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We investigate the effect of interactions on condensate-number fluctuations in Bose-Einstein
condensates. For a contact interaction we variationally obtain the equilibrium probability distribution
for the number of particles in the condensate. To facilitate comparison with experiment, we also calculate
the zero-time delay autocorrelation function gð2Þð0Þ for different strengths of the interaction. Finally, we
focus on the case of a condensate of photons and find good agreement with recent experiments.
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Introduction.—Fluctuations are ubiquitous in physics:
from the primordial quantum fluctuations in the early
Universe that reveal themselves as fluctuations in the
cosmic microwave background, to current fluctuations in
every-day conductors. For large voltages, the latter fluctu-
ations give rise to shot noise, that is due to the discrete
nature of charge [1]. As a consequence, shot noise can be
used to determine the quanta of the electric charge of the
current carriers in conducting materials [2]. Indeed, it has
been used to characterize the nature of Cooper pairs in
superconductors [3] and the fractional charge of the
quasiparticles of the quantum Hall effect [4]. For low
voltages, the noise in the current is thermal and is called
Johnson-Nyquist noise [5,6]. Contrary to shot noise,
thermal noise is always present in electrical circuits, even
if no externally applied voltage is present, since it is due to
thermal agitation of charge carriers, that leads to fluctuating
electromotive forces in the material.
Theoretically, fluctuations in equilibrium are described

by the fluctuation-dissipation theorem, as formulated by
Nyquist in 1928 and proven decades later [7]. This theorem
relates the response of a system to an external perturbation
to the fluctuations in the system in the absence of that
perturbation. Given a certain fluctuation spectrum we can
reconstruct the response of the system. Therefore, this
theorem is very powerful, as was fervently argued by the
Japanese physicist Kubo [8].
Having stressed the importance of fluctuations in physics

and the information they contain, we now zoom in on
condensate-number fluctuations as our main point of
interest. Traditionally, weakly interacting Bose-Einstein
condensates were first observed in dilute atomic vapors
[9]. For these systems, it is very difficult to measure number
fluctuations because typically number measurements are
destructive. Therefore, theoretical work has focused more
on density-density correlation functions [10,11].
In recent years, Bose-Einstein condensates of quasipar-

ticles have also been created, such as exciton-polariton
condensates [12], magnon condensates [13], and

condensates of photons [14,15]. These condensates of
quasiparticles are realized under different circumstances
compared to the atomic condensates. For instance, the
condensates of quasiparticles are created at higher temper-
atures than the condensates of dilute atomic gases: from
several kelvin for the exciton-polariton condensate to room
temperature for the photonic condensate. Additionally, the
condensates of quasiparticles are not in true equilibrium,
since the steady state is a dynamical balance between
particle losses and particle gain by external pumping with a
laser. Due to these differences, new experimental possibil-
ities have opened up. For example, large number fluctua-
tions of the order of the total particle number have been
observed in a condensate of photons [16].
In this Letter we investigate number fluctuations in Bose-

Einstein condensates. We start by introducing an effective
contact interaction into the grand-canonical Hamiltonian of
a Bose gas and derive an equilibrium probability distribu-
tion for the number of particles in the condensate.
Subsequently, we investigate these distributions for differ-
ent condensate fractions and interaction strengths. We also
calculate the zero-time delay autocorrelation function
gð2Þð0Þ to quantify the number fluctuations. In this manner
we are able to reproduce all experimental curves of Schmitt
et al. [16] by using the interaction strength as a single fitting
parameter. Having provided this interpretation of the
experimental results, we finally discuss possible mecha-
nisms for the interactions in a condensate of light.
Interaction effects on number fluctuations.—We con-

sider a harmonically trapped Bose gas with a fixed number
of particles. Because the condensates of quasiparticles are
typically confined in one direction, we specialize to the
case of two dimensions. However, the following treatment
is completely general and can easily be generalized to
higher or lower dimensions.
To investigate the number fluctuations, we first calculate

the average number of particles hN0i in the condensate.
Because the condensates of quasiparticles allow for a free
exchange of bosons with an external medium we treat the
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system in the grand-canonical ensemble: the probability
distribution PðN0Þ for the number of condensed particles is
of the form PðN0Þ ∝ exp½−βΩðN0Þ�, with ΩðN0Þ the grand
potential of the gas of bosons.
To find the grand potential we use a variational wave

function approach. We note that the bosons in the con-
densate typically interact with each other. A reasonable first
approximation for the form of this interaction is a contact
interaction, as essentially every interaction is renormalized
to a contact interaction at long length and time scales,
independent of the precise origin of the interactions.
Therefore, we consider the following energy functional
for the macroscopic wave function ϕ0ðxÞ of the Bose-
Einstein condensate [17]:

Ω½ϕ0ðxÞ� ¼
Z

dx

�
ℏ2

2m
j∇ϕ0ðxÞj2 þ VexðxÞjϕ0ðxÞj2

− μjϕ0ðxÞj2 þ
g
2
jϕ0ðxÞj4

�
; ð1Þ

where x is the two-dimensional position, the first term
represents the kinetic energy of the condensate, VexðxÞ ¼
mω2jxj2=2 is the harmonic trapping potential, μ is the
chemical potential for the particles, and g is the coupling
constant of the effective pointlike interaction between the
particles.
We use the Bogoliubov substitution ϕ0ðxÞ¼

ffiffiffiffiffiffi
N0

p
ψqðxÞ,

with the normalized variational wave function ψqðxÞ, such
that

R
dxjϕ0ðxÞj2 ¼ N0. Subsequently, we minimize the

energy as a function of the variational parameter q, which
describes the width of the condensate. As an ansatz we take
the variational wave function to be the Gaussian
ψqðxÞ ¼ ð ffiffiffi

π
p

qÞ−1 expð−jxj2=2q2Þ. Substituting this into
the energy given by Eq. (1) and minimizing with respect to
the variational parameter, we obtain

qmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πℏ2 þmN0g

2πω2m2

4

s
¼ qho

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~gN0

2π

4

r
; ð2Þ

where we introduced the dimensionless coupling constant
~g ≔ mg=ℏ2 and the harmonic oscillator length qho ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mω

p
. Note that for a sufficiently small number of

condensate particles qmin reduces to qho. For a large number
of condensate particles the Thomas-Fermi ansatz for the
wave function is in principle more appropriate. However, it
is well known from the atomic condensates that even in this
case the Gaussian approach is rather accurate [18].
We now substitute the minimal value for the variational

parameter q into the energy functional, yielding the
probability distribution

PðN0Þ ∝ exp

�
βN0

�
μ − ℏω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~gN0

2π

r ��
; ð3Þ

where the normalization is
R∞
0 dN0PðN0Þ ¼ 1.

Experimentally, the relevant parameter is the condensate
fraction x ≔ hN0i=hNi, with N the total number of par-
ticles. Thus, to relate our results to the experiments we need
a relation between hN0i and the average total number of
particles. For temperatures T below the critical temperature
for Bose-Einstein condensation, the average number of
particles in excited states can in a good approximation be
determined from the ideal-gas result [19]. We obtain

hNexðTÞi ¼
Z

∞

0

gðϵÞdϵ
expðϵ=kBTÞ − 1

¼ Ns

6

�
πkBT
ℏω

�
2

; ð4Þ

where we used the density of states gðϵÞ ¼ Nsϵ=ðℏωÞ2 for a
two-dimensional harmonic trapping potential [20]. The
integer Ns denotes the number of spin components of
the boson. The critical temperature Tc is defined by
hNi ¼ hNexðTcÞi. With this criterion, we find

hN0i ¼
xNs

6ð1 − xÞ
�
πkBT
ℏω

�
2

: ð5Þ

Results.—Given an interaction strength ~g, we use the
normalized probability distribution in Eq. (3) to calculate
the chemical potential as a function of hN0i; i.e.,
μ ¼ μðhN0iÞ. Given a condensate fraction x, we then use
Eq. (5) to calculate hN0i and the corresponding μ. As an
example we take Ns ¼ 2 [21], which is appropriate for the
Bose-Einstein condensate of photons [14–16]. Finally, we
use the obtained chemical potential to plot the probability
distribution at fixed x and ~g. Typical plots of the probability
distribution for different condensate fractions are displayed
in Fig. 1. Clearly, we have exponential behavior due to a
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FIG. 1 (color online). Typical plot of the probability distribu-
tion for two-component bosons for a fixed interaction
strength ~g ¼ 5 × 10−6 and different condensate fractions
(from bottom to top) xred ¼ 0.04, xorange ¼ 0.28, xyellow ¼ 0.40,
xgreen ¼ 0.45, and xblue ¼ 0.58.

