It could alternatively be assumed that trustor 1 always interacts with the trustee in the odd periods

while trustor 2 always plays in the even periods. The analysis of this alternative scenario yields very similar

but somewhat more complicated results.
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propose to invest in period 0.2. Subsequently, trustor i places trust in her first two
TGs but not in her last TG and the trustee honors her trust in the first two TGs.
Trustor i ’s total payoff is then

UC
Trustor i ¼ R1 þ R1 þ P1 �

C

2
:

Alternatively, if trustor i is the only one who proposed to invest or if none of the
trustors proposed to invest and, subsequently, trustor i never places trust, her total
payoff is

UC
Trustor i ¼ P1 þ P1 þ P1:

3. ANALYSIS OF THE MODEL

In our analysis of C, we assume rational behavior in the trust interactions as well
as in the investment decision. Moreover, we assume rational beliefs in the sense that the
trustors update their beliefs about the trustee’s type following Bayes’ rule. We analyze
under what conditions C has an equilibrium such that the trustors invest in the establish-
ment of the information exchange relation. To identify under what conditions C has
such an ‘‘investment equilibrium,’’ we first establish what the trustors can expect to
happen in their TGs after they have or have not established the relation. In
Subsection 3.1, we sketch the concept of reputation building in a sequential equilibrium
and introduce the necessary notation for the formal specification of a sequential
equilibrium. In Subsections 3.2 and 3.3, we specify the sequential equilibrium for the
scenario that the relation has or has not been established. Comparing the payoffs
the trustors can expect in these two scenarios for periods 1 to 2N, we then, in
Subsection 3.4, identify the expected return on investment in the information exchange
relation and specify under what conditions C has an investment equilibrium. Finally,
in order to derive testable predictions, we analyze in Subsection 3.5 how changes in
the parameters of the game affect the return on investment and, hence, the maximum
cost of investment for which C has an investment equilibrium.

3.1. Trust and Trustworthiness as a Result of Conditional Behavior
and Reputation Building

If the trustors knew with certainty that the trustee is of the opportunistic type,
backward induction would predict that they never place trust, irrespectively of
whether the relation has been established. With incomplete information about the
trustee’s incentives, however, trust being placed and honored during all but the last
few periods can be an equilibrium outcome. This has been established by Camerer
and Weigelt (1988; see also Bower, Garber, & Watson, 1997; Buskens, 2003), who
apply the analysis of reputation building in sequential equilibrium pioneered by
Kreps et al. (1982) and Kreps and Wilson (1982a) to finitely repeated trust games.
Informally, a combination of beliefs and strategies constitutes a sequential equilib-
rium (Kreps & Wilson, 1982b) if the beliefs are justified by the strategies following
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Bayesian updating and the strategies are best replies against the others’ strategies
given the beliefs.

To illustrate why trust being placed and honored in all but the last few periods
can be a sequential equilibrium, assume that a trustor places trust in an early period
of the repeated game. In this case, trust may be honored for two different reasons.
First, the trustee may have no incentive at all to abuse trust because he is of the
friendly type. Second, the trustee may have a short-term incentive to abuse trust
but follow an incentive for reputation building. Specifically, an opportunistic trustee
may honor trust because he knows that if a trustor gets the information that he ever
abused trust, the trustor can infer that he must be of the opportunistic type and
decide never to place trust again in future periods. On the other hand, if the trustee
does honor trust, the trustor, while remaining uncertain about the trustee’s type,
might become more confident that he is of the friendly type and place trust again
in the future. A trustor can anticipate on such reputation building by an opportun-
istic trustee. She may, therefore, be inclined to indeed place trust in an early period of
the game even if the probability that the trustee is of the friendly type is small. As the
end of the game approaches, however, an opportunistic trustee’s incentive to main-
tain a reputation for being trustworthy decreases and he might, therefore, abuse
trust, leading to no trust being placed anymore by a trustor who is informed about
the abuse of trust. Conversely, anticipating this, a trustor might choose not to place
trust anymore even if she has no information that the trustee has abused trust
previously. Thus, the sequential equilibrium with trust being placed and honored
in all but the last few periods results from a subtle interplay of the trustors who
try to learn about and to control the trustee, taking the trustee’s incentives for
reputation building into account, and a trustee who balances the long-term effects
of his reputation and the short-term incentives for abusing trust, taking into account
that the trustors anticipate on this balancing.

In the following two subsections we establish the sequential equilibrium of the per-
iods 1 to 2N of C after the relation has or has not been established. In this, we build clo-
sely on the analyses of finitely repeated TGs with one, two, or more trustors by Camerer
and Weigelt (1988), Bower et al. (1997), Anderhub, Engelmann, and Güth (2002) and
Buskens (2003). We refer the reader to these studies as well as to Fudenberg and Tirole
(2000, Chap. 8) for a detailed derivation of the sequential equilibrium.

Before proceeding, we need to introduce some more notation. First, we refer
to the continuation of the game after the relation has or has not been established
in period 0.2 as (continuation game) Cþ and (continuation game) C�, respectively.
To describe the actors’ strategies, we let ti

n denote the probability that trustor i
at play in period n places trust in that period, and we let hn denote the probability
that a trustee of the opportunistic type honors trust in that period. It is clear
that because a friendly trustee has no short-term incentive to abuse trust, he will
always honor trust with probability 1. To describe the trustors’ beliefs, we let pi

n

stand for trustor i ’s belief at the start of period n that the trustee is of the friendly
type. At the beginning of period 1 this belief equals the prior probability (pi

1 ¼ p, for
i¼ 1, 2). At the end of every period, each trustor updates her belief following Bayes’
rule. Note that pi

n also is the trustee’s reputation; it indicates what type he is thought

to be. Finally, similar to RISK :¼ P1 �S1

R1 �S1
, we define TEMP :¼ T2 �R2

T2 �P2
as a second
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measure pertaining to the payoffs of the stage game. While RISK measures the risk a
trustor incurs when placing trust (Section 2.1), TEMP measures an opportunistic
trustee’s temptation to abuse trust (see Buskens, 2002; Snijders, 1996).

3.2. Analysis of C�

Our first theorem specifies the unique sequential equilibrium of C�, that is, in
periods 1 to 2N of C after the trustors have not established the information exchange
relation.4 In C�, each trustor is only informed on the outcomes of her own past TGs
but not on the outcomes of the TGs that the other trustor played with the trustee.

Theorem 1. The beliefs and strategies specified below constitute the unique
sequential equilibrium of C�.

. Belief of trustor i in period n that the trustee is of the friendly type:

– If, in period n� 1, trustor i did not place trust or was not at play, then pi
n ¼ pi

n�1.
– If, in period n� 1, trustor i placed trust and trust was honored, then

pi
n ¼ max(RISKd

2N�nþ1
2 e; pi

n�1).
– If, in period n� 1, trustor i placed trust and trust was abused, then pi

n ¼ 0.

. Probability that (if at play) trustor i places trust in period n:

– If pi
n > RISKd

2N�nþ1
2 e, then ti

n ¼ 1.

– If pi
n ¼ RISKd

2N�nþ1
2 e, then ti

n ¼ TEMP.

– If pi
n < RISKd

2N�nþ1
2 e, then ti

n ¼ 0.

. Probability that an opportunistic trustee honors trust of trustor i at play in period n:

– If pi
n � RISKb

2N�nþ1
2 c, then hn¼ 1.

– If pi
n < RISKb

2N�nþ1
2 c, then hn ¼ pi

n

1�pi
n

1

RISK
b2N�nþ1

2
c
� 1

� �
:

Sections A.1 through A.7 provide the proofs of our theorems.
We describe the course of behavior and beliefs in the equilibrium defined in

Theorem 1 focusing on the interactions between some trustor i and the trustee. In
C�, the sequential equilibrium of the interactions between some trustor i and the
trustee is identical to the sequential equilibrium of the finitely repeated TG with
incomplete information and only one trustor (see Anderhub et al., 2002; Bower
et al., 1997; Camerer and Weigelt, 1988). What happens in the interactions between
the focal trustor and the trustee is independent of what happens in the interactions
between the other trustor and the trustee.

4In the game C, the set of sequential equilibria coincides with the set of perfect Bayesian equilibria.

That is, a combination of beliefs and strategies that is a sequential equilibrium of Cþor C� is also a perfect

Bayesian equilibrium of the respective continuation game (see Fudenberg & Tirole, 2000, Theorem 8.2).
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The equilibrium of the interactions between each trustor i and the trustee
can be described as evolving over three phases. Initially, trustor i places trust and
the trustee honors trust. In this first phase, trustor i does not change her belief,
knowing that either type of trustee would always honor trust. As the end of the game
comes closer, the second phase starts. In the first TG of the second phase, trustor
i still places trust with probability 1 while the opportunistic trustee begins to
randomize (because trustor i would afterwards not place trust anymore without
being convinced that the probability that she is playing with a friendly trustee
exceeds the prior probability p). Then, both actors randomize and trustor i becomes
more and more confident that the trustee is of the friendly type until the first instance
that she does not place trust or that the trustee abuses her trust.5 Thereafter, the
third phase starts: trustor i does not place trust anymore.

