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Abstract

Protein–protein complexes orchestrate most cellular processes such as transcription, signal transduction and
apoptosis. The factors governing their affinity remain elusive however, especially when it comes to describing
dissociation rates (koff). Herewedemonstrate that, next to direct contributions from the interface, the non-interacting
surface (NIS) also plays an important role in binding affinity, especially polar and charged residues. Their
percentage on the NIS is conserved over orthologous complexes indicating an evolutionary selection pressure.
Their effect on binding affinity can be explained by long-range electrostatic contributions and surface–solvent
interactions that are known to determine the local frustration of the protein complex surface. Including these in a
simple model significantly improves the affinity prediction of protein complexes from structural models. The impact
of mutations outside the interacting surface on binding affinity is supported by experimental alanine scanning
mutagenesis data. These results enable the development ofmore sophisticated and integrated biophysicalmodels
of binding affinity and open new directions in experimental control and modulation of biomolecular interactions.

© 2014 Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Introduction

In biology, description of any process occurring in
the cell leads inevitably to a direct listing of protein
complexes that are implicated as its essential
participants [1,2]. Cellular events encompass non-
obligate (transient) protein–protein interactions that
accurately define the interactome (the complete set
of macromolecular interactions occurring within a
cell) in a time- and location-dependent manner [3].
Knowledge on the three-dimensional structure of a
complex allows describing its interactions at atomic
detail. However, it is the binding affinity, in relation to
the protein concentrations present in a cell, that
defines whether or not complex formation occurs,
while the underlying kon and koff rates determine the
timescale of association and dissociation, respec-
tively. The corresponding equilibrium dissociation
l s ev i e r L td . Th i s i s an open a
rg/licenses/by-nc-nd/3.0/).
constant (Kd = koff/kon), which can be empirically
translated into the Gibbs free energy of binding ΔG
(ΔG = −RTlnKd), is commonly used to describe the
affinity of an interaction. Unsurprisingly, since the
timescales of cellular processes are extremely diverse,
Kd values spanmore than 11 orders ofmagnitude, from
high millimolar (mM) to low femtomolar (fM) concen-
trations [4]. Accordingly, kon and koff rates of protein–
protein complexes underline this broad spectrum
of affinities, covering 8 (102–109 M−1 s−1) and 11
(102–10−8 s−1) orders of magnitude, respectively
[4,5].
Weak transient protein–protein interactions are

responsible for various sequences of rapid chemical
conversion events that occur in the cell (e.g., signaling
cascades andelectron transfer) [6]. These interactions
fall on the high end of the Kd spectrum (Kd b 10−6 M)
and have a half-life of less than 1 s, comparable to that
ccess a r t i c l e unde r t he CC BY-NC-ND l i cense
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2633Non-Interacting Surface Modulates Binding Affinity
of an enzymatic reaction such as phosphotransfer [7].
Recently, with the emergence of highly sensitive
experimental techniques, transient interaction analy-
sis has become tractable [8]. As a consequence, in
a recently compiled benchmark of protein–protein
complexes with known structure and experimental
affinity, 26%of theentries correspond toweak transient
cellular interactions of different nature, showing various
amounts of conformational changes upon binding [4].
Modulating the binding affinity of transient protein–

protein complexes offers new opportunities to control
interaction profiles and design innovative therapeutics
[9], as illustrated by structure-based design of protein–
protein interaction inhibitors targeting complexes in-
volved in cancer [8] and neurodegenerative processes
[10]. Although deciphering the underlying details has
proved to be a daunting task [7], a systematic and
meticulousapproachcan set the basis for the discovery
of new interaction profiles or of inhibitors that can serve
as therapeutic agents [1,7]. Such an approach must
integrate biophysical models that aim at calculating
binding affinities of transient complexes and, ideally,
predicting changes in the binding affinity of the partners
as a consequence of point mutations [11,12].
Basic models for binding affinity estimation were

already proposed more than 20 years ago [13,14].
Horton and Lewis considered both polar and apolar
fractions of the surface that are buried upon
complexation [buried surface area (BSA): BSApol
and BSAapol]. Their model (will be referred to from
now on as the classical interface model) was in fact
based on the initial observation back in the 1970s
from Chothia and Janin [15] that the BSA is directly
related to binding affinity. A basic model for predict-
ing changes in heat capacity (ΔCp) of protein–
protein interactions was developed independently by
Freire at the same time, albeit initially introduced for
protein folding [14]. It accounts for several thermody-
namic parameters [ΔCp, the enthalpy change ΔH and
(partially) the entropy change ΔS] that are explained
using BSApol and BSAapol. Since then, even the most
recent models [16–18] estimate the energetics of a
protein–protein complex by considering only features
of the interface. Their performance is limited however
when tested against larger sets [11,12,16–19].
The models developed to date still fail to accurately
predict binding affinity [20] or discriminate binders
from non-binders [21,22]. These weaknesses can
be attributed to several factors, including the quality of
the experimental data used to parameterize the
models, conformational changes of the proteins
occurring upon binding, (the absence of) co-factors
required for binding and possible solvent and allosteric
effects [23]. While some models can reasonably well
describe the energy of a (near) rigid binding complex
[16,17], affinity prediction is not accurate for com-
plexes of different functions that undergo substantial
conformational changes upon binding, regardless of
the model used [20].
All presentmodels are based on the hypothesis that
properties of the BSA and the area in its close vicinity
(rim) are sufficient to provide a complete description
of the binding affinity of protein–protein interactions
[11,12]. Two arguments are usually given to support
this conjecture. First, the BSA has been proven to
correlate with binding affinity [15].When tested against
a large dataset, the relation was partially holding (r =
0.5) [4]. Still, for most complexes tested, the predicted
ΔG values were lower than the experimentally
determined ones indicating that other physicochemical
descriptors must play a role in determining the binding
affinity. Second, hot spot residues, occasionally found
in protein–protein interfaces via alanine scanning
mutagenesis [24], clearly illustrate that very few inter-
facial residues may account for a large fraction of the
interaction energy. Evidence for such hot spots comes
primarily from rigid and tight protein–protein interac-
tions. This remains to be experimentally explored for
transient complexes in particular [7]. Consequently,
until now, research in modeling protein–protein inter-
action affinity has solely focused on the interface,
neglecting the potential role of the remainder of the
surface, the non-interacting surface (NIS) [11].
It is long known that protein interactionsmay involve

long-range effects from non-interacting regions (both
surface and protein interior), including classical
examples of allostery [25,26] but also through long-
range inter-residue communication pathways [25]. In
enzymatic catalysis, mutations in residues distant in
space from the binding site can change the enzymatic
rate up to a factor of ~200 [27]. Such effects have
been rationalized by the energy landscape theory of
protein binding [28], being attributed to deviations [29]
from the “principle of minimal frustration” [30], stem-
ming from the unbound state, the latter signifying that
a strongenergetic bias toward the bound state exists in
the case of protein interactions [31]. Local deviations
from minimal frustration present on the protein
structure (usually stemming from polar and charged
surface residues [32]) contribute to the functional
characteristics of proteins and their complexes and
correlate with long-range effect on protein dynamics
[33]. Structural dynamics and charge distribution not
only are correlated to function but also reflect
evolutionary pathways ofmacromolecular assemblies
[34,35]. It is also known that hydration, even of
residues that are not directly present at the interface,
may drastically alter protein dynamics [36] and
assembly conformation [37,38] and may improve
docking prediction of interacting biomolecules [39–42].
So far, a quantitative relationship between NIS

characteristics and binding affinity of protein–protein
interactions has never been derived mainly due to
the absence of a proper structure-based dataset. In
this study, we probe the relationship between protein
structure and binding affinity. We demonstrate that
binding affinity is also affected by properties of the
NIS, something that all biophysical models aiming to
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explain the interaction affinity have been neglecting
so far and propose a novel structure-based global
surface model for binding affinity prediction.
Our results collectively favor protein–protein inter-

action regulation through long-range electrostatics
and preferential solvation of non-interacting protein
complex surface patches. The physical chemistry of
the NIS fractions responsible for affinity regulation is
very similar to those reported by the Wolynes group
[32] regarding residues with increased frustration
that causally contribute to functional characteristics
of proteins and their complexes.
Results

