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Abstract
In this paper we describe a variation of monotone frame-
works that enables us to perform approximate typing of
Python, in particular for dealing with some of its more dy-
namic features such as first-class functions and Python’s dy-
namic class system. We additionally introduce a substan-
tial number of variants of the basic analysis in order to ex-
perimentally discover which configurations attain the best
balance of cost and precision. For example, the analysis al-
lows us to be selectively flow-insensitive for certain classes
of identifiers, and the amount of call-site context is config-
urable. Results of our evaluation include that adding call-site
sensitivity and parameterized types has little effect on preci-
sion; in terms of speed call-site sensitivity is very costly. On
the other hand, flow-insensitive treatment of module scope
identifiers has a strongly positive effect, often both in terms
of precision and speed.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors – soft typing, Python

General Terms measurement

Keywords approximate typing, Python, data-flow analysis,
abstract interpretation, monotone frameworks, performance,
precision, call-site sensitivity

1. Introduction
Our goal in this paper is to arrive at an approximation of the
types of values that variables, methods and other bindings in
a Python [van Rossum and Drake, 2011] program may take.
The results of our work are intended for, e.g., inclusion in an
IDE for Python programming where we want to assist a pro-
grammer by providing a small enough selection of identifiers
that fit the context; in this particular case there is no reason
to insist on either soundness or completeness, but the results
should be attained reasonably fast (at most a few seconds),
and be reasonably precise.

The technique we employ to arrive at the types is abstract
interpretation by means of a variant of the (well-known)
monotone frameworks [Nielson et al., 2005]. The extensions

[copyright notice will appear here]

we make to monotone frameworks are twofold: First, we
have added facilities for dealing with the highly dynamic na-
ture of some aspects of Python, including its dynamic class
system and anonymous functions (Section 2). Second, our
formulation and associated implementation are organised in
a way that allows us to experiment with a substantial num-
ber of variants (Section 4): a parameterized widening oper-
ator for tuning the size of the type lattice, flow-insensitive
analyses for certain kinds of identifiers (module scope iden-
tifier, class types, instance types), call-site sensitive analysis
at varying levels of precision, parameterized datatypes, and
the inclusion of manually specified types.

In order to establish which variants attain the best bal-
ance of cost and precision, we have applied our implemen-
tation in all its variants to five Python applications (Sec-
tion 5). Some of the results we have obtained are the fol-
lowing (Section 6): Adding explicit type information for top-
level identifiers increases precision, but hardly affects speed.
Call-site sensitivity is very costly, but hardly improves pre-
cision. The use of parameterized datatypes during analysis,
e.g., list〈int〉 instead of list, improves precision substantially
in only one case. Flow-insensitivity for module-scope identi-
fiers (i.e., keeping only one set of types for a module scope
identifier, instead of one or two sets for each statement in
the program) leads to substantial improvements in speed and
precision; flow-insensitivity for class and instance types im-
proves precision somewhat, but at a rather high cost. Our
experiments also indicate the “best” settings for the parame-
terized widening operator that is employed to both tune pre-
cision and guarantee termination.

To summarise, we offer the following contributions:

• We describe an extension of monotone frameworks that is
particularly suited for dealing with the dynamic aspects
of Python.

• We have implemented this extension in a way that al-
lows to tune the precision of the analysis to a large extent,
and the implementation (in Haskell) is publicly avail-
able from http://www.cs.uu.nl/wiki/bin/view/Hage/

Resources.
• We applied our implementation with various levels of

precision to five Python applications to, e.g., discover
when additional precision in the analysis does not lead
to more precise results.

Our work was implemented for Python 3.2 (Feb 2011),
but should also work for 3.0 and 3.1. Python has an impera-
tive, object-oriented core with features from functional and
scripting languages, and is widely used for web develop-
ment and all forms of scripting. Our implementation can deal
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while [x]1:
if [y]2:

[continue]3

elif [z]4:
[break]5

[w = "a"]6

else:

[w = "b"]7

1 2 3

4 5

67

Figure 1: While loop with continue and break statements, and
its associated control-flow graph.

with many of Python’s features such as higher-order func-
tions and classes. Our only omission is that we do not fully
support exceptions and generators, and we may loose sound-
ness in the presence of these constructs. Repairing these is-
sues is possible, but the cost of implementation is high: in
the case of exceptions we shall have to find out which excep-
tions may be generated by which statements, in order to add
these flows to the control-flow graph. Assuming that excep-
tions indeed occur rarely, we decided to simply omit such
edges from the graph. Generators, on the other hand, en-
able a stream-based way of programming, in which functions
yield their results piece by piece to the caller. It is a feature that
is rarely used, and its implementation is not trivial, which
is we omitted it. An unavoidable source of unsoundness is
when the programmer provides explicit types for identifiers
from, e.g., Python libraries, that are not sound. Since this typ-
ically occurs for identifiers for which we have no access to
the source code, there is no way that this can be discovered
by our implementation.

Section 3 gives some details of the analysis itself (but
given the size of the language, many details can only be
found in [Fritz, 2011]), Section 7 surveys related work, and
Section 8 concludes and provides pointers for future work.

2. Extending monotone frameworks
Our analysis and its variants are implemented as a data flow
analysis formulated as a monotone framework with some
additions to allow us to deal with some of the features of
Python. Before detailing approximate typing for Python, we
first explain these necessary additions.

As usual, the first step in data-flow analysis is to con-
struct the control-flow graph of a (Python) program. This
is less easy than it may seem: we have to account for con-
trol structures such as break and continue, deal with control-
flow internal to an expression, short-circuiting boolean oper-
ators, loop else-clauses, list, set and dictionary comprehen-
sions and Python’s with-statement (akin to a try-finally con-
struct). For reasons of space, we give a single example that
includes a loop, break, continue and a loop else-clause in Fig-
ure 1 (see Section 4.3 of [Fritz, 2011] for the remaining cases).
Here the nodes correspond to blocks in the program, the ini-
tial node is 1, and both 5 and 7 are final nodes.

