
Model solutions and properties for diagnosing
student programs in Ask-Elle

Johan Jeuring

Thomas van Binsbergen

Alex Gerdes

Bastiaan Heeren

Technical Report UU-CS-2014-025
September 2014

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands
www.cs.uu.nl

ISSN: 0924-3275

Department of Information and Computing Sciences
Utrecht University
P.O. Box 80.089
3508 TB Utrecht
The Netherlands

Model solutions and properties for diagnosing student
programs in Ask-Elle
JOHAN JEURING
Utrecht University and Open University of the Netherlands, Heerlen, The Netherlands
and
L. THOMAS VAN BINSBERGEN
Utrecht University, The Netherlands
and
ALEX GERDES
QuviQ, Sweden
and
BASTIAAN HEEREN
Open University of the Netherlands, Heerlen, The Netherlands

Ask-Elle is an interactive tutor that supports the stepwise development
of simple functional programs. Using Ask-Elle students receive feedback
about whether or not they are on the right track, they can ask for a hint
when they are stuck, and get suggestions about how to refactor their pro-
gram. Our tutor generates this feedback from model solutions and proper-
ties that a solution should satisfy. This paper studies the feasibility of using
model solutions together with the desired properties of solutions to analyse
the work of a student. It describes an experiment in which we analyse almost
3500 log entries from students using Ask-Elle to solve functional program-
ming exercises, to determine how many of these programs are diagnosed
correctly based on model solutions and the desired properties of solutions.
Ask-Elle manages to correctly diagnose 82.9% of the student programs. A
further analysis of the student programs and the diagnoses shows that ad-
ding some reasonable model solutions, properties of model solutions, and
general program transformations would increase this percentage to 92.9%.

Categories and Subject Descriptors: K.3.1 [Computer Uses in Education]:
Computer-assisted instruction (CAI); K.3.2 [Computer and Information
Science Education]: Computer science education

General Terms: Languages, Human Factors, Measurement

Address: Dept. of Information and Computing Sciences, Utrecht University
P.O. Box 80.089, 3508 TB, Utrecht, The Netherlands.
E-mail: J.T.Jeuring@uu.nl, ltvanbinsbergen@acm.org, alex.gerdes@quviq.
com, bastiaan.heeren@ou.nl.
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
show this notice on the first page or initial screen of a display along with
the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, to redistribute to lists, or to use
any component of this work in other works requires prior specific permis-
sion and/or a fee. Permissions may be requested from Publications Dept.,
ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax
+1 (212) 869-0481, or permissions@acm.org.
c© 2014 ACM 0730-0301/2014/14-ARTXXX $15.00
DOI:http://dx.doi.org/10.1145/XXXXXXX.YYYYYYY

Additional Key Words and Phrases: Functional programming, Haskell, tu-
toring

ACM Reference Format:
Johan Jeuring, L. Thomas van Binsbergen, Alex Gerdes, and Bastiaan
Heeren. 2014. Model solutions and properties for diagnosing student pro-
grams in Ask-Elle. Submitted to Computer Science Education Research
Conference (CSERC’14).

1. INTRODUCTION

We have developed Ask-Elle [Jeuring et al. 2011; Gerdes et al.
2012], an interactive tutor that supports the stepwise development
of simple functional programs in the lazy, pure, higher-order func-
tional programming language Haskell [Peyton Jones et al. 2003]:
see Figure 1 for a screenshot. Using this tutor, students learning
functional programming develop their programs incrementally, re-
ceive feedback about whether or not they are on the right track, can
ask for a hint when they are stuck, and get suggestions about how
to refactor their program. The order in which a student constructs a
program using our tutor is quite flexible. The interactive tutor can
diagnose a student step, give hints at each step, generate worked-
out solutions for exercises, and recognise common errors made by
students. All of this functionality is calculated automatically from
the teacher-specified annotated solutions (‘model’ solutions) for an
exercise. This allows a teacher to use her favourite exercises. The
tutor is offered as a web application.1 The unique features of Ask-
Elle are that it is sufficient to specify model solutions to add an
exercise to the tutor, and the feedback is not only given on final
programs, but also on incomplete programs that still need to be
completed. Intelligent tutors that support a student step-wise solv-
ing a task, by diagnosing partial student solutions or giving hints,
are almost as effective as human tutors [VanLehn 2011].

To analyse the work of a student, we compare possibly partial
student programs against model solutions. If a student program can
be matched against a model solution, Ask-Elle approves it; if it
cannot be matched, Ask-Elle asks the student to submit another

1http://ideas.cs.uu.nl/FPTutor/. Use any name to log in.

2 • Jeuring et al.

Fig. 1. Screenshot of Ask-Elle

program. We want the analysis of Ask-Elle to be as precise as pos-
sible, so we want to approve as many as possible correct student
programs. If we do not approve of a student program, we would
want it to be indeed incorrect. Assume we have some means to de-
termine exactly whether or not a program is (in)correct. We call
this means an oracle. The exact form of the oracle is not important,
it might consist of a panel of teachers, or some advanced algorithm
that can determine the correctness of programs. We would like the
generated feedback to be sound and complete with respect to the
oracle. Generated feedback for a student program is sound when a
student program is diagnosed to be (in)correct, it is (in)correct ac-
cording to the oracle, i.e. no false positives or false negatives are
generated. Generated feedback is complete when the oracle dia-
gnoses a student program to be (in)correct, the software also dia-
gnoses it to be (in)correct, i.e., our tutor should always be able to
give a definitive diagnosis.