Properties of the NIS are related to
binding affinity

In light of the limitation of current models [4,19–
22], we sought to quantitatively assess if and which
physicochemical properties of protein–protein com-
plexes are capable of describing binding affinity. The
protein–protein interactions that are being studied
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here occur at distinct timescales and in several
cellular compartments, with known binding affinity.
For 51 complexes, protein–protein association (kon)
and dissociation (koff) rates could be compiled (see
Table S1). This means that structure–affinity relation-
ships derived for these complexes, if causal, should
represent fundamental properties of the interaction
process. We evaluated 39 different properties of
these complexes for correlation with binding affinity
(see Tables S2 and S3). A surprising and unantic-
ipated outcome of this analysis is that, next to the
expected properties of the interface, a significant
correlation of few NIS characteristics with binding
affinity (Fig. 1a and b) is observed. In particular, the
percentage of polar residues on the NIS (%AApol

NIS) is
found to relate to binding affinity (Kd) (N = 144, r =
0.35, p b 0.0001). This effect is even stronger when
considering only complexes with limited conforma-
tional change (≤1 Å RMSD) (N = 73, r = 0.42,
p b 0.0001). We next sought to determine if the
%AApol

NIS is related to the kon and/or koff of protein–
protein interactions. A significant correlation of
%AApol

NIS with the koff rates (− logkoff) was observed
(N = 51, r = 0.30, p b 0.05) (Fig. S1 and Table S4),
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S5). For the percentage of charged residues located
on the NIS (%AAchar

NIS ), inverse correlations are found
against koff rates (− logkoff) (N = 51, r = −0.46, p =
0.0005). %AAchar

NIS is also significantly related to Kd for
all complexes of the benchmark (N = 144, r = −0.37,
p b 0.0001). Again this correlation improves when
only protein–protein complexes with limited confor-
mational changes are considered (N = 73, r = −0.48,
p b 0.0001) (Fig. 1).
Notably, only few other properties (both interfacial

and non-interfacial; see Table S2) share significant
relations with binding affinity, kon or koff (Tables S3–
S5). In particular, the BSA-related properties (Fig. 1c
and d), for example, BSApol, BSAapol, BSAtotal [15],
the number of atoms/residues in the interface
(NatomsINT and NresidINT) show comparable correla-
tion coefficients to the ones shared by properties of
the NIS (Fig. 1 and Tables S3–S5). However, even
for these, the correlation vanishes for complexes that
undergo substantial conformational change upon
binding (for details, see Table S3).
In order to ensure that NIS parameters derived in this

study are not the negative image of their respective
interface accessible surface areas or their percent-
ages, we correlated %AApol

NIS withBSApol and fraction of
BSApol of the interface. No correlation was observed
(N = 144, |r| b 0.10, p = 0.2279) indicating that the
BSA effect is not being double-counted (Fig. S2a and
b). %AApol

NIS and %AAchar
NIS are strongly anticorrelated

(N = 144, r = −0.78, p b 0.0001; Fig. S2c) and their
percentages on the NIS varies by more than 35%
among the complexes (Fig. S2d). In addition, com-
plexes with the same percentage of charged residues
on the NIS can have a different net charge hence
different overall electrostatic contribution to the inter-
action. Electrostatics is a well-known contributor in
association of near-rigid, diffusion-limited complexes
and is fundamental in transient-complex theory [5,43–
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46]. Complexes in this study are mainly koff limited
(Fig. 2) and, therefore, significant, but predictive
correlations between charge calculated with HyPare
[47] and kon are derived for all but very slow binders
(N = 48, r = 0.59, p b 0.0001), consistent with the
transient-complex theory (Fig. S3a).
We observe a strong correlation between the koff

rates (− logkoff) and the Kd of the complexes, reach-
ing r = 0.88 and r = 0.72 for 26 rigid and 25 flexible
protein–protein complexes, respectively (Fig. 2a).
Therefore, compared to kon, the physical principles
that govern the koff rates can explain a larger fraction
of the free energy of a complex (Fig. 2a and b).
This extensive analysis confirmed that (a) the

extent of conformational changes is a limiting factor
for correlation with binding affinity for all studied
properties and (b) NIS properties, %AAchar

NIS and
%AApol

NIS, are related to the binding affinity and in
particular to the dissociation rate of protein–protein
complexes. The correlation coefficients calculated
for these NIS properties are significant and, among
the highest observed, next to the well-known
relations of BSA and its apolar fraction with binding
affinity [4,13]. The lower correlations observed for
flexible complexes indicate that there must be
contributions to binding affinity that are currently
beyond our understanding and predictive capability
(e.g., conformational entropy changes).

Chemical properties of the NIS are conserved
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conservation among orthologues (homologous com-
plexes across species sharing the same function). To
answer this question, we assembled a dataset of 47
binary complexes, constituting a subset of the full
set being investigated [4]. For these, both interacting
molecules are composed of a single polypeptide
chain and both chains correspond to the same
species.We then searched for sequencehomologues
(orthologues) using sensitive HMMER profiles [48],
finding 2896 homologous interactions in total for all 47
complexes (Table S6). The Markov search did not
have a threshold for sequence identity but a bias
toward the protein size; the latter should be ±30%
when compared to the template sequence. This bias
was set in order to be able to generate good-quality
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30% sequence identify. This is further highlighted by
the corresponding standard deviations: the average
standard deviation of %AAchar

NIS and %AApol
NIS over the

sets of orthologues is ~2.6 times smaller than those
across the set of 47 unrelated complexes (Fig. 3d).
This difference is equally pronounced when %AAchar

NIS

and %AApol
NIS are calculated either from the generated

molecular models (Fig. 3d, upper plot) or directly from
multiple sequence alignments (Fig. 3d, bottom plot).
Overall, this analysis reveals that properties of the

NIS (%AAchar
NIS and %AApol

NIS) for all binary protein–
protein interactions studied remain fairly constant
when orthologues are considered, even for complexes
that share very low sequence identity (down to 30%).
For non-homologous complexes, these attributes vary
much more.

