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Interaction effects on dynamic correlations in noncondensed Bose gases
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We consider dynamic, i.e., frequency-dependent, correlations in noncondensed ultracold atomic Bose gases.
In particular, we consider the single-particle correlation function and its power spectrum. We compute this power
spectrum for a one-component Bose gas, and we show how it depends on the interatomic interactions that lead
to a finite single-particle relaxation time. As another example, we consider the power spectrum of spin-current
fluctuations for a two-component Bose gas and show how it is determined by the spin-transport relaxation time.
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I. INTRODUCTION

Since the early days of the field, the measurement tech-
niques used to characterize cold-atom systems have developed
significantly. Initially, the most common experimental probe
to address cold atomic vapors consisted of absorption imaging
of an expanding atomic cloud, thereby providing information
on its equilibrium velocity distribution only. Measurements
on solid-state systems, however, are typically in the linear-
response regime and measure the change of an observable
in response to a spatial and/or temporal periodic external
perturbation. These measurements are therefore typically
characterized by the frequency and momentum dependence of
equilibrium correlation functions, and in solid-state physics a
large number of experimental techniques have been developed
over the past two centuries to probe different domains in
frequency and momentum. Fortunately, due to several recent
developments, the field of cold atoms is rapidly catching up in
the number of available experiment probes which are sensitive
to momentum and frequency.

In this article, we focus on dynamic correlations, i.e., the
frequency or time dependence of equilibrium correlation func-
tions. For cold-atom systems, the most prominent techniques to
probe these are Bragg spectroscopy [1–4], radiofrequency (rf)
spectroscopy [5–7], and, most recently, impact ionization via a
scanning electron microscope [8]. These techniques probe the
structure factor, the spectral function, and the second-order
temporal correlations, respectively. Most research considers
either partially Bose-Einstein condensed gases [1–3] or Fermi
gases in the crossover regime [4–7]. Here we focus on the
noncondensed regime of a cold gas of bosonic atoms and on
how interactions influence the dynamic correlations in this
case.

In particular, in Sec. II we consider the frequency depen-
dence of the scattering rate as measured in an rf-spectroscopy
experiment. We compute this scattering rate and find that
interactions significantly change the spectrum with respect
to the noninteracting case, as they lead to a finite lifetime of
the quasiparticles. We also point out that this scattering rate,
when measured above but close to the critical temperature
for Bose-Einstein condensation, contains information on the
critical exponents of the transition. At the end of this section,
we assess the importance of the trapping potential with
numerical simulations.

As another example of dynamical correlations, we consider,
in Sec. III, spin-current fluctuations in a two-component Bose

gas. These could be measured by a spin-resolved general-
ization of the above-mentioned scanning-electron-microscope
techniques. The power spectrum of the spin-current fluc-
tuations contains, via the fluctuation-dissipation theorem,
information on the spin resistivity of the gas that is fully
determined by interactions in this system. Most importantly for
our purposes, this provides an example of how an equilibrium
measurement can be used to determine a transport coefficient
when steady-state transport measurements are not readily
available, as is typically the case for trapped atomic gases.

At this point, we mention that one of the main motivations
for both of these calculations is to investigate how relaxation
times (in this case the times governing the single-particle
relaxation and spin-current relaxation) in the noncondensed
Bose gas behave as the system approaches the critical tem-
perature from above. (Although their temperature dependence
is expected to be qualitatively similar, these times are not
expected to be proportional to each other.) We come back to
this point in more detail in our conclusions in Sec. IV, which
also contains a brief discussion and outlook.

II. SINGLE-PARTICLE CORRELATIONS

In this section, we consider dynamic, i.e., temporal,
correlations contained in the single-particle Green’s function
as measured in an rf-spectroscopy experiment. In the first
part, we give general theoretical considerations that relate the
single-particle correlations to the spectral function. Hereafter,
we consider the noninteracting and interacting case separately,
and we also present results from projected Gross-Pitaevskii
equation simulations.

A. Theoretical framework

In the rf-spectroscopy experiments by Stewart et al. [7], one
measures the momentum and frequency-dependent scattering
rate R(q,ω), determined by

R(q,ω) ∝
∫

d(t − t ′)
∫

d X
∫

dx e−iq·x+iω(t−t ′)

×〈ψ̂†(X + x/2,t)ψ̂(X − x/2,t ′)〉, (1)

and thus determined by the single-particle correlation function
〈ψ̂†(x,t)ψ̂(x′,t ′)〉, where 〈· · · 〉 is an equilibrium expectation
value. Here, ψ̂(x,t) is the Heisenberg annihilation field
operator at position x and time t . Furthermore, the integral over
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position X in Eq. (1) is an average over the inhomogeneous
density of the gas.

