
Exploiting Monotonicity Constraints in
Active Learning for Ordinal Classification

Pieter Soons

Ad Feelders

Technical Report UU-CS-2014-001

January 2014

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands

www.cs.uu.nl

ISSN: 0924-3275

Department of Information and Computing Sciences

Utrecht University

P.O. Box 80.089

3508 TB Utrecht
The Netherlands

Exploiting Monotonicity Constraints in Active Learning for

Ordinal Classification

Pieter Soons
Universiteit Utrecht

Utrecht, The Netherlands
e-mail: p.s@live.nl

Ad Feelders
Universiteit Utrecht

Utrecht, The Netherlands
e-mail: A.J.Feelders@uu.nl

Abstract

We consider ordinal classification and instance ranking problems where each attribute is
known to have an increasing or decreasing relation with the class label or rank. For example,
it stands to reason that the number of query terms occurring in a document has a positive
influence on its relevance to the query. We aim to exploit such monotonicity constraints by
using labeled attribute vectors to draw conclusions about the class labels of order related
unlabeled ones. Assuming we have a pool of unlabeled attribute vectors, and an oracle
that can be queried for class labels, the central problem is to choose a query point whose
label is expected to provide the most information. We evaluate different query strategies
by comparing the number of inferred labels after some limited number of queries, as well as
by comparing the prediction errors of models trained on the points whose labels have been
determined so far. We present an efficient algorithm to determine the query point preferred
by the well-known active learning strategy generalized binary search. This algorithm can be
applied to binary classification on incomplete matrix orders. For non-binary classification,
we propose to include attribute vectors in the training set whose class labels have not been
uniquely determined yet. We perform experiments on artificial and real data.

Keywords: Active learning, ordinal classification, monotonicity constraints.

1 Introduction

In some learning problems, we know for each attribute whether it has a positive or negative
influence on the response variable. For example, it stands to reason that the number of query
terms occurring in a document has a positive influence on its relevance to the query. In the context
of ordinal classification or instance ranking problems, prior knowledge of this kind provides us with
the useful constraint that if a scores better (not worse) on all attributes than b, then the class
label of a can’t be lower than the class label of b. For example, if a and b apply for a loan, and
a scores better than b on all criteria, then it would be rather surprising if the application of b is
accepted, but a’s is rejected. Quite some work has been done on the development of algorithms
that enforce such monotonicity constraints on the models they produce, see for example [6, 1].

We propose to use this prior knowledge in the context of active learning to augment the training
sample with data points whose labels can be (partially) inferred from those of order related points
whose label was provided explicitly by an oracle. We consider the pool-based active learning
setting where we initially have a pool of unlabeled data points, and we can ask an oracle for the
label of (a limited number of) data points. The central problem is to decide which data point
to submit to the oracle. Generally speaking, we would like to submit one for which we expect it
will enable us to draw conclusions about the labels of many other points. The problem is how
to formalize this general notion, and to find efficient algorithms to determine the corresponding
query points.

1

This paper builds on the work of Barile and Feelders in [3]. The most important extensions
are:

1. For binary classification, we have developed an efficient algorithm to evaluate the well-known
active learning heuristic generalized binary search (see section 3.1). This algorithm can be
used in case the order on the data points is an incomplete matrix order, or 2-dimensional
order.

2. For non-binary classification, we have developed a way to include data points into the training
sample whose label has not been uniquely determined yet (see section 3.2).

We compare the performance of these new algorithms with those of [3] in section 5. We have
furthermore developed an instance of the Propp-Wilson algorithm with sandwiching that enables
us to draw a random monotone classification over a given partial order. This algorithm is used to
generate artificial data sets for the evaluation of our active learning algorithms, and is described
in section 4. We first discuss some preliminaries however.

2 Preliminaries

Let X be an attribute space X = X 1 × X 2 × . . .× X p consisting of vectors x = (x1, x2, . . . , xp) of
values on p attributes. We assume that each attribute takes values in a linearly ordered set X h.
The partial ordering � on X is the ordering induced by the order relations of its coordinates X h:

xi � xj ⇔ ∀h = 1, . . . , p : xhi ≤ xhj .

Likewise, let Y be a finite linearly ordered set of classes. Without loss of generality, we assume
that Y = {1, 2, . . . , k} where k is the number of classes.

We have available an unlabeled training sample X = {x1, . . . , xn} with X ⊂ X . The mono-
tonicity assumption states that

xi � xj ⇒ yi ≤ yj . (1)

This constraint expresses the prior knowledge that the class label is increasing in each of the
attributes, and it is the basis of all inference. If the class label is decreasing rather than increasing
in an attribute, we can simply invert the values of the attribute. A classification that satisfies (1)
is called a monotone classification. The degree of comparability of X is the fraction of pairs of
data points (xi, xj) with xi � xj or xj � xi.

A lower set L is a subset of X that contains the downward closure of all its elements:

xi ∈ L, xj � xi ⇒ xj ∈ L.

Likewise, an upper set U of X contains the upward closure of all its elements. The downset ↓ (xi)
of xi contains all elements of X that are smaller than or equal to xi:

↓ (xi) = {xj ∈ X : xj � xi}.

The upset ↑ (xi) of xi is defined analogously. We use d(xi) = | ↓ (xi)| to denote the size of the
down set of xi, and u(xi) to denote the size of its upset.

3 Active Learning

We consider the setting of pool-based active learning. A fundamental assumption in this paper
is that the oracle always produces monotone class labels, that is, class labels that satisfy con-
straint (1). We first consider the case of binary classification; section 3.2 discusses the non-binary
case.

