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The wildebeest migration on the plains of Africa is voted one of the New Seven 
Wonders of the World. Every January 1.5 million animals travel to the NgoroNgoro 
crater in the Serengeti to banquet on its young grass and fresh waters. It was not 
until 2006 that the kinetics of this massive migration was thoroughly analyzed. It was 
demonstrated that many wildebeests do not survive the journey, while others are 
distributed over the planes between Kenya and Tanzania. As a result, equilibrium 
is reached: the reduced number of animals prevents exhaustion of the grasslands, 
while suffi cient wildebeests reach the Serengeti to assure the survival of the large 
predators that populate the crater. 
Nevertheless, this every year phenomenon is inferior to the massive migration of 
billions of neutrophils to the tissues after severe injury. Like the Serengeti, migration 
and clearance of neutrophils and macrophages has to be in balance for proper 
functioning. Devastating migration of neutrophils or failure in clearance of these cells 
by macrophages would lead to the destruction of the tissues.
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CHAPTER 1
GENERAL INTRODUCTION AND 

OUTLINE OF THE THESIS
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1
TRAUMA AND ORGAN FAILURE

Trauma or injury is the leading cause of death worldwide (1). In the Western world 
injury is an important cause of mortality, disabilities and loss of working years (2,3). 
The Road Safety Organisation (VVN) in the Netherlands has estimated that 850–900 
traffi c accident deaths occur every year and an additional 17.000 injured patients. 
The mortality is either caused immediately due to the extent of their injuries (e.g. 
hemorrhagic shock or severe brain injury), or by the development of organ failure 
in the phase following resuscitation (4). These causes are equally distributed for 
patients with blunt trauma, which form the majority in the Netherlands (5). Mortality 
caused by organ failure is in part mediated by pathology in organs that were not 
injured at the time of impact. The result of this process is a syndrome known as 
multiple organ failure (MOF). Up to 15% of all patients admitted with severe trauma 
develop single or multiple organ failure (6). The overall mortality rate in patients 
with MOF has decreased during the last decade from 80% in the early nineties to 
20-40% in the beginning of the 21st century (7-10). However, the incidence of MOF 
after trauma as such only decreased moderately (10-12). As a result, the use of 
intensive care support has increased over the this period. Severely injured patients 
that develop organ failure require on average longer intensive care support (21 – 35 
days) and mechanical ventilation (20 – 26 days) as compared to patients without 
organ failure (10 – 17 days and 3 – 13 days respectively) (9,13). This need for high 
level of care during an extended period of time makes that organ failure accounts for 
1.7% of the annual healthcare budget in the Netherlands (14). In addition, morbidity 
rates after MOF remain high. Up to 80% of the patients who recovered from MOF 
suffer severe disabilities (14,15).

ORGAN FAILURE AND SURGERY

At present, no adequate treatment exists once organ failure has manifested: current 
treatment is supportive and symptom directed (8). Early identifi cation and prevention 
of organ failure is therefore essential to establish a reduction in both mortality and 
morbidity. However, the largely unexplained pathophysiology limits the possibilities 
for early adequate prediction, identifi cation and prevention of multiple organ failure.
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Until the mid seventies severely injured patients were deemed “to sick to operate 
on”, thus extensive surgical procedures were postponed. Frequently, this resulted 
in systemic complications such as pulmonary embolism or severe infections. With 
improvement of resuscitation during the Vietnam war, a phenomenon called the “Da 
Nang” lung was frequently seen, as a syndrome later known as the Adult Respiratory 
Distress Syndrome. With further progress in anaesthesia came the possibility 
for surgeons to perform extensive interventions on severely injured patients (16). 
In this elaborate strategy of “early total care”, patients undergo all necessary 
surgical interventions in one procedure (17-21). On average, this strategy reduced 
complications and improved recovery. However, with this policy part of the patients 
still developed organ failure (Figure 1). 

Phase I: “To sick to operate on”
Tot 1980

Trauma

Inflammation

Surgery increases hemodynamic 
instability

Phase II: “Early total care”
(Bone et.al., Goris et.al.)

Trauma

Inflammation

Treatment
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Decrease systemic complications
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Fase III: “Damage control”
(Rotondo et.al., Pape et.al.)

Severe trauma

Excessive Inflammation

Treatment

Limited interventions

No additional inflammation 
(second hit)

Incidence SIRS/ARDS/MOF

Increased mortality 
In severely injured patients

Incidence
SIRS/ARDS/MOF

Incidence SIRS/ARDS/MOF
&

Inferior results local outcome

Difficult allocation of patients 
Traumascores Inflammation

Figure 1. Treatment strategies over the last decades.
The treatment concept for severely injured patients has changed over the last decades. Initially, patients 
were deemed to sick to operate on, but with improvement of anaesthesia elaborate surgery became 
possible. Although the early total care regime resulted in a reduced incidence of complications, the 
most severely injured patients still developed multiple organ failure. Damage control surgery and 
orthopaedics was invented, which appears to result in a lower incidence of organ failure in the severely 
injured patients, but has an adverse effect on tissue and fracture healing. Correct allocation of patients 
to the diverse treatment strategies is therefore essential. 
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1
CLINICAL COURSE OF ORGAN FAILURE

In trauma patients the pathophysiology which leads to MOF is thought to be similar 
in the majority of cases. This is in contrast to the development of MOF during sepsis 
in patients with an impaired immune system, such as with chronic immunological 
disorders or haematological malignancies. Investigation of organ failure in injured 
patients enables the analysis of this life threatening disease throughout its’ course 
with a known point of onset.

Based on it’s clinical presentation, organ failure after injury can be divided in two 
types (22,23). Epidemiological studies have shown that organ failure can occur early 
between 2 – 3 days, or late between 7 – 14 days after the injury is sustained. Post-
mortem analysis of patients who died of multiple organ failure revealed leukocytosis 
in many organs, even in those without an infection present (24). It was hypothesized 
that an auto-destructive infl ammatory response caused the clinical syndrome of 
multiple organ failure. However, further analysis demonstrated that early phase 
organ failure is not associated with infections. In contrast, late phase organ failure is 
virtually always preceded by an infection. The infection and subsequent sepsis are 
often the cause of late phase organ failure (25,26). 

During the development of multiple organ failure, organs regularly become 
dysfunctional in a predetermined order; lungs, liver, gastric mucosa (intestines) and 
kidneys (23). The lung is the organ that fails the most. The clinical presentation of 
pulmonary failure was formerly known as the Adult Respiratory Distress Syndrome, 
but is since 1994 defi ned as acute lung injury (ALI) or acute respiratory distress 
syndrome (ARDS). ALI and ARDS are both characterised by the acute onset, 
bilateral infi ltrates on the AP-thorax photo and no signs of hypertension or cardiac 
failure (Wedge pressure < 18 mmHg) and for ALI a PaO2/FiO2  < 300 mmHg with 
PEEP > 6 cm H2O and for ARDS a PaO2/FiO2  < 200 mmHg with PEEP > 6 cm H2O 
(27). Solitary pulmonary failure is a complication that is mostly seen in the early form 
of organ failure (28,29). 

A

A
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PATHOPHYSIOLOGY OF ORGAN FAILURE

Autopsy studies demonstrated large amounts of leukocytes in the dysfunctional 
organs, however these organs were unaffected by an infection (24). It was concluded 
that organ failure is the result of an excessive infl ammatory response. Although the 
elaborated initial surgery resulted in a decrease in the incidence of organ failure 
after trauma, part of the patients still developed organ failure. In an extensive 
review of their results, Pape et al. demonstrated that extensive surgical procedures 
in severely injured patients had detrimental effects on outcome (30). They argued 
that the surgery further amplifi ed the infl ammatory response, resulting in a further 
aggravation of this infl ammatory response and subsequently worsened the depth of 
ARDS and MOF. 

Therefore, it was thought that patients with a severe infl ammatory reaction after 
trauma have an adverse outcome in the early total care strategy. The major surgical 
procedures function as a “second hit” and attribute to the development of organ 
failure (25,31). Minimizing the surgical burden attenuates the infl ammatory reaction 
and reduces the incidence of infl ammatory complications such as organ failure 
(32-34). This led to a change in approach of the severely injured patient, with high 
chances of ARDS and MOF. In an attempt to attenuate the infl ammatory response, 
only limited surgical procedures were initiated in the early phase just to control the 
damage (32). This was achieved by limiting contamination, bleeding and minimizing 
the extent of orthopaedic procedures with the use of external fi xators (35). However, 
there is evidence that this limited initial surgical intervention, i.e. the “damage control” 
strategy, impairs local outcome on the site of injury (36). 

Determining which patient requires which of the different treatment strategies at 
hand demands more insight in the pathophysiology of organ failure after injury. It has 
been well established that the infl ammatory reaction after injury has a multi-factorial 
aetiology. Several infl ammatory factors, as components of diverse immunological 
cascades, have been subject of study (37-43). However, these soluble proteins did 
not possess suffi cient discriminative power to differentiate high and low risk patients. 
Therefore they have not been widely implicated in daily clinical practise. Current risk 
assessment and treatment allocation is still based on the clinical expertise of the 
attending physician. A more objective stratifi cation for the identifi cation of patients at 
risk for early or late organ failure is needed for a reduction in the incidence of MOF.
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1
INNATE IMMUNE SYSTEM AFTER TRAUMA

Cells of the innate immune system, polymorphonuclear granulocytes (neutrophils 
or PMNs) and monocytes play an essential role in the development of organ failure 
after trauma. Excessive activation of PMNs after injury is thought to be responsible 
for early organ failure. The physiological function of PMNs is to neutralize bacterial 
pathogens with mechanisms dependent on reactive oxygen species (ROS) and 
cytotoxic proteins such as proteases (44-47). However, when excessively activated, 
PMNs can target the tissue of the host with these perilous products, which can 
lead to organ failure (37,48-51). In contrast, inactivation or exhaustion of PMNs and 
monocytes would facilitate late phase sepsis. Decreased clearance of bacterial 
pathogens by PMNs and reduced interaction between monocytes and the adaptive 
immune system have been suggested as cause of sepsis (52,53). Elucidation of the 
pathophysiological process of infl ammation after severe injury could provide tools 
for early identifi cation allocation to treatment protocol of injured patients. Patients 
undergoing major surgical procedures behave similarly as patients after trauma. 
These patients also could benefi t from the knowledge obtained from trauma patients 
(54). 

There is some evidence that a relation exists between the amount of injury and the 
extent of the infl ammatory reaction (55). In an experimental model we found that the 
MPO (myeloperoxidase; an enzyme used by PMNs) content in the lungs increased in 
a dose dependent fashion when the ischemia reperfusion time increased (56). If the 
infl ammatory state of the cellular innate immune system can be quantifi ed patients 
at risk for the development of organ failure can be adequately identifi ed. However, 
current knowledge on the pathophysiological processes limits this possibility. The 
development of organ failure needs to be further detailed. Although the cellular 
innate immune system plays a key role, additional factors beside the cellular innate 
immune system appear involved.

A higher incidence of dysfunctional organs was found in organ systems already 
injured, which is particularly the case in pulmonary failure (7,33). This suggested 
that local tissue factors play an important role in the development of organ failure 
(Figure 2). This hypothesis is supported by the absence of PMNs in the alveolar 
space after ischemia reperfusion injury, while the MPO content was increased and 
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alveolar oedema was present (50,56). Thus, although PMNs accumulate in the 
pulmonary vasculature during infl ammation, these cells can not enter the interstitial 
space without an additional factor. 

Trauma
Including surgical trauma

Host dependent factors
(Condition / genetic predisposition)

SIRS/ARDS/MOF

Excessive response
Inactive PMNs

Effect on tissue damage

Recovery

Decreased tissue barrier integrity

CARS/Sepsis/MOF

Bacterial invasion?

Figure 2. Impact of trauma and surgery on the development of organ failure.
During injury, organs can be damaged and endothelium can be activated. In addition, injury induces 
an infl ammatory response. It is thought that surgery enhances this infl ammatory response, thereby 
inducing organ failure in the severely injured patients with a pronounced infl ammatory response. The 
initial trauma, the subsequent surgery and the infl ammatory response cause damage to the tissues. 
This leads to a decreased barrier integrity, which might facilitate bacterial invasion. 

BIOLOGY OF INNATE IMMUNE CELL PHENOTYPE

Quantifi cation of the infl ammatory response has been attempted by the measurement 
of both humeral proteins in body fl uids such as serum and plasma and cell associated 
features such as expression of surface proteins as single markers (57). However, 
analysis of these single mediators did not provide satisfactory results, as the situation 
after trauma is often complex (58). Especially studies performed on humeral factors 
demonstrated a large interpersonal variation and are for that reason less suitable 
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1
for clinical implementation (43). Immune cells express receptors for many of these 
infl ammatory mediators and, therefore, integrate all these different signals. The 
resulting phenotype can be used as read-out for the complex infl ammatory signals 
in both chronic and acute infl ammation.. The pro- and anti-infl ammatory cytokines, 
complement fragments and mediators liberated from coagulation pathway all have 
impact on the phenotype of immune cells. Particularly, effector cells of the innate 
immune system, such as PMNs and monocytes change their phenotype under these 
conditions (57,59). 

The study of cellular phenotypes of cells of the innate immune system is complicated 
by the absence of clear defi nitions of phenotypes, subpopulations, activation and 
differentiation stages and priming status. Although we realize that there is an overlap 
in the defi nitions of phenotype, subpopulation and differentiation stage, the following 
defi nitions are used in this thesis:

- A phenotype of innate immune cells is defi ned as cells that are functionally 
distinct from other cells. Very typical is the situation that infl ammation affects 
the whole population of blood neutrophils or monocytes and leads to marked 
change in all cells at a certain time of sampling. Cells change rapidly in 
response to infl ammatory mediators and this change can also be induced in 
vitro. A clear example is the priming phenotype which is seen in granulocytes 
in vivo in chronic infl ammatory diseases such as asthma and COPD (60,61). 
Under these conditions granulocytes acquire an uniform priming phenotype 
at the time of sampling. A similar phenotype can be induced in vitro by 
treatment of the cells with cytokines such as TNF, GM-CSF and IL-5 (62). In 
addition, this priming phenotype can be reversed (63).

- A subpopulation of innate immune cells is defi ned as a cell population that 
can be identifi ed on the basis of expression of distinct markers and/or unique 
functionality. Subpopulations exist next to each other at the time of sampling. 
A clear example are the cells characterized by distinct expression of certain 
cell surface markers such as VLA-4, HLA-DR, L-selectin and/or FcγRIII (see 
chapters 5-9). The induction of subpopulation in vitro is diffi cult and when 
possible requires prolonged incubation with cytokines such as IFNγ.
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- A differentiation stage is defi ned as cells at a certain stage of their normal 
differentiation in the bone marrow. Cells with different maturation stages can 
be liberated from the bone marrow.

