
Compositional Verification of Asynchronously
Communicating Systems

Jan Martijn E.M. van der Werf(B)

Department of Information and Computing Science, Utrecht University,
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

j.m.e.m.vanderwerf@uu.nl

Abstract. Within a network of asynchronously communicating systems,
the complete network is often not known, or even available at run-time.
Consequently, verifying whether the network of communicating systems
behaves correctly, i.e., the network does not contain any deadlock or live-
lock, is impracticable. As such systems are highly concurrent by nature,
Petri nets form a natural choice to model these systems and their commu-
nication.

This paper presents a formal framework based on a generic communi-
cation condition to verify correctness of the system by pairwise checking
whether these systems communicate correctly and fulfill some condition,
then the whole network is guaranteed to behave correctly. As an example,
this paper presents the elastic communication condition.

1 Introduction

Dividing the functionality of a system into subsystems such that each subsystem
implements its own specific functionality is not new. Already in the sixties of the
last century, McIlroy [17] suggested to use components to design and implement
software systems. A component implements a specific part of the specification,
masking its internal design [22].

A component offers some functionality, and, in order to deliver this, it uses
functionality of other components. This way, a component has two roles: it is a
provider and a consumer. From a business oriented view, a component sells func-
tionality, and to meet its commitments, it buys functionality of other components
[4,12].

With the advent of paradigms like Service Oriented Architectures [3,18], sys-
tems become more and more distributed. Some of the components of the system
may be offered by third parties. As these third parties do not expose which com-
ponents their systems use, the individual systems form a, possibly unknown,
large scale ecosystem: a dynamic network of communicating components. These
systems communicate via messages: a component requests functionality from
another component, which in turn eventually sends its answer. Hence, com-
munication between the components is asynchronous by nature. Verification of
asynchronously communicating systems is known to be a hard problem.

The nature of this class of communicating systems is asymmetric. A provider
commits itself to deliver some functionality. It does not matter what other
c© Springer International Publishing Switzerland 2015
I. Lanese and E. Madelaine (Eds.): FACS 2014, LNCS 8997, pp. 49–67, 2015.
DOI: 10.1007/978-3-319-15317-9 4

50 J.M.E.M. van der Werf

A G

C
H

D
J

BG

H

J

Fig. 1. Example of a component tree of four components A, B, C and D.

Fig. 2. Four components A, B, C1 and C2, such that A ⊕G B ⊕H C1 is sound, but
A ⊕G B ⊕H C2 is not.

components that provider needs, as long as it keeps delivering the requested
functionality. Therefore, the connections between components have a direction:
they are initiated by some client, and accepted by a provider. Consider the com-
ponent architecture depicted in Fig. 1. There are four components, A, B and C,
which are connected via ports G, H and J . The ©� operator indicates the direc-
tion of the communication. In this example, component B delivers a service to
component A over port G, and to do so, it uses the functionality of its children C
and D.

At run-time, components use other components to deliver their functional-
ity. In this way, the components form a component tree. The dynamic binding
of components causes the component tree to be unknown at design time. This
makes verification of behavioral correctness very hard. Thus, if we want to ensure
behavioral correctness, we need a verification method that only considers pair-
wise compositions of components: if each component is sound, and all pairwise
connected components satisfy some condition, the whole tree should be sound.

Current compositional verification techniques start with the verification of
a pair of components, compose these into a larger component, and then use

Compositional Verification of Asynchronously Communicating Systems 51

this larger composition for the next pairwise composition. However, this way
of verification does not take the dynamic nature of service oriented approaches
into account: if one of the components changes, the whole network needs to be
checked again. Consider for example the components A, B, C1 and C2 depicted
in Fig. 2. In this example, the composition of A, B and C1 is sound. However,
if B decides to use C2 instead of C1, the communication with A is hampered.
Current compositional verification techniques have to re-verify the whole network
for soundness again.

In [16], the authors prove that in general verification of such a dynamic,
distributed setting is undecidable. Current research results (cf. [15,20,25,26])
are based on a message bound.

In this paper, we present a framework based on communication conditions to
verify a subclass of asynchronously communicating systems compositionally [24].
The formal foundation of the framework is Petri nets, in which communication is
asynchronous by nature. Petri nets can be used both for modeling the internal
activities of a component, as well as for the interaction between components.
We focus on soundness of systems: a system should always have a possibility to
terminate.

This paper is structured as follows. Section 2 presents the basic notions
used throughout the paper. Next, Sect. 3 introduces the notion of components
and their composition. In Sect. 4, we present a general framework to verify cor-
rectness of component trees compositionally. Next, Sect. 5 shows a subclass of
communicating systems based on this general framework. Section 6 concludes
the paper.

2 Preliminaries

Let S be a set. The powerset of S is denoted by P(S) = {S′ | S′ ⊆ S}. We use
|S| for the number of elements in S. Two sets U and V are disjoint if U ∩V = ∅.
A bag m over S is a function m : S → IN , where IN = {0, 1, 2, . . .} denotes the
natural numbers. We denote e.g. the bag m with an element a occurring once,
b occurring three times and c occurring twice by m = [a, b3, c2]. The set of all
bags over S is denoted by INS . Sets can be seen as a special kind of bag were
all elements occur only once. We use + and − for the sum and difference of two
bags, and =, <, >, ≤, ≥ for the comparison of two bags, which are defined in a
standard way. The projection of a bag m ∈ INS on elements of a set U ⊆ S, is
denoted by m|U , and is defined by m|U (u) = m(u) for all u ∈ U and m|U (u) = 0
for all u ∈ S \ U . Furthermore, if for some n ∈ IN , disjoint sets Ui ⊆ S with
1 ≤ i ≤ n exist such that S =

⋃n
i=1 Ui, then m =

∑n
i=1 m|Ui

.
A sequence over S of length n ∈ IN is a function σ : {1, . . . , n} → S. If

n > 0 and σ(i) = ai for i ∈ {1, . . . , n}, we write σ = 〈a1, . . . , an〉. The length
of a sequence is denoted by |σ|. The sequence of length 0 is called the empty
sequence, and is denoted by ε. The set of all finite sequences over S is denoted
by S∗. We write a ∈ σ if a 1 ≤ i ≤ |σ| exists such that σ(i) = a. Concatenation
of two sequences ν, γ ∈ S∗, denoted by σ = ν; γ, is a sequence defined by

52 J.M.E.M. van der Werf

σ : {1, . . . , |ν| + |γ|} → S, such that σ(i) = ν(i) for 1 ≤ i ≤ |ν|, and σ(i) =
γ(i − |ν|) for |ν| + 1 ≤ i ≤ |ν| + |γ|.

