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SUMMARY

We give two generalizations of the induced dimension reduction (IDR) approach for the solution of linear
systems. We derive a flexible and a multi-shift quasi-minimal residual IDR variant. These variants are based
on a generalized Hessenberg decomposition. We present a new, more stable way to compute basis vectors
in IDR. Numerical examples are presented to show the effectiveness of these new IDR variants and the new
basis compared with existing ones and to other Krylov subspace methods. Copyright © 2014 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

IDR(s) [1, 2] is a family of fast methods for solving linear systems
Ax=r9g = b — Axj

with A € CV*V a large, sparse, and, in general, non-symmetric matrix. IDR(s) has attracted con-
siderable attention: for an overview, see [3-5], for analysis and more recent generalizations, see
[6-10]. In this contribution, we present a new, more stable approach to compute basis vectors and
extend the family by two new members of type IDR, more specifically, of type quasi-minimal
residual IDR (QMRIDR): a flexible QMRIDR (FQMRIDR) variant and a multi-shift QMRIDR
(MSQMRIDR) variant.

1.1. Motivation

The analysis contained in [6, 7, 9, 10] clearly reveals that IDR methods are specially structured
Krylov subspace methods. As the field of Krylov subspace methods has been researched for quite a
while, see e.g. [11] and the references therein, many ideas successfully applied there should carry
over to the context of IDR based methods with little effort. In this note, we sketch two such gen-
eralizations, namely the implementation of a flexible IDR method and the implementation of a
multi-shift IDR method. Both these methods are based on a minimal residual (MR) approach like
MinRes [12], GMRes [13], or QMR [14]. The prototype IDR(s) in [1] relies on an orthogonal resid-
ual (OR) approach in OrthoRes-style, i.e., the basis vectors are simply the residuals. OR approaches
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such as CG [15] or FOM [13, 16] break down whenever the underlying (oblique or orthogonal)
projection of the operator A is singular and lead, in general, to badly conditioned updates for the
approximate solution vectors. It is well known that other choices of basis vectors lead to a more sta-
ble scheme and that methods based on MR approaches still can be carried out in case of intermediate
singularities.

For these reasons, we sketch a scheme to come up with a more stable set of basis vectors, exhibit
the underlying structure of a generalized Hessenberg decomposition, show how to apply the MR
approach, and apply the flexible and the multi-shift paradigms from the context of Krylov subspace
methods. The difference in the latter is the one between Hessenberg decompositions and generalized
Hessenberg decompositions, i.e., the choice of vectors that are multiplied by A: in classical Krylov
methods the last basis vector is multiplied by A, in IDR based methods, a linear combination v
of previously obtained basis vectors is multiplied by (a linear polynomial of exact degree 1 in) A.
The adoption of flexible and multi-shift paradigms to the recent extension IDRstab [9] of the IDR
approach to use higher degree polynomials will be treated elsewhere.

1.2. Related IDR methods

Because BiCGStab [17, 18] is mathematically an IDR method [7], the first implementation of a
quasi-minimal residual IDR method, or QMRIDR method for short, is QMRCGStab [19], the QMR
implementation of BiCGStab. More recently, a QMR variant of the prototype IDR(s) [1] has been
proposed by Du et al. [20, 21]. This method is mathematically different from the one we present
in this paper. The quasi-minimization in the variant of Du et al. is performed over the space that is
spanned by the residuals generated by the prototype IDR(s) variant [1]. Because the residuals are
used as basis vectors, the QMRIDR variant of Du et al. shares the problems of the latter, especially
the numerical instability arising for larger values of s. To circumvent this problem, our QMRIDR
approach is based on a more stable basis expansion, in which new basis vectors are orthonormalized
against all basis vectors in the same Sonneveld space [9]. As a consequence, our QMRIDR method
is mathematically equivalent to GMRes in the first s iterations.

In [22], a multi-shift IDR method is presented. This method is based on the prototype-IDR(s)
variant and exploits the collinearity of the residuals, i.e., it uses the OR approach.

1.3. Outline

In Section 2, we sketch an implementation of an IDR variant intended to compute a basis in
a stable manner. The arising coefficients are gathered in a generalized Hessenberg decomposi-
tion in Section 2.2. This generalized Hessenberg decomposition forms in Section 3 the basis to
derive a QMRIDR implementation along the lines of the QMR approach in [14]. The flexible
QMRIDR variant is developed in Section 4, the multi-shift QMRIDR variant in Section 5. For
the reader’s convenience pseudo-code implementations of the main algorithms are collected in
Section 6; illustrating numerical examples are given in Section 7. We conclude with some remarks
about possible generalizations in Section 8.

1.4. Notation

We use standard notation. The system matrix is denoted by A € CV*V | the identity matrix of size n

by letter I = I, € C"*",its columns by e; € C",1 < j < n, andits elements by §;;, 1 <i,j < n.
There exist extended variants of the identity matrix and its columns: I, € C®#+D*" denotes I,
with an additional zero row appended at the bottom, and ¢;, 1 < j < n denotes its columns.
The zero matrix of size k is denoted by O, a zero vector of length k£ by of. In context of Krylov
methods, unreduced Hessenberg matrices H, € C™*" and their unreduced extended counterparts
H, C@+Dx7 patyrally arise. To simplify notation, we use U, € C@+1x7 to denote the upper
triangular matrix U, € C™*" appended with an extra zero row at the bottom. The columns of
matrices are denoted by the same lowercase letter. The transpose and complex conjugate transpose
of matrices and vectors are denoted by appending T and M, respectively. The Moore—Penrose or
pseudoinverse is denoted by appending T. Subspaces are denoted by calligraphic letters like S, Ky,
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FLEXIBLE AND MULTI-SHIFT IDR 3

and G;. In this paper, the notation G; C G;_; denotes strict inclusion of sets, which implies that
G; # Gj—1. The Euclidean norm for vectors and the corresponding operator norm for matrices is
denoted throughout by || - ||. The letter n is reserved to denote the current step, e.g., n € N; s € N
is the codimension of the space S defining IDR(s); the parameter j € Ny denotes the index of the
current Sonneveld space. By nature of IDR methods, j = |[n/(s + 1)]| depends on n and s, where
x| € Z denotes the largest integer with [x| < x € R. Similarly, [x] € Z denotes the smallest
integer with R > x < [x]. We remark that, like in [6], we use a simplified way to denote Krylov
subspace methods, e.g., we write GMRes in place of GMRES as is done in the original publication,
because the acronym stands for the phrase Generalized Minimal RESidual.