2

3.1 Binary Classification

Dasgupta [4] analyzes an active learning strategy that can be summarized as follows. Let H denote

a hypothesis class (e.g. the class of monotone functions), and let Ĥ denote the effective hypothesis
class for a given sample of unlabeled points X = {x1, . . . , xn} (e.g. the class of monotone functions

on X). Let π denote a probability distribution over Ĥ. The objective is to determine the unique

h ∈ Ĥ that is consistent with all the hidden labels, by querying as few of them as possible.
Let S ⊆ Ĥ be the set of hypotheses that is consistent with the labels queried so far. For each
unlabeled xi, let S+

i be the hypotheses which label xi positive and S−i the ones which label it
negative. The proposed strategy, which we will henceforth refer to as generalized binary search (or
gbs for short) is to pick the xi for which these sets are most nearly equal in probability, that is,
the xi for which π(S−i) is closest to 1

2 . Another (equivalent) interpretation is that the query point
whose class distribution has the highest entropy is selected. Dasgupta [4] shows that if the optimal
query strategy (that is, the one that requires the fewest queries in expectation to determine h)
requires Q∗ queries in expectation, then the expected number of queries needed by gbs is at most
4Q∗ ln 1/(minh π(h)). In particular, if π is the uniform distribution, it requires at most 4 ln |Ĥ|Q∗
queries in expectation. Henceforth we assume that π is uniform.

Let us consider how we can implement gbs for our problem. Let Ĥ be the collection of all
monotone binary classifications of the pool of unlabeled points X. Note that there is a one-to-one
correspondence between monotone binary classifications on (X,�), and lower sets of (X,�): given
a lower set L ⊆ X, the classification function

f(x) =

{
1 if x ∈ L
2 otherwise

is monotone, and vice versa, given a monotone classification f , the set

L = {x ∈ X : f(x) = 1}
is a lower set of X. Hence, to determine the size of S−i we need to count the number of lower sets
that include xi. Unfortunately, counting the lower sets of a partial order is #P complete [8]. For
this reason, Barile and Feelders [3] proposed the easy-to-compute greedy heuristic

x∗ = arg max
x∈X

min{d(x), u(x)},

where x∗ denotes the selected query point. This heuristic maximizes the number of labels we can
infer in the worst case, and only requires the computation of the size of the upset and downset of
each potential query point.

We note however that for certain types of partial order the problem of counting lower sets
is tractable. For example, the number of lower sets of a chain of length n is n + 1, and both
gbs and greedy query the point in the middle of the chain. This is known to be optimal, and
the number of queries required to determine all labels is 1 + log2 n. A somewhat less restrictive
order is the matrix order. We get an m × n matrix order for example if we have two attributes
X1 and X2, with domain sizes |X 1| = m and |X 2| = n. We have developed an efficient dynamic
programming algorithm to count the lower sets for this type of order. We describe this algorithm in
the remainder of this section (a proof of its correctness is given in Appendix A). Since it might be
the case that not all possible vectors (i, j) (i = 1, . . . ,m, j = 1, . . . , n) are observed in the sample,
we must take into account the possibility that some of the cells of the matrix are “empty”. We
count the lower sets of the partial order: (i, j) � (k, l) ⇔ i ≤ k and j ≤ l. Let Di,j denote the
number of lower sets of the part of the matrix with row ≤ i and column ≥ j. To count the lower
sets of the whole matrix, we can use the following recursion:

Di,j =

{
Di−1,j +Di,j+1 −Di−1,j+1 if (i, j) is empty
Di−1,j +Di,j+1 otherwise

All we need to kick start the process is to determine the counts for row 1 and column n, but this
is straightforward since the corresponding blocks are linear orders. If cell (1, n) happens to be
empty we enter a count of 1 since the empty set is a lower set.

3

4 22 18 10 3
3 12 8 7 3
2 9 5 4 2
1 4 3 2 1

1 2 3 4

(a) Matrix D

4 1 2 3 3
3 1 2 5 8
2 2 3 8 16
1 3 6 14 22

1 2 3 4

(b) Matrix E

4 18 10 3 1
3 18 17 9 3
2 18 17 13 8
1 21 19 16 16

1 2 3 4

(c) Matrix C

Table 1: Counts for an example 4× 4 matrix order. The grey cells correspond to attribute vectors
that are not observed in the sample. The cells are numbered so as to correspond with the ordering
in the plane, e.g., (1, 1) is the bottom-left cell.

Consider the example of the 4 × 4 matrix given in Table 1(a). The grey cells are empty. To
compute D(3, 2) for example, we add D(2, 2) and D(3, 3), and because (3, 2) is an empty cell, we
subtract D(2, 3) giving a count of 8 lower sets. We read in cell (4, 1) that this matrix order has
22 lower sets (monotone binary classifications) in total.

This establishes the total number of lower sets of a matrix order, but we need to count the
number of lower sets that include x. As it turns out this can be done with a few extra steps. The
number of lower sets of X that include x is equal to the number of lower sets of X\ ↓ x. This
number cannot be read off immediately from D, except for the cells in the top row. For example,
the down set of cell (4, 1) is the entire first column of the matrix, so the required count can be
found in cell (4, 2). To compute the counts for cells not in the top row, we first define a matrix
E which is constructed in a similar fashion as D, but working in the opposite direction, i.e. from
the upper-left cell to the bottom-right cell. Cell (i, j) of E contains a count of the lower sets of
the block extending from the upper-left cell to cell (i, j). The total count will now appear in the
bottom-right cell of E (see Table 1(b)). Finally we define the matrix C where C(i, j) contains the
number of lower sets that include cell (i, j).