PRL 113, 135301 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

26 SEPTEMBER 2014

135301-2



Poissonian process for small condensate fractions and
Gaussian behavior for larger condensate fractions.
Physically, this shows that the effect of repulsive inter-
actions is to reduce number fluctuations, as the interactions
give fluctuations an energy penalty. Increasing the inter-
action strength yields Gaussian behavior for even smaller
condensate fractions. These Gaussians are also more
strongly peaked around hN0i for higher interaction
strengths, which is expected since stronger interactions
between the bosons leads to the supression of fluctuations.
Next, we obtain the second moment hN2

0i from the
probability distribution PðN0Þ. This gives us all the
information needed to quantify the number fluctuations
of the condensate. The time-averaged second-order corre-
lation function of the light intensity is given by
gð2ÞðτÞ ≔ hIðtÞIðtþ τÞi=hIðtÞihIðtþ τÞi, where τ is the
time difference in the arrival of two beams of photons
on the detectors in a Hanbury-Brown–Twiss experiment
and IðtÞ represents the intensity of those beams at time t. In
fact, the corresponding zero-time delay autocorrelation
function is given by

gð2Þð0Þ ¼ hN2
0i

hN0i2
: ð6Þ

A plot of gð2Þð0Þ against the condensate fraction is
displayed in Fig. 2 for different interaction strengths ~g.
We note that bunching of bosons takes place for all
interactions at small condensate fractions. Theoretically,
we know that for thermal photons gð2Þð0Þ ¼ 2 [22], which
is exactly what we observe in our plots for the correspond-
ing case x ¼ 0. For larger condensate fractions gð2Þð0Þ → 1.
The interpretation is as follows. Suppose we fix the

condensate fraction x. At small interactions the quartic
term in the energy in Eq. (1) is small and the minima of the
energy are small and broad, yielding large number fluctua-
tions. If we increase the interaction, the minima become
deeper and more narrow, effectively reducing the fluctua-
tions. The same reasoning holds for a fixed interaction
strength and increasing condensate fractions, as we can also
see in Fig. 1.
Comparison with experiments on a condensate of

light.—The results in the previous sections were quite
generic for a two-dimensional, harmonically trapped gas
of bosons with two possible polarizations. In fact, mea-
surements of gð2Þð0Þ have been performed recently [16] in a
Bose-Einstein condensate of photons, enabling us to
compare our theory with experiments. In this experiment
photons are confined in a dye-filled cavity, providing a
harmonic potential and giving the photons an effective
massm by fixing their longitudinal momentum kz [14]. The
photons thermalize to the temperature of the dye solution
by scattering of the dye molecules. Additionally, photon
losses from the cavity are compensated by external pump-
ing, yielding a constant average number of photons.
In Fig. 2 we plot the experimental data points of

Ref. [16]. We are able to reproduce all data sets by tuning
the interaction parameter ~g. Unfortunately, only one exper-
imental value for ~g is known. By measuring the size of the
condensate for different condensate fractions, it was exper-
imentally found that ~g ¼ ð7� 3Þ × 10−4 [14], which only
differs a factor of two with our result for the purple curve
gpurple ¼ 2 × 10−4. However, we note that the trapping
potential, concentration of dye molecules and effective
photon mass were somewhat different for the purple data
points and the measurement of the interaction strength. We
expect the interaction strength to vary smoothly with
variations in the experimental parameters. Hence the
agreement is remarkable and points to the important
role of interactions on number fluctuations in these
experiments.
The data points in Fig. 2 were obtained for different dye

molecule densities nmol and detunings δ, which is roughly
the difference between the cavity frequency and a
dye-specific frequency related to the effective absorption
threshold of the dye molecules. Within our theory, the
dependence of number fluctuations on these parameters can
be incorporated via their influence on the interactions.
Therefore, it would be useful to perform systematic
measurements of ~g for different detunings and molecule
concentrations, as is also proposed in Ref. [23]. With this
information, we would be able to directly compare all
experimental results with our theoretical predictions for the
number fluctuations [24].
Summarizing, we have developed a general framework

to calculate gð2Þð0Þ for trapped Bose-Einstein condensates.
Applying this to a condensate of light we have found good
agreement with recent experiments. Note that an alternative