The above scattering rate can be worked out as follows.
First we note that the so-called “lesser”(<) and “greater” (>)
Green’s functions are defined by

±iG<(x,t ; x′,t ′) = 〈ψ̂†(x′,t ′)ψ̂(x,t)〉;
(2)

iG>(x,t ; x′,t ′) = 〈ψ̂(x,t)ψ̂†(x′,t ′)〉.
These are determined by the retarded Green’s function

iG<(x,x′; ω) = ∓2nB/F (�ω − μ)Im[G(+)(x,x′; ω)];
(3)

iG>(x,x′; ω) = −2[1 ± nB/F (�ω − μ)]

× Im[G(+)(x,x′; ω)],

via the fluctuation-dissipation theorem. Here, the spectral
function is given by

ρ(x,x′; ω) = − 1

π�
Im[G(+)(x,x′; ω)], (4)

in terms of the imaginary part of the temporal Fourier transform
of the retarded Green’s function,

G(+)(x,t ; x′,t ′) = iθ (t − t ′)〈[ψ̂(x,t),ψ̂†(x,t)]〉. (5)

Furthermore, the Bose (Fermi) function nB (F )(�ω) = (eβ�ω ∓
1)−1, where β = 1/kBT is the inverse thermal energy. The
chemical potential is denoted by μ. In all of the above,
upper (lower) signs refer to bosons (fermions). From now on,
however, we consider only bosons.

The position dependence of the spectral function and the
Green’s function can usually be treated in the local-density
approximation. In this case, the retarded Green’s function is
given by

G(+)(x,x′; ω)

=
∫

dk
(2π )3

eik·(x−x′)

× �

�ω+ − εk − Vext
(

x+x′
2

) − �	(+)
(
k, x+x′

2 ,ω
) , (6)

where the retarded self-energy �	(+)(k,X,ω) is determined
by evaluating (in a suitable approximation) the retarded
self-energy for a homogeneous system and then replacing
μ → μ − Vext(X). As a result, the above Green’s function
follows from the retarded Green’s function for a homogeneous
system by using this Green’s function and adding the confining
potential Vext(X) to the single-particle energy. In the above,
the dispersion is εk = �

2k2/2m, with m the mass of a single
atom. We now introduce the Fourier transform of the spectral

function to relative position and momentum variables via

ρ(k,X,ω) =
∫

dx e−ik·xρ(X + x/2,X − x/2; ω), (7)

which yields the scattering rate

R(q,ω) ∝ 2π�

∫
d X ρ(q,X,ω)nB(�ω − μ). (8)

B. Noninteracting case

We first consider the noninteracting case. In that case, the
self-energy is zero and the spectral function given by

ρ0(k,X,ω) = δ(�ω − εk − Vext(X)). (9)

From this we find the scattering rate

R0(q,ω) ∝ 8
√

2π2
�

m3/2ωxωyωz

θ (�ω − εq)nB(�ω − μ)
√

�ω − εq,

(10)

where we have taken

Vext(x) = m
(
ω2

xx
2 + ω2

yx
2 + ω2

zz
2
)/

2. (11)

Within this ideal-gas approximation, the chemical potential is
determined by solving the equation for the total number of
particles N , i.e.,

N =
∫

d X
∫

dk
(2π )3

∫
d(�ω)nB(�ω − μ)ρ0(k,X,ω). (12)

The Heaviside step function θ , the Bose function, and the factor√
�ω − εq in Eq. (10), respectively, reflect the threshold for

obeying energy conservation, the fact that the scattering rate
depends on the number of available particles at the scattering
energy, and the modification of the local density of states by
the trapping potential. Without the latter, the scattering rate
would be proportional to δ(�ω − εq) rather than this square
root.

C. Interactions

The Hamiltonian for the single-component Bose gas is

Ĥ =
∫

dx ψ̂†(x)

[
−�

2∇2

2m
+ Vext(x)

]
ψ̂(x)

+ 1

2
T 2B

∫
dxψ̂†(x)ψ̂†(x)ψ̂(x)ψ̂(x), (13)

with T 2B = 4πa�
2/m the two-body T -matrix in terms of

the s-wave scattering length a. The Schrödinger creation and
annihilation operators for the atoms are ψ̂†(x) and ψ̂(x).

