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In this paper, we propose the concepts of conditional climate resilience and conditional cli-
mate sensitivity as measures of the nonlinear response of a non-stationary background cli-
mate state to arbitrary perturbations. Based on the theory of nonlinear stability, we
formulate both sensitivity and resilience in terms of a conditional nonlinear optimization
problem. As illustrated by results of a zero-dimensional energy balance model, the new
measures provide useful information of sensitivity and resilience of the climate system
in the presence of bifurcations and under non-stationary external forcing.
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1. Introduction

At the moment, the climate system is exposed to a substantial increase in the concentration of atmospheric greenhouse
gases. For example, the values of the concentration of carbon dioxide (pCO2) have increased from 280 ppmv up to about
400 ppmv over the last 150 years [1]. Because the response time scales of the natural carbon-cycle processes on observables
such as the global mean temperature are much longer, this greenhouse gas change can be considered as a transient ‘external
forcing’ imposed on the climate system [2].

One of the important issues in future climate change is how large the global mean surface temperature, indicated below
by T, will become in the year 2100. The concept of equilibrium climate sensitivity Seq (also referred to as Charney sensitivity
[3,4]) has been introduced with the aim to provide a scalar measure of the response of the climate system to changes in
‘external forcing’. In practice, it is the equilibrium change in the global mean surface temperature (DT) due to a doubling
of pCO2, i.e.,
Seq ¼
DT
DR

ð1Þ
where DR is the change in radiative forcing associated with this change in pCO2. The quantity Seq can be determined from
simulations of climate models where DT is the temperature change between a control (equilibrium) simulation (under a
fixed pCO2) and an equilibrium simulation under a 2x pCO2 concentration.

The equilibrium climate sensitivity can be connected to the feedbacks in the climate system, such as the ice–albedo feed-
back and the water–vapor feedback. Some feedbacks operate on time scales shorter or comparable to the change in pCO2
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while others occur on much longer time scales [5]. When DT is considered to be small with respect to the background state
temperature, then it can be shown that [6]
Seq ¼
k0

1� f
ð2Þ
where k0 is the ‘pure’ sensitivity (the direct radiative effect) due to pCO2 changes and f represents the sum of all climate feed-
backs. Under the assumption that f is normally distributed, [6] show that Seq has a long tail, in agreement with those found in
large-scale ensemble climate simulations (e.g., http://climateprediction.net), and suggests that climate sensitivity is difficult
to predict. This view has been challenged by Zaliapin and Ghil [7], who point out that the approach by Roe and Baker [6] is
only valid for small DT . Also the fact that the feedbacks have a normal distribution is challenged as this has not been shown
from simulations of general circulation models. With a nonlinear correction as introduced in [7], however, the spectrum of
Seq does not match those from http://climateprediction.net as good as that of [6].

It has been well-recognized that the concept of equilibrium climate sensitivity is quite limited when making adequate
projections of global mean surface temperature for the end of this century [8]. The climate system has a strong internal var-
iability on many time scales, is subject to a non-stationary forcing and certainly out of equilibrium with the changes in the
radiative forcing up to the year 2100. Alternative concepts of climate sensitivity have therefore been suggested, for example
based on a Fokker–Planck adjoint approach [9], based on Wasserstein distances [8] and based on linear response theory [10].
Here, we will follow another approach by considering the issue of climate sensitivity from a nonlinear stability theory point
of view.

The approach is derived from the theory of nonlinear stability of fluid flows [11] and is ideally suited to develop a non-
stationary and nonlinear concept of climate sensitivity based on the finite time response of the climate system to a so-called
Conditional Nonlinear Optimal Perturbation (CNOP). The CNOP is a so-called finite amplitude perturbation and the response
to this perturbation cannot be determined from the linearized equations around the background state but involves the full
nonlinear equations. The CNOP [12] methodology has been applied to derive nonlinear stability boundaries in many ideal-
ized fluid flows, such as pipe flows [13,14]. It has also been much used to study the predictability of properties in geophysical
flows [12,15].