Distant electrostatic effects are important in
protein–protein interactions

Having identified discriminating relations of chemi-
cal properties of the NIS with binding affinity and
highlighted that they are conserved across ortholo-
gues, we next investigate their origin. A logical cause
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to explain the effect of the percentage of charged
residues of the NIS on affinity could be electrostatics.
In order to test this hypothesis, we created a simple
biophysical model to estimate the electrostatic
contribution to the binding energy as a function of
the distance from the center of the interface: for all
protein–protein complexes, Eelec,binding defined as
Eelec
AB − (Eelec
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B ) was calculated for increasing

concentric shells around the center of the interface
(Fig. 4a). Our simplemodel considers the electrostatic
contribution of each titratable group within a defined
sphere and assigns the pKa and charge state
according to the Henderson–Hasselbalch equation;
then the electrostatic energy is calculated using a
simple coulomb function. The average electrostatic
contribution over all 144 complexes increases
(becomes more negative) as a function of the sphere
radius up to approximately 40 Å after which a plateau
value is reached (Fig. 4b). This simple analysis reveals
a profound effect of electrostatics on protein–protein
interactions even when distances up to 40 Å from the
interface are considered.
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electrostatic effect does no longer change is unique
for each complex in the benchmark. For example, the
interaction between humanH-Ras bound to guanosine
diphosphate and the guanosine triphosphatase
(GTPase)-activating domain of the human GTPa-
se-activating protein p120GAP (GAP-334) (PDB ID:
1WQ1) exhibits electrostatic effects that are signifi-
cant up to approximately 20 Å after which a plateau
is observed (Fig. 4c). The extremely affine complex of
ribonuclease A with the RNase inhibitor (PDB ID:
1DFJ) shows a similar decay but only reaches a
plateau at 40 Å (Fig. 4c). We do not observe a
dependency of the electrostatic contribution profile on
the size of the complex. A very interesting case from
the benchmark is the complex formed between Ras
GTPase·GTP and son of sevenless protein. This
binary complex is striking in the sense that Ras has
two binding sites for SoS: the “catalytic” site and the
“distal” site, both having different affinities toward SoS
(PDB ID: 1NVU). In line with this, the electrostatic
contribution of the NIS on the two sites differs: the
electrostatic contribution levels off at 25 Å for the distal
site (Kd = 3.6E-06 M), whereas for the catalytic site
(Kd = 1.9E-06 M), it increases up to about 40 Å
(Fig. 4d). Our analysis was performed considering
100 mM salt concentration. When considering in-
creasing salt concentrations (150 mM, 200 mM and
250 mM), the effect significantly becomes less
pronounced. At physiological salt concentrations
(100–150 mM), we estimate that such an effect
would level off beyond 30 Å from the center of the
interface (Fig. S3b).We should note, however, that salt
dependence calculations are an overestimate because
salt effects will not affect the interactions mediated
through the low dielectric interior of the proteins.
This analysis shows that, although the electrostat-

ic signature of the non-interaction surface is unique
for each complex, distant effects are observed for a



Table 1. Correlation coefficients of various structural parameters and regression models for binding affinity predictors

(a) Performance of the components of the prediction models against − logKd

Descriptors Class of complexesa

(number of complexes in that class)
Original finding

All
(143)

≤1
(72)

≤1.5
(110)

N1.5
(33)

Number of atoms in the interface 0.28
(b0.001)

0.48
(b0.001)

0.36
(b0.001)

0.11
(n/s)

Chothia and Janin as BSA [15]

Buried polar surface area 0.17
(0.027)

0.33
(b0.005)

0.23
(0.012)

0.18
(n/s)

Horton and Lewis [13]

Buried apolar surface area 0.26
(b0.002)

0.51
(b0.001)

0.34
(b0.001)

0.10
(n/s)

Horton and Lewis [13]

%Polar residues on the surface 0.34
(b0.001)

0.42
(b0.001)

0.37
(b0.001)

0.22
(n/s)

This work

%Charged residues on the
surface

−0.37
(b0.001)

−0.46
(b0.001)

−0.35
(b0.001)

−0.56
(b0.001)

This work

(b) Performance of the binding affinity prediction models

Models All
143

≤1
72

≤1.5
110

N1.5
33

Proposed contributors to affinity

“Classical interface model” [13] 0.26
(b0.002)

0.49
(b0.001)

0.34
(b0.001)

0.15
(n/s)

Polar and apolar BSA

“Global surface model”
(this work)

0.48
(b0.001)

0.64
(b0.001)

0.54
(b0.001)

0.36
(0.040)

Polar and Charged surface,
number of atoms in the interface

a All denotes the entire dataset; the ≤1.0, ≤1.5 and N1.5 classes denote complexes with i-RMSD ≤1.0 Å, ≤1.5 Å and N1.5 Å,
respectively. The first number corresponds to the Pearson's product-momentum correlation coefficient (r) and the number in parenthesis
indicates the p-value (p b 0.05 is considered significant).
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plethora of these complexes with, on average, a
significant contribution up to 40 Å from the interface
and are related to the koff.

More stable water molecules are observed near
polar residues in high-resolution crystal structures

The observed relation between binding affinity
and the percentage of polar residues on the NIS is
remarkable. How can we rationalize their effect on
binding affinity? Physicochemical properties of
protein surfaces define a unique hydration layer
around the protein. Due to their nature, polar and
charged residues on the protein surface are long
known to be “hot” hydration spots (also referred to as
“wet spots”) [49], directly influencing the formation of
this hydration layer. Although all surface residues
can contribute to the stabilization of the water layer,
water near polar uncharged residues should only
exchange with other water molecules, whereas
water near charged groups might exchange with
both water and soluble ions. We hypothesize that
the polar residue contribution to the stabilization of a
complex could stem from a more “stable” hydration
layer that might “protect” the complex from other
interactions, explaining the observed effect on the
dissociation constant. We tested this hypothesis by
analyzing water properties on the surface of
ultra-high-resolution (b1 Å) crystal structures of
proteins (see Table S7). Their surfaces were divided
into polar, apolar and charged parts according to the
Kyte–Doolittle hydrophobicity scale [50]. Since the
oxygen atoms of water molecules can be safely
recognized in such high-resolution electron density
maps, contact frequencies of these with surface
residues were calculated (Ncont

wat ) and classified
according to the type of residue (apolar, polar,
charged). We analyzed first the number of contacts
formed as a function of the B-factor of a water
molecule. A contact was counted if the distance
between the water oxygen and a protein heavy atom
was ≤3.9 Å. Water molecules with high B-factors
(approximately ≥30) make on average less than 2.5
contacts with the protein surface (Fig. 5a) while
water molecules with B-factor values of 30 or lower
form more interactions with the protein surface,
reaching an average value of 3.6 contacts for
waters with B-factor ≤ 10. Water molecules with
B-factor ≤ 10 tend to form more contacts with polar
(Npolarcont

wat = 1.25) and apolar surface fragments
(Napolarcont

wat = 1.30), compared to contacts with
charged surface fragments (Nchargedcont

wat b 1.00).
When contact frequencies are transformed into
contact propensities of water with the three types of
amino acids, polar, apolar and charged, «stable»
waters (B-factor b 30) are less probable to contact
charged amino acids (Fig. 5b). Further analysis
indicated that the average B-factor of a water close
to charged amino acids is significantly higher than
that for polar and apolar amino acids independently
of the B-factor threshold used. This can clearly be
seen when plotting the average B-factor against
the Kyte–Doolittle hydrophobicity scale of amino
acids (Fig. 5c). This relation is not affected by the
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Fig. 6. (a) Classical interface model [13] [Eq. (1)] and (b) global surface model introduced in this work [Eq. (2)] for the
prediction of protein–protein binding affinities. The global surface model accounts for both interface and non-interface
surface contributions (see the main text). Both models were optimized on rigid complexes using 4-fold cross-validation
(left panels) and blindly tested on the flexible complexes (right panels). The left panels show the cross-validated
predictions.
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corresponding accessible surfaceareaof the residues
(Fig. 5d).
Themain result from this analysis is that the surface

of proteins shows different contact propensities with
water molecules depending on the chemical nature of
the amino acids. Proteins with highly polar but un-
charged surfaces tend to have more stable waters in
their hydration layer and the underlying B-factors of
those water molecules close to polar residues is on
average lower compared to the corresponding ones
close to charged amino acids.
In combination with the observation that polar non-

interface surface regions do experience selection
pressure [51,52], the abovementioned results sug-
gest a mechanism in which highly polar but un-
charged surfaces result in a stable water layer that
might protect the generated complex from ion
penetration and unintended protein–protein interac-
tions. This would thus rationalize the observation
that both %AAchar