The presence of interactions changes the spectral function.
Instead of the δ function in Eq. (9), it is now equal to

ρ(k,X,ω) = − 1

π

�Im	(k,X,ω)

[−�ω + εk + Vext(X) + Re	(k,X,ω)]2 + �2 [Im	(k,X,ω)]2 . (14)

To determine the retarded self-energy 	(k,X,ω), we restrict
ourselves to the homogeneous case so that 	(k,X,ω) =

	(k,ω). We adopt the sunset approximation [9], which is the
simplest approximation that yields broadening of the spectral
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FIG. 1. The dimensionless product εF ρ(q = 0,ω)nB (�ω − μ) as
a function of �ω/εF for dimensionless interaction parameter kF a = 1.
The peaks correspond to T/Tc = 1.06 (dotted curve), T/Tc = 1.04
(dashed curve), and T/Tc = 1.02 (solid curve).

function due to collisions. In this approximation, the imaginary
part of the self-energy is given by

�Im	(k,ω) = −(2π )3π (T 2B)2

(2π )9

∫
dk2dk3dk4

× δ(k + k2 − k3 − k4)δ
(
�ω + εk2 − εk3 − εk4

)
×{nB(k2)[1 + nB(k3)][1 + nB(k4)]

− [1 + nB(k2)]nB(k3)nB(k4)}, (15)

where the Hartree-Fock mean-field shift 2T 2Bn (that arises
in a first-order approximation to the self-energy) should be
included in the single-particle dispersion via the substitution
μ → μ − 2T 2Bn, but is omitted here. Note that in the
above, we use the shorthand notation nB(k) ≡ nB(εk − μ). We
evaluate the above expression for the self-energy numerically
to obtain the imaginary part, and then the real part can be
obtained by the Kramers-Kronig transform.

For definiteness, we consider zero momentum so that
q = 0, and we plot the product ρ(q = 0,ω)nB(�ω − μ), which
determines the scattering rate in a homogeneous system for
a particular chemical potential, as seen from Eq. (8). The
result is shown in Fig. 1, where we show the dimensionless
product εF ρ(q = 0,ω)nB(�ω − μ) as a function of �ω/εF

for dimensionless interaction parameter kF a = 1. Here, εF =
�

2k2
F /2m is the Fermi energy corresponding to the particle

density n, with the Fermi wave number kF = (6π2n)1/3.
Note that the Fermi energy and Fermi momentum introduced
here merely serve the purpose of introducing an energy
and momentum scale independent of temperature, but they
have no particular physical significance for the momentum
distribution, as the system under consideration is bosonic.
The peaks in Fig. 1 correspond to T/Tc = 1.06 (dotted
curve), T/Tc = 1.04 (dashed curve), and T/Tc = 1.02 (solid
curve), where Tc is the critical temperature for Bose-Einstein
condensation. For this particular value of kF a, the Tc in this
model is 0.48εF /kB .

The spectral function is peaked when �ω is equal to
the single-particle dispersion. Obtaining a self-consistent
dispersion is hard as it requires solving the chemical potential
from the equation for the density

n =
∫

dk
(2π )3

∫
d(�ω)nB(�ω − μ)ρ(k,ω), (16)

of which the right-hand side also depends in principle on
density via the above-mentioned mean-field shift. By leaving
the chemical potential μ undetermined, we do not attempt an
accurate prediction of the positions of the peaks in Fig. 1 at a
given temperature and density. Rather, we focus on the finite
quasiparticle lifetimes due to interactions, which are reflected
in broadening (with respect to the δ function appropriate for
the noninteracting case) of the peaks. From Fig. 1 we see that
upon approaching Tc from above, the peak height increases
while the peak width decreases. We consider now the scaling
relation of the spectral function that holds in the critical region
and is given by [10]

ρ(λk,λzω,λ1/ν(T − Tc)) = 1

λ2−η
ρ(k,ω,T − Tc).

The prediction for the critical exponents within the sunset
approximation are ν = 1/2, z = 2, η = 0. One may use this
scaling relation to collapse experimentally obtained spectral
functions (allowing also for a shift of the energy axis), and so
achieve an experimental result for the exponents.

