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We investigate the finite-lifetime effects on first-order correlation functions of dissipative Bose-Einstein
condensates. By taking into account the phase fluctuations up to all orders, we show that the finite-lifetime
effects are negligible for the spatial first-order correlation functions, but have an important effect on the temporal
correlations. As an application, we calculate the one-particle density matrix of a quasicondensate of photons.
Finally, we also consider the photons in the normal state and we demonstrate that the finite-lifetime effects
decrease both the spatial and temporal first-order correlation functions.
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I. INTRODUCTION

Bose-Einstein condensation (BEC) was first directly
observed by cooling atomic vapors to temperatures in
the nK regime [1-3]. These vapors were confined in
three-dimensional traps, of which the shape could be altered
by changing certain experimental parameters, e.g., the
magnetic field. For sufficiently tight confinement in one or
two directions, the dynamics in these dimensions can be
frozen out and the atoms behave as a quasi one-dimensional
or two-dimensional gas. This manipulation opened up the
possibility of exploring Bose-Einstein condensates in lower
dimensions [4-7].

From a theoretical point of view these low-dimensional
Bose-Einstein condensates are particulary interesting be-
cause their physics is fundamentally different from three-
dimensional condensates. Namely, in two dimensions a
homogeneous Bose gas can only undergo BEC at zero
temperature, and in one dimension BEC in a homogeneous
Bose gas cannot take place at all [8,9]. In the presence
of an external potential the situation drastically changes. In
particular, harmonically trapped bosons can undergo BEC at
nonzero temperatures in both one and two dimensions [10-12].

For homogeneous two-dimensional Bose gases, theoretical
studies show that even though the Bose-Einstein condensate
does not exist at nonzero temperatures, there still exists
a critical temperature in the system. Below the so-called
Kosterlitz-Thouless temperature the gas is superfluid, and
above this temperature the bosons lose their superfluid prop-
erty [13]. This is known as the Kosterlitz-Thouless transition,
and it implies that superfluidity only requires the presence of
a quasicondensate [14] with phase coherence over a distance
much less than the system size. This quasicondensate can be
roughly interpreted as a system consisting of several patches,
each with a fixed phase, whereas the phases of these different
patches are uncorrelated.

In addition to atomic gases, there are presently also other
low-dimensional systems in which BEC is observed, such as
systems consisting of exciton-polaritons [15,16] or photons
[17]. Together with BEC of magnons [18], these systems form

*A.deLeeuw] @uu.nl

1050-2947/2014/89(5)/053627(7)

053627-1

PACS number(s): 67.85.Hj, 67.85.Jk, 03.75.Kk

a class of condensates that is different from the atomic Bose-
Einstein condensates. In particular, the bosonic quasiparticles
have a small effective mass resulting in BEC at temperatures
in the range of 10-300 K instead of in the nK regime relevant
to the atomic Bose-Einstein condensates. Furthermore, these
condensates are not in true thermal equilibrium, and the
steady state is a dynamical balance between particle losses
and external pumping. Therefore, the particles have a finite
lifetime, which can be characterized by a single dimensionless
damping parameter.

In the context of exciton-polariton condensates the first-
order correlation functions are extensively studied theoret-
ically. In Refs. [19,20] the temporal and spatial first-order
correlation functions are calculated by introducing a cutoff
to handle the ultraviolet divergence at zero temperature.
Furthermore, a more general discussion on spatial correlation
functions of nonequilibrium condensates in reduced dimension
is given in Ref. [21]. In that work, the main results are
obtained for a frequency-independent damping, and a first
attempt is made to incorporate frequency-dependent damping.
Moreover, in Refs. [22,23] the spatial correlations of one-
dimensional driven-dissipative nonequilibrium condensates
are investigated by studying a stochastic equation for the phase
fluctuations.