We let s denote how many TGs need to be left to play between trustor i and
the trustee for trust still being placed and honored with certainty. If, for example,
the opportunistic trustee’s randomization (the second phase) starts in the next to last
TG of trustor i, s¼ 2. It follows from Theorem 1 that the integer s is such that p lies
in the interval [RISK s, RISK s�1). This implies that

s ¼ log p
log RISK

� �
: ð1Þ

It can be seen from Eq. (1) that s increases stepwise in RISK and decreases
stepwise in p. That is, the second phase tends to start earlier if the risk associated
with placing trust is higher and if the probability of playing with a friendly trustee
is smaller.

Note furthermore that s is independent of N. Hence, if s is larger or N is
smaller, the phase in which trust is placed and honored with certainty (the first
phase) is shorter. Even more, the equilibrium evolves over three phases as described
above only if s<N. If s¼N, the opportunistic trustee randomizes already in the first
TG. If s>N, trustor i never places trust because, given the parameters, the game
is too short for the opportunistic trustee to start building a reputation.

Theorem 2 specifies a trustor’s expected payoff associated with the unique
sequential equilibrium of C�.

Theorem 2. The expected payoff for a trustor in C�is

UC�

1 ¼ ðN � sÞR1 þ S1 þ p R1�S1

RISKs�1

� �
þ ðs� 1ÞP1 if s � N

NP1 if s > N.

(

Previous studies on reputation building in finitely repeated games provide no
explicit account of expected payoffs. In our analysis, however, knowing the expected
payoff of a trustor in C� (and in Cþ) is crucial; we therefore want to briefly sketch
the intuition behind Theorem 2. If s>N, a trustor never places trust and receives

5While the trustee becomes more likely to abuse trust as the end of the game approaches, the

trustors randomize with a constant probability.
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a payoff of NP1. If s�N, each trustor receives R1 in her first N� s TGs. Then, in the
TG in which an opportunistic trustee starts to randomize while the trustor still places
trust with probability 1, a trustor’s expected payoff is R1(pþ (1� p)

hN�sþ1)þS1(1� p)(1� hN�sþ1). This reduces to S1 þ p R1�S1

RISK s�1, which we, henceforth,

sometimes denote by X1 and which must be marginally smaller than R1 and, in
equilibrium, must be at least as large as P1 (i.e., P1�X1<R1). Finally, a trustor’s
expected total payoff for her last s� 1 TGs is (s� 1)P1, which follows from the fact that
in these TGs a trustor is (at best) indifferent between placing and withholding trust.

To summarize, the course of behavior in the N interactions between each
trustor i and the trustee in C� depends essentially on p and RISK that together
determine s. N and s determine whether trust is possible at all, and if so, in how
many of her TGs trustor i will benefit from trust being placed and honored with
certainty. With every unit increase in s, the number of TGs of trustor i in which
her trust is placed and honored with certainty decreases by 1 and, accordingly,
trustor i’s expected payoff decreases by R1�P1.6

The analysis furthermore reveals how much a trustor suffers from the trust
problem. Compared to an ideal world in which a trustor would earn NR1, trustor
i’s loss due to the trust problem is (s� 1)(R1�P1)þR1�X1, where P1�X1<R1.
We use this as a measure for the size of the trust problem. Specifically, we define
the (approximate) size of the trust problem as s(R1�P1), that is, as the number of
TGs a trustor does not benefit from trust being placed and honored with certainty
multiplied by the value that trust being placed and honored has for a trustor.
We, thus, say that the trust problem is larger (more severe) if R1�P1 is larger or
if s is larger (because RISK is larger or p smaller).

3.3. Analysis of Cþ

An opportunistic trustee has a stronger incentive to build and maintain
a reputation for being trustworthy in Cþ than in C�. In Cþ, each trustor receives
information not only on the outcomes of her own TGs but also on the outcomes
of the TGs that the other trustor plays with the trustee. This is common knowledge
and the trustee, hence, knows that his choice in a given TG might affect not only the
future choices of the trustor with whom he plays that TG but also the future choices
of the other trustor. He knows, for example, that if he abuses trustor i’s trust, also
the other trustor will from then on know that she must be playing with an opportun-
istic trustee and will not place trust anymore. Hence, the long-term consequences
that an opportunistic trustee has to consider when making his choice in a given
TG in Cþ are the same as if he played all remaining TGs with the trustor with whom
he plays that TG. The long-term costs of an abuse of trust are, thus, larger in Cþ

than in C�, whereas, obviously, the short-term incentive to abuse trust is the same
in both continuation games. Our third theorem specifies the unique sequential equi-
librium that results in the interactions between the trustors and the trustee in Cþ.

6Note that p and RISK also determine the trustor’s expected payoff for the period in which the

opportunistic trustee starts to randomize (X1). The stage-game payoffs of the trustee only determine the

randomization probability of the trustors but do not affect their expected payoffs.
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Theorem 3. The beliefs and strategies specified below constitute the unique sequen-
tial equilibrium of Cþ.

. Belief of trustor i in period n that the trustee is of the friendly type:

– If, in period n� 1, trust was not placed, then pi
n ¼ pi

n�1.
– If, in period n� 1, trust was placed and honored, then pi

n ¼ maxðRISK2N�nþ1;
pi

n�1Þ.
– If, in period n� 1, trust was placed and abused, then pi

n ¼ 0.

. Probability that (if at play) trustor i places trust in period n:

– If pi
n > RISK2N�nþ1, then ti

n ¼ 1.

– If pi
n ¼ RISK2N�nþ1, then ti

n ¼ TEMP.

– If pi
n < RISK2N�nþ1, then ti

n ¼ 0.

. Probability that an opportunistic trustee honors trust of the trustor i at play in period
n:

– If pi
n � RISK2N�n, then hn¼ 1.

– If pi
n < RISK2N�n, then hn ¼ pi

n

1�pi
n

1
RISK2N�n � 1
� �

:

In the sequential equilibrium of Cþ specified in Theorem 3, the trustee and the
trustor at play in a given TG behave as if they played all 2N TGs together, that is, as
if there was only one trustor playing 2N TGs with the trustee. The sequential equi-
librium of Cþ evolves over the same three phases as the sequential equilibrium of the
interactions between each trustor i and the trustee in C�. First, both trustors place
trust and the trustee honors trust with probability 1 until and including the TG after
which there are in total s TGs left to be played, that is, until and including period
2N� s, where s is determined by RISK and p as specified in Eq. (1). Then, the ran-
domization begins and after the first instance that one of the trustors did not place
trust or that the trustee abused trust, both trustors do not place trust anymore. These
three phases obtain if s< 2N. If s¼ 2N, the trustee randomizes already in the first
period; if s> 2N, the trustors never place trust.

Theorem 4 specifies a trustor’s expected payoff associated with this equilibrium
of the continuation game Cþ.

Theorem 4. In Cþ, the expected payoff for a trustor is

UCþ

1 ¼
ð2N�sÞR1þ S1þp

R1�S1

RISKs�1

� �
þðs�1ÞP1

2 if s � 2N

NP1 if s > 2N.

8<
:

To understand how a trustor’s expected payoff for Cþ is calculated, realize that
in the case that s� 2N, each trustor plays expectedly in half of the periods 1 to 2N� s
in which the trustor at play earns R1 as well as in half of the s� 1 periods for which
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the expected payoff of the trustor at play is P1 and each trustor has a 50% chance
of playing in the period in which the trustee’s randomization starts.

We have now established what the trustors can expect to happen in equilibrium
in their interactions with the trustee after they have or have not established the
information exchange relation. In the next section, we establish the expected return
on investment and the condition for the existence of an equilibrium such that the
trustors establish the relation.

3.4. Returns on and Investments in Network Embeddedness

When choosing whether or not to propose to invest in the information
exchange relation in period 0.2, a rational trustor will weigh the cost of investment
against the expected return on investment. The expected return on investment—the
value that the relation has for a trustor—derives from the difference in a trustor’s
expected payoffs in Cþ and C� and can be calculated as r1 ¼ UCþ

1 �UC�
1 , where

r1 denotes a trustor’s expected return on investment.7 r1 can also be interpreted
straightforwardly as a trustor’s ‘‘willingness to invest,’’ i.e., the maximum cost
of investment a rational trustor is willing to incur in order to establish the relation.
Theorem 5 specifies r1 and establishes that C always has an investment equilibrium
if the cost of investment per trustor is smaller than r1.

Theorem 5. In C, an equilibrium such that both trustors propose to invest (an
investment equilibrium) exists if and only if for each trustor the cost of investment
(C=2) does not exceed the expected return on investment (r1), that is, iff C=2� r1,
where r1 falls in the following intervals:

if s � N; s�1
2 ðR1 � P1Þ < r1 � s

2 ðR1 � P1Þ
if N < s � 2N; 2N�s

2 ðR1 � P1Þ � r1 < 2N�ðs�1Þ
2 ðR1 � P1Þ

if s> 2N; r1 ¼ 0:

Theorem 5 distinguishes three scenarios. If s�N, there is an equilibrium
phase in which trust is placed and honored with certainty in Cþ as well as C� but
this phase is longer in Cþ because an opportunistic trustee remains trustworthy in
Cþ until he has only half as many TGs left with each trustor compared to the
situation in C�.8 If N< s� 2N, trust is placed with certainty in at least the first
TG in Cþ but the trustors never place trust in C� because, given p and RISK, the
game is too short for the trustee to start building a reputation if the information
exchange relation has not been established. Finally, if p or N is very small or RISK
very large such that s> 2N, trust is not even possible in Cþ.

