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Abstract

Road sensors gather a lot of statistical data about traffic. In this
paper, we discuss how a measure for the amount of traffic on the roads
can be derived from this data, such that the measure is independent
of the number and placement of sensors, and the calculations can be
performed quickly for large amounts of data.

We discuss how a graph of the road sensors can be constructed, and
how the number of cars and car-kilometers can be estimated on this
graph. Further, methods for dealing with missing data are presented,
and the benefits of principal component analysis are discussed.
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1 Introduction

This paper reports on findings regarding the traffic index problem, as posed
by the CBS (Centraal Bureau voor de Statistiek [NL], Statistics Netherlands
[EN]) at the Study Group Mathematics with Industry 2014, held at the Delft
University of Technology.

The problem posed to us was to determine a traffic index comparing the
average traffic on the highway system in the Netherlands (or a region such
as South Limburg) from a particular year to a previous year, based on traffic
measurements by road sensors (such as inductive loops, traffic cameras, etc.)
taken every minute of the day, every day of the year. We call this problem TI.
We decided to tackle an even more ambitious problem, which we call problem
C, namely estimating how many vehicles (cars) there are on a particular road,
at a given moment in time, based on the measurements of the past minute.
Solving this instantaneous estimation problem by computing the number of
cars C on the road, will also give a solution to the TI problem, by averaging
over all the minutes of the year, and adding the results for all the roads of
the network.

An advantage of tackling the more general problem C is that a solution
can give more detailed information, such as changes in traffic patterns during
the day, or differences between different days of the week, and it also enables
zooming in on certain regions, roads, or even road segments. Another advan-
tage of trying to achieve a precise estimate of an actual physically meaningful
number is that such an approach is fault tolerant and adaptable to changes,
e.g. new road sensors appearing, old sensors being removed, and some sensors
malfunctioning temporarily.

The increase in our ambitions from computing mere statistical indicators
to achieving a very precise estimate of the actual situation on the road is
possible because of the wealth of detailed data that is now available. So to
speak, Big Data is driving analysis from statistics towards detailed answers to
specific questions on the systems and subsystems studied. For this approach
to work, it is essential that computational algorithms become available that
are efficient and preferably scale linearly in the number of data entries.

To formulate our problem, we define a number of variables, where we first
consider a road segment between sensors A and B. Define dAB as the distance
between sensor A and sensor B. Let t be the current time and T the time
interval of measurement (1 minute in our data). The measurements at time
t are the intensity IA(t) of the traffic, i.e., the number of cars measured at
sensor A in time interval [t, t+ T ), and the average velocity vA(t) of the traffic
measured at sensor A (for our data, the arithmetic average during the time
interval). Furthermore, a road segment concerns one direction, see Figure 1.

In Section 2, we discuss methods to construct a graph of the road network

Proceedings of the SWI 2014 Held in Delft

3



✐
✐

“swi-2014-delft-proceedings” — 2014/4/22 — 11:31 — page 4 — #10 ✐
✐

✐
✐

✐
✐

A BIA, vA IB , vB
dAB

Figure 1: Road segment from sensor A to sensor B, with length dAB and at
each sensor the measured traffic intensity I and velocity v.

from the data, such that the edges are road segments as in Figure 1, and
in Section 3 methods are presented to calculate traffic indices based on car
count and on car-kilometer count, using the constructed graph of road sensors.
In Section 4, ideas are presented that can help deal with missing data, and
Section 5 discusses how Principal Component Analysis can be used to support
traffic index calculations. Finally, in Section 6 conclusions are presented.

2 Graph construction

The idea to reconstruct the road network has been devised to utilize the
maximum information provided by the data. Constructing a graph for the
full road network would require more than just the road sensor data, e.g.,
OpenStreetMap data. Here, we only construct a separate directed graph
for each road that has sensor data. This means that roads without sensors,
including all connecting roads with exits from and entrances to roads with
sensors, are ignored.

