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Strategy-based feedback in a programming tutor
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More and more people take up learning how to program: in schools and
universities, in large open online courses or by learning it by themselves. A
large number of tools have been developed over the years to support learners
with the difficult task of building programs. Many of these tools focus on
the resulting program and not on the process: they fail to help the student to
take the necessary steps towards the final program.

We have developed a prototype of a programming tutor to help students
with feedback and hints to progress towards a solution for an introductory
imperative programming problem. We draw upon the ideas of a similar
tutor for functional programming and translate these ideas to a different
paradigm. Our tutor is based on model solutions from which a program-
ming strategy is derived, capturing the different paths to these solutions.
We allow for variation by expanding the strategy with alternatives and us-
ing program transformations. The instructor is able to adapt the behaviour
of the tutor by annotating the model solutions.

We show a tutoring session to demonstrate that a student can arrive at
a solution by following the generated hints. We have found that we can
recognise between 33% and 75% of student solutions to three programming
exercises that are similar to a model solution, which we can increase by
incorporating more variations.

Categories and Subject Descriptors: K.3.1 [Computer Uses in Education]:
Computer-assisted instruction (CAI); K.3.2 [Computer and Information

Science Education]: Computer science education

Additional Key Words and Phrases: programming tutor, feedback genera-
tion, programming strategies

ACM Reference Format:

Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. 2014. Strategy-based
feedback in a programming tutor. CSERC ’14: Computer Science Educa-
tion Research Conference 2014 Proceedings.

1. INTRODUCTION
Learning how to program is becoming increasingly popular. Stu-
dents learn programming in universities and colleges to become
skilled software engineers. Many people, both young and old, teach
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themselves programming as a hobby or to pursue a new career path.
In many countries, secondary schools offer programming classes.

Over the last few years different initiatives have been advocating
the importance of providing people with the opportunity to learn
how to program. Computer programming education is being pro-
moted actively.1 The underlying justification is both foundational
(‘it teaches you how to think’) and vocational: the shortage of soft-
ware engineers is only expected to grow in the near future. What-
ever the underlying reasons are, how easy is it for anyone to learn
how to program and how can students be supported in their learning
process?

1.1 Learning programming
A small study examining the emotional state of students learning to
program for the first time showed that after engaged (23%) the ma-
jor emotions were confusion (22%), frustration (14%) and boredom
(12%) [Bosch et al. 2013]. Another study [McCracken et al. 2001]
shows that even after their first programming courses students do
not know how to program. The failure rate of introductory program-
ming courses is not disturbingly low [Bennedsen and Caspersen
2007; Watson and Li 2014], but can be improved significantly to
increase the number of computer science graduates. Therefore, stu-
dents need all the help they can get to acquire the necessary skills
to become successful in the field of computer science, a field that
constantly asks for highly educated people.

In an international survey from 2005 [Lahtinen et al. 2005] on
the difficulties of novices learning to program, in which over 500
students and teachers were questioned, the following tasks are con-
sidered most difficult:

—Designing a program.
—Dividing functionality into procedures.
—Finding bugs in programs.

These findings are consistent with previous studies [Robins et al.
2003; Soloway and Spohrer 1989] that emphasise the importance
of program design and applying the right programming constructs.

Teaching the actual programming process is considered impor-
tant [Bennedsen and Caspersen 2008]. The programming process
consists of a number of elements, among which the incremental
development of a program by taking small steps and testing along
the way. Another aspect is the refactoring of programs to improve
their quality. Bennedsen and Caspersen note that traditional teach-
ing methods such as textbooks and slide presentations do not cover
this process. The authors state a long-term objective of program-
ming education: ‘. . . that students learn strategies, principles, and
techniques to support the process of inventing suitable solution
structures for a given programming problem.’

At the same time learning has become more individual and is fre-
quently done online. The traditional role of the teacher is changing.

1For example, early 2013 the American non-profit organization code.org
launched a campaign to promote computer programming education. The
accompanying short film, featuring a large number of prominent people
(politicians, business leaders, celebrities), has had millions of views.
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Teachers have limited time to spend with their students. In online
courses, teachers and students do not have face to face interaction.
A recent trend in education is the Massive Open Online Course, or
MOOC.2 These large-scale courses are often offered by renowned
universities and can be done entirely on the Internet. These devel-
opments depend heavily on tools to support the learning process.

1.2 Related work
There has been active research into intelligent programming tutors
ever since programming courses were introduced in schools and
universities. Many programming tutors have been developed over
the years, that all have their own characteristics:

—The supported programming paradigm.
—The type of exercises that are offered. Le and Pinkwart have pro-

posed a categorisation [Le and Pinkwart 2014] based on the de-
gree of ill-definedness of the problem. Class 1 exercises have a
single correct solution, class 2 exercises can be solved by differ-
ent implementation variants and class 3 exercises can be solved
by applying alternative solution strategies. Other exercise classes
have not been found in programming tutors.

—The knowledge base that is used for the tutoring, such as model
solutions, sets of constraints, test data, templates and production
rules.

—The type of feedback the tutor provides: feed up, feed back or
feed forward [Hattie and Timperley 2007].

We have found that many tutors [Sykes and Franek 2003; Singh
et al. 2013] can only provide feedback for complete student solu-
tions and thus cannot guide a student on her way to the right so-
lution. Tutors that focus on the process of solving an exercise are
still rare or have limitations: some are targeted at declarative pro-
gramming [Hong 2004], are less flexible because they do not sup-
port exercises that can be solved by multiple algorithms [Anderson
and Skwarecki 1986; Miller et al. 1994], or only support a static,
pre-defined process [Jin et al. 2014]. Furthermore, it often requires
substantial work to add new exercises (e.g. [Singh et al. 2013]) and
tutors can be difficult to adapt by a teacher.