To approve as many correct student programs as possible, we
apply several transformations on both the student program and
the model solution. For example, we apply desugaring, alpha-
conversion, and beta-reduction. Desugaring removes syntactic
sugar from a program, such as infix operators (for example, x + 2
is transformed into (+) x 2) and pattern matching (transformed
to a case expression). Alpha-conversion renames the bound vari-
ables in a program in a uniform way. Beta-reduction removes re-
deces in a program: if we can apply a reduction, we do so (for
example, if p ∨ True then q else r is replaced by q). If we
cannot match a student program against a model solution, we test
the student program against properties that the solution should sat-
isfy, to find out if possibly the student program is incorrect. We use

QuickCheck [Claessen and Hughes 2000] to specify properties of
solutions, and to search for counterexamples. If QuickCheck finds a
counterexample, we report it to the student. Thus we use both static
(matching against model solutions) and dynamic (testing against
properties) techniques to analyse student programs.

Semantic equality of programs is undecidable, and there does not
exist a normal form for programs. This implies that we cannot give
a complete set of transformations to use when transforming student
programs and model solutions, and hence that we sometimes can-
not automatically match a student program against a model solu-
tion. In such cases, we revert to QuickCheck to test whether or not
a student program is behaving the same as a model solution, but
QuickCheck cannot always give a definitive answer. This leaves us
once in a while in the undesirable situation where we cannot say
anything about the student program. We don’t know if the program
is correct or incorrect. There are two causes of this problem:

(1) Not matching any of the model solutions:
—The student has implemented a new solution to the exercise.

In this case we should add that solution to our set of model
solutions.

—Our set of program transformations is too limited to trans-
form a student program to a model solution, in which case
we should extend the set of program transformations.

(2) QuickCheck gave up:
—If many parts of a student program are not yet defined,

QuickCheck may not be able to test the stated properties.
—A property may have too strong a precondition or a

poor generator for a particular datatype. In this situation
QuickCheck discards too many test cases.

Model solutions and properties for diagnosing student programs in Ask-Elle • 3

We have performed an experiment with Ask-Elle at Utrecht Univer-
sity with second-year students taking a course on functional pro-
gramming, to find out if there are many cases in which Ask-Elle
cannot determine whether a student program is correct or incor-
rect, and what the cause of this is. We analysed almost 3500 log
entries from students using Ask-Elle to find entries which help in
finding preliminary answers to questions such as: How many differ-
ent student programs can we relate to a model solution? What pro-
gram transformations do we need to transform student programs
and model solutions into a normal form, which we use to match
programs? What is the percentage of correct student programs not
recognised by our tutor? What is the percentage of incorrect pro-
grams for which we cannot find a counterexample? How can we
reduce these percentages?

This paper makes the following contributions:

—It describes an empirical study in which we analyse student-input
to derive statistical information about the feasibility of using
model solutions for analysing student programs.

—It shows how model solutions can be extended with properties to
be used for automated testing.

—It collects information about if and which program transform-
ations are necessary for transforming a student program to a
model solution.

If we find that using model solutions together with properties of
these solutions is indeed a feasible approach to analysing student
programs, we have a strong argument for further developing Ask-
Elle, and for using the same approach to develop intelligent tutors
for other programming languages or paradigms.

Besides the above contributions, this deep analysis of student
submissions revealed several inconsistencies in our model solu-
tions, and led to discussions about the desirability of some of the
program transformations, model solutions, and teacher annotations.

Related work. Ala-Mutka [Ala-Mutka 2005] gives a general
overview of automatic assessment of programming assignments.
Most, if not all, approaches to automatic assessment deal with
complete programs, and do not consider the kind of intermediate
programs that we also want to diagnose. Our functional program-
ming tutor grew out of a program assessment tool, which automat-
ically assesses complete student programs based on model solu-
tions [Gerdes et al. 2010] and program transformations to rewrite
programs to normal form. Similar transformations have been de-
veloped for imperative languages. For example, Xu and Chee [Xu
and Chee 2003] develop program transformations for C++ to trans-
form complete student programs to model solutions. Singh et
al. [Singh et al. 2013] use program transformations to rewrite erro-
neous imperative programs into model solutions, generating feed-
back on the way. Jin et al. [Jin et al. 2012] generate feedback based
on a graph-based view of imperative programs, using knowledge
from a database of student solutions. Rivers and Koedinger [Rivers
and Koedinger 2014] also use previously submitted student pro-
grams to generate hints in an intelligent tutoring system for (imper-
ative) programming. Using previously submitted student programs
is probably a bit easier than implementing the program transform-
ations we envisage, but brings with it the risk that suboptimal solu-
tions appear in the hints.

Organisation of this paper. This paper is organised as fol-
lows. Section 2 gives some examples of model solutions. Section 3
shows how we extend Ask-Elle with the possibility to test proper-
ties of student programs. Section 4 identifies the situations in which
Ask-Elle cannot analyse a student program, and Section 5 analyses

a large set of student programs to determine the cause of the prob-
lem. Related and future work are given in Section 6, and Section 7
concludes.

2. MODEL SOLUTIONS

Ask-Elle generates feedback by comparing student programs to a
set of model solutions. A model solution is an annotated teacher-
specified program that makes use of good programming prac-
tices. A teacher can specify more detailed feedback by annotat-
ing a model solution. This section gives two examples of exercises
offered by Ask-Elle, and some of the model solutions for these ex-
ercises. Most exercises offered by Ask-Elle come from the Ninety-
nine Haskell Problems.2 Ask-Elle is targeted at students beginning
to learn Haskell, and the kind of problems offered require solutions
no longer than a couple of lines. These are the kind of programs
developed by beginning Haskell programmers.