Having constructed a control-flow graph, we can con-
struct a monotone framework (L,F , F, E, ι, λl. fl) where L de-
notes the lattice from which analysis results are taken, F is a
set of monotone functions from which transfer functions are

selected, F is the flow of the program, E contains the vertices
from which information flows (the extremal vertices), ι is the
extremal analysis value that is used to initialize the analysis
results for extremal vertices, and the function λl. fl selects for
a given a label l the transfer function for the block(s) labelled
with l (see [Nielson et al., 2005] for details).

In order to handle Python code properly and to support
different variants of the analysis, the embellished monotone
frameworks as described in [Nielson et al., 2005] are ex-
tended in two ways.

First, because Python supports first-class functions and
late binding, it is less than trivial to infer which function
or method is called by a particular invocation. Therefore we
add a facility for adding edges dynamically to the control-
flow graph to reflect these dynamics. Our algorithm assigns a
unique identifier to each function in the program under anal-
ysis and these identifiers are included in the types inferred
for functions, so which function a call can refer to can then
become apparent during analysis. To be able to use this in-
formation, the monotone framework and worklist algorithm
are extended so that edges for function calls can be added to
the control flow graph during execution of the worklist algo-
rithm.

Because the analysis has to be aware of the functions
defined in the program, the monotone framework contains
one more element: the function table Λ, which maps function
identifiers to labels for entry and exit nodes. More formally,
Λ[ f ] = (ln, lx), where f is a function identifier and ln and
lx are the labels of the function’s entry and exit program
points. The complete monotone framework then becomes the
eight-tuple (L,F , F, E, ι, λl. fl , Λ). We show below how the
algorithm solves these instances.

Second, because we also want to experiment with par-
tially flow-insensitive variants of the analysis, and the for-
mulation of [Nielson et al., 2005] implies a flow-sensitive
analysis (analysis results are indexed by statement/block la-
bel), we further extend the worklist algorithm employed to
solve the monotone frameworks, allowing it to selectively
treat identifiers flow-insensitively. Concretely, this means
that these identifiers are associated with one set of types,
instead of a pair of such sets for each program label. This
also implies that once we find that such a set changes, the
worklist algorithm must ensure this change is signalled to all
parts of the program that employ the given identifier.

Extended worklist algorithm

The extended worklist algorithm is given in Algorithm 2; it
is a variation of the Maximal Fixed Point algorithm given in
[Nielson et al., 2005, Chapter 2].

The transfer function for a call (lc) program point must in-
dicate which functions may be called at that call site. There-
fore, there are two kinds of transfer functions: simple transfer
functions, which are as described above, and call transfer func-
tions, which are used for function call nodes. In addition to
the computed effect value, a call transfer function returns a
set of function identifiers indicating which functions may be
called at that point. The worklist algorithm looks up these
identifier in the function table and, for each of them, adds
two edges: (lc, ln) and (lx, lr). Note that because the number
of such functions and calls is finite, this can only occur a finite
number of times.
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Initialization:

A◦[l]←
{

ι for l ∈ E
⊥ otherwise

A•[l]← ⊥
g← ιg
W ← N
G ← ∅

Iteration:
while W not empty do

i← head(W)
W ← tail(W)
if i = l ∈ N then

(t, d, e′, g′, u)← fl(A◦[l])
if g′ 6v g then

g← g′
for all l ∈ G do

W ← l : W
if u then

G ← {l} ∪ G
if e′ 6v A•[l] then

A•[l]← e′
for all l′ with (l, l′) ∈ F do

W ← (l, l′) : W
F′ ← ⋃

{{(lc, ln), (lx , lr)} | (ln, lx)← Λ[ f ], f ← t}
if d then

F′ ← F′ ∪ (lc, lr)
if F′ 6⊆ F then

for all e ∈ F′ \ F do
W ← e : W

F ← F′ ∪ F
else if i = (l, l′) then

if A•[l] 6v A◦[l′] then
A◦[l′]← A◦[l′] t A•[l]
W ← l′ : W

Algorithm 2: Extended worklist algorithm

The call transfer function also returns a flag to indicate
cases where the analysis cannot identify the function called
(e.g., because it is not part of the source code analyzed). If
this flag is set, the worklist algorithm adds an edge (lc, lr),
connecting the call and return nodes directly.

Each edge added to the graph is also added to the work-
list, since, obviously, at that point the most recent effect value
has not been propagated across the edge.

3. Type inference for Python
Our analysis aims to infer the types for variables in Python
source code. However, this formulation is not quite right, be-
cause in Python there is really no notion of “types of vari-
ables”. A more precise statement of the goal of the analysis
is: for each variable in a Python program, what are the types of the
values it may be bound to when the program is executed. The term
“variable” includes parameters of functions and methods.

The basic type inference method is a data flow analysis ex-
pressed as a monotone framework and solved by the work-
list algorithm (see Section 2). It is flow-sensitive, context-
insensitive and path-insensitive. (A path-sensitive analysis
computes different results depending on predicates at nodes
where the flow of control diverges. For example, a path-
sensitive analysis could infer that in the body of the state-
ment if x is None: . . . , variable x has value None.)

Figure 3 defines a type lattice for Python. In the notation
used on the right, {ν} stands for a set of zero or more ele-

u ∈ UTy union types u ::= {v} | >
v ∈ ValTy value types v ::= b | f | c | i
b ∈ BuiltinTy built-in type b ::= int | bool | list | . . .
f ∈ FunTy function types f ::= fl
c ∈ ClsTy class types c ::= cl〈l, [c], {n 7→ u}〉
i ∈ InstTy instance types i ::= inst〈c, {n 7→ u}〉
l ∈ N label
n ∈ String name

Figure 3: Basic type lattice for Python.

ments of the form ν, and [ν] stands for an ordered sequence
of zero or more elements of the form ν.