Ci,j =

{
Di,j+1 if i = m
Ci+1,j +Di,j+1 × (Ei+1,j − Ei+2,j) otherwise,

where, all “out of bounds” cells should be taken to contain a count of 1. The matrix C for our
example is given in Table 1(c). We can read from it for example that the number of lower sets
that include (2, 3) is 13. To determine the complexity of this algorithm, we note that we need
to perform just a few elementary computations for each cell in the matrix, so the complexity is
O(mn), which is proportional to the number of observed data vectors.

Let us compute which query point would be selected by the gbs heuristic. In Table 2 we have
listed the data required for its evaluation. Here we see that the class label distribution for the cell
(4, 2) has the highest entropy: in 45% (10 out of 22) of all monotone classifications it has label 1,
and in 55% it has label 2. Since the entropy for all other query points is smaller, gbs will select
(4, 2). The necessary computations to evaluate the greedy heuristic are summarized in Table 3.
If we query for the label of cell (2, 3) we can determine the label of 5 cells, regardless of whether
the true label is 1 or 2. All other cells have a lower worst case outcome, so the cell (2, 3) is selected
by greedy.

Finally, we note that after querying for the label of x, the labels of either the downset (if the
label is 1) or the upset (if the label is 2) of x are determined due to the monotonicity constraint,
and hence the corresponding vectors can be removed from the partial order. The remaining order
is again an incomplete matrix order, so the next query point can be determined in the same way.

3.2 Non-binary Classification

In the binary case, the gbs heuristic selected the query point whose class distribution had the
largest entropy. This principle can be extended to the non-binary case, but it requires even more
complex computations, as was to be expected.

4

cell C(i, j) P (y = 1) cell C(i, j) P (y = 1)
(1,1) 21 .95 (2,3) 13 .59
(2,1) 18 .82 (3,3) 9 .41
(1,2) 19 .86 (4,3) 3 .14
(4,2) 10 .45 (2,4) 8 .36
(1,3) 16 .73 (3,4) 3 .14

Table 2: Computations necessary for evaluating gbs: for every non-empty cell, the number of
lower sets C(i, j) that contain that cell, and the corresponding probability that this cell has class
label 1 are given. gbs selects the query point (4, 2)

cell d u min cell d u min
(1,1) 1 10 1 (2,3) 5 5 5
(2,1) 2 7 2 (3,3) 6 3 3
(1,2) 2 8 2 (4,3) 8 1 1
(4,2) 4 2 2 (2,4) 6 2 2
(1,3) 3 6 3 (3,4) 8 1 1

Table 3: Computations necessary for evaluating greedy: for every non-empty cell, the size d of
its downset, the size u of its upset, and the minimum of them is given. greedy selects the query
point (2, 3).

Given a nested sequence L1 ⊆ L2 ⊆ . . . ⊆ Lk−1 of lower sets of X, the classification function:

f(x) =

{
j if x ∈ Lj \

⋃
i<j Li, j = 1, . . . , k − 1

k otherwise
,

is monotone. Conversely, given a monotone classification function f(x), x ∈ X, define Li = {x ∈
X : f(x) ≤ i}, i = 1, . . . , k − 1. The sequence L1, . . . , Lk−1 is a nested sequence of lower sets of
X. Hence, to count the number of monotone classifications on X, we can count the number of
nested sequences of lower sets of X instead. We have not been able to find an efficient way to do
this even for a matrix order.

Therefore we extend the greedy heuristic to non-binary classification problems, as proposed
in [3]. It doesn’t make much sense now to count the number of class labels that can be inferred in
the worst case, as that number will typically be zero (or one if you include the the label of query
point itself) for all potential query points. Hence, we switch to counting the number of labels that
can be eliminated in the worst case instead.

Let [`i, hi] denote the interval of possible labels for xi. Initially we have `i = 1 and hi = k
for all i, but as we learn the labels of points, using the monotonicity constraint these bounds are
adjusted. Let N(xi, y) denote the number of values we can eliminate when yi = y. We have

N(xi, y) =
∑

xj∈↓(xi)

(hj − y)+ +
∑

xj∈↑(xi)

(y − `j)+,

where z+ = max(0, z). Maximizing the worst case we select the query point

x∗ = arg max
xi∈X

min
y∈[`i,hi]

{N(xi, y)}.

As the number of class labels k increases, it becomes more and more difficult to infer unique
class labels for points that are not queried. This means that it becomes very difficult to infer a
sizeable training set from just a limited number of queries. On the other hand there may be quite
a few points whose set of possible labels has been reduced considerably by inference from the query

5

points. If we only include points whose label has been uniquely determined in the training set,
then we completely ignore this potentially valuable information. Therefore we propose to exploit
partial label information as follows. Let xi be an attribute vector whose label set has been reduced
to the interval [`i, hi]. The size of this interval is si = hi − `i + 1. We add si copies of xi to the
training set, with respective labels `i, . . . , hi. Each copy gets the weight s−1

i .
The question remains how many labels have to be eliminated before we decide to include a

point in the training sample. This is determined by the value of the parameter a ∈ [0, 1], where
xi is included if si ≤ a · k. So if a = 1

2 , we include a point if at least half of its possible labels have
been eliminated. Algorithm 1 shows how we use the partial label information to predict the class
of a new data point z with a K-nearest neighbor classifier. In the call, T denotes the training
sample. The call to GetNearestNeighbors returns the K nearest neighbors of z in T , where
only attribute vectors xi in T with si ≤ a · k are considered. In predicting the label of z, the
weight of a training point is inversely proportional to its distance to z. In case a training point
has multiple possible labels, the weight is distributed evenly over the different labels. To get the
final prediction, the weighted average is rounded to the nearest integer. We will use Algorithm 1
to assess the quality of a query strategy by measuring the prediction error on an independent
test sample of this classifier, using a training sample T that has been constructed with that query
strategy. It should be noted that the classifier is merely an instrument to assess the quality of a
query strategy, so we have not attempted to find the best classifier. The partial label information
can also be used by other classification algorithms that allow the specification of case weights in
training.

