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A coherent X-ray diffraction study of a single colloidal crystal grain composed

of silica spheres is reported. The diffraction data contain Bragg peaks and

additional features in the form of Bragg rods, which are related to the stacking of

the hexagonally close-packed layers. The profile of the Bragg rod shows distinct

intensity modulations which, under the specific experimental conditions used

here, are directly related to the stacking sequence of the layers. Using a model

for the scattered intensity along the Bragg rod for an exact stacking sequence of

a finite number of hexagonally close-packed layers, it is found that a double

hexagonal close-packed stacking sequence is present in the colloidal crystal

grain. This analysis method opens up ways to obtain crucial structural

information from finite-sized crystalline samples by employing advanced

third-generation X-ray sources.

1. Introduction

Colloidal crystals and their internal structure have been the

focus of many investigations because of their possible appli-

cation as functional nanomaterials, for instance as photonic

crystals (Galisteo-López et al., 2011; Blanco et al., 2000; Vlasov

et al., 2001). The presence of defects in the crystal structure

influences the functional properties of the colloidal crystal,

and therefore it is important to characterize both the crystal

and its defect structures in detail.

Characterization of the three-dimensional structure of

colloidal crystals can be done in direct or reciprocal space

using a number of approaches. Advanced confocal laser

scanning microscopy allows imaging of the particle positions

in detail, but only small sample volumes can be used owing to

limits in resolution and penetration depth (Schall, 2009). Light

scattering can provide structural information but has a

severely limited q range [q = (4�/�)sin�, where � is half the

scattering angle and � is the wavelength of the incident

radiation]. In addition, for these optical techniques the

refractive index mismatch, which is essential for photonic

properties, greatly complicates quantitative structure analysis.

These problems can be overcome by using X-ray diffraction,

which has already been successfully employed for colloidal

crystals. For instance, statistically averaged information about

the crystal structure and disorder in macroscopic samples has

been revealed in small-angle X-ray diffraction studies (Vos et

al., 1997; Versmold et al., 1999; Petukhov et al., 2002, 2003;

Hilhorst et al., 2009; Sinitskii et al., 2010; Byelov et al., 2010).

Furthermore, recent developments in X-ray techniques have

also allowed for novel approaches, such as coherent X-ray

diffraction imaging (CXDI) (Gulden et al., 2010, 2012), as well

as hard and soft X-ray microscopy (Hilhorst et al., 2012; Bosak

et al., 2010; Byelov et al., 2013), which are able to access local

structures in colloidal crystals.

Colloidal spheres are known to self-organize into structures

consisting of close-packed hexagonal layers that occupy three

specific positions (Sloane, 1998). There are two simple regular

lattices, the hexagonal close-packed (h.c.p.) and face-centred

cubic (f.c.c.) structures. However, because of the small free-

energy difference between f.c.c. and h.c.p. (Bolhuis et al., 1997;

Bruce et al., 1997; Mau & Huse, 1999), a random mixture of the

two stacking types, the so-called random hexagonal close-

packed (r.h.c.p.) structure, is often observed (Dolbnya et al.,

2005; Zhu et al., 1997; Kegel & Dhont, 2000). In X-ray

diffraction, this type of stacking disorder leads to the

appearance of Bragg rods along the direction normal to the

close-packed hexagonal layers (Versmold et al., 1999; Petu-

khov et al., 2003).

In this work, we study the Bragg rods observed for a small

(about 4 mm) single colloidal crystal grain using coherent

X-ray diffraction. In contrast with previous studies that only
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collected statistically averaged data over large (>100 mm)

sample areas, and hence collected smeared intensities along

the Bragg rods, here we observe unusually distinct intensity

modulations along the Bragg rod related to the r.h.c.p.

stacking sequence. We demonstrate that, under these condi-

tions, we can reveal the specific stacking sequence of layer

positions by fitting a simple stacking model for a finite number

of hexagonally close-packed layers to the Bragg rod intensity

profile. Our analysis reveals the presence of a double hexa-

gonal close-packed (d.h.c.p.) stacking sequence in this parti-

cular colloidal crystal grain. This approach enables direct

access to structural information of finite-sized objects on the

basis of coherent diffraction measurements, without the

challenging phase retrieval data analysis typical for CXDI.