D. Numerical results

In this subsection, we determine the single-particle correla-
tion function using simulations based on the projected Gross-
Pitaevskii equation (PGPE) formalism. These simulations
incorporate both the effects of the trapping potential and
interactions.

1. PGPE formalism

The projected Gross-Pitaevskii equation (PGPE) formalism
is developed in detail in Ref. [11], and so we will not repeat it
here. The crux of the method is that the Bose field operator is
split into two parts according to

ψ̂(x) = ψC(x) + ψ̂I(x), (17)

where ψC is the coherent classical field and ψ̂I is the incoherent
field operator (see Ref. [12]). These fields are defined as the
low- and high-energy projections of the full quantum-field
operator, separated by the energy εcut. In this work, we study
only the coherent region, as it has been shown in Ref. [13] that
the coherent region contains all the long-range coherences in
the system that will be relevant for our study. The equation of
motion for ψC is the PGPE,

i�
∂ψC

∂t
=

[
−�

2∇2

2m
+ Vext(x)

]
ψC

+PC{T 2B |ψC|2ψC}, (18)

where the projection operator

PC{F (x)} ≡
∑
n∈C

ϕn(x)
∫

dx′ ϕ∗
n(x′)F (x′) (19)

formalizes our basis set restriction of ψC to the coherent region.
The main approximation used to arrive at the PGPE is to
neglect dynamical couplings to the incoherent region [14].

Equation (18) is ergodic, so that as ψC evolves in time, it
samples the equilibrium microstates of the system. Time aver-
aging can therefore be used to obtain macroscopic equilibrium
properties. We begin our study by finding equilibrium states of
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the Bose gas, for temperatures around the critical temperature,
following the method of Ref. [15].

Typically evolution times of order 20 trap periods are
used for the system to relax toward equilibrium [16], before
properties of the equilibrium states are sampled using time-
averaging. We typically use around 7000 samples over 140 trap
periods of our simulation to perform such averages. Details of
the calculation of these equilibrium properties can be found
in Refs. [12,15] and references therein. In this work, we
study the time-dependent behavior of the Bose gas. Ergodic
time averaging obviously cannot be used when studying the
dynamics of the system, so we instead take ensemble averages
for dynamic properties to improve the statistics of our results.

We aim to find the single-particle response function,
G(+)(x,x′; ω), of the system. Toward that end, a perturbation
is added to the Hamiltonian of the PGPE, which is now given
by

i�
∂ψC

∂t
=

[
−�

2∇2

2m
+ Vext(x)

]
ψC

+PC{T 2B |ψC|2ψC} + F (x,t), (20)

where

F (x,t) = F0e
−Ax2

e−iω0t . (21)

The inclusion of the exponent −Ax2 restricts the perturbation
to a small area within the very center of the trapped system.
The full width at half-maximum of the perturbation is 0.3 μm,
while the system width for C in the short (tight trap) direction
is around 5.5 μm. The amplitude of this perturbation is
kept minimal to ensure the system is in the linear-response
regime. The single-particle response function, G(+)(x,x′; t −
t ′), determines the perturbation of the wave function via

〈ψC(x,t)〉F = 〈ψC(x,t)〉0 + 1

�

∫
dt ′

∫
dx′

×G(+)(x,x′; t − t ′)F (x′,t ′). (22)

Making use of the fact that G(+)(x,x′; t − t ′) goes to zero as a
function of |x − x′| on a length scale that is much smaller than
the width of the perturbation, we conclude that the response is
essentially local and of the form

〈ψC(x,ω)〉F − 〈ψC(x,ω)〉0 ∝ e−Ax2
K(x,ω0)δ(ω − ω0),

(23)
where ω0 is the perturbation frequency, angled brackets denote
ensemble averages, and 〈· · · 〉F indicates such an average in the
presence of the perturbation.

Integrating Eq. (23) further over all frequencies ω gives the
response function K(x,ω0) in terms of the Fourier transform
of the perturbed and unperturbed wave functions. From now
on, we focus on x = 0. We take the following steps to find the
response function:

(i) Find an ensemble of equilibrium states, all with the same
approximate temperature and total number.

(ii) Add the perturbation of Eq. (21) to each of the states,
and evolve the PGPE. This is done for a range of frequencies,
ω. The PGPE is also evolved without perturbation.

(iii) The ensemble average of all wave functions is taken,
at the very center point of the trap, for the full time length of
the simulation.