There are several techniques to investigate the cellular phenotype: 1) by measurement 
of the release of granule products, 2) by measurement of de novo protein synthesis 
and 3) by measurement of functionality: 

1. Cell surface markers: A well known example of the fi rst method in trauma 
patients is the measurement of CD11b (MAC-1) on PMNs. Although this 
marker is considered the most precise surface protein for the detection 
of activated cells, it is rather insensitive (38). In order to provide a more 
sensitive marker, alternative proteins have been investigated. Some of these 
proteins are shed from the cellular surface after activation, such as L-selectin 
(CD62L). The soluble form of this protein (sL-selectin) has been intensively 
analyzed to quantify the infl ammatory response. However, an extensive 
literature review provided no evidence for a relation between the amount of 
soluble L-selectin and the development of organ failure (64). 

2. Proteomics/Genomics: Analysis of gene transcription and protein synthesis 
by for instance proteomics. can be performed with techniques ranging from 
western/northern blots to genomics/proteomics. Although these methods 
provide large amounts of information it is time consuming and requires 
isolation of many cells, which might induce artifi cial activation (65). 

3. Functionality: A multitude of assays is available to measure the functionality 
of innate immune cells. Again many of these techniques are not very 
practical to apply in clinical studies, because they are laborious, need 
many isolated cells and biases by isolation artefacts. However, analysis of 
inside-out control, of immune receptor function is very sensitive and can 
be performed in whole blood assays. . The functionality of several immune 
receptors, such as integrins and Fc-receptors are tightly regulated by cellular 
signals initiated from activated cytokine and chemokines receptors (66,67). 
This mechanism determines whether an innate immune cell can respond 
to adhesion ligands or immunoglobulins. This inside-out control typically 
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1
occurs in the peripheral blood and is, therefore, an excellent target for the 
determination of preactivation of these cells. Excellent antibodies became 
available that recognize only the activated forms of both integrins (68) and 
FcγRII (66,69). The downside of measuring inside out control by these 
antibodies is that non-specifi c activation by ex vivo manipulation can result 
false interpretation. Therefore, these measurements should be performed 
on whole blood chilled immediately upon collection.

Analysis of the modulation of innate immune cells in the context of trauma has 
been focussed on activation markers with low sensitivity (e.g. CD11b expression) 
mainly on single time points. These studies had limited success in defi ning and 
prognosing pathology following multi trauma. This thesis focussed on new more 
sensitive markers and was designed to obtain more insight into the mechanisms 
causing infl ammatory complications after trauma. 

OUTLINE AND RESEARCH QUESTIONS IN THIS THESIS

The central theme in this thesis is the pathophysiology of injury-induced infl ammation 
and its clinical consequences. In chapter 2 the most important components of 
the innate immune system are reviewed. While damage to organs reduces the 
threshold for the development of clinical symptoms, organ failure is caused by 
excessive infl ammation (Figure 3). Neutrophils (or PMNs) play an essential role in 
this excessive infl ammation and consequently the development of organ failure after 
trauma. Hence, most of the research performed in this thesis focused on these cells 
(chapter 3–6, 9). 
Monocytes are essential in the clearance of infl ammation. In addition, monocytes are 
important in the phagocytosis of bacteria and antigen-presentation to the adaptive 
immune system. It is thought that the immune system is actively down-regulated 
following injury. During this state patients are prone for the development of sepsis 
with subsequent organ failure. Therefore, monocyte changes during injury induced 
infl ammation were analyzed in relation to organ failure (chapter 7, 8). 
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Figure 3. Hypothesis for the development of ARDS after trauma and subsequent surgery.
Injury induces a certain amount of infl ammation. In addition, surgery is thought to induce or enhance 
the infl ammatory response. Activation or damage of the endothelium is involved in the extravasation of 
innate immune cells. These three factors determine the onset of clinical symptoms of organ failure after 
trauma. 

The studies presented in this thesis were guided by the following research 
questions:

- Can cellular parameters in the circulation be used as a read-out for the severity 
of innate immune activation (i.e. infl ammation) after trauma and do these 
parameters represent processes in the interstitial space? (chapters 3, 4, 7)

- Is the magnitude of the cellular innate immune response related to the 
development of early phase organ failure? (chapters 4, 7)

- What impact does surgery (i.e. primary or secondary intramedullary nailing) 
have on the severity of infl ammation or endothelial damage/activation in relation 
to the development of ARDS? (chapter 5)

- Is the magnitude of the initial infl ammatory response related to the subsequent 
 state of immune paralysis and development of late phase organ failure? 
 (chapter 6)
- Is the late phase sepsis related state of innate immune, caused by active 

immunological down-regulation or by exhaustion or redistribution of the innate 
immune system? (chapters 6, 8, 9)



regel 1

regel 2

regel 3

regel 4

regel 5

regel 6

regel 7

regel 8

regel 9

regel 10

regel 11

regel 12

regel 13

regel 14

regel 15

regel 16

regel 17

regel 18

regel 19

regel 20

regel 21

regel 22

regel 23

regel 24

regel 25

regel 26

regel 27

regel 28

regel 29

regel 30

regel 31

regel 32

regel 33

regel 34

regel 35

regel 36

regel 37

regel 38

regel 39

20

Chapter 1

102
101
101
101
101
101
101
101
101
101

1
In order to study the innate immune response in relation to the development of organ 
failure after injury, several prospective cohort studies were developed. In a fi rst 
cohort, it was tested if PMN characteristics in the circulation can be used to analyze 
the infl ammatory response and cellular processes in the tissues (chapter 3). In a 
second cohort, the effect of trauma and surgery on cellular innate immune activation 
and the development of organ failure was investigated (chapters 4, 5, 7). In a third 
cohort, longitudinal measurements were performed in severely injured patients prone 
for the development of sepsis, to analyze the kinetics of the innate immune response 
and the presence of neutrophil and monocyte subpopulations for the development 
of immune paralysis (chapters 6, 8). Finally, several small cohorts were used to 
analyze innate immune cells in different tissues during severe infl ammation, in order 
to investigate mechanisms leading to immune paralysis (chapter 9).
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ABSTRACT

Immune dysfunction can provoke (multiple) organ failure in severely injured patients. 
This dysfunction manifests in two forms, which follow a biphasic pattern. During 
the fi rst phase, in addition to the injury by trauma, organ damage is caused by 
the immune system during a systemic infl ammatory response. During the second 
phase the patient is more susceptible for sepsis due to host defence failure (immune 
paralysis). The pathophysiological model outlined in this review encompasses 
etiological factors and the contribution of the innate immune system in the end organ 
damage. The etiological factors can be divided into intrinsic (genetic predisposition 
and physiological status) and extrinsic components (type of injury or “traumaload” 
and surgery or “intervention load”). Of all the factors, the intervention load is the only 
one which can be altered by the attending emergency physician. Adjustment of the 
therapeutic approach and choice of the most appropriate treatment strategy, can 
minimize the damage caused by the immune response and prevent the development 
of immunological paralysis. This review provides a pathophysiological basis for the 
damage control concept, in which a staged approach of surgery and post-traumatic 
immunomonitoring has become important aspects of the treatment protocol. The 
innate immune system is the main objective of immunomonitoring as it has the most 
prominent role in organ failure after trauma. Polymorphonuclear phagocytes and 
monocytes are the main effector-cells of the innate immune system in the processes 
that lead to organ failure. These cells are controlled by cytokines, chemokines, 
complement factors and specifi c tissue signals. The contribution of tissue barrier 
integrity and its interaction with the innate immune system is further evaluated. 
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Trauma is one of the major causes of mortality in people under the age of 50 in the 
Western world. Patients die as a direct consequence of their sustained injuries, or 
by the additional damage caused by subsequent immune reactions (1). About 5% of 
the patients admitted after severe trauma develops (multiple) organ failure (MOF). 
Multiple organ failure is a clinical syndrome in which the functionality of several 
organs fail subsequently or simultaneously (i.e. liver, lungs, kidneys, heart). This 
review outlines the initiating factors and underlying mechanisms for the development 
of post-traumatic organ failure. It provides a pathophysiological basis for the so 
called damage control concept. This concept involves a treatment strategy in which a 
staged approach of surgery in severely injured patients and post-traumatic immuno-
monitoring have become important aspects, to minimize the negative effects of a 
dysfunctional innate immune system.

MULTIPLE ORGAN FAILURE

Multiple organ failure after trauma has a multifactorial etiology, which can be divided 
in endogenous and exogenous factors. Endogenous factors, such as genetic 
predisposition and physical condition form the basis of the patients susceptibility for 
the development of organ failure. Recent studies have shown that genetic variations 
(e.g. TNF-α polymorphisms) are strongly associated with the development of organ 
failure (2). Exogenous factors, like the injury itself (the “fi rst hit” or “trauma-load”) and 
the resuscitation or surgical intervention (the “second hit” or “intervention load”) play a 
key role in the development and clinical presentation of organ failure. Organ damage 
and subsequent organ failure is the result of a dysfunctional immune system. A 
localized infl ammatory reaction after injury is physiological, which can be explained 
by the “danger model”, an immunological theory coined by Matzinger. The “danger 
model” explains that alarm signals can provoke an infl ammatory reaction (3). These 
alarm signals can be secreted by healthy cells or released by necrotic cells, which 
are present after injury is sustained. The combination of type of tissue and type of 
alarm signal decides what kind of response follows. Neutrophils and macrophages 
(effectors) are involved in immune surveillance and injury control and after trauma 
are activated through mediators (cytokines, chemokines and complement). This 
local infl ammatory response can exacerbate and a systemic infl ammatory response 
(SIRS) develops. When SIRS leads to a multiple organ dysfunction syndrome 
(MODS) mortality can increase up to 50-80% (Figure 1) (2,4,5). 
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Figure 1. Biphasic model of organ failure.
Depiction of the biphasic model of organ failure (MOF), originally coined by Moore (8). The relative 
degree of immune activation is displayed on an arbitrary scale on the vertical axis. The horizontal axis 
indicates the time following trauma. When injury is sustained, a pro-infl ammatory response is evoked 
which can lead to the early version of MOF. At a later stage CARS and MARS can lead to immune 
paralysis and subsequently, the late form of organ failure.

To restore the equilibrium of the excessive pro-infl ammatory reaction, an anti-
infl ammatory response is evoked. In a propitious case, homeostasis is achieved. 
However, an overreaction of the anti-infl ammatory response can lead to either a 
compensatory anti-infl ammatory response (CARS), or a mixed antagonist response 
(MARS) (6). In the latter syndrome the pro-infl ammatory and anti-infl ammatory 
responses counterbalance each other. In both situations (CARS and MARS), the 
body is in a state of immune paralysis and is unable to produce an adequate reaction 
to a new threat (i.e. infection). In this state the patient is extremely prone to micro-
organisms as there is a defect in an important defense mechanism formed by 
the cells of the innate immune system (7). Resulting infections can cause serious 
complications like sepsis and septic shock with subsequent organ failure (8). In 
conclusion, SIRS and sepsis (predisposed by CARS or MARS), despite different 
pathophysiological processes, can all result in multiple organ failure (Figure 2). 



10
regel 1

regel 2

regel 3

regel 4

regel 5

regel 6

regel 7

regel 8

regel 9

regel 10

regel 11

regel 12

regel 13

regel 14

regel 15

regel 16

regel 17

regel 18

regel 19

regel 20

regel 21

regel 22

regel 23

regel 24

regel 25

regel 26

regel 27

regel 28

regel 29

regel 30

regel 31

regel 32

regel 33

regel 34

regel 35

regel 36

regel 37

regel 38

regel 39

31

Infl ammation after trauma

1
102
101
101
101
101
101
101
101
101
101

Genetic

Physical condition
Endogenous

Resuscitation
Surgery

Trauma
Exogenous

Patient

Mediators

Effectors

Cytokines

Complement

Chemokines

Neutrophils

MOF

Macrophages

RecoverySIRS / MARS / CARS

Mortality

Figure 2. Factors involved in the etiology of post-traumatic organ failure.
Shows the complex of factors, mediators and effectors involved in the development of organ failure. The 
endogenic factors (genetic predisposition and physical condition) form the basis for the susceptibility 
of a patient to post-traumatic organ failure. The sustained injury is seen as the fi rst hit on the immune 
response and the “burden of surgery” is seen as the second hit, which can excacerbate the infl ammatory 
reaction. The mediators stimulate the effectors which cause end-organ damage.

CELLULAR RESPONSE: NEUTROPHILS

Tissue damage leads to the activation of neutrophils and macrophages (9). 
Hemorrhagic shock induces ischemia and this causes the tissue to change 
its metabolism to anaerobic. During resuscitation, thus reperfusion, oxygen is 
transported to the ischemic area in the tissue and radical oxygen species (ROS) are 
formed. These ROS are chemo-attractors and activators of neutrophils (Figure 3) 
(10,11). Polymorphonuclear granulocytes have an important role in the defense and 
debridement of the injured tissue from the fi rst 10 minutes until 3 days after injury 
(12). Priming, or pre-activation, is an essential step for neutrophils which enhances 
functional responses of these cells (13,14). 
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Priming
Priming is the result of pre-exposure to priming agents, like granulocyte macrophage 
colony stimulating factor (GM-CSF) or tumor necrosis factor (TNF-α) (15,16). These 
priming agents are found in increased concentrations in the peripheral blood of 
severely injured patients and several priming enhanced functions of neutrophils have 
been demonstrated in traumapatients and patients undergoing major abdominal 
surgery (17,18). The enhanced functional response after priming encompasses 
chemotaxis, adhesion, rolling, diapedesis and the oxidative burst. 

Oxidative burst
The increased oxidative burst (a cytotoxicity associated response) is necessary to 
prepare the neutrophils for invading micro-organisms. This increased functional 
response in the form of oxidative radical production correlates with the incidence of 
SIRS and MOF (19). It is thought that the increased cytotoxic potential of neutrophils 
is a sign of an uncontrolled infl ammatory reaction which causes damage to tissues 
and leads to early MOF. Maximum increased priming for cytotixicity (after in vitro 
stimulation) was found between 3 and 24 hours after trauma (20). An elevated 
priming index (elevation of the spontaneous oxidative burst from normal values) 
was found between day 2 and 5 after trauma and remained above normal until day 
13 after trauma (21). This increased oxidative burst is thought to cause additional 
damage to the tissue. Furthermore, the newly formed ROS contribute to the attraction 
and subsequent activation of neutrophils, which attributes to the accumulation of 
activated neutrophils in the tissue (11). The harmful effects of neutrophil activity can 
only occur when these cells enter the tissue, therefore, an interaction between the 
neutrophil and endothelium has to occur. Interactive processes with the endothelium, 
like rolling, adhesion and diapedesis, are necessary for leukocytes to exert their 
function in the target tissue. These leukocyte functions are altered after trauma and 
during early organ failure. 