A projection of a sequence σ ∈ S∗ on elements of a set U ⊆ S (i.e. eliminating
the elements from S \ U) is denoted as σ|U . The bag denoted the elements of
a sequence σ and their occurrences is called the Parikh vector and is denoted
by −→σ .

Labeled transition systems. To model the behavior of a system, we use a
labeled transition system. A labeled transition system (LTS) is a 5-tuple (S,A,→,
s0, Ω) where S is a set of states; A is a set of actions; →⊆ (S × (A ∪ {τ}) × S)
is a transition relation, where τ ∈ A is the silent action. (S,→, ∅) is a labeled
directed graph, called the reachability graph; s0 ∈ S is the initial state; and
Ω ⊆ S is the set of accepting states.

Let L = (S,A,→, si, Ω) be an LTS. For s, s′ ∈ S and a ∈ A ∪ {τ}, we write
(L : s

a−→ s′) if and only if (s, a, s′) ∈→. An action a ∈ A∪{τ} is called enabled
in a state s ∈ S, denoted by (L : s

a−→) if a state s′ exists such that (L : s
a−→ s′).

If (L : s
a−→ s′), we say that state s′ is reachable from s by an action labeled

a. A state s ∈ S is called a deadlock if no action a ∈ A ∪ {τ} exists such that
(L : s

a−→). We define =⇒ as the smallest relation such that (L : s =⇒ s′) if
s = s′ or ∃s′′ ∈ S : (L : s =⇒ s′′ τ−→ s′). As a notational convention, we may
write τ=⇒ for =⇒. For a ∈ A, we define a=⇒ as the smallest relation such that
(L : s

a=⇒ s′) if ∃s1, s2 ∈ S : (L : s =⇒ s1
a−→ s2 =⇒ s′).

We lift the notation of actions to sequences. For the empty sequence ε, we
have (L : s

ε−→ s′) if and only if (L : s =⇒ s′). Let σ ∈ A∗ be a sequence
of length n > 0, and let s0, sn ∈ S. Sequence σ is a firing sequence, denoted

by (L : s0
σ−→ sn), if states si−1, si ∈ S exist such that (L : si−1

σ(i)
=⇒ si)

for all 1 ≤ i ≤ n. We write (L : s
∗−→ s′) if a sequence σ ∈ A∗ exists such

that (L : s
σ−→ s′), and say that s′ is reachable from s. The set of reachable

states from some state s ∈ S is defined as R(L, s) = {s′ | (L : s
∗−→ s′)}.

We lift the notation of reachable states to sets by R(L,M) =
⋃

s∈M R(L, s) for
M ⊆ S. A set of states M ⊆ S is called a livelock if M ⊆ R(L,M). An LTS
L = (S,A,→, s0, Ω) is called weakly terminating if Ω ⊆ R(L, s0).

Petri nets. A Petri net [19] is a 3-tuple N = (P, T, F) where (1) P and T are two
disjoint sets of places and transitions respectively; (2) F ⊆ (P × T) ∪ (T × P)
is a flow relation. The elements from the set P ∪ T are called the nodes of
N . Elements of F are called arcs. Places are depicted as circles, transitions
as squares. For each element (n1, n2) ∈ F , an arc is drawn from n1 to n2.
Two Petri nets N = (P, T, F) and N ′ = (P ′, T ′, F ′) are disjoint if and only
if (P ∪ T) ∩ (P ′ ∪ T ′) = ∅. Let N = (P, T, F) be a Petri net. Given a node
n ∈ (P ∪ T), we define its preset •

N n = {n′ | (n′, n) ∈ F}, and its postset
n•

N = {n′ | (n, n′) ∈ F}. We lift the notation of preset and postset to sets. Given
a set U ⊆ (P ∪T), •

N U =
⋃

n∈U
•

N n and U•
N =

⋃
n∈U n•

N . If the context is clear,
we omit the N in the superscript.

A marking of N is a bag m ∈ INP , where m(p) denotes the number of tokens
in place p ∈ P . If m(p) > 0, place p is called marked in marking m. A Petri net

Compositional Verification of Asynchronously Communicating Systems 53

G J

H

iN=fN

a

b

c

d

e

g

h

n

o

t

iM=fM

G

a

b

c

d

e

N

M

Fig. 3. Two components N and M with three ports G, H and J , where components
N and M share port G.

N with corresponding marking m is written as (N,m) and is called a marked
Petri net.

A system is a 3-tuple S = (N,m0, Ω) where (N,m0) is a marked Petri
net with N = (P, T, F) and Ω ⊆ INP is the set of final markings. Its seman-
tics is defined by an LTS N (S) = (INP , T,→,m0, Ω) such that (m, t,m′) ∈→
iff •t ≤ m and m′ + •t = m + t• for m,m′ ∈ INP and t ∈ T . We write
(N : m

t−→ m′), R(N,m0), L(N,m0), and T (N,m0) as a shorthand notation
for (N (N,m0) : m

t−→ m′), R(N (N,m0)), L(N (N,m0)), and T (N (N,m0)),
respectively. A marking m ∈ R(N,m0) is a home marking if m ∈ R(N,m′) for
all m′ ∈ R(N,m0).

3 Asynchronously Communicating Systems

In a network of asynchronously communicating systems, systems communicate
via message passing. We call these systems components of the network. Two
components are connected via some interface that defines which messages are
exchanged between the systems. As communication is asynchronous, Petri nets
[19] form a natural choice to model the communication between these compo-
nents. We model the different messages that can be sent and received via special
places, called interface places. A component either receives messages from an
interface place, which is then called an input place, or it sends messages to an
interface place, which we then call an output place.

As components communicate with multiple components, we partition the
interface places of a system into ports. A transition can send or receive messages
via a port. For this, we introduce the notion of a transition sign. A transition
sends messages to a port (sign !), receives messages from a port (sign ?) or does
not communicate at all with a port (sign τ).

54 J.M.E.M. van der Werf

The marking of a component represents the internal state of the component,
together with messages it has sent and received. As initially no messages have
been sent or received, the initial marking of a component has no messages in
its interface places. Similarly, in the desired final marking of a component, all
messages have been processed, i.e., all interface places should be empty. Often,
the desired final marking of a component represents an idle state, from which
the component can respond on new messages again. In terms of Petri nets, the
final marking is often a home marking.

Figure 3 depicts two components N and M . Component M has a single port
G with three input places a, c and d, and two output ports b and e. Component
N has three ports, G, H and J . The internal structure of a component, i.e., the
component without the interface places, is called the skeleton.