7The specification of C implies that, as UCþ
1 and UC�

1 , r1 is identical for the two trustors.
8In other words, the ‘‘endgame’’ of s TGs in which trust and trustworthiness are not certain

anymore occurs for each trustor separately and in its full length in C�. In Cþ, however, the endgame

occurs only once and each trustor plays in half of the s TGs of the endgame.
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In the third scenario with trust being not even possible in Cþ, there is no
return on embeddedness and a trustor is not willing to incur any cost C=2> 0 for
establishing the relation. For the other two scenarios, Theorem 5 specifies intervals
for r1. To understand the specification of the intervals, note that r1 roughly equals
the number of TGs in which a trustor would profit from trust being placed and
honored with certainty in Cþ but not in C� multiplied with the benefit of honored
trust compared to no trust (R1�P1). Thus, if s�N, r1 � s

2 ðR1 � P1Þ because
a trustor expectedly benefits from trust being placed and honored with certainty until
she has s=2 TGs left in Cþ but only until she has s TGs left in C�. If N< s� 2N,
implying that trust is only possible in Cþ, the number of additional TGs in which
a trustor would profit from trust being placed and honored with certainty if the
relation gets established simply equals the number of TGs in which she would
expectedly do so in Cþ (namely, (2N� s)=2) and, thus, r1 � 2N�s

2 ðR1 � P1Þ.
This calculation of r1 yields the precise r1 if the payoff that a trustor can

expect for the interaction in which an opportunistic trustee begins to randomize
(X1) equals P1. If X1 6¼ P1, i.e., if a trustor’s expected payoff for the TG in which
randomization starts is not the same as her expected payoff for the subsequent
TGs, r1 is somewhat larger or smaller. Specifically, the intervals specified in
Theorem 5 show that, for a given N and s, r1 can be up to E< (R1�P1)=2 smaller
(larger) if s�N (N< s� 2N). We provide the exact formulas for r1 in the proof of
Theorem 5. Note, however, that the specification in Theorem 5 and the approxi-
mation of r1 are sufficient to derive the main comparative statics.

Theorem 5 states that C=2� r1 is a necessary and sufficient condition for
the existence of an equilibrium such that the trustors establish the relation. Such
an equilibrium is never unique, however. That both trustors do not propose to invest
is always part of an equilibrium. Because the relation only gets established if both
trustors propose to invest, each trustor is indifferent between proposing to invest
and not proposing to invest given the other trustor does not propose to invest.
We note, however, that if C=2< r1, the investment equilibrium risk-dominates
and payoff-dominates the ‘‘no investment equilibrium.’’ If C=2< r1, a trustor will
(in expectations) never lose by proposing to invest (because she only incurs the cost
if the relation does get established), while she (in expectations) would gain if the
other trustor proposed to invest.

3.5. Comparative Statics

In this section, we investigate the comparative statics of r1 in order to derive
testable predictions. What we present can be interpreted interchangeably as the com-
parative statics of (i) the value of embeddedness, (ii) the potential return on invest-
ment, or (iii) the maximum cost of investment per trustor for which C has an
investment equilibrium. Because r1 ¼ UCþ

1 �UC�
1 , it is clear that the parameters that

determine UC�
1 as well as UCþ

1 , namely p, S1, P1, R1, and N, also fully determine r1. In
the following, we treat the ceteris paribus effect of a change in each of these para-
meters in a separate subsection. We formulate our results for changes in p, S1, P1,
and R1 such that they state how r1 changes as the parameter under study changes
in the direction that tends to lead to an increase in s (an earlier start of the rando-
mization). We thus, for example, establish how r1 changes if p decreases. To focus
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on parameter changes that tend to lead to an earlier start of the randomization phase
and, therefore, to deviate from the standard practice to focus on effects of increases
in all parameters allows presenting the results more efficiently.

Our approximation of r1 suggests that a change in some parameter may affect
r1 by (i) affecting in how many additional TGs a trustor would benefit from trust
being placed and honored with certainty if the relation gets established and=or (ii)
by affecting the value of honored trust compared with no trust (R1�P1). The latter
will be the case only if R1 or P1 changes. The former may occur if N changes or if a
change in p, S1, P1, or R1 triggers a change in s, that is, in how early randomization
starts. There is a third and somewhat more subtle way in which a parameter change
can affect r1. Namely, r1 may change due to a change in p, S1, P1, or R1 that does not
trigger a change in s but ‘‘only’’ leads to a change in the payoff a trustor can expect
for the TG in which randomization starts (X1). Our analyses show that r1 is affected
in the same direction by a change in p, S1, P1, or R1 irrespective of whether this
change triggers a change in s or only affects X1. In order to provide some intuition
for our results without being overwhelmed by details, we focus our explanations on
parameter changes that affect s and do not consider the effects of parameter changes
that affect X1 but not s.

3.5.1. Changes in p. Theorem 6 establishes how r1 changes as the probability
that the trustee is of the friendly type (p) decreases.

Theorem 6. Given the specification of C and the definitions of s and r1, it holds that:

. If s�N, r1 increases as p decreases.

. If N< s� 2N, r1 decreases as p decreases.

Theorem 6 states that as p decreases the value of the relation first increases and
then decreases again. To understand this result, recall that if p is smaller, s tends to
be larger, that is, randomization tends to start earlier. Recall further that if trust is
also possible if the relation has not been established, a trustor would benefit in Cþ

from trust being placed and honored with certainty until she has s=2 TGs left,
whereas she would do so in C� only until she has s TGs left. Hence, if p decreases
such that s increases and p is large enough also after the decrease such that, given
RISK and N, trust is possible also in C�, the number of additional TGs in which
a trustor could benefit from honored trust with certainty (s=2) increases and, conse-
quently, r1 increases. The relation becomes more valuable because avoiding half
of the phase in which trust and trustworthiness are not certain anymore is more
valuable the longer this phase is. The effect of a decrease in p on r1 is opposite if trust
is not possible in C�, both before and after the decrease in p, but possible in Cþ, at
least before the decrease in p. In this case, a decrease in p that leads to an earlier start
of randomization (an increase in s) leads to a decrease in the number of TGs in
which a trustor could benefit from trust being placed and honored with certainty
in Cþ while leaving UC�

1 unchanged at NP1, and, consequently, it leads to a decrease
in r1. Note further that if p is so small that, given RISK and N, trust is not even
possible in Cþ, r1¼ 0 irrespectively the precise p.

Figure 2 visualizes how r1 depends on p in an example with N¼ 3 and
RISK¼ 0.5. It provides a more detailed picture than Theorem 6, illustrating also
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the additional results established in Lemma 1 in Section A.3. Figure 2 quantifies r1 in
terms of R1�P1 and shows that r1 is largest (namely, r1¼N(R1�P1)=2) if trust
would be placed and honored with certainty in half of the 2N TGs in Cþ while in
C� the trustee’s randomization would start in the first TG of each trustor and p is
just large enough such that the trustee does not want to start randomizing a TG ear-
lier (in Figure 2 at the border of the intervals s¼ 3 and s¼ 4). The figure further
shows that the increase towards the maximum as well as the decrease thereafter is
monotonic and stepwise linear.9

3.5.2. Changes in S1. Theorem 7 establishes how r1 changes as the payoff
a trustor receives if the trustee abuses her trust (S1) decreases. If S1 is smaller,
RISK is larger and, consequently, s tends to be larger, that is, randomization tends
to start earlier.

Theorem 7. Given the specification of C and the definitions of s and r1, it holds that:

. If s�N, r1 increases as S1 decreases.

. If N< s� 2N, r1 decreases as S1 decreases.

Theorem 7 shows that the potential return on investment increases as S1

decreases as long as trust remains possible also in C�. As S1 decreases further and
trust is only possible in Cþ, the potential return on investment decreases. It is also
clear that as S1 gets so small that trust is not even possible in Cþ, r1¼ 0. Thus, r1

changes in the same manner if S1 decreases as it changes if p decreases. This is
not surprising. Neither a decrease in S1 nor a decrease in p affects the value of
honored trust compared to no trust (R1�P1) while both lead to an earlier start of
randomization and, hence, affect in the same way the expected number of additional
TGs in which a trustor could benefit from trust being placed and honored with
certainty if the relation gets established. We provide additional details on how r1

9It can be seen from Figure 2 that the increase towards the maximum and the decrease thereafter is

not linear even though r1 depends linearly on p for changes in p that do not affect s because the range of p
for which s is constant is smaller, the smaller p.

FIGURE 2 The effect of changes in p on r1 in an example with RISK¼ 0.5 and N¼ 3.
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depends on S1 in Section A.4. and we note that a figure could be drawn for the
dependence of r1 on S1 that is similar to Figure 2.

3.5.3. Changes in P1. Theorem 8 establishes how r1 is affected by an increase
in the payoff a trustor receives if she does not place trust (P1). If P1 is larger, the
trustors are more reluctant to place trust and s tends to be larger, i.e., randomization
tends to start earlier.