Rolling
Rolling is regulated and controlled by selectins. These proteins undergo interactions 
which slow down the leukocytes at the endothelial cell surface (22). E-selectin, 
which can bind carbohydrate molecules, is presented on endothelial cells and are 
involved in the initial contact between endothelial cells and leukocytes. Leukocytes 
express L-selectin on their surface and is important in secondary tattering, a process 
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in which attached leukocytes provide adhesion for other leukocytes. As a result, 
leukocytes bind directly to each other and thus enhance the effect of the homing 
process (23). L-selectin is shed after interaction with the endothelium and integrins 
take over to regulate the next step in the transmigration process. Some authors 
have reported a correlation between decreased L-selectin expression on leukocytes 
and the incidence of SIRS or early MOF, indicating to a relation between the degree 
of neutrophil activation and the development of complications occurring during the 
pro-infl ammatory phase (24,25). The shedded molecules can be found as soluble 
factors in serum (sL-selectin). Consequently, the activation level of the neutrophil 
population is associated with the level of sL-selectin in the blood. Maximum sL-
selectin levels in serum are found 6 hours after trauma, giving an indication on the 
time when the highest amount of neutrophils have lost their L-selectin to migrate to 
the tissue (26).

Adhesion
Integrins are involved in the adhesion of leukocytes to the endothelium. The integrin 
αmβ2, or MAC-1 (CD11b/CD18) and the ligand ICAM-1 (intercellular adhesion 
molecule 1) form a high affi nity stationary connection between leukocyte and 
endothelium. This is in contrast to the low affi nity, reversible binding of selectins. 
Functional integrins are only expressed upon activation of the neutrophil and are 
necessary for an adequate transmigration process (27). An increased expression 
of MAC-1 is found on neutrophils from patients who were admitted with an ISS > 16 
as compared to traumapatients with an ISS < 16, indicating to activated neutrophils 
after injury (26). Increased expression of MAC-1 is also found in experimental models 
and patients who received large amounts of blood products for resuscitation (28). 
In contrast, during late organ failure a decreased expression of MAC-1 is found on 
neutrophils from patients who died from the consequences of sepsis as compared 
to patients who survived (29). These results are congruent with the decreased 
percentage of MAC-1 positive neutrophils of critically ill surgical patients with severe 
disease as compared with surgical intensive care patients with less severe disease 
(30). 

ICAM-1, normally expressed by activated entothelium, also exists as a soluble factor 
in serum (sICAM-1) and increased concentrations in septic patients correlate with 
the incidence of organ failure and mortality (26,29). Expression of MAC-1 or sICAM 

A
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give an indication on the activation of neutrophils or tissue and are both related with 
the development of organ failure. A high activation state of neutrophils is associated 
with SIRS, whereas a low activation state is related with sepsis. The activation state 
of neutrophils changes over time and could provide a partial explanation for the 
biphasic pattern of MOF (8).

Apoptosis
Billions of neutrophils are produced by the bone marrow on a daily basis (31). 
Neutrophils which have completed their function in the tissue go into apoptosis. 
Apoptosis is necessary to limit the absolute number of neutrophils present in the 
tissues. After trauma a delayed programmed cell death (delayed apoptosis), has 
been demonstrated (21). This delay is seen directly after trauma and can last up 
to 3 weeks (32). Delayed apoptosis causes accumulation of neutrophils in the 
tissue, where they can produce more cytotoxic products (oxygen radicals and 
proteases) and promote tissue damage. This delayed apoptosis is found in patients 
with sepsis as well (33). Bacterial products can inhibit apoptosis. In contrast to the 
large population of neutrophils which show decreased apoptosis, a relative larger 
subgroup of neutrophils exhibits signs of apoptosis in whole blood (34).

Neutrophils are essential in the pathophysiology of trauma-related organ failure (35). 
Blocking or depletion of neutrophils in experimental models results in a reduction of 
organ failure in the pro-infl ammatory (early) phase. However, overall organ failure 
increased due to an increased incidence of organ failure caused by severe infections 
during the anti-infl ammatory (late) phase (36). For future studies it seems more 
favorable to regulate the neutrophil compartment instead of shutting this important 
defense mechanism down. 

CELLULAR RESPONSE: MACROPHAGES

Neutrophils are important in the fi rst response to injury, as they form the fi rst natural 
immunological defense against micro-organisms and occur within 10 minutes after 
injury is sustained. Subsequent to the initial responders, macrophages are recruited. 
These cells orchestrate the mechanisms involved in wound healing (37). They function 
in wound debridement and secrete biologically active substances, called growth 
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factors (e.g. TGF). TGF plays an important role in cell growth and tissue repair and 
thus essential in the wound repair after trauma (38). Macrophages have a lasting 
infl uence on the subsequent phases of proliferation and tissue differentiation. Most 
of the macrophages are derived from blood monocytes. Differentiation of monocytes 
into macrophages and activation of macrophages takes place at the wound site. The 
cells reach the wound area in great numbers, attracted by chemotactic signals from 
injured tissue, the cytokines produced by immune cells and the presence of bacterial 
products,. A macrophage can phagocytose micro-organisms and, in addition, is 
also capable of modulation of the adaptive immune response by mediating antigen 
presentation to lymphocytes. Antigens are taken up and partially degraded by 
the macrophage and then presented to a T-lymphocyte for recognition by MHC-II 
molecules. In injured patients, macrophages form the bridge between innate and 
adaptive immunity.

Downregulation of MHC-II expression leads to decreased antigen presentation 
capacity and therefore higher susceptibility for infectious complications. Several 
authors have shown MHC-II suppression after trauma, which correlated with the 
incidence of infectious complications. MHC-II suppression on monocytes and 
macrophages is considered to be one of the most important features of immune 
suppression after injury. Some authors have suggested CARS to be defi ned as less 
than 30% expression of MHC-II on monocytes (29). 

CYTOKINES AND CHEMOKINES

In past years many studies focused on the relation between pro- and anti-
infl ammatory cytokines and the development of SIRS and CARS. Tissue damage 
causes the endothelial cells, fi broblasts, lymphocytes and tissue-macrophages to 
produce these cytokines (39). At fi rst, pro-infl ammatory cytokines, such as TNF-α, 
GM-CSF, interleukin 1β (IL-1β), IL-6 and IL-8 are produced (40). 

TNF-α and IL-1β
TNF-α and IL-1β are situated at the beginning of the pro-infl ammatory cascade 
(Figure 3). IL-1β acts primarily locally, but induces a systemic release of TNF-α and 
IL-6 by stimulation of hepatic cells. IL-1β and TNF-α increase the concentration of 
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neutrophils in the circulation, trigger an increased chemotactic response, decrease 
the apoptosis ratio, amplify phagocytosis and cause an increased permeability of the 
endothelium. These actions lead to accumulation of activated infl ammatory cells in 
the tissue (41,42). IL-1β has been identifi ed as an important cytokine in patients with 
the acute respiratory distress syndrome (ARDS), a neutrophil mediated disease. 
Only small amounts of biological active IL-1β are necessary to induce infl ammation 
in the pulmonary compartment (41,43). TNF-α has a more ambiguous role as its 
function is depending on the context of the tissue. It participates in an adequate 
immune response in its physiological role in the circulation. TNF-α depleted or inhibit 
mice were incapable of handling an infectious threat (44). In addition, administration 
of TNF-α reduces mortality in a sepsis model performed on rats (45). In a clinical 
situation however, increased serum concentrations of TNF-α correlate with the 
development of septic shock in trauma patients. It is unclear whether this is a causal 
relationship, or whether this is merely an epiphenomenon and the high levels of 
TNF- α are a sign of the host coping with tissue injury or invading micro-organisms 
(46). 

IL-6 and IL-8
Both IL-1β and TNF-α stimulate the production of IL-6 and IL-8. IL-8 is an important 
chemokine in the cascade that leads to leukocyte recruitment and activation in the 
tissues (47). Production of IL-8 induces an infl ux of neutrophils towards the site of 
production, for example in patients with ARDS to the lung. The IL-8 concentration 
in the pulmonary fl uid of patients with a thoracic trauma is seen as an indicator for 
the occurrence of ARDS, as increased levels correlate with the incidence (48). IL-6 
is an acute phase protein such as C-reactive protein (CRP). The protein’s role in the 
pathophysiology of trauma-related organ failure remains unclear due to the non-
specifi city of IL-6. However, epidemiological data shows evidence of a correlation 
between increased IL-6 levels after trauma and the Injury Severity Score (ISS), the 
incidence of complications and mortality. A correlation also exists between the IL-6 
concentrations after intramedullary osteosynthesis and the development of ARDS 
(49). IL-6 can be seen as marker for the severity of trauma and, despite its indistinct 
role in the pathophysiology, can be a resource in triage, diagnosis and prognosis. 
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MIF
Macrophage migration inhibitory factor (MIF) is a pleiotrophic molecule exerting 
its functions as an anterior pituitary hormone, a pro-infl ammatory cytokine and 
high activity enzyme. It is produced abundantly by monocytes/macrophages and 
acts in an autocrine/paracrine manner to up-regulate and sustain the activation 
responses of diverse cell types (50). MIF is present in preformed, cytoplasmic pools 
within the macrophage and is in vitro rapidly released to microbial products (both 
lipopolysaccharide and Gram-positive exotoxins) (51). This is also seen in vivo as high 
circulating levels of MIF were found in septic and septic shock patients, in contrast to 
normal levels in non-septic, multi-traumapatients (52). In addition, circulating levels 
of MIF correlated with positive tests for bacterial cultures (53). MIF induces vascular 
hyporeactivity and could be the threshold protein in the occurrence of septic shock.

MIF overrides the anti-infl ammatory actions of glucocorticoid and acts via the 
stimulation of pro-infl ammatory cytokines like TNF-α, IL-1β and IL-8 via the NF-κB 
pathway. MIF prevents apoptosis by reduction of the p53 tumor suppressor gene. 
Therefore, high concentrations of MIF lead to a sustained pro-infl ammatory response 
and delayed apoptosis of cells of the innate immune system. High concentrations 
of MIF have been found in the alveolar spaces of patients with ARDS (54). Those 
authors suggest that MIF acts as a mediator sustaining the infl ammatory response 
in ARDS and that an anti-MIF strategy may represent a novel therapeutic approach 
in infl ammatory diseases like ARDS.

HMGB-1
High-mobility group box (HMGB)-1 was originally identifi ed as a nuclear DNA-
binding protein that functions as a structural cofactor for proper DNA-transcriptional 
regulation and gene expression (55). Recent studies indicate that immune cells can 
liberate HMGB-1 into the extracellular milieu where it functions as a pro-infl ammatory 
cytokine. HMGB-1 is recognized by cells of the immune system as a necrotic marker 
to signal tissue damage. It can be passively released by damaged or necrotic cells 
or actively secreted by macrophages and neutrophils. It is seen as a late mediator as 
it is secreted by macrophages in vitro 20 hours after stimulation. Increased levels of 
HMGB-1 result in the disruption of endothelial barrier functions, leading to vascular 
leakage and tissue hypoperfusion, similar to that observed in sepsis. In vivo increased 
levels of HMGB-1 are shown in patients with severe sepsis (56). In experimental 
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studies inhibition of HMGB-1 prevents endotoxin- and bacteremia-induced multiple 
organ failure and improves survival (57). In an experimental model intratracheal 
administration of recombinant HMGB-1 induces a dose-dependent interstitial and 
intra-alveolar neutrophil accumulation and lung edema at 8 and 24 hours post-
administration (58). Neutralizing HMGB-1 antibodies have been reported to reduce 
mortality in experimental models of acute lung injury or ischemia/reperfusion injury 
(55).

IL-10
IL-10 plays an important role in the anti-infl ammatory response. This protein is 
produced simultaneously with the pro-infl ammatory cytokines, but peaks hours 
later. One of the functions of IL-10 is the negative feedback on the production of 
TNF-α, IL-6 and IL-8. The cytokine IL-10 plays a pivotal role in the suppression of 
monocyte function as it directly decreases MHC-II expression (59). IL-10 causes the 
MHC-II molecules on the surface of monocytes and macrophages to be internalized 
(60). Increased levels of IL-10 have been shown to correlate with the development 
of sepsis or adverse outcome during sepsis. However, IL-10 is unable to discern 
outcome or severity of illness on an individual level. In addition, the biological activity 
of IL-10 is dependent on the pH and temperature, which is often altered in severely 
injured or septic patients (61). It is unclear, whether increased IL-10 levels have a 
causal relationship with the development of complications, or whether it is a sign of 
a struggling host.

COMPLEMENT FACTORS

Complement is a collection of proteins, which are involved in the protection against 
micro-organisms. It is one of the most preserved defense mechanisms during the 
evolution of the immune system. Next to activation by immune complexes complement 
can bind conserved bacteriological compounds (e.g. bacterial carbohydrates, 
bacterial antigens) and altered self-products (e.g. free DNA) via mannose binding 
lectin, fi colins or complement factor C1q (62). Complement can opsonize bacteria 
by complement factor C3b, a split product of C3. Opsonisation leads to attraction 
of leukocytes to these bacteria. In the absence of bacterial or altered self products, 
the complement system can be activated by a connection with the coagulation 
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system. The coagulation cascade and the complement cascade are connected 
through plasmin, a product of the trombolytic route that regulates homeostasis in the 
coagulation. Due to injury large scale activation of the coagulation cascade occurs. 
In trauma both coagulation factors and tissue damage activate the complement 
cascade (63). This leads to neutrophil homing to the tissues and activation on the site 
of injury. Several studies have shown a correlation between activated complement 
factors (C3a/C3 ratio and C5a) and mortality after trauma (64). In vitro is shown that 
C5a regulates two important aspects of neutrophil function; i) adhesion associated 
processes and ii) cytotoxic associated processes (65). Complement is one of the 
most important factors contributing to neutrophil dysfunction, likely due to this dual 
function. In recent experimental studies, blocking of complement lead to a reduction 
in pulmonary and intestinal permeability (66). The accumulation of neutrophils in the 
lung was reduced by blocking the complement factor C5. This is a promising fi nding, 
which can lead to novel therapeutic probabilities. 