Algorithm 1 Classify(z,K,T ,a)

1: y ← 0
2: w ← 0
3: N ← GetNearestNeighbors(z,K,T ,a)
4: for all xi ∈ N do
5: d← Distance(z, xi)
6: si ← hi − `i + 1
7: for all j = `i → hi do
8: y ← y + j × 1/(si × d)
9: w ← w + 1/(si × d)

10: end for
11: end for
12: return Round(y/w)

4 Generating random monotone functions

In this section we present an algorithm to uniformly sample a random monotone classification
function with (at most) k labels, defined on a given partial order (X,�). This algorithm will be
used to generate artificial data sets for the evaluation of the proposed active learning heuristics.
It is an instance of the Propp-Wilson algorithm [7] with sandwiching.

Recall that we established a one-to-one correspondence between nested sequences of lower sets
and monotone classification functions in section 3.2. Let S denote the collection of all nested
sequences of lower sets on (X,�). We define an order (S,�S) on the elements S of S as follows.
Let S1 = LS1

1 , . . . , LS1

k−1 and S2 = LS2
1 , . . . , LS2

k−1 denote two nested sequences of lower sets. The
order is defined as:

S1 �S S2 ⇔ ∀i = 1, . . . , k − 1 : LS2
i ⊆ LS1

i .

Note that this order has a least element S⊥ = ∀i = 1, . . . , k − 1 : Li = X (all elements of X get
the smallest label), and a greatest element S> = ∀i = 1, . . . , k− 1 : Li = ∅ (all elements of X get
the largest label).

6

We set up a number of Markov chains that have S as their state space. Let φt(S, u) denote
the update function, where S ∈ S is the current state and u is a uniformly distributed random
number in the interval (0, 1). The chains are coupled, that is, the same random number ut is used
by all chains. Therefore, once two chains “meet” in the same state, they become “stuck forever”.
Such chains are said to have coalesced. Now suppose the update function is monotone, that is

S1 �S S2 ⇒ φt(S1, ut) �S φt(S2, ut).

If we have coupled chains that start in S1, S2 and S3 with S1 �S S2 �S S3, and at time t, the
chains started at S1 and S3 have coalesced, then the monotone update function guarantees that
the chain that started in S2 has the same value. If in the partial order we have a least element
and a greatest element, then we only need two chains, started in these two states. Once these two
chains converge, all chains started in other states would have converged to the same value.

Hence, for the algorithm to work, it is essential to use a monotone update function. In Appendix
B we present the update function, and prove that it is monotone.

To summarize the algorithm: we use two coupled chains, started at S⊥ and S> and run them
“in the past” from time −T to −1. If after this time, the chains have coalesced, we use their value
as our sample. If they have not coalesced, we increase the amount of time and run the chains
again. Once the chains have converged at t = 0 for some T , we would still get the same answer if
we had started the chains even earlier. So in effect, we get a sample from a chain that has been
run for an infinite amount of time. Propp and Wilson [7] show that by running this Markov chain
we generate a uniform random element from S.

5 Experiments

To evaluate the different query strategies, we compare their performance on artificial and real
data sets. We would like to stress that we have not attempted to systematically optimize the
parameters of the classification model (nearest neighbor), because it is merely instrumental in
measuring the quality of the different query strategies. The value of K for the K-nearest neighbor
algorithm was fixed at 5 because preliminary experiments demonstrated that this value worked
quite well. Throughout the experiments we fixed the ambiguity parameter a at 1

2 , as it makes
sense to only use the partial label information if more than half of the possible labels have been
ruled out.

5.1 Experiments on Artificial Data

We generate artificial data in two different ways, one specifically intended for the incomplete matrix
order, and one more general method. To generate data for the matrix order, we pick a value m
for the number of rows and columns of the matrix (for simplicity we assume the matrix is square).
Furthermore, we choose a value d ∈ [0, 1] which denotes the fraction of observed cells. Given
an incomplete matrix order generated in this way, we use the algorithm described in section 4
to generate a random monotone binary classification on this order. We only consider binary
classifications on matrix orders, so that we can use the efficient lower sets counting algorithm of
section 3.1 to compute the gbs query point.

Table 4 and Figure 1 summarize some of our findings. In Table 4 we see for example that the
greedy heuristic only needs 12 queries to infer 80% of the labels in the training set consisting of
two thirds of n = 1250 is 833 attribute vectors. With respect to the number of inferred labels,
greedy dominates gbs for a long time but is taken over by it at the very end: when it comes
to classifying 100% of the training sample gbs requires fewer queries. Note that in the beginning
we can infer many labels from just a few queries, but to obtain the last 20% of labels requires
relatively many queries. For example, for m = 50 and d = 0.2, gbs requires 13.4 queries on
average to infer 80% of the labels , but to obtain the last 20% an additional 28.6 queries are
needed. Likely this is because towards the end, the partial order disintegrates into a number of
smaller disconnected components, which limits the scope for inference. Figure 1 gives the detailed

7

m = 50, d = 0.2 m = 50, d = 0.5
% labeled 20% 50% 80% 100% 20% 50% 80% 100%

greedy 1 3 11 45 1 3.1 12 67
gbs 2.1 3.8 13.4 42 2.1 3.8 14 56
random 1.1 8 23 56 1.1 8.3 27 95

Table 4: Average number of queries needed to classify stated % of vectors averaged over 100
samples.