2.1 Reverse

The reverse exercise asks a student to define a function that re-
verses a list, which has the following type signature:

myreverse :: [a]→ [a]

For example:

>myreverse "A man, a plan, a canal, panama!"
"!amanap ,lanac a ,nalp a ,nam A"

>myreverse [1, 2, 3, 4]
[4, 3, 2, 1]

For myreverse , Ask-Elle has three model solutions, among which
the standard solution using an accumulating parameter:

myreverse = reverse ′ []
where

reverse ′ acc [] = acc
reverse ′ acc (x : xs) = reverse ′ (x : acc) xs

2.2 Rotate

The rotate exercise asks a student to define a function that rotates
a list n places to the left:

rotate :: [a]→ Int → [a]

For example:

> rotate [1, 2, 3, 4, 5] 2
[3, 4, 5, 1, 2]

Ask-Elle has three model solutions for this exercise, among which:

rotate xs n = drop i xs ++ take i xs
where i = n ‘mod ‘ (length xs)

where drop n xs drops the first n elements of list xs , and
take n xs returns the first n elements of xs . Functions length
and mod are defined in the Haskell prelude.3

2http://www.haskell.org/haskellwiki/99 Haskell exercises
3The prelude is the standard library for Haskell containing many useful
functions.

4 • Jeuring et al.

3. PROPERTIES OF PROGRAMS

Until recently, if Ask-Elle could not determine whether or not a stu-
dent program matches a model solution, it could only report that the
student program doesn’t follow the structure of one of the model
solutions. To also report erroneous programs (i.e., programs with
the wrong input-output behaviour), we use QuickCheck [Claessen
and Hughes 2000] for specifying properties, testing these properties
using randomly generated input, and finding counterexamples. Fur-
thermore, each of the properties for which we test is accompanied
by a specific error message that explains the kind of error detected.
A student can also submit an incomplete program; we use therefore
a recent version of QuickCheck, which can ignore undefined parts
of a student program.

We could also have used unit testing to check a student program.
In our case, property-based testing has the advantage that it ran-
domly generates input values and discards those which the stu-
dent program cannot yet handle. Thus, even if a student program
is defined for only a small subdomain of the target domain, it can
still be checked for counterexamples.

Each programming exercise is accompanied by one or more
properties that have to be satisfied by a student program for the
exercise. A property should hold for all solutions to the program-
ming exercise. A student program is only tested if Ask-Elle cannot
determine that a student program follows a model solution.

3.1 Properties for myreverse

The function myreverse has a number of properties. The first prop-
erty states that all elements in the input list are also present after
reversing:

propElems xs = xs ⊆ myreverse xs

Although the operator⊆ is not present in Haskell’s prelude, we can
conveniently define it in terms of list difference (\\):

xs ⊆ ys = null (xs \\ ys)

With this property we can identify errors in student programs. For
example, if a student defines myreverse as

myreverse [] = []
myreverse (x : xs) = myreverse xs

then QuickCheck finds a counterexample such as [1] when it val-
idates the property propElems . Presenting this counterexample to
a student is helpful, but it might not give her sufficient information
about what is wrong in the program. Together with a counterexam-
ple, we can report a specific message explaining why the definition
is not correct. For example, we can report: “Some elements in the
input do not appear in the output”. To support the possibility of
providing feedback for a specific error, a teacher can adapt or in-
troduce a property for a programming exercise. We add a message
to the above property:

propElems xs = whenFail msg (xs ⊆ myreverse xs)
where

msg = putStrLn ("Not all elements in input "
++ show xs ++ " appear in output "
++ show (myreverse xs))

The explanatory feedback message is shown whenever a student
program does not satisfy the stated property.

It is possible to add multiple properties with specialised mes-
sages to an exercise. For example, we can test that no new elements
are introduced by myreverse:

propElems2 xs = myreverse xs ⊆ xs

Properties propElems and propElems2 together express that
function myreverse only permutes the elements of a list. A third
property states that myreverse is its own inverse:

propTwice xs = myreverse (myreverse xs) xs

It could be tempting to start including general properties that com-
pletely specify how myreverse should behave, including how to
reverse a list that is split into two parts:

propSplit xs ys =
myreverse (xs ++ ys) myreverse ys ++myreverse xs

However, we always specify a catch-all property that compares the
student program with a trusted implementation. We use either one
of the teacher-specified model solutions or a reference implement-
ation (e.g. from the prelude):

propReverse xs = myreverse xs reverse xs

When we start testing we first use the more specific properties (such
as propElems) because these result in the more precise error mes-
sages. Testing against a reference implementation is done last. The
order in which the properties are specified is also the order in which
they are tested.

3.2 Properties for rotate

As a second example we give a number of properties for rotate .
Before we do so we first show two student programs that contain
common errors. We illustrate how a teacher could anticipate these
mistakes and define properties with specific feedback.

A student might try to solve the rotate exercise in terms of the
functions drop and take:

rotates :: [a]→ Int → [a]
rotates xs n = drop n xs ++ take n xs

This implementation gives the correct results for the example given
earlier. However, it assumes that 0 6 n 6 length xs , while the
exercise specifies no constraints on n . Hence we find a counterex-
ample:

> rotates [1, 2, 3, 4, 5] 6
[1, 2, 3, 4, 5]

The model solution returns [2, 3, 4, 5, 1]. Confronted with this ex-
ample, a student might change the program to:

rotates :: [a]→ Int → [a]
rotates xs n | n > length xs = drop i xs ++ take i xs

| otherwise = drop n xs ++ take n xs
where i = n ‘mod ‘ length xs

This definition uses case-distinction to cover the case where n is
larger than the input list.