TISSUE INVOLVEMENT

Trauma not only activates the innate immune response, but also alters the barrier 
integrity of several organs. Intramedullary osteosynthesis of femur fractures is thought 
to stimulate the innate immune response on a systemic level and is associated with 
an increased incidence of ARDS (67). On the other hand, isolated thoracic injury 
induces local injury but is associated with the occurrence of ARDS as well (68,69). 
When additional injury to the lungs is present during intramedullary osteosynthesis, 
the incidence of ARDS can increase two-fold (70). This phenomenon suggests a 
synergistic mechanism between the activation of innate immunity and the loss of 
tissue barrier function (Figure 4). The contribution of the loss of barrier function 
comes to attention not only in pro-infl ammatory complications such as ARDS, but 
also in anti-infl ammatory complications such as sepsis. A correlation has been 
shown between increased intestinal permeability and the occurrence of infectious 
complications (71). It is thought that bacterial translocation due to increased 
intestinal permeability cause septic complications in an immune-compromised host 
(72). In the pro-infl ammatory phase, organ failure often precedes infection and an 
additional infection “only” deteriorates the remainder of the organ functions. This 
can be explained by the danger model, which states that innate immunity is already 
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triggered after trauma, but can receive an additional stimulus in the form of invading 
bacteria. During the anti-infl ammatory phase infection often precedes organ failure, 
giving it a more prominent role in the development of this severe complication. 
Despite the clear correlations between increased intestinal permeability and the 
incidence of sepsis in experimental settings, the relation in the clinical setting is 
less clear (73,74). It is also known that the interpretation of immunological signals by 
cells of the innate immune system is dependent on environmental and tissue specifi c 
factors and for complications to become clinically evident, a threshold needs to be 
reached in specifi c tissues. 

Trauma

Innate immunity Tissue factors

(Barrier integrity↓)

Organ failureThreshold Threshold

Synergism

Sublimital Sublimital

Figure 4. Relation between innate immunity and tissue factors following trauma.
Shows the synergistic relation between the activation of the innate immune system and the loss of 
organ barrier functions. Both can act independently to promote organ failure, or when working together 
(synergize) induce clinical evident organ failure.

A cut-off point of >800 pg/ml IL-6 has been proposed as a prognostic marker 
and has been suggested for immune-monitoring in the damage control strategy. 
Unfortunately, at present no scoring system or prognostic tool is conclusive enough 
to adequately predict an adverse outcome on an individual level. The complexity of 
organ failure and the often ambiguous role of the different factors prevents a clear cut 
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target for therapy. Many studies investigated individual mediators or effectors, which 
limits the interpretation of effector function in the tissues. Furthermore, cytokines 
often have crosstalk or cumulative effect and insight in the group effect of cytokines 
and chemokines would provide more accurate information about the net effect. 
The scoring systems ought to be used to defi ne the appropriate therapy. Damage 
control surgery and damage control orthopedics are currently used strategies to 
limit the incidence of organ failure after trauma (75,76). Timing of surgery is essential 
in this damage control approach and recent literature provides a timeframe for 
planning interventions (77,78). This timeframe, which is based on database analysis, 
is not fully complementary with the activation status of the innate immune system. 
According to the measurements of neutrophils (oxidative burst and L-selectin) hyper-
infl ammation is at its maximum 6 hours after trauma, whereas according to the 
damage control timeframe hyper-infl ammation is present between day 2-4 (20,26). 
Despite this problem in defi ning the timeframe, solutions are sought to prevent the 
excessive infl ammation. A recent therapy that became available, hemoglobin based 
oxygen carriers as alternative for packed red blood cells, show promising results in 
limiting the infl ammatory response (28). The start of hypo-infl ammation is less well 
defi ned and more individual determined which makes therapy more diffi cult. 

CONCLUSION

Several studies have shown a relationship between the severity of trauma and the 
resulting immune response (79). The injury to the host can be expressed in scoring 
systems and these have become important prognostic tools to calculate the risk 
based on clinical signs and symptoms in combination with infl ammatory parameters 
(68). It is likely that a threshold needs to be reached before clinical symptoms become 
evident. The loss of barrier integrity of different organs seems to play a major role in 
the development of complications in both the pro-infl ammatory period and the anti-
infl ammatory period. Studies which focus on the interaction between host and innate 
immunity are to be performed to resolve the post-traumatic complications resulting 
in organ failure. Immune-monitoring with interpretation of group effects of cytokines 
or analysis of effector cells in interaction with tissue may lead to more intensive 
immune-monitoring and the adjustment of therapeutic and supportive strategies for 
the optimalization of care for trauma-patients.
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ABSTRACT

A systemic infl ammatory response often follows severe trauma. Priming (pre-
activation) of polymorphonuclear phagocytes (PMNs) is an essential fi rst step in the 
processes that lead to damage caused by the systemic activation of innate immune 
response. Until recently priming could only accurately be measured by functional 
assays, which require isolation of cells, thereby potentially inducing artifi cial activation. 
The aim of this study was to identify primed PMNs in response to trauma by using 
a whole blood analysis with a broad detection range. Twenty-two traumapatients 
were analyzed for PMN priming with novel developed antibodies recognizing 
priming epitopes by fl owcytometric analysis. Expression of priming epitopes on 
PMNs was analyzed with respect to time, injury and disease severity. Expression of 
priming epitopes in the circulation was compared with expression profi les of PMNs 
obtained from lungfl uid. Fourteen healthy volunteers served as controls. Expression 
of priming epitopes on peripheral blood PMNs of injured patients was similar as 
found in healthy controls, whereas highly primed cells were found in the lungfl uid 
of injured patients (>50 times increase as compared to peripheral blood cells). In 
fact, the responsiveness of PMNs towards the bacterial derived stimulus fMLP was 
markedly decreased in traumapatients. Lack of expression of priming epitopes and 
the unresponsiveness to fMLP demonstrates the presence of partially refractory 
cells in the circulation of trauma patients. An increased expression of epitopes found 
on pulmonary PMNs suggests that optimal (pre)activation of these cells only occurs 
in the tissues. 
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Trauma is the number one cause of death for people under the age of 50 in the 
Western World. Death can occur in the fi rst hours as a direct result of the injuries 
caused by the trauma. Death can also occur at a later stage caused by multiple organ 
failure (MOF) mediated by a dysfunctional immune system. About 5% of all patients 
admitted after severe trauma will develop MOF, a syndrome in which neutrophils 
are thought to be the main executioners of tissue damage (1,2,3). Stress signals 
from the injured tissue, activation of the complement system and/or production 
of chemokines and cytokines are factors thought to contribute to this hyperactive 
immune response seen in traumapatients (4). Although much research has been 
focused on the presence of these modulating factors in blood and broncho-alveolar 
lavage, surprisingly little is known regarding the basic immune mechanisms causing 
this injury induced MOF. 

In normal immune homeostasis, production of pro-infl ammatory cytokines such 
as interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α) is balanced by the 
production of anti-infl ammatory mediators such as IL-10. It is generally accepted 
that severe trauma induces an over-stimulation of the immune system, which can 
cause the early form of MOF. This auto-destructive systemic infl ammatory response 
syndrome (SIRS) is caused by (over)production of pro-infl ammatory mediators by 
both resident and infl ammatory cells in the injured tissue (2). On the other hand, 
a late disproportionate production of anti-infl ammatory mediators after trauma can 
lead to immune suppression. This is generally referred to as the compensatory anti-
infl ammatory response syndrome (CARS) (5). This anti-infl ammatory reaction is 
thought to cause severe immune suppression, which can facilitate sepsis and the 
associated late form of MOF (2,6,7,8).

Activated polymorphonuclear phagocytes (PMNs) are instrumental in the development 
of early MOF in traumapatients. It is shown that PMNs have a higher oxidative 
response towards the bacterial product N-formyl-methionyl-leucyl-phenylalanine 
(fMLP) after in vitro pre-activation with granulocyte macrophage colony stimulating 
factor (GM-CSF) or TNF-α (9). This process of enhanced functional response is 
generally referred to as “priming” or pre-activation. Unfortunately, priming is still a 
poorly-defi ned concept in terms of signal transduction. Therefore, the most widely 
used defi nition of priming is an increase in functional responses of PMNs to stimuli 
after pre-exposure of the cells to priming-agents (10). This phenomenon also 
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occurs in vivo under the control of local and/or systemically produced mediators. 
In traumapatients the oxidative burst, after stimulation with fMLP, was increased as 
compared with controls and was seen as a determinant of in vivo priming (11). 

Unfortunately, no accurate cell surface markers are available that allow visualization 
of priming using fl owcytometry. Some authors have reported the up regulation of 
integrins (CD11b/CD18) and CD66 or down regulation of L-selectin in traumapatients 
(12,13,14). However, the range of induced receptor expression was small which 
complicates the application of these markers for clinical studies. Therefore, up to 
now, priming could only be investigated by functional assays. 

Recently, we developed two human monoclonal phage antibodies, designated 
A17 and A27 (15). These antibodies recognize epitopes that are up-regulated on 
phagocytes, including neutrophils, which are primed in vitro and in vivo (16). In vitro 
cytokine induced expression of these priming epitopes mirrors the dose response 
curves of functional priming induced by the same cytokines in with a suffi cient 
detection range (17). These antibodies proved capable of identifying primed PMNs 
in the peripheral blood of COPD patients in vivo (15). This direct FACS method is 
performed on whole blood and, therefore, gives a better indication of PMN priming 
in the traumapatient in comparison with functional assays of isolated cells (18). 
Isolation of PMNs induces clear differences in the phenotype of the cells (19). In 
addition, it has been shown that isolation of PMNs alters the behaviour of these 
cells, which complicates extrapolation to in vivo PMN function (18). In this study, 
we have investigated the differences in priming of peripheral blood PMNs from 
traumapatients, by measuring the expression of priming epitopes recognized by the 
A17 and A27 monoclonal phage antibodies.

A
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MATERIALS AND METHODS

A group of thirteen patients was analyzed in time and disease severity was measured. 
Nine healthy volunteers served as control. A second cohort of six patients and six 
controls provided blood samples for comparison between functional responses 
and expression of priming epitopes. A third group consisted of three patients who 
developed acute lung injury and provided lung aspiration samples. So, a total of 
twenty-two patients and fi fteen controls were enrolled in this study. The local ethical 
committee approved the study and informed consent was obtained from all patients 
or their spouses, in accordance to the protocol.

Patients: Time series and severity of disease
Thirteen traumapatients (Injury Severity Score [ISS] > 16) admitted at the Department 
of Traumatology, University Medical Center Utrecht, were included in this study 
(table 1). The ISS > 16 was chosen based on fi ndings in previous studies, which 
showed increased oxidative burst in this group of patients (20). The median ISS was 
21 (range 16-38). The patients were all males with a median age of 40 (range 20-78). 
The median APACHE II score on admission was 10 (range 0-22) (21). Three patients 
died as a result of severe head trauma. None of the patients with neurological injuries 
received corticosteroids for their treatment. One patient died as a result of cardiac 
arrest based on a severe myocardial contusion with arrhythmia. All four patients 
died between day 2 and 4 after admission. Infectious complications were registered. 
The Sepsis Score and APACHE II Score were calculated on a daily basis to assess 
the severity of illness (21-23). Nine healthy adults with a median age of 26 (range 
20-31) provided blood samples that served as controls. This control group consisted 
of 4 males and 5 females. 

The day of injury was defi ned as day 0. Blood samples were taken at admission, day 
1 and every other day during the fi rst week after trauma. The timing of sampling was 
chosen based on fi ndings in other studies, in which priming index (oxidative burst) 
was most increased between day 2 and 5 after trauma (11). 
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Table 1. Trauma patient characteristics.

Age ISS Major injuries Surgery Follow up Blood products

Time series

1 65 17 Neurological injury Trepanation day 1 Deceased: brain 
damage

None

2 52 20 Severe chest injury None Deceased: cardiac 
arrest

None

3 38 38 Chest injury; spinal 
cord

ORIF day 1 ALI day 1; 
Pneumonia day 4

6 PRBC; 4 FFP

4 26 21 Chest injury; spinal 
fracture

None None

5 58 16 Chest injury None None

6 39 21 Fractures extremities ORIF day 1 + 7 3 PRBC

7 40 25 Chest injury; fractures 
extremities

ORIF day 1 + 4 None

8 33 18 Chest injury; facial 
fractures

ORIF day 5 None

9 78 32 Neurological; chest 
injury

None Deceased: brain 
damage

2 PRBC; 2 FFP

10 50 25 Neurological injury Trepanation day 1 Deceased: brain 
damage

None

11 47 25 Chest injury; fractures 
extremities

ORIF day 4 None

12 20 26 Neurological; chest 
injury

None ALI day 1 None

13 38 16 Chest injury 
(penetrating)

Thoracotomy day 1 23 PRBC; 2 FFP

Functional response

1 24 18 Fractures extremities ORIF day 1 None

2 18 29 Pelvic fracture; 
fractures extremities

ORIF day 1 4 PRBC; 21 FFP

3 79 17 Fractures extremities; 
chest injury

ORIF day 1 None

4 65 18 Neurological injury; 
chest injury

None ALI None

5 18 16 Abdominal injury None ALI None

6 40 18 Chest injury None ARDS day 1, 
pneumonia day 7

None

Lung aspiration

1 20 25 Chest injury; fractures 
extremities; abdominal 
injury

CREF day 1, TPL 2 PRBC

2 38 16 Fractures extremities ORIF day 1 8 PRBC

3 33 25 Chest injury None 4 PRBC

Listed are the characteristics of the traumapatients who were admitted. The region of injury is conform 
the different headings of the abbreviated injury score (AIS). Pt = Patient number; ISS = Injury Severity 
Score; ALI = Acute lung injury; ARDS = Acute respiratory distress syndrome; PRBC = Packed red 
blood cells; FFP = Fresh frozen plasma; ORIF = Open reduction, internal fi xation; CREF = Closed 
reconstruction, external fi xation; TPL = Thoracophrenicolaparotomy.
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Patients: Functional response
It has been shown that the oxidative burst is up-regulated after trauma. To confi rm 
that our patient population and/or our assay conditions were similar compared to 
these studies, we set out experiments evaluating the priming of the oxidative burst 
in a subpopulation of our patients. Six patients provided blood samples the day after 
trauma for patient-typing. Their median age was 32 (range 18-79) and their median 
ISS was 18 (range 16-29). The group consisted of 5 males and 1 female. Six healthy 
adults with a median age of 25 (range 23-28) provided blood samples that served as 
controls. This group consisted of 4 males and 2 females.