In this article we study the effect of the appropriate
frequency-dependent damping parameter on the first-order
correlation functions of low-dimensional Bose-Einstein con-
densates. In particular, we focus on a Bose-Einstein condensate
of photons for which this damping parameter is explicitly
calculated in Ref. [24]. First, we derive a general expression
for the first-order correlation function for a homogeneous Bose
gas in the condensed phase in Sec. II. Thereafter, we use this
general expression for the first-order correlation functions to
determine the effect of the finite lifetime on the spatial and
temporal correlations in Sec. III. In Sec. IV we consider BEC
of photons, taking their interaction with the dye molecules
into account, and determine the off-diagonal long-range be-
havior of the one-particle density matrix in the Bose-Einstein
condensed phase. We show that for the relevant parameters
used in the experiment the photons form a true condensate and
Kosterlitz-Thouless physics is not observable. Subsequently,
we determine the first-order correlation functions of photons in
the normal state, and we end with conclusions and an outlook
in Sec. V.
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II. PHASE FLUCTUATIONS

In this section we derive a general expression for the
first-order correlation functions for a homogeneous Bose gas
consisting of N bosons in a box of volume V. We start from
the Euclidean action
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where t and 1’ denote imaginary times, 8 = 1/kgT with T
the temperature, i is the chemical potential, and T2B is the
strength of the self-interaction. Furthermore, we included
a self-energy hX(x —x',7 —1’) describing additional
interaction effects, e.g., in the photon experiment of Klaers
et al. the interaction of the photons with the dye molecules [17].

To obtain an expression for the first-order correlation
functions in the superfluid phase, we split the density and phase
fluctuations and substitute ¢(x,7) = /n + on(x,7)e?™?.
Here n is the average density of the gas, dn(x,7) de-
notes the density fluctuations, and 6(x,t) represents the
phase. We expand up to second order in 8 and én, and
define
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with the inverse of the static density-density correlation func-
tion x (k) = e(k)/2n + T?8, the single-particle dispersion
€(k) = h’k?/2m, and the antisymmetric and symmetric parts
of the self-energy obeying

K, iwn) = hEK,ion) — hE (=K, —iwp),

“4)
hEY (K iwy) = hE(K,iwy) + hE(—K,—iwy,).

Here h¥(K,iw,,) is defined in a similar way as the Fourier
transform of the phase and density fluctuations in Eq. (2)
except for the normalization factor, which is 1/AB8V in
this case. Furthermore, in Fourier space we take without
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loss of generality 2%(0,0) = 0. For bosons this assumption
is automatically satisfied for the imaginary part, and the
constant real part results in a energy shift of the poles of
the Green’s function and can be absorbed in the chemical
potential.

Note that in Eq. (3) we substituted the zero-loop result for
the chemical potential i = nT?B.

By using the classical equations of motion, we can now
eliminate the phase 6k, and find an action for the density
fluctuations ény ,, alone. From this action we obtain

(8n(x,7)dnx’',t"))

hE(K,iwn) + 2€(K) incixex)—on (12’
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where the Green’s function of the density and phase fluctua-
tions has the matrix structure

hGg'(k,iw,)
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in terms of the single-particle Green’s function
WG~ (K,iwy,) = ihw, — e(k) — hZ(K,iw,). 7

Similarly we use the equation of motion for dny, to
eliminate the density fluctuations, and we find
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However, from Ref. [25] we know that the contribution of
the phase fluctuations is proportional to the density. The first
two terms are not proportional to n and they are an artifact
of making an expansion up to second order in 8(x,7) and of
neglecting the interaction terms between the density and phase
fluctuations. A more accurate approach that takes into account
higher-order terms in 6(x,7) would not contain these high-
momentum contributions. Therefore, the correct expression
for the phase fluctuations is given by

(Ox, 0,1
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In certain cases the self-energy is only known for real
frequencies. Therefore, we define
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and we write for the phase correlation function
(O(x, 10X, 7))
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where

1

Ngg(hw) = o ]

(12)
is the Bose-Einstein distribution function. For simplicity we
take v/ > 7, and the case t/ < 7 is treated analogously. In
principle we have to consider both the density and phase fluctu-
ations in order to calculate the first-order correlation functions.
However, here we consider relatively high condensate fractions
for which the density fluctuations are strongly suppressed and
the phase fluctuations are most important, especially for the
description of the long-range order which is of most interest
to us here [26-29]. Hence, we have

(@*(X,0)p(X 1)) == ng (e 10xN=0CN)

— noe*%([9(X-,t)*0(x',t’)]2>’ (13)
with n the quasicondensate density. Note that for the Gaussian
approach used here, the second line of Eq. (13) is exact.
However, in principle there are corrections to this result which
can be incorporated by treating the phase of the condensate as a
stochastic variable. As is shown in Ref. [23], these corrections
are rather small and therefore we neglect these corrections
throughout the remainder of this work.