Definition 1 (Component, skeleton, sign). A Component is defined as an
8-tuple (P, I,O, T, F,G, i, f) where ((P ∪ I ∪ O), T, F) is a Petri net; P is a set
of internal places; I is the set of input places, O is the set of output places
such that P , I and O are pairwise disjoint and •I = O• = ∅; G ⊆ P(I ∪ O) is a
partitioning of the interface places, an element of G is called a port; a transition
either sends or receives messages, i.e., •G ∩ G• = ∅ for all G ∈ G. i ∈ INP is
the initial marking, and f ∈ INP is the final marking.

Two components N and M are called disjoint if (PN ∪IN ∪ON ∪TN)∩(PM ∪
IM ∪ OM ∪ TM) = ∅. A component N is called closed if IN = ON = ∅. The set
of all components is denoted by N. As a shorthand notation, we write R(N,m)
for R((PN ∪ IN ∪ ON , TN , FN),m) for m ∈ INPN∪IN∪ON .

The skeleton of N is defined as the Petri net S(N) = (PN , TN , F) with
F = FN ∩ ((PN ×TN)∪ (TN ×PN)). The skeleton system of N is defined as the
system S(N) = (S(N), iN , {fN}).

The sign of a transition with respect to a port G ∈ G is a function λG : T →
{!, ?, τ} defined by λG(t) =! if t• ∩ G = ∅, λG(t) =? if •t ∩ G = ∅, and λG(t) = τ
otherwise, for all t ∈ T .

It is desired that from every reachable marking of a component, the compo-
nent should be able to reach its desired final marking. This property is expressed
in the notion of weak termination. Another basic sanity check for components
is to check whether it internally behaves correctly, i.e., ignoring the interface
places, the component should be able to always reach its final marking. As this
property is closely related to soundness of workflow nets [1], We call this property
soundness.

Definition 2 (Weak termination and soundness). Let N be a component.
It is weakly terminating, if for each marking m ∈ R(N, iN), we have fN ∈
R(N,m). It is sound, if the system defined by its skeleton is weakly terminating.

Notice that this definition does not require the final marking of a component
to be a deadlock. Instead, the final marking can be seen as a home marking, in
which the component is in rest.

Compositional Verification of Asynchronously Communicating Systems 55

Components communicate via their ports. To be able to compose two com-
ponents so that they are able to communicate, the components should have
inverted ports: input places of the one should be output places of the other, and
vice versa.

Definition 3 (Composition of components). Two components A and B are
composable with respect to port G ∈ GA ∩ GB, denoted by A ⊕G B, if and only if
(PA ∪ IA ∪ OA ∪ TA) ∩ (PB ∪ IB ∪ OB ∪ TB) = (IA ∩ OB) ∪ (OA ∩ IB) = G.

If A and B are composable with respect to port G, their composition results
in a component A ⊕G B = (P, I,O, T, F,G, i, f) where P = PA ∪ PB ∪ H; I =
(IA∪IB)\H; O = (OA∪OB)\H; T = TA∪TB; F = FA∪FB; G = (GA∪GB)\H;
i = iA + iB; and f = fA + fB. If a port G ∈ GA ∩ GB exists such that A ⊕G B,
we write A ⊕ B.

Consider again the components N and M of Fig. 3. Both components share
port G, where the input places a, c and d of M are output places of N , and
the output places b and d are input places of N . Their composition results in a
component N ⊕ M , where the places a, b, c, d and e become internal places of
the composition.

The composition operator is commutative and associative, provided that the
components are composable.

Corollary 4 (Composition is commutative and associative). Let A, B
and C be three components, such that A ∩ C = ∅, and let G ∈ GA ∩ GB and
H ∈ GB ∩ GC . If A and B are composable w.r.t some port G ∈ GA ∩ GB, then
A⊕G B = B ⊕G A; Also, (A⊕G B)⊕H C exists iff A⊕G (B ⊕H C) exists. If the
compositions exist, they are identical.

In the remainder of this section, we discuss some properties of the composi-
tion operator. Composition only restricts behavior, i.e., the composition of two
components A and B does not introduce any new behavior. In [24], it is shown
that the projection of a composition to either one of its constituents is a simula-
tion relation [10]. As a consequence, a firing sequence in the composition of two
components is a firing sequence of its constituents, after hiding the transitions
of the other component, and any reachable marking in the composition results
in a reachable marking of that constituent.

Corollary 5. Let A and B be two composable components with respect to some
port G ∈ GA ∩ GB. Define N = A ⊕G B. Let m,m′ ∈ R(S(N)) and σ ∈ T ∗

N

such that (S(N) : m
σ−→ m′). Then m|PA

∈ R(S(A)) and m|PB
∈ R(S(B)),

(S(A) : m|PA

σ|TA−→ m′|PA
), and (S(B) : m|PB

σ|TB−→ m′|PB
).

4 A General Verification Framework

In this section we present a formal framework for compositional verification of
soundness on component trees. Proving the soundness of a component tree is

56 J.M.E.M. van der Werf

A B

G

t1

t2

t4

t3

u1

u2

u3 u4

u5

u6

iA iB

fA fB

a

b

c

d

p1 p2

q1

q2

q3

t1

t2

t4

t3

u1

u2

u5

u6

iA

fA

a

b

c

d

p1 p2

Fig. 4. Composition A ⊕G B and its subnet N1 = CB(A)

done in two steps. First of all, each component should be sound itself. Next,
each connection is checked against some communication condition, from which
soundness of the composition, and of the whole tree can be concluded. Such a
condition should satisfy some criteria. A component may not notice the difference
whether it is communicating with a single component or with a component tree.
We therefore search for a sequence relation ϕ : T ∗

N × T ∗
N → IB, which is a

predicate on the firing sequences of component N , such that this property is
guaranteed.

As shown in [4], soundness is not a sufficient condition. Consider for example
the composition in Fig. 2. In this example, it is easy to verify that both composi-
tions A⊕GB and B⊕H C2 are sound. However, in the composition A⊕GB⊕H C2,
transition t is only enabled once it received a message from component A, which
in turn requires a message from component C2. Consequently, the composition
of the tree is not sound.

As soundness is not a sufficient condition, we need to strengthen the sound-
ness property by stating that for all reachable markings in the composition of
B and C and firing sequence σ in B, a firing sequence σ̃ should exist in the
composition such that σ and σ̃ satisfy the predicate ϕ.

Definition 6 (Communication condition). Let B and C be two components
such that B ⊕H C for some H ∈ GB ∩ GC . Define N = B ⊕H C and let ϕ :
T ∗

B ×T ∗
N → IB be a sequence relation. The communication condition comϕ(B,C)

holds if and only if:

∀m ∈ R(S(N), iN), σ ∈ T ∗
B :

(S(B) : m|PB

σ−→ fB) =⇒ (∃σ̃ ∈ T ∗
N : (S(N) : m

σ̃−→ fN) ∧ ϕ(σ, σ̃))

In fact, the communication condition states that B ⊕ C is able to follow B. For
any ϕ, this condition implies soundness, which directly follows from Corollary 5.