The type assigned to a variable is called a union type:
it is either the set of types of the values that the variable
may be bound to at runtime, or >, which represents the set
of all types. Value types model types of values at runtime.
The analysis distinguishes five kinds of value types. Built-
in types are built into Python and rules to deal with them are
built into the analysis. A function type refers to a function
in the source code; these are assigned unique labels to avoid
name clashes. The types for classes defined in the code under
analysis and instances of these are more interesting. Classes
and objects are very dynamic in Python: at runtime, new
classes can be created and attributes can be added to and
removed from classes and objects. Classes may also have
multiple superclasses. This is captured by the definitions in
Figure 3: a class type contains a list of superclasses and a
mapping from names to types for class attributes; an instance
type contains the instance’s class and a mapping for instance
attributes. Like functions, classes are also assigned unique
labels.

Join operator

The set UTy becomes a join-semilattice by defining a join
operator t and identifying a bottom element ⊥. For brevity,
we call UTy a lattice in the following.

The bottom element is defined as ⊥ = ∅. The join of two
union types u1 and u2 is > if u1 = > or u2 = >. If neither of
them is>, u1 t u2 is basically the union of the sets. However,
if the set union u1 ∪ u2 contains multiple class types with
the same class identifier, or multiple instance types whose
class types have the same identifier, these are merged. When
two class types are merged, the resulting class type contains
the superclasses and attributes of both class types. Similarly,
when two instance types are merged, the resulting instance
type contains the attributes of both and their class types are
merged as well.

Figure 3(left) shows some of the elements of the lattice in
the form of a diagram. In the diagram, a v b is expressed as
an edge from a to b with a being below b.

Widening operator

To ensure termination of the fixed point computation, the ba-
sic analysis uses a widening operator ∇n,m,o (see [Nielson
et al., 2005, Section 4.2.1]), which is parameterized with three
numbers: n ∈ N is the maximum cardinality of a set of types,
m ∈ N is the maximum number of attributes of a class or in-
stance and o ∈ N is the maximum nesting depth. Intuitively,
the nesting depth of a type is the depth of the abstract syntax
tree that is implicitly defined by the definitions in Figure 3,
and extended for parameterized types in Section 4.1.
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⊥

{bool}{ f loat}{int}

{int, f loat} { f loat, bool}

{int, f loat, bool}

. . .

{cl〈1, [], {a 7→ {int}}〉}

{cl〈1, [], {b 7→ {bool}}〉}

{cl〈1, [], {a 7→ {int}, b 7→ {bool}}〉}

. . .

>

⊥

{dict〈⊥;⊥〉}

{dict〈str; int〉} {dict〈str; f loat〉}

{dict〈str; int, f loat〉}

. . .

>

Figure 4: Part of the basic type lattice (left) and an part that includes parameterized datatypes (right).

If a union type exceeds one of the limits, it is replaced
by >. The following example illustrates the effect of the n
parameter:

{int} ∇2,2,2 {bool} = {int, bool}
{int, bool} ∇2,2,2 {bool, str} = >

The next example shows the effect of the m parameter. Com-
puting

{cl〈1, [], a 7→ {int}〉} ∇2,2,2 {cl〈1, [], b 7→ {str}〉}
gives

{cl〈1, [], a 7→ {int}, b 7→ {str}〉} ,
but

{cl〈1, [], a 7→ {int}〉} ∇2,2,2{cl〈1, [], b 7→ {str}, c 7→ {bool}〉}
results in >. To show the effect of the o parameter:

{cl〈1, [], a 7→ { f loat, int}〉} ∇2,2,3 ⊥
equals {cl〈1, [], a 7→ { f loat, int}〉}, and

{cl〈1, [], a 7→ { f loat, int}〉} ∇2,2,2 ⊥
gives {cl〈1, [], a 7→ >〉}. The types f loat and int are at nesting
depth 3, so for ∇2,2,2 they are too deeply nested, and the
union type is replaced with >.

The value computed for each program point is a mapping
from variables to UTy, called a map lattice. The join operator
for this lattice is defined as follows: a t b contains all map-
pings present in either a or b; if a mapping is present in both,
its values are combined by the join operator of the UTy lat-
tice.

The analysis

Analysis intuitively proceeds by pushing sets of types over
the control-flow edges. The control-flow graph itself is built
by gluing together the control-flow graphs of the modules
that make up the application or library. The entry point for
a single module is that module’s first statement. These to-
gether form the entry points of the application/library as a
whole. This also allows us to analyze libraries that typically
do not have a single point of entry.

An important source of type information comes from var-
ious kinds of assignments in Python. As expected the type of

an expression is computed based on the types of the variables
in the expression. The rules for these can be quite involved
(see [van Rossum and Drake, 2011, Chapter 5]). Python also
supports assignments such as

x, y, *z = [1,2,3,4,5]

This assigns the first element of the list to x, the second to
y and all further elements to z. For a star target, such as *z in
the example, the analysis deletes all non-sequence types, and
assigns these to the variable. The other targets, x and y, are
assigned > by the basic analysis.

Python’s del statement is used to remove an identifier
binding, to remove an attribute from a class or object or to
remove one or several elements from a collection type. In the
analysis, if the target of a del statement is a variable, its type is
set to⊥; if it is an attribute reference, the attribute is removed
from class and instance types; if it is a subscription or slicing,
its type is not changed.

For a subscription, such as x[1], the basic analysis removes
the sequence types (strings, tuples, lists) from the types of
x. Because sequence types are not yet parameterized, the
type of x[1] will be >. Better support for these is part of the
analysis variant for parameterized datatypes (Section 4.1).