Within the nonlinear stability theory framework, it is also possible to address the issue of resilience of the climate system.
Resilience has been much discussed and used in ecosystems and socioeconomic systems and can be generally viewed as the
ability of a certain dynamical system to absorb a disturbance and still retain its basic function and structure [16,17]. This is
particularly relevant if the climate system would possess more than one equilibrium state under the present-day forcing. If
the climate system turns out to be only weakly resilient, finite amplitude perturbations may be able to induce a transition to
a very different climate on a finite time scale and the Earth system may drift towards a less inhabitable planet [18].

This paper is organized as follows. In Section 2, the background on nonlinear stability theory and CNOP computation is
briefly reviewed and subsequently used to define conditional climate sensitivity and conditional climate resilience. In Sec-
tion 3, the application of these concepts will be illustrated using the results from a zero-dimensional energy balance model.
A discussion of these results and the potential for using the new concepts is provided in Section 4.

2. Sensitivity and resilience: a nonlinear stability theory perspective

In the Section 2.1, we provide an overview of nonlinear stability theory such as developed in [11]. Next, the practical
implementation of this theory using Conditional Nonlinear Optimal Perturbation (CNOP) techniques is presented in Sec-
tion 2.2. Finally, the new concepts of conditional climate sensitivity and conditional climate resilience are introduced in
Section 2.3.

2.1. Nonlinear stability theory

In the nonlinear stability theory of fluid flows [11], usually an energy norm E (for example, the kinetic energy) is chosen
and a specific basic (or background) state is called asymptotically stable when
lim
t!1

EðtÞ
Eð0Þ ¼ 0 ð3Þ
where Eð0Þ is the initial energy of the perturbation and t indicates time. If there exists a positive value d such that the back-
ground state is asymptotically stable only for Eð0Þ < d, then the basic state is said to be conditionally stable. If d!1, then
the basic state is called globally stable and if (3) is satisfied and dEðtÞ=dt < 0 holds for all t > 0, then the basic state is said to
be monotonically stable. Note that this definition of stability does not imply that the perturbations should be small a priori.

Let one of the parameters in a particular model be an important control parameter, e.g. affecting the background state. In
fluid flows the control parameter is mostly the Reynolds number [11] which is here indicated by R. According to the notions
above, the following possibilities exist (cf. Fig. 1). In region I, the basic state is monotonically stable; all perturbations, what-
ever their amplitude, have a monotonically decaying energy. In region II, there may be perturbations which initially grow
(not necessarily exponentially), but the energy eventually decays to zero for all initial amplitudes of the perturbations. Such
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Fig. 1. Plot of the different stability regimes, with I: monotonic stability, II: global stability, III: conditional stability and IV: instability. The control
parameter is R and the stability bounds RE , RG and RL are the energy, global and linear stability bounds, respectively. The curve dcðRÞ bounds the magnitude
of the perturbations not leading to a transition; the region of conditional stability is bounded by RG < R < RL . Typical trajectories of the energy E are
sketched to illustrate the different behavior in each domain.
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behavior is closely related to non-normal growth phenomena [19] where, due to the non-normality of the linearized oper-
ator, a combination of normal modes can lead to algebraic growth of perturbations, even when each of the normal modes has
a negative growth factor. Region III is a region of conditional stability, since if the initial amplitude of the perturbations is
small enough (Eð0Þ < dcðRÞ) the perturbation energy decays to zero, whereas if it is larger than some particular value
dcðRÞ, the energy will increase and the perturbed state will evolve to a different state than the background state. Hence,
the latter indicates that the background state is (nonlinearly) unstable to finite amplitude perturbations.

From Fig. 1, stability boundaries can be defined according to the evolution of the perturbation energy E. If R < RG then the
basic state is globally stable, i.e. every perturbation decays to zero in time; RG is the global stability limit and provides suf-
ficient conditions for stability. If R < RE, the basic state is monotonically stable; RE is called the energy stability limit. If
RG < R < RL, then the basic state is conditionally stable: small amplitude disturbances decay whereas too large perturbations
grow. Beyond the linear stability boundary RL (i.e. in region IV), infinitesimally small perturbations will grow and this sta-
bility bound provides sufficient conditions for instability. Apart from these stability boundaries, also the curve dcðRÞ is of
interest as it provides a measure of the ‘minimal seed’ [13] which is needed to escape from an otherwise linearly stable basic
state. The next section deals with the approach to calculate this ‘minimal seed’.