(iv) The Fourier transform is taken of the ensemble average,
for all frequencies, including the nonperturbed result.

(v) The integral over the frequency is taken, to find K(0,ω0),
for each ω0.

2. Results

We simulate three systems that span the critical region.
These systems are created by fixing εcut and the number
of particles in the coherent region, NC, and then choosing
three different values for the energy of the coherent region,
EC, as detailed in Ref. [15]. This process results in three
systems that all have a different particle number, but which
have increasing relative temperature, given by T/Tc, where Tc

is the critical temperature. The systems have harmonic trap
frequencies ωx = 2π × 365 Hz, ωy = ωz = 2π × 129 Hz.
The equilibrium properties for our systems are given in
Table I.

From Ref. [15], it can be seen that a best estimate for the
critical temperature is 0.96Tc1, where

Tc1 = Tc0 −
(

0.73
ω̄

ω
N− 1

3 + 1.33
a

aho
N

1
6

)
Tc0, (24)

with

kBTc0 = 0.94�ωN1/3, (25)

and ω = (ωxωyωz)1/3, ω̄ = (ωx + ωy + ωz)/3, and aho =√
�/mω; see Ref. [17]. The two terms in brackets in Eq. (24)

correspond to the finite-size (∝N−1/3) and mean-field inter-
action (∝N1/6) shifts of the critical temperature, respectively.
We use 0.96Tc1 as the critical temperature in this paper, where
our relative temperature is defined as T/(0.96Tc1).

To study the temperature dependence, we fit the function

1

Z−1ω − ωd − iγ ω
(26)

to our data for K(0,ω), where Z, ωd , and γ are free fitting
parameters. Results from our simulations for K(0,ω) as a
function of ω for T = 1.0Tc together with the fitted function
above are shown in Fig. 2. The results for the damping
parameter γ and system parameters are in Table I.

From these results, we observe that the dimensionless
damping parameter increases upon lowering the temperature
toward the critical one. This is expected as the damping is

TABLE I. Table of simulation results.

System temp. (nK) Relative temp. Total number Peak density (1020 m−3) γ Z ωd (Hz) ωdZ (Hz)

357 1.00 1.09 × 105 3 0.003 76 0.0211 41.8 1980
385 1.01 1.33 × 105 2.6 0.003 38 0.0130 27.5 2117
432 1.02 1.79 × 105 2.3 0.003 10 0.0132 26.5 2009
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FIG. 2. Data points (crosses) and fitted curve (line) for T =
1.00Tc.

determined by collisions that are Bose-enhanced in the degen-
erate regime [18]. We come back to this point in the discussion.

III. SPIN-CURRENT FLUCTUATIONS

In this section, we consider the spin resistivity of a two-
component Bose gas, and, in particular, how it is measured
by determining the spin-current fluctuations in equilibrium.
The spin resistivity in a cold-atom system is, because of
a lack of impurities and lattice vibrations in this system,
fully determined by the interactions between the two spin
components of the gas. Hence, it is also referred to as
the spin-drag resistivity, i.e., the friction between two spin
components because of interactions, which was a concept first
introduced in the context of semiconductor spintronics [19,20].
The behavior of the spin-drag resistivity in cold atomic gases
has attracted some attention recently, both for Fermi [21–23]
and Bose gases [18,24]. To directly determine the spin-drag
resistivity, we consider a homogeneous two-species Bose gas
above condensation temperature. We apply a spin-dependent
force such that F↑ = −F↓ ≡ F, and we assume that the two
spin species have equal density, which guarantees that there
will be no net mass current. The temperature is taken to be
constant, and we do not include the effects of the trapping
potential here. The latter simplification is made to be able
to present analytical results for the power spectrum of the
spin-current fluctuations. We note, however, that these results
for the homogeneous system can, in principle, be used as a first
step to describe trapped systems within the local-density ap-
proximation. Hence, we focus here on the homogeneous case.