Functions are handled as usual, except that because of
the dynamic nature of Python, the edges from the call to the
function entry points, and the edges from the functions exit
points to the return point in the program are added during
analysis, whenever the analysis finds that a call can target a
given function (and generally, there may be more than one
such function for a given call). Parameter passing is essen-
tially the same as performing assignments. Special attention
must be given at this point to local variables that come into
scope, and variables that leave the scope during the call. This
is why for function names we have two additional labels, sn
and sx. In the former we introduce the variables that come
into scope in the map lattice, and at the latter, variables that
leave the scope are removed.

To illustrate the analysis, consider the code in Figure 5, for
which the analysis correctly infers the type float for f. During
analysis, the effect of the various transfer functions, in the
order implied by the control flow graph, is as follows:
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[def]1 5
6[toFahrenheit(c)]

2
3:

[return c * (9/5) + 32]4

[f = [toFahrenheit(100)]78]
9

1

7
5 2

4

36
8

9

Figure 5: Control flow graph for function definition and func-
tion call.

• For node 1: the type of variable toFahrenheit is set to { f1},
1 being the identifier assigned to the function.

• For node 7 (lc): the argument variable α0 is set to {int},
which is the type of the expression 100.

• For node 5 (sn): variable c is set to ⊥.
• For node 2 (ln): the type for variable c is set to that of

variable α0, then α0 is removed from the lattice.
• For node 4: using the current type lattice, the type of the

expression c * (9/5) + 32 is determined to be { f loat} (the
division 9/5 yields a floating-point value); this is assigned
as the type of variable ρ that is allocated to store the types
of the return value.

• For node 3 (lx): the transfer function checks if ρ is set, and
since it is, does not change anything.

• For node 6 (sx): the transfer function removes variable c.
• For node 8 (lr): the type ρ is copied to the generated vari-

able ι1 (which represents the types of the call expression),
and ρ is removed from the lattice.

• For node 9: this is a simple assignment; it sets the type of
f to those in ι1.

4. Analysis variants
This section presents several extensions and modifications of
the basic analysis which are intended to make it faster or
more precise. Each of these can be enabled independently
from the others, so any combination of variants is possible.

4.1 Parameterized datatypes

One limitation of the basic analysis is that it does not track
the contents of the built-in collection types (lists, sets, dictio-
naries and tuples). Whenever values are stored in a collec-
tion, their type is thus lost to the analysis, so that when the
contents of a collection are accessed, e.g. by a for loop or by a
subscription, the analysis has to assign type > to the result.

The solution is to introduce parameterized datatypes such
as list〈int〉 meaning “list containing values of type int”, or,
more concisely, “list of int”.

Extended type lattice

To support parameterized datatypes, the type lattice is ex-
tended by adding to the definition of basic types:

b ::= · · · | list〈u〉 | set〈u〉 | f rozenset〈u〉 | dict〈u; u〉 | tuple〈[u]〉

Each of the new types is parameterized with one or more
union types. The list and set types take one parameter, as
does the frozenset type, which is essentially the same as the
set type except that frozenset objects are immutable. The dict
(dictionary) type takes two parameters: one for the type of
keys and one for the type of values.

The tuple type takes a list of parameters, so that each
position is assigned a separate type. A parameterized tuple
type could be defined more simply with only one parameter
for all positions, but the form chosen here should give better
precision in many cases.

To avoid visual clutter we write list〈int, f loat〉 instead of
list〈{int, f loat}〉. Where a type has multiple parameters, they
are separated by semicolons, while the elements of a union
type are separated by commas, so that no ambiguity arises.

The join operator treats parameterized types specially,
similar to the way it treats class and instance types. For exam-
ple, if union types a and b contain types list〈ua〉 and list〈ub〉,
respectively, then a t b contains only one parameterized list
type list〈ua t ub〉. Set and dictionary types are handled anal-
ogously. For parameterized tuple types, only those of the
same length are combined. Figure 3(right) shows some of the
elements of the lattice with parameterized datatypes.

The widening operator ∇n,m,o described in Section 3 can
be used unchanged for parameterized datatypes. Its param-
eter n was defined to limit the size of sets of types, so that it
also applies to type parameters, as in the following examples:

set〈int〉 ∇2,2,2 set〈bool〉 = set〈int, bool〉
set〈int, bool〉 ∇2,2,2 set〈bool, str〉 = set〈>〉

Use of parameterized datatypes

Parameterized datatypes are used in a number of circum-
stances to improve analysis results. One, list, set, dictionary
and tuple literals are assigned parameterized types. For ex-
ample, the expression (1, 1.5) is assigned type tuple〈int; f loat〉.
Two, expressions that involve a subscription or slicing make
use of parameterized types. For example, assuming type
{dict〈int; str〉} has been inferred for variable a, type {str}
is inferred for the expression a[1]. Three, when the target of
an assignment is a subscription or slicing, the parameters of
parameterized types are modified correctly. Four, parame-
terized types are assigned to the results of list, set and dic-
tionary comprehensions. Finally, in for loops, parameterized
types are used to assign the most precise type possible to the
loop variable. The following code illustrates several of these
uses:

def g(x):

return ("square", x*x)

def h(x):

return ("half", x / 2)

functions = [g, h]

results = [f(1) for f in functions]

The basic analysis assigns type {list} to both functions
and results. Using the variant with parameterized datatypes,
however, the analysis infers type {list〈 f1, f2〉} for func-
tions (1 and 2 being the unique identifiers assigned to g
and h), which enables it to add the edges for the function
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call inside the list expression and infer the precise type
{list〈tuple〈str; int, f loat〉〉} for results.

4.2 Context-sensitive analysis

The second analysis variant implements a context-sensitive
analysis as described in [Nielson et al., 2005, Section 2.5]. The
type inference method uses call strings containing the labels
of function calls as the context ∆. In other words, we analyze
call-site sensitively.

In the implementation, context-sensitivity is incorporated
into the worklist algorithm, so that no changes are necessary
in the type lattice or the transfer functions. This helps keep
the analysis implementation maintainable by keeping differ-
ent aspects separate.