2.2. The Conditional Nonlinear Optimal Perturbation approach

When it is aimed to take nonlinear aspects of the spread of trajectories into account one can resort to optimization meth-
ods in which the optimal growth of some norm of the solution is determined. To study nonlinear mechanisms of amplifica-
tion, Mu [20] proposed the concept of nonlinear singular vectors and nonlinear singular values. In Mu and Duan [12], the
concept of the Conditional Nonlinear Optimal Perturbation (CNOP) was introduced (which we shortly discuss in this section)
and since then it has been applied to many geophysical flows [21,15]. Alternative computational schemes are presented in
[13] but will not be considered here.

After discretization of any spatially extended model of the climate system, a finite dimensional non-autonomous dynam-
ical system of the form
dx
dt
¼ fðx; t; kÞ ð4Þ
will result. Here x 2 Rn is the state vector and k 2 R one of the control parameters. For a chosen initial condition at time
t ¼ t0, say xðt0Þ ¼ x0, a trajectory of this system is given by xðtÞ for all t > t0.

The nonlinear stability concept deals with the response of the system to finite amplitude perturbations (i.e. those that are
large enough such that nonlinear terms in the equations cannot be neglected). In principle, these perturbations could be on
the state vector or on the parameters of the system. However, as a parameter can always be included in the state vector by
extending it (for example, for a constant parameter value k0, we can add the equation dk=dt ¼ 0 with initial condition
kð0Þ ¼ k0) we only need to consider perturbations on the state vector.

Suppose X is a (not necessarily steady) background solution of (4) and let y ¼ x� X be the perturbation of this back-
ground state. The evolution equations for y can be written as
dy
dt
¼ fðXþ y; t; kÞ � fðX; t; kÞ ¼ gðy; t; X; kÞ ð5Þ
with initial condition (or initial perturbation) yðt0Þ ¼ y0. If the initial value problem (5) for fixed k is well posed, then the
nonlinear propagatorM is defined as the evolution operator of (5) which determines the trajectory from t0 up to a final time
te. Hence, for fixed te > t0,
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yðteÞ ¼ Mðy0; XÞðteÞ ð6Þ
provides the final value of y at t ¼ te.
For a chosen norm jj � jj, the perturbation y0d is called the Conditional Nonlinear Optimal Perturbation (CNOP) with con-

straint condition jjy0jj 6 d, if and only if [12]
Jðy0dÞ ¼ max
jjy0 jj6d

Jðy0Þ ð7Þ
where the cost function J is given by
Jðy0Þ ¼ jjMðy0; XÞðteÞjj ð8Þ
In short, the CNOP is that initial condition, under the posed constraint, which maximizes the chosen norm of the state vector
during the nonlinear evolution of the system. In principle, the norm of the constraint condition and that of the cost function
can be chosen differently [15].

With the CNOP approach, the value of dcðkÞ (for control parameter k) as in Fig. 1 can in principle be determined. For any
value of k, one solves the optimization problem (7) for a finite time te and increasing values of d. One then monitors the slope
of the cost function with respect to d and determines for every te,
dðteÞ ¼ max
d

@Jðy0dÞ
@d

����
���� ð9Þ
where j � j is the absolute value. In the limit te !1 (and under the condition that this limit exists) and fixed k; dðteÞ will
approach a point on the curve dcðkÞ because the cost function Jðy0dÞ of the CNOP y0d will undergo a sharp increase when d
crosses dc (cf. Section 3.2 below).

2.3. Conditional climate sensitivity and resilience

Resilience has often been restricted [17] to autonomous systems with fixed points, i.e., points �X for which fð�X; kÞ ¼ 0 in
(4). When the initial perturbation on a conditionally stable fixed point �X is such that the trajectory crosses the attraction
basin of that fixed point, another fixed point is approached asymptotically. Clearly, resilience here is related to the magni-
tude of the perturbation which can cause this cross-attraction-basin behavior in a certain time te.