NIS and %AApol
NIS are contributors to the

binding affinity of protein–protein interactions.
The global surface model: development
and validation

The prevailing model of Horton and Lewis based on
a dataset of 15 protein–protein complexes decom-
poses the BSA into polar and apolar contributions to
predict the affinity of protein–protein interactions [13].
This is consistent with the results presented here,
particularly for the apolar BSA (BSAapol) and the
overall contribution of the BSA (Fig. 1). In our
extended dataset, however, only complexes under-
going minor conformational changes [interfa-
ce-RMSD (i-RMSD) ≤ 1.0 Å] still retain some
correlation between buried apolar and polar surface
areas and affinity (Fig. 1). We reparametrized the
classical interface model [13] [Eq. (1)] based on our
set of rigid 72 complexes:

− logK d ¼ α � BSAapol þ β � BSApol þ γ ð1Þ



Table 2. Benchmark of structure-based binding affinity data of dimeric complexes with calculated conformational change
from their known unbound structures

2WEL_A:D
CA/calmodulin–dependent 

protein kinase type II δ–chain
2VN9_A calmodulin 3IF7_A 3035 23.452 6.00E–07

2WG3_A:C
Desert Hedgehog protein (N– 

ter)
2WFQ_A

Hedgehog–interacting protein 

(C–ter)
2WFT_A 1871 1.042 7.36E–08

2XB6_A:C Neuroligin–4, x–linked 3BE8_A Neurexin–1–β 3BOD_A 1193 1.372 1.15E–07

2XBB_A:C
E3 ubiquitin–protein ligase 

NEDD4
2XBF_A Ubiquitin 1YJ1_A 1799 2.933 1.10E–05

Binary 

Complex
PDB1 PDB_IDa PDB2 PDB_IDb

BSA

(Å2)c

i–rmsd 

(Å)d

Kd

1CLV_A:I α–amylase 1JAE_A α–amylase inhibitor 1HTX_A 2085 0.896 1.00E–09

1LW6_E:I subtilisin BPN' 1SUP_A
subtilisin–chymotrypsin inhibitor–

2A
1YPC_I 1706 0.430 2.00E–12

1P6A_A:B fiber protein KNOB domain 1NOB_A coxsackie/adenovirus receptor 1EAJ_A 1547 0.851 3.50E–08

1PK1_A:B Ph SAM domain 1KW4_A Scm SAM domain 1PK3_A 933 0.379 5.40E–08

2XQR_A:B β–fructofuranosidase 2AC1_A
cell–wall inhibitor of β–

fructosidase
2CJ4_A 1988 0.459 3.10E–08

3D7T_A:B Tyrosine–protein kinase CSK 1BYG_A
proto–oncogene tyrosine–protein 

kinase Src
1YOJ_A 1179 0.806 7.00E–05

3G3A_A:B
variable lymphocyte receptor 

VLRB.2D
3G39_A lysozyme C 2VB1_A 1657 0.845 4.30E–07

3LB8_A:C putidaredoxin reductase 1Q1R_A putidaredoxin 1XLQ_A 1587 0.902 6.60E–05

3M18_A:B
variable lymphocyte receptor A

diversity region
3M19_A lysozyme C 2VB1_A 1760 0.467 1.80E–10

3OXU_B:F complement c3d 1C3D_A HF protein 3R62_A 1498 0.839 3.40E–05

3QQ8_A:B
transitional endoplasmic 

reticulum ATPase
3QQ7_A FAS–associated factor 1 3QX1_A 1653 0.581 1.50E–06

4ETW_A:B
Pimelyl–[acyl–carrier protein]

methyl ester esterase
1M33_A acyl carrier protein 1T8K_A 1131 0.889 3.10E–06

4HCP_A:B ATP/GTP binding protein 3GQM_A NEDD8 1NDD_A 2426 0.957 9.40E–06

1F3V_A:B TRADD (N–ter domain) 1F2H_A TRAF domain 1CA4_A 1484 2.020 7.80E–06

1K93_A:D
calmodulin–sensitive adenylate 

cyclase
1K8T_A calmodulin 3IF7_A 5468 13.056 2.00E–08

1L0Y_A:B TCR Vβ8.2 1BEC_A exotoxin type A 1FNU_A 1133 1.236 6.00E–06

1SQ0_A:B von Willebrand factor 1IJB_A
Platelet glycoprotein Ib α–chain 

(L–domain)
1P9A_G 2108 2.231 3.00E–08

1UAD_A:C Ras–related protein Ral–A 1U8Z_A
exocyst complex component 

Sec5 (N–ter)
1HK6_A 1014 1.322 1.37E–07

1XT9_A:B sentrin–specific protease 8 2BKQ_A Neddylin 1NDD_A 3017 2.473 2.00E–07

2AQ1_A:B TCR Vβ H72Q 2APB_A Enterotoxin type C–3 1UNS_A 1126 1.451 5.50E–09

2FU5_A:D
Guanine nucleotide exchange 

factor MSS4
1FWQ_A Ras–related protein Rab–8A 4LHW_A 2196 3.364 7.00E–10

2G45_A:B
Ubiquitin carboxyl–terminal  

hydrolase 5
2G43_A Ubiquitin 1YJ1_A 1017 7.259 2.82E–06

2J7P_A:D
signal recognition particle 

protein
1LS1_A FTSY cell division protein 2IYL_D 3008 2.640 1.00E–08

2JGZ_A:B phospho–CDK2 4FKL_A G2/mitotic–specific cyclin–B1 2B9R_A 2977 5.350 1.00E–03

2JJS_A:C
tyr–protein phosphatase 

substrate 1 (N–ter)
2UV3_A leucocyte surface antigen CD47 2VSC_A 1833 6.828 1.20E–06

2OT3_A:B
Rab5 GDP/GTP exchange 

factor
1TXU_A Ras–related protein Rab–21 1Z08_A 2306 2.594 1.80E–06

2PTT_A:B CD48 antigen 2PTV_A Natural killer cell receptor 2B4 2PTU_A 1455 1.051 4.00E–06

2V8S_E:V clathrin interactor 1 (ENTH) 2QY7_A HABC domain of VTI–1B 2QYW_A 1333 1.718 2.20E–05

2VSM_A:B hemagglutinin–neuraminidase 2VWD_A ephrin–B2 2I85_A 2787 2.770 3.50E–08

2W2X_A:D
ras–related C3 botulinum toxin 

substrate 2
2W2T_A

1–PtdIns–4,5–bisphosphate 

phosphodiesterase γ–2 
2W2W_A 949 2.980 2.19E–05

(Μ)e

(continued on next page)
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3C9A_B:D Protein giant–lens 3CGU_A Protein spitz 3CA7_A 2720 5.660 7.70E–09

3FPU_A:B Evasin–1 3FPR_A C–C motif chemokine 3 2X6G_A 2689 2.310 1.20E–10

3GC3_A:B β–arrestin–1 1G4M_A Clathrin heavy chain 1 2XZG_A 2161 2.916 2.10E–06

3GQI_A:B
Basic fibroblast growth factor 

receptor 1
3RHX_A Phospholipase C–γ–1 4FBN_A 1867 3.494 3.30E–08

3H2U_A:B Vinculin (C–ter) 1QKR_A Raver–1 (RRM 1–3 domains) 3SMZ_A 1360 3.213 1.26E–05

3JZA_A:B Ras–related protein Rab–1B 3NKV_A Uncharacterized protein DrrA 3JZ9_A 3384 4.659 3.00E–12