For the purpose of calculating a traffic index, we feel that this is the best
way to deal with these ‘dark roads’. First, there is no way to tell what ex-
actly happened. How many cars exited and entered a measured road between
sensors A and B? What dark road did they go on or come from, and did
they drive that entire road or were they just visiting the closest house along
that road? Second, assuming that the number of cars on dark roads is, in
approximation, a constant fraction of the total number of cars, missing data
of these roads should not significantly impact the relative traffic index.

We can roughly split the construction of the graph for a single road into two
parts: a) determining most likely neighbours of sensors, and b) determining
an order of the sensors that a car traveling on a road follows. We will need
the following three ingredients:

1. coordinates of each sensor in latitude and longitude,

2. the name of the road each sensor is on,

3. the direction of the recorded traffic at each sensor.
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The latitude and longitude coordinates of a sensor are used to locate the
sensor on the map, and to compute the distance between two sensors. If the
earth is assumed to be a perfect sphere, then the shortest distance between
two points on the sphere is the smaller arc length of the great circle passing
through these two points on the sphere. This is called the geodesic distance,
and can be calculated from:

haversin

�
dAB

R

�
= haversin(φB − φA) + cosφA cosφB haversin(λB − λA),

(1)

where dAB is the geodesic distance between points A(φA,λA) and B(φB ,λB)
on a sphere of radius R, φA and φB are the latitudes, λA and λB the longi-
tudes, for A and B, respectively, and

haversin(θ) = sin2
θ

2
=

1− cos θ

2
. (2)

Note that MATLAB has a built-in geodesic distance function. The region of
South Limburg has latitudes between 50.75◦ N and 51.05◦ N and longitudes
between 5.7◦ E and 6.1◦ E.

Using the name of the road each sensor is on, the sensors can be assigned
to their respective roads, and using the direction data the lanes in opposite
directions can be separated. The main aim is to find the successor sensor for
each sensor when travelling in a certain direction, as our car traffic calculation
method requires that we know the order in which the sensors are traversed.
For this we employ a modified nearest-neighbour algorithm, processing one
direction of one road at a time.

When we have the order of the sensors for one direction of a road, we
create a pseudo-connection matrix P of size n×n, with a row and column for
each of the n sensors (the name will be explained later on). For each sensor
A in the data, we first find the sensor B that is closest to A. In the matrix
P , there will then be a 1 in the (B,A)-entry.

Except for the first and last sensor on the road, each sensor has two neigh-
bours. Rather than just looking for the sensor that is closest to A after B,
we apply a second criterion to make the result more realistic, i.e., we only
consider sensor C where the angle between AC and AB is at least 90 degrees.
We illustrate this criterion with an example. In Figure 2 the closest neighbour
to A is B, and the second closest neighbour is C. Still, because we assume
that roads do not make turns sharper than 90 degrees, we consider D the
more likely second neighbour of A, as in Figure 3.

We apply the rules for first and second neighbours to all of the sensors
involved, and fill the matrix P accordingly. This matrix will only have 0s
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Figure 2: Neighbours of A when not using the 90 degrees criterion.
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Figure 3: Neighbours of A when using the 90 degrees criterion.

and 1s, with at most two 1s per column. The reason we call this a pseudo-
connection matrix is that it is not the standard connection (adjacency) matrix
for a directed graph; it also need not be symmetric, as the connection matrix
of an undirected graph would be.

The next step is to use the direction of the road to make sure we start at
the beginning of the road and then find the successor sensors. To determine
the starting point we simply look at the raw coordinates, in combination with
the direction, e.g., if a road is eastbound we start at the westmost point.
This first sensor, with index o1, should only have a single connection to other
nodes, i.e., the o1-th column of P has a single entry at some row o2. Thus, we
have found the second sensor on the road. We then keep going by looking at
the o2-th column, which should have 2 nonzero entries, one at the o1-th row
and one at some row o3. If the sensors are placed nicely on a straight road,
we can continue this way until the end of the road (see Figure 4).