Patients: Lung aspiration
Three patients, who had developed acute lung injury the fi rst day after trauma, 
provided lung aspiration samples. Their median age was 33 (range 20-38) and their 
median ISS was 25 (range 16-25). They were all male. A non-directed broncho-
alveolar lavage was performed, which is standard of care at the intensive care unit 
(24). The cells from the alveolar compartment were analyzed and compared with the 
expression on peripheral blood PMNs, obtained from the same patients.

Procedure for staining of PMNs
Blood was collected in sodium heparin as anticoagulant and cooled immediately 
after vena puncture and kept on ice during the whole staining procedure. The 
analysis of the PMN priming was started within three hours after the blood sample 
was obtained. The expression of the priming markers recognized by Mophabs A17 
and A27 was compared with expression of αmβ2 (CD11b/CD18), a more widely used 
marker for PMN activation, as described above (12,13,25). These markers were also 
measured after 5 minutes of stimulation of whole blood at 37 °C with N-formyl-
methionyl-leucyl-phenylalanine (fMLP 10-6M) to evaluate the responsiveness of the 
cells for a bacterial derived activating agonist. After stimulation, the samples were 
put on ice again and analyzed.

Blood samples were stained with fl uorescein isothiocyanate (FITC) directly labeled 
phage antibodies A17 and A27 as described previously (15). In short, monoclonal 
phage antibodies (MoPhabs) A17 and A27 were diluted 1:15 with PBS 0.38% tri-
sodium citrate, 10% pasteurized plasma solution and 4% milk powder. 100 micro liter 
of FITC–labeled (MoPhab) A17 or A27 solution was added to 50μl of whole blood 
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and incubated for 60 minutes on ice. The CD11b antibody (Clone 2LPM19c, DAKO, 
Denmark) was added to whole blood at a concentration of 0.5μl/50μl and incubated 
for 60 minutes on ice. Hereafter, the binding of this antibody was counter stained 
with GAM-FITC as described (26). 

After incubation, the red cells were lysed with ice-cold isotonic NH4Cl (12). After 
a fi nal wash, the cells were analyzed in a FACSvantage Flowcytometer (Becton 
& Dickenson, Mountain view. CA). The PMNs were identifi ed according to their 
specifi c side-scatter and forward-scatter signals. Data from individual experiments 
are depicted as fl uorescence intensity in arbitrary units (AU) or summarized as the 
median channel fl uorescence (MCF) of at least 10.000 events. 

Data of alveolar PMNs were acquired by using the fl owcytometry analysis of PMNs 
from non directed broncho alveolar lavage (ND-BAL) fl uid obtained from a patient 
with acute lung injury. The unprocessed ND-BAL fl uid containing alveolar cells was 
incubated and PMNs were identifi ed on the basis of scatter characteristics.

Isolation of PMNs and measurement of respiratory burst activation
PMNs were isolated from 5 ml of whole blood. Blood was diluted with 2 ml PBS, 
supplemented with 0.38% tri-sodium citrate and 10% pasteurized plasma solution 
(PBS2+). A layer of 5 ml Ficoll was added under the cells with a curved needle. 
The cells were centrifuged for 20 minutes at 1000g at room temperature. The PMN 
fraction was isolated together with the red cells and the red cells were lysed using 
ice-cold isotonic NH4Cl. After a fi nal wash the cells were resuspended in HEPES-
buffer, supplemented with 20% human serum albumin, 1% CaCl2 and 0.2% glucose. 
The reactive oxygen species (ROS) production was measured as follows (27). One 
series of samples were incubated for 20 minute with granulocyte macrophage colony 
stimulating factor (GM-CSF) 10-10M, while the other series of samples remained 
untreated. Dihydrorhodamine (DHR123) was added 0.1 μg/ml and the incubation 
was continued for another 10 minute at room temperature. Hereafter, the cells were 
stimulated with fMLP 1 μM for 30 minutes at 37°C. The stimulation was stopped by 
washing the cells with ice-cold PBS supplemented with 0.38% tri-sodium citrate 
and 10% pasteurized plasma solution. The cells were analyzed in the FACSvantage 
Flowcytometer (Becton & Dickenson, Mountain view. CA). 
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Statistical analysis
Results in fi gures are generally expressed as means ± standard error of mean 
(SEM). Statistical analysis was performed with the non-parametric Mann-Whitney 
U test, to compare the healthy controls with the trauma patients. A Kruskal-Wallis H 
test was used for analysis between groups of patients. Statistical signifi cance was 
defi ned as p < 0.05.
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RESULTS

Lack of expression of priming markers on peripheral blood PMNs after 
trauma
No increased expression of the epitopes A17 and A27 was found on PMNs from 
traumapatients as compared to controls. Even on cells from the most severely 
injured patients (ISS > 25) no increased expression was found the day after injury 
(Figure 1A). This lack of increased expression was continued during the fi rst week of 
admission (Figure 1B). Results of A27 epitope expression were complementary with 
A17 epitope expression (results not shown). CD11b was slightly increased during 
the fi rst week, but with a high variability (Figure 2A and Figure 2B). In addition, no 
relation was found between the severity of illness and the expression of the epitopes 
A17, A27 and CD11b (Figure 3 and Figure 4) (21,22). Two patients developed a fever 
(>38,5 degrees Celsius) without an identifi ed origin and one patient developed acute 
lung injury (ALI) on the second day of admission. Several patients needed surgery 
for their injuries. However, under these conditions no signifi cant differences were 
seen in the expression of A17 and A27 on PMNs. One patient received 25 units of 
packed red blood cells and showed a slight increase in A17 expression, no increase 
in A27 expression and a moderate increase (1.7 times) in CD11b expression. This 
returned to normal after the third day of admission. Other patients who received 
packed red blood cells (less than 10 units) did not show any difference in the priming 
epitope expression. 

Decreased responsiveness of PMNs from traumapatients to the innate 
immune stimulus fMLP
The expression of the priming epitopes on PMNs after fMLP stimulation was 
dramatically lower in traumapatients during the fi rst week after trauma, when 
compared to controls (p < 0.001, power = 0.969; Mann Whitney U Test) (Figure 
1). Again, there was no correlation with the severity of injury or the severity of 
illness; PMNs of all traumapatients showed a lower maximal epitope expression 
(Figure 1 and Figure 3). Furthermore, there was no relation with the amount of blood 
transfusion or type and time of surgery.

This decreased responsiveness was not restricted to the expression of epitopes 
recognized by A17 and A27, maximal CD11b expression after in vitro activation 

A
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with fMLP was signifi cantly lower when severity of disease increased (Figure 4). In 
traumapatients with a severe sepsis score (> 9) or high APACHE II Score (>14), the 
decrease in fMLP-induced CD11b expression on peripheral blood PMNs was more 
pronounced compared to traumapatients with less severe disease (Kruskal-Wallis 
H Test = 0.013). 
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Figure 1. A17 epitope expression by injury severity score and in time.
Shows the intrinsic A17 epitope expression (■) and maximal inducible A17 epitope expression (∆) in 
arbitrary units (AU). The epitope expression is shown (A) in relation with the Injury Severity Score on 
the fi rst day of admission and (B) over time during the fi rst week after admission. Traumapatients are 
compared with controls. All values for intrinsic A17 (and A27) epitope expression were within the normal 
range (normal value is expressed as:....) during the fi rst week. All values for maximal inducible A17 (and 
A27) epitope expression were decreased (normal value is expressed as:__). No differences were found 
for patients having different injury severity scores. Data are presented as mean ± SEM.

The decreased responsiveness of PMNs in the context of expression of priming 
epitopes recognized by Mophabs A17 and A27 was not restricted to fMLP stimulation. 
Blood samples of 4 patients were analyzed for epitope expression after both fMLP 
and TNF-α (tumor necrosis factor α) stimulation, which showed similar results (results 
not shown). Blood samples of 4 other patients were analyzed for epitope expression 
after both fMLP and PMA (Phorbol Myristate Acetate) stimulation. PMA was utilized 
because this potent stimulus bypasses classical membrane bound receptors. Again, 
these data showed no differences in impairment of maximal inducible A17 and A27 
epitope expression (results not shown).



regel 1

regel 2

regel 3

regel 4

regel 5

regel 6

regel 7

regel 8

regel 9

regel 10

regel 11

regel 12

regel 13

regel 14

regel 15

regel 16

regel 17

regel 18

regel 19

regel 20

regel 21

regel 22

regel 23

regel 24

regel 25

regel 26

regel 27

regel 28

regel 29

regel 30

regel 31

regel 32

regel 33

regel 34

regel 35

regel 36

regel 37

regel 38

regel 39

62

Chapter 3

101
102
3

101
101
101
101
101
101
101
101

16-20 21-25 26-30 >30

1

10

100

1000

Injury Severity Score

M
A

C
-1

 e
xp

re
ss

io
n

M
FI

 (A
U

)

A

Day 0 Day 1

10

100

1000

Time after sampling
M

A
C

-1
 e

xp
re

ss
io

n
M

FI
 (A

U
)

Day 3 Day 5 Day 7

1

B

Figure 2. CD11b expression by injury severity score and in time.
Shows the relation between intrinsic CD11b expression (■) and maximal inducible CD11b expression 
(∆) in arbitrary units (AU). CD11b expression is shown (A) in relation with the Injury Severity Score on 
the fi rst day of admission and (B) over time during the fi rst week after admission. Traumapatients are 
compared with controls. The intrinsic epitope expression was highly variable (normal value is expressed 
as:....). On the day after trauma CD11b was signifi cantly increased as compared with controls. Patients 
showed normal values for maximal inducible CD11b expression as compared with controls (normal 
value is expressed as:__). Data are presented as mean ± SEM.
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Figure 3. A17 epitope expression by APACHE II Score and severity of illness.
Shows the intrinsic A17 epitope expression (■) and maximal inducible A17 epitope expression (∆) in 
arbitrary units (AU). The epitope expression is shown (A) by the severity of illness (sepsis score) and (B) 
in relation with the APACHE II Score. Traumapatients are compared with controls. All values for intrinsic 
A17 (and A27) epitope expression were within the normal range (normal value is expressed as:....). 
All values for maximal inducible A17 (and A27) epitope expression were decreased (normal value is 
expressed as:__). No differences were found for patients having different APACHE II Scores or Sepsis 
Scores. Data are presented as mean ± SEM.
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Figure 4. CD11b expression by APACHE II Score and severity of illness.
Shows the relation between intrinsic CD11b expression (■) and maximal inducible CD11b expression 
(∆) in arbitrary units (AU). CD11b expression is shown (A) by the severity of illness (sepsis score) and 
(B) in relation with the APACHE II Score. Traumapatients are compared with controls. The intrinsic 
CD11b expression was overall slightly increased, but not related with disease severity (normal value 
is expressed as:....). Patients with mild disease showed normal values for maximal inducible CD11b 
expression as compared with controls (normal value is expressed as:__). However, as severity of illness 
increased (by APACHE II Score or Sepsis Score), maximal inducible CD11b expression on neutrophils 
decreased signifi cantly as compared with controls. Data are presented as mean ± SEM.

Production of reactive oxygen species by PMNs is functionally up-regulated 
in isolated PMNs
The lack of expression of priming markers on PMNs from traumapatients was not 
anticipated and this prompted us to study priming of these cells in a functional context 
to perform patient characterization. Activation of the fMLP induced respiratory 
burst in isolated PMNs was studied in cells of 6 patients and 6 healthy controls in 
parallel with the measurements with A17, A27 and CD11b. There was no difference 
in the background signal of rhodamine 123 between patients and controls. After 
stimulation with fMLP, the rhodamine assays showed a small but signifi cant increase 
in oxidative burst in the isolated PMNs from traumapatients as compared to the 
controls. A Wilcoxin Signed Ranks test was used for the parallel measured patients 
and controls. This showed signifi cant difference (p = 0.027), as all the patients had 
increased oxidative burst as compared with controls (results not shown).

PMNs with a fully primed phenotype are found in the lungfluid of patients 
with acute lung injury
A sample of lungfl uid was obtained from three patients who developed acute lung 
injury. On average, the median A17 or A27 epitope expression on the PMNs in 
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this fl uid was approximately 50 (A17) and 10 (A27) times higher respectively as 
compared to the expression in the systemic circulation (Figure 5). This expression 
was not further increased by in vitro stimulation with fMLP. CD11b expression on the 
PMNs from the lung showed a 5 times increase and was not increased by in vitro 
fMLP stimulation.

Figure 5. Example of fl owcytometric profi le of A17/CD11b staining in whole blood and lungfl uid.
Shows the profi le of A17 and CD11b expression on neutrophils harvested from the lungfl uid of a patient 
with acute lung injury. This plot is representative for the two other patients with acute lung injury. The 
scatterplot was obtained with fl owcytometry in which the neutrophils were gated by their specifi c forward 
and siteward scatter signal. The right under quadrant represents low expression of both epitopes, the 
left upper quadrant represents high expression of both epitopes. The results are compared with the 
blood samples obtained from the same patient.
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DISCUSSION

Priming of PMNs in traumapatients
The phenotypical and functional alterations of PMNs induced by the process of 
isolation hamper the extrapolation of data of current studies with these isolated cells 
to the situation in vivo (18,19). Therefore, we designed experiments to study priming 
without the need for isolation of PMNs from the peripheral blood. We applied our 
recently developed phage antibodies which recognize epitopes on cytokine primed 
PMNs in whole blood. This enables us to identify primed PMNs in traumapatients 
by whole blood analysis with a wide detection range (15). Full priming in the context 
of expression of these epitopes can be induced in vitro by adding cytokines to 
PMNs in the physiologically relevant (picomolar) range (15,16). In marked contrast 
to our expectation in the current study, no primed PMNs were found in the systemic 
circulation of traumapatients (Figure 1 and Figure 3). This seems in contrast to the 
results obtained from studies which focused on functional responses of isolated 
cells or CD11b expression (25,28). A slight increase in the expression of CD11b 
was seen in this study and this trend was considered consistent with other reports 
of larger patient populations (12,13,28). The moderate (1.7 times) increase of 
CD11b expression seen in one patient the day after massive blood transfusion, was 
congruent with fi ndings of increased CD11b expression after massive administration 
of red blood cells (29). 