A recent trend in programming tutors is to generate hints based
on historical student data [Rivers and Koedinger 2013; Jin et al.
2012]. An advantage of this data-driven approach is that the in-
structor does not have to provide any input. On the other hand, it
requires the existence of a large data set. Furthermore, there might
be unusual or unwanted solutions in this data set.

1.3 Contributions
We have developed a prototype of a tutor for imperative program-
ming3 that helps students with incrementally constructing pro-
grams. We draw upon the ideas of ASK-ELLE, a similar tutor for
functional programming [Gerdes et al. 2012] and translate these
ideas to a different paradigm. We make the following contributions:

—Our tutor supports the step by step development of solving
class 3 problems in the categorisation by Le and Pinkwart [Le

2Laura Pappano. 2012. The Year of the MOOC. The New York Times.
http://www.nytimes.com/2012/11/04/education/edlife/
massive-open-online-courses-are-multiplying-at-a-rapid-pace.html
3Studies (such as [Davies et al. 2011]) show that the most popular lan-
guages taught in schools and universities are based on the imperative pro-
gramming paradigm.

and Pinkwart 2014]: a student can practise with imperative pro-
gramming exercises that can be solved by multiple algorithms.
The tutor supports constructing a program by expanding it state-
ment by statement and by using templates for refining expres-
sions. The tutor can diagnose if a student is on the right track,
and can give hints on the various ways on how to proceed.

—Feedback is derived from an exercise description together with
a set of model solutions. We have adopted the annotations from
the ASK-ELLE tutor, adjusting and expanding them for imper-
ative programs. An instructor can annotate the model solutions
to adapt the feedback, such as providing specific feedback mes-
sages, allowing alternative statements and enforcing the use of a
specific language construct (enabling class 2 problems).

—We use a general purpose strategy language to define the pro-
cess of creating a solution for a programming exercise. We de-
rive strategies for the creation of a number of common language
constructs in imperative programming. We encode alternatives to
a solution path into the derived strategy so we are able to provide
feedback on these alternatives. Minor variations on which we do
not want to give feedback are dealt with by performing a number
of program transformations.

1.4 Outline
In Section 2 we show a tutoring session to give an impression of the
behaviour and capability of the prototype. In Section 3 we discuss
the generation of a programming strategy from model solutions.
Section 4 describes the feedback services that are offered and ex-
plains how the feedback can be adapted by an instructor. We show
the results of the evaluation of the tutor in Section 5. We conclude
in Section 6 by summarizing our work and discussing our plans for
future research.

2. A TUTORING SESSION
Our programming tutor prototype consists of a domain reasoner
for imperative programming and a user interface. A domain rea-
soner [Goguadze 2011] provides facilities to support solving ex-
ercises in a particular domain and to generate personalised feed-
back and guidance. These facilities are offered through feedback
services, which the user interface calls through JSON or XML mes-
sages [Heeren and Jeuring 2014]. A web interface has been cre-
ated to offer a simple learning environment in which students can
solve exercises using the various feedback services. Figure 1 shows
a screenshot of this web front-end, which has been created using
HTML, JavaScript/JQuery and Ajax-calls with JSON messages to
the services of the domain reasoner.

The prototype can be used for languages that support the imper-
ative programming paradigm. We support a subset of frequently
used language constructs including variables, loops, conditional
statements and arrays in Java and (to a lesser extent) PHP. Cur-
rently, the prototype does not support more advanced constructs
such as method declarations, object orientation, exception handling
and object types.

2.1 A tutoring session
We show a simulated session with our tutor for a simple exercise
with the following description:

Calculate and print the sum of all odd positive num-
bers under 100.

We provide three model solutions:
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Fig. 1. Web front-end

(1) Adding up the odd numbers in a loop that increments with two.
(2) Adding up the numbers in a loop if the loop counter is odd.
(3) Using a mathematical formula.

The models are annotated by the instructor. We show the anno-
tated model for solution 2:

/* DESC "Create a loop and test for odd

numbers with %"

PREF 2 DIFF medium */

int sum = 0;

/* FEEDBACK Loop through all numbers

from 1 stopping at 100 */

for (int i = 1; i < 100; i++) {

/* FEEDBACK Use if and % to check if

the counter is odd */

if (i % 2 == 1) {

/* FEEDBACK Add to total */

sum = sum + i;

}

}

print(sum);

In the web interface the student can select the exercise from a list
of available exercises. The editor, in which the code can be typed,
has syntax highlighting. There are buttons that generate templates
for some statements at the top and buttons to ask for feedback (a
diagnosis/check and hints) at the bottom.

The focus of our research is on the generation of relevant hints,
and not so much on how we present these hints to the student. At

the moment we show all hints in a tree structure. When the stu-
dent first asks for a hint, the first option (branch) of the hint tree is
shown. The student has the opportunity to ‘expand’ (denoted by the
 + symbol) on a specific path and view a hint with more detail. If
other options are allowed, the ‘alternative’ link will provide a hint
on a different solution path. In this session we show parts of the
hint tree and fold certain branches for clarity.

Student. The student does not know how to start and asks for a
hint.

Tutor. Multiple solution algorithms are suggested, using the de-
scriptions in the model solutions. The hints are sorted by their pref-
erence number.

Create a loop that increments with 2
Introduce a variable declaration  +

Create a loop and test for odd numbers with %  +
Perform a smart calculation  +

Student. The student declares a variable and uses the ‘for’ but-
ton to add a template of a for-statement.

int s = 0;

for (?; ?; ?)