(a) % labeled vectors (b) accuracy on test set

Figure 1: Average results on 100 artificial data sets
(k = 2,m = 50, d = 0.5)

results for different query strategies for k = 2, m = 50, and d = 0.5. The random (R in Figure 1)
strategy picks an unlabeled point at random but does use the monotonicity constraint to infer
the labels of other points. The r-noinf strategy doesn’t even use the monotonicity constraint,
so its training sample consists only of the points that were explicitly labeled by the oracle. It
was merely included to show the benefit of the constraint. The line labeled all gives the results
obtained when the complete labeled training sample is used, and provides a natural upper bound
for performance. The results of gbs are given by the line labeled matrix in Figure 1.

To study the behavior in case there are more than two class labels, we generate data from a
bivariate normal distribution. The degree of comparability (see section 2) can be controlled by
changing the correlation between the attributes: a strong positive correlation gives high compara-
bility, and a strong negative correlation gives low comparability. We determine the partial order
on the generated data points, and again use the algorithm described in section 4 to generate a
random monotone classification on the order concerned.

An interesting phenomenon occurs as the number of class labels increases (see Table 5 and
Figure 2). The random strategy actually starts to outperform the greedy heuristic. For example,
for k = 7, after 5 queries the model produced by greedy classifies 18% of the test set correctly,
against 28% for random. In the end greedy catches up, but it is never better. The problem
with greedy if there are many class labels is that initially it is not able to uniquely determine
the class label of sufficiently many data points, leading to relatively small training samples. In
Figure 2(a) we can see that after about 15 queries greedy has catched up, but in any case the
number of inferred class labels of greedy and random remain very close. However, if we also
include points into the training sample whose label has not been uniquely determined yet, but
whose label set has been reduced by at least 50% (indicated by partial), then greedy regains
its edge (see Table 5 and Figure 2(c)).

Finally, we consider the effect of the degree of comparability on the performance of the different
query strategies. In Figure 3 the degree of comparability has been plotted on the x-axis. The
number of queries has been fixed at seven in this case. First of all, we note that the performance
increases with the degree of comparability of the data for all query strategies. This was to be
expected, since the more comparable pairs of data points, the higher the benefit of the monotonicity

8

(a) % labeled vectors

(b) accuracy on test set (c) accuracy with partial label information

Figure 2: Average results on 100 artificial data sets
(k = 7, n = 200, c = 0.5)

k = 5 (max = 73%) k = 7 (max = 64%)
q 5 10 20 50 5 10 20 50

greedy 31% 56% 67% 72% 18% 32% 50% 60%
random 42% 56% 64% 71% 28% 41% 51% 60%
greedy-partial 56% 64% 70% 73% 38% 47% 56% 62%
random-partial 50% 60% 66% 71% 33% 43% 53% 61%

Table 5: % correctly labeled test vectors after stated number of queries averaged over 100 samples.
max indicates the prediction error when the complete training set is used (n = 200, c = 0.5)

9

(a) % labeled vectors

(b) accuracy on test set (c) accuracy with partial label information

Figure 3: For each value of c (comparability), the average result of tests on 100 artificial data sets
(k = 4, n = 200, q = 7)

Name n k #att c

AutoMPG 392 7 4 0.81
CPU 209 4 6 0.48
Haberman 306 2 3 0.33
Windsor 546 4 11 0.26
Pima 768 2 8 0.07
Ohsumed 156 2 2 0.66

Table 6: Basic properties of real data sets after pre-processing; #att stands for number of attributes
and c stands for comparability.

constraint. For example, if there are no comparable pairs at all, the order on the data points is
one big anti chain, and the monotonicity constraint has no effect whatsoever. Conversely, if all
pairs of points are comparable we have a linear order with maximum benefit of the monotonicity
constraint. In figure 3(a) we see that the advantage of greedy over random increases with
comparability. If comparability is low there is little scope for inference, and basically every query
strategy will perform quite badly. As comparability increases, so does the scope for inference, and
well-chosen queries start to pay off.

Comparing Figures 3(b) and 3(c) we see that including partial label information is more useful
in data sets with low comparability. This makes perfect sense, since in such data sets there is
little scope for inference. Therefore, after a limited number of queries few labels will have been
uniquely determined, and the added benefit of partial label information can be substantial.

5.2 Experiments on Real Data

In this section we discuss the experiments that we performed on a collection of (almost) real data
sets. Their basic properties are summarized in Table 6.

10

All data sets are available from the UCI machine learning repository [2], except for the Windsor
housing data, which is available from the Journal of Applied Econometrics Data Archive1 and the
Ohsumed data set which is available from the LETOR web site 2. Monotonicity judgments were
based on common sense. For example, in the AutoMPG data, the weight of the car was taken
to have a negative influence on miles per gallon, and in the Windsor housing data, lot size was
taken to have a positive influence on selling price of the house. The numeric targets of AutoMPG,
CPU, and Windsor were discretized into 7, 4, and 4 equal frequency bins respectively. For the
Ohsumed data, we selected the data for query 3, and attributes 1 and 16. To obtain a monotone
classification of the data sets we relabeled the data using the algorithm described in [5]. For
example, to make the Pima data set monotone, the algorithm relabeled 53 of the 768 data points.
Although the Ohsumed data originally had 3 labels (“irrelevant”, “partially relevant” and “highly
relevant”), after relabeling only 2 labels remained.