3K75_B:D DNA repair protein XRCC1 1XNA_A DNA polymerase β 2VAN_A 1195 1.314 1.10E–07

3KUD_A:B Ras–GDP 2CE2_X
RAF proto–oncogeneser/thr–

protein kinase (A85K)
1RFA_A 1046 1.706 1.70E–06

3KW5_A:B
Ubiquitin carboxyl–terminal 

hydrolase isozyme L1
2ETL_A Ubiquitin 1YJ1_A 2350 1.502 3.85E–07

3MC0_A:B
variable beta 8.2 mouse T cell 

receptor
2APB_A Enterotoxin SEG 1XXG_A 1205 1.024 1.25E–07

3MJ7_A:B
Junctional adhesion molecule–

like
3MJ6_A

Coxsackievirus and adenovirus 

receptor homolog
3JZ7_A 1728 2.220 5.00E–06

3ONA_A:B
Tumour necrosis factor 

receptor, SECRET domain
3ON9_A

CX3CL1 protein, chemokine 

domain
1F2L_A 1111 1.158 6.80E–07

3VYR_A:B

Hydrogenase 

expression/formation protein 

HypC

2Z1C_A

Hydrogenase 

expression/formation protein 

HypD

2Z1D_A 2184 3.954 1.40E–07

4DGE_A:C TRIMCyp (cyclophilin domain) 2X25_B
capsid protein (cyclophilin–

binding domain)
2PWO_A 1037 1.606 3.85E–05

Binary 

Complex
PDB1 PDB_IDa PDB2 PDB_IDb

BSA

(Å2)c

i–rmsd 

(Å)d

Kd

2XGY_A:B Relik capsid N–ter domain 2XGU_A
Peptidyl–prolyl cis–trans 

isomerase A
2X25_B 1534 2.293 3.00E–05

2Z8V_A:D Apical membrane antigen 1 1Z40_A
New antigen receptor variable 

domain
1VES_A 2086 1.303 4.80E–09

3BEG_A:B
Serine/threonine–protein kinase

SRPK1
1WAK_A

Splicing factor, arginine/serine–

rich 1
2O3D_A 1938 4.703 5.00E–08

(Μ)e

a Crystal structures and corresponding chains of the unbound partner 1.
b Crystal structures and corresponding chains of the unbound partner 2.
c Calculated using NACCESS (www.bioinf.manchester.ac.uk/naccess/) using standard van der Waals radii and probe radius 1.4 Å.
d i-RMSD (measured in Å), concerning Ca atoms. Interface residues were assigned using an interatomic contact distance cutoff of 10 Å.
e Equilibrium constants are collected directly from PDBbind v2013 (www.pdbbind-cn.org). For a full list of references, see Table S12.

Table 2 (continued )
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The coefficients obtained after 4-fold cross-valida-
tion are α = 0.0040, β = 0.0007 and γ = 3.7342.
BSAapol and BSApol denote the apolar and polar
BSAs (Å2), respectively.
The statistics of the individual correlations of

the contributors used to build each model with binding
affinity are shown in Table 1a. Overall statistics for both
models developedare shown inTable 1b. The classical
interface model accounts modestly well for the affinity
of the complexes of the benchmark when considering
only “rigid” protein–protein interactions, with a correla-
tion coefficient of r = 0.49 (p b 0.0001) (4-fold cross--
validation, N =72). However, it fails to describe the
affinity of “flexible” protein–protein interactions (those
showing conformational changes N1.0 Å) (r = 0.16,
p =0.1970).
All the data presented in this work collectively argue

that the NIS properties have a striking effect on binding
affinity. We therefore built a simple “global surface”
model that encompasses both the interface and the
NIS. It combines the %AApol

NIS and %AAchar
NIS on the NIS
with the number of atoms in the interface (NatomsINT)
and can explain reasonably well the experimental
binding affinity data in the dataset for all complexes
(r = 0.50, N = 143) (Table 1b):

− logK d ¼ α�%AApol
NIS þ β:%AAchar

NIS

þγ � NAtomsINT þ δ
ð2Þ

NatomsINT denotes the number of atoms in the
interface of the complex and %AAchar

NIS and %AApol
NIS

denote the percentages of charged and polar residues
on theNIS, respectively, andα = 0.0857,β = −0.0685,
γ = 0.0262 and δ = 3.0125 (obtained after 4-fold
cross-validation based on the rigid complexes only).
Our global surface model is successful for the

“rigid” protein–protein interactions and the corre-
sponding predictions for the “flexible” binders are
significantly improved: predictions for flexible com-
plexes become statistically significant (r = 0.32, N =

http://www.bioinf.manchester.ac.uk/naccess/
http://www.pdbbind-cn.org
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Fig. 7. Independent test of the (a) classical interface model [13] [Eq. (1)] and (b) global surface model introduced in this
work [Eq. (2)] for the prediction of protein–protein binding affinities against a compiled test set of protein complexes with
known experimental affinities and conformational change. Rigid are shown in the left panels whereas flexible complexes
are shown in the right panels; complexes discussed in-text are shown as squares within the correlation plots along with
their respective PDB IDs.
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71, p = 0.0065) when compared to those calculated
with the interface model, the latter not being
statistically significant (r = 0.16, N = 71, p =
0.1970) (Fig. 6a and b). Note that we chose to
parameterize the models based on the rigid com-
plexes only because flexible complexes add an
additional level of complexity in affinity prediction,
that of energetics stemming from conformational
change, mostly linked with entropy changes.

External test of the global surface model:
improvement of binding affinity prediction by
incorporating NIS properties

Making predictions on the same set that was used
for feature selection could lead to possible over-
fitting despite the fact that our model only has four
variables and that 4-fold cross-validation was
performed. To test for possible overfitting, we have
compiled an external dataset of protein–protein com-
plexes, for which binding affinity data are available in
PDBbind [53]. We have thoroughly searched for
unbound structures for all dimeric complexes provided
in PDBbind to assess the effect of conformational
changes on binding affinity prediction (these have
already been shown to be critical for accurate affinity
estimation). Our external dataset (Table 2) comprises
51 protein–protein complexes with known crystal
structures (resolution b 3.0 Å), significantly different in
nature from the ones used for training and
cross-validation of the models [4]. Thirteen complexes
bind in a near-native manner (i-RMSD ≤ 1.0 Å),
whereas 38 complexes undergo substantial conforma-
tional changes. Extreme examples of conformational
change are those of calmodulin in complex with (a)
calmodulin-sensitive adenylate cyclase [54]
(i-RMSD = 13 Å) and (b) CA/calmodulin-dependent
protein kinase type II delta chain [55] (i-RMSD = 23 Å).
The prediction results on this independent test set for
both the classical interface model and the global
surface model are shown in Fig. 7a and b.