The apparent lack of priming in the context of both A17 and A27 epitope expression 
as well as the fMLP unresponsiveness of PMNs in the circulation of traumapatients 
can be explained by an alternative hypothesis in which cells with certain priming 
phenotypes home for the tissues, leaving partially refractory cells in the circulation. 
This hypothesis sheds light on the poorly understood mechanisms underlying CARS 
which is often seen in the period after severe trauma. However, one could argue 
that the priming epitopes are not yet expressed by PMNs, recently mobilized from 
the bone marrow. This seems unlikely, because PMNs from the peripheral blood 
of the injured patients did not show consistent characteristics of “young“ cells with 
banded nuclei (results not shown). To characterize the lack of a priming phenotype 
of PMNs in more detail, we studied the responsiveness of PMNs for the priming 
sensitive bacterial derived stimulus fMLP in the context of whole blood. The lack of a 
priming phenotype was even more pronounced in this assay as the PMN population 
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was relatively unresponsive to the stimulus. This decreased expression after in 
vitro stimulation showed no correlation with the severity of injury or the severity 
of disease during admission. Maximum induction of epitopes recognized by A17 
and A27 was already signifi cantly decreased in patients with mild disease, whereas 
maximal CD11b expression only decreased in patients with more severe disease. 
Our results are complementary with the clinical data of Flores et al. They show that 
an APACHE II score above 14 is associated with the development of sepsis (30). 
The decrease in maximum CD11b expression with broad variation seen in patients 
with an APACHE II Score near 14 shows that this is a possible borderline situation 
for immune dysfunction.

The functional assays performed in parallel with the measurement of A17 and A27 
on the day after admission, showed an increased functional activity of the isolated 
PMNs from traumapatients as compared to the isolated PMNs from healthy controls. 
These tests were performed to characterize the included patients. The increased 
expression of CD11b and oxidative burst imply to the presence of PMNs in the 
circulation of traumapatients with increased functional (cytotoxic) activity. Although 
signifi cant, the differences between cells from healthy controls and patients were 
only minor.

Unresponsiveness of peripheral PMNs in traumapatients
Gundersen et al showed in a pig-model (penetrating trauma-model) that PMNs are 
capable of an increased production of cytokines (TNF-α, IL-1β) after trauma (31). 
Furthermore, these PMNs showed an increased oxidative burst to Phorbol Myristate 
Acetate (PMA) after trauma, most likely due to in vivo priming. Complementary to 
our results for A17 and A27 epitope expression, the group of Gundersen found a 
decreased capability of the PMNs to produce TNF-α, IL-1β or IL-6 after trauma, 
when stimulated ex vivo with the bacterial component lipopolysaccharide (LPS). In 
addition to these results, Johnson et al found similar results for maximum CD11b 
expression. They compared a group of traumapatients who received hemoglobin 
based oxygen carriers (HBOC) with a group of traumapatients who received normal 
packed red blood cells. These authors reported an increase in oxidative burst for the 
group which was resuscitated with packed cells, indicative for in vivo priming. They 
also showed decreased CD11b responsiveness towards in vitro stimulation with 
platelet activating factor (PAF) as compared to the group treated with HBOC (28). 

A
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The unresponsiveness of PMNs to in vitro stimulation is not restricted to the production 
of cytokines or adhesion related epitopes, but for cytotoxic responses as well. Botha 
et al showed that after 24 hours after trauma the oxidative burst (spontaneous and 
after fMLP stimulation) was increased in traumapatients as compared with healthy 
controls (32). However, the oxidative burst after in vitro priming with PAF (platelet 
activating factor) in traumapatients could not be induced to the levels found in 
PMNs of healthy control donors. Thus, despite enhanced functions at baseline, the 
maximum capacity was found to be decreased for several functions of PMNs in the 
peripheral blood of traumapatients.

Extravasation of primed PMNs
Pallistar et al showed an increased migratory capacity of PMNs of traumapatients, 
which might lead to enhanced homing of these cells to the tissues (33). To investigate 
the hypothesis that activated or primed PMNs home to the site of infl ammation, 
samples were obtained from the lung of traumapatients during a period of clinically 
diagnosed acute lung injury. We investigated the expression of priming epitopes 
on the PMNs extravasated to the lung. PMNs harvested from the lung fl uid by lung 
aspiration were characterized by a very pronounced priming phenotype both in the 
context of expression of priming epitopes (A17/A27) and expression of the integrin 
αmβ2 (CD11b). The PMNs exhibited a fully primed phenotype, which could not be 
further increased by in vitro fMLP stimulation (example shown in Figure 5). These 
data implicate the presence of fully primed PMNs in the pulmonary tissue and are 
consistent with the hypothesis that primed cells home to the tissue, leaving partially 
refractory cells in the circulation.

Aberrant regulation of neutrophils
The fi nding that trauma is associated with responsiveness of PMNs towards in vitro 
activation demonstrates the presence of PMNs in the peripheral blood with impaired 
functionality for some PMN-functions, visualized with impaired expression of priming 
associated markers. The fully primed phenotype found on pulmonary PMNs, suggest 
optimal (pre)activation of these cells only in the tissues. This difference not found in 
the context of cytotoxic responses of PMNs in the peripheral blood. Therefore, it is 
tempting to speculate that in severely injured traumapatients primed cells are likely to 
leave the circulation for the tissues, leaving partially refractory cells in the circulation. 
This subgroup of PMNs comes to attention only under the extreme circumstances 
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caused by trauma, as enhanced homing of the adequately functioning PMNs to the 
tissues has occurred. This state of immunologic impairment could make the patient 
more prone for later infectious complications.
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ABSTRACT

Acute Respiratory Distress Syndrome (ARDS) is a frequent and severe complication 
after trauma, caused by an excessive infl ammatory response mediated by 
polymorphonuclear granulocytes (PMNs). Early identifi cation of patients with 
increased PMN activity will aid in the prevention of ARDS. We tested the hypothesis 
that a correlation exists between injury severity and phenotypic changes of circulating 
PMNs.
Fifty-two patients were included and injury severity was assessed by clinical injury 
severity scores. Complications were recorded on a daily basis and the changed PMN 
phenotype was assessed by FACS analysis within 24 hours after injury. Results 
were compared with 10, age matched healthy controls.
The membrane expression of Mac-1/CD11b and active FcγRII/CD32 was not 
correlated with injury severity. Levels of the acute phase protein IL-6 correlated 
signifi cantly with injury severity, indicating that a range in severity of the infl ammatory 
response was present in the studied population. A signifi cant correlation between 
the PMN responsiveness toward the bacterial derived peptide fMLP (visualized by 
up-regulation of active FcγRII) and injury severity was demonstrated. In addition, 
the largest change in PMN responsiveness was found in patients who developed 
ARDS. 
Sustained injury is refl ected by systemic infl ammation and the subsequent PMN 
activation status can be determined by analysis of fMLP-induced active FcγRII on 
these cells. FMLP-induced active FcγRII was associated with the occurrence of 
ARDS. Therefore, the extent of the injury-induced systemic infl ammatory response 
can be determined by phenotyping PMNs in the peripheral blood.
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The Acute Respiratory Distress Syndrome (ARDS) is a frequent and severe 
complication after trauma. ARDS has a mortality and morbidity rate of up to 40% and 
80% respectively (1,2). Polymorphonuclear granulocytes (PMNs) play an essential 
role in the development of ARDS. In experimental animal models high numbers of 
PMNs are found in the pulmonary interstitium (3). Activation of these cells leads to 
increased production of reactive oxygen species (ROS), which causes increased 
vascular permeability, interstitial edema, reduced surfactant concentrations to 
maintain normal surface tension and reduced oxygen diffusion (4). PMN depletion 
or blocking of PMN extravasation, protects animals for the development of ARDS 
in severe trauma models (5-7). In addition, an increasing amount of ischemia 
reperfusion injury correlates with increasing accumulation of PMNs in the pulmonary 
interstitium. These data are consistent with the hypothesis that a direct relation is 
present between injury severity, PMN extravasation/activation and subsequent 
tissue damage (8,9). 

Translating the data from these animal models to the clinical situation is diffi cult, 
as both pulmonary retention of PMNs and ROS induced tissue injury can not be 
measured prior to the development of clinical symptoms. Alternative approaches 
are sought to accurately identify patients at risk for the development of ARDS. Early 
identifi cation of patients with pronounced activation of the PMN compartment could 
aid in the prevention of this complication after trauma. However, limited knowledge 
about the underlying pathophysiological processes impedes the development of 
new diagnostic and therapeutic strategies. 

The acute phase protein IL-6 (interleukin 6) has been extensively studied as a 
marker of systemic infl ammation and shown to be related with the development 
of organ failure (including ARDS) after trauma (10-13). An enhanced acute phase 
response (characterized by e.g. increased IL-6 levels) is associated with occurrence 
of activated PMNs in the peripheral blood and studies have shown that IL-6 can 
modulate the function on human PMNs (14,15). However, IL-6 is not a direct marker 
for systemic activation of the innate immune response. In addition, other pro- and 
anti-cytokines will contribute to the fi nal modulation of the immune response. 
Changes in PMN phenotype and function in vivo will be the sum of the effect of these 
interacting cytokines. Analysis of the fi nal common pathway, which is associated 
with a complex modulation of PMN phenotype and function, will provide more insight 
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into the pathophysiological processes which lead to infl ammatory complications and 
organ failure after trauma.

Unfortunately, determination of the reactivity of PMNs of trauma patients in vitro by 
e.g. activation of the NADPH-oxidase, can easily be biased by artifacts caused by 
isolation of PMNs (16,17). Whole blood analysis of the phenotype(s) of circulating 
PMNs circumvents many of these problems and can be better used as a read out 
of changed PMN functionality. We have recently demonstrated that a relation exists 
between changes in receptor expression of circulating PMNs and altered PMN 
phenotype/function in the interstitium (18). 

Some studies have investigated changes in expression of single PMN receptors in 
relation to injury severity (9,19,20). Only the expression of the alpha chain of MAC-1 
(CD11b) showed a weak correlation with the burden of trauma (expressed by base 
defi cit) (21). We have recently demonstrated that the responsiveness towards the 
bacterial derived N-formyl-methionyl-leucyl-phenylalanine (fMLP) was impaired in 
severely injured patients (18). This was visualuzied by the fMLP-induced in vitro 
up-regulation of the PMN receptors, such as MAC-1 and active FcγRII, which are 
well known activation markers. Reduced MAC-1 up-regulating capacity after trauma 
has been related to the development of Pseudomonas aeruginosa infections (22). 
However, a relation between PMN receptor expression and injury severity was not 
further detailed.

The aim of the present study was to investigate whether the extent of systemic 
infl ammatory reaction on trauma can be visualized by expression of single PMN 
receptors or PMN responsiveness towards the innate immune stimulus fMLP. In 
addition, it was investigated whether these putative PMN characteristics were 
associated with the development of ARDS.



10
regel 1

regel 2

regel 3

regel 4

regel 5

regel 6

regel 7

regel 8

regel 9

regel 10

regel 11

regel 12

regel 13

regel 14

regel 15

regel 16

regel 17

regel 18

regel 19

regel 20

regel 21

regel 22

regel 23

regel 24

regel 25

regel 26

regel 27

regel 28

regel 29

regel 30

regel 31

regel 32

regel 33

regel 34

regel 35

regel 36

regel 37

regel 38

regel 39

77

Neutrophil phenotype and ARDS

1
102
103
104
101
101
101
101
101
101
101

MATERIALS AND METHODS

Patients
In our previous study only severely injured patients were included, thus no relation 
between trauma severity and PMN receptor expression of responsiveness could be 
analyzed. Therefore, patients with a wide range of injury severity were chosen for 
the present study. Fifty-two trauma patients with an ISS (Injury Severity Score) >3 
and admitted at the Department of Traumatology, University Medical Center Utrecht 
were included. Exclusion criteria were age < 16 years or > 80 years and patients 
with an altered immunological status (e.g. corticosteroid use or chemotherapy). A 
blood sample was taken prior to any surgical procedure and within 24 hours after 
admission. Ten healthy volunteers served as a control group, which was matched 
for age and gender. The local ethical committee approved the study and written 
informed consent was obtained from all patients or their legal representatives in 
accordance with the protocol. 

Clinical parameters
The Injury Severity Score (ISS), New Injury Severity Score and APACHE II Score 
were calculated on admission (23,24). Within the fi rst 72 hours after injury the 
presence of systemic infl ammation (i.e. systemic infl ammatory response syndrome 
[SIRS]), or the occurrence of pulmonary complications (e.g. acute lung injury [ALI], 
or acute respiratory distress syndrome [ARDS]) were assessed according to their 
clinical criteria as determined in the consensus conferences for SIRS and ARDS 
(2,25). The presence of pneumonia was determined by a positive sputum culture, 
an infi ltrate on the chest X-ray and clinical symptoms of infection (26). Transfusion 
related data and intensive care support days were recorded.

Materials 
For analysis of PMN receptor expression by fl owcytometry the following monoclonal 
antibodies were commercially purchased: RPE-labeled IgG2a negative control 
(clone MRC OX-34, Serotec, Dusseldorf, Germany) and RPE-labeled CD11b (clone 
2LPM19c, DAKO, Glostrup, Denmark). A FITC-labeled monoclonal phage antibody, 
which recognizes active FcγRII (CD32) designated as FcγRII*, was manufactured at 
the Department of Respiratory Medicine at the University Medical Center Utrecht 
(MoPhab A27, UMC Utrecht, The Netherlands) (27,28). Interleukin 6 (IL-6) was 
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measured by ELISA (Pierce Biotechnology Inc., IL, United States) as described by the 
manufacturer. Hematology parameters were determined at the Clinical Laboratory 
Department of the University Medical Center Utrecht. 

Flowcytometry
Blood was collected in a vacutainer® with sodium heparin as anticoagulant cooled 
immediately and kept on ice during the whole staining procedure. The analysis of 
the PMN receptor expression was started within two hours after the blood sample 
was obtained. The expression of the above mentioned antibodies was measured 
as described previously (18). The expression of MAC-1 (CD11b) and FcγRII* 
(active CD32) was also measured after 5 minutes of stimulation of whole blood at 
37 °C with N-formyl-methionyl-leucyl-phenylalanine (fMLP 10-6M) to evaluate the 
responsiveness of the cells for a bacterial derived protein products/peptides. After 
stimulation, the samples were put on ice again and analyzed.