The model solution for rotate , given in the previous section, not
only takes into account the special case of a full rotation of the
list, but also the case of rotating in the opposite direction (n < 0).
Therefore, QuickCheck again finds a counterexample:

> rotates [1, 2, 3, 4, 5] (−1)
[1, 2, 3, 4, 5]

The expected result is [5, 1, 2, 3, 4] while the given definition re-
turns the input unchanged, since drop returns the input list un-
changed for negative numbers (and take returns []).

Model solutions and properties for diagnosing student programs in Ask-Elle • 5

For rotate , we have formulated a number of general properties.
The first property is defined as follows:

propAdd xs n m =
rotate xs (n +m) rotate (rotate n xs) m

The second general property expresses that rotating by the length
of the input list returns the same list, which means that rotating over
n is the same as rotating over n + length xs . Using QuickCheck,
this property is expressed as:

propWrap xs n = rotate xs (n + length xs) rotate xs n

These general properties may not give specific enough feedback
for a student to discover what is wrong. We therefore specialise the
general properties for the identified corner cases. For large numbers
we use the property:

propBigN xs n = n > length xs =⇒ propWrap xs n

The infix function (=⇒) is implication for properties. The property
is only considered if the precondition holds. The general property
propWrap is therefore only validated for n larger than the length
of xs .

To cover the corner case for rotating in the opposite direction, we
do not need to write a specialised property. Since we first consider
the specialised property propBigN , we can use propWrap be-
cause it considers all integer values for n , including negative ones.
To find possible remaining errors we finally validate the catch-all
property that compares a student implementation to a model solu-
tion.

3.3 Dealing with incomplete programs

An interesting aspect of Ask-Elle is that it can also analyse incom-
plete programs and determine whether or not a student is on the
right track towards a model solution. Programs may contain one
or more holes, denoted by a question mark, which represent com-
ponents that a student wants to fill out later. Testing incomplete
programs leads to some challenges.

We use QuickCheck’s discard function, which discards the cur-
rent test case, to handle an incomplete program. We replace every
hole in a program by discard. As a result, many test cases will
be discarded by QuickCheck. However, even for incomplete pro-
grams, some test cases may go through because no hole needs to be
evaluated. For example, consider the following implementation of
rotate:

rotates :: [a]→ Int → [a]
rotates xs n | n < 0 = drop ? xs ++ take ? xs

| n > 0 = drop n xs ++ take n xs

Here QuickCheck finds the counterexample related to the assump-
tion that n 6 length xs:

> rotates [1, 2] 3
[1, 2]

4. CLASSIFYING STUDENT PROGRAMS

In this section we classify student programs. A full program is clas-
sified as correct if it has the expected input-output behaviour. A par-
tial program (with holes) is considered to be correct if replacing the
holes with expressions can lead to a correct program. We use the
following categories for classifying submitted student programs:

—Compiler error (Error). Ask-Elle uses Helium [Heeren et al.
2003] and GHC4 to compile student programs. Helium has been
developed to report good error messages, and GHC is needed to
run QuickCheck tests. Both compilers might report a syntax or
type error, which the student has to repair.

—Matches model solution (Model). Ask-Elle makes use of pro-
gram transformations to match a student program with a model
solution. The student is on the right track solving the exercise, or
finished with the exercise (if there are no more holes).

—Counterexample (Counter). Based on one of the properties
QuickCheck finds a counterexample and reports a specialised
message explaining to the student why her program is incorrect.

—Undecided. Programs that cannot be matched with a model solu-
tion, and without a counterexample, cannot be diagnosed as cor-
rect or incorrect by Ask-Elle. Later we will separate this category
into Tests passed, for programs for which all tests pass, and Dis-
carded, for programs for which most test cases are discarded, in
almost all cases because the program is still undefined at many
places.

Ideally, the number of programs in this last category is small.
Programs for which correctness is undecided raise some interesting
questions related to the quality of feedback reported by the tutor:

—How many programs are classified as undecided?
—How often would adding a program transformation help with

matching against model solutions?
—How often would adding a model solution help?
—How often do students add irrelevant, with respect to the exer-

cise, parts to a program with the correct input-output behaviour?
—How many of the programs with correct input-output behaviour

contain imperfections, such as redundant case-clauses, which are
perhaps impossible to remove automatically.

—How often does QuickCheck not find a counterexample, al-
though the student program is incorrect?

In the following subsections we take a closer look at why cor-
rect programs cannot always be matched with a model solution,
and why QuickCheck sometimes cannot find counterexamples for
incorrect programs. We give answers to the above questions at the
end of Section 5.

4.1 Correct (but no match)

The student program is correct. It is not matched against one of the
model solutions because:

(1) The student has come up with a way to solve the exercise that
significantly differs from the model solutions.

(2) Ask-Elle misses some transformations to transform the student
program and a model solution into the same program.

(3) The student has solved more than just the programming exer-
cise. For example, she has added checks on the input, or elab-
orate error messages.

(4) The student implementation does not use good programming
practices or contains imperfections.

Case (1) leads to adding the student solution as a new model
solution to Ask-Elle. This of course raises the question when a
solution is a new model solution, and when can a solution be trans-
formed into an existing model solution. In general, it is impossible

4Glasgow Haskell Compiler the default compiler for Haskell

6 • Jeuring et al.

to develop a transformation system that can transform any two se-
mantically equal programs into each other [Voeten 2001]. Our ba-
sic approach in Ask-Elle has been to only add transformations to
Ask-Elle about which we never want to give feedback to students.
Existing transformations are mainly related to style issues: the use
of names, explicitly specifying arguments, using local definitions,
etc. This implies we don’t check such style issues in Ask-Elle, al-
though we might use a tool such as HLint5 for this purpose. In
case (2) we should add the transformation to Ask-Elle or improve
existing transformations. In case (3) we probably want to report the
fact that the student has done too much, provided this can be recog-
nised. Finally, the solutions in case (4) can be regarded as residuals
about which Ask-Elle cannot give a precise judgement.

