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Abstract: A spherical tensor expansion is carried out to express the resonant inelastic scattering cross-section as
a sum of products of fundamental spectra with tensors involving wavevectors and polarization vectors of
incident and scattered photons. The expression presented in this paper differs from that of the influential ar-
ticle by Carra et al. (Phys. Rev. Lett. 74, 3700, 1995) because it does not omit interference terms between
electric dipole and quadrupole contributions when coupling each photon to itself. Some specific cases of
the spherical tensor expansion are discussed. For example the case of isotropic samples is considered
and the cross-section is expressed as a combination of only three fundamental spectra for the situation
where electric dipole or electric quadrupole transitions in the absorption process are followed by electric
dipole transitions in the emission. This situation includes the case of untextured powder samples, which
corresponds to the most frequent situation met experimentally. Finally, it is predicted that some circular
dichroism may be observed on isotropic samples provided that the circular polarization of the scattered
beam can be detected.
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1. Introduction

Resonant inelastic scattering (RIS) spectroscopies are re-markable tools to study electronic, magnetic and vibra-tional properties of materials [1]. They span a broad en-
∗E-mail: Amelie.Juhin@impmc.upmc.fr (Corresponding author)
†E-mail: Christian.Brouder@impmc.upmc.fr
‡E-mail: F.M.F.deGroot@uu.nl

ergy range, from infrared frequencies for phonon excita-tions, through optical photons for electronic excitationsto x-ray energies for Resonant Inelastic X-ray Scattering(RIXS). The richness of these spectroscopies is due to thelarge number of possible spectra obtained by varying theenergy, direction and polarization state of the incident andscattered electromagnetic waves. As a matter of fact, thereis so much information in the spectra that it is difficult toknow whether a specific set of experiments measures allpotential information. The main purpose of this paper is
323
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to determine a finite set of fundamental spectra in terms ofwhich all possible experimental spectra can be expressed.More precisely, the resonant inelastic scattering spectrumobtained for a given wavevector and polarization vector ofthe incident beam (k and ε) and scattered beam (ks and εs)is written as a sum of terms which are fundamental spec-tra [2, 5] (independent of the incident and scattered beam)multiplied by an explicit polynomial in k, ε, ks and εs.The fundamental spectra will be computed by a sphericaltensor analysis, which was used with great success for thex-ray photoemission of localized magnetic systems [6, 8–11] and in x-ray absorption spectroscopy [2, 4, 5, 7, 12].For the case of x-ray absorption [12] such geometric (i.e.coordinateless) and fully-decoupled expressions are useful(i) to disentangle the properties of the sample from thoseof the measurement; (ii) to determine specific experimentalarrangements aiming at the observation of specific sam-ple properties; (iii) to provide the most convenient startingpoint to investigate the reduction of the number of funda-mental spectra due to crystal symmetries.Following the same idea in the present case, the reso-nant inelastic scattering cross-section is expressed as thesmallest possible combination of fundamental spectra. Todo so, the remarkable angular momentum recoupling tech-niques developed by the Lithuanian school [13, 14] areused. As an application of the general results, the mostcommon experimental case of an isotropic sample (disor-dered molecules, liquids, polycrystals or powders) is de-scribed in detail. It is demonstrated that the spectrum ofan isotropic sample for electric dipole excitation and elec-tric dipole emission with undetected scattered polarizationis the sum of only three fundamental spectra, compared to19 in the general spherical-tensor-based expression (andversus the 81 components of a general fourth-rank Carte-sian tensor).The starting point of this work is the Kramers-Heisenbergformula [15, 16], extended to take electric quadrupoletransitions into account. The Thomson scattering termis not explicitly considered but it can be easily included(see below). For simplicity, the non-resonant term in theKramers-Heisenberg formula is neglected (i.e., assumingthe vicinity of an absorption edge). If the non-resonantterm is sizeable [3], it can be taken into account by similarmethods. It would also be possible to take variable de-cay lifetimes into account [17], but in this paper only thestandard Kramers-Heisenberg formulation is consideredfor simplicity. Electric dipole and quadrupole transitionscontribute significantly in the x-ray range [19]. Using x-ray photons, typically from a synchrotron radiation source,one can choose a specific atomic species and orbital in acomplex compound by selecting the suitable absorptionedge. The sample can be magnetic, it can be submitted to

an external electric or magnetic field, as long as the orien-tation of the external fields remains constant with respectto the sample. Thus, the results presented in this paperare a pure group theoretical consequence of the resonantscattering cross-section formula. Such an expansion doesnot need to assume that a specific edge is measured (i.e.,only the nature of the transitions involved is specified) norto assume that the states involved in the transitions arelocalized or delocalized.The paper consists of three parts. In the first part, thespherical tensor expression is derived for the resonantscattering amplitude. Similar expressions were alreadypublished [20, 22–24]. The second part of this paper con-sists of a full recoupling of the scattering amplitude to ob-tain the spherical tensor decomposition of the scatteringcross-section. At this stage, several works in the literaturemake specific approximations, for example by consideringa localized initial state or by using the fast collision ap-proximation (which is not generally valid [25]). Finally,recoupling techniques are used to separate the incidentbeam from the scattered beam in the cross section and toseparate the polarization part from the wavevector part.This enables to treat the frequent experimental case wherethe polarization state of the scattered beam is not mea-sured.Related results were obtained in specific experimentalconditions [26, 27] or in specific coordinate systems [28–30] but this general expression is new. Its coordinate-less form enables descriptions of the general form ofthe resonant inelastic spectroscopy of isotropic samples.Other works use an approach similar to that presentedin this paper [1, 20, 31], but they do not take into ac-count the interference between electric dipole and electricquadrupole transitions which generates natural circulardichroism [32, 33], or they carry out a different coupling.A consequence of the formula presented in this paper isthat circular dichroism can be observed for isotropic (inparticular not magnetically oriented) samples, if the po-larization of the scattered beam can be measured experi-mentally. The third part of the paper contains appendicesgiving the detail of the derivations.
2. General case

2.1. The Kramers-Heisenberg formula

The scattering of light by a quantum system is describedby an equation derived by Kramers and Heisenberg be-fore the advent of quantum theory [15]. Its first quantumderivation (in the electric-dipole approximation) is due to
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Dirac [34]. The multipole scattering cross-section is [35]:
σSCAT =r2

e
ωs
ω
∑
F

∣∣∣ε∗s · ε〈F |ei(k−ks)·r|I〉
+ 1
m
∑
N

〈F |ε∗s · Pe−iks ·r|N〉〈N|ε · Peik·r|I〉
EI − EN + h̄ω + iγ

+ 1
m
∑
N

〈F |ε · Peik·r|N〉〈N|ε∗s · Pe−iks·r|I〉
EI − EN − h̄ωs + iγ

∣∣∣2
δ(EF + h̄ωs − EI − h̄ω) (1)

where m is the electron mass, re is the classical elec-tron radius: re = e2/(4πε0mc2), |I〉, |N〉, |F 〉 are re-spectively the initial, intermediate and final states, γ isthe total width of the intermediate state |N〉, P and rare the momentum and position operators. The incidentand scattered photons are characterized by the pulsation,wavevector and polarization vectors ω, k, ε and ωs, ks, εs,respectively. Note that ε∗s denotes the complex conjugateof εs.The first term of this expression describes Thomson scat-tering, which will not be considered explicitly here. EIbeing negative and large, EI + h̄ω can be small, and
EI − h̄ωs is large. Hence, it can generally be assumedthat the third matrix element in Equation (1) can be ne-glected with respect to the second one (although it couldbe treated with similar methods). Therefore, only the sec-ond transition amplitude remains in the expression of thescattering cross-section, yielding the well-known partialKramers-Heisenberg formula:
σKH = r2

e
m2 ωsω

∑
F

∣∣∣∑
N

〈F |ε∗s · Pe−iks·r|N〉〈N|ε · Peik·r|I〉
EI − EN + h̄ω + iγ

∣∣∣2
δ(EF + h̄ωs − EI − h̄ω). (2)

For notational convenience, a single variable Peik·r is writ-ten instead of a sum over all electrons of the system∑N
j=1 Pjeik·rj .