However, when the road is not straight this method may sometimes go
awry, as illustrated in Figure 5. Starting at B we go to the successor A. There
we have a problem, sinceA connects to both C andD. To fix problems as these
we choose whichever point has the largest distance to A, skipping the other
point. We may lose some sensors in the process but this will not invalidate
the traffic estimation; it only reduces the accuracy of the approximation (see
Section 3)
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Figure 4: Eastbound road constructed from sensor coordinates.
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Figure 5: A problematic graph and the used solution.
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Another method to construct the graph for a single road, is to assume
that the shortest path that connects all sensors is the correct way to connect
them. This graph can be calculated by adding a dummy node with distance 0
to all other nodes, and then solving the Traveling Salesman Problem (TSP).

Solving a TSP for each road is doable as long as the number of sensors
on a single road is not too high, but using the knowledge that a road should
be mostly straight can also inspire a number of heuristics that are quick to
calculate. For instance, a linear regression line through the sensors can be
calculated, and then sensors can be ordered by projecting them onto that
line. If needed, simple local search heuristics can be used to improve on the
initial solution.

3 Calculating traffic

Given a directed graph, where the nodes represent sensors and the edges rep-
resent the road segments between these sensors, the intensity and velocity
measurements, in conjunction with the segment lengths, can be used to es-
timate traffic quantities. Here, we discuss estimating the number of cars on
the road at a given time, and the number of kilometers driven by all cars on
the road during a certain time period.

3.1 Car count

To estimate the number of cars on the road at a given time, we estimate
the number of cars on each road segment. In the simplest case, we assume
cars to be driving at constant speed for some time around the measuring
sensor. The estimated number of cars on the road segment AB, based on the
measurements at sensor A and sensor B, respectively, equals

CA(t) = IA(t)
dAB

vA(t)
, (3)

CB(t) = IB(t)
dAB

vB(t)
. (4)

Note that to be correct, the estimates CA(t) and CB(t) need the average
velocities vA(t) and vB(t) to be the harmonic mean of the velocities of the
passing cars. Unfortunately, only the arithmetic mean is available in the data.
This issue is further discussed in Section 4.

The estimate CA(t) assumes all cars that enter the road segment at sen-
sor A to drive along the entire segment. It does not take into account cars
leaving the road somewhere along the segment AB. Similarly, CB(t) does not
take into account that cars may have entered somewhere along the segment.
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Assuming that leaving and entering occurs halfway along the road segment,
these two effects can be incorporated in the car count by averaging CA(t) and
CB(t):

CAB(t) =
CA(t) + CB(t)

2
=

dAB

2

�
IA(t)

vA(t)
+

IB(t)

vB(t)

�
. (5)

Note that this formulation is independent of how many cars leave and enter
the road on segment AB. All that matters is the difference between the
number of cars that left and that entered.

For short road segments AB, specifically if dAB
vA(t) < T , equation (5) should

give a good estimate for the number of cars on the segment. For longer road
segments, the constant speed assumption may be too much of a simplication.
This problem can be alleviated by using measurements of multiple time in-
tervals. We still assume the cars to traverse the road segment with constant
speed as measured at the sensor, but the different speed of cars that arrive
within different time intervals will be taken into account.

In the time interval [t+ kT, t+ (k + 1)T ), cars are measured at a sensor
with average speed v(t + kT ). Relative to the placement of that sensor, at
time t these cars are expected to be at (−(k + 1)Tv(t+ kT ),−kTv(t+ kT )].