{

}

Tutor. The step is recognised, even though the student used a
different variable name. One model solution is no longer present in



4 • H. Keuning et al.

the hint tree (the mathematical formula) because it does not match
the code.

Create a loop that increments with 2  +
Create a loop and test for odd numbers with %  +

Student. The student starts implementing the for-statement, but
leaves some expressions unfinished.

int s = 0;

for (int i = 1; i < ?; ?)

{

}

Tutor. Hints with increasing detail are available. One of the
hints contains the text of the teacher annotation.

Create a loop that increments with 2  +
Create a loop and test for odd numbers with %

Loop through all numbers from 1 stopping at 100
Expand the second part of the for-statement

Replace the ? on the right
Expand ? to the literal 100  +

Student. The student completes the loop condition, using a dif-
ferent notation for the increment expression.

int s = 0;

for (int i = 1; i < 100; i+=1)

{

}

Tutor. Another teacher annotation that has become relevant for
the current state of the program is shown in the hint tree.

What to repeat?
Use if and % to check if the counter is odd

Introduce an if statement  +

Student. The student follows up on the hint and creates an if-
statement, leaving the condition unfinished.

int s = 0;

for (int i = 1; i < 100; i+=1)

{

if (? == 1)

{

}

}

Tutor. The hints help the student finish the expression.

What do you want to check?
Expand ? to an expression with the operator %  +

Student. The student finishes the expression and also adds the
odd counter to the sum, using a different expression than the model.

int s = 0;

for (int i = 1; i < 100; i+=1)

{

if (i%2 == 1)

{

s += i;

}

}

Tutor.

Introduce a print-statement  +

Student. The student makes a mistake by printing the wrong
variable.

int s = 0;

for (int i = 1; i < 100; i+=1)

{

if (i%2 == 1)

{

s += i;

}

}

print(i);

Tutor. The tutor notices that the output of this program does
not match the output of the model solutions.

The output is incorrect.

Student. The student corrects the mistake.

int s = 0;

for (int i = 1; i < 100; i+=1)

{

if (i%2 == 1)

{

s += i;

}

}

print(s);

Tutor. Correct. You are done!

3. PROGRAMMING STRATEGIES
Our tutor is built on top of the IDEAS framework (Interactive
domain-specific exercise assistants), which provides services to
build exercise assistants to help students solve problems incremen-
tally [Heeren and Jeuring 2014]. The framework is used for various
domains and their corresponding exercises, such as solving equa-
tions, bringing a proposition in DNF, and functional programming
in Haskell [Gerdes et al. 2012].

Skills such as programming or solving mathematical problems
require learning strategies for solving these problems [Heeren et al.
2010]. A strategy describes how to make progress step by step and
arrive at a good solution, and represents the various approaches that
can be used to tackle a problem. In IDEAS, strategies are specified
using a strategy language.

Building a tutor using IDEAS requires a number of components:
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(1) Domain specification. A domain is described, among other
things, by a grammar for its abstract syntax and an accompa-
nying parser to process submitted work.

(2) Steps. A step is a transformation on values of the domain, such
as refining or rewriting a student submission.

(3) Strategies. A strategy combines basic steps, and specifies
which steps can be taken, in which order. Strategy combinators
are used to compose strategies into more complex strategies.
Examples of strategy combinators are the sequence combina-
tor (a <*> b, first do strategy a, then do strategy b), the choice
combinator (a <|> b, do either a or b), and the interleave com-
binator (a <%> b, interleave the steps of a and b).

In this section we elaborate on these three components. First, we
describe how incomplete student submissions are supported. Next,
we take a closer look at the programming process for imperative
programming. Finally, we describe the steps and strategies we have
implemented for our tutor prototype.

3.1 Support for incomplete programs
We want to give feedback on incomplete programs, to support stu-
dents in creating a program step by step. We support incomplete
programs in two ways. First, a student may only write the first few
lines of a program, resulting in a syntactically correct but seman-
tically incomplete program. Secondly, the question mark character
(‘?’, hereafter referred to as hole) can be used inside a statement to
represent an expression that is yet to be completed. For example:

int x = ? + ?;

for (?; ?; ?);

while (x < ?);

The hole symbol will cause error messages if the student uses an
IDE for programming, because a standard compiler will not recog-
nise the symbol. Currently, our tutor can only be used in a web en-
vironment in which the hole symbol is recognised and the student
receives help to complete the statement before continuing with the
remaining program.

3.2 The imperative programming process
To use the IDEAS framework for calculating feedback, we need to
specify a strategy for each exercise. In an educational setting, the
instructor serves as a guide to show students how to program. When
an instructor is not present, we would like to stay close to what an
instructor would have said when a student asks for help. Therefore,
model solutions from an instructor are used as a basis from which
we generate the strategy and the corresponding feedback. This ap-
proach is used in ASK-ELLE as well as in a number of other recent
programming tutors [Dadic et al. 2008; Hong 2004; Singh et al.
2013] and provides a number of advantages:

—Instructors can easily add new exercises.
—Model solutions can be annotated, providing extra opportunities

for didactic guidance.

Potential difficulties that should be looked into are the large so-
lution space, which is discussed in the following sections, and the
lack of clarity on what exactly distinguishes one solution from the
other. It is the instructor’s responsibility to provide model solutions
that represent the solution space of an exercise. Every model so-
lution should preferably represent a different algorithm that solves
the problem.

The strategy to work towards a particular model solution should
reflect how imperative programs can be constructed, such as:

—Quickly constructing a coarse solution and then improving it un-
til there are no errors left. This approach might reflect the trial
and error style students often adopt.