FIG. 2 (color online). Plot of the zero-time delay autocorrela-
tion function gð2Þð0Þ against the condensate fraction x for
ω ¼ 8π × 1010 Hz and T ¼ 300 K. The different curves corre-
spond to different interaction strengths (from top to bottom):
~gred¼5×10−7, ~gorange ¼ 2 × 10−6, ~ggreen ¼ 5 × 10−6, ~gblue ¼
3 × 10−5, ~gpurple ¼ 2 × 10−4. All curves are compared to the
included experimental points from Schmitt et al. [16]. The
experimental results for small condensate fraction x are unreliable
due to systematic measurement errors. Indeed, theoretically we
have limx→0gð2Þð0Þ ¼ 2.
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explanation for the experimental results of Fig. 2 is discussed
in Refs. [16,25] and is based on a master equation for the
probability pn to find n photons in the condensate ground
state. The dye molecules are modeled as two-level systems
without a center-of-mass degree of freedom. As there are
many momentum modes available to the dye molecules at
room temperature, we believe this is not an appropriate
statistical description. Nevertheless, similar fits to ours in
Fig. 2 can be obtained in this manner by using the number of
dye molecules as a fitting parameter. The experimental data
are then interpreted as signaling a transition from the
canonical to the grand-canonical regime. However, the
required size of the molecular heat bath varies from 109 to
1010 dye molecules, which usually is sufficiently large for
there to be no difference in the choice of ensemble.
Discussion.—The question remains: what mechanism

can cause an interaction that depends on both nmol and the
detuning δ? In fact, we conclude from the experimental data
in Ref. [16] that the interaction behaves counter-intuitively:
it decreases both for an increasing molecule density and for
a decreasing detuning. Three different mechanisms are
expected to play a role [23,26].
Thermal lensing is the phenomenon that the index of

refraction n depends on the temperature of the medium. In
the experiment of interest to us, nonradiative decay of the
dye molecules, local fluctuations in the photon number, and
the external pumping with a laser lead to temperature
fluctuations around the average temperature T0. For a
homogenous temperature distribution this implies, to low-
est order, that nðTÞ ¼ nðT0Þ þ αðT − T0Þ. As the photon
energy depends on the index of refraction, these temper-
ature fluctuations couple to the photons. This leads to a
photon-photon interaction as displayed in the Feynman
diagram in Fig. 3. By assuming that the temperature
fluctuations behave diffusively, we derive in the
Supplemental Material [27] that the interaction strength
due to this effect is given by

~g ¼ 4m3c4α2T0

3D0ℏ2n6ðT0Þcp
; ð7Þ

where D0 ¼ 8π=kz is the length scale associated with the
fixed longitudinal momentum kz of the photons and cp is
the heat capacity of the solution. Note that this interaction
has no explicit dependence on the detuning δ, or on the
concentration of dye molecules nmol, as it is fully deter-
mined by the properties of the solution. Using typical
numerical values [31], we obtain an estimate for the
interaction strength which is several orders of magnitude
below the only experimental result ~g ∼ 10−4, suggesting
that this is not the dominant interaction effect.
The other possible photon-photon interaction is due to

the Kerr effect; i.e., the index of refraction is intensity
dependent due to the properties of the solvent molecules, or
due to photon-photon scattering mediated by the dye
molecules. The former effect has been investigated in
Refs. [23,32] and turns out to be negligible. We therefore
consider the latter effect by means of a Feynman diagram in
the form of a box, see Fig. 4.
We adopt a simplified description of the complex

rovibrational structure of the dye molecules by describing
them as an effective two-level system with an excited state
that has a finite lifetime Γ. This leads to

~gðμÞ ¼ mg4molβnmol

ℏ4Γ2D0

fðβμ − βδÞ; ð8Þ

where gmol is the coupling strength of the photons to the
molecules and fðβμ − βδÞ is a smooth dimensionless
function peaked around zero. By fitting the self-energy
of the photons to the experimental absorption spectrum of
the dye, we obtain numerical values for gmol, Γ and δ [33].
Subsequently, we have to solve ~gðμÞ self-consistently

with the Gross-Pitaevskii equation. For typical

FIG. 3. Feynman diagram for the photon-photon interaction
due to exchange of temperature fluctuations δT (zigzag propa-
gator). The photons γ (wiggly propagator) are considered to be
part of the condensate and are thus at zero frequency and at
momentum kþ ¼ ð0; 0; kzÞ, as their z-component momentum is
fixed and kx ¼ ky ¼ 0 for the condensate of the homogeneous
photon gas.