2.2. Multipole expansion
First the matrix element 〈N|ε · Peik·r|I〉, describing theabsorption from the initial state |I〉 to the intermediatestate |N〉, is transformed by expanding eik·r to first order:eik·r ' 1 + ik · r. Hence,
〈N|ε · Peik·r|I〉 ' 〈N|ε · P|I〉+ i〈N|k · rε · P|I〉.

The electric dipole matrix element is transformed by usingthe equation of motion of P which is P = (m/ih̄)[r, H0] [19].Thus,
〈N|ε · P|I〉 = (m/ih̄)(EI − EN )〈N|ε · r|I〉.

For the quadrupole matrix element, one uses the identityfrom Ref. [36],
k · rε · P = −(im/2h̄)[ε · rk · r, H0] + 1/2(k × ε) · L,

where L is the angular momentum operator. In this workthe second (magnetic dipole) term is not taken into accountbecause it is small in the x-ray range [19]. Therefore
〈N|ε · Peik·r|I〉 '− imh̄ (EI−EN )(〈N|ε · r|I〉+ i2 〈N|ε · rk · r|I〉)

= − imh̄ (EI − EN ) 1∑
`=0 f`〈N|ε · r(k · r)` |I〉,

with f0 = 1 and f1 = i2 .
Similarly, on transforming the matrix element describingthe emission from the intermediate state |N〉 to the finalstate |F 〉,
〈F |ε∗s · Pe−iks·r|N〉 '
− im

h̄ (EN − EF )(〈F |ε∗s · r|N〉 − i2 〈F |ε∗s · rks · r|N〉) =
− im

h̄ (EN − EF ) 1∑
` ′=0 f

∗
` ′〈F |ε∗s · r(ks · r)` ′ |N〉.

Finally,
σKH = r2

e

h̄2 ωsω
∑
F

∣∣∣∑
N

(EI − EN )(EN − EF )
EI − EN + h̄ω + iγ

1∑
`,` ′=0 f` f

∗
` ′〈N|ε · r(k · r)` |I〉〈F |ε∗s · r(ks · r)` ′ |N〉∣∣∣2δE ,

(3)
where δE = δ(EF + h̄ωs − EI − h̄ω). Denoting C =
r2
eωs/(h̄2ω) and
FI,N,F = 1∑

`,` ′=0 f` f
∗
` ′〈N|ε · r(k · r)` |I〉〈F |ε∗s · r(ks · r)` ′ |N〉,

Equation (3) becomes:
σKH = C

∑
F

∣∣∣∑
N

(EI − EN )(EN − EF )
EI − EN + h̄ω + iγ FI,N,F

∣∣∣2δE . (4)
Equation (4) is a general expression describing the reso-nant inelastic scattering intensity for any combination ofthe absorption and emission transition operators. Eachtransition operator can be either pure electric dipole (E1),or pure electric quadrupole (E2), or a mixture of both(E1 + E2).
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2.3. The Kramers-Heisenberg formula ex-
pressed in terms of spherical tensors
The expression of the FI,N,F intensity factor appearing inthe Kramers-Heisenberg equation (Equation (4)) is trans-formed using spherical tensors and their coupling prop-erties. This transformation is detailed in Appendices A.1and A.2. For a short introduction to spherical tensorsand their application to x-ray spectroscopies, the readeris referred to Ref. [12] for the case of the X-ray absorp-tion cross-section. First the notation is briefly explained.

An `th-rank spherical tensor T is written as T (`), not tobe mistaken for T ` , the `th power of T . Cartesian vec-tors, such as ε, r or k are written in their usual form, i.e.,without brackets. However one should keep in mind thatCartesian vectors correspond to first-rank spherical ten-sors, and as such they shall also be written as ε(1), r(1),
k(1) or ε1, r1, k1.
After the transformation of FI,N,F (see Appendices A.1 andA.2), Equation (4) becomes:

σKH = C
∑
F

∣∣∣∑
N

∑
g,`,` ′

(EI − EN )(EN − EF )
EI − EN + h̄ω + iγ

(−1)gh`h∗` ′√(2` + 3)(2` ′ + 3){{ε∗s ⊗ k` ′s }(` ′+1) ⊗ {ε ⊗ k`}(`+1)}(g)
·
{

r(` ′+1)
FN ⊗ r(`+1)

NI

}(g)∣∣∣2δE ,

where g runs from |` − ` ′| to (` + ` ′ + 2), ` and ` ′ runfrom 0 to 1. The h` factors are defined by h0 = −√3,
h1 = i2√5.In Refs. [20, 31], a similar formula was obtained in termsof vector spherical harmonics. The present coupling ischosen (as in [20]) to avoid irrelevant powers of √4π inthe final result.The first tensor product {{ε∗s ⊗k` ′s }(` ′+1)⊗{ε⊗k`}(`+1)}(g)
characterizes the incident beam (ε, k) and the scatteredbeam (εs, ks). The variables describing the sample are

gathered in the second tensor product {r(` ′+1)
FN ⊗ r(`+1)

NI

}(g).Then, defining
A(g)
FI (`, ` ′) =∑

N

(EI − EN )(EN − EF )
EI − EN + h̄ω + iγ {r

(` ′+1)
FN ⊗ r(`+1)

NI }(g),
(5)

one obtains

σKH = C
∑
F

∣∣∣ ∑
g,`,` ′

(−1)gh`h∗` ′√(2` + 3)(2` ′ + 3){{ε∗s ⊗ k` ′s }(` ′+1) ⊗ {ε ⊗ k`}(`+1)}(g)
· A(g)

FI (`, ` ′)∣∣∣2δE . (6)

Note that Thomson scattering can be taken into accountas a contribution to the term A(0)
FI (0, 0). In the case of x-rays, at this stage of the spherical tensor expansion, thelocal nature of the initial core orbital is often used in theliterature to specify the absorption edge [37]. Such anapproach is powerful to derive sum rules, for instance. Inthis paper a general initial state is used.As remarked by Carra and coll. [31], it is much more con-venient to work with each photon coupled to itself insteadof with the incident photon coupled to the scattered one

as in Eq. (6). This is achieved by expanding the squaremodulus in Eq. (6) and recoupling the spherical tensorsdescribing the incident and scattered beams. In the in-fluential Ref. [31] the authors note that “This is a rathertechnical part in our derivation, and will not be discussedhere.” The calculation is indeed lengthy and a detailedderivation is given in Appendices A.3 and A.4). This allowsthe derivation of the final expression for σKH, which nowhas fully decoupled sample- and beam-dependent parts:
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σKH = ∑
g1 ,g2,`1 ,`2,` ′1,` ′2

∑
a,b,c,u,u′,v ,v ′

(−1)a+`2+` ′2−g2h`1h∗` ′1h∗`2h` ′2Πg1,g2,b,c,u,v,u′,v ′
` ′1 + 1 `1 + 1 g1
` ′2 + 1 `2 + 1 g2
b c a