—Programming by contract: defining pre- and post-conditions
prior to the actual implementation [Dijkstra 1975].

—The stepwise decomposition of a program using refinement
steps [Wirth 1971]. In each step tasks are broken up into sub-
tasks.

—Building up a program statement by statement, manipulating the
program state in the meantime.

In recent tutors that support incomplete programs, we recognise
the third option for logic programming [Hong 2004]. An imperative
programming tutor [Jin et al. 2014] uses pre-defined subtasks, such
as variable analysis, computation and output. In the ASK-ELLE tu-
tor for functional programming refinement steps are used to grad-
ually make a program more complete by replacing unknown parts
(holes) by actual code. In two data-driven tutors for imperative pro-
gramming [Jin et al. 2012; Rivers and Koedinger 2013] the steps are
based on solutions paths that other students have taken in the past.

Currently, we support the statement by statement programming
strategy. This strategy corresponds with the nature of imperative
programming in which the program state is manipulated step by
step. We also incorporate refinement of holes to complete an unfin-
ished expression. This style can be used as a basis to expand the
tutor with other strategies in the future.

To support this strategy in our tutor we need two components
that are elaborated in the next sections:

—The definition of steps that a student can take to gradually build
up a solution.

—A strategy generator that generates a strategy from model solu-
tions using these steps.

3.3 Steps
A strategy to solve an exercise is made up of a number of steps. Two
types of steps are used in the tutor for imperative programming:
append steps and refinement steps.

Append steps. An append step appends a statement to the end
of a block, which corresponds to updating the program state in
steps. An example of four consecutive applications of an append
step, starting with an empty program, is:

)
x = 5;

)
x = 5;

y = 7;

)
x = 5;

y = 7;

avg = (x+y)/2;

)
x = 5;

y = 7;

avg = (x+y)/2;

print(avg);
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Refinement steps. A refinement step replaces a hole by an ex-
pression. An example of applying a sequence of three refinement
steps is:

avg = ?;

)
avg = ? / ?;

)
avg = sum / ?;

)
avg = sum / 2;

3.4 Strategies
With the steps described in the previous section, we can now spec-
ify strategies for the stepwise development of a program. We have
created a strategy generator that accepts a set of model solutions as
input and produces a strategy as output. We generate a strategy for
each statement and expression in a program. We illustrate this by
showing the implementation of a selection of language constructs.

If-statement strategy. The strategy for an if-statement consists
of three main steps, combined with the sequence (<*>) combina-
tor. The first step is an append step that introduces an empty if-
statement at the specified location, denoted by @loc, with a hole for
the condition and an empty body. The next step is the sub strategy
for building the condition to replace the hole. Note that a sub strat-
egy may consist of multiple steps. The final step is the sub strategy
to implement the body. The complete strategy is shown in the fol-
lowing functional pseudo code:

strategy (If cond body) loc =

append (If hole emptyBody) @loc

<*> strategy cond @hole

<*> strategy body @emptyBody

The step-wise application of this strategy is shown in the follow-
ing example:

if (?) {}

)
if (isOk) {}

)
if (isOk) { call(); }

Infix expression strategy. The next fragment shows the strat-
egy for an infix expression, such as (a + b) < 2. First, an infix
expression with holes on both sides of the operator is introduced
by refining a hole at the specified location, followed by the inter-
leaving (<%>) of the sub strategies for the left and right operands
of the expression. Interleaving implies that the sub strategies have
to be applied but may be interleaved, meaning their order is not
relevant. Refining the left hole first has a higher preference.

strategy (Infixed op l r) loc =

refine (Infixed op holeL holeR) @loc

<*> ( strategy l @holeL

<%> strategy r @holeR )

The strategy expresses that we can arrive at an expression con-
sisting of several subexpressions in multiple ways:

avg = ?;

+
avg = ? / ?;) )

avg = sum / ?; avg = ? / 2;
) )

avg = sum / 2;

Loop strategy. A more complex situation arises when we en-
counter a for-statement in a model solution. A for-statement is eas-
ily transformed into a while-statement, which we want to support
in our tutor. In the corresponding code we create a strategy for
the for-statement together with an accompanying while-statement
and combine their strategies with the choice (<|>) combinator. The
while-statement is constructed by moving the initialisation of the
for-statement to a new statement preceding the while-statement.
The increment expression of the for-statement is appended to the
end of the body of the loop. However, we only include the strategy
for a while-statement if the for-statement has exactly one condition
to avoid an empty while condition.

The resulting strategy allows the following sequence (skipping
some steps):

i = 0;

)
i = 0; while (?) {}

)
i = 0; while(i < 8) {}

)
i = 0; while(i < 8) { call(); }

)
i = 0; while(i < 8) { call(); i++; }

The next sequence is also allowed (skipping some steps):

for (?; ?; ?) {}

)
for(i = 0; ?; ?) {}

)
for(i = 0; i < 8; ?) {}

)
for(i = 0; i < 8; i++) {}

)
for(i = 0; i < 8; i++) { call(); }

Block strategy. We are faced with a challenge when we want to
define a strategy for a block, a list of statements. Every program is a
list of statements and inside statements such as loops we find nested
lists of statements. A program can be developed statement by state-
ment, continuously manipulating the program state. However, the
order of some statements can be changed with no consequences for
the output of the program.

Consider the following code fragment:

1 a = 1;

2 b = 2;

3 c = 3;

4 d = a + b;

5 e = b + c;

6 f = d + e;
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For example, lines 1, 2 and 3 can be swapped with no conse-
quences for the resulting program, as well as lines 3 and 4. The
possibility to change the order of statements depends on the type of
the statements and the variables that are used. For example, lines 5
and 6 can never be switched because the value of e is needed for
the calculation.