4.2 Incorrect (but no counterexample)

QuickCheck will not always be able to report a counterexample for
incorrect programs. Besides finding a counterexample, the outcome
of checking the properties can be:

—Tests passed. All test cases passed. By default, 100 test cases are
run with random values for each property.

—Discarded. Too many test cases are discarded. By default, more
than 90% is considered to be too many.

In case Tests passed, full programs that pass all test cases are likely
to be correct; it is very unlikely that programs with incorrect input-
output behaviour pass all properties without finding a counterex-
ample. For partial programs (with holes) we have to be a bit more
careful since test cases that run into holes are discarded, and this
may influence the distribution of random values that are considered.
Case Discarded is a clear indication that the program is not yet
defined enough. Whenever a hole is encountered during evaluation,
the test case will be discarded. The outcome is Discarded if less
than 10% of the test cases can be used. In this case, the other at
least 90% of the test cases need parts of the program that have not
been defined yet.

5. STUDENT PROGRAM ANALYSIS

We have analysed the log files of Ask-Elle, with 5950 log entries
from students attending a second-year university class at Utrecht
University on functional programming in September 2013. Each of
these log entries consists of:

—an IP address
—a user name
—a requested service: a hint, a list of exercises, or the diagnosis of

a submitted student program

We are particularly interested in the diagnosis requests. 3466 log
entries request to diagnose a student program. We will call these
log entries interactions. Besides the above components and some
more administrative information, such as the version of Ask-Elle
used, these interactions consist of:

—a name of a programming exercise (such as dupli or repli)
—a student program
—the result of the diagnosis of the student program. The diagnose

service reports that there is a syntax or a type error, that the stu-
dent program can be completed into a model solution, that the
student has finished the exercise, that there is a counterexample

5http://community.haskell.org/∼ndm/hlint/

Category Attempts Interactions
Compiler error 142 (21.8%) 1920 (55.4%)
Model 221 (33.9%) 754 (21.8%)
Counter 33 (5.1%) 201 (5.8%)
Tests passed 235 (36.0%) 436 (12.6%)
Discarded 21 (3.2%) 155 (4.5%)

Total 652 3466

Table I. Categorising student programs

Category Attempts Interactions
Compiler error 44 (31.2%) 508 (63.8%)
Model 65 (46.1%) 184 (23.1%)
Counter 4 (2.8%) 27 (3.4%)
Tests passed 27 (19.1%) 68 (8.5%)
Discarded 1 (0.7%) 9 (1.1%)

Total 141 796

Table II. Categorising interactions for dupli

Category Attempts Interactions
Compiler error 12 (18.5%) 275 (67.2%)
Model 12 (18.5%) 40 (9.8%)
Counter 6 (9.2%) 15 (3.7%)
Tests passed 31 (47.7%) 62 (15.1%)
Discarded 4 (6.2%) 17 (4.2%)

Total 65 409

Table III. Categorising interactions for repli

for the student program, or that it cannot diagnose the student
program.

The 3466 interactions with Ask-Elle come from 116 out of the 285
students registered for the course. Students seemed to work top-
down through the list of exercises: the exercises dupli , range , and
repli have been tried quite a lot; exercises that appear at the bot-
tom of the exercise list have been tried much less. In total, the
students worked on 26 different programming exercises. The log
entries have been grouped into exercise attempts: sequences of in-
teractions resulting in either a solution to the exercise, or the student
giving up on the exercise. On average, students worked on 5.62 ex-
ercise attempts (standard deviation 6.57). An exercise attempt con-
sists on average of 5.29 interactions (standard deviation 6.12). We
have divided the entire set of interactions and exercise attempts in
the categories given in the previous section. To classify an attempt
we use its last interaction. The overall results are shown in Table I.
The results for the functions for which we received the most in-
teractions, dupli , repli , and compress , are shown in Tables II, III,
and IV.

We want to recognise as many correct programs as possible with
the model solutions. We define the ratio of recognised model solu-
tions by Ask-Elle:

recognised =
|Model |

|Model | + |Tests passed | + |Discarded |

Note that this ratio is a lower bound: there may be undetected incor-
rect solutions in the Tests passed and Discarded classes. Programs
with a compiler error or for which a counterexample is found are
incorrect and thus excluded in this ratio. Currently, 56.1% of the in-
teractions (and 46.3% of the attempts) are recognised to be correct.

Model solutions and properties for diagnosing student programs in Ask-Elle • 7

Category Attempts Interactions
Compiler error 19 (31.2%) 270 (56.4%)
Model 11 (18.0%) 104 (21.7%)
Counter 4 (6.6%) 26 (5.4%)
Tests passed 24 (39.3%) 47 (9.8%)
Discarded 3 (4.9%) 32 (6.7%)

Total 61 479

Table IV. Categorising interactions for compress

Similarly, we define the ratio of classified correct or incorrect
programs by:

classified =
|Model | + |Error | + |Counter |

|Total |

Of all interactions, 82.9% is classified as correct or incorrect. Of all
attempts, 60.7% is classified as correct or incorrect.

Some observations about the data:

—The number of syntax and type errors is high, even in completed
exercise attempts. In 21.8% of the exercise attempts, a student
gave up on the exercise with a compiler error in her last submis-
sion.

—Ask-Elle scores better on individual interactions. However, many
of the recognised inputs are relatively small and largely incom-
plete: input such as rotate ? ? = ? is classified as Model.