1 `1 `1 + 11 `2 `2 + 1
u v c




1 ` ′1 ` ′1 + 11 ` ′2 ` ′2 + 1
u′ v ′ b

 γbcaUL · S
g1g2a
L , (7)

where h0 = −√3, h1 = i2√5, U = (u, v, u′, v ′) and L =(`1, `2, ` ′1, ` ′2). The tensors γbcaUL describe the incident andscattered x-rays, the tensor Sg1g2a
L describes the sample.More precisely,

γbcaUL = {Out(b)UL ⊗ In(c)
UL

}(a)
, (8)

is obtained by coupling the tensors In(c)
UL of the incident

beam and the tensors Out(b)UL of the scattered (outgoing)beam, where
Out(b)UL = {

{ε∗s ⊗ εs}(u′) ⊗ {k` ′1s ⊗ k`
′2
s }(v ′)}(b)

, (9)
In(c)
UL = {

{ε ⊗ ε∗}(u) ⊗ {k`1 ⊗ k`2}(v )}(c)
. (10)

The tensors describing the sample are

Sg1g2a
L = r2

eωs
h̄2ω

∑
F

{
A(g1)
FI (`1, ` ′1)⊗ A(g2)

IF (`2, ` ′2)}(a)
δ(EF + h̄ωs − EI − h̄ω), (11)

where
A(g)
FI (`, ` ′) = ∑

N

(EI − EN )(EN − EF )
EI − EN + h̄ω + iγ {〈F |r

(` ′+1)|N〉 ⊗ 〈N|r(`+1)|I〉}(g),
A(g)
IF (`, ` ′) = ∑

N

(EI − EN )(EN − EF )
EI − EN + h̄ω − iγ {〈I|r

(`+1)|N〉 ⊗ 〈N|r(` ′+1)|F 〉}(g).

The spherical tensors Sg1g2a
L are the fundamental spec-tra from which all experimental spectra can be expressed.These fundamental spectra are weighted by coefficients

γbcaUL which are polynomials in ε, εs, k and ks and which de-scribe the experimental conditions. The three 9-j-symbols(and the related triangular conditions) ensure that thesevariables are coupled in the scattering process in a correct(physical) way.
The result presented in this paper differs from that ofRef. [31] because, as noted by Ferriani [21], these au-thors neglect some interference effects. More precisely,they replace the square modulus of the sum |∑`` ′ . . . |2 ineq. (4) of the present paper by the sum of the square mod-uli∑`` ′ | . . . |2. Since this approximation is not made here,there is an additional 9j recoupling coefficient describing

the interference between electric dipole and quadrupolecontributions when each photon is coupled to itself. Theseinterference terms are physically relevant since, even inthe simpler case of x-ray absorption, they lead to impor-tant effects such as natural circular dichroism [32, 33],non-reciprocal gyrotropy [38] and magnetochiral dichro-ism [39].The sum rules derived in Ref. [31, 37] may have a restrictedrange of validity inasmuch as they neglect these inter-ference terms. In subsequent articles [1, 20], the multi-pole matrix elements are coupled in a different way, whichavoids the additional 9j-coefficients but is no longer com-patible with sum rules or Green function representations.Applications of the above general expression to particularcases will be given as examples in Section 3, but before
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that the range of values of the different variables in Eq. (7)is specified.
2.4. Possible values of the different indices
appearing in Equation (7)
The “selection rules” of the 9-j symbols give the followingpossible values taken by the angular variables in Equa-tion (7).

• 0 ≤ `i ≤ 1 (for i = 1, 2 ): these indices deal withthe transition operator in the absorption.
`i = 0 for dipole excitation, `i = 1 for quadrupoleexcitation

• 0 ≤ ` ′i ≤ 1 (for i = 1, 2 ): these indices deal withthe transition operator in the emission.
` ′i = 0 for dipole emission, ` ′i = 1 for quadrupoleemission

• |`i − ` ′i | ≤ gi ≤ `i + ` ′i + 2 (for i = 1, 2): theseindices couple absorption and emission transitionoperators.
• 0 ≤ u ≤ 2: u deals with the polarization of theincident beam.
• 0 ≤ u′ ≤ 2: : u′ deals with the polarization of thescattered beam.
• |`1 − `2| ≤ v ≤ `1 + `2: v deals with the directionof the incident beam.
• |u− v | ≤ c ≤ u+ v and |`1− `2| ≤ c ≤ `1 + `2 + 2:
c gathers all characteristics of the incident beam.

• |` ′1 − ` ′2| ≤ v ′ ≤ ` ′1 + ` ′2: v ′ deals with the directionof the scattered beam.
• |u′−v ′| ≤ b ≤ u′+v ′ and |` ′1−` ′2| ≤ b ≤ ` ′1+` ′2+2:
b gathers all characteristics of the outgoing beam.

• |b− c| ≤ a ≤ b+ c and |g1 − g2| ≤ a ≤ g1 + g2:
a couples everything.

3. Applications to special cases
In this section several special cases of Equation (7) areconsidered.
3.1. Conditions due to the type of polarization
Knowing the type of beam polarization reduces the num-ber of values that the indices u and u′ are allowed totake. When the incident beam is linearly polarized, then

u = 0 or 2. Note that there is a basic difference betweenthe polarization of the incident beam and that of the scat-tered beam. Indeed, the incident beam is prepared by theexperimental setup (ε can be tuned as one wishes) whilethe polarization state of the scattered beam is entirelydetermined by the incident beam and the sample. It can-not be tuned. However, the polarization properties of thescattered beam can be measured. If the requirement is tomeasure the intensity along the polarization direction εs,then that εs is introduced in the formula. If the polarizationstate is not measured, then the trace of the density matrixrepresenting the polarization state of the scattered beamcan be taken. In other words, the measured cross-sectionis equal to the sum over two perpendicular directions ofthe scattered polarization (see Appendix C). In this casethe term corresponding to u′ = 1 in Equation (7) vanishessince 〈{εs ⊗ ε∗s}(1)〉 = 0.It is important to discuss the case where the polarizationof the scattered beam is not measured. As proved in Ap-pendix C, this corresponds to an average of polarizationsbut not to an “isotropic photon”. The concept of isotropicphoton was used in the literature [1, 20, 31, 37, 40, 41].An isotropic incoming photon would correspond to b = 0in Eq. (10) and an isotropic outgoing photon to c = 0 inEq. (9). At first, it was mistakenly stated that an isotropicphoton is an unpolarized photon [37]. As shown in Ap-pendix C, this is not the case and an unpolarized incidentphoton (for example) is the sum of a contribution c = 0and a contribution c = 2. Indeed, the photon polarizationvector ε is always perpendicular to the photon direction k.Thus, an unpolarized photon is not isotropic in all space,it is only isotropic in the plane perpendicular to k. Forexample, angle-dependent x-ray absorption can be car-ried out with unpolarized beams [19]. This anisotropy ofunpolarized light is the origin of the b = 2 contributionto the scattered beam. The multipole (i.e. b = 0 and
b = 2) nature of unpolarized light was clarified by Vee-nendaal and Benoist [20]. The identification of isotropicand unpolarized photons was corrected in Ref. [37].In the next sections, RIXS spectra are discussed for elec-tric dipole emission (i.e. (` ′1, ` ′2) = (0, 0)), and eitherelectric dipole excitation (i.e. (`1, `2) = (0, 0)) or elec-tric quadrupole excitation (i.e. (`1, `2) = (1, 1)). Mixedexcitations (i.e. (`1, `2) = (0, 1) and (1, 0)) are deferred toa forthcoming paper.
3.2. Electric dipole excitation, electric dipole
emission

Let an electric dipole transition in the absorption be fol-lowed by an electric dipole transition in the emission:
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`1 = 0, `2 = 0, ` ′1 = 0 and ` ′2 = 0. Thus:
0 ≤ g1 ≤ 2, 0 ≤ g2 ≤ 2, 0 ≤ a ≤ 4,0 ≤ b ≤ 2, 0 ≤ c ≤ 2.