Theorem 8. Given the specification of C and the definitions of s and r1, it holds that:

. If s�N, r1 increases as P1 increases.

. If N< s� 2N, r1 decreases as P1 increases.

Theorem 8 shows the maximum cost for which C has an investment
equilibrium changes in the same direction due to an increase in P1 as due to
a decrease in p or S1. The mechanics associated with a change in P1 are more
complicated, however. An increase in P1 may lead to an earlier start of the randomi-
zation and, hence, affect the number of additional TGs in which a trustor would
benefit from trust being placed and honored with certainty in Cþ. At the same
time, an increase in P1 also reduces the value of honored trust compared to no trust
(R1�P1). If trust is not possible in C� while (at least before the increase in P1) trust
is possible in Cþ, these two effects have the same direction: both contribute to
a decrease in r1. However, if trust is also possible in C� before and after the increase
in P1, the two effects are opposed to one another. To see that in this case r1 increases
if P1 increases requires going into the details of how a change in P1 affects X1

(which is partly via the effect of a change in P1 on the probability that an oppor-
tunistic trustee honors trust in the interaction in which he starts to randomize).

3.5.4. Changes in R1. Theorem 9 establishes how r1 changes as the payoff
a trustor gets if she places trust and the trustee honors trust (R1) decreases. If R1

is smaller, s tends to be larger, i.e., randomization tends to start earlier.

Theorem 9. Given the specification of C and the definitions of s and r1, it holds that
if s� 2N, r1 decreases as R1 decreases.

Similar to a change in P1, a decrease in R1 affects r1 through a decrease
in (R1�P1) and, potentially, through an increase in s as well as a decrease in the
probability that an opportunistic trustee honors trust in the interaction in which
he starts to randomize. Theorem 9 shows that, as long as trust is possible in at least
the first TG of Cþ, the total of these effects is such that r1 decreases as R1 decreases.

3.5.5. Changes in N. Finally, Theorem 10 specifies how a change in the
number of repetitions (N) affects r1.

Theorem 10. Given the specification of C and the definitions of s and r1, it holds that:

. If Nþ 1� s� 2(Nþ 1), r1 increases as N increases.

. If s�N or s> 2(Nþ 1), r1 does not change as N increases.
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Theorem 10 establishes that r1 increases due to an increase in N if trust is
possible in Cþ but not in C� before and after the increase in N, whereas r1 does
not change if trust is also not possible in Cþ after the increase in N or if trust is
possible also in C� already before the increase. In the former case, an increase
in N means adding a period in which each trustor would earn P1 in C� but R1

in Cþ. In the latter case, a trustor’s expected payoff for Cþ and C� both change in
the same way and, consequently, r1 does not change. In the proof, we also quantify
how r1 changes due to changes in N.

3.5.6. Summarizing. Theorems 6 and 7 show that as p or S1 decreases, the
return on the information exchange relation first increases and then decreases again.
These effects can be summarized in relation to the size of the trust problem that we
defined in Section 3.2 as s(R1�P1). Recall that if p or S1 decreases, randomization
tends to start earlier (that is, s tends to increase) and, hence, the trust problem
becomes larger. Thus, Theorems 6 and 7 show that the maximum cost of investment
per trustor for which C has an investment equilibrium varies in a non-monotonic
way if the size of the trust problem increases due to a decrease in p or in S1.
The trustors’ willingness to invest first increases as the trust problem gets more severe
but after some point (if the trust problem becomes so severe that trust is not possible
without the information exchange relation) the trustors’ willingness to invest
decreases again as the trust problem gets even more severe. The trustors’ willingness
to invest changes in the same non-monotonic manner if P1 increases, whereas it
always decreases if R1 decreases (Theorems 8 and 9). Changes in P1 and R1 cannot
be related straightforwardly to changes in the size of the trust problem. Changes
in P1 and R1 affect s and R1�P1 simultaneously but not in the same direction.

Finally, let us note that if N becomes large, the range in which the trustors’
willingness to invest decreases if p or S1 decreases or P1 increases becomes small.
In the example shown in Figure 2 with RISK¼ 0.5 and N¼ 3, the trustors’
willingness to invest (r1) increases if the proportion of friendly trustees (p) decreases
from close to 100% to 12.5% (0.53) and it decreases if p decreases from 12.5% to 1.6%
(0.56). For N¼ 4, r1 would decrease only if p decreases from 6.3% (0.54) to 0.4%
(0.58). More generally, for large N, r1 will increase for most of the parameter space
if p or S1 decrease or if P1 increases. Only in a small part, the effects in the opposite
direction are expected. This can be interpreted as follows: if the game is repeated
often enough, the trust problem is unlikely to be too severe for an investment
in network embeddedness to pay off.10

4. CONCLUSION AND DISCUSSION

We devised and analyzed a model for the simultaneous investigation
of investments in and returns on information exchange relations in the context of
trust problems. We modeled trust problems using the trust game and assumed that
two trustors interact a finite number of times with the same trustee. The trustors
do not know whether the trustee maximizes his payoff in the one-shot trust game
by abusing trust but they do know the probability of interacting with such an

10We owe this remark to an anonymous reviewer.
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‘‘opportunistic trustee.’’ We specified the conditions for the existence of an
equilibrium such that the trustors establish an information exchange relation
between one another in order to benefit from an extended phase of trust and trust-
worthiness. The major results of the analyses can be summarized in the prediction
that the maximum cost that the trustors are willing to incur for establishing
the information exchange relation (the trustors’ willingness to invest) varies in
a non-monotonic way in the size of the trust problem. The trustors’ willingness
to invest is largest if the trust problem is neither too small nor too severe. This
suggests that the formation of information exchange relations as a means to support
trust and trustworthiness is most likely in trust problems of intermediate severity.

This new prediction suggests that transitivity in networks—the proportion of
closed triads—might be larger in contexts in which actors interact in situations that
feature substantial but also not too extreme trust problems. In addition, our model
provides one possible explanation for homophily—the tendency of people in similar
situations or with similar interests to link to one another. Studies provide some
evidence that people form long-term relations and choose to transact within such
relations in order to mitigate trust problems and that they do this particularly
if the trust problem is neither too small nor too severe (DiMaggio & Louch, 1998;
Kollock, 1994; Simpson & McGrimmon, 2008; Yamagishi, Cook, & Watabe,
1998). However, it remains to be investigated empirically whether people establish
information exchange relations in order to reap the benefits of trust and trust-
worthiness and whether they tend to do this especially if the trust problem is of
intermediate severity.

Before we point out directions for future theoretical research, we want to
briefly discuss our related work. In Raub, Buskens, and Frey (2013; see also Raub,
Frey, & Buskens, 2014), we study a similar game but assume complete information
and indefinite repetition; the game ends with some positive probability after each of
the periods in which all trustors interact with the trustee about whom they know that
he has a short-term incentive to abuse trust. In this model, a network for information
exchange does not give the trustors additional opportunities to learn about the trus-
tee (they anyway know that he has a short-term incentive to abuse trust). The net-
work does, however, give the trustors more control over the trustee. It makes it
possible that the trustee gets sanctioned for an abuse of trust by not being trusted
again not only by the focal trustor but also by other trustors. Therefore, also in a
situation with complete information, a network for information exchange can make
trust and trustworthiness possible in situations in which it would not be possible
without the network (cf. Raub & Weesie, 1990). Other than in the game studied in
the current article, the equilibria of this alternative model depend crucially on the
trustee’s incentives (rather than the incentives of the trustors). This alternative
model, which also covers scenarios with more than two trustors as well as social
dilemmas other than the trust game, allows deriving a number of additional results
but the main conclusion is likewise that the formation of an information exchange
network between the trustors is most likely if the trust problem is neither too small
nor too severe.

We believe that the game introduced in this article offers a promising frame-
work for addressing further questions on the formation of social relations as a means
to mitigate trust problems. Moreover, we conjecture that our main prediction is
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invariant to some alternative specifications of the game. First, we assumed two-sided
link formation with shared costs of creating a link. This ‘‘investment rule’’ does not
reflect that a trustor may have an incentive to freeride on the other trustor’s effort to
establish the relation (cf. Coleman, 1990, Chap. 12). Our main results would also
hold, however, if the investment rule was such that the trustors share the cost of
establishing the relation (C) if they both propose to invest and that a trustor pays
the total cost if she is the only one who proposes to invest. One can check that also
in this scenario, in which freeriding is possible, there exists an equilibrium such that
the relation gets established only if the return on embeddedness for each trustor is
at least as large as half of the total cost of establishing the relation (if r1�C=2).11

The investment rule that we assumed furthermore neglects that one may regret
having exerted an effort if the relation does not get established because one’s effort
is not reciprocated. To account for this, it could be assumed that a trustor loses
her investment (C=2) if she is the only one who proposes to invest. It can be checked
that also with this investment rule, there is an equilibrium such that the trustors
establish the relation only if r1�C=2. Thus, our main results appear to be rather
robust to the exact specification of the investment rule.