Lemma 7 (ϕ-communication condition implies soundness). Let B and
C be two components that are composable with respect to port G ∈ GB \ GC . Let
ϕ be a sequence relation. If B is sound and comϕ(B,C) holds for some sequence
relation ϕ, then B ⊕H C is sound.

Compositional Verification of Asynchronously Communicating Systems 57

Condition comϕ is sufficient for deciding the soundness of two components.
Let A, B and C be three components such that A communicates with B, B
communicates with C, but A and C do not communicate, i.e., A and C are
disjoint. We prove that if the composition A ⊕ B is sound, and components B
and C satisfy comϕ(B,C), then the composition of A, B and C is sound. In
order to provide a sufficient condition for concluding soundness of a tree of three
components, such a sequence relation needs to satisfy several criteria. These
criteria follow directly from the proof.

To prove soundness of the component tree, we need to show that given a
reachable marking of the component tree, the final marking should be reachable.
As the composition of A and B is sound, we have a firing sequence in A ⊕ B
from this marking leading to the final marking of A⊕ B. Condition comϕ(B,C)
should guarantee that this firing sequence projected on B is still possible in the
component tree. The condition ensures the existence of a firing sequence in B⊕C
such that it satisfies the sequence relation ϕ.

Hence, we have a firing sequence in A ⊕ B and a firing sequence in B ⊕ C
satisfying the sequence relation ϕ. We should be able to interweave these firing
sequences, so that the resulting sequence is a firing sequence in the component
tree. Therefore, we divide the composition of A⊕B into two subnets, N1 and N2.
The first subnet, N1, covers component A and the transitions of B that commu-
nicate with A. Figure 4 depicts the division of the composition A ⊕ B into N1.
Net N2 is the skeleton of component B. Note that the union of nets N1 and N2

is the skeleton of the composition. The transitions of B that communicate with
A are common for the two subnets, the places of N1 and N2 are disjoint.

Definition 8. Let A and B be two components such that A and B are compos-
able with respect to some port G ∈ GA ∩ GB. Define N = A ⊕G B. The Petri net
CB(A) is defined as CB(A) = (P, T, F) where P = PA ∪ G, T = TA ∪ •

N G ∪ G•
N

and F = FN ∩ ((P × T) ∪ (T × P)).

Every firing sequence in A⊕ B can be turned into a firing sequence of CB(A)
by leaving out all transitions of TB , except the transitions of B that communicate
with A. The proof follows directly from Corollary 5.

Corollary 9. Let A and B be two OPNs that are composable with respect to
some port G ∈ GA ∩GB. Define N = A⊕B and L = CB(A). Then for all σ ∈ T ∗

N

and m,m′ ∈ INPN such that (S(N) : m
σ−→ m′) holds (L : m|PL

σ|TL−→ m′|PL
).

In the soundness proof, the firing sequence in A ⊕ B is projected on CB(A),
and it will be interweaved with the resulting firing sequence of the communica-
tion condition. The interweaving property will guarantee that this interweaving
is possible.

Property 10 (Interweaving firing sequences). Let A and B be two components
that are composable with respect to some port G ∈ GA∩GB . Let ϕ be a sequence
relation as defined in Definition 6. Let N1 = CB(A) and N2 = S(B). Let μ ∈ T ∗

N1

and m,m′ ∈ INPN1 such that (N1 : m
μ−→ m′). Let ν ∈ T ∗

N2
and m,m′ ∈ INPN2

58 J.M.E.M. van der Werf

N1 N2

CBA R

Fig. 5. The composition A ⊕ B ⊕ C is split into N1 = CB(A) and N2 = S(B ⊕ C)

such that (N2 : m
ν−→ m′) and ϕ(μ, ν). Then a σ ∈ T ∗

N exists such that (S(N) :
m + m

σ−→ m′ + m′), ϕ(μ, σ) and ϕ(ν, σ).

The interweaving property expresses that two sequences can be combined
into a single firing sequence that is executable and satisfies the sequence rela-
tion. Also, the sequence relation should hold for a firing sequence, and its firing
sequence in which all transitions are hidden except for the transitions that com-
municate. Rephrased, the sequence relation ϕ should not consider all transitions
in B, but only the transitions of B that communicate with A. This is expressed
in the next property.

Property 11. Let B and C be two components that are composable, and let
G ∈ GB \ GC . Define N = B ⊕ C and R = •

N G ∪ G•
N . Let ϕ be a sequence

relation as defined in Definition 6. Let σ ∈ T ∗
B and σ̃ ∈ T ∗

N . If ϕ(σ, σ̃), then
ϕ(σ|R, σ̃) and ϕ(σ, σ̃|R).

This leads to the main theorem, that the communication condition comϕ is
a sufficient condition for soundness. Note that to prove the main theorem for
a specific sequence relation, we need to show that both properties hold for the
sequence relation.

Theorem 12 (Communication condition sufficient for soundness). Let
A, B and C be three components such that A and B are composable with respect
to port G ∈ GA ∩GB, B and C are composable, A and C are disjoint and A⊕G B
is sound. Let ϕ be a sequence relation as defined in Definition 6.

If comϕ(B,C) holds, then A ⊕G B ⊕H C is sound.

Proof. Define N = A ⊕G B ⊕H C, M = A ⊕G B, N2 = S(B ⊕H C) and N1 =
CB(A). Let m ∈ R(S(N)). Since M is sound, a σ ∈ T ∗

M exists such that (S(M) :
m|PM

σ−→ fM). By Corollary 5, the firing sequence σ|TB
is also a firing sequence

in S(B), i.e. (S(B) : m|PB

σ|TB−→ fB). By Corollary 5, m|PN2
∈ R(N2, iM). Hence,

we can apply the communication condition comϕ(B,C) on m|PN2
and σ|TB

,

which results in a firing sequence σ̃ ∈ T ∗
N2

such that (N2 : m|PN2

σ̃−→ fN2) and

Compositional Verification of Asynchronously Communicating Systems 59

ϕ(σ|TB
, σ̃). Hence, we have a firing sequence σ in M and a firing sequence σ̃ in

N2, which we need to interweave.
We split the composition N in N1 and N2, as shown in Fig. 5. By Corollary 9,

(N1 : m|PN1

σ|TN1−→ fA). By Property 11, the sequence relation also holds for the
projected firing sequence, i.e. ϕ(σ|TN1

, σ̃) holds. Then the Interweaving Property
(10) applied on (N1,m|PN1

) with firing sequence σ|TN1
and (N2,m|PN2

) with

firing sequence σ̃ results in a firing sequence σ ∈ T ∗
N such that (S(N) : m

σ−→
fA + fN2 = fN). Hence, N is sound. �

From Theorem 12, it follows that comϕ is a sufficient condition to conclude
soundness of a component tree consisting of three components if Properties 10
and 11 hold for the sequence relation. Hence, if two connected components sat-
isfy comϕ, the composition is guaranteed to be sound, and it can be used for
compositional verification. In fact, comϕ(A,B) implies a direction in the com-
ponent tree: component A uses component B to provide its service on port G,
or, rephrased, B provides a service to A.