2. A GENERALIZED HESSENBERG RELATION FOR GENERATING VECTORS IN
SONNEVELD SPACES

In this section, we review the principle of induced dimension reduction (IDR) methods and give
a stable algorithm for generating vectors gy, ..., 8,41 in the nested Sonneveld spaces Gy, ..., G;,
j =1+ 1)/(s + 1)], to be defined in the succeeding text. As was shown in [6], the matrices

Gn = (glv"'sgn)v Gn+1 = (Gnagn-l-l) (1)

built from such vectors satisfy a so-called generalized Hessenberg decomposition [6, p. 287,
Eqn (1.13)]

AG, U, =G,11H,, 2)

where U, € C™*" is upper triangular and H, € C®+Dxn j5 unreduced extended Hessenberg; the
entries of U, and H, are uniquely determined by the recurrence coefficients. IDR(s) is a short-
term recurrence Krylov subspace method; this is reflected in the structure of the Sonneveld pencil
H, = I'H U,) [6, Definition 4.4] that has upper bandwidth s. In the following, we sketch

=n=—=n-

how to obtain a stable set of vectors g, ...,g,+1 together with the corresponding generalized
Hessenberg decomposition.
IDR methods generate vectors g;,i = 1,...,n-+1,in the IDR spaces, a special case of Sonneveld

subspaces [9, Definition 2.2, p. 2690], which are nested subspaces of shrinking dimension.
Let the subspace Gy be the full Krylov subspace C(A, g1) = Ky (A, g1):

Go = K(A,g1) = Kn(A,g1) = span{g;,Agy, ... ,AN_lgl}.
In case of non-derogatory A € C¥*N and a generic starting vector g € CV, Go = CV. Cases
exist where Go € CV[23, Section 6.2]. Starting from Gy, the Sonneveld spaces G; are recursively
defined by

Gj=(A—-ph(Gi1NS) j=12...

Here, S is a space gf codimension s, which is best described as the left null space of a fixed, full
rank N x s matrix Ry:

The matrix ﬁo is sometimes referred to as the matrix of initial shadow residuals or shadow vectors.
The columns of Ry are typically chosen to be orthonormalized random vectors, for a reason see the
convergence analysis of IDR-based methods in [10]. The parameter 1 ; is a complex number that
can, in principle, be chosen freely. We will sketch a method to select a ‘good” w; in a later section.
By construction the Sonneveld spaces are nested, but we can say more:

Copyright © 2014 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2015; 22:1-25
DOI: 10.1002/nla
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Theorem 2.1 (IDR Theorem [1]) "
Under mild conditions on the matrices A and Ry,

(i) Qj C gj_l for all Qj_l 75 {0}, ] > 0.
(ii) G; = {o} forsome j < N.

For the proof, we refer to [1, 7]. As a consequence of the IDR theorem, g, = 0 € G; = {o} for
some 7, i.e., IDR methods are in principle direct methods. Like Lanczos-based methods, the finite
termination property is lost in finite precision, and the methods deviate. This is not surprising, as
IDR methods are based on some underlying Lanczos process [6, 9] we can characterize the IDR
Sonneveld spaces in terms of the orthogonal complement of left block Krylov subspaces

Jj—1
K, (A" Ro) = {Z(A“)iioci ei € CS}

i=0

as

J
Gj = {M;(A)V|v LKA Ry)}, where M;(z) =[]z~ m).

i=1

[7, Theorem 11, p. 1104].

The Sonneveld spaces G; as defined in the preceding text use linear factors of the form A — ;1.
This is slightly different from the definition of the Sonneveld spaces used in [1] that uses linear
factors I — w;A, w; # 0, i.e., linear factors that are normalized such that the polynomial 1 — w;z
takes the value one at z = 0. The difference in definition of the linear factors stems from the fact
that, in [1], the aim is to generate residuals in the Sonneveld spaces, which leads to the prototype
IDR(s) algorithm. The present goal, however, is to generate a stable set of vectors g,. In contrast to
residuals, the vectors g, can be scaled. This property makes the choice p; = 0 admissible, whereas
the corresponding choice w; = oo clearly is not.

2.1. An algorithm for generating vectors in G;

The algorithm that we describe next is one of many possible algorithms to generate vectors g, € G;.
As is explained in [1, 2], s + 1 vectors in G;_; are needed to compute a vector in G;. The first
vector in a new subspace G; is up to a multiple uniquely defined. The other vectors, however, are
not. In each Sonneveld space G, j = 0, 1,. .., the algorithm in the succeeding text computes s + 1
orthonormalized vectors g;, i = j(s + 1) + 1,...,(j + 1)(s + 1). We distinguish three different
phases in the algorithm: (1) the generation of s 4 1 vectors in Gy, (2) the generation of the first
vector in G, j > 0, and (3) the computation of s additional vectors in G;, j > 0. We remark that
we always use and store as few vectors as possible to compute the next vector; other schemes are
possible, see [24].

2.1.1. Generating s+ 1 vectors in Gy. The first s 41 vectors should be in K (A, g;) and hence can be
generated with any Krylov subspace method. Because in our specific algorithm we want to generate
orthonormalized vectors g;, we use Arnoldi’s method. Let g; be a normalized starting vector, then

the next s vectors gz, ..., gs+1 are computed by the recursion
n
gn+1ﬁn+1,n = Agn - Zgiﬁi,m n<s. 3)
i=1
The parameters B;,, i = 1,...,n are uniquely determined by the orthogonality conditions

gir1Lg,i=1,...,n,
:Bi,n = g:‘_lAgnv i=1,...,n,
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DOI: 10.1002/nla



FLEXIBLE AND MULTI-SHIFT IDR 5

and B,4+1,, = 0 is selected such that the normalization condition ||g,+1(2 = 1 is fulfilled, i.e.,

n
Brntin = [Agn — Zgiﬁi,n”‘
i=1

Note that (3) can also be written as

n+1
Ag, =) gfin. n<s & AGy=GyyH,. “)

i=1

In the terminology of [6], the latter equality in (4) is the Hessenberg decomposition that captures
the quantities from Arnoldi’s method. This Hessenberg decomposition is the leading part of the
generalized Hessenberg decomposition that captures our QMRIDR variant, e.g., the leading s X s
part of the upper triangular Uy, for all n = s, is the identity matrix I.

2.1.2. Generating the first vector in G;, j > 0. Suppose that after n iterations (withn = j(s + 1),
J > 0), we have explicitly available the vectors g,_s,....8, € Gj_1. A vector v, € (Gj—1 N S)
can then be computed by

n—1
Vo = 8n — Z giVin, (5)

i=n—s
in which the y; , are uniquely determined by the condition that v,, € S:
Rllv, = o. (0)
Combining (5) and (6) yields an s x s linear system from which the parameters y; ,, i = n —

s,...,n — 1, can be determined. After selection of a new parameter u ;, the first vector t € G; can
be computed by

t=(A—p;Dv,. @)
To select a new p;, we aim at minimizing the norm of t. In order to avoid a very large value of 1 ;,
which leads to a small angle between t and v,, we combine the minimization with the strategies

explained in [25]. We refer to Section 6 for the precise algorithm to compute ;. As a final step, we
normalize the vector t which gives us g, 1:

gn+1,3n+l,n =1, ,Bn—i-l,n = ”t” (8)

The Eqns (5), (7), and (8) can be combined to give
n—1
gn-i—lﬂn—i—l,n = (A— V«jI) (gn - Z giVi,n) )
i=n—s
which can be rewritten as

n—1 n—1
A (gn - giyi,n) = (gn -y gm,n) 1+ Znt1Bntin: ©)

i=n—s i=n—s

Copyright © 2014 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2015; 22:1-25
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2.1.3. Generating s additional vectors in G;, j > 0. Suppose that after n iterations (with (j +
D(s+1)>n> j(s+1),j > 0), we have explicitly available the vectors g,_s,...,8, € Gj_1.
Furthermore, suppose that some of these vectors are already known to be in G;; namely, suppose
that 8;54+1)4+1,---,8n € Gj.