Second, our model could be adapted for the study of the formation of
a complete network for information exchange between k� 2 trustors who interact
with the trustee. Suppose that in total kN trust games are played such that every
subsequent k periods, each trustor plays once with the trustee and that the order
in which the trustors interact with the trustee within some k periods is determined
randomly (and announced publicly) at the beginning of these periods. If there
is no network for information exchange, each trustor earns the same expected payoff
as in the corresponding scenario of the presented model (UC�

1 ). On the other hand,
if there is a network for information exchange, each trustor can avoid (k� 1)=k of
the (s) interactions in which trust and trustworthiness are not certain anymore
and earn an expected payoff of ((kN� s)R1þX1þ (s� 1)P1))=k, which is equal
to UCþ

1 if k¼ 2 and where P1�X1<R1. Our approach to model returns on and
investments in information exchange relations (network embeddedness) may also
be adapted to model returns on and investments in long-term relations (dyadic
embeddedness). Specifically, one could calculate the benefit a trustor derives
from interacting repeatedly with the same trustee instead of interacting with different
trustees as her expected payoff of playing a finitely repeated game of N periods
minus her expected payoff of playing N one-shot games.

The presented game could furthermore be used to model the formation of
interaction relations instead of information exchange relations. Suppose two trustors
have a priori an information exchange relation between each other. If they interact
with different trustees, each gets the payoff UC�

1 , whereas each receives the payoff
UCþ

1 if they both interact with the same trustee. This suggest that two trustors
who share an information exchange relation may be willing to ‘‘pay a premium’’

11Given this alternative investment rule, the relation will get established in equilibrium by the

investment of one trustor if r1>C, although this does create coordination problems similar to a Chicken

Game. If C� r1�C=2, it will be an equilibrium that the trustors establish the relation jointly and if

r1<C=2, there cannot be an equilibrium such that the relation gets established.
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to a trustee who has the capacities to enter an interaction relation with both of them,
particularly if the trust problem is neither negligible nor extremely severe.

Finally, our model could be adapted for the study of investments in infor-
mation exchange by the trustee. It might, at first sight, seem counterintuitive that
a trustee with an incentive to abuse trust in the one-shot game could want to make
such an investment. After all, information exchange between the trustors restricts
his possibilities to abuse trust. Yet, information exchange between the trustors leads
to an extended phase of trust and trustworthiness precisely because it restricts the
trustee’s opportunities to abuse trust and this also benefits the trustee. Therefore,
a trustee can invest in information exchange as an act of incurring a credible
commitment (Schelling, 1960; Raub, 2004), namely, he can commit to remaining
trustworthy for a longer phase. The analysis of a game with investments in infor-
mation by the trustee will be more complicated, however, because a trustee’s invest-
ment decision might signal whether he has a short-term incentive to abuse trust.

The major strength of our study is that we devised a model for an integrated
and simultaneous analysis of the formation of social relations and the effects of such
relations on behavior in trust problems. We derived a new prediction from this
model, namely, that two trustors who interact with the same trustee are most likely
to establish an information exchange relation between one another in order to reap
the benefits of trust and trustworthiness if the trust problem is neither too small nor
too severe.
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APPENDIX: PROOFS AND ADDITIONAL RESULTS

This appendix provides the proofs for our Theorems and is structured
as follows. We begin with a sketch of the proofs of Theorems 1 to 4 on the sequential
equilibria of the continuation games C� and Cþ and the associated expected payoffs.
These proofs relate to earlier results on sequential equilibria in finitely repeated games
and are taken together in one section (Section A.1). The proof of the condition for the
existence of an investment equilibrium (Theorem 5) is found in Section A.2, and the
proofs of the comparative statics results for changes in p, S1, P1, and R1 are presented
in Sections A.3 to A.6. The latter proofs all proceed over the same three steps that we
explain in Section A.3 for the effect of changes in p. Sections A.3 and A.4 additionally
provide Lemmas 1 and 2, which, respectively, imply Theorem 6 and Theorem 7 and
establish in more detail how r1 depends on p and S1. Finally, the last section provides
the proof of the effect of changes in N (Theorem 10).

A.1. Sketch of the Proof of Theorems 1 to 4: Equilibria
and Payoffs in C� and Cþ

In the analysis of C� and Cþ, we restrict the focus to equilibria that
satisfy sequential rationality. In C� (where each trustor is only informed about
the outcomes of her own interactions with the trustee), the sequential equilibrium
of the interactions between some trustor i and the trustee is identical to the sequential
equilibrium of the finitely repeated TG with incomplete information and only one
trustor. What complicates Theorem 1 (leading to the rounding in the exponents)
is that, in C�, the number of TGs trustor i and the trustee have left to play together
after a given TG is the same irrespectively of whether this TG is played in an odd or
the subsequent even period. In Cþ (where each trustor receives information also
about the TGs of the other trustor), the sequential equilibrium as specified in
Theorem 3 is such that with a given number of TGs left in total, the strategies
and beliefs of the trustor at play and the trustee are as in the sequential equilibrium
of the game with only one trustor, in the sense that the trustor’s belief is the same as if
she had played in all past TGs and that the strategies are the same as if she played in
all the remaining TGs (see also Camerer and Weigelt, 1988). Buskens (2003) provides
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a formulation of the sequential equilibrium of the game with only one trustor that is
similar to the formulation of our theorems.12 Bower et al. (1997) provide the proof of
this equilibrium for N¼ 2 and also for N> 2, which follows by induction. The proof
that this is (generically) the unique equilibrium that satisfies sequential rationality is
likewise found in Bower et al. (1997) and follows from the sketch of the derivation of
the sequential equilibrium of the ‘‘one-trustor game’’ by Anderhub et al. (2002,
Section 2). We note that the uniqueness of the sequential equilibrium is conditional
on the assumption of some reasonable refinement of out-of-equilibrium beliefs such
as the intuitive criterion (see Anderhub et al., 2002) and the assumption that the only
type of incomplete information is that the trustors are incompletely informed about
whether or not the trustee has a short-term incentive to abuse trust (see Fudenberg
and Maskin, 1986). The formulas for the calculation of the expected payoff of
a trustor in C�and Cþ as specified in Theorems 2 and 4, respectively, are implied
by the sequential equilibria of these continuation games and their derivation is
described in the main text.

A.2. Proof of Theorem 5: r1 and the Existence of
Investment Equilibria

As stated in Section 3.4, a trustor’s potential return on investment can be
calculated as r1 ¼ UCþ

1 �UC�
1 . This calculation yields

r1 ¼

sðR1�P1ÞþP1� S1þ p
RISKs�1ðR1�S1Þ

� �
2 if s � N

ð2N�sÞðR1�P1Þþ S1þ p
RISKs�1ðR1�S1Þ

� �
�P1

2 if N < s � 2N
0 if s > 2N:

8>>>><
>>>>:

ð2Þ

This precise specification of r1 (which we use in the rest of our proofs) implies
the intervals for r1 that Theorem 5 provides. Specifically, because P1 � S1 þ

p
RISKs�1 ðR1 � S1Þ < R1 (that is, because the payoff a trustor can expect for the TG

in which she still places trust with probability 1 while the opportunistic trustee
begins to randomize is smaller than R1 and, by the equilibrium property, must be

at least as large as P1), Eq. (2) implies that if s�N, s�1
2 ðR1 � P1Þ < r1 � s

2 ðR1 � P1Þ
and that if N< s� 2N, 2N�s

2 ðR1 � P1Þ � r1 <
2N�ðs�1Þ

2 ðR1 � P1Þ.
An investment equilibrium exists if and only if, for each trustor, C=2� r1.

If C=2� r1, proposing to invest maximizes a trustor’s expected payoff, given
the other trustor proposes to invest, because the relation cannot be established
by the other trustor alone. On the other hand, if C=2> r1, both trustors
proposing to invest, is not an equilibrium because given that the other trustor
proposes to invest, proposing to invest leaves the focal trustor (expectedly)
worse off than not proposing to invest.

12Note that we count periods forward starting with 1 counting up to 2N, whereas in Buskens (2003),

as in many of the related papers, periods are counted backward such that the last period is period 1.
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A.3. Additional Results for Changes in p and Proof of Theorem 6

Lemma 1 provides additional details on how r1 changes in p and implies
Theorem 6. Lemma 1 quantifies the effects of a change in p and establishes that if
trust is possible in Cþ as well as in C� (possible in Cþ but not in C�), r1 increases
(decreases) in a stepwise linear manner as p decreases.

Lemma 1. Given the specification of C and the definitions of s and r1, it holds
that:

. If sþ 1�N, r1 increases as p decreases; more specifically,

– r1 increases by 1
2 ðR1 � P1Þ if p decreases from RISKs to RISKsþ1.

– r1 increases linearly as p decreases gradually from RISKs to RISKsþ1.

. If N< sþ 1� 2N, r1 decreases as p decreases; more specifically,

– r1 decreases by 1
2 ðR1 � P1Þ if p decreases from RISKs to RISKsþ1.

– r1 decreases linearly as p decreases gradually from RISKs to RISKsþ1.

Procedure for the Proof of the Comparative Statics Results. To prove
Lemma 1, as well as to prove the postulated effects of changes in S1, P1, and
R1, we proceed in three steps. The procedure is best explained with reference to
Figure A1. As Figure 2, Figure A1 shows how r1 depends on p in an example with
N¼ 3 and RISK¼ 0.5.