Prediction of affinity for “near-rigid binders”

The classical interface model fails to relate to the
affinity of near-rigid binders if all complexes are
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considered (r = 0.28, N = 13, p = 0.3581), but affinity
is overestimated for a complex with large BSA
(~2426 Å2); such interface size is unusual for a
“near-rigid” binder (ATP/GTP binding protein in
complex with NEDD8 [56], indicated as a square in
Fig. 7a and b, “rigid complexes” plots, PDB ID: 4HCP).
If this protein–protein complex is excluded from the
calculations using the interface model, significant
relation between calculated and experimental affin-
ities emerges (r = 0.53, N = 12, p = 0.0625), albeit
weaker than the global surface model predicted
affinities (r = 0.65, N = 12, p = 0.0231). Overall, the
mean absolute prediction error [mean absolute error
(MAE)] for the classical interface model for all rigid
complexes is 2.1 ± 1.4 in − logKd units. On the
contrary, a lower MAE in the rigid dataset (MAE =
1.7 ± 1.1) is observed when global surface model is
used, and significant correlations with the experimental
affinities are derived for all complexes (r = 0.62,
N = 13, p = 0.0230); in the case of ATP/GTP
binding protein in complex with NEDD8 (for which
both models have the highest prediction error),
prediction error is 3.1 − logKd units with the global
surface model instead of 5.3 − logKd units with the
classical interface model.
Prediction of affinity for flexible complexes

Flexible complexes undergo substantial confor-
mational changes upon binding (i-RMSD N 1.0 Å).
Interestingly, the classical interface model still
significantly correlates with experimentally mea-
sured binding affinities (r = 0.37, N = 38, p =
0.0241; Fig. 7a), which is higher than what was
obtained on the training set (r = 0.16, N = 71, p =
0.1970). The MAE is, however, pretty large, reach-
ing 2.7 ± 2.5 in − logKd units and predictions for the
calmodulin complexes (indicated as squares in the
plots) are way off, but this is reasonable: both
complexes (PDB IDs: 1K93 and 2WEL) undergo
conformational changes reaching 13 Å and 23 Å
and bury very large surface areas (5468 Å2 and
3035 Å2, respectively). Another interesting complex
with an overestimated predicted affinity is for a
pCDK2/cyclin, a complex with unusually low affinity
(Kd N 1E-03 M measured using surface plasmon
resonance [57]), at the boundary of a detectable
interaction. The global surface model decreased the
MAE (1.7 ± 1.6 − logKd units) for these flexible
complexes and also yields a better correlation with
experimental Kd values with a Pearson's correlation
coefficient r = 0.43 (N = 38, p = 0.0073) compared
to the standard model.
This independent validation confirms our previously

described results: the interface size is a significant
contributor to binding affinity, but NIS properties,
when properly accounted for, can lead to increase in
prediction performance.
Discussion

We have identified and quantified a fundamental
principle that, next to interface properties, contrib-
utes to the binding affinity of protein–protein inter-
actions, namely the effect of the NIS. Similar effects
have been shown to alter through long-range
communication the catalytic activity of enzymes
[27]. Here they are demonstrated for the first time
on experimentally measured dissociation constants
of nearly 200 transient protein assemblies, all with
known conformational change, binding affinity and
high-resolution molecular structures of both their
unbound and bound states.
The various biophysical descriptors related to

interface properties account but for a fraction of
the binding affinity of a complex. Conformational
changes are one of the limiting factors for accurate
prediction. Nevertheless, even for complexes whose
association induces very few or no conformational
changes at all, binding affinity calculations using
such interface-only descriptors are qualitative, cor-
roborating previous findings [4,19–22]. Even sophis-
ticated energetic calculations using HADDOCK
score [58] and applied on the binding affinity
benchmark reinforce the abovementioned view:
van der Waals energy (a single descriptor) signifi-
cantly correlates with affinities for rigid binders (N =
73, r = 0.60, p b 0.0001), but then again, the
correlation is very low for complexes with confor-
mational changes (N = 71, r = 0.22, p = 0.0665).
Similar conclusions hold for the compiled test set in
this work (Fig. S4a–d).
We propose that one of the reasons for such a

limited performance, especially for flexible com-
plexes, is that NIS effects on binding affinity have
so far been neglected. We have now included these
in a simple prediction model, expanding the classical
interface model (Fig. 8a) into “global surface model”
that accounts for both interface and non-interface
surface parameters (Fig. 8b). Although it can relate
predicted affinities to experimental ones for the
largest dataset of protein–protein interactions with
known conformational change and binding affinity
assembled to date, the correlation coefficients
calculated are not particularly impressive, albeit
significant. Still, these correlations are the highest
observed among all current biophysical models in
binding affinity prediction [11,12].
The correlations that we observe and have

included in our global surface model are those of
the relative abundance of charged and polar
residues on the NIS with the binding affinity and
the dissociation constant koff. Note that the observed
long-range electrostatic effect is a function of the
nature of the NISs, the charge model and the
dielectric constant used. Charged residues on the
NIS affect the electrostatics of the interaction at
distances of up to 40 Å away from the center of the
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interface (assuming a 100 mM salt concentration),
acting on koff, whereas polar residues influence the
formation of a stable hydration shell that can shield
the protein from unintended interactions. We have
also shown that salt concentration, as expected, can
influence the electrostatic energy and therefore the
energy of the interaction; however, this effect might
not be as strong as predicted if the interaction is
through the low dielectric interior of the proteins.
Modeling ionic content of the solution in which each
experiment was performed is difficult but may lead to
a decrease in prediction error by more than 2-fold
[4].
Interestingly, polar and charged residues are

well-known frustration-prone amino acids [32], es-
pecially when located on the protein surface [32].
Indeed, deviations from the “principle of minimal
frustration” are functionally relevant [59,60] and have
already been shown to actually relate to protein
binding [61], dynamics [62], allostery [29] and com-
munication pathways by triggering frustration along
the protein structure [61]. The rationalization of their
effects on binding affinity presented here (long-
range electrostatics and preferential solvation) is in
line with frustration theory: the long-range electrostatic
contribution of charged residues could be propagated
within the structure to the interface via a front of highly
frustrated residues [61,63].
The observation that properties of the NIS are

conserved among orthologues is in line with the
hypotheses set by the Drummond and Kortemme
Fig. 8. Models of binding affinity contributions for protein–p
classical model accounts for interfacial parameters, namely the
model; this newmodel accounts for both interfacial (the number o
and non-interfacial properties (the percentages of polar, %A
contribution to the binding affinity can be explained by distant e
groups [64,65] that NIS regions must experience
selection pressure to avoid unintended protein–
protein interactions. Our results should however be
interpreted with caution as orthologous proteins
might not bind the same partner, an issue that
should be thoroughly investigated in future studies.
Note also that, orthologues, by definition, have some
sequence similarity and, as such, are expected to
have conserved properties of their NIS. We have
proposed here an explanation for this conservation
as a regulator of protein–protein binding affinity.
Our global surface model predicts that the effect of

single mutations on the NIS will be very small,
especially for large surfaces, as the residue per-
centages will not substantially change in such cases.
This is also in line with the observation made by
Franzosa and Xia [66] that protein surfaces are
prone to high mutation rates. A single mutation, even
a non-conserved one, on the protein surface will not
affect binding affinity in a significant manner.
However, the effect can be detected in available
experimental data. We performed for this a simple
analysis of alanine scanning studies collected in
ASEdb [67] for 26 complexes, having 446 single-
point mutations in total (Tables S8–S10). We first
classified mutations as being in the interface,
interface periphery (rim) or on the NIS (details in
Table S8), then calculated how far these residues
are from the interface periphery. The experimental
mutation data show, as expected, that the largest
effects on binding affinity occur when the mutations
rotein interactions: (a) classical interface model [13]. This
apolar (BSAapol) and polar (BSApol) BSA. (b) Global surface
f atoms in the interfaceNatomsINT, directly related to the BSA)
Apol
NIS, and charged, %AAchar