A relation has been defined to determine whether a statement
depends on another preceding statement. Statement can be depen-
dent because of variable use, the generation of side-effects such
as printing output or because they control program flow, such as a
break-statement. Using this relation, we construct a directed acyclic
graph (DAG) for a list of statements. The arrows in the graph indi-
cate that a statement depends on another prior statement. A strategy
is generated for each node and is stored in the nodes.

The following graph represents the DAG for the previous code
fragment, containing the sub strategies for lines 1 to 6 in the nodes:

We build a strategy from this graph by listing all topological
sorts of the graph. A topological sort is a possible ordering of the
vertices with the property that for every edge representing a depen-
dency from a node a to a node b, b precedes a in the ordering. Incor-
porating all topological sorts into the strategy means that a student
can put statements in any order, as long as the resulting program is
valid. The graph is converted into a left-factored strategy using the
strategy combinators for sequence (<*>) and choice (<|>).

Converting the graph from the example results into the follow-
ing strategy that provides a student with multiple ways to build the
program.

(s1 <*>( (s2 <*>( (s3 <*>(

(s4 <*>s5 <*>s6)

<|>(s5 <*>s4 <*>s6)))

<|>(s4 <*>s3 <*>s5 <*>s6)))

<|>(s3 <* >...)))

<|>(s2 <*>...)

<|>(s3 <*>...)

Exercise strategy. The final step in generating a strategy from
a set of model solutions is combining the strategy for each model
solution into one final strategy using the choice (<|>) combinator.

4. FEEDBACK GENERATION
A programming exercise can be specified by providing a set of
model solutions and an exercise description in a text file. Students
can do the exercises by creating a solution and asking for feedback.
In this section we discuss the feedback services that are available in
the tutor, after considering the issues related to recognising a wide
variety of student programs. We conclude this section by looking
at the different ways an instructor can adapt the feedback.

4.1 Recognising solutions
We have incorporated several variations to the model solutions in
the derived strategy: multiple algorithms, variation in statement or-
der and different language constructs. However, there are many
more variations that should be taken into account. If a student
works on a program creating a solution that closely matches a
model solution but is not exactly the same, the student solution
should be recognised. Furthermore, if the student deviates from a
strategy, we would still like to provide some response.

We need to further establish when a student program and a model
solution can be considered ‘equal’. For this reason, we define two
relations on solutions that support the feedback generation: pro-
gram similarity and output equivalence.

Program similarity. A model solution represents an algorithm
to solve a particular programming problem. Therefore, we need to
establish what exactly distinguishes one algorithm from another al-
gorithm. The question of what defines an algorithm lacks a clear
answer and is subject to various interpretations. Blass et al. [Blass
et al. 2009] argue against the notion that algorithms are equivalence
classes of programs, implying that there is no ‘precise equivalence
relation capturing the intuitive notion of the same algorithm’. They
provide several examples to illustrate their point, stating that opin-
ions, subjective judgment and intended purpose influence this rela-
tion as well as a lack of clarity concerning the transitivity property.

We define our own relation on algorithms that indicates if two
solutions are similar, to support the instructor in supplying a num-
ber of model solutions. The strategy to arrive at a particular model
solution already incorporates a number of variations. Furthermore,
the instructor is able to control which variations are allowed, and
which are not allowed. Other than that, there are many more minor
variations that we do not want to identify as different solutions. As
an example, consider the following program fragment:

x = "*";

for(i = 0; i < 8; i++) { print(x); }

The next fragment shows an alternative implementation:

for(cnt =1;cnt <=8; cnt +=1) print("*");

In both solutions a looping structure is used to print a star sym-
bol eight times. The differences (use of an extra variable, different
loop counters, different variable names) do not change the algo-
rithm used for this program and we would like to recognise the
second program as a correct alternative for the first.

We define a similarity relation to determine if two programs are
similar when matching the student solution with a program derived
from the exercise strategy. We define that two programs are similar
(⇡) if their representation in abstract syntax is equal, after normal-
ising each program.

p1 ⇡ p2 = normalise p1 == normalise p2

The properties for symmetry, reflexivity and transitivity all hold,
therefore this relation is an equivalence relation. Normalisation
continuously performs a series of transformations until no more
transformations can be applied.

Xu and Chee [Xu and Chee 2003] have identified 13 types of
semantics-preserving variations (SPVs) that occur in student pro-
grams. An SPV changes the computational behaviour (operational
semantics) of a program while preserving the computational results
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SPV Description Parser Strategy Normalisation
1 Different algorithms  
2 Different source code formats  
3 Different syntax forms G# G# G#
4 Different variable declarations G# G#
5 Different algebraic expression forms G#
6 Different control structures G#
7 Different Boolean expression forms G#
8 Different temporary variables
9 Different redundant statements
10 Different statement orders  
11 Different variable names  
12 Different program logical structures
13 Different statements  

Table I. Support of SPV’s

(computational semantics). We incorporate some of these varia-
tions in different components of the tutor (the parser, the strategy)
as shown in Table I. Some differences that are not captured in the
abstract syntax or in the strategy are implemented in a normalisa-
tion procedure.

We use the  -symbol to indicate that an SPV is fully imple-
mented in the prototype and the G#-symbol for SPVs that are partly
implemented. To increase the number of program variants that we
can recognise, we would have to add several more normalisations.
However, some normalisations have deliberately been omitted be-
cause the resulting program would deviate too much from the in-
structor solution. The normalisations that have been implemented
in our prototype are elaborated in the first author’s Master’s the-
sis [Keuning 2014].