Definition 13 (Component uses another component). Let A and B be
two composable components with respect to port G ∈ GA ∩ GB, and let ϕ be a
sequence relation as defined in Definition 6.

We say A uses B, denoted by A ©�ϕB, if A ⊕G B and comϕ(A,B).

In this way, we can construct a component tree of components that uses other
components to deliver their service. A component tree is a tree of components
connected to each other such that components can only “subcontract” work to
other components. The structure of the tree is defined by the tree function c.
Each node A is a component that delivers a service to its parent c(A) using
the services of its children c−1(A). Each component only communicates with its
parent and its children, communication with other components is not allowed.
Note that the communication implied by this function is asymmetric: the parent
uses its children to deliver the service requested. By requiring that the transitive
closure of c is irreflexive, we ensure the component tree to be a tree.

Definition 14 (component tree). A component tree is a pair (O, c) where
O is a set of components, and c : O ⇀ O is a partial function called the parent
function such that the transitive closure c∗ of c is irreflexive, for all A,B ∈ O:

– c(B) = A =⇒ |GA ∩ GB | = 1 ∧ A ©�ϕB; and
– A ∩ B = ∅ =⇒ c(A) = B ∨ c(B) = A.

and for all A ∈ O a B ∈ O exists such that (A,B) ∈ c∗ or (B,A) ∈ c∗.

An example is shown in Fig. 1, where component A uses component B, which
in turns uses components C and D.

In a component tree, each parent should use the services of its children.
Hence, if the root is sound, and each parent uses its children, the component
tree should be sound. This is expressed in the next theorem. The proof uses the
associativity and commutativity of the composition operator and Theorem12.

60 J.M.E.M. van der Werf

Theorem 15 (Soundness of component trees). Let (O, c) be a component
tree. If all components of O are sound, then

⊕
X∈O X is sound.

Proof. Assume all components in O are sound. As (O, c) is a tree, a topological
sort � exists on the nodes O. Let O = {O1, . . . , On} such that Oi � Oi+1 for
1 ≤ i < n. We prove the lemma by induction on i. For i = 1, the statement
holds trivially.

Now assume 1 < i < n and
⊕

X∈O′ X is sound where O′ = {O1, . . . , Oi}.
Let B = Oi+1. Since � is a topological sort, there exists a unique A ∈ O′ such
that A ©�ϕB, and B is disjoint with all OPNs in O′ \ {A}.

By associativity and commutativity, we have
⊕

X∈O′ X = (
⊕

X∈O′\{A} X)⊕
A, and

⊕
X∈O′\{A} X is disjoint with B. As A ©�ϕB, we have comϕ(A,B), and

thus by Theorem 12, (
⊕

X∈O′\{A} X)⊕ A⊕G B is sound. Again by associativity
and commutativity, (

⊕
X∈O′\{A} X) ⊕ A ⊕G B =

⊕
X∈O′∪{B} X. Hence, the

statement holds. �

5 Elastic Communication

In this section, we present a communication condition that satisfies both
Properties 10 and 11. Let A, B and C be three components such that A and
B, and B and C are both composable, and A and C are disjoint. In [4], it is
shown that checking whether the composition B ⊕ C behaves as component
B on the interface with A, i.e., identical communication, is sufficient to prove
soundness of a component tree. In fact, it is easy to show that this condition sat-
isfies Properties 10 and 11 [24]. However, this identical communication condition
is very restrictive. One way to weaken the condition of [4] is by allowing to per-
mute port transitions within a communication block, i.e., a block of only sending
or receiving transitions, possibly interweaved with silent transitions. Although
this already weakens the condition, it remains very restrictive [24]. Consider for
example the composition of Fig. 6. It is clear that the composition A ⊕G B is
sound. Now, take the sequence σ = 〈t1, t2, t3, t4, t5〉. Although it is easy to verify
that the composition A ⊕ B ⊕ C is sound, no firing sequence can be found that
behaves as σ, even when swaps within the same communication block is allowed.
The main problem of the net is that the b message is sent too early for some of
the sequences. This example shows that messages may be sent earlier without
violating the soundness property. Soundness only requires that messages should
be on time, i.e., components may send messages earlier, as long as they can both
terminate properly. We reflect this in the elastic communication condition.

The condition allows sending transitions to be shuffled, as long as for each
receiving transition at least the same sending transitions occur, or rephrased,
sending transitions may occur at any position within its communication block,
or it can be moved forward in the firing sequence. Although transitions sending
messages may be moved forward in the firing sequence, the condition ensures
that from every marking reachable, the final marking is reachable.

Consider the composition A⊕GB of two components A and B. In the proof of
Theorem 12, the composition is split into two nets, N1 = CB(A) and N2 = S(B),

Compositional Verification of Asynchronously Communicating Systems 61

t1

t2

t4

t3

t5

a

b

c

u1

u2

u3

v1

v2

v3

iA

iB

iC

fC

fB

fA

A
B

C

HG

Fig. 6. Although net A ⊕G B ⊕H C is sound, identical communication does not hold

and a firing sequence in N1 is interweaved with a firing sequence in N2. Let μ be a
firing sequence in N1 and ν a firing sequence in N2. To be able to interweave the
two firing sequences, ν has to produce the tokens it sends in time, and μ has to
ensure that ν has sufficient tokens to be able to produce these tokens. In net N1,
all transitions of B either have an empty preset, or an empty postset. The set
of transitions of B with an empty preset is labeled Rout, the set of transitions
of B with an empty postset is labeled Rin. If in μ a transition of Rout fires, it
means that a message from B is needed for A to continue. On the other hand,
firing a transition of Rin in ν indicates that B needs a message from A.

To interweave sequences μ and ν into a firing sequence σ in the composition, if
a transition in Rin is the next transition of ν to be added to σ, then the transition
should already have fired in μ, since otherwise the transition cannot be enabled
in the composition. Likewise, if a transition in Rout is the next transition of μ to
be added to σ, then the transition should already have fired in ν, since otherwise
the transition cannot be enabled in σ. If both conditions do not hold, we cannot
create a firing sequence in the composition. Hence, the following formula has to
hold:

¬∃ 0 ≤ k < |μ|, 0 ≤ l < |ν| :
(−−−−−→μ[1..k+1]|Rout

> −−−→ν[1..l]|Rout
) ∧ (−−−−→ν[1..l+1]|Rin

> −−−→μ[1..k]|Rin
)

If such a pair k, l would exist, we cannot interweave the firing sequences: we
cannot add the next transition of μ, since it needs tokens of ν that are not yet
generated, and we cannot add the next transition of ν, since that transition
needs tokens of μ that are not yet generated. If such a pair does not exist, we
say the sequences are elastic to each other.

