Editorial

Michael Leitnera & Marco Helbichb

a Department of Geography and Anthropology, Louisiana State University, USA
b Department of Human Geography and Spatial Planning, Utrecht University, The Netherlands

Published online: 23 Feb 2015.
Editorial

This CaGIS special issue (SI) is a follow-up publication on the edited book titled Crime Modeling and Mapping Using Geospatial Technologies that was published by Springer in early 2013 (Leitner 2013). Some of the contributing authors for the book were presenting their research in organized paper sessions at the 2010 Association of American Geographers (AAG) conference in Washington, DC. The sessions were organized by the editor of the book and had a similar title. Similarly, the authors for this SI are partly drawn from similar organized paper sessions held at the 2011 (Seattle), 2012 (New York), and 2013 AAG (Los Angeles) conferences.

On 12 November 2013, a first solicitation of a manuscript proposal submission for a SI on Innovative Crime Modeling and Mapping to be published in the CaGIS journal was sent out. This solicitation was distributed to members of different list servers, including those from the University Consortium of Geographic Information Science (UCGIS), Cartography and Geographic Information Society (CaGIS), three different Specialty Groups of the AAG (Cartography, Geographic Information Science and Systems, and Spatial Analysis and Modeling), and geography-and-crime@googlegroups.com.

By 31 December 2013, the deadline for manuscript proposal submission, a total of 23 proposals was submitted. All corresponding authors of those 23 proposals were subsequently invited to submit a manuscript. This decision was made solely by the two guest editors. By the end of June 2013, a total of 16 manuscripts was received. Each manuscript was subsequently reviewed (double-blind) by at least two expert reviewers, following standard CaGIS review guidelines. Overall, the innovative aspect and the scientific quality of the research weighted heavily on the decision whether or not a manuscript was accepted or rejected.

The eight articles accepted for this SI are written by 20 different authors with an average of 2.5 authors per article, in part reflecting the interdisciplinary and collaborative nature of current crime modeling and mapping research. The relative majority of all contributing authors is from the USA (eight) with others coming from the UK (five), China (three), Canada (two), Germany (one), and the Netherlands (one). While all but one author work in an academic setting, nine of the 20 authors’ home departments are in criminal justice, security and crime science, or criminology and “only” six are in geography. This may be surprising because all the eight articles are based, in part, on geographic (spatial) concepts and methods and one would have expected more geographers and fewer criminal scientists/criminologists to have authored a higher number of articles. However, this distribution may in part be testament to the increased diffusion of geographic concepts, methods, and techniques for studying crime into academic and applied criminal justice settings throughout the 1980s and into the mid-1990s (LeBeau and Leitner 2011). Consequently, criminology, criminal justice, and crime science departments may today have the leading role, at least quantitatively, in innovative crime modeling and mapping.

The following provides a very brief description of the main research questions that authors provided answers to in each of the eight articles. Starting off this SI is the article by Tompson et al., in which the authors examine the spatial accuracy of the police.uk data, an open source crime data-set, to determine at what level(s) of spatial resolution – if any – it is suitable for analysis in the context of theory testing and falsification, evaluation research, or crime analysis. In the second article, Malleson and Andresev evaluate the use of social media data, specifically Twitter as an alternative population-at-risk measure, instead of the residential population, in the calculation of the crime rate. The next article by Drawve et al. explores the distances that juveniles travel to commit crimes and whether juvenile crimes are clustered in space. As regression analysis with criminogenic factors is commonly challenged by spatial autocorrelation, article #4 by Helbich and Joker Arsanjani proposes eigenvector spatial filtering method to absorb residual patterns. Different graphical examples on how to visualize both individual and aggregated journey-to-crime flow data and to supplemental statistical graphics to visualize flow data are discussed in the fifth article by Wheeler. This is followed by the article by Wilson, in which the author evaluates whether concentrated foreclosures correspond to later crime increases that may lead to long-term neighborhood problems. The possible existence of the repeat and near-repeat burglary phenomenon and investigating the level of serial offender involvement in repeat and near-repeat burglaries in a large Chinese city (Wuhan) is discussed in the second-to-last article by Wu et al. The final contribution by Medel and Lu examines the spatial patterns of environmental and human factors of illegal drug
cultivation in Mexico applying different global and local statistical models. Rounding this SI out are two book reviews by Curtis and Jefferis.

References

Michael Leitner
Department of Geography and Anthropology, Louisiana State University, USA

Marco Helbich
Department of Human Geography and Spatial Planning, Utrecht University, The Netherlands