A new vector t € G; can be computed by repeating steps (5)-(7). Because a linear combination
of vectors in the subspace G is also in G, the vector

n
Zut1Bntin =t— ) gifin (10)
i=j(s+1+1
is also in G;. The parameters B; , are again selected such that the vectors g;(s+1)+1,.--,8n € G;

are orthonormalized. This implies that
Bin=git, i=js+1)+1....n,

and we chose 8,+1,, = 0 to normalize g, 11, which implies

n
ﬂn-ﬁ-l,n = ||t— Z giﬂi,n

i=j(s+1)+1

The equations (5), (7), and (10) can be combined, which gives the following relation between the
vectors g;:

n—1 n
8nt+1Bnt1n = (A — ;) (gn -y gi)’i,n) - gBin amn

i=n—s i=j(s+1)+1

Rearranging this equation by sorting terms involving A to the left gives the following relation:

n—1 n—1 n+1
A (gn - Z giVi,n) = (gn - Z giVi,n) ni + Z gi,Bi,n~ (12)

i=n—s i=n—s i=j(s+1)+1

2.2. A generalized Hessenberg decomposition for the vectors g,

In this section, we give the precise structure of U, and H, in the generalized Hessenberg decom-

position (2). To illustrate the structure of these matrices, we give U, and H, for s = 2 and
n=717,
I —yi3
1l =y23 —¥2.4
1 —y34 —V35

U7 = 1 —yas —Vae , (13)

L —ys6 —Vs5.7

I —ve7

1

ﬂl,l ,31,2 —H1Y1,3

,32,1 B2 —H1V2,3 —H1Y2,4
B3,z M1 —H1Y3,4 —H1Y3,5

H — Bas  Baa+ i1 Bas— 1Vas —H2Vae . (14)

=7 Bs.4 Bsis+ i1 —HaYse —[2V57

56,5 M2 —M2Ve6,7

Bre Br.7+ K2

Bs,7

Copyright © 2014 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2015; 22:1-25
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FLEXIBLE AND MULTI-SHIFT IDR 7

The first s columns of the matrices correspond to the initialization phase, where, s + 1 orthonormal
vectors in Gy are generated (i.e., the initial vector plus s additional vectors). Subsequent blocks of
s 4+ 1 columns corresponds to the same subspace G;, in this case, column 3-5 correspond to Gy,
and column 6 and 7 to G.

In general, we define the vectorsu; € C”, h; € Crtl i =s+1,...,n,as follows:

0i—(s+1 0i—(s+1

_IVES—S i) —)l/i—(i i,u)j s+ s+
o _’ Bjts++1,i Bjs+D+1,i
: w

u; = : ) h, = : + = ( Ol ) uj+

—Vi—1,i —Vi-1,iMj Bit1i Bivi

1 Wi i+1,i i+1,i
J 0p—j 0 —i
0y—i Op—i+1

We remark that the index j in the part defined by the Bs depends on the index i. The first s vectors
u; € C"and h; € Ccrtl i =1,...,s, are defined to be those that contain in the first s and s + 1
elements the columns of U; = I, and H,, respectively, from the Hessenberg decomposition (4)
resulting from Arnoldi’s method. By defining the matrices

Uy = (ur.-o-.u,),  H,=(h ---h,), (15)

Eqns (4), (9), and (12) can be compactly written as a generalized Hessenberg decomposition (2).
The matrix U, is an n x n upper triangular matrix with upper bandwidth s. H, isan (n 4+ 1) x n
extended Hessenberg matrix, also with upper bandwidth s. The generalized Hessenberg decompo-
sition (2) will be at the basis of the solution algorithms for linear systems that we will present in the
next sections.

Remark 1 (Arnoldi’s method & computation of [ ;)

In the generalized Hessenberg decomposition that we have outlined in the preceding text, all vectors
g €G;i-1\G;, j—D(s+1) <i < j(s+ 1) are orthonormalized for 1 < i < n + 1,
1 <j < |(m+1)/(s+ 1)] + 1. The resulting algorithm is therefore in spirit close to Arnoldi’s
algorithm. The two algorithms coincide for n < s.

After every s + 1 steps of the algorithm, a new value for u; has to be selected. In the spirit of
Arnoldi’s algorithm, it is a natural idea to select a new u ; to make the first g-vector in G; orthogonal
to the last g-vector in G;j_;. However, from many experiments (not reported in this paper), we
concluded that this choice for p; may lead to very slow convergence or even stagnation of the
solution algorithms based on the generalized Hessenberg decomposition (2) that will be presented
in the next sections. In this paper, we limit us to giving the strategy for selecting p ;, which gave
us the best results. The detailed algorithm for computing this p will be presented as Algorithm 2 in
Section 6.

3. A SOLUTION ALGORITHM BASED ON THE GENERALIZED HESSENBERG
DECOMPOSITION

In this section, we will outline a quasi-minimal residual algorithm for solving the system Ax = ry.
The derivation of the algorithm is almost completely analogous to that of MinRes [12], GMRes
[13], and QMR [14]. The main difference is that our algorithm is based on a generalized Hessenberg
decomposition.

The goal is to find approximate solution vectors X, € K, (A,rp) such that the norm of the
corresponding residual ro — Ax,, is minimized:

I¥o = Ax, | = min [ro — Ax]|. (16)

Copyright © 2014 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2015; 22:1-25
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We assume that in the nth iteration, we have available matrices G, U,, G,+1, and H,, that satisfy
Eqn (2). Moreover, we start the process with gy ||rg|| = ro, so that G,41€,||ro] = ro, with e, the
first canonical basis vector of length n 4 1. We construct x,, as a linear combination of the columns
of G, by putting

X, = GyUuz, = V, (17)

z,
with unknown coefficient vector z, € C". Here, we did define V,, = (vy,...,v,), withv; = g;,
1 <i <s,andv;, s < i < n defined by Eqn (5). The second equality in (17) is based on the

definitions of G, and U,, in Eqns (1) and (15), respectively.
Substituting this expression in (16) yields a minimization problem for the vector z,,:

'ro — AG,Unz, | = min [ro — AG,Unz|.
zeCn
Using Eqn (2) gives
1Gn+1(eqliroll — H,z,)|l = min [[Gyr1(e[Irol — H,2)]. (18)

Unfortunately, the matrix G, does not have orthonormal columns, else z, would be the solution
to the uniquely solvable least-squares problem

lexliroll —H,z, | = min [e, lroll - Hz] - (19)

Because

IGn+1(eylIroll = H,z,) || < 1Gns1ll - [leyllroll — Hyz, ||, (20)

we ‘quasi-minimize’ (18) by minimizing this upper bound. We remark that we know a priori that

IGns1ll < v/ + 1)/(s + D], Q1)

because every consecutive block of (s + 1) columns consists of orthonormal vectors [24, Lemma 4,
p- 1058].