Blood samples were stained with the fl uorescein isothiocyanate (FITC) labeled 
phage antibody A27 (recognizing FcγRII*) as described previously and with the 
commercial antibodies as described by their manufacturer (18). In short, the directly 
labeled antibodies were added 1:20 to whole blood and incubated for 60 minutes on 
ice. After incubation, the red cells were lysed with ice-cold isotonic NH4Cl. After a 
fi nal wash with PBS2+ (phosphate buffered saline supplemented with sodiumcitrate 
(0.4% wt/vol) and pasteurized plasma protein solution (10% vol/vol), the cells were 
analyzed in a FACScalibur Flowcytometer (Becton & Dickenson, Mountain View. 
CA). The PMNs were identifi ed according to their specifi c side-scatter and forward-
scatter signals. Data from individual experiments are depicted as fl uorescence 
intensity in arbitrary units (AU) or summarized as the median channel fl uorescence 
(MCF) of at least 10000 events. 

IL-6 analysis
Blood was collected in a vacutainer® with EDTA as anticoagulant, cooled immediately 
and kept on ice during the procedure. Plasma was isolated by spinning the sample 
down at 1000 G. IL-6 was determined using a human IL-6 sandwich ELISA (Endogen, 
Pierce Biotechnology, IL, United States) according to the procedures prescribed by 
the manufacturer.
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Statistics
Results are expressed as means ± standard error of mean (SEM). Statistical analysis 
was performed with the non-parametric Mann-Whitney U test or Kruskall Wallis H 
test to compare two or multiple groups respectively. Spearman correlation analysis 
was performed for comparison of two continues variables. Statistical signifi cance 
was defi ned as p < 0.05. 
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RESULTS

Patient demographics
52 Trauma patients were included with varying severities of their injuries. Their mean 
age was 38 years (SD = 20) and the mean ISS was 11 (SD = 9). Demographics are 
summarized in Table 1. 

Table 1. Patient demographics

Mean (range)

Number of patients (n) 52

Male / Female (n) 31 / 21

Age (years) 38 (16-80)

Injury Severity Score 11 (4-43)

New Injury Severity Score 13 (4-63)

APACHE II Score 4 (0-24)

Time to sampling (< 12 hrs / 12-24 hrs) 35 / 17

Time on ICU (days) 2.5 (0-31)

Time on ventilation (days) 2.2 (0-29)

Packed red blood cells before sampling (units) 0.7 (0-15)

Fresh frozen plasma before sampling (units) 0.2 (0-4)

Cause of trauma (n)
- MVA
- Assault
- Fall of height
- Penetrating trauma

36
0
15
1

Complications (n)
- None
- SIRS
- Pneumonia
- ALI / ARDS

33
9
2
6

Expression of Mac-1 (CD11b) and active FcγRII* (CD32) visualize PMN activation 
in peripheral blood of trauma patients: lack of correlation with injury severity.
In line with previous reports, a trend of increased expression FcγRII* and MAC-1 on 
PMNs was found after trauma as compared to healthy controls. However, the data 
failed to reach statistical signifi cance, because the variation in expression of these 
epitopes was large (Table 2). This was likely caused by the broad range of injury 
severities. Plasma IL-6 concentrations showed a statistically signifi cant correlation 
with all three calculated injury severity scores (Table 3), indicating more pronounced 
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acute phase response in patients with higher injury severity scores. However, no 
signifi cant correlation was found between the injury severity scores and expression 
of Mac-1 (CD11b) and active FcγRII* (CD32) on peripheral PMNs (Table 3). 

Table 2. Expression of single PMN receptors.

Active FcγRII MFI (AU) MAC-1 MFI (AU)

Controls 176 (48) 321 (33)

Patients 310 (245) 421 (47)

Mean fl uorescence intensity ± SEM (in arbitrary units = AU). Mann Whitney U test; No signifi cant 
differences were found between patients and controls. 

Table 3. Lack of correlation between single PMN receptor expression and injury severity. 

IL-6 Active FcγRII MAC-1

ISS p=0.001 / r=0.378* p=0.120 / r=0.049 P=0.092 / r=0.093

NISS p=0.001 / r=0.344* P=0.115 / r=0.036 p=0.188 / r=0.072

APACHE II Score p=0.014 / r=0.219* p=0.828 / r=0.026 P=0.862 / r=0.021

Spearman correlation: p-value and correlation coeffi cient. Signifi cant values are marked *. A signifi cant 
correlation was found between the clinical injury severity scores and plasma IL-6 levels, indicating a 
more pronounced infl ammatory response in more severely injured patients. However, no correlation 
between injury severity and MAC-1 or FcγRII* (active CD32) expression on blood PMNs was found.

Neutrophil responsiveness for fMLP in the context of FcγRII* (CD32) activation 
correlates with injury severity
In concordance with previous reports, trauma patients were characterized by a 
statistically signifi cant reduction in PMN responsiveness towards fMLP, when 
compared to cells from healthy controls. This reduced responsiveness was found in 
the context of expression of both FcγRII* and MAC-1 (Table 4). This reduced PMN 
responsiveness towards fMLP in the context of expression of FcγRII* correlated 
signifi cantly with injury severity (Spearman; r=0.226 / p=<0.001). On the other hand, 
the reduced PMN responsiveness of MAC-1 up-regulation was not signifi cantly 
correlated with injury severity (Spearman; r=0.003 / p=0.297). (Table 5). 

Table 4. PMN responsiveness towards the bacterial peptide fMLP.

Active FcγRII MFI (AU) MAC-1 MFI (AU)

Controls 9832 (168) 5325 (267)

Patients 4686 (527)* 3744 (256)*

Mean fl uorescence intensity ± SEM (in arbitrary units = AU), Mann Whitney U test; * = p<0.05 compared 
to controls. Patients demonstrated a signifi cantly decreased responsiveness of MAC-1 expression and 
FcγRII* towards fMLP when compared to healthy controls.
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Table 5. Correlation of fMLP induced PMN receptor expression with injury severity.

fMLP induced active FcγRII fMLP induced MAC-1

ISS p=0.000 / r=0.226* p=0.297 / r=0.003

NISS P=0.000 / r=0.177* p=0.373 / r=0.025

APACHE II Score p=0.032 / r=0.082* P=0.151 / r=0.008

Spearman correlation: p-value and correlation coeffi cient. Signifi cant values are marked *. A signifi cant 
correlation was found between the clinical injury severity scores and fMLP induced FcγRII* on PMNs.

PMN responsiveness is related to the inflammatory complication ARDS
Patients were analyzed in the context of the systemic infl ammatory response 
visualized by a change in PMN phenotype and the development of infl ammatory 
complications within the fi rst 48 hours after sampling. Two patients developed ALI 
and four patients fulfi lled the ARDS criteria. Five patients developed pneumonia 
and nine patients fulfi lled the SIRS criteria. Plasma IL-6 levels were statistically 
signifi cant increased (p=0.033) in patients who later developed ALI or ARDS 
(Figure 1A). The responsiveness of the fMLP-induced FcγRII* expression gradually 
decreased (Kruskall Wallis H test; p=0.023) when severity of infl ammatory pulmonary 
complications increased (Figure 1). 

Control No complications SIRS Pneumonia ALI/ARDS
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Kruskal Wallis H p < 0.001

Figure 1. FMLP induced FcγRII* and infl ammatory complications
The expression of FcγRII* (active CD32) on PMNs after fMLP stimulation decreased when the severity 
of complications increased. Patients who later developed ALI/ARDS demonstrated the most impaired 
responsiveness (Kruskal-Wallis H test p=0.023). 

A
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DISCUSSION

PMNs change their phenotype during priming and activation in vivo. This change 
can be visualized by FACS analysis of the expression of activation markers on the 
membrane of these cells. In our hands analysis of the expression of FcγRII* and the 
alpha-chain of MAC-1 (CD11b) is the most sensitive method to visualize activation 
of neutrophils in vivo. (18,21,27-29). However, expression of these markers does not 
allow a suffi cient quantifi cation of the innate immune response, as no correlation 
was present between expression of these markers and the injury severity. A range 
in severity of the injury-induced infl ammatory response was present, which was 
demonstrated by the correlation between the acute phase protein IL-6 (Table 3) and 
the calculated clinical scores.

In marked contrast, the functional responsiveness towards the bacterial peptide 
fMLP in the context of induction of active FcγRII* clearly visualized a change in 
the circulating PMN population. In addition, the extent of modulation of this PMN 
response correlated with the extent of injury (Table 5). 

The use of MAC-1 expression (CD11b/CD18) on PMNs as a single marker for injury 
severity has been proposed previously (3,21,30,31). In these studies, a correlation 
was shown between initial base excess and initial CD11b expression. However, 
the correlation coeffi cient appeared low as signifi cant increase in PMN CD11b 
expression only occurs during severe physiological disturbances, as demonstrated 
by a low base excess (32). The expression of FcγRII* has previously been suggested 
by our group as a marker for injury severity. However, only critically ill patients were 
included and a relation with injury severity could not be further detailed (18). 

As shown by us previously, the responsiveness of peripheral neutrophils towards 
fMLP in the context of up-regulation of FcγRII* was markedly decreased in severe 
trauma patients. This study confi rms this counterintuitive fi nding and even shows 
a signifi cant correlation between the extent of injury severity and the decrease 
in responsiveness for fMLP in this context. This fi nding did not refl ect an overall 
unresponsiveness for fMLP as this correlation was not found for expression of 
CD11b (see Table 5). In addition, we and others have found that fMLP-induced 
activation of the NADPH-oxidase in isolated peripheral PMNs is up-regulated in 
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trauma patients (18,33,34). Although a mechanism explaining this fi nding is lacking, 
fMLP-induced activation of PMNs is very complex as induction of chemotaxis and 
activation of the respiratory burst occurs at completely different IC50’s: 10 nM for 
chemotaxis and 1μM for oxidase activation (35,36). The dose response curve for 
fMLP-induced FcγRII* expression on PMNs is close to 10 nM (37). These fi ndings 
are consistent with the hypothesis that after trauma PMNs mainly express the low 
affi nity fMLP receptor coupled to cytotoxic responses. This hypothesis is supported 
by a decreased chemotaxis response found in whole blood analysis of PMNs 
obtained from trauma patients (17)

Studies focusing on the systemic innate immune response in response to trauma 
are complicated by the fact that the clinical scorings systems have been created 
as mortality prediction rules (23,24,38). The changed PMN FcγRII* responsiveness 
towards fMLP identifi es the infl ammatory response induced by the burden of trauma 
and does not predict mortality. It is, therefore, not surprising that the correlations 
between the clinical scores and PMN responsiveness, though signifi cant, were weak. 
PMN responsiveness refl ects a fi nal common pathway of systemic infl ammation, 
which is part of the complex clinical picture in trauma patients and a known risk 
factor for the development of organ failure such as ARDS. The responsiveness of 
PMN FcγRII* towards fMLP is not a static parameter and allows monitoring of the 
infl ammatory response in individual patients over time, which is in marked contrast 
to the calculated admission scores (39). In addition, analysis of PMN phenotype 
allows the determination of kinetics and extent of additional infl ammation caused by 
surgical procedures. 

In conclusion, a changed responsiveness in fMLP-induced active FcγRII* represents 
a marked change in PMN phenotype, which refl ects an important mechanism in the 
pathophysiology of the systemic infl ammatory response after trauma. The changed 
PMN phenotype correlates with the amount of sustained injury and is related to the 
incidence of infl ammatory complications such as ARDS. Systemic PMN infl ammation 
is an important therapeutic target for treatment of infl ammatory complication infl icted 
by injury. There is, however, an important unmet need in future treatment of trauma 
patients, as no potent neutrophil antagonists are available for clinical application 
yet. 
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ABSTRACT

ARDS is a severe complication in patients receiving intramedullary nailing (IMN) 
for femur fractures. It is hypothesized that ARDS is mediated by synergism 
between severe infl ammation and pulmonary endothelial damage. Damage control 
orthopedics has been developed to limit the exacerbation of the infl ammatory 
response and thereby preventing ARDS. Although clinical reports show promising 
results, the underlying mechanisms have not been revealed. 
Sixty-eight trauma patients who required primary or secondary lower extremity 
IMN were included. The choice for treatment strategy was made by the attending 
surgeon. The development of ARDS was recorded. Blood samples were taken prior, 
15 minutes after and 18 hours after IMN. Infl ammation was analyzed by plasma IL-6 
levels and changes in neutrophil phenotype. Triglyceride levels were determined as 
a risk factor for pulmonary endothelial injury.
Thirteen patients underwent damage control orthopedics and 55 patients early total 
care. Nine patients developed pulmonary failure. Plasma IL-6 levels increased 18 
hours after IMN for femur fractures. FMLP-induced FcγRII* was most decreased in 
severely injured patients, but did not alter during IMN. Triglyceride levels increased 
during IMN in severely injured patients. These changes in IL-6, PMN phenotype 
and triglyceride levels were most prominent in patients who developed pulmonary 
failure, regardless of treatment strategy.
Although IL-6 levels increased during IMN, the cellular infl ammatory state was 
determined by the initial trauma. IMN does not further change the PMN phenotype, 
but releases factors which potentially can damage the pulmonary endothelium. 
IMN should therefore be performed in patients who are infl ammation controlled as 
pulmonary endothelial injury will most likely occur.

A

A

A
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ARDS (Acute Respiratory Distress Syndrome) is a frequent complication after 
trauma. ARDS has a mortality rate and morbidity rate of up to 40% and 80% 
respectively (1,2). Several risk factors have been identifi ed for the development of 
ARDS, such as intramedullary osteosynthesis (IMN) of a femural fracture, massive 
blood transfusion and thoracic injury (3,4). When IMN is performed in the presence 
of a risk factor mentioned before, the incidence of ARDS can be over 40% (5-7).

It has been suggested that the incidence and course of complications such as 
ARDS can be altered by performing a staged approach of surgical interventions (i.e. 
damage control surgery) (8). In damage control orthopedics (DCO), patients who 
require IMN of long bone fractures are initially treated by external fi xation, which 
then, at a later stage, is converted to IMN (9). In this strategy, a recovery period is 
allowed after the initial trauma, easing of the initial infl ammatory response. Defi nitive 
osteosynthesis (e.g. IMN) is postponed until the patient is in a more stable phase. 
The disadvantage of this strategy is that fracture healing is hampered compared 
to the early total care (ETC) strategy (10). Therefore, it is essential to identify and 
allocate the correct patients for the ETC or DCO strategy. However, this is currently 
diffi cult as the underlying pathophysiological processes remain largely unknown. 