Since `1 = 0, `2 = 0, then v = 0. This implies c = u.Since ` ′1 = 0 and ` ′2 = 0, then v ′ = 0 and b = u′. These

conditions allow the calculation of the values of all 9jsymbols needed (see Appendix D.1).

The scattering cross section simplifies to:

σE1E1KH = ∑
g1,g2

∑
a,b,c

(−1)a−g2Πg1 ,g2,b,c


1 1 g11 1 g2
b c a


{
{ε∗s ⊗ εs}(b) ⊗ {ε ⊗ ε∗}(c)}(a)

· Sg1g2a
L0 , (12)

where L0 = (0, 0, 0, 0).
3.3. Electric dipole excitation and dipole
emission, isotropic sample
A further simplification arises when the sample isisotropic. This corresponds to the case of a liquid or apowder sample, with no prefered orientation and no re-manent magnetization. The ensuing isotropy implies that
a = 0 and

1 1 g11 1 g2
b c 0

 = δg1g2δbc(−1)g1+b√(2g1 + 1)(2b+ 1)
{1 1 g11 1 b

}
.

Therefore,
σE1E1KH = ∑

g,b

(−1)bΠg,b

{1 1 g1 1 b
}
γbb0L0USgg0

L0 . (13)
Note that the variables g can take the values 0, 1 and2, so that only three fundamental spectra are needed togenerate all the spectra that can be measured on a pow-der. The variable b describing the incident and scatteredbeams can take the value 0, 1 and 2.

• For b = 0:
σE1E1KH (b = 0) = 2∑

g=0(−1)g√2g+ 19 Sgg0
L0 .

• For b = 1:
{ε ⊗ ε∗}(1) = i√2ε × ε∗ = − Pc√2k,

where Pc is the rate of circular polarization. Notethat Pc is positive for a right circular polarizationin the traditional sense (i.e. for a negative helicity).
Pc = 0 if the polarization is linear. Similarly, Pc,sis defined by Pc,s = iε∗s × εs and

γbb0L0U = 12√3PcPc,sks.k = 12√3 (|ε · ε∗s |2 − |ε · εs|2).
Thus

σE1E1KH (b = 1) =
2∑

g=0 −
√2g+ 12

{1 1 g1 1 1
} (|ε · ε∗s |2 − |ε · εs|2)Sgg0

L0 . (14)
This result is interesting: for an unoriented sample,in particular for a powder sample without perma-nent magnetization direction and in the absence ofmagnetic dipole transitions, some circular dichroismcan be observed when measuring the circular polar-ization of the scattered beam, for example using thepolarization analysis device described in Ref. [42].However, the incident and scattered wavevectorsmust not be perpendicular. This remark shows thepower of the geometric (coordinateless) approach.Note that ε · ε∗s and ε · εs are expected to be in-volved in this formula because they are the onlynon-trivial scalars that can be built from ε, εs andtheir conjugates.• For b = 2:

σE1E1KH (b = 2) =
2∑

g=0
4√2g+ 1(2− g)!(3 + g)!

(12 |ε∗ · εs|2 + 12 |ε · εs|2 − 13
)
Sgg0
L0 .
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The final expression of the Kramers-Heisenberg cross-section for an isotropic sample, electric dipole absorption and dipole emission is:

σE1E1KH = 2∑
g=0
((−1)g√2g+ 19 −

√2g+ 12
{1 1 g1 1 1

} (|ε · ε∗s |2−|ε · εs|2)+ 4√2g+ 1(2− g)!(3 + g)!
(12 |ε∗ · εs|2 + 12 |ε · εs|2 − 13

))
Sgg0
L0 .

(15)
If the polarization of the scattered beam is not detected, then the term b = 2 is calculated using the relation: 〈{εs ⊗
ε∗s}(2)〉 = −k(2)

s /2 (see Appendix C) and
〈
γbb0L0U

〉 = − 12√5
(
|ks · ε|2 − 13

)
. (16)

In this case,
〈
σE1E1KH 〉 = 2∑

g=0
((−1)g√2g+ 19 −

2√2g+ 1(2− g)!(3 + g)!
(
|ks · ε|2 − 13

))
Sgg0
L0 . (17)

3.4. Electric quadrupole excitation, electric
dipole emission
This section considers the case of electric quadrupoletransitions in the absorption followed by electric dipole

transitions in the emission: `1 = 1, `2 = 1, ` ′1 = 0 and
` ′2 = 0. Thus:

1 ≤ g1 ≤ 3, 1 ≤ g2 ≤ 3, 0 ≤ a ≤ 6, 0 ≤ b ≤ 2, 0 ≤ c ≤ 4.
Since `1 = 1 and `2 = 1, 0 ≤ v ≤ 2. Additionally, v 6= 1 since {k⊗ k}(1) = i√2 k× k = 0. Thus, v = 0 or 2. Since ` ′1 = 0and ` ′2 = 0, v ′ = 0 and b = u′. The values of all 9j symbols needed are given in Appendix D.2.
Thus,

σE2E1KH = ∑
g1 ,g2

∑
a,b,c,u,v

54 (−1)a+1−g2Πg1,g2,b,c,u,v


1 1 21 1 2
u v c




1 2 g11 2 g2
b c a

 γbcaUL1Sg1g2a
L1 , (18)

where L1 = (1, 1, 0, 0).
3.5. Electric quadrupole excitation, electric dipole emission, isotropic sample
Isotropy implies that a = 0. This further implies that g1 = g2 and b = c = u′.

σE2E1KH =∑
g

∑
b,u,v

54 (−1)1−g(2g+ 1)(2b+ 1)Πu,v


1 1 21 1 2
u v b




1 2 g1 2 g
b b 0

 γbb0UL1Sgg0
L1 ,

330



Amélie Juhin, Christian Brouder, Frank de Groot

with U = (u, v, b, 0).As in the case of electric dipole absorption and emission, only three fundamental spectra are needed to describe all theexperimental spectra of a powder. The tensors γbb0UL1 , are evaluated for all possible values of (u, b, v ) (see Appendix D.3).This leads to the final expression of the Kramers-Heisenberg cross-section for an isotropic sample, in the case ofquadrupole absorption with dipole emission:
σE2E1KH = 3∑

g=1
((−1)g√2g+ 1120 + 116√5√2g+ 1{1 2 g2 1 1

}
× (|ε · ε∗s |2 − |ε · εs|2)

+ √34√7√2g+ 1{1 2 g2 1 2
}
×
(13 − 14 |ε∗ · εs|2 − 14 |ε · εs|2 − 12 |k · ε∗s |2

))
Sgg0
L1 , (19)

where: {1 2 g2 1 2
} = 15√21 for g = 3, √710√3 for g = 2, √710√3 for g = 1, {1 2 g2 1 1

} = 13√5 for g = 3, 16√5 for g = 2, and − 12√5for g = 1.If the polarization of the scattered beam is not detected the polarization average yields:
〈
σE2E1KH 〉 = 3∑

g=1
((−1)g√2g+ 1120 + √34√7√2g+ 1{1 2 g2 1 2

}
×
(
−16 + 14 |k · ks|2 + 14 |ε · ks|2

))
Sgg0
L1 . (20)