2. Experiment

The samples were prepared from dried sediments of colloidal

crystals that showed characteristic optical Bragg reflections

similar to those observed by Gulden et al. (2012). The sedi-

ments were obtained by drying a colloidal suspension of

sterically stabilized silica spheres with a diameter (2R) of

230 nm in cyclohexane over several months. Small grains were

obtained by mechanically crushing a piece of the ordered

sediment. Individual grains were picked up manually using a

micromanipulator (PatchMan NP2, Eppendorf) and

connected to the tip of a 10 mm-thick carbon fibre, which was

mounted on the sample holder. The colloidal crystal grain

used in this study was imaged with light microscopy and

determined to have dimensions of about 2 � 3 � 4 mm.

The experiment was performed on the coherence beamline

P10 of the PETRA III synchrotron (DESY, 2014). A mono-

chromatic X-ray beam of 8 keV photon energy was focused on

the sample at a distance of 87.7 m from the source, using

transfocator optics (Zozulya et al., 2012) based on compound

refractive lenses (CRLs). The CRL optics were positioned

2.2 m upstream from the sample, and a slit system of

75 � 75 mm in size, located 1.5 m before the CRL, was used to

select a coherent portion of the beam. The size of the focal

spot at the sample position was 5.5 mm (full width at half-

maximum, FWHM) in the horizontal direction and 3.2 mm

(FWHM) in the vertical direction, with about 1011 photons s�1

of total intensity. To inhibit radiation damage, the grain was

cryo-cooled with a nitrogen flow. Coherent diffraction

patterns were acquired using a MAXIPIX detector (ESRF,

Grenoble, France) with 516 � 516 pixels and a pixel size of

55 � 55 mm. The detector was located 5.1 m from the sample,

with a minimum resolution in reciprocal space of 0.4372 mm�1

defined by the geometry of the experiment and pixel size. An

evacuated flight tube was used between the sample and the

detector in order to reduce background scattering. A full data

set consisted of a rotation series of 360 diffraction patterns

with a 0.5� increment, thus covering the entire reciprocal

space. At each angular position, a series of 100 diffraction

patterns were measured to provide a good signal-to-noise

ratio. To access the scattering signal close to the directly

transmitted beam, a semi-transparent beamstop made of Si

wafer (300 mm thick, 3 � 3 mm in area) was installed in front

of the detector. Additionally, a Ta disc of diameter 0.5 mm was

glued on top of the Si wafer to absorb the direct beam

completely.

3. Theoretical model

It is well known that colloidal spheres arrange into a stacking

of close-packed hexagonal layers that is similar to atomic

crystals, such as metals (Sloane, 1998). In these structures, a

sphere in a given layer will be arranged in the hollow site

formed by three spheres in the layer below. Since two subse-

quent layers cannot have the same lateral position, there are

only two of these positions in a hexagonally packed layer,

resulting in a total of three distinct layer positions, denoted A,

B and C. The two simplest periodic stacking sequences of

these layers are h.c.p., with an ABAB . . . stacking, and f.c.c.,

with an ABCABC . . . stacking, as shown in Fig. 1(a). In

contrast with their atomic counterparts, colloidal crystals are
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Figure 1
(a) Stacking of close-packed hexagonal layers with an h.c.p. or f.c.c.
stacking sequence. (b) The hexagonal unit cell in direct space, together
with the basis vectors a1, a2 and a3. (c) A top view of the A, B and C
positions and the lateral displacement vector c. (d) A sketch of the
reciprocal lattice of randomly stacked hexagonally close-packed crystals
described by vectors b1, b2 and b3. For specific hk indices, as labelled, the
intensity along l is concentrated into distinct Bragg peaks (grey spheres)
for h� k divisible by 3, and smeared into Bragg rods (grey rods) for h� k
not divisible by 3.



often found to possess an r.h.c.p. stacking, because of the very

low energy difference between the two crystal structures of

less than 10�3 kT per particle (Bolhuis et al., 1997), where k is

the Boltzmann constant, 1.3806488 � 10�23 J K�1). In an

RCHP structure, the positions of the hexagonal layers follow a

random stacking sequence, causing planar stacking faults in

either a pure h.c.p. or a pure f.c.c. crystal structure, and these

can be observed by X-ray diffraction (Petukhov et al., 2003;

Hilhorst et al., 2009; Byelov et al., 2010). However, there are

also other periodic structures that close-packed hexagonal

layers can form. In these cases the repeating unit cell is

extended over more than three layers. An example of this is

the d.h.c.p. structure, with a stacking sequence of

ABCBABCB . . . . This crystal structure is found for some of

the rare earth metals (Pearson, 1967) but has not been

reported before for colloidal crystals of spheres.

In this work, we analyse a single colloidal crystal grain

consisting of a finite number of close-packed hexagonal layers.