At sensor A only measurements before t are interesting, i.e., k < 0, because
measurements after t correspond to cars that had not entered the segment AB
yet at time t. For k < 0, if

−kTvA(t+ kT ) ≤ dAB ⇔ dAB

TvA(t+ kT )
+ k + 1 ≥ 1 (6)

then all the measured cars are within the segment AB at time t, while if

−(k + 1)TvA(t+ kT ) ≥ dAB ⇔ dAB

TvA(t+ kT )
+ k + 1 ≤ 0 (7)

then all the cars already passed the segment at time t. In all other cases,
assuming a uniform distribution of the cars within the measured time, the
fraction of the measured cars that are in segment AB at time t is equal to

dAB − [−(k + 1)TvA(t+ kT )]

TvA(t+ kT )
=

dAB

TvA(t+ kT )
+ k + 1. (8)

The number of cars on the road segment AB can then be estimated from
the measurements in sensor A by adding contributions for all k < 0,

CA(t) = T
−1�

k=−N

IA(t+ kT )max

�
0, min

�
dAB

TvA(t+ kT )
+ k + 1, 1

��
. (9)
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Similarly, the number of cars on segment AB can be estimated from the
measurements in sensor B by

CB(t) = T
N−1�

k=0

IB(t+ kT )max

�
0, min

�
dAB

TvB(t+ kT )
− k, 1

��
. (10)

Here, the truncation value N should be such that no contributing measure-
ments are neglected. A safe value for N can quickly be calculated from

N =
dAB

T mint,ξ∈{A,B} vξ(t)
. (11)

Again averaging to account for cars leaving and entering the road along
the segment AB, we get

CAB(t) =
T

2

� −1�

k=−N

IA(t+ kT )max

�
0, min

�
dAB

TvA(t+ kT )
+ k + 1, 1

��

+
N−1�

k=0

IB(t+ kT ) max

�
0, min

�
dAB

TvB(t+ kT )
− k, 1

���
.

(12)

Note that the treated methods for counting traffic are essentially indepen-
dent of the number and placement of the sensors. That is, if the simplifications
assumed to model the traffic on a road segment would be exact, then using
measurements from any set of sensors would lead to the same traffic count,
provided that the same part of the roads is covered. Evidently, using more
sensors that are closer together does lead to more reliable estimates.

Many more extensions are possible to better estimate the number of cars
on a road segment at a given time. For instance, using an interpolated function
for intensity and velocity, or incorporating a typical distribution of velocities
for a certain road. However, the intended use of these statistics is a traffic
index, i.e., an aggregation over a time period and a geographical area. In this
case, the provided estimates are expected to be accurate enough, as the local
approximation effects should not significantly impact the aggregate.

Figures 6–8 show the estimated car count on two major roads in South
Limburg, based on equation (5), using the minute data of the road sensors.
Figure 6 shows the estimated traffic on the A76 on a Friday. The morning
and afternoon rush hours are clearly visible. There is slightly more westbound
traffic in the morning, and more eastbound traffic in the afternoon. Figure 7
shows the traffic on the A2 on a Friday. Again, the morning and afternoon
rush hours are clearly visible. Further, it is clear that there is a lot more
southbound traffic, towards the city of Maastricht, the entire day. Figure 8
shows the traffic on the A2 on a Saturday. There is still a lot more southbound
traffic, but there is no morning or afternoon rush hour.
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Figure 6: Car count on the A76 on a Friday (Feb. 1, 2013).
Horizontal: minutes past midnight. Vertical: number of cars on the road.

3.2 Car-kilometer count

We want to build a traffic index as an indicator of the traffic usage on the
infrastructure. One way of measuring this is the average number of cars on
the road, as described in the previous section. Another way would be the total
usage of the roads by car-kilometers. In this case, one is not only interested
in the current number of cars but also how far they travel. This is measured
by the total number of car-kilometers, i.e., if there is a way of recording all
cars and their whereabouts, the sum of kilometers of all car trips on the road
network. The car-kilometer approach is studied in this section.