Clearly, the upper bound in Eqn (20) is minimized by the solution of Eqn (19). The solution of
this system can be determined with the aid of the tall QR decomposition of H, :

H,=QR,. Q eC"*V" R, eC"™, (22)
in which Q is a matrix with orthonormal columns, and Ry, is upper triangular. Because H,, only

has one nonzero subdiagonal, the QR decomposition of H,, is typically computed using Givens
rotations. The solution to (19) is then given by

—1nH
z, = R;' Q¢ ||ro| = Hje, |Iro].

which must be combined with (17) to give the approximate solution vector X,, .
Next, we will explain how the approximate solution vector

x, = G,U,R,'Ql'e, [|ro[| = V,R;'Q'e, o (23)

can be computed using short recurrences, in a way such that the storage requirements and work
per iteration are constant, exactly like it is done in MinRes [12] and QMR [14]. As was remarked

Copyright © 2014 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2015; 22:1-25
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FLEXIBLE AND MULTI-SHIFT IDR 9

before, the matrix H,, is an extended upper Hessenberg matrix with upper bandwidth s. From this
nonzero pattern immediately follows thath;, L h;,[i — j| > s + 1. Therefore, the upper triangular
matrix R, has upper bandwidth s 4 1. We introduce the auxiliary matrix

W, = G,U,R,! = V,R .
In order to compute w, = Wy e, , we write
W,.R,e, = G,U,e, = Ve, = v, (24)

see Eqn (5). Eqn (24) can therefore be rewritten as

> WiR,(i.n) = vy, (25)

i=n—s—1

in which R, (i, n) is entry (i, n) of the matrix R,. From (25), it follows that the update formula for
Wy, 18

n—1 1
W, = (Vn —ZWiRn(i,l’l)) . m (26)

i=n—s—1

Note that this is a short recurrence formula: only the s + 1 most recent vectors w;, n — (s + 1) <
i < n — 1 are needed to compute w,. Let the vector ¢, be defined by

H
¢, = Qe lIroll.

This vector grows by one entry in every iteration when a new Givens rotation is applied. The
approximate solution vector is then given by

Xn = Wn¢n'
Because x,,_; = W;,_1¢,,_,, the short recurrence update for x,, becomes
Xn = Xn—] + Wn¢n(n)v (27)

in which ¢, (n) is the nth coefficient of the vector ¢,,.

All the elements of the solution algorithm have now been derived. In Section 6, we will put all
the elements in place in the form of relatively easily implementable algorithms. However, before we
present the algorithms, we will make two straightforward generalizations.

4. FLEXIBLE QMRIDR(s)

The first generalization is to include a variable preconditioner in the solution algorithm. The idea to
change the preconditioner in a Krylov subspace method in every step dates back to 1993: flexible
GMRes [26]. More recent variants include GMResR [27], flexible CG [28], flexible QMR [29], and
flexible BiCG and flexible BiCGStab [30]. The latter is a flexible IDR variant, as BiCGStab is from
the IDR family. In contrast to flexible BICGStab, where the preconditioning matrix remains constant
for every 2 = s + 1 steps?, we allow for a different preconditioning matrix in every step: let P,

*We count the number of matrix-vector multiplications as steps to obtain a fair comparison between different iterative
methods.

Copyright © 2014 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2015; 22:1-25
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be the preconditioning matrix that may be different in every iteration n. A generalized Hessenberg
relation is derived by replacing Eqn (7) by

t= (AP, — u;1) vy (28)

If we putv; = Pi_lv,-, 1 <1i < n, then it is easy to see by following the steps explained in Section 2
that this leads to the Hessenberg relation (cf. [26])

AV, = G,41H,,
in which the matrix V,, has the vectors V;, i = 1,...,n, as its columns. In general, this relation no

longer can be written in the form of a generalized Hessenberg decomposition, which is why we term
it a Hessenberg relation. Now, we look for an approximate solution vector of the form

X, = Vngn (29)
Using ro = Gp+1€, ||ro | and AV, = Gn+1H, gives

1Gn+1(eqliroll — H,z,)|l = min [[Gyr1(e[Irol — H,2)]l.

This is exactly the same minimization problem as (18), which again we approximate by quasi-
minimization. Proceeding in the same way as in (23), we compute the tall QR decomposition
H, = Qn R,,, and we introduce the auxiliary matrix

W, = V,R; .
In order to compute w,, the nth column of W,,, we write
W.R,e, = i\/Vnen’
in which e,, is the nth canonical basis vector of dimension #. We notice that
V,,e,, =V, = P;lv,,.

The update formula for w,, therefore becomes

n—1
1
w, = |P v, — w;R,(i,n) ]| ——.
= (metv - Swn)

i=n—s—1

Finally, the solution vector x,, is computed using Eqn (27).
From this outline, it follows that the only modification needed with respect to the algorithm
without preconditioning is in the computation and storage of the extra vector

YV, = P;lvn.

An interesting observation is that if n < s, the columns of G, form an orthonormal set, and
as a result, a true minimization is performed: the method outlined in the preceding text is in that
case mathematically and algorithmically equivalent with FGMRes [26]. On the other hand, when
using a variable preconditioner, the vectors that are generated by performing the IDR recurrences
do not satisfy the IDR theorem any more: we cannot expect the vectors g;, 1 < i < n + 1, to
stem from a sequence of nested subspaces. We can retain part of the IDR properties by choosing a
new preconditioner only every s 4 1 steps like in flexible BiCGStab, but despite this restriction, the
resulting method will no longer be a Krylov subspace method in general.

Copyright © 2014 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2015; 22:1-25
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5. MULTI-SHIFT QMRIDR(s)

Multi-shift methods have been considered in [31, p. 230-231], see also [32]. Many multi-shift
Krylov subspace methods exist. We mention for example multi-shift QMR and multi-shift TFQMR
[33], multi-shift CG/BiCG and BiCGStab [34], multi-shift GMRes(k) [35], multi-shift FOM(k)
[36], multi-shift BiCGStab({) [37], and multi-shift CGLS [38]. For more on multi-shift algorithms,
we refer to [11].

The QMRIDR(s) algorithm can be easily adapted to solve shifted systems of the form

(A—0oDx° =19 =b.
We assume that, in the nth iteration, we have available matrices G, Uy, G, 41, and H,, that satisfy
(2), with G, such that g; ||ro|| = ro. We use as the initial approximation xo = 0. Initial approxima-
tions such that the direction of the first residuals is independent of o are mandatory: the condition
g1[rg | = rg§ must hold simultaneously for all shifted systems. Analogous to the solution algorithm

for the unshifted system, we construct approximate solution vectors X as a linear combination of
the columns of G, by putting

g. 30)
Note that we can also write this as
X, = Gp1U,z;, (31

in which U, € C®+Dxn is the matrix U, with an extra zero row appended at the bottom. Using
this notation, we can formulate the minimization problems for the shifted systems as

[ro — (AG, Uy — 0Gn11U,)z; || = Zlél(icl}l [ro — (AG, Uy —0Gr+1U, )z|.
Using ro = Gp41¢, ||[rol| and AG, U, = G,4+1H,, gives
|Grt1(eylIvoll — (H, —oU,)z5)| = llél((ijl} |Gnt1(e;lIvoll — (H, —0U,)z)| . (32)
In order to ‘quasi-minimize’ (32) we solve the least-squares problems
leslIvoll — M, —oU,)z; | = Jmin ey lIroll — (H, —oU,)z| .

The solution of these systems can be determined by computing the tall QR decompositions of all
shifted Hessenberg matrices H, — o U, :

H,—oU, =Q°R], Q% eCltD RIeC™. (33)

A short recurrence update formula for the approximate solution vectors X7 is determined in the same
way as for the unshifted case. With the vectors ¢, defined by

¢ = (Q°)"e, o, (34)

and the update vectors w9 for the shifted systems given by

n—1 1
w, = (Vn —Z wfRZ(i,n)) Re(in)’ (35)

i=n—s—1

Copyright © 2014 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2015; 22:1-25
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the approximate solution vectors x{ for the shifted systems are recursively computed by
Xy =X 1+ W, 0, (). (36)

We remark that the last four steps, namely Eqns. (33)—(36), are the only steps actually depending on
o. For different values of o, each of these steps can be carried out in parallel.