To be able to extract the exact r.h.c.p. stacking sequence of the

layers, we will describe the structure of colloidal crystals by the

hexagonal set of basis vectors a1, a2 and a3, as shown in

Fig. 1(b). The hexagonal layers are described by a1 and a2, with

|a1| = |a2| = a, which is the interparticle distance, and the

interlayer spacing is described by the vector a3. The layers are

stacked along the a3 or [001] direction and the order of the A,

B or C layer positions, or their respective lateral displace-

ments, determines the stacking sequence. We define the lateral

displacements as ‘forward’ (+) for A to B, B to C or C to A, or

‘backward’ (�) for A to C, B to A or C to B. This displacement

can be described in plane by the ‘forward’ vector c = (2a1/3) +

(a2/3) and the ‘backward’ vector �c (see Fig. 1c).

Based on the hexagonal set of direct space basis vectors, the

reciprocal basis vectors b1, b2 and b3 can be determined in the

usual way (Guinier, 1994). The scattering vector q is then

described by q = hb1 + kb2 + lb3. In Fig. 1(d) a schematic

representation of the reciprocal space lattice is shown. Here,

the blue planes illustrate the hexagonal planes described by b1

and b2. Owing to the two-dimensional periodicity inside each

hexagonal plane, the scattering intensity in reciprocal space

will be concentrated around the integer values of h and k.

Stacking faults, inherent in an r.h.c.p. structure, break the

interlayer periodicity, thus smearing out the diffraction

features in rods along l. The diffraction amplitude of each

subsequent layer along l is dependent on the layer position

which, in direct space as described above, will be shifted by the

vector a3 in the direction normal to the layers and by �c

laterally. Correspondingly, in reciprocal space the contribution

of the nth layer to the diffraction amplitude will receive a

q-dependent phase shift along l. This phase shift is described

by exp(i�’n + 2�inl), where �’n is the phase shift caused by

the lateral displacement �c, given by a recurrent relation

�’n ¼ �’n�1 � 2�
ðh� kÞ

3
: ð1Þ

Using equation (1), the structure factor S(l) of a crystal

containing N hexagonal layers is given by

SðlÞ ¼
PN�1

n¼0

exp i�’n þ 2�inlð Þ

����
����

2

: ð2Þ

Here, the first layer is n = 0 and always assigned an A position.

It must be noted that all layers are assumed to be of the same

size. For specific hk indices such that h� k is divisible by 3, the

phase shift �’n is always a multiple of 2� and S(l) reduces to

the usual result (Guinier, 1994)

SðlÞ ¼
sinð�NlÞ

sinð�lÞ

����
����

2

; ð3Þ

with well defined Bragg peaks around integer values of l,

independent of the stacking sequence and thus resembling a

perfectly regular crystal with N planes. The positions of the

Bragg peaks are represented by the grey spheres in Fig. 1(d)

and are regularly spaced along l at integer values.

For the other hk indices, h � k not divisible by 3, the S(l)

profile will depend sensitively on the exact sequence of the N

layers1 as given by equation (2), and the intensity is concen-

trated into rods along l (grey rods in Fig. 1d). For each stacking

sequence, a unique S(l) profile is obtained that is periodic with

a period of l = 1.

Finally, the total scattering intensity I(l) for a colloidal

crystal grain is determined by the equation

IðlÞ ¼ PðlÞ SðlÞ; ð4Þ

where P(l) is the form factor of a colloidal sphere with radius

R normalized to its volume (Pedersen, 2002):

PðlÞ ¼
3 sinðqRÞ � qR cosðqRÞ½ �

ðqRÞ3

� �2

: ð5Þ

Here, the q values along an hkl rod are given by

qhkl ¼ q2
hk0 þ q2

00l

� �1=2
¼

2�

a

4

3
ðh2
þ k2
þ hkÞ þ

3

2
l2

� �1=2

; ð6Þ

where we assume that the interparticle distance a is 1% larger

than the average particle diameter (2R), as previously shown

for polydisperse colloidal spheres (Petukhov et al., 2006).

It must be noted that the Phk(l) contribution to I(l) along l

depends on the hk indices, while the S(l) contribution is only

dependent on the stacking sequence. Therefore, groups of hkl

rods with the same Phk(l) contributions can be classified into a

general family, for example all rods 10l, 01l, 10l, 01l, 11l and

11l belong to the 10l family.

4. Results and discussion

In the full 180� coherent X-ray diffraction data set collected

from the colloidal crystal grain, a number of Bragg peaks and

distinct Bragg rods were observed. The Bragg rods indicate

the presence of stacking disorder in the sample. Fig. 2(a)

shows a two dimensional diffraction pattern where the 001

Bragg peaks and two 21l Bragg rods (indicated by arrows) are

clearly visible. The darker square region in the middle of the
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diffraction pattern is the area covered by the semi-transparent

beam stop, and the zero-intensity crossed lines originate from

the gaps separating the four tiles of the MAXIPIX detector.