The worklist algorithm tags the edges in the control flow
graph according to their function: edges in the monotone
framework are tagged as “regular”, while those added for
function calls are tagged with “call” and “return”. Each kind
is then treated accordingly.

Instead of the lattice L specified by the monotone frame-
work, the mapping ∆ → L is used for context and effect
values (though not for the global value for flow-insensitive
analysis). The complete lattice for the analysis is thus ∆ →
(Var → UTy), where Var means variables in Python code.
However, because the Var → UTy mapping is not visible to
the worklist algorithm (it only deals with the opaque lattice
type) and the call strings are not visible to its users, no part
of the implementation actually has to deal with this “double
mapping” directly.

The empty call string [] is used as initial value for ∆. When
processing a call edge (taken from the worklist), the label lc of
the call program point is added to the end of each call string;
when processing a return edge, the worklist algorithm selects
only those results where the last element of the call string
matches the lc label of the call site, and removes this element
from the call string.

To ensure termination, the worklist algorithm takes a pa-
rameter k, which is the maximum length of a call string. This
parameter can also be used to trade off precision for speed:
depending on the patterns of function calls in the program
code, a small value of k can lead to imprecise results, but it
also reduces the number of separate results that are main-
tained by the analysis, which should make it faster (a thor-
ough discussion of this aspect is outside the scope of this pa-
per, but some researchers have observed the opposite to hap-
pen, e.g., [Smaragdakis et al., 2011]). In the modified work-
list algorithm, a context-insensitive analysis is treated as a
context-sensitive analysis with k = 0.

4.3 Flow-insensitive analysis

Data flow analysis is basically flow-sensitive, but in some
cases flow-insensitive analysis may be more logical. The
analysis therefore includes three variants that use the ex-
tension for flow-insensitive analysis described in Section 2,
which adds a “global value” with flow-insensitive results to
the worklist algorithm’s state. In each of these variants, the
types a for certain class of variables are stored globally, while
for other types it still uses context and effect values.

Support for flow-insensitive analysis affects practically
all transfer functions. When a transfer function looks up
the type inferred for a variable, it first determines if flow-
insensitive analysis should be used for that variable and, if

so, looks it up in the global value instead of the context value
and signals to the worklist algorithm that it used the global
value. Similarly, when a transfer function modifies the type
for a variable for which flow-insensitive analysis is used, it
modifies the variable’s entry in the global value and returns
the new global value. As described above, the worklist al-
gorithm then ensures that transfer functions that use that
global value will be reconsidered. Three analysis variants for
flow-insensitive analysis are described below.

Flow-insensitive analysis for module-scope variables

The first variant uses flow-insensitive analysis for module-
scope variables, that is, variables whose scope is not limited
to a function or class definition. A module-scope variable
can be modified by every function in its module, as well
as other modules in which it is imported. Unlike variables
with function scope, which are reset every time the function
is executed, module-scope variables are essentially global
variables. It makes sense, then, for the analysis to also treat
their types as global.

Flow-insensitive analysis for class types

Classes in Python are very flexible. It is possible, for example,
for a function to add an attribute to a class defined elsewhere,
carry out its task using the extended class and remove the
attribute afterwards. However, this would be seen as poor
programming style by Python programmers. Because there
is only one class object for each class, a modification of a class
(adding, removing or changing an attribute) affects all of the
class’s users. Therefore, this variant treats classes as global.

This is not quite as simple as for module-scope variables,
however, because class types occur not only as the types of
variables, but more often as part of other types, in particular
as part of instance types.

The solution is to use a two-step process for looking up or
modifying class types. Where a class type would be used in
the basic analysis, a class reference type, which contains only
the class identifier, is used instead. The actual class type is
put in the global value as the type for a special class identifier
variable containing the identifier of the class. When a transfer
function looks up a type and finds a class reference type, it
looks up the corresponding class identifier variable and uses
that type instead.

Writing class reference types as cl〈l〉, the type lattice de-
fined in Figure 3 can be adapted for this variant by adding
an alternative to the definition of ClsTy:

c ::= cl〈l, [c], {n 7→ u}〉 | cl〈l〉

Flow-insensitive analysis for instance types

Unlike classes, class instances are not global, and each in-
stance has its own set of attributes independent of other in-
stances. However, in a well-designed program, the instances
of a class will tend to have the same attributes with the same
types – otherwise the class’s methods will not be able to make
use of the instance attributes. The analysis therefore contains
a variant that assigns the same type to all instances of a class.

The method used for flow-insensitive analysis of instance
types is similar to the one described above for class types.
Instance reference types are used, which only contain the class
identifier, and the actual instance types are stored in the
global value under an instance identifier variable. When an
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instance reference type is encountered, the instance identifier
variable is looked up and its type is used instead.

Just like the previous variant modifies the definition of
ClsTy, this one adds a clause for InstTy:

i ::= inst〈c, {n 7→ u}〉 | inst〈l〉

4.4 Manually specified types

For some modules, type inference cannot be used, either be-
cause their source code is not available, because they are im-
plemented in C or, for modules in the standard library, be-
cause they are implemented as part of the Python interpreter.
For these cases, it is possible to specify their types manually
using a plain-text format.

The following example gives types for two identifiers
from the standard-library math module:

math.pi : {float}

math.sqrt : {lambda {bool, int, float} -> {float}}

Each line contains an identifier and a union type, sepa-
rated by a colon. The second type is for a function that takes
one argument of type bool, int or float and returns a float; the
syntax used here is based on Python’s syntax for anonymous
functions.

Manually specified types are always treated as global
(flow-insensitive). There is a special syntax for classes and
instances: an identifier of the form

classl.x : type

specifies the type of an attribute of the class with identifier l.
The syntax class<l> is then used to assign the corresponding
class reference type to a variable, as in the following example:

class1.write : {lambda {bytes} -> {int}}

class1.flush : {lambda -> {NoneType}}

io.FileIO : {class<1>}

The syntax for instance types is the same, with the key-
word instance instead of class.