In the following proofs, we fix, as an anchor, a situation such that the oppor-
tunistic trustee’s randomization starts some given number of TGs before the end of
the game and such that a trustor is indifferent between placing and withholding trust
in the TG in which randomization starts. That is, we fix a situation in which p and

FIGURE A1 Illustration for the visualization of the procedure used to prove the effect of changes in p on r1

(example with RISK¼ 0.5 and N¼ 3).
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RISK are such that for a given s, to which we refer as s0, p is precisely at the

right-hand border of the interval ðRISKs0�1;RISKs0 �, the ‘‘interval s0.’’ Figure A1
presents the example in which we fix the interval (p¼ 0.5, p¼ 0.25], where s¼ 2,
as the interval s0.

In step 1, we show that r1 changes as postulated if the parameter under study
changes such that s increases by 1 and that after the change a trustor is again
indifferent between placing and withholding trust in the TG in which the trustee’s
randomization starts. We thus show how r1 changes if p is at the right border of
the interval s0 before the parameter change, whereas after the para meter change,
p is at the right border of the adjacent ‘‘s interval’’ on the right, that is, the s interval
in which randomization starts one TG earlier. We refer to the latter interval as the

interval s0þ 1 and we let r
s0�
1 and r

s0þ1�
1 denote r1 for the case that p is precisely at the

right border of the interval s0 and s0þ 1, respectively. This notation is somewhat
cumbersome and we stress that the superscripts ‘‘s0]’’ and ‘‘s0þ 1]’’ for r1 are indexes
and not exponents. For the example illustrated in Figure A1, we thus show in step 1

that r1 increases by 1
2 ðR1 � P1Þ if p changes from 0.25 to 0.125. More generally, as we

do not actually fix a specific s0, step 1 in the proof of the effects of changes in p shows

that for any s0, r
s0�
1 ¼ r

s0þ1�
1 � 1

2 ðR1 � P1Þ if s0þ 1�N and r
s0�
1 ¼ r

s0þ1�
1 þ 1

2 ðR1 � P1Þ
if N< s0þ 1� 2N.

In step 2, we prove that r1 changes as postulated if the parameter
under study changes such that we move again back towards the right border of

the interval s0. That is, we show how rs0þ1
1 (where we now use the superscript

‘‘s0þ 1’’ to denote r1 for any case that p is in the interval s0þ 1) changes if p
increases within the interval s0þ 1 or if R1, P1, or S1 changes such that RISK
decreases and, therefore, the s intervals shift to the right. Specifically for changes
in p, we show that an increase in p within the interval s0þ 1 leads to a linear decrease

(increase) in rs0þ1
1 if s0þ 1�N (if N< s0þ 1� 2N).

Finally, we show, in step 3, that the limit of rs0þ1
1 as we approach the right

border of the interval s0 is larger or equal to (smaller or equal to) r
s0�
1 if r

s0�
1 <

r
s0þ1�
1 (if r

s0�
1 > r

s0þ1�
1 ). Specifically, for the example illustrated in Figure A1,

we show in step 3 that if p increases and more and more closely approaches

0.25 (and, as established in step 2, rs0þ1
1 , consequently, decreases), rs0þ1

1 always

remains at least as large as r
s0�
1 .

Proof of Lemma 1. Step 1. If p ¼ RISKs0 , the payoff a trustor can expect in
the TG in which the trustee begins to randomize (X1 ¼ S1 þ p

RISKs0�1 ðR1 � S1Þ)
equals P1. Hence, for the case that p is at the right border of the interval s0, r1

(as specified in Eq. (2)) reduces to r
s0�
1 ¼

s0

2 ðR1 � P1Þ and r
s0�
1 ¼

2N�s0

2 ðR1 � P1Þ
for s0�N and N< s0� 2N, respectively. For p ¼ RISKs0þ1, it likewise holds

that X1¼P1 (i:e:;S1 þ p
RISKs0þ1�1 ðR1 � S1Þ ¼ P1) and, hence, r

s0þ1�
1 ¼ s0þ1

2 ðR1 � P1Þ
and r

s0þ1�
1 ¼ 2N�ðs0þ1Þ

2 ðR1 � P1Þ for s0þ 1�N and N< s0þ 1� 2N, respectively.

Consequently, if p decreases from RISKs0 to RISKs0þ1, r1 increases (decreases) by
1
2 ðR1 � P1Þ if s0þ 1�N (if N< s0þ 1� 2N).
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Step 2. The derivative of r1 in p, neglecting that s is a function of p, is

@r1

@p ¼ � 1
2

R�S
RISKs�1 if s � N;

@r1

@p ¼ 1
2

R�S
RISKs�1 if N <s � 2N:

This shows that a marginal increase in p by Dp> 0 that does not affect s leads

to a decrease (increase) in rs0þ1
1 by Dp

2
R1�S1

RISKs0þ1�1 > 0 if s0þ 1�N (if N< s0þ 1� 2N).

Thus, if s0þ 1�N (if N< s0þ 1� 2N), rs0þ1
1 decreases (increases) linearly if p

increases within the interval s0þ 1.
Step 3. From Eq. (2), it follows that within a s interval, a change in p affects r1

exclusively through a change in X1 such that r1 changes by 1
2 DX1. Hence, because

P1�X1<R1, a change in p within some s interval leads at maximum to a change

in r1 by 1
2 ðR1 � l� P1Þ for some l> 0, which is smaller than the change in r1 that

results from a change in p as considered in step 1. This shows that rs0þ1
1 cannot

become smaller (larger) than r
s0�
1 if r

s0�
1 < r

s0þ1�
1 (if r

s0�
1 > r

s0þ1�
1 ).

A.4. Additional Results for Changes in S1 and Proof of Theorem 7

Lemma 2 establishes in detail how r1 changes as S1 decreases and implies
Theorem 7. Recall that a decrease in S1 leads to an increase in RISK and potentially
to an earlier start of randomization.

Lemma 2. Consider the specification of C and the definitions of s and r1 and define

ŜS1 and �SS1 such that P1�ŜS1

R1�ŜS1

� �s
¼ P1��SS1

R1��SS1

� �sþ1

¼ p. It holds that:

. If sþ 1�N, r1 increases as S1 decreases; more specifically,

– r1 increases by 1
2 ðR1 � P1Þ if S1 decreases from ŜS1 to �SS1.

– r1 increases strictly monotonically as S1 decreases gradually from ŜS1 to �SS1.

. If N< sþ 1� 2N, r1 decreases as S1 decreases; more specifically,

– r1 decreases by 1
2 ðR1 � P1Þ if S1 decreases from ŜS1 to �SS1.

– r1 decreases strictly monotonically as S1 decreases gradually from ŜS1 to �SS1.

We prove Lemma 2 by going through the three steps introduced above.

Step 1. Given p ¼ P1�ŜS1

R1�ŜS1

� �s0

, r1 reduces to s0

2 ðR1 � P1Þ and 2N�s0

2 ðR1 � P1Þ
for s0�N and N< s0� 2N, respectively. Given p ¼ P1��SS1

R1��SS1

� �s0þ1
, r1 reduces to s0þ1

2

ðR1 � P1Þ and 2N�ðs0þ1Þ
2 ðR1 � P1Þ for s0þ 1�N and N< s0þ 1� 2N, respectively.

Hence, a decrease in S1 from ŜS1 to �SS1, leads to an increase (decrease) in r1 by
1
2 ðR1 � P1Þ if s0þ 1�N (if N< s0þ 1� 2N).
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Step 2. The derivative of r1 in S1, neglecting that s is a function of S1, is

@r1

@S1
¼ � 1

2 1� p
RISKs�1 þ ðs� 1Þ p

RISKs ð1� RISKÞ
� �

if s � N;

@r1

@S1
¼ 1

2 1� p
RISKs�1 þ ðs� 1Þ p

RISKs ð1� RISKÞ
� �

if N <s � 2N:

This shows that if s0þ 1�N, a marginal increase in S1 by DS1> 0 that does not affect s

leads to a change in rs0þ1
1 by �DS1

2

�
1� p

RISKs0þ1�1 þ ðs0 þ 1� 1Þ p
RISKs0þ1 ð1� RISKÞ

�
.

This must be smaller than 0 (that is, a decrease in rs0þ1
1 ) because p must be in the

interval (RISKs0þ1�1, RISKs0þ1], which implies that p
RISKs0þ1�1 < 1 and p

RISK s0þ1 � 1.

If N< s0þ 1� 2N, a marginal increase in S1 for which p remains in the interval

s0þ 1 leads to an equivalent increase in rs0þ1
1 . Thus, if s0þ 1�N (if N< s0þ 1� 2N),

rs0þ1
1 decreases (increases) monotonically if S1 increases such that p remains in the

interval s0þ 1.
Step 3. The argument provided in step 3 of the proof of Lemma 1 holds also for

changes in S1 as it did there for changes in p. From Eq. (2), it follows that a change
in S1 for which p remains in the same s interval affects r1 exclusively through

a change in X1 such that r1 changes by 1
2 DX1. Hence, because P1�X1<R1, a change

in S1 for which p remains in the same s interval leads at maximum to a change in r1

by 1
2 ðR1 � l� P1Þ for some l> 0, which is smaller than the change in r1 that results

from a change in S1 as considered in step 1. This shows that rs0þ1
1 cannot become

smaller (larger) than r
s0�
1 if r

s0�
1 < r

s0þ1�
1 (if r

s0�
1 > r

s0þ1�
1 ).