Imagine an abstract straight road [0, A]. The road sensors (observation
points) are located at positions x1, x2, . . . , xK (assume 0 = x0 < x1 < x2 <
· · · < xK < xK+1 = A). Take ρ(x, t) as the car density at location x at time
t, such that the total number of car-kilometers on the road, in the time period
[0, τ ], is

K(τ) =

� τ

0

� A

0
ρ(x, t)dxdt. (13)

We do not know ρ(x, t) at every x, but we have traffic records at the sensors
xi. Thus, we can approximate ρ(x, t) with piecewise constant functions using
our observations ρ(xi, t), and then come up with an approximation of K.
From a numerical integral theory viewpoint, the best method is to divide the
intervals to construct the piecewise function as follows. Given ρ(xi, t), we
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Figure 7: Car count on the A2 on a Friday (Feb. 1, 2013).
Horizontal: minutes past midnight. Vertical: number of cars on the road.
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Figure 8: Car count on the A2 on a Saturday (Feb. 2, 2013).
Horizontal: minutes past midnight. Vertical: number of cars on the road.
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approximate ρ(x, t) by

ρ(x, t) ≈
K−1�

i=1

�
(xi−1+xi)/2,(xi+xi+1)/2

�(x)ρ(xi, t). (14)

The values ρ(xi, t) can be approximated by the observations at sensor xi. We
then arrive at the following approximation of K:

K(τ) ≈
�

i

diNi, (15)

where Ni is the number of cars passing sensor xi in the time interval [0, τ),
and di is the length of the interval around xi, i.e., for three consecutive sensors
xi−1, xi, and xi+1 take di =

1
2 (�xi+1 − xi� + �xi − xi−1�). Thus, di is the

estimated travel distance of a car captured by sensor i, covering half of the
interval before sensor i and half the interval after.

In terms of the provided data, an approximation CK(t) of the car-kilometer
count in the time interval [t, t+ T ) can be obtained by

CK(t) =
�

i

diIi(t)T, (16)

where Ii(t)T is the number of cars passing sensor xi in the time interval
[t, t+ T ), and di is a length that represents the part of the road around xi,
as in equation (15).

We developed the above method for an abstract straight road. However,
the principle works for any topography. We just have to associate the correct
length to sensors. Naturally these lengths are difficult to deal with, as they
need detailed information on the geography of roads. However, this approach
has some nice properties. First, it does not care whether a car is recorded
by several sensors. If a car is recorded twice, it means the car travels more
kilometers, which means more damage to the roads. (It could also mean more
air pollution.) Second, this approach does not mind too many sensors, as it is
cheap to compute, and the more sensors the more accurate the approximation
will be.

The car-kilometer count is a fairer indicator of infrastructure usage than
the car count. It represents how widely and extensively the infrastructure
has been used for a certain time period. It is simple to calculate and easy to
implement, and robust to using more or fewer sensors.

4 Data reconstruction

In the previous sections, a detailed method for the calculation of a traffic index
has been proposed and formulated. Although theoretical considerations cover
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siteID date location roadNo lane direction flow speed

. . . . . .

Table 1: Excerpt from the sensor data.

some of the practical problems, there are still several issues with the input data
that need detailed analysis. In this section, the structure and characteristics
of actual data are discussed, the main problems are identified, and solutions
and corrections are proposed.

4.1 Data format and data problems

The data provided by CBS covers both 1 minute and day measurements.
The former are restricted to the region of South Limburg for two consecutive
days: Friday, 1 Feb. 2013 and Saturday, 2 Feb. 2013, and include 2 million
observations from 424 road sensors. The latter include observations from all
of the Netherlands for a period of 3 months, and include 900 000 observations
from 15144 sensors. The available variables describe a wide range of different
features, including flow and velocity measurements, directional information,
and location coordinates.

Table 1 presents an excerpt of the data that covers the most important
variables from the point of view of the method proposed in previous sections.

As the traffic system is constantly changing, sensitive to unpredictable
phenomena, and vulnerable to different factors, one must also expect possible
errors in the traffic data. Fortunately, the system is designed to return “−1”
if there was an error. This allows to differentiate between no traffic (zero
measurements) and malfunctioning equipment.