Polymorphic function types

The syntax for manually specified types also allows for poly-
morphic function types. For example, the identity function:

def id(x):

return x

can be provided with a suitable type by the following speci-
fication:

m.id : {lambda !a -> !a}

The exclamation mark indicates a type variable. During
the analysis, type variables are instantiated to the types of
function arguments.

5. Evaluation method
We have implemented all the variants discussed in Section
4 in Haskell (obtainable from http://www.cs.uu.nl/wiki/

bin/view/Hage/Resources) and applied them to a num-
ber of real-world Python programs. The main focus of our
study is to discover the right balance of cost and precision.
In particular, we wanted to discover when increased preci-
sion stops paying off in terms of results, and how increased

precision affects run-time performance. We first describe
the method used to measure precision and speed and the
projects the analysis was applied to before presenting the
results of the experiments. The raw data of the experiments
can be found in [Fritz, 2011].

The evaluation was carried out by applying the imple-
mentation to all of a project’s Python source code and mea-
suring the precision of the results as well as the time needed
for type inference. This was repeated for different variants
and parameter settings, for each of five projects.

Measuring precision

The output of the method consists of mappings from iden-
tifiers to union types. For each program point, there are two
such mappings, for context and effect, and there is one global
mapping for variables inferred flow-insensitively. Ideally, an
evaluation of this output would compare it to a ground truth,
which means results known to be correct. Such a ground
truth could be obtained by careful manual inspection of the
source code, but because this would take a long time for all
but the simplest programs, it would restrict the evaluation
to a small sample of Python source code. Therefore, an algo-
rithm was developed that automatically judges precision.

In order to focus on those analysis results that are relevant
to a user, the algorithm starts from the control flow graph.
For each node in the graph, it determines the identifiers used
in the statement corresponding to the node. For example, for
the statement

a = f(x + 1)

this would yield the identifiers f and x (but not a). The types
for these identifiers are, presumably, the ones that a user
would be interested in, since they determine the effect of the
statement. The algorithm then looks up the type inferred for
each of the variables in the context or global lattice value and
adds the types to a list.

In the next step, the types in this list are classified in
two groups: ⊥ and > types are classified as “not useful”,
all others are classified as “useful”. The score is calculated
as the ratio of “useful” types to all types in the list. Note
that in an IDE that lists all the possible identifiers that may
fit a particular context, variables that were assigned type >
will be suggested by the IDE for any context. If the precision
of an analysis is so low that many variables are assigned
to > by the analysis (while another variant may find that
a smaller set will suffice), then together these will drown
out those identifiers that actually fit the context. Therefore,
for our aims, our score is a reasonable approximation that
avoids a detailed manual study of the Python applications
themselves.

This method also gives appropriate weights to types of
identifiers for which flow-insensitive analysis is used: be-
cause the analysis infers only one type for each of these, but
one type per program point for others, they might have a
disproportionally small influence on the results of a simpler
algorithm.

Measuring speed

To measure speed, the implementation records the time just
before and just after running the analysis, and prints the
difference in microseconds (µs). The time measured is CPU
time (the amount of time that the program has run on the
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Modules Lines of code
euler 5 110
adventure 6 2211
bitstring 6 4299
feedparser 2 4454
twitter 13 1868

Table 6: Projects used as input for the evaluation.

CPU), which makes it less likely that the results are influenced
by other factors such as the operating system’s activities.

Haskell, the language that the implementation is written
in, uses lazy evaluation: expressions are not evaluated be-
fore they are needed. This makes it difficult to measure the
runtime of part of a program, because execution of differ-
ent parts can be finely meshed together at runtime. To avoid
this, the implementation uses the DeepSeq library (http:
//hackage.haskell.org/package/deepseq) to force evalu-
ation of the analysis’s input before taking the start time and
of its output before taking the end time.

The experiments were done on a MacBook with 2.4 GHz
Intel Core 2 Duo processor and 2 GiB of main memory.

Example projects

In order to have a variety of Python source code represented
in the experiments, five project were used, which are briefly
presented here. These projects in particular were selected
because they are compatible with Python 3.2 and they do not
use modules written in C, which the analysis would not be
able to process. The projects are ordered here from most to
least self-contained, so the later ones are likely to be more
problematic for type inference:

euler This codebase consists of solutions to five mathemat-
ical problems from the Project Euler website (http://
projecteuler.net/) written by the first author. This is
very straightforward code.

adventure The Adventure (https://bitbucket.org/brandon/
adventure/overview) project is a fairly self-contained in-
teractive program; having a text-based interface means it
does not depend on a large GUI library.

bitstring The bitstring library (http://code.google.com/
p/python-bitstring/) provides an interface in Python
for the creation and manipulation of binary data.

feedparser The Universal Feed Parser (http://feedparser.
org/) is a library for parsing RSS and Atom feeds imple-
mented in Python. It consists of only two modules, but
there is quite a bit of nested code to handle all the details
of various versions of the two standards.

twitter The Python Twitter Tools (http://mike.verdone.
ca/twitter/) contains a library, a command-line pro-
gram, and an IRC bot to access the Twitter web site’s
public API.

Table 6 lists the number of modules and lines of code for
each of the projects. In tables following Table 6, we write
adven for adventure, bits for bitstring, and feedp for feedparser, in
order to be able to format the result tables in a single column.

euler adven bits feedp twitter mean
precision 11.54 0.00 0.00 1.01 0.00 2.51
time -9.63 0.64 31.58 3.88 2.55 5.80

Table 7: Effects of parameterized datatypes on experiment
results.

6. Evaluation results
The results of the experiments, in the form printed by the
implementation program, can be found in the Appendix of
[Fritz, 2011]. This section presents various aspects of the re-
sults and uses them to evaluate the analysis variants, the
influence of parameters and the general suitability of the
method.