6. ALGORITHMS

In this section, we give pseudo-code implementations of the main algorithms. The first algorithm,
i.e., Algorithm 1, is a pseudo-code implementation of the flexible variant of QMRIDR(s) using dou-
ble classical Gram-Schmidt orthonormalization as orthonormalization scheme® and Givens rotations
for the updated solution of the nested extended Hessenberg least-squares problems.

The naming of the data structures used in the algorithms corresponds to the naming of the matrices
and vectors as used in the previous sections. Only the data corresponding to the previous s iterations
are stored. Columns of matrices are denoted by small characters, e.g., the variable h as used in the
algorithm contains the possibly nonzero elements of the last column of H, . All data are stored in
consecutive order. For example, the variable G as used in the algorithm contains in iteration n the
vectors €,—s+1,- - ., 8n- Lhe oldest vector is stored in the first column of G and the latest vector
in the last column. To maintain this ordering, in line 17 columns 2 to s are copied to positions
1 to s — 1. The new vector g is then stored in column s. This results in additional overhead that
should be avoided by using indirect addressing. For clarity, however, we present the algorithm with
consecutive ordering of the data.

Algorithm 1 requires, apart from storage for the matrices A and P,, and some scalars, storage for
3s + 6 N-vectors. This includes storage for b and the solution vector x.

The algorithm for computing p using the strategy explained in [25] is given as Algorithm 2. Note
that with respect to the computation of a stable basis, we could take u = 0 if |w| < eps, with eps
the relative machine precision. The occurrence of @ = 0 leads to breakdown in IDR(s), a breakdown
that does not take place in the basis expansion. OR methods break down because the Hessenberg
matrices are singular, in which case MR methods like QMRIDR(s) stagnate, compared with [39].
In the context of IDR methods, a stagnation due to u = 0 is incurable, which is clearly visible in
the structure of the matrix H, once one of the us is zero, as the first columns are all orthogonal to
the later columns. We depict as example the matrix H, in Eqn (14) with ;; = 0, explicitly denoting
the new zeros thus introduced:

Bi1 P12 O
B2, B22 O 0
B3z O 0 0
_ Ba3 Baa+ 1 Ba,s —H2Va6
H, = Bsa  Bss+ 1 —m2yse —H2Ysg | 7)
Be.s %) —H2Ye,7
Bre Br7+ 12
Bs,7

The MR solutions, or coefficient vectors, z; = ﬂ}; e, ||ro||, and the MR approximations x;, = Gz,
k = 2 satisfy the trivial recurrences

Z
Ly = (‘é‘) Xpp1 =X, k=2 (38)

A simple way around this incurable stagnation is to give i some nonzero value, e.g., . = 1.

$There are other options, in our experience this one proved to be sufficiently stable and is the one we used in our examples.

Copyright © 2014 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2015; 22:1-25
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Algorithm 1 FQMRIDR(s)

INPUT: A e CNV*N.xg.beCV;s > 0;§0 e CN*s, TOL € (0, 1);

OUTPUT: Approximate solution x such that |b — Ax|| < TOL - ||b]|.
L g=b—-Axp;x=%x;u=0M=0€C*;,G=0¢ CN*s. /I Initialization
22 W=0¢eCN*6tD. yw =g ¢ CNA;cs:oe(Cs“;sn:oe(CS“;
3p=lglipo=pig=18¢=0¢=pn=0 ;=0
4: while p/py > TOL do

5 fork =1,s +1do

6: n=n++1

7 u=oc¢ (Cs"'z;g(S_H) = 1; // Initialize new column of U
8 m = ﬁIO{g; // Construct v L io

9: if n > s then

10 Solve y from My = m;

11: v=g—Gy;

12: Uy = V5

13: else

14: V=g,

15: end if

16: M 1:5-1) = M(,2:5): Mes) = Mg

17: G(:,l:s—l) = G(:,Z:s); G(:,s) =8

18: Solve V from P,V = v; // Variable preconditioning
19: g = AV,
20: if k = 5 + 1 then
21: j =Jj+1; u = COMPMU(g, v); // New Sonneveld space
22: end if
23: g=g— UV,
24: h = puw; // Initialize new column of H
25: if Kk <s+ 1 then
26: /? = GI(Lf,s_k_;_l;s)g; g8=8— G(:,s—k-i—l:s)/’i;
27: B = Gl(-as_’\k_;_l;s)g; g€=8—G(s—k+1:59)0;
28: B=pB+58;
29: b1kttt = Bri—kt1s41) T B
30: end if
31: h(s+2) = ”g”’ g = h(x{kz) 2;
32: r=o0cCst3 r:s+3) = h; // Initialize new column of R
33: lp = max(1,s + 3 —n);
34: for! =1,,5s + 1do
35: I =rq);

36: rgy = csyt +snry+1);

37: r(41) = =SSNyt + eS)r(+1)s

38: end for

39: [e8(s+2). SM(s42), F(s+2)] = ROTG(X(542). F(5+3));
40: ¢ = cS(s+2)P; ¢ = —SN(542)¢;
41: CS(:,1:54+1) = €8(:;,2:5+2)5 SN 1:54+1) = SN 2:542)5
42: W= (V—Wrai1)/Ts42)
43: W) = Weast1)s Wes+) =W,
44: X =X+ oW,
45: o = |p|/J F 1; // Compute upper bound for residual norm
46:  end for

47: end while

Copyright © 2014 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2015; 22:1-25
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Algorithm 2 COMPMU

INPUT: t,ve CVN;
OUTPUT: W;
k = 0.7;// Value k = 0.7 is recommended in [25]
w = (tv)/(t");
p = t")/(ItlIvID;
if |p| < k then
w = wk/|pl;
end if
if |w| > eps then
uw=1/w;
else
=1
end if

—_
TV RN E RN

The Givens rotations are computed with the BLAS algorithm ROTG, which is given as
Algorithm 3. This algorithm computes cs, sn, and r such that

() ()=6)

Algorithm 3 ROTG
INPUT: a,b € C;
OUTPUT: cs,sn,T;
1: if |a| < eps then
cs =0;sn=1;r =b;
. else
t=lal+1blip=1tyla/tP +[b/1];

2
3
4
50 a=aflal;
6
7

cs =lal/p;sn =ab/p;r = ap;
: end if

The multi-shift algorithm MSQMRIDR(s) is presented as Algorithm 4. The algorithm is very
similar to FQMRIDR(s), with as most important differences that no preconditioner is used in
MSQMRIDR(s), and the computation of the update vectors for every shifted system is carried out
in a loop (line 34 to line 45) over the number of shifts. The algorithm as presented continues exe-
cuting these loops until the upper bound on the residual norms of all the shifted systems is below a
given tolerance. In practice, these loops only have to be executed for the shifted systems of which
the residual norms are above that tolerance, thus saving some unnecessary operations. For ease of
presentation, we did not include it in algorithm MSQMRIDR(s), but we did implement this in the
algorithm with which we did our numerical experiments.