For this sample orientation, the X-ray beam propagates along

the [450] direction of the colloidal crystal grain and the two 21l

Bragg rods lie almost perfectly on the Ewald sphere. This is

shown schematically in Fig. 2(b), where the black dashed line

indicates the cut through the top view of the reciprocal lattice

(Fig. 1d). Using all 360 diffraction patterns, the full three-

dimensional reciprocal space distribution of scattered inten-

sities was constructed. As expected for a crystal with stacking

disorder, this revealed the presence of Bragg rods through the

three-dimensional reciprocal space and enabled us to extract

intensity profiles along all the Bragg rods. Since the coherence

length of the beam is larger than our crystal grain and with

sufficient detector resolution, we can resolve the fine structure

of the Bragg rod. In Figs. 2(c) and 2(d), two extracted two-

dimensional slices along l of the constructed three-dimen-

sional reciprocal space are shown, where the black lines are

again due to the detector gaps. The locations of the projections

in reciprocal space are indicated by blue lines in the reciprocal

lattice shown in Fig. 2(b). In these two-dimensional slices all

the specific Bragg rods are labelled and these can be classified

as the Bragg rod families 10l, 20l and 21l. The observed Bragg

rods reveal specific modulations of intensity along l, which are

distinctly different from the results reported so far (Versmold

et al., 1999; Petukhov et al., 2003; Hilhorst et al., 2009; Byelov et

al., 2010; Eliseev et al., 2009). In those studies, much larger

colloidal crystals were investigated and the measured Bragg

rod profiles, consisting of a smeared intensity distribution

between the Bragg peaks, only provide information on the

average stacking fault densities.

Bragg rod profiles were extracted from the constructed

three-dimensional data set in reciprocal space for the visible

Bragg rods, and the l values were determined by locating the

middle of the rod with respect to the centre of the incident

beam and scaled with the q value of the 001 Bragg peak, as this

is located at l = 1. The intensity profiles for the selected Bragg

rod families 10l, 20l and 21l are plotted in Fig. 3, where the

intensity modulations can clearly be seen. For each profile, the

peak positions are similar while the peak amplitudes differ

significantly. This is expected, because for each hk combina-

tion of indices the structure factor S(l) is the same, while the

form factors Phk(l) are different.

The total number of layers N in the studied crystal grain was

determined by fitting the width of the Bragg peaks along the

11l rod using equation (3) and was found to be 12. The

measured 11l rod profile and the corresponding fitting curve,

showing good agreement in terms of peak positions and shape,

are displayed in Fig. 4. It must be noted that equation (3)
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Figure 3
Normalized experimental Bragg rod profiles of the 10l, 20l and 21l families (lines + symbols), showing distinct intensity modulations along l. The peak
positions of the families correspond well, while their amplitudes differ because of the different Phk(l) and S(l) contributions at the specific hk indices.

Figure 2
(a) Two-dimensional diffraction pattern measured along the [450]
direction of the individual crystal grain, where the 001 Bragg peaks and
two Bragg rods of the 21l family are clearly visible (indicated by white
arrows). (b) Top view of the reciprocal space lattice along l. Filled
symbols represent Bragg peak positions and open symbols represent
Bragg rod positions. The dashed line shows where the Ewald sphere of (a)
cuts through the 21l rods. (c) and (d) Two-dimensional slices taken
through the full three-dimensional reciprocal space that was constructed
from the 360 diffraction patterns. These slices cut through the reciprocal
space lattice at the Bragg peak and rod positions illustrated by the blue
lines in (b). The slice shown in (c) does not cross through the origin of
reciprocal space and therefore does not show the direct beam feature.



assumes that all layers are of the same size. In practice, since

the colloidal crystal grain is obtained by fracturing a dried

sediment, it is very unlikely that all layers contain the same

number of particles. Layers with a smaller size will contribute

less to the peak broadening and therefore the actual number

N of layers in the grain might be larger.

Using the model for the intensity distribution I(l) described

by equation (4), the Bragg rod profiles for different stacking

sequences of 12 layers were calculated. To obtain quantitative

agreement between model and experiment, the intensity over

the range �1 < l < 1 was used for analysis, with the exception

of the 20l rod, where the range 0 < l < 2 was used because of

the low intensity.