A.5. Proof of Theorem 8: Changes in P1

To prove Theorem 8, we go through the same three steps as in the preceding
two proofs. Recall that an increase in P1 leads to an increase in RISK and, hence,
potentially to an increase in s.

Step 1. The change in P1 that we consider here is an increase from some P1

to P1þ l (where 0< l<R1�P1) such that p ¼ P1�S1

R1�S1

� �s0

¼ P1þl�S1

R1�S1

� �s0þ1

, that is,

a change in P1 that leads to an increase in s by 1 and where before and after the
change X1¼P1 and X1¼P1þ l, respectively. We treat the scenario that s0þ 1�N
in step 1.a and the scenario that N< s0þ 1� 2N in step 1.b.

Step 1.a. Given s0þ 1�N, r
s0�
1 ¼

s0

2 ðR1 � P1Þ and r
s0þ1�
1 ¼ s0þ1

2 ðR1 � ðP1 þ lÞÞ.
Subtracting r

s0þ1�
1 from r

s0�
1 , we see that r1 changes by 1

2 ðlðs0 þ 1Þ � ðR1 � P1ÞÞ.
If (as postulated) r1 increases, it must hold that 1

2 ðlðs0 þ 1Þ � ðR1 � P1ÞÞ < 0, which

requires that

l <
R1 � P1

s0 þ 1
: ð3Þ

To show that this is the case, we derive from P1�S1

R1�S1

� �s0

¼ P1þl�S1

R1�S1

� �s0þ1
that for the

increase in P1 by l to lead to an increase in s by 1 (with before and after the increase
P1¼X1 and P1þ l¼X1, respectively) it must hold that
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l ¼ ðR1 � S1Þ
P1 � S1

R1 � S1

� � s0
s0þ1

� ðP1 � S1Þ: ð4Þ

By replacing l in Eq. (3) with the right-hand side of Eq. (4) and (without loss of
generality) ‘‘normalizing’’ to R1¼ 1, S1¼ 0, and 0<P1< 1, we obtain

P
s0

s0þ1

1 � P1 <
1� P1

s0 þ 1
:

Rearranging leads to

P
s0

s0þ1

1 <
1

s0 þ 1
þ s0

s0 þ 1
P1: ð5Þ

To establish that Eq. (5) holds, and r1, thus, indeed increases, we now isolate
the left-hand side of Eq. (5). We replace P1 by 1�w (so P1¼ 1�w and w¼ 1�P1),

which allows rewriting P
s0

s0þ1

1 (the left-hand side of Eq. (5)) as a binomial series:

ð1� wÞ
s0

s0þ1 ¼
X1
k¼0

s0

s0þ1

k

� �
ð�wÞk

¼ 1þ s0

s0 þ 1
ð�wÞ þ

s0

s0þ1
s0

s0
0
þ1
� 1

� �
2!

ð�wÞ2þ

� � � þ
s0

s0þ1
s0

s0þ1� 1
� �

s0

s0þ1� 2
� �

� � � s0

s0þ1� k þ 1
� �

k!
ð�wÞk þ . . .

ð6Þ

It can be seen that every element that is ‘‘added’’ to 1 in this series is smaller than 0
because if k is even, the numerator is negative while (w)k is positive and if

k is uneven, the numerator is positive while (�w)k is negative. Thus, ð1� wÞ
s0

s0þ1 must
be smaller than what we obtain when carrying out only one step of the summation.
That is, Eq. (6) implies that

ð1� wÞ
s0

s0þ1 < 1þ s0

s0 þ 1
ð�wÞ:

Replacing w again by 1�P1, we can thus assert that

P
s0

s0þ1

1 < 1� s0

s0 þ 1
ð1� P1Þ:

This can be rearranged to Eq. (5), which shows that Eq. (5) is true and, thus, proves
that (as postulated) r1 increases if P1 increases as considered and s0þ 1�N, that is,

that r
s0�
1 < r

s0þ1�
1 if s0þ 1�N.
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Step 1.b. Given N< s0þ 1� 2N, r
s0�
1 ¼

2N�s0

2 ðR1 � P1Þ and r
s0þ1�
1 ¼ 2N�ðs0þ1Þ

2

ðR1 � ðP1 þ lÞÞ. Subtracting r
s0þ1�
1 from r

s0�
1 , we see that r1 changes by

1
2 ðlð2N � ðs0 þ 1ÞÞ þ R1 � P1Þ. It holds that 1

2 ðlð2N � ðs0 þ 1ÞÞ þ R1 � P1Þ > 0,

implying that (as postulated) r
s0�
1 > r

s0þ1�
1 , that is, that r1 decreases.

Step 2. The derivative of r1 in P1, neglecting that s is a function of P1, is

@r1

@P1
¼ s�1

2
p

RISKs � 1
� 	

if s � N;
@r1

@P1
¼ � 1

2 2N þ ðs� 1Þ p
RISKs � 1
� 	� 	

if N <s � 2N:

This shows that a marginal decrease in P1 by DP1> 0 leads to a change in rs0þ1
1 by

�DP1ðs0þ1�1Þ
2

p
RISK s0þ1 � 1
� �

� 0 if s0þ 1�N and to a change in rs0þ1
1 by

DP1

2 2N þ ðs0 þ 1� 1Þ p
RISKs0þ1 � 1
� �� �

> 0 if N< s0þ 1� 2N. Thus, if s0þ 1�N

(if N< s0þ 1� 2N), rs0þ1
1 decreases (increases) monotonically if P1 decreases such

that p remains in the interval s0þ 1.
Step 3. Finally, we consider an increase in P1 by E, where 0< E� l (with l

as specified in Eq. (4)), such that before the change, RISK is such that p is
at the right border of the interval s0 while after the change (which leads to an
increase in RISK), RISK is such that p is in the interval s0þ 1 (i.e., before the change

p ¼ P1�S1

R1�S1

� �s0

and after the change P1þE�S1

R1�S1

� �s0þ1

� p < P1þE�S1

R1�S1

� �s0þ1�1

). We know

from step 2 that if E is smaller, rs0þ1
1 is smaller (larger) if s0þ 1�N

(if N< s0þ 1� 2N). In this step, we prove that as E goes to 0, rs0þ1
1 cannot get

smaller than r
s0�
1 if s0þ 1�N and rs0þ1

1 cannot get larger than r
s0�
1 if N< s0þ 1� 2N.

Step 3.a. For s0þ 1�N, it follows from Eq. (2) that r
s0�
1 ¼

s0

2 ðR1 � P1Þ and that

rs0þ1
1 ¼ 1

2
ðs0 þ 1ÞðR1 � ðP1 þ EÞÞ þ P1 þ E� S1 þ

p

ðP1þE�S1

R1�S1
Þs0þ1�1

ðR1 � S1Þ
 ! !

:

Because as e goes to 0, p P1þE�S1

R1�S1

� �s0þ1�1



goes to 1, it holds that

lim
E#0

rs0þ1
1 ¼ 1

2
ðs0 þ 1ÞðR1 � ðP1 þ EÞÞ þ P1 þ E� S1 þ

p

ðP1þE�S1

R1�S1
Þs0þ1�1

ðR1 � S1Þ
 ! !

¼ 1

2
ððs0 þ 1ÞðR1 �P1Þ þP1 � ðSþR1 � S1ÞÞ

¼ s0

2
ðR1 �P1Þ:

This proves that as E goes to 0 (and, consequently, rs0þ1
1 becomes smaller), rs0þ1

1

decreases towards r
s0�
1 but cannot get smaller than r

s0�
1 .
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Step 3.b. For N< s0þ 1� 2N, r
s0�
1 ¼

2N�s0

2 ðR1 � P1Þ and

rs0þ1
1 ¼ 1

2
ð2N�ðs0þ1ÞÞðR1�ðP1þ EÞÞþS1þ

p

P1þE�S1

R1�S1

� �s0þ1�1
ðR1�S1Þ� ðP1þ EÞ

0
B@

1
CA:

Because as E goes to 0, p



P1þE�S1

R1�S1

� �s0þ1�1

goes to 1, it holds that

lim
E#0

rs0þ1
1 ¼ 1

2
ð2N�ðs0þ1ÞÞðR1�ðP1þEÞÞþS1þ

p

P1þE�S1

R1�S1

� �s0þ1�1
ðR1�S1Þ�ðP1þEÞ

0
B@

1
CA

¼ 1

2
ðð2N�ðs0þ1ÞÞðR1�P1ÞþS1þR1�S1�P1Þ

¼ 1

2
ð2N�s0ÞðR1�P1Þ:

This proves that as E goes to 0 (and, consequently, rs0þ1
1 becomes larger), rs0þ1

1

increases towards r
s0�
1 but cannot get larger than r

s0�
1 .

A.6. Proof of Theorem 9: Changes in R1

To prove that r1 changes as postulated in Theorem 9 if R1 decreases,
we proceed similarly as in the proof of the effects of changes in P1. Recall that
if R1 is smaller, RISK is larger and randomization tends to start earlier.