By using Eq. (11) and performing the analytical continu-
ation to real time t = it, we obtain for the exponent of this
expression

([0(x,1) — 6(x,t)1%)

TZB 0
—- X | dtpmkoNaio)
Kk —00

x {1 — cos[k - (x — x")] cos[w(t — t)]}, (14)

where we used AX (k,w) = AX(—K,w) for an isotropic system.

To make further progress, we perform a long-wavelength
approximation to the self-energy. As mentioned before, the
real part of the self-energy can effectively be absorbed in
the chemical potential and therefore we neglect this part. The
imaginary part is zero for k = 0 and @ = 0, and therefore
for small frequencies the imaginary part is linear in w. Since
the result of Eq. (14) is dominated by the contributions for
small frequencies, the large frequency behavior is not visible
in the final result. Therefore we can safely assume that the
self-energy obeys hX(k,w) = hX*(k, — ) for the imaginary
part of both the retarded and advanced self-energy. This allows
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us to rewrite

([0(x,1) — 6(x,t)1%)

T2B [oe]
— X[ oo 1+ 2Nnstto)
k
x {1 —cos[k - (x — x)] cos[w(t — 1")]}. (15)

This expression for the phase fluctuations contains an ul-
traviolet divergence. This divergence is a consequence of
not taking into account the proper energy dependence of
the self-interaction of the bosons. For atoms this problem
was already encountered in Ref. [25], and in that case the
divergence was handled by appropriate renormalization of
the interactions. In our case the form of the divergence is
the same, since the self-energy must vanish for large momenta.
However, we do not know the exact energy dependence of
T?8B. Therefore, the cancellation of the ultraviolet divergence
requires us to introduce another energy scale ynT?P that
models the correct energy dependence of the self-interaction
of the bosons. We come back to the precise determination of
y in the next section. We thus write

([6(x,1) — 0(x',t")]*)
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with hiwg(K) = \/ e(k)[e(K) + 2n(T?B] the Bogoliubov disper-
sion. The integrant in Eq. (16) must be positive for all k and all
temperatures, because this term corresponds to the expectation
value of |6k , |2. Therefore, we have the restriction that y > 1.
Finally, note that this result is consistent with the expressions
found in Ref. [25].

III. CORRELATION FUNCTIONS IN
THE CONDENSED PHASE

In the previous section we found an expression for the
first-order correlation function by taking into account the
phase fluctuations up to all orders. As mentioned before,
the phase fluctuations are dominated by the small-frequency
contributions, and for bosons the imaginary part of the
self-energy is linear in w for small frequencies. Therefore,
in this section we take the retarded self-energy equal to
hEt(k,w) = —iahw and we investigate the effect of a on
the first-order correlation functions.

A. Spatial correlations

From Eq. (16) we obtain that the phase fluctuations contain
a zero-temperature part, and a contribution that is temperature
dependent. For the equal-time phase fluctuations at zero
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temperature, we have

([6(x,0) — 6(0,0)1*)
T2B
=7 % [ v

{1 _ hey(®)

e(k) + ynT?8 17

} {1 —cos(k - x)}.
Without loss of generality we have set X' = 0 and we have put
t equal to zero. Before we consider the effect of the self-energy
on the spatial correlations, we investigate the effect of y. We
first consider the case without a self-energy. By writing the
sum over k as an integral, we find in two dimensions

([6(x,0) — 6(0,0)1*)
_/00 1—J0(kx){ 2% } 18
—Jo 4rng? V241 224y )] (19

where Jy(kx) is the Bessel function of the first kind, & =
h/[4mnyT*81'/? is the correlation length and x = |x|. In the
limit x — 00, the Bessel function vanishes and we obtain
In(2y) mT?B
27 R?