NIS , residues on the NIS); their
lectrostatics and solvent effects (see the main text).
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are within the interface. This effect decays as a
function of distance from the interface, but detect-
able changes in binding affinity are still observed far
away from the interface periphery (Fig. 9).
However, although surface mutation rates are

high, we can directly observe that the underlying
properties are preserved. Our conservation analysis
results are consistent with the sequence-specific
analysis set by the Blundell group, demonstrating
that distribution of amino acids in protein–protein
complexes is highly environment dependent [51]
and that solvent-accessible regions exhibit a
certain degree of conservation [52]. Indeed, as
demonstrated in this work, polar and charged
distributions on the NIS of protein–protein com-
plexes, which are directly related to affinity, remain
constant within homologous protein–protein com-
plexes (orthologues) but vary a lot for non-homologous
complexes.
From our regression model, we have identified

general rules for stabilizing and destabilizing muta-
tions on the NIS. An increase of the fraction of polar
residues on the NIS of the protein–protein com-
plexes is predicted to lead to an increase in the
stability of the complex through favorable surface–
water interactions and therefore of the binding
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Fig. 9. Analysis of 446 experimental alanine scanning mut
interface and its periphery for 26 complexes. Most of the e
Significant effects are however still observable at large distan
ΔΔG values are illustrated using a box-and-whisker diagram. T
the first to the third quartile of the distribution; boxwhiskers identify
lines in the box identify the median and the average, respective
affinity. Although we would expect that whatever
conformational change a complex may have under-
gone during its formation would have no effect on its
post-complex stabilization, we do observe a depen-
dence of the contribution of the NIS residues to Kd
and koff, but it diminishes with increasing conforma-
tional change. This would mean that conformational
entropy is correlated with the overall entropy of the
interaction (complexes with higher conformational
entropy changes are in general more entropic). This
is not a rule per se but has been shown by NMR for
several biomolecular interactions [68–70]. Increase
of the concentration of charged residues on the NIS
is predicted to have destabilizing effects, but this
effect is complex in practice as it may depend both
on the residue mutated and on the distance from the
interface. Although counterions on protein surfaces
should also have an effect on protein–protein
interactions, their role is far from being understood
[71]. Still, electrostatic pairing on the surface
between negatively and positively charged residues
should be promoted, even when mutating residues
at distances of up to 40 Å from the interface center.
Electrostatic pairing on the rim region has already
been successfully applied to enhance association
rates primarily by the Schreiber group [5], but this
on-Interacting Surface 
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may have a mixed effect on dissociation as also
highlighted in this work.
Our global surfacemodel provides thus a test bed to

experimentalistswho can put our hypothesis to the test
and work in that direction is ongoing. Finally, it is clear
that more sophisticated models for binding affinity
calculation will have to be developed if one wants to
bridge the accuracy gap that should bring us within
experimental error for any protein–protein interaction.
Such models will have to consider properties of both
the interface and NIS, account for the effect of
conformational changes and properties of the free
components as well. Reaching this goal would have a
dramatic impact on current and future understanding
of protein–protein interactions and open the route to
the design of “materia medica” for protein–protein
interactions.
Materials and Methods

Dataset

We have analyzed 144 complexes with known binding
affinities [4]. For 51 of them, association rate and dissoci-
ation rate constants (kon and koff) were manually procured
from the literature (Table S1). The structures used for the
calculations of the parameters were downloaded from the
Protein Data Bank† [72]. Since both bound and unbound
experimental structures are available, direct observations
canbemade that are relevant to the conformational changes
that occur upon binding.
Calculation of physicochemical and
biophysical parameters

Physicochemical parameters of the complexes were
calculated using the PROTORP server [73]. Shortly, PRO-
TORP provides the following:

(a) Interfacial parameters:
(1) Interface biochemical parameters, such as per-

centage of polar (=O, CH2P, –OH, =CP–, O
−),

non-polar (NS, –CH3, –CH2A, NCH–, =CHA) and
neutral (=CA–, CH2N, NNH, –NH2 and NH3)
atoms (where A denotes aromatic rings), per-
centage of polar, non-polar and charged resi-
dues, aswell as the absolute number and typeof
atoms and residues present in the interface.

(2) Shape parameters, including planarity, eccen-
tricity and gap volume of the interface.

(3) Percentage and categorization of secondary
structure elements (alpha, beta, alpha/beta,
coil) in the interface.

(4) Structural parameters, including number of
hydrogen bonds and number of salt bridges,
the BSA of the interface in Å2 and the
percentage of the surface area that corre-
sponds to the interface.
(b) Non-interfacial parameters:
(1) NIS biochemical parameters, such as percent-

age of polar, non-polar and charged residues
on the surface, as well as the absolute number
and type of residues on the complex's surface.
%AAchar

NIS and %AApol
NIS are defined as the number

of charged or polar residues, multiplied by 100,
present on theNIS divided by the total number of
residues on the NIS.

(2) Structural parameters as in (3) and (4), but for
the NIS of the complex.

The Protein Interaction Calculator Web server [74] was
also used to gain insight into non-covalent interactions. We
calculated the number of the following:

(a) Hydrophobic interactions (according to the Kyte–
Doolittle hydrophobicity index [50]),

(b) Intermolecular disulfide bonds (at a distance cutoff of
2.2 Å),

(c) Hydrogen bonds [75] [main chain–main chain
(MC-MC), main chain–side chain (MC-SC) and
side chain–side chain (SC-SC)],

(d) Ionic interactions [76],
(e) Aromatic–aromatic [77] and aromatic–sulfur interac-

tions [78] and
(f) Cation–π interactions [79].

The apolar andpolarBSAof the protein–protein complexes
were calculated using NACCESS [80].
Correlation studies

We performed correlation studies of 39 structural param-
eters with binding affinity data previously collected [4].
Correlation of all 39 parameters with theKd of the complexes,
their empirically derived ΔG values and the association and
dissociation rates of a subset of the complexes (kon and koff)
was calculated using the Pearson product-momentum
correlation coefficient (r):

r ¼ 1
N−1

Xn
i¼1

x i−x
σx

� �
y i−y
σy

� �
ð1Þ

where r denotes the correlation coefficient, N is the number
of complexes andσx andσy are the standard deviation of the
x and y variables.
kon and koff were converted into their logarithmic (log) and

(− log) values, respectively. The complexes were classified
based on the amount of conformational change occurring
upon binding as measured by the interface RMSD (i-RMSD:
RMSD calculated on backbone atoms of all residues within
10 Å from the partner molecule). Complexes that undergo
minor conformational changes and approximate rigid-body
association (i-RMSD ≤ 1.0 Å) constitute the first class,
whereas complexes that do not satisfy this criterion
(i-RMSD N 1.0 Å) are discussed separately and constitute
a second class. The significance of the observed correlations
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was estimated using two-tailed p-values, both absolute and
FDR corrected [81]. FDR correction did not alter significance
of the variables discussed in the manuscript (FDR corrected
p-values are included in Table S11).

Structural definition of NIS

The interface residues of a protein–protein complex were
defined as those that show a change between unbound and
bound forms of more than 5% of relative accessibility as
defined by NACCESS [80]. All other surface residues are
defined as being part of the NIS.