6.1 Variants

Tables 7–10 show the effect that the analysis variants have on
precision and time. Results of each variant are compared here
to the analysis with default parameters; the numbers shown
are differences in percent. Thus, in the precision rows, pos-
itive numbers indicate better results; in the time rows, pos-
itive numbers indicate slower operation. The mean column
contains the arithmetic mean of the values.

As can be seen in Table 7 and Table 8, parameterized
datatypes and context-sensitive analysis did not improve the
results by much. Parameterized datatypes did improve re-
sults significantly for the euler example code, but not for the
larger projects. Context-sensitive analysis, which was tested
for different values of the parameter k (maximum length of
call strings) did not significantly improve the results in any
of the cases.

The results of flow-insensitive analysis, shown in Table 9,
are more encouraging. The first column of the table indicates
what flow-insensitive analysis was used for. It contains the
parameters passed to the implementation’s command-line
interface (see Appendix A.3 of [Fritz, 2011]): f means flow-
insensitive analysis is used for module-scope variables, g
means it is used for class types, and h means it is used for
instance types. All seven possible combinations were used.

The best way to use flow-insensitive analysis appears to
be to use it only for module-scope variables. Enabling it also
for class or instance types or both improves the results in
some cases, but not by much and at a large cost in speed.

For the last set of experiments, types were specified man-
ually for identifiers not in the code under analysis (from
the standard library or third-party libraries). Because of time
constraints, this was only done for the two smallest projects.
Table 10 shows the results; not surprisingly, they indicate that
specifying types manually improves precision at a moderate
cost in runtimes.

6.2 Parameters for widening operator

Table 11 shows the results of different values for the param-
eters of the widening operator ∇n,m,o (see Section 3), com-
pared to the default settings n = 3, m = 3, o = 20. As may be
expected, very small values for any of the parameters lead to
poor precision and very large values lead to long runtimes.
Other than that, the results indicate that the default values
are actually good choices.
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k euler adven bits feedp twitter mean

1 p 0.00 0.00 0.00 0.25 0.00 0.05
t 36.91 67.92 0.26 117.14 0.16 44.48

2 p 0.00 3.21 0.00 0.25 0.00 0.69
t 102.61 236.74 0.47 429.76 0.14 153.95

4 p 0.00 -9.55 0.00 0.25 0.00 -1.86
t 295.61 505.51 0.47 420.43 0.17 244.44

8 p 0.00 -10.00 0.00 0.25 0.00 -1.95
t 971.09 1395.62 0.46 420.33 0.16 557.53

16 p 0.00 -10.00 0.00 0.25 0.00 -1.95
t 3577.37 4123.39 0.52 420.40 0.16 1624.37

Table 8: Effects of context-sensitive analysis on experiment
results.

euler adven bits feedp twitter mean

f p 5.05 73.13 48.23 10.37 -11.13 25.13
t -42.76 18.14 -22.92 12.70 -65.07 -19.98

g p 0.00 20.90 55.77 0.17 0.00 15.37
t -0.01 1.87 -8.91 1356.03 -24.58 264.88

h p 0.00 0.00 0.00 0.00 0.00 0.00
t -2.35 -0.09 0.10 -1.62 -0.02 -0.79

fg p 5.05 78.19 48.23 7.58 -11.13 25.58
t -42.87 10.57 -46.50 938.19 -68.37 158.20

fh p 5.05 78.19 48.23 6.58 -11.13 25.38
t -42.80 78.11 -22.35 339.55 -63.57 57.79

gh p 0.00 20.90 55.77 0.17 0.00 15.37
t 0.68 13.43 -9.55 796.72 -24.71 155.31

fgh p 5.05 78.19 48.23 7.58 -11.13 25.58
t -42.45 31.86 -46.48 536.35 -67.02 82.45

Table 9: Effects of flow-insensitive analysis on experiment
results.

euler adven
precision 70.16 39.01
time 1.81 6.81

Table 10: Effects of manually specified types on experiment
results.

6.3 Evaluation

Table 12 shows the results in absolute numbers for the con-
figuration that, according to the experiments, works best: us-
ing flow-insensitive analysis for module-scope variables, but
none of the other variants. The analysis inferred a useful type
for variables in the source code in between 45 and 91 percent
of cases. When it was supplied with types for identifiers in
external libraries, this number increased further (by 6 and 27
percent for the two projects used).

To do this, it needed between 0.014 and 23 seconds. The
differences are in part explained by the size of the projects,
but not entirely. For example, the analysis took 9.1 times
longer for the feedparser project than for the bitstring project,
but the difference in lines of code is only about 4 percent.

7. Related Work
For reasons of space we restrict our discussion here to work
that involves a dynamically typed language. A more exten-
sive discussion, and more references can be found in [Fritz,
2011].

euler adven bits feedp twitter mean

n = 1 p -23.08 0.00 -5.77 -0.25 0.00 -5.82
t -0.43 -0.12 0.35 0.14 0.06 -0.00

n = 2 p 0.00 0.00 0.00 0.00 0.00 0.00
t 0.36 -0.16 0.28 0.25 -0.05 0.13

n = 4 p 0.00 0.00 0.00 0.00 0.00 0.00
t 0.16 -0.33 0.17 0.18 -0.01 0.03

n = 8 p 0.00 0.00 0.00 0.00 0.00 0.00
t 0.08 -0.12 0.26 -0.03 -0.00 0.04

n = 16 p 0.00 0.00 0.00 0.25 0.00 0.05
t -0.00 -0.09 0.23 -0.30 -0.03 -0.04

m = 1 p 0.00 0.00 0.00 0.00 0.00 0.00
t 0.26 -0.25 0.20 -0.28 0.04 -0.01

m = 2 p 0.00 0.00 0.00 0.00 0.00 0.00
t 0.28 -0.23 0.32 -0.34 -0.02 0.00

m = 4 p 0.00 0.00 0.00 0.00 0.00 0.00
t 0.05 -0.32 0.25 -0.33 0.06 -0.06

m = 8 p 0.00 0.00 0.00 0.00 0.00 0.00
t 0.42 -0.26 0.42 -0.22 -0.05 0.06

m = 16 p 0.00 0.00 0.00 0.00 0.00 0.00
t -0.08 0.01 0.25 -0.39 0.05 -0.03

o = 4 p 0.00 0.00 -1.92 -1.14 -21.62 -4.94
t 0.00 -15.10 -9.61 -4.61 -12.47 -8.36