FIG. 4. Feynman diagram for the photon-photon interaction
mediated by the dye molecules. Again we take the photons to be
in the condensate: kþ ¼ ð0; 0; kzÞ and the frequency is zero. The
molecule (straight line propagator) forms a closed loop of ground
(↓) and excited (↑) states, with momentum p and Matsubara
frequency ωm.
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experimental parameters we obtain a value for the inter-
action strength ~g which is also small compared to the
experimental value. However, the magnitude of ~g is rather
uncertain due to the simplification of the rovibrational
energy spectrum of the dye molecules to a two-level
system. Interestingly, we see from Eq. (8) that this
interaction depends both on the detuning δ and the density
of molecules nmol. We show in the Supplemental Material
[27] that a self-consistent solution can give rise to an
interaction that decreases both for decreasing δ and
increasing nmol, which is precisely the counterintuitive
behavior the experimental results exhibit.
In conclusion, we have calculated the effect of self-

interactions on number fluctuations in Bose-Einstein con-
densates. Comparing our results with recent experiments on
a condensate of light, we find good agreement. However,
systematic measurements of the interaction strength are
necessary to understand the true nature of the interaction. If
the interaction is indeed a contact interaction at long
wavelengths, then this would imply that the photon con-
densate is also a superfluid.

It is a pleasure to thank Dries van Oosten, Jan Klaers, and
Martin Weitz for useful discussions and the latter two also
for providing experimental data. This work is supported by
the Stichting voor Fundamenteel Onderzoek der Materie
(FOM) and is part of the D-ITP consortium, a program of
the Netherlands Organisation for Scientific Research
(NWO) that is funded by the Dutch Ministry of
Education, Culture, and Science (OCW).

*e.c.i.vanderwurff@students.uu.nl
[1] C. Beenakker and C. Schönenberger, Phys. Today 56, No. 5,

37 (2003).
[2] W. Schottky, Ann. Phys. (Berlin) 362, 541 (1918).
[3] F. Lefloch, C. Hoffmann, M. Sanquer, and D. Quirion, Phys.

Rev. Lett. 90, 067002 (2003).
[4] R. de Picciotto, M. Reznikov, M. Heiblum, V. Umansky, G.

Bunin, and D. Mahalu, Nature (London) 389, 162 (1997).
[5] H. Nyquist, Phys. Rev. 32, 110 (1928).
[6] J. Johnson, Phys. Rev. 32, 97 (1928).
[7] H. B. Callen and T. A. Welton, Phys. Rev. 83, 34 (1951).
[8] R. Kubo, Rep. Prog. Phys. 29, 255 (1966).
[9] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E.

Wieman, and E. A. Cornell, Science 269, 198 (1995).
[10] E. Altman, E. Demler, and M. Lukin, Phys. Rev. A 70,

013603 (2004).
[11] N. Cherroret and S. E. Skipetrov, Phys. Rev. Lett. 101,

190406 (2008).

[12] J. Kasprzak et al., Nature (London) 443, 409 (2006).
[13] S. O. Demokritov, V. E. Demidov, O. Dzyapko, G. A.

Melkov, A. A. Serga, B. Hillebrands, and A. N. Slavin,
Nature (London) 443, 430 (2006).

[14] J. Klaers, J. Schmitt, F. Vewinger, and M. Weitz, Nature
(London) 468, 545 (2010).

[15] J. Klaers, J. Schmitt, T. Damm, F. Vewinger, and M. Weitz,
Appl. Phys. B 105, 17 (2011).

[16] J. Schmitt, T. Damm, D. Dung, F. Vewinger, J. Klaers, and
M. Weitz, Phys. Rev. Lett. 112, 030401 (2014).

[17] H. T. C. Stoof, K. B. Gubbels, and D. B. M. Dickerscheid,
Ultracold Quantum Fields (Springer, New York, 2009).