Evolutionary conservation of the NIS of protein–
protein complexes

Structures of protein–protein complexes in which both
partners correspond to the same organism were extracted
from our benchmark of 144 protein–protein interactions
with known binding affinities [4]. Out of these, only binary
complexes were kept; that is, complexes that are formed
when single-chain proteins are interacting. We identified
47 protein–protein interactions, corresponding to the
biological assemblies of complexes with PDB IDs 1B6C,
1BRS, 1BUH, 1E6E, 1E96, 1EMV, 1EWY, 1F6M, 1FFW,
1FQJ, 1GLA, 1GPW, 1GRN, 1GXD, 1H9D, 1HE8, 1I2M,
1IBR, 1JIW, 1KTZ, 1M10, 1MQ8, 1NVU, 1NW9, 1OC0,
1PVH, 1PXV, 1QA9, 1R6Q, 1S1Q, 1WQ1, 1XD3, 1XQS,
1Z0K, 1ZHI, 2BTF, 2C0L, 2FJU, 2HLE, 2HQS, 2HRK,
2J0T, 2O3B, 2PCC, 2TGP, 2WPT and 3CPH.
Sequences for each protein forming each complex

were derived directly from the PDB structures and used as
input in HMMER‡ [82]. HMMER is a tool for sequence
analysis based on profile hiddenMarkovmodels and can be
used to identify protein sequence homologues in sequence
databases (in this work, UniProt curated sequences were
searched). Compared to BLAST [83], FASTA [84] and other
sequence alignment and database search tools, HMMER
aims to be more accurate and better at detecting remote
homologues [48]. All homologous sequenceswere identified
for each protein and only sequences meeting specific criteria
for sequence length were kept (see Table S6). This filter was
adopted to avoid large insertions/deletions that could hamper
the analysis of the NISs.
The homologues for each complex were then analyzed

using two different approaches: one, sequence-based,
assessing the conservation of polar/charged/apolar charac-
ter of equivalent residues in a multiple sequence alignment
of homologous sequences, and another, structure-based,
investigating structural features of the homologues after
homology modeling.
For the sequence-based analysis, for each chain of

each complex, a multiple sequence alignment of the chain
and all its homologues was built using the Clustal Omega
[85] Web server available at the EBI Web site [86]. The
alignments of the chains for each complex were then
concatenated so that each homologue was represented by
one sequence only. The concatenated multiple sequence
alignments were filtered for NIS residues and these were
then quantified based on their character (polar: C,H,N,Q,S,
T,Y,W; apolar: A,F,G,I,V,L,M,P; charged: E,D,K,R).
For the structure-based analysis, a pipeline was created,

using modules from the Biopython project [87] to align the
template sequence and the query (found) sequence of
the protein–protein complex using the Needleman–
Wunsch algorithm as implemented in NEEDLE [88] and
finally construct homology models with MODELLER 9v9
[89]. In this procedure, 10 homology models for each
homologue were assembled (N30,000 in total); the best
according to the MODELLER score was selected in order
to further calculate propensities of polar and charged
residues on the NIS, as well as the size of the interface
region.
Average and standard deviation of surface properties of

the homologous complexes were analyzed as a function of
their sequence identity to the original protein–protein
complex sequence.

Distant effect of electrostatics in protein–protein
interactions

A simple coulomb-based model [90] was used to
estimate the electrostatic effect on protein–protein com-
plexes as a function of distance from the center of the
interface, considering only charged amino acids. Stan-
dard parameters were used (ε = 1.0, ionic strength =
100 mMsalt, pH =7.0, T = 298 K). Note that, in our simple
model, varying the parameters will only affect the
magnitude of the electrostatic effect not the patterns
derived for the various complexes. We have also
calculated the electrostatic energy in different ionic strengths
(100, 150, 200 and 250 mM salt). The dielectric constant
was set to 1.0 to estimate the electrostatic contribution
“through” the protein–protein complex.
In order to assess the electrostatic effect as a function of

distance, we applied the following protocol to each
protein–protein complex in the benchmark:

(1) Read structure of complex composed of proteins A
and B.

(2) Calculate electrostatic energy (without cutoffs)
using standard coulomb potential (only of titratable
groups) of native complex AB (Eelec

AB
native) and of

A (Eelec
A
native) and B (Eelec

B
native) alone.

(3) Calculate electrostatics of binding using

Eelec
A−B

;binding;native

¼ Eelec
AB

native– Eelec
A
native þ Eelec

B
native

� �

(4) Find the geometrical center of mass of the
interface.

(5) Define (4) as the center point and draw a sphere of
3 Å radius.

(6) Mutate all residues outside the sphere to alanine.
(7) Calculate energy (Eelec

AB ) for ComplexABala[3Å], for
ProteinAala[3Å] and for ProteinBala[3Å].

(8) Calculate electrostatics of binding using

Eelec
A−B

binding;ala 3½ � ¼ Eelec
AB

ala 3½ �–ðEelec
A
ala 3½ �

þEelec
B
ala 3½ �Þ

(9)

Å Å Å

Å

Iterate from step 5 increasing the sphere radius by
3 Å, up to 90 Å.
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This model calculates the difference in the coulomb
energy (kcal mol−1) of a protein complex from that of its
unbound constituents as a function of distance from the
interface, considering the electrostatic contribution of each
titratable group within a defined sphere and assigning
the pKa and charge state according to the Henderson–
Hasselbalch equation.
Analysis of solvent–surface interactions

We collected 186 ultra-high-resolution (≤1 Å) crystal
structures of proteins (see Table S7) using the advanced
search in PDB [72]. The search options were as follow:

(1) ultra-high-resolution crystal structures (resolution
better than 1.0 Å),

(2) protein structures only (no limitation in the number
of chains) and

(3) a non-redundancy sequence criterion (30% cutoff)
in order to avoid similar structures in our analysis
that would influence the subsequent data
treatment.

The derived dataset was filtered for structures that
miss water, have unusually very low B-factors or are
designs. The final set is composed of 184 structures
(Table S7).
The water contacts were analyzed using a 3.9-Å cutoff

(water oxygen–protein heavy atom distance) (also defined
in LIGPLOT [91] by default). The surfaces of the proteins
were defined using standard NACCESS [80] criteria and
classified into polar, charged and apolar fractions using the
Eisenberg Hydrophobicity Scale [92] or/and the Kyte–
Doolittle scale [50]. The average number of contacts (Ncont

wat )
of water molecules with different fractions of the protein
surface was analyzed as a function of the B-factor of the
water molecules.
Present address: P. L. Kastritis, EMBL Heidelberg,
Meyerhofstraße 1, 69117 Heidelberg, Germany.

†www.pdb.org
‡http://hmmer.janelia.org/
Building binding affinity models

Two multiple linear regression models were constructed
and validated using a 4-fold cross-validation procedure:

(1) The first follows the idea of Horton and Lewis [13],
where apolar and polar BSAs along with a constant
term can be used to model the affinity.

(2) The second includes the number of atoms in the
interface and the percentages of charged and polar
residues on the NIS of the complexes along with a
constant term.

The models were derived using the structure-based
binding affinity benchmark [4], which includes non-redun-
dant complexes with known unbound structures of the
binders and, therefore, known conformational change. The
rigid complexes from the dataset having i-RMSD ≤ 1.0 Å
(72 complexes in total) were used for training and for 4-fold
cross-validation. The reported coefficients were taken as the
average of the 4-fold cross-validation optimization runs. The
remaining complexes (i-RMSD values N1.0 Å) were blindly
predicted (71 complexes in total; complex 2OZA:B_A was
removed since its BSA was extraordinary large and detected
as an outlier using the standard Grubbs' test).

Testing binding affinity models

Biological assemblies of protein–protein complexes
present in PDBbind [53] were downloaded from the Protein
Data Bank, with a resolution criterion of b3 Å. Only dimeric
complexes having single-chain partners (being in the
biological assembly in the form PDBID_A:B, A being
protein1, B being protein2, respectively) were considered
in order to avoid complicated equilibria among three or
more chains. Binding affinity data were retrieved directly
from PDBbind [53]. For all complexes collected, unbound
structures were searched in the PDB, having 95% of
sequence identity as a criterion for a successful hit.
Unbound components were only used to assess confor-
mational changes and not any binding properties. In total,
51 non-redundant protein–protein complexes with known
unbound partners and experimental affinity were found to
match the abovementioned conditions. Complexes are
shown in Table 2 and associated references can be found
in Table S12.
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