4. Conclusion
This paper presents a detailed derivation of the resonantinelastic scattering cross section in geometric sphericaltensor form. Starting from the Kramers-Heisenberg equa-tion and using angular-momentum coupling techniques,this expression is derived without any assumption on thenature of the states involved in the scattering process. Theuse of spherical tensors allows to drastically reduce thenumber of fundamental spectra that shall be measured inorder to extract the full information from a sample. Forexample, for electric dipole absorption followed by elec-tric dipole emission transitions, 19 fundamental spectra(versus 81 for a general fourth-rank Cartesian tensor) arerequired, that reduce to three for a powder.Angular momentum techniques are used to recouple eachphoton (incident and scattered) with itself. This step is re-quired to discuss the common case where the polarizationof the scattered beam is not measured.Some special cases were studied to illustrate the abil-ity of this expression to describe global properties ofthe sample. In the case of isotropic samples, whichare most often measured experimentally, the electricdipole absorption-electric dipole emission and electricquadrupole absorption-electric dipole emission cross-sections are each expressed as a combination of only threefundamental spectra. This method predicts that circulardichroism may be observed on isotropic samples provided

that the circular polarization of the scattered beam is de-tected.
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A. Derivation of Kramers-
Heisenberg formula using spherical
tensors
A.1. Expression of ε · r(k · r)`
First it is shown that ε · r(k · r)` can be expressed as
g`
{
{ε ⊗ k`}(`+1) ⊗ r(`+1)}(0) where g` is a constant.For ` = 0, according to Ref. [12] (Eq. 13):

ε · r =−√3(− 1√3ε · r
) = −√3{ε ⊗ r}0

= −√3{{ε ⊗ k(0)}(1) ⊗ r(1)}(0)
. (A.1)
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For ` = 1, according to Ref. [12][p. 5]:
ε · rk · r = √5{{ε ⊗ k}(2) ⊗ {r⊗ r}(2)}(0) = √5{{ε ⊗ k}(2) ⊗ r(2)}(0)

. (A.2)
Thus, ε · r(k · r)` = g`

{
{ε ⊗ k`}(`+1) ⊗ r(`+1)}(0), with r(1) = r, g0 = −√3, r(2) = {r⊗ r}(2) and g1 = √5.

Defining EIFN = (EI − EN )(EN − EF )
EI − EN + h̄ω + iγ , Equation (4) becomes:

σKH = C
∑
F

∣∣∣∑
N

EIFN
1∑

`,` ′=0 f` f
∗
` ′g`g` ′〈N|

{
{ε ⊗ k`}(`+1) ⊗ r(`+1)}(0)

|I〉〈F |
{
{ε∗s ⊗ k` ′s }(` ′+1) ⊗ r(` ′+1)}(0)

|N〉
∣∣∣2δE , (A.3)

and
σKH = C

∑
F

∣∣∣∑
N

EIFN
1∑

`,` ′=0h`h
∗
` ′

{
{ε ⊗ k`}(`+1) ⊗ 〈N|r(`+1)|I〉}(0){

{ε∗s ⊗ k` ′s }(` ′+1) ⊗ 〈F |r(` ′+1)|N〉}(0)∣∣∣2δE , (A.4)
with h` = f`g` . If one now defines r(`+1)

NI = 〈N|r(`+1)|I〉 and r(` ′+1)
FN = 〈F |r(` ′+1)|N〉, one obtains:

σKH = C
∑
F

∣∣∣∑
N

EIFN
1∑

`,` ′=0h`h
∗
` ′

{
{ε ⊗ k`}(`+1) ⊗ r(`+1)

NI

}(0){
{ε∗s ⊗ k` ′s }(` ′+1) ⊗ r(` ′+1)

FN

}(0)∣∣∣2δE . (A.5)
A.2. Recoupling spherical tensors
Now using the recoupling identity (Ref. [12], Eq. 14), which is:

{P (a) ⊗Q(a)}(0){R (d) ⊗ S(d)}(0) = a+d∑
g=|a−d|(−1)g {P (a) ⊗ R (d)}(g) · {Q(a) ⊗ S(d)}(g)√(2a+ 1)(2d+ 1) , (A.6)

where the scalar product · of two spherical tensors P (g) and Q(g) is defined by: P (g) · Q(g) = ∑g
γ=−g(−1)γP (g)

γ Q(g)
−γ ,Equation (A.5) becomes:

σKH = C
∑
F

∣∣∣∑
N

∑
g,`,` ′

EIFN
(−1)gh`h∗` ′√(2` + 3)(2` ′ + 3){{ε∗s ⊗ k` ′s }(` ′+1) ⊗ {ε ⊗ k`}(`+1)}(g)

·
{

r(` ′+1)
FN ⊗ r(`+1)

NI

}(g)∣∣∣2δE ,
where g runs from |` − ` ′| to (` + ` ′ + 2), ` and ` ′ run from 0 to 1. This is Equation (5).
A.3. Expansion of the square in Equation (6)
Now the modulus of the amplitude inside the sum over the final states in Equation (6) is squared. When expanding thesquare, Equation (6) becomes:

σKH = C
∑
F

∑
g1,`1,` ′1 ,g2,`2,` ′2

h`1h∗` ′1h∗`2h` ′2
(−1)g1+`2+` ′2√(2`1 + 3)(2` ′1 + 3)(2`2 + 3)(2` ′2 + 3){

{ε∗s ⊗ k`
′1
s }(` ′1+1) ⊗ {ε ⊗ k`1}(`1+1)}(g1)

· A(g1)
FI (`1, ` ′1){

{εs ⊗ k`
′2
s }(` ′2+1) ⊗ {ε∗ ⊗ k`2}(`2+1)}(g2)

· A(g2)
FI (`2, ` ′2)∗δE , (A.7)

332



Amélie Juhin, Christian Brouder, Frank de Groot

where gi runs from |`i − ` ′i | to (`i + ` ′i + 2), with `i and ` ′i equal to 0 or 1. In Appendix B, it is shown that A(g2)
FI (`2, ` ′2)∗ =

A(g2)
IF (`2, ` ′2).Therefore,

σKH = C
∑
F

∑
g1 ,`1,` ′1,g2,`2,` ′2

h`1h∗` ′1h∗`2h` ′2
(−1)g1+`2+` ′2√(2`1 + 3)(2` ′1 + 3)(2`2 + 3)(2` ′2 + 3){

{ε∗s ⊗ k`
′1
s }(` ′1+1) ⊗ {ε ⊗ k`1}(`1+1)}(g1)

· A(g1)
FI (`1, ` ′1){

{εs ⊗ k`
′2
s }(` ′2+1) ⊗ {ε∗ ⊗ k`2}(`2+1)}(g2)

· A(g2)
IF (`2, ` ′2)δE .