62 J.M.E.M. van der Werf

Definition 16 (Elastic sequences). Let N = (P, T, F) be a Petri net and
G ⊆ P . Define Rin = {t ∈ T | λG(t) =?} and Rout = {t ∈ T | λG(t) =!}. Let
μ, ν ∈ T ∗

N . Sequence μ is elastic to sequence ν, denoted by μ �G ν if and only
if: (−−−−−→μ[1..k+1]|Rout

≤ −−−→ν[1..l]|Rout
) ∨ (−−−−→ν[1..l+1]|Rin

≤ −−−→μ[1..k]|Rin
) for all 0 ≤ k < |μ|

and 0 ≤ l < |ν|.

Consider again Fig. 6. As an example, take the firing sequences σ = 〈t1, t2, t3,
t4, t5〉 and σ̃ = 〈t1, u1, t2, t4, u2, u3, t3, t5〉. In σ̃, the firing of transition t3 is
moved forward with respect to σ, i.e., sending message b is “delayed” in σ. Since
σ[1..0] = ε for each firing sequence σ, we have by definition σ[1..0] �G σ̃[1..0].
The index of σ̃ may be increased up to the situation that σ[1..0] �G σ̃[1..6], since
then t3 needs to be fired in σ[1..0] = ε, which is obviously not the case. Hence, we
need to increase the index of σ, which is allowed up to σ[1..5] �G σ̃[1..6]. Then,
it is allowed to increase the index of σ̃ up to σ[1..5] �G σ̃[1..8]. Hence, σ is elastic
to σ̃. The sequences not only should be elastic, but also the number of messages
sent and received by both sequences should match. These two requirements form
the elastic sequence relation.

Definition 17 (Elastic communication condition). Let B and C be two
components that are composable with respect to port G ∈ GB \ GC . Let μ ∈ T ∗

B

and ν ∈ T ∗
B⊕HC . We define the elastic sequence relation ψG : T ∗

B ×T ∗
B⊕HC → IB

by ψG(μ, ν) if and only if −→μ |R = −→ν |R and μ|R �G ν, where R = {t ∈ TB |
λG(t) = τ}. The elastic communication condition is defined as comψG

(B,C).

In order to show that the elastic communication condition comψ is a sufficient
condition, we need to show that Properties 10 and 11 hold for the elastic sequence
relation. The latter follows directly from the definition of the elastic sequence
relation.

Corollary 18. Let A and B be two components that are composable with respect
to port G ∈ GB \ GC . Define N = A ⊕ B. Let μ ∈ T ∗

B and ν ∈ T ∗
N such that

ψG(μ, ν). Define R = •
N G ∪ G•

N . Then ψG(μ|R, ν) and ψG(μ, ν|R).

To combine a firing sequence μ with a firing sequence ν it is elastic to, we
need to consider the elasticity, i.e., the structure of the sequences. Hence, to prove
Property 10 for ψ, we need to show that we can interweave firing sequences μ
and ν. If −−−−−→μ[1..k+1]|Rout

≤ −−−→ν[1..l]|Rout
, we concatenate σ and 〈μ(k + 1)〉 if μ(k + 1)

is not in Rin or Rout, and if −−−−→ν[1..l+1]|Rin
≤ −−−→μ[1..k]|Rin

, we concatenate σ and
〈ν(l + 1)〉. Since μ is elastic to ν, always at least one of the two cases holds for
each k < |μ| and l < |ν|. This operation results in the algorithm IsElasticTo.
In the algorithm, the If-�-Fi construction indicates that if multiple guards are
true, non-deterministically one of the guards evaluating true is chosen.

In this algorithm, if both conditions of the if clauses fail, sequence μ cannot be
elastic to sequence ν, and hence, the algorithm fails. Otherwise, an interweaved
firing sequence σ is returned, such that both μ �G σ and ν �G σ.

Compositional Verification of Asynchronously Communicating Systems 63

Procedure IsElasticTo(μ,ν)
(k, l, σ) :=(0, 0, ε);
{Inv: μ[1..k] �G ν[1..l] ∧ μ[1..k] �G σ ∧ ν[1..l] �G σ }
while (k < |μ| ∨ l < |ν|) do

if k < |μ| ∧ −−−−−→μ[1..k+1]|Rout
≤ −−−→ν[1..l]|Rout

then

if μ(k + 1) �∈ (Rin ∪ Rout) then
σ := σ; 〈μ(k + 1)〉;

fi
k := k + 1;

� l < |ν| ∧ −−−−→ν[1..l+1]|Rin
≤ −−−→μ[1..k]|Rin

then

(σ, l) :=(σ; 〈ν(l + 1)〉, l + 1);
else

return ε;
fi

od
return σ

Corollary 19. Let N be a component and let G ∈ GN . Let μ, ν ∈ T ∗
N . Then an

invariant for procedure isElasticTo(μ,ν) is

μ[1..k] �G ν[1..l] ∧ μ[1..k] �G σ ∧ ν[1..l] �G σ

Next, we need to show that the firing sequence constructed via IsElasticTo
is executable. Given two OPNs A and B that are composable with respect to
port G, we split the composition into N1 = CB(A) and N2 = S(B). Every
marking in the composition can be split into a marking in S(A), S(B) and some
tokens in the interface places G. The marking in the interface G can again be split
into places that are input for B, which we name x, and places that are output
for B, which we name y. As shown in the next lemma, the elastic communication
condition ensures that at each point in time, there are sufficient tokens in the
interface places to continue.

Lemma 20. Let A and B be two components such that they are composable
with respect to some port G ∈ GA ∩ GB. Define GI = G ∩ IB, GO = G ∩ OB,
N1 = CB(A), N2 = S(B) and N = N1 ∪ N2. Let m0 ∈ INPN1 be a marking,
and let μ ∈ T ∗

N1
be a firing sequence of length k such that for all 1 ≤ i ≤ |μ|,

markings mi−1,mi ∈ INPN1 exist with (N1 : mi−1
μ(i)−→ mi). Let m0 ∈ INPB be a

marking, and let ν ∈ T ∗
B be a firing sequence of length l such that μ �G ν and

for all 1 ≤ i ≤ |ν|, markings mi−1,mi ∈ INPN2 exist with (N2 : mi−1
ν(i)−→ mi).