Thus, the condensate density is given by the right-hand side
of the following equation

([0(x,0) — 6(0,0)1*) —

19)

In(2y) mT?®
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where we again considered the limit x — oo. Therefore, by
increasing y we effectively increase the interaction strength
and thereby decrease the condensate density of the gas. This
dependence can in principle be used to determine the value of
y from experiment. To determine the effect of the self-energy
we here just fix y and set it equal to 1. In Fig. 1 we show the
result for the zero-temperature part of the phase fluctuations
for different values of «. If « increases, the contribution of the
phase fluctuations decreases. Therefore, for increasing o we
obtain that the quantum depletion of the condensate decreases.

For systems at low temperatures this is the dominating
contribution. However, here we are interested in BEC at
higher temperatures such as the BEC of photons. For these
condensates the temperature-dependent part is the most rele-
vant contribution. The temperature-dependent part of the phase

(@"(x,0)¢(0,0)) — ng exp {— } . (20)
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fluctuations is free of ultraviolet divergences and given by
2B

([0(x,0) — 6(0,0)]*) = — 2T /wdkkfwd(hw)pg(k,w)
0 0

x Npg(hw){1 — Jo(kx)}. 2n

We evaluate this quantity for BnoT?® ~ 1.3 x 1072, This
corresponds to a typical value for BEC of photons in the regime
where the density fluctuations are suppressed and we can
focus on the phase fluctuations [30]. By looking at Fig. 1, we
observe that the temperature-dependent contribution is indeed
several orders of magnitude larger than the zero-temperature
part. Furthermore, it turns out that the o dependence of the
nonzero-temperature part is negligible.

To understand this feature, we distinguish between two
different frequency regimes. Namely, Bhw < 1 and Bhw > 1.
Since we are at room temperature, the latter corresponds to
relatively high values of the momentum k. In the Bose-Einstein
condensed phase the contributions for small momenta are
dominant. Therefore, the contributions coming from Shw > 1
are suppressed, and we can focus on the first regime.

To make analytical progress, we use 2Ngg(hw) >~ 2/Bhw —
1 for Bhw < 1. Furthermore, we can neglect the —1 since this
is a contribution of the same order as the zero-temperature
part and is therefore negligible compared to the temperature-
dependent part. Hence, we obtain for the nonzero-temperature
part of the phase fluctuations

2 2B
([6(x,0) — 6(0,0)) / dkk f d(Tie)
X —pBgZ’)”) (1= Jtk)}. (22

We can perform the integral over w analytically, and we obtain

2B o]
—6(0,00]%) = ~ dk kLO(kx)

7B Jo [hawp (k)]?
This expression is indeed independent of «, and this explains
why the o dependence of the spatial phase fluctuations is
negligible. Note that this argument is independent of the
number of dimensions, and therefore also in one dimension
the o dependence of the spatial correlations is negligible. For
a frequency-independent damping, this independence of the
spatial correlations is also encountered in exciton-polariton
condensates [31].

([0(x,0) (23)
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FIG. 1. (Color online) Zero temperature part (left) and the nonzero temperature part (right) of the phase fluctuations in two dimensions for a

condensate density n >~ 5 x 10"*m~

The dotted, dashed, and solid curves correspond to, respectively, « = 0, ¢ =5 x 10~

2 and correlation length £ ~ 2.8 x 10~° m. In the nonzero temperature part we take SngT*8 ~ 1.3 x 1072

2 ando = 107"
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FIG. 2. (Color online) Normalized first-order correlation func-
tion g(¢) for a two-dimensional Bose-Einstein condensate as a
function of t/t., with t, = MnoT?®y/B)~> ~ 1.5 x 107'%s. Here
BnoT?® ~ 1.3 x 1072 and the dashed, dotted, and solid curves are
for, respectively, @ = 107!, & = 1072, and & = 0.