If one defines
X (g1)1 = {{ε∗s ⊗ k`

′1
s }(` ′1+1) ⊗ {ε ⊗ k`1}(`1+1)}(g1)

, (A.8)
X (g2)2 = {{εs ⊗ k`

′2
s }(` ′2+1) ⊗ {ε∗ ⊗ k`2}(`2+1)}(g2)

, (A.9)
Π`1+1,`2+1,` ′1+1,` ′2+1 =√(2`1 + 3)(2` ′1 + 3)(2`2 + 3)(2` ′2 + 3), (A.10)

one obtains
σKH = C

∑
F

∑
g1 ,`1,` ′1,g2 ,`2,` ′2

(−1)g1+`2+` ′2h`1h∗` ′1h∗`2h` ′2Π`1+1,`2+1,` ′1+1,` ′2+1 X (g1)1 · A(g1)
FI (`1, ` ′1) X (g2)2 · A(g2)

IF (`2, ` ′2)δE . (A.11)
The identity P (a) ·Q(a) = (−1)a√2a+ 1 {P (a) ⊗Q(a)}(0) [43, pp. 64-65]) becomes:

X (g1)1 · A(g1)
FI (`1, ` ′1) = (−1)g1√2g1 + 1 {X (g1)1 ⊗ A(g1)

FI (`1, ` ′1)}(0),
X (g2)2 · A(g2)

IF (`2, ` ′2) = (−1)g2√2g2 + 1 {X (g2)2 ⊗ A(g2)
IF (`2, ` ′2)}(0),

and then:
σKH = C

∑
F

∑
g1,`1,` ′1 ,g2,`2,` ′2

(−1)`2+` ′2−g2h`1h∗` ′1h∗`2h` ′2Π`1+1,`2+1,` ′1+1,` ′2+1
√(2g1 + 1)(2g2 + 1){X (g1)1 ⊗ A(g1)

FI (`1, ` ′1)}(0) · {X (g2)2 ⊗ A(g2)
IF (`2, ` ′2)}(0)δE .

Using Equation (A.6):
{X (g1)1 ⊗ A(g1)

FI (`1, ` ′1)}(0){X (g2)2 ⊗ A(g2)
IF (`2, ` ′2)}(0) = g1+g2∑

a=|g1−g2 |
(−1)a√(2g1 + 1)(2g2 + 1){X (g1)1 ⊗ X (g2)2 }(a)

·{A(g1)
FI (`1, ` ′1)⊗ A(g2)

IF (`2, ` ′2)}(a). (A.12)
Then,
σKH = C

∑
F

∑
g1,`1,` ′1,g2 ,`2,` ′2

(−1)`2+` ′2−g2h`1h∗` ′1h∗`2h` ′2Π`1+1,`2+1,` ′1+1,` ′2+1
∑
a

(−1)a{X (g1)1 ⊗ X (g2)2 }(a){A(g1)
FI (`1, ` ′1)⊗ A(g2)

IF (`2, ` ′2)}(a)δE , (A.13)
with a running from |g1 − g2| to g1 + g2.
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In order to transform the tensor product:
{X (g1)1 ⊗ X (g2)2 }(a) = {{{ε∗s ⊗ k`

′1
s }(` ′1+1) ⊗ {ε ⊗ k`1}(`1+1)}(g1) ⊗ {{εs ⊗ k`

′2
s }(` ′2+1) ⊗ {ε∗ ⊗ k`2}(`2+1)}(g2)}(a)

,

one uses the following identity [43, p. 70]:
{
{P (a) ⊗Q(b)}(c) ⊗ {R (d) ⊗ S(e)}(f )}(k) =∑

g,h

Πc,f ,g,h


a b c
d e f
g h k


{
{P (a) ⊗ R (d)}(g) ⊗ {Q(b) ⊗ S(e)}(h)}(k)

,

where |a− d| ≤ g ≤ a+ d, |b− e| ≤ h ≤ b+ e and |g− h| ≤ k ≤ g+ h. This recoupling transforms the coupling ofthe incident photon with the scattered photons into a coupling of each photon with itself. The 9-j symbol that appearsin this formula was overlooked in ref. [31]. This yields:
{X (g1)1 ⊗ X (g2)2 }(a) =∑

b,c

Πg1,g2,b,c

` ′1 + 1 `1 + 1 g1
` ′2 + 1 `2 + 1 g2
b c a

 {X}(a),

with
{X}(a) = {{{ε∗s ⊗ k`

′1
s }(` ′1+1) ⊗ {εs ⊗ k`

′2
s }(` ′2+1)}(b) ⊗ {{ε ⊗ k`1}(`1+1) ⊗ {ε∗ ⊗ k`2}(`2+1)}(c)}(a)

.

According to the triangular conditions, the 9-j-symbol is zero if any of the following conditions is not satisfied
|` ′1 − ` ′2| ≤ b ≤ ` ′1 + ` ′2, |`1 − `2| ≤ c ≤ `1 + `2, |b− c| ≤ a ≤ b+ c .

A.4. Recoupling of {X}(a)
In {X}(a), the variables concerning the scattered beam (εs, ks) are gathered in the first tensor product, while thoseconcerning the incident beam are gathered in the second product. However, to treat the case of a partially polarizedincident or scattered beam, it is required to couple the polarization vectors with themselves: in {X}(a) = {

{Xout}(b) ⊗
{Xin}(c)}(a) the polarization vectors in {Xout}(b) and {Xin}(c) are recoupled. According to Eq. (A.14), one obtains:

{Xin}(c) = {
{ε ⊗ k`1}(`1+1) ⊗ {ε∗ ⊗ k`2}(`2+1)}(c) =∑

u,v
Π`1+1,`2+1,u,v


1 `1 `1 + 11 `2 `2 + 1
u v c

 In(c)
UL,

where In(c)
UL = {{ε ⊗ ε∗}(u) ⊗ {k`1 ⊗ k`2}(v )}(c) and
{Xout}(b) = {

{ε∗s ⊗ k`
′1
s }(` ′1+1) ⊗ {εs ⊗ k`

′2
s }(` ′2+1)}(b) =∑

u′,v ′
Π` ′1+1,` ′2+1,u′,v ′


1 ` ′1 ` ′1 + 11 ` ′2 ` ′2 + 1
u′ v ′ b

Out(b)UL,
where Out(b)UL = {{ε∗s⊗εs}(u′)⊗{k` ′1s ⊗k`

′2
s }(v ′)}(b). In these expressions the multi-indices U and L stand for U = (u, v, u′, v ′)and L = (`1, `2, ` ′1, ` ′2). A similar recoupling of the polarization vector with itself was also carried out by Veenendaal andBenoist [20].The 9-j-symbols vanish if any of the following triangular conditions is not fullfilled:

0 ≤ u ≤ 2, |`1 − `2| ≤ v ≤ `1 + `2, 0 ≤ u′ ≤ 2, |` ′1 − ` ′2| ≤ v ′ ≤ ` ′1 + ` ′2.
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B. Complex conjugate
It is required to calculate the complex conjugate of A(g)

FI (`, ` ′). The position operator x is Hermitian. Therefore
〈N|x|I〉 = 〈N|x† |I〉 = 〈I|x|N〉∗,

and 〈N|x|I〉∗ = 〈I|x|N〉. The same is true for y and z. For the corresponding spherical tensors,
〈N|r(1)1 |I〉∗ = −(1/√2)(〈N|x|I〉+ i〈N|y|I〉

)∗ = −(1/√2)(〈I|x|N〉 − i〈I|y|N〉) = −〈I|r(1)
−1|N〉∗.

An analogous calculation for the other components of r(1) gives 〈N|r(1)
λ |I〉∗ = (−1)λ〈I|r(1)

−λ|N〉. For ` = 2,
〈N|r(2)

µ |I〉∗ = ∑
λλ′

(1λ1λ′|2µ)〈N|r(1)
λ r

(1)
λ′ |I〉

∗ =∑
λλ′

(1λ1λ′|2µ)∑
K

〈N|r(1)
λ |K 〉∗〈K |r

(1)
λ′ |I〉

∗

= ∑
λλ′

(1λ1λ′|2µ)(−1)λ+λ′∑
K

〈K |r(1)
−λ|N〉〈I|r

(1)
−λ′ |K 〉.