A preliminary analysis of the data shows several obstacles for the imple-
mentation of the proposed solution. First, we found that there is a problem
with the availability of directional data of sensors. Second, we identified also
missing and incorrect intensity and velocity data. Finally, the velocity aver-
aging method needs some investigation.

Brief comments regarding all the variables are summarized in Table 2.

4.2 Missing data

The first step of our solution is to create a graph using the data on the
location and direction of the sensors. Therefore, it is important to be able to
match every sensor to an exact geographical point. Figure 9 shows all sensors
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Variable Comment Problems
siteID Unique number for each sensor No problems
date Time of measurements No problems
location Geographical coordinates No problems
roadNo Exact road number No problems
lane Number of the lane No problems
direction Direction of the sensor Many missing entries
flow Measured intensity Both errors (−1) and missing

data (unexpected 0)
speed Measured velocity Averaging: arithmetic mean

Both errors (−1) and missing
data (unexpected 0)

Table 2: Summary of variables and problems in the data.

in the Netherlands and in South Limburg, drawn according to the provided
longitude and latitude information.

As the presented figures illustrate, the sensors represent a network of the
main roads in the Netherlands, which is compatible with our proposed ap-
proach. However, if we were to use only sensors for which directional data
is available, we would have to omit a considerable part of the Netherlands.
About 30% of the sensors lack information on the direction, see Figure 10.
Hence, having a systematic procedure to reconstruct the missing data is vital,
in order to provide a reliable calculation of the traffic index.
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Figure 9: Sensors in the Netherlands (left) and South Limburg (right).

The second problem with the data concerns missing and incorrect mea-
surements of intensity and velocity of traffic. We distinguish between two
possible errors: ‘blind sensors’ and ‘blind time points’. The first indicate the
situation where a sensor does not give any data for any period of time, whereas
the second represents holes in the time series data for a given sensor. Table 3
shows the percentages of these two types of errors in the provided data.
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Figure 10: Sensor with available direction data in the Netherlands (left) and
South Limburg (right).

Velocity Intensity
NL 6.5 4.5
SL 10.5 8.0

Velocity Intensity
NL 2.5 2.0
SL 15.5 0.0

Table 3: Percentage of blind sensors (left) and blind time points (right), for
the Netherlands (NL) and South Limburg (SL)

The percentages of errors are tolerable, as our proposed solution does not
need to be applied using all possible measurements. Problematic sensors can
be excluded with a little loss of precision.

The third identified problem concerning the data lies in the method of av-
eraging velocity measurements. For our purpose the correct way to compute
an average of speed is to use the harmonic mean of the observations. Unfor-
tunately, all the provided data give are the value of the arithmetic mean.
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4.3 Direction reconstruction

The main problem with the data is the lack of directional information in a
substantial number of sensors. We propose to retrieve this data on the basis of
the behaviour of the traffic intensity. We hypothesized that, as far as different
directions of one road are concerned, patterns of traffic should differ within a
weekday. For example, in the morning rush hours the traffic should converge
mostly to the biggest city in the neighbourhood, whereas during the afternoon
the profile should be the opposite. The same is true in the case of a significant
event in a specific place.

From the mathematical point of view, we would like to compare a set of
time series data with each other and then cluster the sensors according to
some distance function for a pair of sensors. We identified two approaches,
which can be applied to this problem:

1. Compare a whole-day time series for each sensor. One simple method
is just to use a mean square error as a distance function. This will
not take into account the possible time dependence (time lag) between
consecutive sensors. Hence, we propose to distinguish them using a
cross-covariance (cross-correlation) function, which compares two time
series and their lagged transforms1.

2. Calculate the distribution function of the intensity for each sensor in
one, chosen rush hour, i.e., either in the morning or in the evening.
In order to estimate the distribution, one can use histograms or kernel
density estimators. In the next step, the distance function would be the
difference between two histograms/densities, which can be calculated
using Kullback-Leibler divergence or just the mean square error.