Normalisation regarding temporary variables (SPV 8) and re-
dundant statements (SPV 9) poses several challenges if we apply
them to incomplete solutions. Adding these variations to the tutor
requires further research.

Output equivalence. When we encounter student programs in
which no model solution can be recognised, we would still like to
provide the student with some feedback. If we cannot recognise the
program structure, we are left with looking at the output of the pro-
gram. If the output of the student program is equal to the output
of a model solution, we can inform the student that the solution
produces correct results, although we cannot comment on the algo-
rithm used. This algorithm may either be a potential addition to the
set of model solutions, or an inefficient or inelegant solution.

Testing could be used to check if two programs produce the same
output. Currently, the prototype does not support functions and fo-
cuses on writing output to a console. For this reason, an evaluator
has been implemented that computes the output of a program based
on print statements. We also have to take into account that incom-
plete programs may be submitted. We therefore do not define an
equivalence relation but instead we use a relation to define if the
output of a program is a prefix of the output of a model solution.
This relation is not an equivalence relation because the symmetry
property does not hold. We show a simplified version of this rela-
tion in which we have omitted dealing with evaluation errors.

program ; sol =

(eval program) ‘isPrefixOf ‘ (eval sol)

This relation holds for the following programs that have equal
output:

x = "*";

for(i = 0; i < 8; i++) { print(x); }

;
print("********");

In the next example the output of the student program at the top
is a prefix of the model solution on the bottom:

print("a");

;
print("abc");

If we would expand the prototype to support method declara-
tions, we might be able to use (an expansion of) the evaluator for
testing. We could use an existing testing tool, but such tools will
probably not support incomplete programs with holes. Therefore, a
custom made solution should be developed.

4.2 Feedback services
Hattie and Timperley [Hattie and Timperley 2007] stress that the
powerful influence of feedback on the learning process can either
be positive or negative. A model is proposed to clarify how feed-
back can be put into practice in the best way. The findings are
mainly about feedback from actual human beings, but because we
want to closely mimic this in intelligent tutoring systems, several
conclusions are also of interest to our research. According to the
model, the three questions that effective feedback should answer
are:

—Where am I going? (feed up)
—How am I going? (feed back)
—Where to next? (feed forward)

These questions help learners to understand where they are right
now and what has to be done to improve or finish a given task. The
authors also claim that feedback is more effective when ‘it builds
on changes from previous trials’. If these characteristics are imple-
mented in automated feedback systems, it will provide the student
with a useful alternative to a human teacher.

Our tutor offers two main feedback services:

—The DIAGNOSE service for analysing a student submission (feed
back).

—The HINTTREE service for providing a tree structure with hints
at various levels. (feed up and feed forward)



Strategy-based feedback in a programming tutor • 9

Diagnosis Explanation
Expected The submitted program follows the strategy.
Correct We cannot recognise the program, but the output of the program is correct so far.
Not equivalent We cannot recognise the program and the output of the program is incorrect.
Similar Currently unused, but can be used to detect that no significant changes have been made

since the last submission.
Detour A valid step is recognised but does not follow the strategy.

Table II. Diagnoses

Some meta services are also available, such as loading the list of
available exercises.

Diagnosis. A student can submit a (partial) solution to a pro-
gramming problem at any time. A student might even submit a fin-
ished solution straight away. We use the DIAGNOSE service from
the ASK-ELLE tutor for diagnosing a student submission. We have
made some adjustments and additions to enable the service for the
imperative programming domain. We use our evaluator to inspect
the output of a program if no strategy can be found. After sub-
mitting, the student receives a message indicating if the work was
correct or if a mistake has been made. The available diagnoses are
listed in Table II.

Hints. The HINTTREE service from the ASK-ELLE tutor is
used to generate a tree structure with hints on how to proceed, as
shown in the tutoring session in Section 2. The hints are based on
the steps defined in the exercise strategy and the corresponding la-
bels. The branching indicates the choice between different steps
and the depth of a node indicates the level of detail of the feedback
message.

During the generation of a strategy for an exercise, labels are
attached to steps and sub strategies. These labels are used to provide
textual hint messages. The following labels and other descriptions
are inserted automatically:

—Steps have an identifier with a description, for example ‘Intro-
duce break-statement’ for an append step and ‘Expand ? to iden-
tifier’ for a refine step.

—Sub strategies are labelled to provide more specific feedback.

We provide an example of a for-statement, which has the follow-
ing format:

for (init; cond; incr) body;

We show the (simplified) strategy for a for-statement in which
we label the sub strategies for the components with a corresponding
label:

append (For ...)

<*> label "loop -init" (strategy init)

<*> ( label "loop -cond" (strategy cond)

<%> label "loop -incr" (strategy incr)

)

<*> label "loop -body" (strategy body)

The corresponding textual descriptions for labels are stored in a
text file. This file can be manually adjusted by an instructor. The
IDEAS framework supports the parsing of these files and using
them to generate textual feedback messages. We show a small
fragment from this script file:

feedback loop -incr = {What should happen after

each loop iteration ?}

feedback assign = {What value should the

variable get?}

feedback args = {What information should you

pass to the function ?}

In this section we have shown that the services developed for
the functional programming tutor ASK-ELLE can also be used for
imperative programming. Moreover, the services can be used for
any domain: they support doing multiple steps at once regardless
of the nature of the steps. We propose moving the services to the
IDEAS framework to make them more widely available.