After preprocessing, the Ohsumed data set conformed to the restrictions of two class labels
and two attributes, and hence we could apply our generalized binary search for matrix orders to
it. The results are shown in table 7. Very few queries are required to infer all class labels. This
is explained by the high comparability (c = 0.66), and in particular by the fact that the data set
contains quite a few identical attribute vectors. Apart from that we observe the same phenomenon
as in the artificial data: greedy requires fewer queries than gbs on average to infer 80% of the
labels but gbs wins when 100% of the labels are to be inferred.

% labeled 20% 50% 80% 100%

greedy 1 1.2 3.2 15
gbs 1 1 4 13
random 1 2.2 6.3 24

Table 7: Oshumed: average number of queries needed to classify stated % of vectors averaged over
100 samples.

The results of our experiments on real data are summarized in Table 8. In general we observe
that greedy outperforms random in terms of the number of inferred data points as well as in
terms of the accuracy of induced models on the test set. We also see that using partial label
information tends to improve the accuracy of induced models. The most extreme example is
Windsor housing where after querying 20 data points the accuracy of greedy is 60% and for
greedy-partial it’s 65%.

6 Conclusion

We have shown that monotonicity constraints can be exploited to infer class labels of unlabeled
points in ordinal classification problems. We have investigated different query strategies and
evaluated their performance. For binary classification we developed an efficient algorithm to count
monotone classifications on an incomplete matrix order. This enabled us to compare a well-known
active learning heuristic called generalized binary search, to an easy-to-compute greedy heuristic.
We found that the greedy heuristic initially performs better, but generalized binary search tends
to win if the aim is to classify the whole training set. In the context of active learning this is rarely
the case, so we may conclude that the greedy heuristic compares favorably to generalized binary
search.

For non-binary classification we noticed that as the number of class labels increases, the greedy
heuristic tends to be overtaken by the random strategy. At the same time we observed that it is
rather wasteful to ignore the partial label information that was inferred from the query points.
We have proposed a way to incorporate such partial information into the training sample. The
experiments showed that this leads to improved performance. In the experiments on artificial

1http://econ.queensu.ca/jae/
2http://research.microsoft.com/en-us/um/beijing/projects/letor/

11

Name Heuristic 20% 50% 80% 5 10 20 max

AutoMPG

greedy 3.4 34 74 39% 60% 69% 91%
random 6.2 44 85 34% 52% 65%
greedy-partial 59% 66% 71%
random-partial 50% 60% 67%

CPU

greedy 7.3 31 65 45% 67% 69% 74%
random 12 39 79 40% 52% 65%
greedy-partial 59% 68% 70%
random-partial 49% 61% 66%

Haberman
greedy 1.1 5.3 20 85% 89% 90% 91%
random 2 8.5 25.3 84% 86% 89%

Windsor

greedy 17 72 160 44% 51% 60% 72%
random 18 93 176 37% 47% 56%
greedy-partial 53% 60% 65%
random-partial 44% 52% 59%

Pima
greedy 12 116 256 74% 77% 78% 79%
random 24 102 222 72% 75% 77%

Ohsumed
greedy 1 1.2 3.2 97% 98% 99% 99%
random 1 2.2 6.3 91% 97% 99%

Table 8: Test results for the real data sets. All results are averages over 100 train-test partitions,
where 2

3 is used for training. The first three columns of numbers are the number of queries it
takes to classify 20%, 50% and 80% of the training set respectively. The next three columns are
the percentages of correctly labeled test vectors after 5, 10 and 20 queries respectively. The final
column gives the accuracy on the test set when using all training data.

data we found that the greedy heuristic benefited more from the partial label information than
the random strategy. The greedy heuristic using partial label information emerged as the overall
best strategy on the real data as well.

Appendix A

This appendix contains the correctness proof for the algorithm to count monotone binary classifi-
cations on a 2-dimensional partial order, or (incomplete) matrix order. Figure 4 gives a schematic
representation of the matrix and the way we count lower sets.

Let Bi,j denote the block of cells with (i, j) as its upper-left cell, and extending all the way to
the lower right cell (1, n) of the matrix. So Bi−1,j ∪ Bi,j+1 denotes the union of the blocks with
(i − 1, j) and (i, j + 1) as their upper-left elements respectively. Let S be an arbitrary subset of
the cells in the matrix, and let L(S) denote the number of lower sets of the order induced by only
considering the cells in S. Finally, let D(i, j) denote the number of lower sets of the order on block
Bi,j , that is, D(i, j) = L(Bi,j).

Proposition 1.

L(Bi−1,j ∪Bi,j+1) = D(i− 1, j) +D(i, j + 1)−D(i− 1, j + 1).