The method which compares only distributions of intensities is much sim-
pler to apply and cheaper to implement, but it aggregates and loses infor-
mation included in the time series. Therefore, it has a potentially smaller
range of applicability. Nonetheless, if the hypothesis stated above is true the
distinction made in that way should be reliable.

1In the statistical software package R, this is implemented via the function ccf.
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The presented idea can be summarized in the following picture:

The steps for method 1 are:

a. Identify continuous approximation of intensities.

b. Compute how the time series differ between sensors.

c. Divide sensors into two groups according to the distance.

For method 2, the steps are:

a. Identify distribution of intensities in the rush hour.

b. Compute distance between densities (Kullback-Leibler).

c. Divide sensors into two groups according to the distance.

We believe that such an approach should be useful, when there is strong
evidence that the traffic is very different in two directions. Unfortunately, as
the provided dataset for South Limburg shows, it is not a general rule that
always holds. In particular, such an approach was not successful enough in
differentiating the direction of sensors for roads A2 and A76, where we know
most directions. We cannot assume then that the approach can be applied
for the road A79 in South Limburg. In that case, we must in addition make
use of information on the location of the sensors. Therefore we propose the
following procedure, which is a modification of the initial proposition.

Let us assume we are given a set S of sensors within a single road without
direction. Sets S1 and S2 will include sensors in different directions.

1. Choose an arbitrary sensor s0 ∈ S, add it to S1 and delete it from S.

2. Choose n (we propose n = 4) different sensors s1, . . . , sn ∈ S that are
the nearest (in the sense of location) to s0, but not farther than a fixed
tolerance distance d (we propose d = 3km). If it is not possible, go to
step 1 (with different s0).
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3. Calculate the cross covariance for the intensity time series data between
s0 and each sensor from the set {s1, . . . , sn}. The number of calculated
lags (mostly 1, 2 or 3) should be chosen according to the average veloc-
ities and distance between sensors; car-count formulas from section 3.1
can be used here.

4. Choose one sensor, sh, with the highest covariance. Add sh to S1 and
delete it from S.

5. Choose one sensor, sl, with the lowest covariance. Add sl to S2 and
delete it from S.

6. If S is empty, stop. Otherwise, go to step 2 and repeat on the current
S with s0 := sh.

The method will be most efficient, if the first chosen sensor is approxi-
mately in the middle of the set S in the sense of location. Moreover, the
algorithm will work better, if sensors are uniformly distributed in both di-
rections, i.e., the number of sensors in each direction is similar. The more
the number of sensors in each direction differs, the higher the choice of the
variable n should be. The procedure needs to be carried out only once, but
should be tested on a regular basis with newly available data.

Using this method, the identification of the directions for roads A2 and
A76 in South Limburg was at a level of 80%. We apply the method to the
data for A79, a reconstruction of which is presented in Figure 11.

Figure 11: Reconstructed directions (red/blue) for the A79 in South Limburg.
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4.4 Velocity averaging

Another issue that needs special attention, is that the velocity is given as an
arithmetic mean instead of the harmonic mean. The best method to correct
this problem is of course to get the harmonic mean from the source of the
measurements. If this is impossible, however, the suggestions below can be
used to improve the calculations.

An elementary inequality between means states that for positive x1, . . . , xn

n
1
x1

+ . . .+ 1
xn

≤ x1 + . . .+ xn

n
, (17)

i.e., the harmonic mean is less than or equal to the arithmetic mean.
In the case of the calculation of a traffic index, this means that using

an arithmetic mean of observations leads to an upper bound on the true
value. Unfortunately, there is no method to quantify the error. The difference
between the arithmetic and harmonic mean can attain any value depending
on the dispersion of observations. The higher the difference between the
observation values, the larger the error of using the arithmetic mean.