—Possible reasons for why the results for dupli are better than
the results for repli are that there was a bug in alpha-conversion
(found during and repaired after the experiment) which would
fire sooner in definitions with two variables instead of one, and
that the number of specified model solutions for dupli is higher
than for repli (6 versus 4).

To increase the recognised and classified ratios, we analyse the
set of programs in Tests passed and Discarded to discover which
program transformations or model solutions we should add. The
recognised ratio is also increased by improving or adding proper-
ties that are used to find counterexamples for erroneous solutions,
because then the number of elements in the Tests passed and Dis-
carded classes decrease.

5.1 Program transformations

We show which program transformations would move student pro-
grams from the Tests passed category to the Model category by ex-
ample. We illustrate the transformations using the encode exercise,
which asks a student to define a function that returns the ‘run-length
encoding’ of a list:

encode :: Eq a ⇒ [a]→ [(Int , a)]

For example:

> encode [1, 2, 2, 3, 2, 4]
[(1, 1), (2, 2), (1, 3), (1, 2), (1, 4)]

One of the model solutions for encode uses the prelude function
takeWhile (or dropWhile), which takes (drops) elements from the
front of a list as long as a given property holds.

encodem [] = []
encodem (x : xs) = (n + 1, x) : encodem (drop n xs)
where n = length (takeWhile (x) xs)

We use the subscripts m and s to distinguish the model solution
from a student program. The following student program is very
similar to the model solution:

encodes [] = []
encodes (x : xs) = (length $ x : takeWhile (x) xs, x)

: encodes (dropWhile (x) xs)

The student program does not use a where-clause. Values defined
in a where-clause should be inlined. From the model solution we
obtain the following program by replacing the constant n with its
definition:

encodem [] = []
encodem (x : xs) = (length (takeWhile (x) xs) + 1, x)

: encodem (drop (length (takeWhile (x) xs)) xs)

The student program uses the ($) operator, Haskell’s explicit (right-
associative) application operator, to avoid writing parentheses. One
of Ask-Elle’s normalisations removes occurrences of this operator.
Furthermore, since length is a standard recursive function on lists,
the student program can be beta-reduced. Using ($)-removal and
beta-reduction, we get:

encodes [] = []
encodes (x : xs) = (1 + length (takeWhile (x) xs), x)

: encodes (dropWhile (x) xs)

Two other normalisation steps Ask-Elle employs are removing re-
dundant parentheses and ordering the arguments of commutative
operators such as (+) and (∧) using some (arbitrary but consist-
ent) choice based on the lexicographical order of the arguments.
Applying these steps results in:

encodem [] = []
encodem (x : xs) = (1 + length (takeWhile (x) xs), x)

: encodem (drop (length (takeWhile (x) xs)) xs)

To transform this program into one that is the same as
the (transformed) student program, we use the fact that
drop (length (takeWhile (x) xs)) xs and dropWhile (
x) xs are semantically equivalent. Such equivalences cannot be
generated automatically, but they can be specified as rewrite rules
together with the model solutions [Gerdes et al. 2012]:

{-# ALT
dropWhile p xs = drop (length (takeWhile p xs)) xs #-}

Using this rewrite rule, we can infer that the student program is
equivalent to the model solution.

5.2 Program transformation for student programs

For all student programs in the Tests passed category, we determ-
ine whether or not they can be recognised if we would add to or
improve program transformations in Ask-Elle. We collect a list of
program transformations that help to recognise student programs.
Besides program transformations, we have also investigated which
programs require a new model solution, which programs contain
imperfections, and whether or not programs have the correct input-
output behaviour. With this information we answer the questions of
Section 4.

Below we list the program transformations that have to be added
or improved to match a student program to a model solution. Note
that a student program might require multiple transformations, re-
quire a new model solution, and contain multiple imperfections.

8 • Jeuring et al.

(1) Many students include type signatures in their programs. Al-
though this is of course good practice, our tutor does not recog-
nise type signatures when matching against a model solution.
This is problematic for 94 student programs, many of which
are also unrecognised for other reasons.

(2) Recognising more functions from the prelude and adding al-
ternative definitions for prelude functions helps in 37 cases.
Using function definitions to perform a beta-reduction step
helps in 39 cases.

(3) Dealing with function parameters uniformly. A student pro-
gram such as palindrome = (λx → x reverse x) for
the palindrome exercise is not matched against the model
solution palindrome x = x reverse x . Or a stu-
dent does not use function composition, as in dupli x =
concatMap (replicate 2) x . Often some variant of eta-
conversion, for example replacing (λx → (+) 1 x) by (+) 1
is sufficient. The latter kind of examples typically appear in
the function argument of a higher-function. There are 8 + 54 +
13 = 75 occurrences of these transformations. We expect such
programs can be recognised by introducing eta-conversion and
normalising all programs to lambda-expressions.

(4) The alpha-renaming normalisation step contained a bug. This
problem appears in 48 programs. An additional 19 programs
are not recognised due to the use of a wildcard pattern in either
the student program or in the model solution (similar to the
student program).

(5) Inlining a value defined in a where-clause, a let-clause, or a
separate top-level definition helps in 26 cases.

(6) If an expression is guarded by an equality such as a b, we
can replace all occurrences of a by b (or b by a) in the expres-
sion. In 26 cases this transformation helps.

(7) In 22 cases a program desugaring, such as converting the
Haskell list-notation to constructor application, would help.

(8) One program requires removing an unused (helper) definition.
We cannot remove an unused helper function in an incomplete
program, because such a definition may be called when a hole
is further refined. The same problem holds for inlining helper-
definitions.