We define conditional resilience RðteÞ of a conditionally stable background state X by
RðteÞ ¼
dðteÞ
jjXjj ð10Þ
where dðteÞ is defined in (9). This quantity clearly depends on the norm chosen as well as the time scale of the response to the
perturbation. If dðteÞ is very small with respect to jjXjj then a relatively small perturbation can induce a transition to a remote
attractor and hence the system does not show strong resilience. For te !1, this will provide the equilibrium conditional
resilience Rc ¼ dc=jjXjj. In case of two stable fixed points which are separated by a saddle fixed point, the equilibrium con-
ditional resilience of each stable state will be related to the distance (in the chosen norm) between that stable state and the
unstable state.

The definition RðteÞ is, however, not restricted to autonomous dynamical systems with fixed points, but can also be
applied in non-autonomous systems with general attractors. Also in the more general case, it measures whether the finite
time (te) response will lead to similar behavior as near the original background state, or whether new dynamical behavior
can be expected.

Whereas climate resilience is a measure of the vulnerability of the climate system by focussing on critical thresholds, sen-
sitivity is actually concerned with the amplitude of the response over a finite time period. Climate sensitivity is a special case
of this general notion of sensitivity as it is concerned with the development of only the global mean temperature T [3,4].
Using the CNOP approach, we define the concept of conditional climate sensitivity Sðd; teÞ of a background climate state (indi-
cated by �T) as
Sðd; teÞ ¼
DTðd; teÞ
DRðd; teÞ

ð11Þ
where DTðd; teÞ ¼ jTðteÞ � Tj is the maximum temperature difference that can occur under the constraint jTð0Þ � Tj < d
(although alternative constraints could be considered) over a time te and DRðd; teÞ is the change in radiative forcing over
the same time interval. Note again that scalar norms are used, but the model to determine it can be very high dimensional
(large n in (4)).

In a climate system in which there is a single fixed point for each value of pCO2, Sðd; teÞ is independent of d (i.e., there is no
region of conditional stability) and will approach the equilibrium climate sensitivity Seq in the limit te !1. In this limit, DT
will be precisely the difference between the temperature of the equilibrated states and DR the difference in radiative forcing
between both states.
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3. An illustrative case

In this section, we illustrate the concepts from the previous section by applying them to an idealized energy balance
model. The parameters in the model are chosen such that all concepts can be demonstrated, rather than to fit them in a
way that ‘most realistic’ model results (compared to present-day observations) are found.

3.1. Energy balance model: formulation

In a typical zero-dimensional model of the Earth system only processes determining the global mean surface temperature
T are represented. We will use here an energy balance model of Budyko–Sellers type [22,23] as formulated in [24]. The equa-
tion is
cT
dT
dt
¼ Q 0ð1� aðTÞÞ þ Gþ A ln C=C0 � r�T4; ð12Þ
where cT is the thermal inertia (in J m�2 K�1). The first term on the right hand side models the short-wave radiation with Q 0

(in W m�2) being the solar constant divided by four and aðTÞ the planetary albedo. The term Gþ A ln C=C0 (in W m�2)
represents the effect of greenhouse gases on the radiation balance, where the constant A controls the equilibrium climate
sensitivity of the model and C0 is a reference carbon dioxide concentration. Finally the last term in Eq. (12) represents
the long-wave radiation with r (W m�2 K�4) being the Stefan–Boltzmann constant and � the emissivity.

To take the effects of land ice on the radiation balance into account, the albedo aðTÞ is prescribed as [25]
aðTÞ ¼ a0HðT0 � TÞ þ a1HðT � T1Þ þ a0 þ ða1 � a0Þ
T � T0

T1 � T0

� �
HðT � T0ÞHðT1 � TÞ ð13Þ
where HðxÞ ¼ ð1þ tanhðx=�HÞÞ=2 is a continuous approximation of the Heaviside function. When the temperature drops
below T ¼ T0, the albedo a0 of an ice surface applies and when T exceeds T1, the albedo a1 of an ocean surface applies.
Between T0 and T1, a linear relation between albedo and temperature is assumed. In the results below, we will use the stan-
dard values as shown in Table 1.