B. Temporal correlations

To study the temporal correlation function, we define the
first-order correlation function g\V(x,7) as

(¢"(x,0¢(0,0))
(19(0.0))

with the temporal correlations defined as gV(r) = g(0,1).
Similar to the spatial correlations, we consider the regime in
which the phase fluctuations are dominant. Therefore, we can
directly calculate 03] by using Egs. (13) and (16), where we
again consider BnoT?8 ~ 1.3 x 1072 InFig.2 we show g(V(¢)
in two dimensions for several values of «. As can be seen from
the figure, gV (¢) increases for increasing . Furthermore, we
find the same qualitative behavior in one dimension. Thus as
opposed to the spatial correlations, the finite-lifetime effects
are important for the temporal correlations.

gVx,1) = : 24)

IV. PHOTONS

In the previous section we gave a general discussion on
finite-lifetime effects on correlation functions of bosons in the
Bose-Einstein condensed phase. In this section we will focus
on a specific example of such a system, namely, the BEC of
photons [17]. Since this system is two-dimensional and of
finite size due to the presence of a trap for the photons, we first
investigate whether the photons form a quasicondensate or a
true condensate.

A. One-particle density matrix

To determine whether the photons form a quasicondensate
or a true condensate, we need to calculate the off-diagonal
long-range behavior of the one-particle density matrix, and
compare the size of the condensate with the distance over
which the one-particle density matrix falls off. In particular,
if the size of the condensate is smaller than the distance over
which the one-particle density matrix reduces to, say, half of
the maximum value, we have a true condensate. Otherwise, we
are in the quasicondensate regime. Furthermore, we consider
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the regime where the density fluctuations are suppressed and
therefore we are have large condensate fractions. Therefore
we are allowed to use the Thomas-Fermi approximation, and
we obtain for the number of condensed photons

27 R 1 20
N()Zﬁ\/o drr(u—ynQr), (25)

where the Thomas-Fermi radius Rtg = /211/m Q2 is the size
of the condensate and €2 is the frequency of the isotropic
harmonic trap. Note that the constant energy mc”, with ¢
the speed of the photons in the medium, is absorbed in the
definition of the chemical potential p. Furthermore, Ny can be
related to the total number of photons N according to [32]

2 2
No=N-21 <Iﬂ> . (26)

By performing the integral in Eq. (25), we can relate the
chemical potential to the total number of photons in our system.
This then implies

4T N\
Rip=—= . 27
TF ( P ) (27)
Furthermore, for the density of condensed photons ny we take
the density in the center of the trap. Hence,

[ O2

Experimentally, the relevant parameter is the condensate
fraction Ny/N. Therefore given a condensate fraction, we use
Eq. (26) to determine N, and with this value we obtain the
size and density of the condensate via Eqs. (27) and (28).
Furthermore, we use Ref. [17] to obtain numerical values for
the parameters m, 2, and T2B.

In Fig. 3 we show a plot of the normalized first-order spatial
correlation function gV(x/Ryr) = gV (x/R1r,0) as defined

o 8V/Rep)

O
o]
T
I

0.96 ‘

X/ R“.'

FIG. 3. (Color online) Normalized first-order correlation func-
tion gV (x/Rrp) for the Bose-Einstein condensate of photons for
a condensate fraction No/N = 0.2.
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FIG. 4. (Color online) Normalized first-order correlation func-
tion g(x) of the photons in the normal state for p = 0.99u. as
a function of x/x,, where xy = Afic >~ 6 x 10~®m. The solid curve
is the result without taking into account the molecules, and the dashed
curve corresponds to a molecular density n,, = 4.5 x 10*m™3.

in Eq. (24) for a condensate fraction of 20%. From this plot
it is clear that the phase correlation function g‘V(x) hardly
drops over the condensate size, and that the photons form a
true condensate. Note that this conclusion is also valid for
a homogeneous system with the same central density and
confined to a square with size Ryp. Furthermore, in Ref. [33] it
is shown that at large length scales, in the regime of Kosterlitz-
Thouless physics, isotropic systems undergo a Kardar-Parisi-
Zhang (KPZ) crossover. Since these length scales are even
larger than the length scales for Kosterlitz-Thouless physics,
this KPZ regime is not accessible with the present setup.