A. Phenomenological considerations

The phenomenological equations of motion for our system
are [18]

nm
dv↑
dt

= nF + �(v↑ − v↓), (27)

nm
dv↓
dt

= −nF − �(v↑ − v↓). (28)

In the above, n is the particle density per species, m the mass
of a single particle, vσ is the drift velocity of species with spin
state |σ 〉 (σ ∈ {↑,↓}, and �(v↑ − v↓) is an as yet undefined
function describing friction between the two spin species. We
take the linear, isotropic approximation for the latter (and use
the prime to denote a derivative), such that �′

αβ ≡ d�α/dvβ ,
�′

xx = �′
yy = �′

zz ≡ �′(0), and �(v↑ − v↓) � �′(0)(v↑ − v↓).
The spin current is defined by js = n(v↑ − v↓). In the steady
state, the above equations yield

js = − n2

�′(0)
F ≡ σs F ≡ ρ−1

s F ≡ nτs

m
F, (29)

which defines the spin resistivity ρs and spin conductivity
σs. Furthermore, τs introduced above is the spin transport
relaxation time. However, since the only relaxation mechanism
in this setup is due to collisions between particles with different
spin that lead to spin drag, we refer to it as the spin-drag
relaxation time throughout.

In linear response, we have for the spin current in a
homogeneous system in full generality that

js(x,t) =
∫

dt

∫
dx′σ (+)

s (x − x′,t − t ′)F(x′,t ′). (30)

From the phenomenological equations in Eq. (27), it follows
that

σ (+)
s (k = 0,ω) = 2ni

m

(
1

ω + 2i
τs

)
. (31)

Note that σ (+)
s (k = 0,0) = σs, as it should. In the next section,

we give another expression for the spin-drag conductivity, this
time in terms of a Kubo formula that relates it to the the
spin-current-spin-current correlation function.

B. Kubo formalism

For the Kubo formalism, we start from the generic action
for the system, given by

S[φ,φ∗] =
∫

dx
∫

�β

0
dτ

∑
σ

φ∗
σ (x,τ )

×
[
�

∂

∂τ
− �

2∇2

2m
− μ

]
φσ (x,τ ) + Sint[φ,φ∗],

(32)

and the definition of the spin current, given by

Js(x,τ ) = �

2mi

∑
σ

σ [φ∗
σ (x,τ )∇φσ (x,τ ) − c.c.], (33)

where the φ(x,τ ),φ∗(x,τ ) are the bosonic fields associated
with the creation and annihilation operators, the second term
in the above expression for the spin current denotes complex
conjugation, and all interactions are in Sint[φ,φ∗]. The only
important interactions for determining the spin transport
properties of the gas at zero momentum are in the interspin
s-wave collisions that are parametrized by the scattering length
a. (Note that in the first part of this article, this notation is
used for the scattering length of a single-component gas.) To
incorporate the spin-dependent force, we perform the minimal

023632-5



BEZETT, VAN DRIEL, MINK, STOOF, AND DUINE PHYSICAL REVIEW A 89, 023632 (2014)

substitution

− i�∇ → −i�∇ + σ
F
ωp

eik·x−iωpτ , (34)

with F the external force that leads to nonzero spin currents. A
standard imaginary-time linear-response calculation now leads
to the result for the spin conductivity that

σs(k,iωp) = 1

ωp

[
−�(k,iωp)

�
+ 2n

m

]
, (35)

where �(k,iωn) is the Fourier transform of the spin-current-
spin-current response function �(x − x′; τ − τ ′) = 〈Js(x,τ ) ·
Js(x′,τ ′)〉/3, where we again assumed rotational invariance
and iωn denotes bosonic Matsubara frequencies, and where
imaginary-time-ordering is implicit. Finally, we take the k = 0
element and perform a Wick rotation iωp → ω+ so that

σ (+)
s (k = 0,ω) = 1

iω

(
�(+)(k = 0,ω)

�
− 2n

m

)
, (36)

where �(+)(k = 0,ω) ≡ �(k = 0,ω+) is the retarded spin-
current-spin-current correlation function at zero momentum.

Using the above results together with the phenomenological
expression for the spin conductivity, we determine the retarded
spin-current-spin-current correlation function in terms of the
spin-transport relaxation time

�(+)(k = 0,ω) = 4n�

m

(
i

ωτs + 2i

)
.

The equilibrium fluctuations in the spin current are char-
acterized by the correlation function 〈Ĵs(x,t)Ĵs(x′,t ′)〉, with
Ĵs the spin-current expressed in terms of second-quantized
Heisenberg operators. The Fourier transform of this correlation
function is the so-called power spectrum P (k,ω) for the spin-
current fluctuations. We focus here on the zero-momentum
power spectrum P (ω) ≡ P (k = 0,ω).