Algorithm 4 requires, apart from storage for the matrix A and for scalars, storage for 2s + 4 +
ng(s + 2) N-vectors, with ns the number of shifts. This includes storage for b and the solutions
x% of the n, shifted systems. For each extra shift, there are therefore s + 2 extra N-vectors of
storage required.

For comparison, we tabulate in Table I the additional N -vectors per shift of a number of standard
multi-shift algorithms. The information in Table I is taken from [34]. The additional storage require-
ments for MSQMRIDR(1) are the same as for the shifted version of QMR. For large s, however, the
additional storage requirements may become prohibitive if many shifted systems have to be solved.
In this case, one may be forced to choose a small value for s.

Copyright © 2014 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2015; 22:1-25
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Algorithm 4 MSQMRIDR (s)
INPUT: Ae CVN.bheCVN:o;€eC,i=1,...,ng;5 >0;§0 e CN*s; TOL € (0,1);
OUTPUT: Approximate solutions x% such that ||b — (A — o;)x% || < TOL - |b|,i = 1,...,n,.
:g=b;p =gl po=pig=1&x% =0,i =1,...,nq;/ Initialization
2: ;L=O;M=Oe(CSXS;GzOE(CNXS;WzoeCN;Vzoe(CN;
3: fori =1,n, do
4 W% =0 e CNX(S+1);
50 es% =o€ Cst2.6n% = o € C12;
6:  ¢% = 0;9% = p;
7
8
9

. end for

:n=0;7 =0;

: while p/pg > TOL do
10. fork=1,s+1do

11: n=n+1

12: u=o0¢eC*u, ) = 1:// Initialize new column of U

13: m= ﬁgg; // Construct v L ﬁo

14: if n > s then

15: Solve y from My = m;

16: v=g—-Gy;

17: Ug) = V5

18: else

19: V=g,

20: end if

21 M 1:5-1) = M2 M) = M5 G 1is—1) = G2:): Gios) = 858 = Av;
22: if k = 5 + | then

23: Jj =Jj +1; u=COMPMU(g, v); // New Sonneveld space

24: end if

25: g=g— uv,

26: h = pu; // Initialize new column of H

27: if k <s + 1 then

28: /?\ = G](-{,s—k-i-l:s)g; g8=8— G(:,s—k+1:s)pi§

29: B = Gl(_f,s_Ak_;_l;s)g; g=¢—G(s—k+1:59)0;

30: B=PB+B 01 ki) =Boti—kt1s41) T B

31: end if

32: hi o) =lgl:g= h(s_irz)g;

33: p=0;

34: fori =1,n, do

35: r =0 € C**3 ru.13) = h — o;u; // Initialize new column of R%

36: lp = max(1,s + 3 —n);

37: for! =1,,5s + 1do

38: t=rg);rg = CS((III)Z + sn((’l’)r(lﬂ); rg4+1) = —ﬁ({l’)l + CS((TI’)I'(I_;_I);
39: end for

40: [CS((TSIH)’ Sn(():;-l,-z)’ r(s+2)] = ROTG(r(s42). F(s+3));

4L ¢ :csc(ysl+2)¢gl MES _S_n((ysl-fz)d’ol ; csc(ril,lzs—i—l) ZCSZZ,Z:s+2); Sn‘(le,lzs—i-l) = Sn((T:Z,Z:s-i-Z);
42: W= (V= Wirq41)/Ts+2); Wzl,ns) = W?:I,Z:s-i-l); W((T:l,s+1) =W

43 X% =x% + ¢%w;

44; p = max(p, |$0i |/ ] + 1); // Compute upper bound for maximum residual norm
45: end for

46:  end for

47: end while

Copyright © 2014 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2015; 22:1-25
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Table I. Additional N -vectors per shift.

Method Extra N -vectors per shift
QMR 3

TFQMR 5

BiCG 2

BiCGStab 2
MSQMRIDR(s) s+2

7. NUMERICAL EXPERIMENTS

The experiments that are presented in this section have been performed on a standard desktop com-
puter running under Linux with kernel 3.12.9, with four Intel® Xeon® X5667 CPUs and 12GB of
RAM using Matlab 8.1.

In all our experiments, we take for Fy, ..., T the orthonormalization of s normally distributed
ggndom vectors, with mean O and standard deviation 1, i.e., stated in form of a Matlab command:
Ry = orth (randn (N, s)).

7.1. Example 1: SHERMAN 4

In the first experiment, we investigate how sharp the upper bound (21) on the residual norm is, and
compare the convergence of QMRIDR(s) with the convergence of IDR(s), and with the optimal
convergence of full GMRes. To this end, we have chosen the matrix SHERMAN 4 with correspond-
ing right-hand side from the MATRIX MARKET [40]. N = 1104 for this problem. This classic test
problem is reasonably well conditioned, and as a result, it suffices to use a small value for s. In the
computations, we have used s = 1, 2, 4, and 8. The required tolerance is ||r;||/|[ro| < 1078.

For every iteration, Figure 1(a) gives the true residual norms for the four variants of QMRIDR(s)
and Figure 1(b) the upper bound on the residual norm. Also given in these figures is the convergence
curve for full GMRes, which shows how close to optimal the QMRIDR convergence curves are
(increasingly closer for larger s), even for small values of s. The upper bound on the residual norms
is quite useful for this example: a termination criterion based on the cheap upper bound requires
only a small number of additional iterations compared with a termination criterion based on the true
residual norm. We have observed this for many other test problems as well. We mention that, as
suggested in [14], a good strategy is to use the upper bound in most of the iterations and the true
residual norm only in the final iterations.

Figure 2(a) shows for comparison the convergence of IDR(s) (and of full GMRes) for the same
test problem. Clearly, the convergence of QMRIDR(s) is much smoother. We remark, however, that

QMRIDR(s): true residual norm QMRIDR(s): upper bound on residual norm

log(llrlI/lbIl)
log(|Irli/llbIl)

0 50 100 150 200 0 50 100 150 200
Number of matrix-vector multiplications Number of matrix—vector multiplications
(a) Convergence of QMRIDR(s), true residual norm. (b) Convergence of QMRIDR(s), upper bound.

Figure 1. Example 1: Convergence of QMRIDR(s): true residual norms (left) and upper bound (right).
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IDR(s) (variant from [2])

IDR(s) with residual smoothing
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(a) Convergence of IDR(s).

Number of matrix-vector multiplications

(b) Convergence of IDR(s) with smoothing.

Figure 2. Example 1: Convergence of IDR(s) without (left) and with (right) residual smoothing.

Table II. Example 1: Number of iterations for the different (QMR)IDR

variants.
QMRIDR(s) QMRIDR(s) IDR(s) IDR(s)
s True residual norm  Upper bound No smoothing  Smoothing
1 213 223 217 217
2 176 185 181 181
4 149 154 158 158
8 140 142 141 141

the rate of convergence of the two methods is essentially the same. We consider the smoother con-
vergence of QMRIDR(s) a nice, but not very important feature of the method. Smooth convergence
of the residual norms can easily be achieved in IDR(s) as well by using a residual smoothing tech-
nique. The Matlab code that is described in [2] incorporates as an option residual smoothing using
the technique developed by Hestenes and Stiefel [15, §7, p. 418—419], see also Schonauer and Weil3
[41, 42]. Figure 2(b) shows the resulting monotonic convergence. Also here we remark that the rate
of convergence of IDR(s) with and without smoothing is essentially the same. For completeness,
we give the numbers of iterations for the different methods in Table II. The IDR(s) variant in [2] is
both simpler and cheaper than QMRIDR(s). We therefore consider IDR(s) the better suited method
for problems that can be solved with a moderate value of s.