In principle we should also include the harmonic trap in the
calculation for g™V (x /Rtg). As shown in Ref. [25], in this case
the phase fluctuations correlation function can also be found
by solving the Bogoliubov—de Gennes equations. However, the
thermal energy kg T is roughly two orders of magnitude larger
than the energy splitting /A£2 of the harmonic potential V®*(x).
Therefore, incorporation of the harmonic potential is only a
small correction and since for the homogeneous calculation we
are already far in the true condensate regime, this correction
will not influence our conclusion.

g

-0.5F ]

5 10 Wty 15 20
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B. Normal state

Apart from the Bose-Einstein condensed phase, the photons
can also be in the normal state. Since in this case not only the
small frequency behavior of the self-energy is important, the
details of the system of interest should also be included and
we need the exact expression for the self-energy. Therefore,
we use the explicit expression for the self-energy as given
in Ref. [24]. In the normal state we write for the first-order
correlation function

* 1 . i(w, T—k-x
(¢*(x,7)(0,0)) = BV kijG(k,zwn)w k0 (29
where
. —h
Gk, iw,) = (30)

—ihw, +ek) — pu+haZK,iw,)

Note that in this calculation we neglect the self-interaction
of the photons, since we are primarily interested in the effect
of the imaginary part of the self-energy. Furthermore, for the
same reasons as mentioned before, we neglect the harmonic
potential V**(x) which in the local-density approximation can
be incorporated by the replacement u(x) = u — V¥(x). By
defining

pk,w) := iIrn[G(k,a)Jr)], 31
wh
we write
(¢ (x,1)$(0,0)) (32)
= %/dk/d(ﬁw)kp(k,w)NBE(hw)Jo(kx)ei“”,

where Jy(kx) is the Bessel function of the first kind, Ngg(hw) is
the Bose-Einstein distribution function as defined in Eq. (12),
and x = [x|.

We study the spatial and temporal correlation functions
gP(t) and gV (x) separately. In general we are interested in
the regime where we are close to condensation, and therefore
we take p ~ 0.99u.. Furthermore, we take the parameters
as in the experiment of Ref. [17]. It turns out that for the
densities used in these experiments the effect of the molecules
is small. To demonstrate the effect of the dye molecules we take
nm = 4.5 x 10** m™3. In general high molecular densities can

5 10 tt, 15 20

FIG. 5. (Color online) Real (left) and the imaginary (right) parts of the normalized first-order temporal correlation function g(V(¢) for the
photons in the normal state for 1 = 0.994, as a function of ¢/, with 1, = Bh ~ 2.5 x 10~'*. For the solid curve we omitted the effect of the

molecules and the dashed curve corresponds to the molecular density 7, = 4.5 x 10%*m~3.

3
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spoil the thermalization of the photons, but this value should
be within the regime in which the photons can still thermalize.
As can be seen in Fig. 4, the normalized spatial correlation
function gV (x) is lowered by the effect of the molecules. The
normalized first-order temporal correlation g!(¢) consists of
an imaginary and a real part, which we show separately in
Fig. 5. For both parts the amplitude of the oscillations are
decreased by the interaction with the molecules. Here, we
used correlation functions in terms of creation and annihila-
tion operators. In experiments one measures the correlation
between the electric field at different times and positions, and
therefore experimentally only the real part is relevant.

V. CONCLUSION AND OUTLOOK

In this paper we investigated energy-dependent finite-
lifetime effects, characterized by the dimensionless parameter
a, on the first-order correlation functions. By taking into
account the phase fluctuations up to all orders, we derived
an explicit expression for the first-order correlation functions
in the Bose-Einstein condensed phase for high condensate
fractions. We showed that the value of « does not influence the
spatial correlations, but it enhances the temporal correlation
function.

PHYSICAL REVIEW A 89, 053627 (2014)

Subsequently, we focused on the BEC of photons under
the relevant experimental conditions and we showed that the
phase of the condensate is coherent over length scales larger
than the size of the condensate. Therefore, the photons form
a true condensate. Finally, we calculated the normalized first-
order correlation functions of the photons in the normal state
and we showed that the spatial and temporal correlations are
both suppressed by the interaction with the dye molecules.

For future research it would be interesting to investigate
the regime with smaller condensate fractions. Here the density
fluctuations are important and they also have to be incorporated
in the formalism. For the BEC of photons this regime is also
accessible experimentally [30], and in this case the effect of
the interaction with the dye molecules can be different from
the case with high condensate fractions.
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