o = 8 p 0.00 0.00 0.00 -0.25 0.00 -0.05
t 0.16 -6.27 -5.39 -2.68 0.09 -2.82

o = 16 p 0.00 0.00 0.00 0.00 0.00 0.00
t 0.51 -0.08 0.32 -1.88 -0.08 -0.24

o = 32 p 0.00 0.00 1.92 1.06 0.00 0.60
t 0.34 -0.10 9.58 13.97 -0.09 4.74

o = 64 p 0.00 0.00 3.85 -2.20 0.00 0.33
t 1.00 -0.25 30.14 2267.87 0.25 459.80

Table 11: Effects of parameters of widening operator on ex-
periment results.

euler adven bits feedp twitter
precision 0.45 0.75 0.91 0.53 0.75
time 14 981 2,531 22,929 3,114

with user- precision 0.72 0.81
defined types time 18 1,075

Table 12: Precision and runtime (in ms) using flow-insensitive
analysis for module-scope variables.

Cartwright and Fagan introduce the concept of soft typing
as a way to combine the advantages of static and dynamic
typing [Cartwright and Fagan, 1991]. A soft type system ac-
cepts all programs in a dynamically typed language and in-
serts dynamic checks in places where it cannot statically in-
fer provably correct types. The programmer can then inspect
the places where the checker failed and decide if the code
should be changed. Flanagan introduces hybrid type check-
ing, which is a synthesis of static typing and dynamic con-
tract checking [Flanagan, 2006]. Dynamic contract checking
can support more precise specifications than type checking,
for example range checks and aliasing restrictions, but the
propositions are not checked until runtime. With hybrid type
checking, very precise interface specifications are possible.
As in soft tpying, these are checked at compile time where
possible and at runtime where necessary. Gradual typing, see,
e.g., [Siek and Taha, 2007, Ina and Igarashi, 2011] allows mix-
ing static and dynamic typing within one program: program
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elements with type annotations are checked statically, others
are checked dynamically.

Agesen introduced the Cartesian Product Algorithm (CPA)
in his PhD thesis [Agesen, 1996]. The algorithm infers types
for programs written in the Self language, and is based on an
algorithm introduced by Palsberg et al. that uses constraint-
based analysis to determine types in object-oriented pro-
grams [Palsberg and Schwartzbach, 1991]. The algorithm
assigns a type variable to each variable and expression and
relates these by a set of constraints, that is solved by fix-
point iteration. Agesen duplicates the subgraph of variables
and constraints for each monomorphic use of a polymorphic
method.

Aycock developed a method for Python called “aggres-
sive type inference” [Aycock, 2000]. It is flow-insensitive
and does not use union types, assuming that most Python
code does not make use of the dynamic features of Python’s
type system. Salib’s master thesis describes a type inference
method called “Starkiller” which is part of a Python-to-C++
compiler [Salib, 2004], loosely based on CPA. It can handle
first-class functions and classes and objects, and supports
parametric polymorphism as well as data polymorphism.
Exceptions and generators are not supported, and the anal-
ysis is flow-insensitive. Cannon’s master thesis presents a
method to improve performance of Python programs which
uses type inference and optional type annotations [Cannon,
2005]. The method for type inference is rather limited. Gor-
bovitski et al. describe a method for type inference for Python
programs (called “precise type analysis”) which they employ
in their alias analysis when they construct the program’s con-
trol flow graph [Gorbovitski et al., 2010]. Their algorithm is
based on “abstract interpretation over a domain of precise
types”, in which types such as “bool true” and an “int be-
tween 1 and 10” can be represented. The analysis is flow-
sensitive and context-sensitive. A downside is that it seem to
be rather slow.

Pluquet et al. present a method for type inference for
Smalltalk, which they describe as “extremely fast [. . . ] and
reasonably precise” [Pluquet et al., 2009]. Fast execution is
achieved in two ways: the analysis is local in the sense that,
to infer the type of a variable, it uses only information found
in the methods of the class it is defined in and it uses a num-
ber of heuristics rather than a theoretical model of program
execution. The authors validate the method by applying it
to three Smalltalk applications. To evaluate precision, they
monitored the execution of the programs, and recorded the
types stored in each variable. The (incomplete) type infor-
mation retrieved this way was then compared to the inferred
types. Furr et al. present a system called Diamondback Ruby
(DRuby), which includes union types, intersection types and
parametric polymorphism [Furr et al., 2009]. Types are in-
ferred by a method based on constraint-based analysis; how-
ever, not all code can be typed with this method. Intersection
types cannot be inferred automatically, and type annotations
must be used.

8. Conclusion
We have presented an extension to monotone frameworks
to perform soft typing for Python, so that edges for func-
tion calls can be added to the control flow graph during
the analysis. The analysis can deal with first-class functions
and Python’s dynamic class system. The method was im-

plemented in a proof-of-concept implementation, which in-
cludes six variants that extend or modify the basic method.
Our experimental evaluation of these variants show that
the method can infer types with reasonable precision fairly
quickly.

As future work, we may extend the monotone frame-
work to support an object-sensitive analysis, instead of plain
call-site sensitivity. For OO languages like Java, Object cre-
ation points seem to be a better choice for context than call-
sites [Smaragdakis et al., 2011], but does this also hold for
languages like Python? A limitation of our work is that we
do not treat exceptions and generators as well as is possible.
Finally, it may be useful to include more, and larger, applica-
tions in our case study.
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