(9) Many more types of required transformations appear very in-
frequently, such as: removing infix-notation, changing the or-
der of arguments of a helper function, changing the order of
patterns, transforming between guards, patterns and if-then-
else constructions, changing the conditions in guards (for ex-
ample changing x 6≡ y into x y , including changing the
code after the guard) and more.

Besides these transformations, we also found that it is sometimes
worthwhile to introduce a more abstract version of a model solution
to increase the number of student programs that are recognised. For
example, a number of our exercises require recursing over integers
until a stop condition is met. Consider the range exercise, in which
a student should define a function that enumerates all numbers in
a given range. For instance, range 2 5 gives [2, 3, 4, 5]. We may
assume the second integer to be larger than the first. Here are some
correct and equivalent definitions:

range1 a b | a b = [a]
| otherwise = a : range1 (a + 1) b

range2 a b | a b = [b]
| otherwise = a : range2 (a + 1) b

range3 a b | a > b = []

| otherwise = a : range3 (a + 1) b

range4 a b | a > b = []
| otherwise = range4 a (b − 1) ++ [b]

range5 a b | a 6 b = a : range5 (a + 1) b
| otherwise = []

The first definition can be transformed in the second definition by
means of program transformation 6. The other definitions show
various ways in which the arguments a and b can be used to steer
the recursion: going up from a to b, or down from b to a . The use
of , >, or 6 in guards increases the number of variants, and there
are many other constructs that introduce variants. Just as foldr can
be used to recognise uses of both foldr itself as well as its explicitly
recursive variants, we expect that many of the variants of the range
function can be inferred from a sufficiently abstract definition for
this exercise, such as

cond iterate cond begin it af bf a b
| cond a b = begin
| otherwise = it a b step
where

step = cond iterate cond begin it af bf (af a) (bf b)

range a b =
cond iterate (>) [] (λa ′ acc → a ′ : acc) (+1) id a b

We have yet to investigate the kind of program transformations ne-
cessary to use this approach.

5.3 Results

We return to the questions posed in Section 4.

—How many programs are classified as undecided? 17.1% of all
interactions and 39.2% of all attempts end in Undecided. These
results are better for smaller assignments with many model solu-
tions, such as dupli .

—How often would improving or adding a program transforma-
tion help with matching against model solutions? By adding new
transformations Ask-Elle recognises 161 programs that pass the
tests as model solutions. By fixing the alpha-renaming trans-
formation and improving other transformations Ask-Elle can re-
cognise an additional 96 programs.

—How often would adding a model solution help? Of the remain-
ing 436−161−96 = 179 programs in the Tests passed category,
we expect to recognise 84 programs by adding more model solu-
tions. Note that to recognise some of these programs, we need
the improved or new program transformations from the previous
point. For 16 of the 26 exercises on which students worked we
need one or more new model solutions. Three of these were used
in ten or more student programs.

—How often do students add irrelevant, with respect to the exer-
cise, parts to a program with the correct input-output behaviour?
In 3 programs a student deals with cases that are excluded in the
definition of the exercise, for example a case for negative num-
bers in an exercise that states that the input number is at least
zero.

—How many of the programs with correct input-output behaviour
contain imperfections, such as redundant case-clauses, or an in-
efficient implementation? We have found 86 such programs, in-
cluding the 3 from the previous point. These programs contain
superfluous patterns or cases (20), for example for the empty
list, the singleton list, and a cons pattern, where the singleton

Model solutions and properties for diagnosing student programs in Ask-Elle • 9

Category Interactions
Compiler error 1920 (55.4%)
Model 1095 (31.6%)
Counter 206 (5.9%)
Tests passed 87 (2.5%)
Discarded 158 (4.6%)

Total 3466

Table V. Categorising student programs

pattern is covered by the cons pattern and the empty pattern, or a
helper function that directly (18) or indirectly (4) corresponds to
a prelude function, such as an instance of map without a func-
tion argument that applies a particular function to each value in a
list. Some students delay pattern-matching (25), for example by
using head and tail instead of using the (:) constructor for lists.

—How often does QuickCheck not find a counterexample, al-
though the student program is incorrect? The remaining 179 -
84 - 86 = 9 programs are incorrect, but QuickCheck does not
find a counterexample. For the incorrect programs that contain
holes (3) there is no way to fill the holes to obtain a correct pro-
gram, but QuickCheck will not find counter-examples to these
programs. Since most of the tests are discarded these programs
end up in the Discarded category. An example of such a program
is dupli xs = map ? xs . This definition is correct for the input
[], but will be incorrect for any nonempty input. However, all
tests with nonempty inputs are discarded. This error can maybe
be caught by deriving properties from student programs, and de-
termining that model solutions do not satisfy these properties.
This is probably not easily added to Ask-Elle. The incorrect pro-
grams without holes (6) require more precise properties for the
corresponding exercises. For the program that is a non-solution
to the primes exercise (1) this is hard. The primes exercise asks
for an infinite list of prime numbers, and testing the student pro-
gram, which also returns an infinite list, against the model solu-
tion and determining an error might take a long time. It takes an
infinite amount of time if the student program happens to be cor-
rect. We decided to only check the first 100 elements of the list
of primes returned by the student. The first 100 elements of the
list returned by the erroneous student program happened to be
correct.

We give the version of Table I for interactions, taking the new and
improved program transformations and new model solutions into
account, in Table V. We move 161 + 96 + 84 = 341 from Test
passed to Model and move the 3 incorrect programs with holes to
Discarded and the 5 incorrect programs without holes for which we
can update the properties of the exercise to Counter.

Thus the recognised ratio of interactions increases to 81.7%
(was: 56.1%), and the classified ratio to 92.9% (was: 82.9%).