The Clebsch-Gordan coefficient (1λ1λ′|2µ) implies that λ+ λ′ = µ. By replacing λ and λ′ by −λ′ and −λ, respectively,the following is obtained
〈N|r(2)

µ |I〉∗ = (−1)µ∑
λλ′

(1−λ′1−λ|2µ)∑
K

〈I|r(1)
λ |K 〉〈K |r

(1)
λ′ |N〉

= (−1)µ∑
λλ′

(1−λ′1−λ|2µ)〈I|r(1)
λ r

(1)
λ′ |N〉.

Now, the symmetry (`1m1`2m2|`3m3) = (`2 −m2`1 −m1|`3 −m3) is used to obtain
〈N|r(2)

µ |I〉∗ = (−1)µ∑
λλ′

(1λ1λ′|2− µ)〈I|r(1)
λ r

(1)
λ′ |N〉 = (−1)µ〈I|r(2)

−µ|N〉.

A recursive use of this argument leads to 〈N|r(`)
m |I〉∗ = (−1)m〈I|r(`)

−m|N〉 for any ` .A similar calculation can be carried out for
Xγ = {r(` ′)

FN ⊗ r(`)
NI}(g)

γ =∑
m′m

(` ′m′`m|gγ)〈F |r(` ′)
m′ |N〉〈N|r

(`)
m |I〉.

The complex conjugate of Xγ is
X ∗γ =∑

m′m

(` ′m′`m|gγ)〈F |r(` ′)
m′ |N〉

∗〈N|r(`)
m |I〉∗ =∑

m′m

(` ′m′`m|gγ)(−1)m+m′〈N|r(` ′)
−m′ |F 〉〈I|r

(`)
−m|N〉.

The same reasoning as for the complex conjugate of 〈N|r(2)
µ |I〉 gives

(
{r(` ′)
FN ⊗ r(`)

NI}(g)
γ

)∗ = (−1)γ{r(`)
IN ⊗ r(` ′)

NF}
(g)
−γ .

Finally,
A(g)
FI,γ (`, ` ′)∗ = (−1)γ∑

N

(EI − EN )(EN − EF )
EI − EN + h̄ω − iγ {r

(`+1)
IN ⊗ r(` ′+1)

NF }
(g)
−γ . (A.14)
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Therefore, defining
A(g)
IF (`, ` ′) = ∑

N

(EI − EN )(EN − EF )
EI − EN + h̄ω − iγ {r

(`+1)
IN ⊗ r(` ′+1)

NF }(g), (A.15)
the final result A(g)

FI,γ (`, ` ′)∗ = (−1)γA(g)
IF ,−γ (`, ` ′) follows.The relation 〈N|r(`)

λ |I〉 = (−1)λ〈I|r(`)
−λ|N〉∗ is standard and it just remains to calculate the complex conjugate of {{ε∗s ⊗

k` ′s }(` ′+1) ⊗ {ε ⊗ k`}(`+1)}(g)
γ

. The polarization vectors ε and εs are complex. For a complex vector z = a + ib, where
a = (ax , ay, az) and b = (bx , by, bz) are real, the complex conjugate of the spherical component z(1)

λ for λ = 1 is
(
z(1)1 )∗ = − 1√2(ax + ibx + i(ay + iby))∗ = − 1√2(ax − ibx − iay − by))= − 1√2(ax − ibx − i(ay − iby)) = −(z∗)(1)

−1.

The calculation of the other components gives (z(1)
λ
)∗ = (−)λ(z∗)(1)

−λ. Therefore, (ελ)∗ = (−1)λ(ε∗)−λ and ((ε∗s )λ)∗ =(−1)λ(εs)−λ. The vector k is real and (k(`)
m )∗ = (−1)mk(`)

−m. The same proof as for A(g)
FI (`, ` ′) leads to

(
{ε ⊗ k`}(`+1)

m

)∗ = (−1)m∑
λµ

(1−λ ` −µ|` + 1, m)ε∗λk (`)
µ .

Since 1λ and `µ are not interchanged, another symmetry relation must be used
(`1m1`2m2|`3m3) = (−1)`1+`2−`3 (`1−m1`2−m2|`3−m3), (A.16)

to obtain (
{ε ⊗ k`}(`+1)

m

)∗ = (−1)m∑
λµ

(1λ`µ|` + 1,−m)ε∗λk (`)
µ = (−1)m{ε∗ ⊗ k`}(`+1)

−m .

Here, the symmetry relation does not bring any additional sign because `3 = `1 + `2. Similarly, ({ε∗s ⊗ k` ′s }
(` ′+1)
m′

)∗ =(−1)m′{εs ⊗ k` ′s }
(` ′+1)
−m′ .

In the calculation of the complex conjugate of {{ε∗s ⊗ k` ′s }(` ′+1) ⊗ {ε ⊗ k`}(`+1)}(g)
γ

, the sign (−1)`+` ′−g must be retainedto obtain
({
{ε∗s ⊗ k` ′s }(` ′+1) ⊗ {ε ⊗ k`}(`+1)}(g)

γ

)∗ = (−1)γ (−1)`+` ′−g{{εs ⊗ k` ′s }(` ′+1) ⊗ {ε∗ ⊗ k`}(`+1)}(g)
−γ
.

Finally, the complex conjugate of X = {{ε∗s ⊗ k` ′s }(` ′+1) ⊗ {ε ⊗ k`}(`+1)}(g)
· A(g)

FI (`, ` ′) is
X ∗ = (−1)`+` ′−g{{εs ⊗ k` ′s }(` ′+1) ⊗ {ε∗ ⊗ k`}(`+1)}(g)

· A(g)
IF (`, ` ′).
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C. Average over polarizations
One of the most powerful features of the geometric expres-sions is that they can be calculated in a specific coordi-nate system adapted to a particular problem, and then bevalid in any system. This is illustrated by describing theaverage of the coupling of ε and ε∗:

〈{ε ⊗ ε∗}(0)〉 = − 1√3 ,
〈{ε ⊗ ε∗}(1)〉 = 0,
〈{ε ⊗ ε∗}(2)〉 = −k(2)

√6 = −√2π15 Y2(k).
Taking a reference frame where k is along Oz, the lin-ear polarization vector is ε = (cosψ, sinψ, 0) and thecorresponding spherical tensor components are ε(1)

±1 =
∓e±iψ/√2, ε(1)0 = 0. Therefore, it is easy to calculate

{ε ⊗ ε∗}(2)
±2 = e±2iψ2 ,

{ε ⊗ ε∗}(2)
±1 = 0,

{ε ⊗ ε∗}(2)0 = − 1√6 .
The average over two perpendicular polarizations (ψ and
ψ + π/2) or the average over all ψ gives

〈{ε ⊗ ε∗}(2)
±2〉 = 0,

〈{ε ⊗ ε∗}(2)
±1〉 = 0,

〈{ε ⊗ ε∗}(2)0 〉 = − 1√6 .
In that reference frame k(2)

m = δm,0√2/3. Thus, 〈{ε ⊗
ε∗}(2)〉 = −k(2)/2 and this relation is true in any refer-ence frame because it is a relation between two tensors.Considering elliptically-polarized x-rays, the most generalpolarization vector in a frame where k is along Oz is

ε =
 cosχ cosψ + i sinχ sinψcosχ sinψ − i sinχ cosψ0

 ,

for which the degree of circular polarization is sin 2χ . Inparticular, χ = π/4 for a fully circularly polarized x-ray.Then,
{ε ⊗ ε∗}(1)

±1 = 0,
{ε ⊗ ε∗}(1)0 = − 1√2 sin 2χ,

and
{ε ⊗ ε∗}(2)

±2 = 12 cos 2χe±2iψ ,
{ε ⊗ ε∗}(2)

±1 = 0,
{ε ⊗ ε∗}(2)0 = − 1√6 .