7.2. Example 2: SHERMAN 2

Next, we consider the matrix SHERMAN 2 with corresponding right-hand side, here N = 1180.
This problem is very ill conditioned, and as a result, IDR(s) requires a high choice for s to converge
[2]. The purpose of this example is to illustrate that for high values of s, the more stable computation
of the basis vectors in QMRIDR (s) may result in considerably faster convergence than for IDR(s).

We solve this problem with QMRIDR(s) and with IDR(s), with values of s ranging from 20
to 140. The required tolerance for this example is ||r;||/|ro|| < 10™*. The upper bound on the
residual norm is used in the termination criterion. Table III gives the number of iterations to reach
the required accuracy for QMRIDR(s) and IDR(s) for the different values of s. As can be seen
from the table, IDR(s) requires considerably more iterations than QMRIDR(s) for all choices of
s, except for s = 140. This can be explained by the fact that QMRIDR(s) always keeps the last
(s + 1)-block of g-vectors orthonormal, which for high values of s yields a quasi-minimization that
is close to the real minimization of the residual norm. If the number of iterations is less than s, the
quasi-minimization becomes a true minimization, since then all the g-vectors are orthonormal. In
that case, QMRIDR(s) and GMRes are mathematically equivalent. This is illustrated in Figure 3,
which shows the convergence for QMRIDR(s) and IDR(s) for s = 140, and of full GMRes. Note

Copyright © 2014 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2015; 22:1-25
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Table III. Example 2: Number of iterations for increasing s.

Method No. of iterations Method No. of iterations
QMRIDR(20) 1099 IDR(20) 1908
QMRIDR (40) 445 IDR(40) 938
QMRIDR(60) 277 IDR(60) 851
QMRIDR(80) 144 IDR(80) 828
QMRIDR(100) 131 IDR(100) 789
QMRIDR(120) 119 IDR(120) 455
QMRIDR(140) 119 IDR(140) 163

that the required number of iterations for GMRes is 119, which is smaller than s. Because also the
upper bound on the QMRIDR (s) residual norm is exact as long as the number of iterations is smaller
than s, the convergence curves for GMRes and QMRIDR(s) coincide. The SHERMAN 2 example
is in our experience exceptional in the sense that the convergence of IDR(s) for small values of
s is far worse than the convergence of GMRes. For such problems that require large values for s,
QMRIDR(s) gives a real computational advantage over IDR(s).

7.3. A convection—diffusion—reaction problem

The third example is a finite difference discretization of a convection—diffusion-reaction problem.
We will use this example to illustrate the numerical behavior of QMRIDR(s), first as a flexi-
ble method, and then as a multi-shift method. We start with the definition of the test problem;
Section 7.3.2 gives the experiment where QMRIDR(s) is combined with a varying preconditioner,
and Section 7.3.3 describes the experiment where QMRIDR(s) is used to simultaneously solve
several shifted systems.

7.3.1. Description of the test problem. The test problem is an academic example taken from [2].
The system that we use in the experiments is the finite difference discretization of the following
convection—diffusion—reaction equation with homogeneous Dirichlet boundary conditions on the
unit cube:

—eAu—i—E-Vu—ru = F.
The right-hand side vector F is defined by the solution u(x,y,z) = x(1 — x)y(1 — y)z(1 — 2)
of the unshifted system (r = 0). The problem is discretized using central differences with grid size

h= 0.025, which gives N~ 60, 000. We take the following values for the parameters: € = 1 (dif-
fusion), B = (0/+/5 250/+/5 500/+/5)T (convection). The value for r (reaction) depends on

Convergence for IDR(140), QMRIDR(140), and GMRes

IDR(140)

T : : : — — - QMRIDR(140)
X . . - — - — GMRes

log([Irll/Ilbll)

0 20 40 60 80 100 120 140 160 180
Number of iterations

Figure 3. Example 2: Convergence of QMRIDR(140), IDR(140) and of full GMRes.
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the experiment. The resulting matrices are highly nonsymmetric and for larger r indefinite, prop-
erties that make the resulting systems difficult to solve with an iterative solver. In all experiments,
we use the upper bound on the residual norm. After the iterative process has ended, the norm of the
true residual is computed to verify that the required accuracy is achieved. The required tolerance is
llx; [/ llroll < 1075,

7.3.2. Flexible QMRIDR (s). In the first experiment, we take r = 0. At every iteration, we use 20
steps of full GMRes as preconditioner. For every iteration, Figure 4 gives the upper bound on the
residual norms of FQMRIDR(s) for four values of s. Also included in this figure is the convergence
curve for (full) FGMRes. For this experiment, the computing times are almost completely deter-
mined by the GMRes preconditioning iterations. As a result, the required number of iterations is a
good measure for the relative performance of the different methods.

The first observation is that all four FQMRIDR variants achieve the required accuracy: the algo-
rithm is in this respect robust for variations in the preconditioner. Second, the rates of convergence
fors = 1,s = 2, and s = 4 are almost the same, with a trend towards a lower rate of convergence
for higher s. This tendency is stronger if fewer inner GMRes iterations are performed. The expla-
nation is that when a variable preconditioner is used, the g-vectors are no longer in a sequence of
nested subspaces, because the IDR theorem no longer holds. If fewer inner GMRes iterations are
performed, the preconditioner becomes more variable. Third, FQMRIDR(8) performs considerably
better than the other FQMRIDR variants. This is caused by the fact that in the first s iterations,
the convergence curve of FQMRIDR(8) coincides with the (optimal) convergence curve of FGM-
Res. The convergence of FQMRIDR(16) (not shown) completely coincides with the convergence of
FGMRes, because the required number of iterations of FGMRes and of FQMRIDR(16) is 12, which
is smaller than s = 16.

In case of strongly variable preconditioners, it is in our experience best to choose s small, i.e.,
s = 1. Alternatively, because FQMRIDR and FGMRes are mathematically equivalent in the first s
iterations, one can take s sufficiently large to (almost) obtain the convergence of full FGMRes. But
this strategy is only of theoretical interest: in that case, it may be better to simply use FGMRes.

7.3.3. Multi-shift QMRIDR (s). In the following experiments, we take six different shifts: r = 0,
r = 200, r = 400, r = 600, r = 800, and r = 1000 and study the simultaneous solution of the
six shifted systems. For larger shifts even GMRes exhibits a long phase where no convergence takes
place, similarly for QMRIDR(s). Figure 5 shows the convergence curves for MSQMRIDR(s) for
each of the shifted systems in four different subplots. Each subplot gives the results for a specific
value of s.

Note that in MSQMRIDR (s) the (upper bound) on the residual norms is available for every shifted
system at no extra cost.

Although MSQMRIDR(s) requires the computation of only one set of g-vectors, which implies a
big saving in matrix-vector multiplications, the saving in vector and scalar operations is less because

Convergence of FQMRIDR(s): upper bound on residual norm
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Figure 4. Example 3: Convergence of FQMRIDR(s) with a variable preconditioner.
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Figure 5. Example 3: Convergence for the simultaneous solution of six shifted systems.