Step 1. Here we consider a decrease in R1 by l (where 0< l<R1�P1) such

that p ¼ P1�S1

R1�S1

� �s0

¼ P1�S1

R1�l�S1

� �s0þ1

.

Step 1.a. Given s0þ 1<N, r
s0�
1 ¼

s0

2 ðR1 � P1Þ and r
s0þ1�
1 ¼ s0þ1

2 ðR1 � l� P1Þ.
Subtracting r

s0þ1�
1 from r

s0�
1 , we see that r1 changes by 1

2 ðlðs0 þ 1Þ � ðR1 � P1ÞÞ.
If (as postulated) r1 decreases due to the considered decrease in R1, it must hold that
1
2 ðlðs0 þ 1Þ � ðR1 � P1ÞÞ > 0, which requires that

l >
R1 � P1

1þ s0
: ð7Þ

To show that this is the case, we derive from P1�S1

R1�S1

� �s0

¼ P1�S1

R1�l�S1

� �s0þ1

that

l ¼ ðR1 � S1Þ 1� P1 � S1

R1 � S1

� � 1
s0þ1

 !
: ð8Þ

By replacing l in Eq. (7) with the right-hand side of Eq. (8) and ‘‘normalizing’’ to
R1¼ 1, S1¼ 0, and 0<P1< 1, we obtain

1� P
1

s0þ1

1 >
1� P1

s0 þ 1
:
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Rearranging leads to

P
1

s0þ1

1 < 1� 1� P1

s0 þ 1
: ð9Þ

Now we replace P1 by 1�w (so P1¼ 1�w and w¼ 1�P1), which allows rewriting

P
1

s0þ1

1 as a binomial series:

ð1� wÞ
1

s0þ1 ¼
P1
k¼0

1
s0þ1

k

 !
ð�wÞk

¼ 1þ 1
s0þ1 ð�wÞ þ

1
s0þ1

1
s0þ1� 1
� �

2! ð�wÞ2þ

. . .þ
1

s0þ1
1

s0þ1� 1
� �

1
s0þ1� 2
� �

. . . 1
s0þ1� k þ 1
� �

k! ð�wÞk þ . . .

ð10Þ

Every element that is ‘‘added’’ to 1 in this series is smaller than 0 because if k is
even, the numerator is negative, whereas (�w)k is positive and if k is uneven, the

numerator is positive, whereas (�w)k is negative. Thus, ð1� wÞ
1

s0þ1 must be smaller
than what we obtain when carrying out only one summation step. That is, Eq. (10)
implies that

ð1� wÞ
1

s0þ1 < 1þ 1

s0 þ 1
ð�wÞ: ð11Þ

Replacing w in Eq. (11) again by 1�P1 yields Eq. (9), which shows that Eq. (9)
holds. This proves that (as postulated) r1 decreases if R1 decreases as considered
and s0þ 1�N.

Step 1.b. Given N< s0þ 1� 2N, r
s0�
1 ¼

2N�s0

2 ðR1 � P1Þ and r
s0þ1�
1 ¼ 2N�ðs0þ1Þ

2

ðR1 � l� P1Þ. Subtracting r
s0þ1�
1 from rs0

1 , we see that r1 changes by 1
2 ðlð2N�

ðs0 þ 1ÞÞ þ R1 � P1Þ > 0, which proves that (as postulated) r1 decreases if R1

decreases as considered and N< s0þ 1� 2N.
Step 2. The derivative of r1 in R1, neglecting that s is a function of R1, is

@r1

@R1
¼ s

2 1� p
RISKs�1

� �
if s � N;

@r1

@R1
¼ 1

2 2N � sð1� p
RISKs�1Þ

� �
if < Ns � 2N:

This shows that a marginal increase in R1 by DR1> 0 that does not affect s leads to a

change in rs0þ1
1 by DR1ðs0þ1Þ

2 1� p
RISKs0þ1�1

� �
> 0 if s0þ 1�N and to a change in rs0þ1

1 by

DR1

2 2N � ðs0 þ 1Þð1� p
RISKs0þ1�1Þ

� �
> 0 if N< s0þ 1� 2N. Thus, if trust is possible at

least in Cþ, rs0þ1
1 increases if R1 increases such that p remains in the interval s0þ 1.

Step 3. Finally, we consider a decrease in R1 by E, where 0< E� l (with l
as specified in Eq. (8)), such that before the change, RISK is such that p is at the
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right border of the interval s0 while after the change (which leads to an increase
in RISK), RISK is such that p is in the interval s0þ 1 (i.e., before the change

p ¼ P1�S1

R1�S1

� �s0

and after the change P1�S1

R1�E�S1

� �s0

� p < P1�S1

R1�E�S1

� �s0þ1�1

). We know

from step 2 that rs0þ1
1 is larger the smaller E is. In this step we prove that also

as E goes to 0, r
s0�
1 � rs0þ1

1 (that is, rs0þ1
1 cannot be larger than r

s0�
1 ).

Step 3.a. For s0þ 1�N, r
s0�
1 ¼

s0

2 ðR1 � P1Þ and

rs0þ1
1 ¼ 1

2
ðs0 þ 1ÞðR1 � E� P1Þ þ P1 � S1 þ

p

P1�S1

R1�E�S1

� �s0þ1�1
ðR1 � E� S1Þ

0
B@

1
CA

0
B@

1
CA:

As E goes to 0, p= P1�S1

R1�E�S1

� �s0þ1�1

goes to 1. Replacing p= P1�S1

R1�E�S1

� �s0þ1�1

by 1 and

leaving E out, we obtain

lim
e#0

rs0þ1
1 ¼ 1

2
ðs0 þ 1ÞðR1 � E� P1Þ þ P1 � S1 þ

p

P1�S1

R1�E�S1

� �s0þ1�1
ðR1 � E� S1Þ

0
B@

1
CA

0
B@

1
CA

¼ 1

2
ððs0 þ 1ÞðR1 � P1Þ þ P1 � S � ðR1 � S1ÞÞ

¼ s0

2
ðR1 � P1Þ:

This proves that as E goes to 0 (and, consequently, rs0þ1
1 becomes larger), rs0þ1

1

increases toward r
s0�
1 but cannot get larger than r

s0�
1 .

Step 3.b. For N< s0þ 1� 2N, r
s0�
1 ¼

2N�s0

2 ðR1 � P1Þ and

rs0þ1
1 ¼ 1

2
ð2N � ðs0 þ 1ÞÞðR1 � E�P1Þ þ S1 þ

p

P1�S1

R1�E�S1

� �s0þ1�1
ðR1 � E� S1Þ �P1

0
B@

1
CA:

For E going to 0, and, hence, p= P1�S1

R1�E�S1

� �s0þ1�1

going to 1, this gives

lim
e#0

rs0þ1
1 ¼ 1

2
ð2N�ðs0þ1ÞÞðR1� E�P1ÞþS1þ

p

P1�S1

R1�e�S1

� �s0þ1�1
ðR1� E�S1Þ�P1

0
B@

1
CA

¼ 1

2
ððs0þ1ÞðR1�P1ÞþP1�S�ðR1�S1ÞÞ

¼ s0

2
ðR1�P1Þ:

This proves that also if N< s0þ 1� 2N and as E goes to 0 (and, consequently, rs0þ1
1

becomes larger), rs0þ1
1 increases towards r

s0�
1 but cannot get larger than r

s0�
1 .
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A.7. Proof of Theorem 10: Changes in N

Suppose that N changes from some N0 to N0þ 1. If 2(N0þ 1)< s, trust is also

not even possible in Cþ after the increase in N; UCþ
1 and UC�

1 both increase from
N0P1 to (N0þ 1)P1 and, hence, r1 does not change and remains 0. Similarly,
if N0� s, trust is already possible in Cþ as well as in C� before the increase in N;

UCþ
1 and UC�

1 both increase by R1 and, consequently, r1 does not change. This proves
the ‘‘second part’’ of Theorem 10.

We have to consider three scenarios to prove the ‘‘first part’’ of Theorem 10,
that is, to establish that r1 increases if, after the increase in N, trust is possible in
Cþ but not in C� or if at least before the increase, trust was not possible in C�. First,
if 2(N0þ 1)¼ s, trust would never be placed before the increase in N but with

certainty in the first TG of Cþ after the increase in N; UCþ
1 changes from

1
2 ð2N0P1Þ to 1

2 ðX1 þ P1 þ 2N0P1Þ and UC�
1 changes form N0P1 to (N0þ 1)P1. Conse-

quently, r1 increases by 1
2 ðX1 � P1Þ. Second, if N0þ 1< s� 2N0, trust would be

placed with certainty in some TGs of Cþ before as well as after the change in N0,

whereas trust would never be placed in C�; UCþ
1 increases by R1 while UC�

1 increases
by P1 and, consequently, r1 increases by R1�P1. Finally, if N0þ 1¼ s, trust would
never be placed in C� before the increase in N, whereas after the increase in N both

trustors would place trust with certainty in their first TG of C�; UCþ
1 increases again

by R1 while UC�
1 increases by X1 (changes from N0P1 to X1þN0P1) and, therefore,

r1 increases by R1�X1.
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