After careful examination of all possible stacking

sequences, we found two sequences containing a d.h.c.p.

structure that yielded the best match to the experimental

profiles. Fig. 5 shows the experimental Bragg rod profiles for

the 10l, 20l and 21l Bragg rod families, as well as the best fits

calculated for the two found d.h.c.p. sequences. The first

stacking sequence, ABCBABCBABCB, is a perfect d.h.c.p.

structure that consists of every second layer at a B position in

an f.c.c. environment and alternating A/C layers in an h.c.p.

environment. The second sequence, ABCBABCBCACB, is

similar to the first one with the exception of the two under-

lined layers. These two layers cause a stacking defect in the

perfect d.h.c.p. sequence, and change the repeating B layer to

a repeating C layer. The calculated I(l) profiles for the two

considered d.h.c.p. sequences are very similar in terms of peak

positions, shapes and amplitudes and describe all three

experimental Bragg rod profiles very well.

The main difference between the two d.h.c.p. profiles is

found periodically at l = �0.25, 0.75, 1.75, as indicated with

arrows in Fig. 5, where a single peak is split into a double peak

by the stacking defect. For all three Bragg rod profiles, this is

the location where both model profiles deviate from the

experimental data. This can be caused by simplifications

accepted in the model, such as the assumption that each layer

can consist of a different number of particles or the layers can

exhibit in-plane stacking disorder (Meijer et al., 2007). In the

latter case, two stacking positions are present inside a single

h.c.p. layer, such as islands of A and C layers coexisting on top

of a B layer. The result is two different stacking sequences in a

single grain that will influence S(l). The other small deviations

between the experimental data and the model could be

explained by our simplified approach to determining I(l).

The overall good agreement obtained using the simple

model for I(l) shows that the d.h.c.p. structure is the dominant

packing arrangement of the colloidal spheres present in the

studied crystal grain. This is a remarkable result because the

d.h.c.p. structure has not been observed before in colloidal

crystals of spheres. Previous studies have indicated that the

growth of a sedimentary crystal with an r.h.c.p. structure

probably occurs via the sequential nucleation of hexagonal

layers (Meijer et al., 2007). The interactions are limited to

neighbouring layers and, therefore, the d.h.c.p. structure could

be just one of the many random coincidental realizations of

the r.h.c.p. structure. Alternatively, it could be an effect of the

drying process, in which capillary forces of significant strength

act on the colloids (Denkov et al., 1992).

5. Conclusions and outlook

In the coherent X-ray diffraction data of a single colloidal

crystal grain, distinct Bragg peaks and Bragg rods were

observed. Characteristic intensity modulations along the

Bragg rods indicated the presence of stacking faults in the

sequence of close-packed hexagonal layers. The intensity

fluctuations are described by a model that takes into account

the stacking sequence of a finite number of close-packed

hexagonal layers. Using the model, two stacking sequences of
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Figure 5
Normalized experimental Bragg rod profiles (black lines + symbols) for (a) the 10l, (b) the 20l and (c) the 21l families, and modelled profiles for two
d.h.c.p. structures, a perfect sequence (orange lines) and a sequence with a single stacking fault (blue dashed lines). The specific layer sequence is
represented by the A, B and C sequences (given along the top), where each layer can be in either an h.c.p. environment (red) or an f.c.c. environment
(green). Arrows indicate the region where the two d.h.c.p. model profiles mismatch the most and have a single or double peak, respectively.

Figure 4
The normalized experimental Bragg peak profile along the 11l direction
fitted with a peak model for 12 layers [equation (3)].



the d.h.c.p. type, where f.c.c. and h.c.p. stackings alternate

periodically, were found to match the experimental data. The

slight mismatch between a perfect d.h.c.p. and a single stacking

fault d.h.c.p. structure and the experimental data suggests that

the grain may contain a stacking fault in a predominantly

d.h.c.p. structure. The presence of a d.h.c.p. structure is

remarkable as it has not been observed for a colloidal crystal

of spheres before.

Although we have taken a relatively simple approach for

the analysis of the stacking sequence, our conclusions are

consistent with the preliminary results of our independent

analysis of three-dimensional electron-density distribution in

real space, obtained using a phase retrieval algorithm

(Shabalin et al., 2014). With this method, the positions of the

individual colloidal particles are determined and, by analysing

the projection on one of the crystallographic directions, the

stacking sequence can be determined. This agreement shows

that our method is a feasible new route for the analysis of

finite-sized objects. The proposed method can be applied to

more general classes of finite-sized structures studied with

high-brilliance third-generation synchrotron sources to extract

crucial structure information from the diffraction data.
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