Then, a firing sequence σ ∈ T ∗
N and a marking m ∈ INPN exist such that: (1)

σ = IsElasticTo(μ, ν); (2) σ|TA
= μ|TA

and σ|TB
= ν|TB

; (3) (N : m0+m0
σ−→

m); and (4) mk|PA
≤ m, and ml ≤ m.

Proof. Define Rin = {t ∈ TB | λG(t) =?}, Rout = {t ∈ TB | λG(t) =!} and
R = Rin ∪ Rout. Note that R = TN1 \ TN2 .

64 J.M.E.M. van der Werf

We prove the lemma by induction on the structure of μ �G ν. The statement
holds trivially for σ = ε and m = m0 + m0.

Suppose the statement holds for some μ′ ≤ μ and ν′ ≤ ν such that μ′ �G ν′,
i.e. let k = |μ′| and l = |ν′|, then for μ′ and ν′ a firing sequence σ′ ∈ T ∗

N and
marking m′ ∈ INPN exist such that σ′ = IsElasticTo(μ′, ν′), σ′|TA

= μ′
|TA

and
σ′|TB

= ν′|TB
(N : m0 + m0

σ′
−→ m′) and mk ≤ m′, and ml ≤ m′.

By the structure of �G, two cases need to be considered: k < |μ| and
−−−−−→μ[1..k+1]|Rout

≤ −−−→ν[1..l]|Rout
or (2) l < |ν| and −−−−→ν[1..l+1]|Rin

≤ −−−→μ[1..k]|Rin
.

First suppose k < |μ| and −−−−−→μ[1..k+1]|Rout
≤ −−−→ν[1..l]|Rout

. Let t = μ(k+1). If t ∈ R,
then t ∈ TB . Hence, firing transition t does not change the internal marking of A,
i.e. mk|PA

= mk+1|PA
. Choose σ = σ′ and m = m′. Then clearly the statement

holds.
Otherwise, t ∈ R. There are two cases to consider: either (a) •

N t ∩ G = ∅ or
(b) •

N t ∩ G = ∅. If (a) •
N t ∩ G = ∅, then •

N t ≤ mk|PA
≤ m′. Let σ = σ′; 〈t〉 and

m ∈ INPN such that (N : m′ t−→ m). Hence, σ and m have the desired property.
Next, suppose (b) •

N t ∩ G = ∅. Then, transition t needs input from some places
in the interface G. Since t ∈ R, we have −−−→μ[1..k]|Rout

= −−−−−→μ[1..k+1]|Rout
≤ −−−→ν[1..l]|Rout

=
−→
σ′ |Rout

. Let p ∈ •
N t ∩ G be an interface place in the preset of transition t. Since

transition t is enabled in (N,mk), we have mk(p) > 0. By the marking equation,
mk(p) = m0(p) +

∑
u∈•p

−−−→μ[1..k](u) −
∑

u∈p•
−−−→μ[1..k](u). As place p is an interface

place, mk(p) ≤ m′(p). Thus, transition t is enabled in (N,m′). Let σ = σ′; 〈t〉
and m ∈ INPN such that (N : m′ t−→ m).

Suppose (2) l < |ν| and −−−−→ν[1..l+1]|Rin
≤ −−−→μ[1..k]|Rin

. Let t = ν(l + 1). If
•

N t ∩ G = ∅, then •
N t ≤ ml. Hence, the statement holds for σ = σ′; 〈t〉 and

m ∈ INPN such that (N : m′ t−→ m).
Otherwise, •

N t ∩ G = ∅. Then λG(t) =? and transition t needs input from A
in order to be enabled in N . Hence, t ∈ Rin and ν[1..l]|Rin

(t) < μ[1..k]|Rin
(t). Let

p ∈ •
N t∩G be an interface place in the preset of t. Consequently, mk(p) < m′(p),

and transition t is enabled in (N,m′). Let σ = σ′; 〈t〉 and m ∈ INPN such that
(N : m′ t−→ m). �

Lemma 20 shows that a firing sequence and a firing sequence it is elastic to
may be interweaved into a new firing sequence that is elastic to both sequences.
As in elastic communication the number of occurrences of each communicating
transition should be equal, we may directly conclude that Property 10 holds for
the elastic sequence relation ψ.

Corollary 21 (Harlem shuffle). Let A and B be two OPNs that are com-
posable with respect to port G ∈ GA ∩ GB. Let N1 = CB(A) and N2 = S(B).
Let μ ∈ T ∗

N1
and m,m′ ∈ INPN1 such that (N1 : m

μ−→ m′). Let ν ∈ T ∗
N2

and
m,m′ ∈ INPN2 such that (N2 : m

ν−→ m′) and ψG(μ, ν). Then, there exists
σ ∈ T ∗

N such that (S(N) : m + m
σ−→ m′ + m′), ψG(μ, σ) and ψG(ν, σ).

From Corollaries 18 and 21 we can directly conclude that Condition comψ is
a sufficient condition for compositional verification.

Compositional Verification of Asynchronously Communicating Systems 65

B

A

C

a

b

c

d

iA iC

iA

fA fB

fC

Fig. 7. Although net A ⊕G B ⊕H C is sound, condition ΨG(B, C) does not hold.

Theorem 22 (Elastic communication condition sufficient for sound-
ness). Let A, B and C be three OPNs such that A and B are composable with
respect to G ∈ GA ∩ GB, B and C are composable, A and C are disjoint and
A ⊕G B is sound. If comψG

(B,C) holds, then A ⊕G B ⊕H C is sound.

The framework does not provide a necessary condition. As shown in Fig. 7,
also the elastic communication condition is not necessary. In this example, com-
ponent A either receives an a or a b from component B. In the composition
B ⊕H C, component C decides which message will be sent by component B.
Consider the marking [iB , d, fC] of the composition B ⊕ C. In this marking,
the composition can only decide to send message b, whereas if we project this
marking on B, i.e. we consider only the marking [iB], also message a could be
sent. Hence, the condition does not hold for the example.

6 Conclusions

In this paper, we considered a sub class of dynamic networks of asynchronously
comunicating systems. We presented a framework for compositional verification
of such systems based on communication conditions.

The elastic communication condition is an example of using this framework.
Given two sequences, the elastic communication condition allows transitions that
send messages to occur earlier in the firing sequence, as long as it is produced
before the token needs to be consumed. A simple algorithm exists to decide
whether a firing sequence is elastic to another firing sequence, and if so, the
algorithm returns an interweaved firing sequence of the two.

Related Work. In [7] the authors give a constructive method preserving the
inheritance of behavior. As shown in [2] this can be used to guarantee the correct-
ness of interorganizational processes. Other formalisms, like I/O automata [14]

66 J.M.E.M. van der Werf

or interface automata [6] use synchronous communication, whereas we focus on
asynchronous communication.