Proof. We have (i, j) � (k, l)⇔ i ≤ k and j ≤ l (matrix order). Hence, every lower set of Bi−1,j is
also a lower set of Bi−1,j ∪Bi,j+1. This explains the inclusion of D(i− 1, j) on the right hand side
of the proposition. This leaves the remaining term D(i, j+1)−D(i−1, j+1) to be accounted for.
None of the lower sets of Bi,j+1 are lower sets of Bi−1,j ∪ Bi,j+1, but they could be extended to
one by including elements from the first column of Bi−1,j (the red column in figure 4). Partition
the lower sets of block Bi,j+1 into those that contain elements from its top row (the green row

12

(i, j)

j1 n
1

i

m

Bi−1,j+1

Figure 4: Schematic representation to support the proofs of Proposition 1 and Proposition 2. The
cells of the matrix are arranged so that the order between cells coincides with the order in the
cartesian plane. Hence the cell (1, 1) is in the lower-left corner. We have (i, j) � (k, l) ⇔ i ≤
k and j ≤ l.

in figure 4), and those that don’t. Denote the number of lower sets that contain elements from
the top row i by Li(Bi,j+1). We have D(i, j + 1) = Li(Bi,j+1) + D(i − 1, j + 1). Lower sets of
Bi,j+1 that do not contain any elements from its top row are already accounted for because their
possible extensions are lower sets of Bi−1,j . Hence we only count lower sets of Bi,j+1 that contain
elements from its top row. Each such lower set has exactly one possible extension to a lower set of
Bi−1,j ∪Bi,j+1, since it has to include all elements from the first column of Bi−1,j (the red column
in figure 4). This produces Li(Bi,j+1) = D(i, j + 1)−D(i− 1, j + 1) additional lower sets.

Proposition 2.
D(i, j) = L(Bi−1,j ∪Bi,j+1) +D(i− 1, j + 1).

Proof. Consider the question how many extra lower sets Bi,j has compared to Bi−1,j ∪ Bi,j+1.
The extra lower sets must contain the cell (i, j) since this is the only new element. Consider any
lower set from Bi−1,j ∪ Bi,j+1 that contains elements from the top row of Bi,j+1. After addition
of (i, j) to the order, we are forced to add (i, j) to this set in order for it to remain a lower set.
Hence lower sets that include elements from the top row of Bi,j+1 do not produce any new lower
sets after cell (i, j) is added to the order. On the other hand lower sets that include (i, j) must
always include the down set of (i, j) as well, that is they must always include the first column
of block Bi−1,j . Combining these two observations, we can conclude that the new lower sets are
obtained by taking any lower set of block Bi−1,j+1, and adding the first column of Bi−1,j to it.
Hence, this produces D(i− 1, j + 1) new lower sets.

Combining Propositions 1 and 2, we find that D(i, j) = D(i − 1, j) + D(i, j + 1), providing
an efficient way to compute the number of lower sets of the complete matrix by starting at the
lower-right cell and working our way to the upper-left cell. This cell contains the final solution
after termination of the algorithm. However, so far we have not considered the possibility of empty
cells. If (i, j) is an empty cell, then D(i, j) will be equal to L(Bi−1,j ∪Bi,j+1), so the proper count
is given in proposition 1. All we need to kick start the process is to determine the counts for the
bottom row and right-most column, but this is straightforward since the corresponding block are
linear orders. If the bottom-right cell happens to be empty we enter a count of 1 since the empty
set is a lower set. To summarize, we get the recursion given in table 9. By declaring out of bounds
cells (row 0 and column n + 1) to contain counts of 1, the counts for row 1 and column n are
computed correctly.

So far, we have established a method to determine the total number of lower sets of a matrix
order, but we need to count the number of lower sets that include x. As it turns out this can be
done with a few extra steps. The number of lower sets of X that include x is equal to the number

13

D(i, j) =

{
D(i− 1, j) +D(i, j + 1)−D(i− 1, j + 1) if cell (i, j) is empty
D(i− 1, j) +D(i, j + 1) otherwise

Table 9: Recursion to compute the number of lower sets in block Bi,j . Any required cell with
index “out of bounds” should be taken to contain a count of 1.

C(i, j) =

{
D(i, j + 1) if i = m
C(i+ 1, j) +D(i, j + 1)× (E(i+ 1, j)− E(i+ 2, j)) otherwise

Table 10: Recursion to compute the number of lower sets that include cell (i, j). Any required
cell with index “out of bounds” should be taken to contain a count of 1.

of lower sets of X\ ↓ x. Unfortunately, the number of lower sets of X\ ↓ x cannot be read off
immediately from D, except for the cells in the top row. To compute the counts for cells not in
the top row, we first define a matrix E which is constructed in a similar fashion as D, but working
in the opposite direction, i.e. from the upper-left cell to the bottom-right cell. Cell (i, j) of E
contains a count of the lower sets of the block extending from the upper-left cell to cell (i, j). The
total count will now appear in the bottom-right cell of E. Finally we define the matrix C where
C(i, j) contains the number of lower sets that include cell (i, j).

Proposition 3.

C(i, j) = C(i+ 1, j) +D(i, j + 1)× (E(i+ 1, j)− E(i+ 2, j))

Proof. C(i + 1, j) contains a count of the lower sets of block Q + U + V (see figure 5), because
X\ ↓ (i+ 1, j) = Q+ U + V . Partition the lower sets of (Q+ U + V) into lower sets that contain
elements from block U , and lower sets that don’t contain elements from block U . We have

L(Q+ U + V) = LU (Q+ U + V) + LŪ (Q+ U + V)

Now LŪ (Q+ U + V) = L(Q)×L(V) since Q and V are incomparable blocks, so we can produce
a lower set by taking any lower set from Q and combining it with any lower set from V . By
construction of the matrices D and E, we have L(Q) × L(V) = E(i + 2, j) ×D(i, j + 1). C(i, j)
should contain a count of the lower sets of block Q + R + U + V . Again partition them in lower
sets that contain elements from U and those that don’t.