Therefore, by using left and right fully circularly polarizedbeams, the same average as with linear polarization isobtained.Similarly, it can be shown that 〈|a ·ε|2〉 = (|a|2−|a ·k|2)/2.
D. Values of 9-j -factors and geomet-
ric coefficients for particular cases of
Equation (6)

D.1. Electric dipole excitation, electric dipole
emission

• The first 9-j-symbol is:
1 `1 `1 + 11 `2 `2 + 1
u v c

 =


1 0 11 0 1
c 0 c

 = 13√2c+1 .
• The second 9-j-symbol is:

1 ` ′1 ` ′1 + 11 ` ′2 ` ′2 + 1
u′ v ′ c′

 =


1 0 11 0 1
b 0 b

 = 13√2b+1 .
Thus:
σE1E1KH = ∑

g1 ,g2
∑
a,b,c

(−1)a−g2Πg1,g2 ,b,c


1 1 g11 1 g2
b c a

 γbcaUL0 · Sg1g2a
L0 ,

(A.17)
where L0 = (0, 0, 0, 0) because `1 = `2 = ` ′1 = ` ′2 =0 for electric dipole emission and absorption and U =(b, 0, c, 0). Additionnally, recall that γbcaUL0 = {Out(b)UL ⊗In(c)
UL0}(a), where Out(b)UL = {ε∗s ⊗ εs}(b) and In(c)

UL0 = {ε ⊗
ε∗}(c). Further simplifications arise when the sample is apowder (i.e. a = 0).It can be shown that:


1 1 g11 1 g2
b c 0

 = δg1g2δbc(−1)g1+b√(2g1 + 1)(2b+ 1)
{1 1 g11 1 b

}
.
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• For b = 0: {1 1 g1 1 0
} = (−1)g3 ,

with g = 0, 1, 2, and γ000
UL0 = 13 .Thus,

σE1E1KH (b = 0) = 2∑
g=0(−1)g√2g+ 19 Sgg0

L0 .

• For b = 1:{1 1 11 1 1
} = {1 1 21 1 1

} = 16 ,
{1 1 01 1 1

} = −13 .

{ε ⊗ ε∗}(1) = i√2ε × ε∗ = − Pc√2k,

where Pc is the rate of circular polarization.
γ110
UL0 = 12√3PcPc,sks · k = 12√3 (|ε · ε∗s |2 − |ε · εs|2).

Thus,
σE1E1KH (b = 1)
= 2∑

g=0 −
√2g+ 12

{1 1 g1 1 1
} (|ε · ε∗s |2 − |ε · εs|2)Sgg0

L0 .

• For b = 2:{1 1 g1 1 2
} = 4(2− g)!(3 + g)! ,

with g = 0, 1, 2.
γ220
UL0 = 1√5(12 |ε∗ · εs|2 + 12 |ε · εs|2 − 13).

Thus,
σE1E1KH (b = 2)
= 2∑

g=0
4√2g+ 1(2− g)!(3 + g)!

(12 |ε∗ · εs|2 + 12 |ε · εs|2 − 13
)
Sgg0
L0 .

This leads to Equation (15).If the polarization of the scattered beam is not detected,then the term b = 2 is calculated using the relation: 〈{εs⊗
ε∗s}(2)〉 = −k(2)

s /2 and Eq. (17) is obtained because
〈
γ220
UL0
〉 = − 12√5

(
|ks · ε|2 − 13

)
. (A.18)

D.2. Electric quadrupole excitation, electric
dipole emission
In the case of electric quadrupole transitions in the ab-sorption followed by electric dipole transitions in theemission, `1 = 1, `2 = 1, ` ′1 = 0 and ` ′2 = 0. Thus,

1 ≤ g1 ≤ 3, 1 ≤ g2 ≤ 3, 0 ≤ a ≤ 6,0 ≤ b ≤ 2, 0 ≤ c ≤ 4.
Since `1 = 1 and `2 = 1, 0 ≤ v ≤ 2. Additionally, v 6= 1since {k1 ⊗ k1}(1) = i√2 k × k = 0. Thus, v = 0 or 2.Since ` ′1 = 0 and ` ′2 = 0, v ′ = 0 and b = u′.
Therefore:

• The first 9-j-symbol is:
1 `1 `1 + 11 `2 `2 + 1
u v c

 =


1 1 21 1 2
u v c

.
It is zero if u+ v + c is odd.

• The second 9-j-symbol is:
1 ` ′1 ` ′1 + 11 ` ′2 ` ′2 + 1
u′ v ′ b

 =


1 0 11 0 1
b 0 b

 = 13√2b+1 .
• The third 9-j-symbol is:

` ′1 + 1 `1 + 1 g1
` ′2 + 1 `2 + 1 g2
b c a

 =


1 2 g11 2 g2
b c a

.
D.3. Electric quadrupole excitation, electric
dipole emission, powder sample
Isotropy implies that a = 0, g1 = g2 and b = c = u′.
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σE2E1KH = C
∑
F

∑
g

∑
b,u,v

(−1)1−gh1h∗0h∗1h0Πg,g,b,b,u,v,b

1 1 21 1 2
u v b


1 0 11 0 1
b 0 b


1 2 g1 2 g
b b 0

 γbb0UL1Sgg0
L1 ,

with L1 = (1, 1, 0, 0) and U = (u, v, u′, v ′) = (u, v, b, 0).The angular term is
γbb0UL1 = {{

{ε ⊗ ε∗}(u) ⊗ {k ⊗ k}(v )}(b) ⊗ {ε∗s ⊗ εs}(b)}(0)
.

More precisely,
• b = 0, u = 0, v = 0: γbb0UL1 = − 13√3 .
• b = 0, u = 2, v = 2: γbb0UL1 = 13√15 .• b = 1, u = 1, v = 0: γbb0UL1 = − 16PcPc,sk · ks.• b = 1, u = 1, v = 2: γbb0UL1 = − 13√5PcPc,sk · ks.• b = 2, u = 2, v = 0: γbb0UL1 = − 1√15( 12 |ε∗ · εs|2 + 12 |ε ·
εs|2 − 13).• b = 2, u = 0, v = 2: γbb0UL1 = − 1√15(|k · εs|2 − 13).• b = 2, u = 2, v = 2: γbb0UL1 = 13√105 (6|k · εs|2 − 4 +3|ε · ε∗s |2 + 3|ε · εs|2).This leads to Equation (19). Note that the term b =2, u = 2, v = 2 is obtained by using classical invarianttheory [44, 45]:If the polarization of the scattered beam is not detected,then 〈γ110
UL1
〉 = 0 and the polarization average yields:

〈{{
{ε ⊗ ε∗}(2) ⊗ {k ⊗ k}(2)}(2) ⊗ {ε∗s ⊗ εs}(2)}(0)〉

= 2− 3|k · ks|2 − 3|ε · ks|23√105 .

〈{{
{ε ⊗ ε∗}(0) ⊗ {k ⊗ k}(2)}(2) ⊗ {ε∗s ⊗ εs}(2)}(0)〉

= − 12√15 (13 − |k · ks|2).
〈{{
{ε ⊗ ε∗}(2) ⊗ {k ⊗ k}(0)}(2) ⊗ {ε∗s ⊗ εs}(2)}(0)〉

= − 12√15 (13 − |ε · ks|2).
This leads to Equation (20).
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