6. FUTURE WORK

Ask-Elle diagnoses a student program to be correct (transformable
to a model solution), or incorrect (together with a counterexample).
A teacher sometimes also gives more subtle feedback such as: this
is good solution, but it is better to ... We want to draw up a feed-
back benchmark, in which we collect the kind of feedback that is
usually given by teachers on the kind of functional programs that
are offered in Ask-Elle, and we want to study if we can incorporate
this kind of feedback in Ask-Elle, for example by specifying un-
desirable transformations we may perform on a student program to
transform it to a model solution, and reporting these.

Finally, we want to determine and implement more program
transformations for recognising student programs, and use our im-
proved tutor in a new experiment.

7. CONCLUSIONS

We have studied the feasibility of using matching against model
solutions and testing against program properties for diagnosing
possibly incomplete student programs in a tutoring system for the
programming language Haskell. We classified almost 3500 student
programs logged by our tutor, and found that we could diagnose
82.9% of the (correct or incorrect) student submissions. The feed-
back from Ask-Elle is sound, but incomplete, that is, a teacher can
sometimes give feedback that is not given by Ask-Elle. By analys-
ing the student programs, we collected a list of missing program
transformation, model solutions, and properties of model solutions
that would increase the number of diagnosed programs to 92.9%.
Besides a set of new program transformations, properties of model
solutions, and model solutions, the experiment also led to a deeper
understanding of the relation between model solutions, program
transformations, and teacher annotations, and improved the qual-
ity of the exercises offered in Ask-Elle.

ACKNOWLEDGMENTS
We thank Jurriaan Hage for allowing us to perform an experiment
with Ask-Elle in his classes, and Tom Tervoort and Gabe Dijkstra
for contributing to the source code of Ask-Elle. Anonymous re-
viewers on previous versions of this paper provided helpful com-
ments.

REFERENCES

Kirsti M Ala-Mutka. 2005. A Survey of Automated Assessment
Approaches for Programming Assignments. Computer Science
Education 15, 2 (2005), 83–102.

Koen Claessen and John Hughes. 2000. QuickCheck: A Light-
weight Tool for Random Testing of Haskell Programs. In Pro-
ceedings of ICFP 2000: International Conference on Functional
Programming. ACM, 268–279.

Alex Gerdes, Johan Jeuring, and Bastiaan Heeren. 2010. Us-
ing strategies for assessment of programming exercises. In Pro-
ceedings of SIGCSE 2010: the 41st ACM technical symposium
on Computer science education, Gary Lewandowski, Steven A.
Wolfman, Thomas J. Cortina, and Ellen Lowenfeld Walker
(Eds.). ACM, 441–445.

Alex Gerdes, Johan Jeuring, and Bastiaan Heeren. 2012. An Inter-
active Functional Programming Tutor. In Proceedings of ITICSE
2012: the 17th Annual Conference on Innovation and Techno-
logy in Computer Science Education, T. Lapidot, J. Gal-Ezer,
M.E. Caspersen, and O. Hazzan (Eds.). ACM, 250–255.

Bastiaan Heeren, Daan Leijen, and Arjan van IJzendoorn. 2003.
Helium, for Learning Haskell. In Proceedings of Haskell 2003:
the ACM SIGPLAN Workshop on Haskell. ACM, 62–71.

Johan Jeuring, Alex Gerdes, and Bastiaan Heeren. 2011. A pro-
gramming tutor for Haskell. In Proceedings of CEFP 2011: Lec-
ture Notes of the Central European School on Functional Pro-
gramming, Viktória Zsók, Zoltan Horváth, and Rinus Plasmeijer
(Eds.). LNCS, Vol. 7241. Springer, 1–45.

Wei Jin, Tiffany Barnes, John C. Stamper, Michael John Eagle,
Matt Johnson, and Lorrie Lehmann. 2012. Program Represent-
ation for Automatic Hint Generation for a Data-Driven Novice

10 • Jeuring et al.

Programming Tutor. In Proceedings of ITS 2012: the 11th Inter-
national Conference on Intelligent Tutoring Systems, Stefano A.
Cerri, William J. Clancey, Giorgos Papadourakis, and Kitty Pan-
ourgia (Eds.). LNCS, Vol. 7315. Springer, 304–309.

Simon Peyton Jones et al. 2003. Haskell 98, Language and Librar-
ies. The Revised Report. Cambridge University Press.

Kelly Rivers and Kenneth R. Koedinger. 2014. Automating Hint
Generation with Solution Space Path Construction. In Proceed-
ings of ITS 2014: the 12th International Conference on Intel-
ligent Tutoring Systems, Stefan Trausan-Matu, Kristy Elizabeth
Boyer, Martha Crosby, and Kitty Panourgia (Eds.). LNCS, Vol.
8474. Springer, 329–339.

Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. 2013.
Automated Feedback Generation for Introductory Programming
Assignments. In Proceedings of PLDI 2013: the 34th ACM SIG-
PLAN Conference on Programming Language Design and Im-
plementation. ACM, 15–26.

Kurt VanLehn. 2011. The relative effectiveness of human tutoring,
intelligent tutoring systems, and other tutoring systems. Educa-
tional Psychologist 46, 4 (2011), 197–221.

Jeroen Voeten. 2001. On the Fundamental Limitations of Trans-
formational Design. ACM Transactions on Design Automation
of Electronic Systems 6, 4 (2001), 533–552.

Songwen Xu and Yam San Chee. 2003. Transformation-Based Dia-
gnosis of Student Programs for Programming Tutoring Systems.
IEEE Transactions on Software Engineering 29, 4 (2003), 360–
384.