L(Q+R+ U + V) = LU (Q+R+ U + V) + LŪ (Q+R+ U + V)

Now we have

LŪ (Q+R+ U + V) = L(Q+R)× L(V)

= E(i+ 1, j)×D(i, j + 1).

Also we have LU (Q+U +V) = LU (Q+R+U +V) because there is a one-to-one correspondence
between lower sets from Q+U +V that contain elements of U , and lower sets from Q+R+U +V
that contain elements of U : given one of the former, we get exactly one of the latter by adding
the whole of block R. This is mandatory because the whole of block R is in the down set of any
element of U . Given one of the latter, we get exactly one of the former by removing all elements
from block R. This always produces a lower set of Q+U+V , since R is a lower set of Q+R+U+V .
Summarizing we get that C(i, j)− C(i+ 1, j) = (E(i+ 1, j)− E(i+ 2, j))×D(i, j + 1).

To summarize, we get the recursion given in table 10 to construct the matrix C.

14

Q

R

U

V

(i, j)i

i + 1

j

Figure 5: Schematic picture for the proof of proposition 3

φt(S, u) =

S[LS

j → LS
j \ {xt}] if ut <

1
2 and xt ∈ (LS

j \ LS
j−1) and LS

j \ {xt} is a lower set.
S[LS

j → LS
j ∪ {xt}] if ut ≥ 1

2 and xt ∈ (LS
j+1 \ LS

j) and LS
j ∪ {xt} is a lower set.

S otherwise

Table 11: The update function for the algorithm to draw a random monotone function. S[Y → Z]
is identical to S except that Y is replaced by Z. In the first case, if j = 1, then LS

j−1 is taken to

be the empty set. In the second case, if j = k − 1, then LS
j+1 is taken to be equal to X.

Appendix B

Section 6 contains a specification of the update function for the algorithm to draw a random
monotone function, and the proof that the update function is monotone.

We first describe the proposed update function in words. We draw an element xt at random
from X and we draw a uniform random number ut. If ut <

1
2 , then we increase the label of xt

by one (unless xt already has the highest label), provided that the resulting classification is still
monotone. Increasing the label by one is accomplished by removing xt from the first lower set in
which it occurs in the nested sequence of lower sets. If ut ≥ 1

2 , then the label of xt is decreased
by one (unless xt already has the smallest label), provided that the resulting classification is still
monotone. Decreasing the label by one is accomplished by adding xt to the last lower set in which
it does not occur in the nested sequence of lower sets. In all other cases, S remains unchanged.
The formal definition of the update function φ is given in Table 11.

Proposition 4.
S1 �S S2 ⇒ φt(S1, u) �S φt(S2, u).

Proof. We give the proof for the case ut <
1
2 . The proof for the case ut ≥ 1

2 is similar. Assume

S1 �S S2, that is, LS2
i ⊆ LS1

i for i = 1, . . . , k − 1. If φt(S1) = S1 then the consequence of

the proposition is trivially true. Consider the case that φt(S1) = S1[LS1
j1
→ LS1

j1
\ {xt}], that is,

xt ∈ LS1
j1

, xt 6∈ LS1
j1−1 and LS1

j1
\ {xt} is a lower set. The last condition holds if xt is a maximal

element of LS1
j1

. Let LS2
j2

be the first lower set of S2 that contains xt. We have j2 ≥ j1 because
S1 �S S2. We consider two cases

1. j2 > j1: Since LS2
j1
⊆ LS1

j1
, and xt 6∈ LS2

j1
, it follows that LS2

j1
⊆ LS1

j1
\ {xt}. This was the only

condition that could have been violated by the update, so we conclude φt(S1) �S φt(S2).

2. j1 = j2: Since xt is a maximal element of LS1
j1

, and by assumption LS2
j1
⊆ LS1

j1
, we may

conclude that xt is also a maximal element of LS2
j1

. This implies that φt(S2) = S2[LS2
j1
→

LS2
j1
\ {xt}]. Since by assumption LS2

j1
⊆ LS1

j1
, it follows that LS2

j1
\ {xt} ⊆ LS1

j1
\ {xt}. Again,

15

this was the only condition that could have been violated by the update, so we conclude
φt(S1) �S φt(S2).

References

[1] E.A. Altendorf, A.C. Restificar, and T.G. Dietterich. Learning from sparse data by exploiting
monotonicity constraints. In Proceedings of the 21st Conference on Uncertainty in Artificial
Intelligence (UAI-05), pages 18–25, 2005.

[2] A. Asuncion and D.J. Newman. UCI machine learning repository, 2007.

[3] N. Barile and A. Feelders. Active learning with monotonicity constraints. In SIAM Interna-
tional Conference on Data Mining (SDM 2012), pages 756–767, 2012.

[4] S. Dasgupta. Analysis of a greedy active learning strategy. In Advances in Neural Information
Processing Systems (NIPS), pages 337–344. MIT Press, 2004.

[5] A. Feelders. Monotone relabeling in ordinal classification. In ICDM 2010, Proceedings of the
10th IEEE International Conference on Data Mining, pages 803–808, 2010.

[6] W. Kotlowski and R. Slowinski. Rule learning with monotonicity constraints. In Proceedings of
the 26th Annual International Conference on Machine Learning (ICML 2009), pages 537–544,
2009.

[7] J. Propp and D. Wilson. Exact sampling with coupled markov chains and applications to
statistical mechanics. Random Struct. Algorithms, 9(1-2):223–252, 1996.

[8] J. Provan and M. Ball. The complexity of counting cuts and of computing the probability that
a graph is connected. SIAM Journal on Computing, 12(4):777–788, 1983.

16