4.3 Adapting feedback
If an instructor wants to use our tutor for a particular exercise, the
instructor only needs to provide a set of model solutions. Feedback
will be calculated automatically based on these solutions. However,
an instructor may sometimes want to provide additional informa-
tion to further guide the process of solving an exercise. A num-
ber of instructor facilities are implemented in the prototype. The
script that stores the textual representations for strategy labels and
other feedback messages can easily be adjusted by an instructor.
The model solution that the instructor provides can be customised
with several annotations. These annotations enable instructors to
create tailor-made exercises for their students.

The ASK-ELLE tutor introduced the concept of annotated in-
structor solutions. We have adopted a number of these annotations
in our tutor for imperative programming. We also propose some
adjustments. Annotations are added to the model code inside com-
ments so they do not require the adaptation of compilers. Our parser
is able to recognise these comments. We will describe the features
that are currently available in the prototype.

General solution information. A model solution can be an-
notated with general information. At the top of the model solution
the following annotation can be added:

/* DESC " Implement the Quicksort

algorithm " PREF 2 DIFF Hard */

...

We label the strategy for a particular model with the solution
description. The solution difficulty is currently unused, but could
be used to exclude certain solution paths because they are either
too difficult or too easy, when we have the student level at our
disposal. We use the preference number to show the hints that lead
to the most preferred solution path first.
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Feedback messages. The FEEDBACK-annotation can be used
to provide more information about the meaning of a statement in
the context of a specific assignment, for example:

/* FEEDBACK Calculate the average of

the two results */

double avg = (x + y) / 2;

Another example is:

/* FEEDBACK Create a loop through all

even numbers below 100 */

for (i = 0; i < 100; i += 2) ... ;

The feedback text will be attached to the strategy for the state-
ment that follows the annotation.

Mandatory language constructs. Occasionally, an instructor
may create an exercise to train using a particular new language con-
struct. For example, when introducing the for-statement, the stu-
dents should practise with this statement and not revert to a while-
statement that they already know. Because the strategy generator
by default attempts to include as many variants as possible into the
strategy, the generator should be instructed when this is not desir-
able. The instructor is able to do this by annotating a statement in a
model solution using the MUSTUSE-annotation.

/* MUSTUSE */

for (i = 1; i < 10; i++) ...;

This annotation will instruct the strategy generator not to include
the option to create a while-statement as an alternative. This anno-
tation is currently only used to enforce the use of a for or while-
statement, but can also be used for other language constructs in the
future.

Alternatives. In some cases we want to allow an alternative for
a single statement. Creating an entire new model solution for this is
too much work and does not make sense for just one line of code.
Using the ALT-annotation, we can provide an alternative for one
specific statement that follows the annotation. As an example, we
use the annotation to allow a library function instead of one’s own
implementation. Note that we currently restrict the implementation
to one statement, but could expand this to multiple statements in
the future.

/* ALT x = Math.max(a,b); */

if (a > b)

x = a;

else

x = b;

Feedback level. When generating a strategy for a set of mod-
els, a level is passed as a parameter to indicate the granularity of
the steps in the strategy. For example, a particular exercise may be
targeted at more advanced students who do not need feedback at a
very low level. By default, all strategies are generated at the low-
est level of one. Strategies for level two do not include refinement
steps that help developing an expression step by step. Not including
refinement steps implies that a student can no longer use the hole
(?) symbol as a placeholder for unknown expressions.

Consider the following model solution as an example:

if (x > 10) f();

The feedback level can be set in a configuration file in the exercise
folder. We show the first hint if the level is set to one:

Introduce an if-statement.

The next hint will help the student complete the condition.
If the level is set to two, the hints target the entire statement.

Introduce an if-statement with an expression with op-
erator > as condition.

The student will receive a new hint only after the condition has
been implemented correctly.

5. EVALUATION
We have assessed the quality of our tutor prototype through various
methods:

—The demonstration of several tutoring scenarios (one of which is
shown in Section 2), showing that following the provided hints
leads to a solution.

—A test suite for the automated testing of various cases.
—An analysis of student data, on which we elaborate in this sec-

tion.

We collected data from first year IT-students (both full-time and
part-time) from Windesheim University of Applied Sciences in The
Netherlands during their Web programming course from Septem-
ber to November 2013 and their Java programming course from
February to April 2014. We asked the students to solve a number
of programming problems and submit their (either complete or in-
complete) solutions.

The set of collected student programs provides us with informa-
tion about different solutions. Although we do not know how an
individual student arrived at his or her solution, it is still relevant to
analyse the submissions to find out the diversity and to determine
to what extent our tutor can handle this diversity. Because we do
not want to recognise inefficient or inelegant solutions, we exam-
ine how many programs that closely match a model solution (man-
ually assessed by a teacher) are recognised as such by our tutor.
Assessing the code itself is a different approach from many assess-
ment tools, that are often based on test execution. The results are
summarised in Table III.

Exercise 1 and 2 are PHP exercises from the Web programming
course. The PHP exercises are relatively simple; their solution con-
sists of few lines of code containing basic constructs such as loops,
variable assignments and conditional statements. Our tutor is capa-
ble of recognising 75% (24 out of 32, for the first exercise) and 33%
(for the second exercise) of the solutions that we consider similar to
a model if they would be manually assessed. Unfortunately, there
were very few students with a decent solution for the second ex-
ercise. No false positives were identified. There were more correct

Exercise 1 Exercise 2 Exercise 3
Submitted 60 49 80
Models 2 2 2
Similar to model by teacher 32 6 12
Similar to model by tutor 24 2 5
Correctly recognised 75% 33% 42%

Table III. Evaluation results
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solutions, but they used different algorithms for which we did not
add a model solution.