[18] G. Baym and C. J. Pethick, Phys. Rev. Lett. 76, 6
(1996).

[19] Note that we have kBT ≫ μ. This implies that the thermal
cloud around the condensate can be accurately described by
a noninteracting thermal gas of bosons.

[20] H. Smith and C. J. Pethick, Bose-Einstein Condensation in
Dilute Gases, 2nd ed. (Cambridge University Press, Cam-
bridge, England, 2008).

[21] The photons are described with an effective mass m,
associated with their fixed longitudinal momentum. How-
ever, the effective nonrelativistic form of the Hamiltonian
does not change the spin degeneracy for these photons
inside the cavity.

[22] C. C. Gerry and P. L. Knight, Introductory Quantum Optics
(Cambridge University Press, Cambridge, England, 2005).

[23] R. A. Nyman and M. H. Szymanska, Phys. Rev. A 89,
033844 (2014).

[24] Should accurate experiments of ~g be performed and call for
more detailed quantitative comparison, we can improve our
theory by numerically solving the Gross-Pitaevskii equation
for the condensate wave function to calculate ~g to high
accuracy.

[25] J. Klaers, J. Schmitt, T. Damm, F. Vewinger, and M. Weitz,
Phys. Rev. Lett. 108, 160403 (2012).

[26] J. Klaers (private communication).
[27] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.113.135301, which in-
cludes Refs. [28–30], for a detailed derivation of the
dimensionless interaction strength due to thermal lensing
and dye-mediated photon-photon scattering.

[28] S. Yaltkaya and R. Aydin, Turk. J. Phys. 26, 41 (2002).
[29] R. R. Birge, Kodak Report No. JJ-169.
[30] J. R. Lakowicz, Principles of Fluorescence Spectroscopy

(Springer, New York, 2006).
[31] Handbook of Chemistry and Physics, 91st ed. (CRC Press,

Boca Raton, 2009).
[32] R. Y. Chiao, T. H. Hansson, J. M. Leinaas, and S. Viefers,

Phys. Rev. A 69, 063816 (2004).
[33] A.-W. de Leeuw, H. T. C. Stoof, and R. A. Duine, Phys. Rev.

A 88, 033829 (2013).

PRL 113, 135301 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

26 SEPTEMBER 2014

135301-5

http://dx.doi.org/10.1063/1.1583532
http://dx.doi.org/10.1063/1.1583532
http://dx.doi.org/10.1002/andp.19183622304
http://dx.doi.org/10.1103/PhysRevLett.90.067002
http://dx.doi.org/10.1103/PhysRevLett.90.067002
http://dx.doi.org/10.1038/38241
http://dx.doi.org/10.1103/PhysRev.32.110
http://dx.doi.org/10.1103/PhysRev.32.97
http://dx.doi.org/10.1103/PhysRev.83.34
http://dx.doi.org/10.1088/0034-4885/29/1/306
http://dx.doi.org/10.1126/science.269.5221.198
http://dx.doi.org/10.1103/PhysRevA.70.013603
http://dx.doi.org/10.1103/PhysRevA.70.013603
http://dx.doi.org/10.1103/PhysRevLett.101.190406
http://dx.doi.org/10.1103/PhysRevLett.101.190406
http://dx.doi.org/10.1038/nature05131
http://dx.doi.org/10.1038/nature05117
http://dx.doi.org/10.1038/nature09567
http://dx.doi.org/10.1038/nature09567
http://dx.doi.org/10.1007/s00340-011-4734-6
http://dx.doi.org/10.1103/PhysRevLett.112.030401
http://dx.doi.org/10.1103/PhysRevLett.76.6
http://dx.doi.org/10.1103/PhysRevLett.76.6
http://dx.doi.org/10.1103/PhysRevA.89.033844
http://dx.doi.org/10.1103/PhysRevA.89.033844
http://dx.doi.org/10.1103/PhysRevLett.108.160403
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.135301
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.135301
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.135301
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.135301
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.135301
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.135301
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.135301
http://dx.doi.org/10.1103/PhysRevA.69.063816
http://dx.doi.org/10.1103/PhysRevA.88.033829
http://dx.doi.org/10.1103/PhysRevA.88.033829