3.2. Constant C case

When using C as a time-independent control parameter, the bifurcation diagram in which the steady state temperature T
is plotted versus C is shown in Fig. 2. A stable ‘ice-covered’ state exists up to CL1 ¼ 700 ppmv where the saddle node bifur-
cation L1 occurs on the lower branch. The stable upper ‘ice-free’ state exists for values of C larger than CL2 ¼ 212 ppmv where
the saddle-node bifurcation L2 on the upper branch occurs. Both branches are connected by an unstable branch, indicated by
the dashed curve in Fig. 2. The positions of the saddle-node bifurcations depend strongly on the values of the reference tem-
peratures and references albedo values in the model.

To illustrate the methodology, we first fix C ¼ 500 ppmv and determine the CNOPs for different d under fixed values of te.
The perturbation on �T is written as T 0 and as a norm we choose
T 0
�� ��2 ¼ ðT � TÞ2 ð14Þ
where T ¼ 296:004 is the equilibrium value at the upper branch in Fig. 2. Hence the constrained optimization problem to be
solved becomes (7) with
JðT 00dÞ ¼ max
T 0j j6d

MðT 00; TÞðteÞ
�� �� ð15Þ
where again M is the evolution operator of the model (12) on the perturbation T 0 with respect to T.
In Fig. 3(a), the values of JðT 00dÞ are shown as a function of d for three values of te. The values of jT 00dj are all equal to d as the

CNOP is located on the boundary of the constraint condition. The results in Fig. 3(a) indicate that one is able to determine
the unstable state, here the separatrix of the attraction basins of both stable fixed points as measured by the distance dc , by
Table 1
Reference values of the parameters in the energy balance model defined by (12) and (13).

Parameter Value Parameter Value

cT 5:0� 108 J m�2K�1 Q0 342 W m�2

� 1:0 r 5:67� 10�8 W m�2 K�4

A 2:05� 101 W m�2 G 1:5� 102 W m�2

C0 280 ppmv a0 0.7
a1 0.2 T0 263 K
T1 293 K �H 0.273 K
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the CNOP approach. As te is increased, a sharp step appears near dc as trajectories starting for jT 00j < dc will end up at the fixed
point on the upper branch, whereas those for which jT 00j > dc will end up on the fixed point on the lower branch. Differen-
tiation of the curves in Fig. 3(a) with respect to d gives the result in Fig. 3(b) and shows that a maximum in c ¼ @JðT 00dÞ=@d
occurs for every te. The values of dðteÞ in (9) are the values of d for which this maximum is attained and when divided by T
provides the conditional resilience of the background stateRðteÞ as given in (10); for t !1, the value of RðteÞ ! Rc , where dc

is given by the difference of the values of T on the upper stable and unstable branch (for C ¼ 500 ppmv).
In Fig. 4(a) and (b), the conditional resilience RðteÞ (at three times te) is plotted versus C for the background states along

the upper (Fig. 4(a)), and lower (Fig. 4(b)) branch of the bifurcation diagram in Fig. 2. The values of Rc are plotted for both
branches in Fig. 4(c). From Fig. 4(c) it follows that the equilibrium conditional resilience of the fixed point solutions
decreases as the saddle-node bifurcations are approached. Indeed, the attraction domain for the stable fixed point shrinks
as the saddle-node bifurcation is approached and hence the amplitude of the perturbation needed to induce a transition
decreases. On the upper branch, the conditional resilience can already be determined for small times te far from the sad-
dle-node bifurcation L2. This is due to fact that for large C, the response time of the system to evolve back to the equilibrium
state is relatively small. The conditional resilience is overestimated near the saddle-node bifurcation L2 and RðteÞ decreases
with te. On the lower branch, the opposite behavior is found; the equilibrium resilience is underestimated for small times te

for values of C near L2 (where the upper branch starts). For values of C near L1, the resilience RðteÞ is very small but has
already converged for small time te. These results show that each of the saddle-node bifurcations has quite a different effect
on the conditional resilience of the background states on the upper and lower branch.