We see the following options to achieve more accurate calculations:

• aggregate different types of vehicles into one group using a harmonic
mean for the velocity,

• aggregate minute measurements into longer periods using a harmonic
mean for the velocity,

• aggregate observations with respect to location, using a harmonic mean
for the velocity.

All these proposals give better approximations to the traffic index, but
at the same time they sacrifice some details of the data, e.g., information
on different types of vehicles. This approach to correcting the dataset will
be effective especially in the case of low-traffic periods. Moreover, the pro-
posed solution in previous sections implictly assumes harmonic averaging with
respect to location, which already alleviates the problem somewhat.

A more involving method could be devised, if a typical distribution of
vehicle speeds on the road is available. The arithmetic mean could then be
used to select a likely set of velocities that realised that mean, and from this
set the harmonic mean could be calculated. The accuracy of such a method
would rely heavily on the predictability of the vehicle speeds.

Proceedings of the SWI 2014 Held in Delft

20



✐
✐

“swi-2014-delft-proceedings” — 2014/4/22 — 11:31 — page 21 — #27 ✐
✐

✐
✐

✐
✐

5 Principal Component Analysis (PCA)

The procedure described in the previous sections gives an approximation of
the number of cars on the roads in a specific time interval using the minute-by-
minute information collected by the sensors. However, this information could
not be available in certain scenarios where the collected dataset is reduced to
the number of cars detected by the sensors in one hour or one day.

In this case, the data show a main feature: they contain much redundant
information because one car can be detected by several sensors. In matrix
terms, it means that if we assume that the information of each sensor is in
the columns of a matrix A, then the dimension of the linear subspace spanned
by the columns of A is much smaller than the number of sensors.

In this case, describing the data using an orthonormal basis of this ‘smaller’
subspace that contains a compressed representation of A, is a good strategy.
The Singular Value Decomposition (SVD, Golub and Van Loan (2012)) of
A permits to calculate a possible set of basis vectors formed by the singular
vectors corresponding to the largest singular values of the matrix A.

This fundamental data analysis tool, known as Principal Components
Analysis (PCA), is one of the methods investigated by the CBS specialists
to know the variability of the data and calculate a traffic index.

Some recent approaches can improve the application of PCA on the traffic
data:

• Robust PCA, Ke and Kanade (2005): Techniques to recover the low-
rank matrix approximations from highly corrupted and/or missing mea-
surements.

• CUR matrix decomposition, Mahoney and Drineas (2009): Here, the
basis vectors are explicitly expressed in terms of a small number of ac-
tual columns and/or actual rows of the data matrix. In the traffic index
context, the application of the CUR matrix decomposition could detect
sets of sensors where the redundance in the information is minimized. In
contrasts with the known limitation of the classic PCA, with CUR one
can interpret the produced basis in terms of the original data. An addi-
tional advantage of PCA based on CUR decomposition is avoiding the
calculation of the Singular Value Decomposition, giving the possibility
of working with a much larger dataset.

A final observation: the calculation of a traffic index using a PCA version
on the hourly or daily data does not use the information of the velocity of the
cars on the road. This can be an advantage considering the high proportion
of missing data for this parameter.
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6 Conclusions

In this paper, the problem of calculating a measure of the amount of traffic
on the roads, based on data from road sensors, has been treated.

A method was presented for constructing a graph, based on the sensor
data, with the sensors as nodes and the road segments between sensors as
edges. Using such a graph, we presented methods for estimating the number
of cars, and the number of car-kilometers. Both estimates are more accurate
when more sensors are used, but are otherwise independent of the number
and placement of sensors used, provided that the same set of roads is covered
by the sensors.

Further, procedures were proposed that deal with missing data, focussing
on reconstructing the traffic direction for sensors that missed the direction
data field, and on dealing with the arithmetic velocity mean being given,
when our methods rely on the harmonic velocity mean.

Finally, the uses of principal component analysis for this particular prob-
lem were discussed.
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