In [23], the author introduces place composition to model asynchronous com-
munication focusing on the question which subnets can be exchanged such that
the behavior of the whole net is preserved. In [13] the authors focus on decid-
ing controllability of an OPN and computing its operating guidelines. Operating
guidelines can be used to decide substitutability of services [21], or to prove that
an implementation of a service meets its specification [5].

In [8], the authors propose to model choreographies using Interaction Petri
nets. Similarly the authors of [11] propose a method to verify whether services
agree to a choreography specification. However, in these approaches the whole
network should be known at design-time.

In [9], the authors introduce an abstract component and interface algebra
based on logic, where consistency is based on the composition of, possibly infinite,
sets of traces of both the connections and the services. Although closely related,
the approach presented in this paper focuses more on the process aspects of
component-based design.

Future Work. Although we have shown that the elastic communication condi-
tion is sufficient, decidability of the condition remains future work. The proposed
framework shows that post-design verification is a challenging task. As, in lim-
itations one first shows oneself the master, we search for similar approaches as
presented in [12] that guarantees the presented conditions during the construc-
tion of a network of asynchronously communication systems.

References

1. van der Aalst, W.M.P.: Verification of workflow nets. In: Azéma, P., Balbo, G.
(eds.) ICATPN 1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997)

2. van der Aalst, W.M.P.: Inheritance of interorganizational workflows: how to agree
to disagree without loosing control? Inf. Technol. Manage. J. 4(4), 345–389 (2003)

3. van der Aalst, W.M.P., Beisiegel, M., van Hee, K.M., König, D., Stahl, C.: An SOA-
based architecture framework. Int. J. Bus. process Integr. Manage. 2(2), 91–101
(2007)

4. van der Aalst, W.M.P., van Hee, K.M., Massuthe, P., Sidorova, N., van der Werf,
J.M.: Compositional service trees. In: Franceschinis, G., Wolf, K. (eds.) PETRI
NETS 2009. LNCS, vol. 5606, pp. 283–302. Springer, Heidelberg (2009)

5. van der Aalst, W.M.P., Lohmann, N., Massuthe, P., Stahl, C., Wolf, K.: Multiparty
contracts: agreeing and implementing interorganizational processes. Comput. J.
53(1), 90–106 (2010)

6. de Alfaro, L., Henzinger, T.A.: Interface automata. SIGSOFT Softw. Eng. Notes
26(5), 109–120 (2001)

7. Basten, T., van der Aalst, W.M.P.: Inheritance of behavior. J. Logic Algebraic
Program. 47(2), 47–145 (2001)

8. Decker, G., Weske, M.: Local enforceability in interaction petri nets. In: Alonso,
G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 305–319.
Springer, Heidelberg (2007)

Compositional Verification of Asynchronously Communicating Systems 67

9. Fiadeiro, J.L., Lopes, A.: An interface theory for service-oriented design. Theor.
Comput. Sci. 503, 1–30 (2013)

10. van Glabbeek, R.J.: The linear time - branching time spectrum II. In: Best, E.
(ed.) CONCUR 1993. LNCS, vol. 715, pp. 66–81. Springer, Heidelberg (1993)

11. Gössler, G., Salaün, G.: Realizability of choreographies for services interacting
asynchronously. In: Arbab, F., Ölveczky, P.C. (eds.) FACS 2011. LNCS, vol. 7253,
pp. 151–167. Springer, Heidelberg (2012)

12. van Hee, K.M., Sidorova, N., van der Werf, J.M.: Construction of asynchro-
nous communicating systems: weak termination guaranteed!. In: Baudry, B.,
Wohlstadter, E. (eds.) SC 2010. LNCS, vol. 6144, pp. 106–121. Springer, Heidelberg
(2010)

13. Lohmann, N., Massuthe, P., Wolf, K.: Operating guidelines for finite-state services.
In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 321–341.
Springer, Heidelberg (2007)

14. Lynch, N.A., Tuttle, M.: Hierarchical correctness proofs for distributed algorithms.
In: 6th Annual ACM Symposium on Principles of Distributed Computing (1987)

15. Massuthe, P.: Operating guidelines for services. Ph.D. thesis, Technische Univer-
siteit Eindhoven (2009)

16. Massuthe, P., Serebrenik, A., Sidorova, N., Wolf, K.: Can I find a partner? Unde-
cidability of partner existence for open nets. Inf. Process. Lett. 108(6), 374–378
(2008)

17. McIlroy, M.D.: Mass produced software components. In: Naur, P., Randell, B. (eds.)
Proceedings of NATA Software Engineering Conference, Garmisch Germany, vol. 1,
pp. 138–150 (1968)

18. Papazoglou, M.P.: Web Services: Principles and Technology. Pearson/Prentice
Hall, Tappan (2007)

19. Reisig, W.: Petri Nets: An Introduction. Monographs in Theoretical Computer
Science: An EATCS Series, vol. 4. Springer, Berlin (1985)

20. Stahl, C.: Service substitution. Ph.D. thesis, Technische Universiteit Eindhoven
(2009)

21. Stahl, C., Massuthe, P., Bretschneider, J.: Deciding substitutability of services with
operating guidelines. In: Jensen, K., van der Aalst, W.M.P. (eds.) Transactions on
Petri Nets and Other Models of Concurrency II. LNCS, vol. 5460, pp. 172–191.
Springer, Heidelberg (2009)

22. Szyperski, C.: Component Software - Beyond Object-Oriented Programming.
Addison-Wesley/ACM Press, New York (1998)

23. Vogler, W.: Asynchronous communication of petri nets and the refinement of tran-
sitions. In: Kuich, W. (ed.) Automata, Languages and Programming. LNCS, vol.
623, pp. 605–616. Springer, Heidelberg (1992)

24. van der Werf, J.M.E.M.: Compositional design and verification of component-based
information systems. Ph.D. thesis, Technische Universiteit Eindhoven (2011)

25. Wolf, K.: Does my service have partners? In: Jensen, K., van der Aalst, W.M.P.
(eds.) Transactions on Petri Nets and Other Models of Concurrency II. LNCS, vol.
5460, pp. 152–171. Springer, Heidelberg (2009)

26. Wolf, K., Stahl, C., Weinberg, D., Ott, J., Danitz, R.: Guaranteeing weak termi-
nation in service discovery. Fundam. Inf. 108(1–2), 151–180 (2011)

	Compositional Verification of Asynchronously Communicating Systems
	1 Introduction
	2 Preliminaries
	3 Asynchronously Communicating Systems
	4 A General Verification Framework
	5 Elastic Communication
	6 Conclusions
	References