3.3. Time-dependent C case

As an illustrative function CðtÞ describing the change in pCO2, we choose
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CðtÞ ¼ C1 þ ðC2 � C1Þ tanh
t
sf

� �
: ð16Þ
This represents an increasing value of C, starting at C1 for t ¼ 0 and equilibrating on a time scale sf to a new value C2. With
C1 ¼ C0, the equilibrium climate sensitivity Seq is determined from
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Seq ¼
DT
DR

ð17Þ
where DC ¼ C2 � C1 and DR is related to DC through the relation R ¼ Gþ A lnðC=C0Þ according to (12).
For C1 ¼ 300 ppmv and C2 ¼ 600 ppmv, tf ¼ 100 years, the conditional sensitivity Sðd; teÞ defined in (11) of the back-

ground state (C ¼ 300 ppmv, T ¼ 294:208 K) is for several values of te plotted versus (relatively small) d in Fig. 5(a). The equi-
librium sensitivity Seq ¼ 0:17 K/(W m2) is also shown in Fig. 5(a) (curve for te ¼ 100 years). For short times te the conditional
climate sensitivity is substantially larger than the equilibrium values as the warming occurs over a relatively short time per-
iod. This is related to the shape of the C curve used. For longer times, the equilibrium climate sensitivity is approached which
is independent of d.

The conditional climate sensitivity is also suited for situations in which bifurcations do occur. For example, suppose we
are on the lower branch in a background state is given by C ¼ 300 ppmv, T ¼ 258:694 K. When increasing C up to 600 ppmv,
the equilibrium climate sensitivity is given by Seq ¼ 0:249 K/(W m�2). This value is found in Fig. 5(b), for te ¼ 100 years when
d is relatively small (dotted curve). When the initial perturbations are large, however, the system may jump to another state,
increasing the sensitivity greatly. For te ¼ 100 year, this is seen as a jump in Sðd; teÞ in Fig. 5(b). For smaller times te, it is inter-
esting that the increase in Sðd; teÞ is seen for larger d indicating a large transient sensitivity because of the presence of the
equilibrium states on the upper branch. Such behavior in Sðd; teÞwill also occur on the upper branch for larger d (cf. Fig. 5(a)).

4. Summary and discussion

In this paper, we have suggested the new concepts of conditional climate resilience and conditional climate sensitivity as
measures of the nonlinear response of the climate system to finite amplitude perturbations. This was done by framing the
issue of the response of the nonlinear system to finite amplitude perturbations as a Conditional Nonlinear Optimal Pertur-
bation (CNOP) problem. The magnitude of the perturbation is related to a norm of the state vector, and the crossing of the
attraction basin with a threshold in that norm. One can determine this threshold directly from the CNOP approach because a
(well chosen) cost function will generally undergo a sharp transition once the amplitude of the perturbation is increased
(and an attraction basin boundary is crossed).

Although the CNOP is only one single perturbation it has the very special property that the distance between the trajec-
tory at time te and the reference state is maximal in the chosen norm (under the constraint condition defined by d). Of course,
the choice of the norm, the value of d and the time te are crucial and should be strongly motivated by the specific problem to
be meaningful. One could, in principle, also probe the stability of the system using several CNOPs by choosing different
norms and constraint conditions. However, for addressing conditional resilience and sensitivity in the climate system, there
are already good choices available for the norm (the global mean surface temperature), for the constraint condition (internal
variability) and for the evolution time (time scale of interest in climate change, say 10–100 years). These are exactly the
quantities in which equilibrium climate sensitivity has been traditionally formulated [1,2].

The conditional climate sensitivity Sðd; teÞ measures the maximal global mean surface temperature difference (with
respect to a background state) which can be realized over a time te under initial perturbations with an initial amplitude con-
straint set by the value of d. The constraint condition connects the sensitivity to the internal variability: in a background state
with large internal variability (large d) a larger temperature difference may be achieved under a time te than in a background
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state with smaller internal variability. In the limit te !1, the conditional climate sensitivity approaches the equilibrium cli-
mate sensitivity Seq.