We use the fluctuation-dissipation theorem given by

P (ω) = 2�[1 + nB(�ω)]Im[�(+)(k = 0,ω)] (37)

to determine the power spectrum in terms of the spin-transport
relaxation time. This yields

P (ω) = [1 + nB(�ω)]
2n�

2

m

ωτs

ω2τ 2
s

4 + 1
. (38)

We are now in the position to use previous results for the
spin-transport relaxation time obtained by three of us [18]. In
this latter work, this relaxation time is determined with the
framework of Boltzmann transport theory. In the next section,
we use these results to determine the power spectrum of spin-
current fluctuations.

C. Results

In Fig. 3, the power spectrum for spin-current fluctua-
tions is displayed as a function of dimensionless frequency
ω̄ = �βCω with βC = 1/kBTc. We introduce the deBroglie
wavelength � =

√
2π�2β/m and its value �C at the crit-

ical temperature for Bose-Einstein condensation. We show
the results for a regime where the effects of quantum
degeneracy do not play a role (n�3 = 0.1) and in the

FIG. 3. (Color online) The dimensionless power spectrum
�CβCP (ω̄) for a/�C = 0.1 and two different limits: (a) n�3 = 0.1
and (b) n�3 = 2.6. The thick lines are the full results, the dashed
lines are the classical limit.

quantum-degenerate regime close to the critical temperature
for Bose-Einstein condensation (n�3 = 2.6). The interaction
is taken to be moderately strong (a/�C = 0.1). We also plot
the classical result, which is obtained by approximating, in
the fluctuation-dissipation theorem, 1 + nB(�ω) � kBT /�ω.
We note that in the low-temperature regime (n�3 = 2.6),
the power spectrum is significantly broadened with respect
to the result at higher temperature, whereas in the high-
temperature regime (n�3 = 0.1) the classical and full results
overlap. The broadening at low temperature is a consequence
of the increasing spin-transport relaxation rate 1/τs due to
Bose-enhanced scattering at low temperatures. Also note that
the classical approximation for the power spectrum ceases to
be a good approximation at small temperatures, because—in
addition to the Bose-enhanced scattering—the fluctuations
themselves are Bose-enhanced [via the factor 1 + nB(�ω) in
the fluctuation-dissipation theorem].

The results for the power spectrum of spin-current fluctua-
tions can, in combination with experiment, be used to extract
the spin-current relaxation time in case a steady-state transport
measurement is not possible. In particular, this may be the case
when the relaxation time is large so that an alternative mea-
surement of the spin-transport relaxation time (see Ref. [24])
is not possible. Moreover, at low temperatures the deviation of
the power spectrum from the classical prediction provides an
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alternative probe for quantum degeneracy and can be used to
demonstrate the effect of Bose statistics on fluctuations.

IV. CONCLUSIONS, DISCUSSION, AND OUTLOOK

In this article, we have considered interaction effects on
dynamic correlations in single- and two-component Bose gases
above the critical temperature for Bose-Einstein condensation.
For the former, we focused on single-particle correlations,
as measured in an rf spectroscopy experiment. We obtained
perturbative results for a homogeneous Bose gas, and we
performed simulations for a trapped gas. Both results show
that interactions lead to a nonzero lifetime of single-particle
excitations that has a significant temperature dependence.
For the case of two-component Bose gases, we focused on
spin-current fluctuations, and we presented results on the
power spectrum of these fluctuations. In this case, we found
broadening (in the frequency domain) of the power spectrum
due to interaction effects. We note that both our simulation re-
sults for the single-particle correlation function and the results
for the power spectrum of spin-current fluctuations show a
decreasing lifetime upon lowering the temperature toward Tc.
The second-order perturbation theory for the single-particle
correlation function, on the other hand, shows an increasing

lifetime upon decreasing the temperature. These results are
in agreement with the results of Ref. [9], where it was
shown that over a broad temperature range the system is well
described by Boltzmann transport theory, which predicts Bose
enhancement of scattering rates (and thus reduction of lifetime)
upon approaching the critical temperature. Very close to Tc,
i.e., in the critical region, this trend reverses and scattering
rates approach zero at the critical temperature. We hope these
results will motivate future experiments to consider dynamics
correlations in the noncondensed regime of Bose-Einstein
condensed gases, and in particular to focus on these interesting
different regimes of temperature dependence. Finally, we
note that possible extensions of this work could include the
appropriate unitary-limited interaction that determines the
high-frequency behavior of dynamic correlation functions, and
a study of other types of correlation functions.
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