Table IV. Example 3: Number of iterations, CPU time, and storage for the solution of the
six shifted systems.

Simultaneous solution One system at a time
K Iterations CPU time N-vectors Iterations CPU time N -vectors
1 389 5.05s 24 1948 12.6s 9
2 248 4.52s 32 1241 9.6s 12
4 183 5.13s 48 954 11.3s 18
8 151 6.27s 80 838 15.9s 30
MSGMRes 130 6.54s 138 720 31.4s 132

many of these operations are related to solving the (projected) shifted system. So the question arises
how much more efficient the multi-shift algorithm is compared with the solution of the shifted
systems one after the other. The answer to this question is very problem and implementation depen-
dent, but to give at least the answer for the given problem and implementation, we have tabulated
in Table IV the number of iterations and CPU time for the multi-shift algorithm, and the accumu-
lated numbers of iterations and CPU time if the systems are solved subsequently. For comparison,
we also give the results for multi-shift GMRes (MSGMRes). The results in Table IV show that the
saving in CPU time of MSQMRIDR(s) over the subsequent solution of the shifted systems with
QMRIDR(s) for a single shift is significant. QMRIDR(s) is slightly faster than MSGMRes for all
values of s tested. QMRIDR requires much less memory space for N -vectors than full MSGMRes.
We remark that the large memory consumption of full MSGMRes can be overcome by using the
restarted MSGMRes method proposed in [35]. The drawback of restarting is that the convergence
is slower than for the unrestarted method.
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7.4. A Helmholtz problem

The final example is the finite element discretization of a Helmholtz equation. The test problem
models wave propagation in the earth crust. We will illustrate the performance of FQMRIDR(s)
in combination with a variable multigrid preconditioner. Then, we apply MSQMRIDR(s) to
simultaneously solve the Helmholtz equation at different frequencies.

7.4.1. Description of the test problem. The test problem that we consider mimics three layers with
a simple heterogeneity. The problem is modeled by the following equations:

2 2
“Ap— (’(T—];) p=s in Q= (0,600) x (0, 1000), (39)
c(X
s = 6(x1 — 300, x5) for x; = (0,600), x, = (0,1000), (40)
9
opr _ 0 on 0. 41
on

The sound source s is located at the surface and transmits a sound wave with frequency f. Homo-
geneous Neumann conditions are imposed at the boundaries. The local sound velocity is given as in
Figure 6.

The problem is discretized with linear finite elements which leads to a system of the form

(K—-ziM)p=b, z;=(2nf)?,

in which K is the discretized Laplacian, and the mass matrix M is the discretization of C(Lx) We
use a lumped mass matrix, which means that M is diagonal. The grid size is # = 12.5m, which
yields N =~ 3700. The system is symmetric and indefinite. In all experiments, we use the upper
bound on the residual norm. After the iterative process has ended, the norm of the true residual is
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Figure 6. Example 4: Problem geometry with sound velocity profile.
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computed to verify that the required accuracy is achieved. The tolerance used in the experiments is
Il /Il < 1075

7.4.2. Flexible QMRIDR (s). Shifted Laplace preconditioners for the discrete Helmholtz equation
are of the form

P=K-z,M.

The shift z, is chosen on the one hand to ensure a fast rate of convergence and on the other hand
such that the systems with P are easily solvable. In practice, z5 is chosen such that the action of P!
is well approximated by one multigrid cycle. In the experiments, we use 7, = —iz; [43, 44]. The
action of P~! is approximated by one cycle of AGMG, the AGregation based algebraic MultiGrid
method proposed by Notay [45]. AGMG uses a Krylov subspace method as smoother at every level.
As a result, this multigrid operator is variable (changes in every iteration), and a flexible method
must be used if AGMG is used as a preconditioner.

In this experiment, we take f = 8. The convergence of FQMRIDR(s) with one cycle of AGMG
as preconditioner is displayed in Figure 7. For every iteration, this figure gives the upper bound
on the residual norms of FQMRIDR(s) for eight values of s. Also included in this figure is the
convergence curve for (full) FGMRes.

For this problem, it pays off to choose s larger. This is in contrast to the previous example,
which gave only a faster rate of convergence for s in the order of the number of FGMRes iter-
ations to solve the system. This difference stems from the fact that the AGMG preconditioner is
less variable than the GMRes inner iterations that were used as preconditioner in Section 7.3.2.
For s = 128, the convergence curves of FGMRes and FQMRIDR(s) coincide almost completely,
because the two methods are mathematically equivalent in the first s iterations. The computing time
for FQMRIDR(16) is about the same as for full FGMRes, both take about 2s, but FQMRIDR(16)
uses of course much less memory than FGMRes.

7.4.3. Multi-shift OMRIDR (s). In the next experiments, we use MSQMRIDR(s) to simultaneously
solve four shifted systems (M™'K — z;I)p = M~ 'b, for the frequencies f = 1, f = 2, f = 4,
and f = 8. Figure 8 shows the convergence curves for MSQMRIDR(1), MSQMRIDR(2), MSQM-
RIDR(4), and MSQMRIDR(8) for every shifted system in four different subplots. In contrast to
Example 3, this example requires a larger value of s to solve the systems: only for s = 8, all systems
are solved to the required accuracy within 2000 iterations. The convergence curves for the different
frequencies are more spread out than for the previous example, but the spread in the shifts for this
example is also much bigger than for the previous example. Multi-shift GMRes takes 1113 iterations
for this example, which is slightly less than the 1295 iterations that QMRIDR(8) takes to converge.

These high numbers of iterations show that this problem should really be solved with a precon-
ditioned iterative method. But in order to combine a multi-shift method with preconditioning, it

Convergence of FQMRIDR(s)

log([Irli/lbl)

9 1 1 1 1 1 1 1 I 1
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Figure 7. Example 4: Convergence of FQMRIDR(s) with a variable preconditioner.
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Figure 8. Example 4: Convergence for the simultaneous solution of four shifted systems.

should be possible to formulate the preconditioned problem as a multi-shift problem. Because of
this requirement, multi-shift methods cannot be combined with e.g., ILU-type or AMG-type pre-
conditioners. This makes multi-shift problems less suitable for ill-conditioned problems as the one
discussed previously. How to efficiently precondition the multi-shift problem is to a large extent
an open question, see e.g. the discussion in [34, Section 4]. With a good preconditioner, one could
solve one system at the time.

8. CONCLUDING REMARKS

We have presented two new members from the family of IDR methods highlighting the role of the
underlying generalized Hessenberg decomposition. The derivation of the flexible and the multi-shift
QMRIDR algorithms should allow others to easily incorporate ideas from the context of Krylov
subspace methods to the slightly more complex case of IDR methods. The numerical experiments
clearly reveal that IDR is a scheme that allows to narrow the gap between optimal long-term recur-
rences like GMRes and Lanczos-based methods without the need for complicated truncation or
restart schemes. We repeat here the remark?, given in the abstract of [46]:

‘...can be viewed as a bridge connecting the Arnoldi-based FOM/GMRes methods and the Lanczos-
based BiCGStab methods.’

With QMRIDR, we have the IDR method that gives the perfect bridge to GMRes and FGMRes: for
s large enough, mathematical equivalence is reached.

IThis remark is about ML(k)BiCGStab, a method that is mathematically closely related to IDR(s).
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