The conditional resilienceRðteÞ indicates the degree to which a system is vulnerable to finite amplitude perturbations by
determining a measure of the critical boundary (in perturbation amplitude) for which transitions would occur. As discussed
in [17], resilience actually has several aspects and they refer to these as ‘latitude’, ‘resistance’, ‘precariousness’ and ‘panar-
chy’. With the concept of conditional resilience, we only address the first three of these properties; the panarchy (multi-scale
interaction) property is out of the scope of this analysis. The ‘latitude’ of resilience is here directly related to the equilibrium
resilienceRc , the ‘resistance’ and ‘precariousness’ is measured by the conditional resilience RðteÞ. Here the absolute value of
the conditional resilience reflects the ‘precariousness’ and the change of RðteÞ with time te is a measure for the ‘resistance’.

There is an additional issue to resilience related to the control needed to bring the system back into the original regime of
behavior; in [17] this is referred to as adaptability. This issue is mostly involved with how for example fixed points and/or
the attraction basins change with the parameters in the problem. In general, it is easier to influence the parameters in the
system (which may be only a few) than components of a large-dimensional state vector. This issue is more closely related to
control theory (either on the state vector or on the parameters) and outside the scope of this study.

We have illustrated both novel concepts using an idealized zero-dimensional energy balance model. Here the situation is
relatively simple with two saddle-nodes bounding a multiple equilibrium regime with two stable fixed points and one unsta-
ble fixed point. In the autonomous case (fixed C), the equilibrium conditional resilience was here easily connected to the
scalar distance between each stable and unstable state. The conditional resilience itself is dependent on te and indicates that
for finite time it displays quite different behavior with te for cold and warm states in the model. We have also shown that
conditional climate sensitivity can deal with systems in which there are multiple equilibria and that relatively large changes
in Sðd; teÞ for small times te may provide signatures of the presence of other equilibria.

The energy balance model used here is strongly oversimplified in terms of its dynamical behavior and as a representation
of the processes controlling the global mean surface temperature. To generalize the approach to more sophisticated (and
spatially extended) climate models, there are several different obstacles which have to be overcome.

1. The generalization from low-dimensional to high-dimensional dynamical systems, the latter still having relatively simple behav-
ior (fixed points and smooth basin boundaries). The central computational issue is whether one can compute CNOPs in these
higher-dimensional systems. At the moment, this has already been accomplished for quasi-geostrophic [26] and shallow-
water models [15] of the wind-driven ocean circulation and full 3D primitive equation models of the thermohaline ocean
circulation [27]. Also in the theory of nonlinear stability of fluid flows, there are already many applications of this
approach, such as pipe flows [13]. However, it is still a computational challenge to determine a CNOP for a global climate
model. Recently, an ensemble method has been proposed to determine CNOPs [28] which can be promising to address
this challenge.

2. The generalization from geometrically simple to complicated (fractal) basin boundaries. This is an interesting but difficult
issue as fractal boundaries can be very complicated geometrical features [29]. When there is a fractal boundary it is
not guaranteed anymore that there is a global maximum in the function dðteÞ as defined in (9) and other techniques (such
as performing large ensemble computations) are needed to assess the resilience of a conditionally stable fixed point.

3. The generalization from deterministic to stochastic systems. In one-dimensional systems, such as the conceptual climate
model in this paper with noise added, one might address the problem of resilience by using the Fokker–Planck equation
associated with the stochastic model. Here, a CNOP for a norm of the probability density function (such as the variance)
can be used to define the initial probability density function which will lead to optimal variance at a certain time te. In a
bimodal system, this can then be used to determine the probability to induce a switch between two invariant measures.
For higher-dimensional systems, the Fokker–Planck approach is not feasible and one option may be to apply path-integral
methods [30].

The exploration of all of these generalizations needs further investigation before the success of the CNOP approach presented
here to obtain a useful measure of climate resilience can be assessed. However, when successful, it opens up a new path
towards studying the resilience of the climate system and the effect of its hierarchical organization on this property.
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