We have defined another exercise (exercise 3) for the Java pro-
gramming course in which an array should be checked for contain-
ing the valid Fibonacci sequence. This exercise is more complex
and has a larger solution than the PHP exercises. We have used this
exercise to assess the possibilities and limitations of the tutor in its
current form, but also to analyse the diversity in student solutions.
Looking at the submissions, it was clear that the students had quite
some difficulties solving this exercise with very limited to no help
from an instructor.

After analysing a large number of student solutions it became
clear that many students had understood the exercise differently
than it had been intended. Therefore we decided to include another
(suboptimal) model solution to extend our solution space. Also, the
ALT-annotation is used in the models to allow for similar output,
such as an output string starting with a capital.

We have performed a detailed analysis [Keuning 2014] on the
variations we found in the solutions for this exercise, and which
variations we do and do not allow, which we omit in this paper.
Looking at the results, the number of recognised solutions is 42%
because not all variants have been implemented in the prototype
and we do not support all language constructs that the students used
in their solutions. Many programs contain more than one variation,
which explains why the percentage is not that high: with only one
unrecognised variation (SPV) the entire program is discarded.

6. CONCLUSION
We have reported on our research into generating adaptable feed-
back to guide students step by step towards a solution for an in-
troductory imperative programming problem. We have developed a
prototype of a programming tutor using the IDEAS framework.

Our prototype supports a selection of basic imperative language
constructs, such as loops, branching statements and variable as-
signments. We have developed a strategy generator that derives a
programming strategy from a set of model solutions. The strategy
describes the steps to arrive at one of these models. We incorporate
alternative paths in the strategy for both the order of steps and some
allowed variants of language constructs. To recognise more varia-
tions, we use a normalisation procedure. We have also implemented
facilities for instructors to annotate a model solution to further con-
trol the feedback.

We have demonstrated the capabilities of the prototype in a tu-
toring session and we have found that we can recognise between
33% and 75% of the solutions, collected during two programming
courses, that are similar to a model.

6.1 Future work
New features and improvements. We would like to recog-

nise more student programs that are similar to a model by adding
normalisations and by including more variants in the strategy. We
also want to expand the annotation capabilities with, for example,
a feedback message for multiple statements and using the difficulty
of a solution combined with the skill level of a student to person-
alise the feedback.

Different strategies. Our tutor prescribes a fairly simple way
of creating imperative programs: programming statement by state-
ment with some variation in creating a more complex language con-
struct step by step. We want to investigate how to support students
in creating programs in different ways:

—Starting with a basic structure and gradually adding the difficult
parts.

—Refactoring: restructuring code while maintaining its functional-
ity, which is a valuable process for both novices and experienced
programmers [Fowler 1999]. Refactoring teaches students about
elegant and compact solutions. For example, a novice program-
mer could learn how to transform a for-loop into a while-loop,
or eliminate an unnecessary variable. The model solutions could
serve as examples to which we want to refactor.

—Including other elements of the programming process [Benned-
sen and Caspersen 2008] in our tutoring, such as high-level pro-
gram design and testing the program along the way.

We also need instructor annotations to direct and adapt these pro-
gramming strategies.

Improved feedback. Performing transformations, such as the
rewriting of an expression, may have consequences for the accu-
racy of the feedback. We should find a way to adjust the hints to
take into account the normalisations that were performed and map
back to the student’s solution, as seen in the work of Rivers and
Koedinger [Rivers and Koedinger 2013]. Another option is to move
some variations to the strategy while keeping the size of the strategy
manageable. We want to investigate if we can dynamically adjust
the strategy based on what the student has done so far, and to what
extent the IDEAS framework is able to support this.

Language expansion. Currently we support the basic con-
structs of imperative programming. On our wish list are constructs
such as declaring methods, more data types, switch statements, en-
hanced for loops and do-while statements. Most contemporary im-
perative languages also support the object-oriented programming
paradigm (OOP), with concepts such as (abstract) classes, objects,
interfaces, inheritance and polymorphism. There are not many ITSs
that support OOP and we would like to explore how to provide
feedback for creating larger object-oriented programs. We would
also have to investigate how to test incomplete programs that have
methods and classes.

Support for multiple imperative languages. Many imper-
ative languages are taught in programming courses for beginners,
such as Java, C# and Python. These languages share the same foun-
dation of imperative language constructs, but differ in syntax and
specifics. So far we have been using the tutor for two imperative
languages. Some issues with the shared abstract syntax have al-
ready been identified and we would prefer a different solution to
embrace the differences between languages. We want to provide
tutoring for multiple imperative languages without the need to cre-
ate an entirely new tutor for each language. It should be easy to add
new languages, possibly by generating parts of the tutor, which was
proposed earlier by Jeuring et al. [Jeuring et al. 2012] but has not
been explored yet.

Solution space. We base our tutor on model solutions provided
by instructors, because they are experts in their field and their solu-
tions serve as examples for students. However, variations to these
model solutions are boundless. We want to limit the description
of the solution space as far as possible by investigating if we can
define a canonical form to describe similar solutions with respect
to their algorithms. There are discussions on the existence of such
categorisations [Blass et al. 2009], but we expect we can define one
that is usable for programming problems for novices in tutoring
systems.
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Evaluation. After expanding our tutor we have planned several
evaluation methods. We want to do experiments to investigate if the
tutor corresponds with student behaviour and if students consider
the feedback helpful. We are interested in how instructors value the
tutor and if they are able to deal with creating exercises and annotat-
ing model solutions. We also want to design a feedback benchmark
to assess the quality of generated feedback. Through a benchmark
we can measure the evolution of a tutor and compare it to other
tutors that are assessed using the same benchmark.
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