An enhanced infl ammatory response and the occurrence of fat embolisms have been 
associated with the risk of developing ARDS (11-13). This hypothesis is supported by 
experimental animal models in which polymorphonuclear granulocytes (i.e. PMNs 
or neutrophils) play an essential role in the development of ARDS. When PMN 
extravasation is blocked or animals are depleted of PMNs no ARDS occurs after 
a suffi cient insult (14,15). In addition, animals without local pulmonary tissue injury 
(e.g. not ventilated) do not have accumulation of PMNs in the pulmonary interstitium, 
which supports the hypothesis that endothelial damage/activation facilitates PMN 
extravasation into the pulmonary interstitium (16). 

Recently, we have shown that the extent of systemic infl ammation can be identifi ed 
using PMN receptor expression (e.g. fMLP induced FcγRII*) (chapter 3 and 4). 
Little is known regarding activation of damage of local endothelium in the lung 
tissue. Several endothelial markers have been studied in trauma patients of which 
the selectins and vascular adhesion molecules have gained the most attention. 
However, none of these markers has been suffi ciently studied to safely conclude on 
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their prognostic value or direct relation with pulmonary endothelial damage (17,18). 
Endothelial damage or activation can be induced by direct injury, increased levels of 
triglycerides or massive blood transfusions. These parameters can be analyzed as 
potential risk factors for endothelial damage or activation (4,19,20). 
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-Trauma
-Shock / Transfusion
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Figure 1. Hypothesis of synergism
We state the hypothesis that pulmonary failure (ALI or ARDS) can only develop when both activation of 
PMNs and pulmonary endothelial damage or activation is present. In severely injured patients PMNs 
will be activated on a systemic level. In addition, systemic factors such as triglycerides, TNF-α or 
massive blood transfusion and local factors such as thorax injury will damage or activate the pulmonary 
endothelium. The activated or damaged endothelium will facilitate the extravasation of activated 
PMNs. Besides the assumption that PMN activation and pulmonary endothelial damage/activation 
are independent processes, interaction will take place. Activated PMNs can damage or activate the 
pulmonary endothelium and activated endothelium can activate PMNs. Thus, when one of the two 
factors is severe enough, the other factor will be involved as well.
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This study was designed to test the hypothesis that both systemic infl ammation and 
local tissue injury synergize for the development of ARDS (Figure 1); In addition, it 
was investigated what the effect of IMN is on both the infl ammatory status and risk 
factors for local pulmonary tissue injury and whether the timing of IMN (DCO versus 
ETC) infl uences the IMN effect on both the infl ammatory status and the induction of 
the amount of triglycerides in the peripheral blood as risk factor for the development 
of ARDS.
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PATIENTS AND METHODS

Patients
Seventy-fi ve trauma patients with a tibia or femur fracture which required primary 
or secondary intramedullary nailing, admitted at the Department of Traumatology, 
University Medical Center Utrecht were included in this study. Exclusion criteria were 
age < 16 years or > 80 years and patients with an altered immunological status (e.g. 
corticosteroids use or chemotherapy). The local ethical committee approved the 
study and written informed consent was obtained from all patients or their spouses 
in accordance to the protocol.

Clinical parameters and sampling
On admission the Injury Severity Score and APACHE II Score were calculated 
(21,22). During their admission patients were stratifi ed by development of 
pulmonary complications or uncomplicated course. During admission the presence 
of systemic infl ammation (e.g. systemic infl ammatory response syndrome [SIRS]), 
or the occurrence of pulmonary complications (i.e. acute lung injury [ALI] or acute 
respiratory distress syndrome [ARDS]) were assessed according to their clinical 
criteria as determined in the consensus conference (2). In addition, multitrauma 
patients were analyzed by treatment strategy: ETC or DCO. The choice for treatment 
strategy was made by the attending surgeon. 

Blood samples were taken at distinct time points: one hour prior to IMN and 15 
minutes and 18 hours after the intramedullary nail was introduced. To investigate the 
infl uence of IMN, patients were stratifi ed by tibia or femur fracture and by isolated 
fracture and multitrauma. Patients were compared with healthy controls as described 
previously (chapter 4). 

Materials
For analysis of PMN receptor expression by fl owcytometry the following monoclonal 
antibodies were commercially purchased: IgG1 negative control (clone DD7, 
Chemicon, Hampshire, United Kingdom) and IgG2a negative control (clone MRC 
OX-34, Serotec, Dusseldorf, Germany). An antibody, which recognizes an active 
FcуRII/CD32 (designated FcуRII*), is manufactured at the Department of Pulmonary 
Science at the University Medical Center Utrecht (MoPhap A27, UMCU, Utrecht, 
The Netherlands)(23). 
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Interleukin 6 (IL-6) was measured by ELISA (Pierce Biotechnology Inc., IL, United 
States) as described by the manufacturer. Hematologic parameters and triglycerides, 
were determined at the Clinical Laboratory Department of the University Medical 
Center Utrecht. 

PMN phenotype: fMLP induced FcγRII*
The infl ammatory status of a patient can be assessed by assessing the phenotype 
of PMNs in the peripheral blood (chapter 4) (16). The PMN phenotype was based on 
the expression of active FcуRII upon activation with fMLP (fMLP induced FcуRII*). 

Blood was collected in a vacutainer® with sodium heparin as anticoagulant, cooled 
immediately and kept on ice during the whole staining procedure. The analysis of 
the PMN receptor expression was started within two hours after the blood sample 
was obtained. The expression of the above mentioned markers was measured 
as described previously (24). Expression of active FcγRII by MoPhab A27 was 
measured after 5 minutes of stimulation of whole blood at 37 °C with N-formyl-
methionyl-leucyl-phenylalanine (fMLP 10-6M) to evaluate the responsiveness of the 
cells for a bacterial derived activating agonist (25). After stimulation, the samples 
were put on ice again and analyzed.

Blood samples were stained with fl uorescein isothiocyanate (FITC) directly labeled 
phage antibody A27 as described previously and the commercial markers as 
described by their manufacturer (chapter 3). In short, directly labeled antibody was 
added 1:20 to whole blood and incubated for 60 minutes on ice. After incubation, 
the red cells were lysed with ice-cold isotonic NH4Cl. After a fi nal wash with PBS2+ 
(phosphate buffered saline with added sodium citrate (0,38 % wt/vol) and isotonic 
pasteurized plasma proteins (10% vol/vol), the cells were analyzed in a FACScalibur 
Flowcytometer (Becton & Dickenson, Mountain view. CA). The PMNs were identifi ed 
according to their specifi c side-scatter and forward-scatter signals. Data from 
individual experiments are depicted as histograms of fl uorescence intensity in 
arbitrary units (AU) or summarized as the median channel fl uorescence (MCF) of at 
least 10000 events.

Interleukin 6
IL-6 was determined using a human IL-6 sandwich ELISA (Endogen, Pierce 
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Biotechnology, IL, United States) according to the procedures prescribed by the 
manufacturer. 

Triglycerides
Blood was collected in a vacutainer® with EDTA as anticoagulant, cooled immediately 
and kept on ice during the procedure. Plasma was isolated by spinning the sample 
down at 1000 G. Triglyceride levels were determined as triglycerides have been 
documented to damage or activate the pulmonary endothelium (19,20). 

Statistical analysis
All data were analyzed using SPSS version 12.0 software (The Apache Software 
Production 2004, Chicago, Illinois). Results are expressed by means ± standard 
error of the mean. Statistical analysis was performed using a non-parametric Mann 
Whitney U Test for two groups and a Kruskall Wallis H test for multiple comparisons. 
Paired analysis (before and after surgery) was performed using Wilcoxon Signed 
Ranks test. Statistical signifi cance was defi ned as p < 0.05.

A
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RESULTS

Demographics
A total of 90 patients fulfi lled the inclusion criteria of which 75 patients were 
included (83%). Of the non-included patients 1 patient suffered from osteogenesis 
imperfecta, and in 14 cases there were logistical problems. The demographics of 
the not included patients did not differ from the included patients (results not shown). 
Of the 75 patients included, 2 patients underwent external fi xation initially, but did 
not ultimately receive conversion to intramedullary osteosynthesis, 1 patient did not 
give consent and in 4 patients sampling or analysis was fl awed. Thus, 68 patients 
were adequately followed up. Their mean ISS was 14 ± 10 (mean ± SD) and their 
mean APACHE II Score was 6 ± 7 (mean ± SD) ad admission in the ICU. Further 
demographics are listed in Table 1.

Table 1. Patient demographics.

Mean (range)

Number of patients (n) 68

Male / Female (n) 41 / 27

Age (years) 39 (16-80)

Injury Severity Score 14 (4-43)

New Injury Severity Score (4-92)

APACHE II Score 6 (0-25)

Time on ICU (days) 5.8 (0-60)

Time on ventilation (days) 4,9 (0-55)

Packed red blood cells before fi rst blood sample (units) 3 (0 – 54)

Fresh frozen plasma before fi rst blood sample (units) 2 (0 – 20)
Treatment strategy

– Early total care
– Damage control

55 (< 24 hrs)
13 (2 – 8 days)

Type of trauma (n)
– Tibia fracture
– Femur fracture
– Tibia fracture in multitrauma
– Femur fracture in multitrauma
– Severe chest injury

22
21
7
18
15

Complications (n)
– ALI
– ARDS

3
6
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Systemic inflammation measured by IL-6
Pre-operative plasma IL-6 levels were not statistically signifi cant different between 
patients who developed ALI or ARDS and patients who did not. Plasma IL-6 levels 
increased 18 – 24 hours post-operative (p = 0.027), an even more pronounced 
increase in plasma IL-6 was seen in patients who developed ALI or ARDS (p = 
0.011, Figures 2A and 3A). 
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Figure 2. Infl uence of IMN on IL-6, fMLP induced FcуRII* and triglyceride levels.
Plasma IL-6 levels are increased (p<0.05) in multitrauma patients (A). Inaddition, a statistically 
signifi cant increase was seen after intramedullary nailing in patients with an isolated femur fracture 
(p=0.027). The largest changes in PMN phenotype (p<0.05) were seen in multitrauma patients (B), no 
statistically signifi cant increase was seen during intramedullary nailing of either tibia or femur fracture. 
No difference between the patient groups was found in the initial triglyceride levels (C), however, a 
statistically signifi cant increase was seen during intramedullary nailing of femur fractures in multitrauma 
patients (p=0.002). Squares ■ represent pre-operative samples, circles ● represent samples taken 15 
minutes after introduction of the nail and triangles ▲ represent samples taken 18 – 24 hours post-
operative. Bars represent mean ± SEM. * = p < 0.05 and ** = p < 0.01 between groups of tibia fracture, 
femur fracture or multitrauma patients (Mann Whitney U test). † = p < 0.05 within groups (Kruskal Wallis 
H test).
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Systemic inflammation by PMN phenotype
The innate immune activation was based on PMN active FcγRII expression after fMLP 
stimulation (fMLP induced FcуRII*) (chapter 4). The changes in PMN phenotype 
were statistically signifi cant larger in patients who suffered from multiple injuries 
compared to patients with only a tibia or femur fracture (p < 0.05 on all time points). 
During IMN no statistically signifi cant alteration of the fMLP induced FcуRII* was 
detected (Figure 2B). The changes in PMN phenotype were statistically signifi cant 
larger (p < 0.05 on all time points) in patients who developed ALI or ARDS compared 
to patients without pulmonary complications (Figure 3B). 

Triglyceride levels as risk factor for pulmonary endothelial injury
In patients with isolated tibia or femur fractures, no increased triglyceride levels 
were observed. However, in patients with multiple injuries a statistically signifi cant 
increase (p = 0.002) was seen in triglyceride levels during IMN of the femur (Figure 
2C). In patients who developed ALI/ARDS triglyceride levels increased statistically 
signifi cant (p < 0.05) at 15 minutes and 18 hours after IMN (Figure 3C). 

Treatment strategy
In the patients undergoing early total care 7/55 (13%) developed ALI/ARDS, compared 
to 2/13 (15%) in patients undergoing damage control orthopedics. The clinical decision 
to follow DCO or ETC protocol was evaluated afterwards by plasma IL-6 levels, 
which were increased (p < 0.041) in patients undergoing DCO compared to patients 
undergoing ETC (Figure 4A). In patients undergoing ETC, an increase in plasma 
IL-6 was seen 18 hours after IMN (p < 0.001). This increase was less pronounced 
in DCO patients undergoing their delayed surgical procedure, as IL-6 levels were 
already high. In contrast, no difference in PMN phenotype was found between the 
two treatment strategies (Figure 4B). Triglyceride levels were statistically signifi cant 
increased in patients undergoing DCO (Figure 4C) and increased markedly during 
IMN regardless of the timing of IMN (p = 0.038).
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Uneventful ALI/ARDS
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Figure 3. Development of ALI/ARDS and IL-6, fMLP induced FcγRII* and triglyceride levels during 
IMN.
Initial plasma IL-6 levels are not increased in patients who developed ALI/ARDS (A). Although in 
patients without ALI/ARDS plasma IL-6 levels increased signifi cantly 18 hours after intramedullary 
osteosyntheses (p=0.006), plasma IL-6 levels were even higher in patients with ALI/ARDS (p=0.011). 
PMN phenotype was statistically signifi cant changed at all time points (p<0.05) for patients who 
developed ALI/ARDS (B), no statistically signifi cant increase was seen during intramedullary nailing. 
Triglyceride levels were statistically signifi cant increased 15 minutes and 18 hours after intramedullary 
osteosynthesis (p<0.05) for patients who developed ALI/ARDS (C). Squares ■ represent pre-operative 
samples, circles ● represent samples taken 15 minutes after introduction of the nail and triangles ▲ 
represent samples taken 18–24 hours post-operative. Bars represent mean ± SEM. * = p < 0.05 and ** 
= p < 0.01 between groups of patients with or without ALI/ARDS (Mann Whitney U test). † = p < 0.05 
within groups (Kruskal Wallis H test).
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Figure 4. Treatment strategy and IL-6, PMN phenotype and triglycerides during IMN.
Initial plasma IL-6 levels were increased (p=0.041) in patients undergoing damage control orthopedics 
(A), in patients undergoing early total care a increase was seen after intramedullary nailing (p<0.001). 
No differences were found in PMN phenotype on any time point between patients undergoing damage 
control orthopedics or early total care (B), no increase was seen during intramedullary osteosynthesis. 
Triglyceride levels were increased in patients undergoing damage control orthopedics on all time points 
(p<0.05) (C), in addition, in patients who underwent damage control orthopedics triglyceride levels 
increased statistically signifi cant 18 hours after intramedullary osteosynthesis (p=0.035). Squares ■ 
represent pre-operative samples, circles ● represent samples taken 15 minutes after introduction of the 
nail and triangles ▲ represent samples taken 18–24 hours post-operative. Bars represent mean ± SEM. 
* = p < 0.05 and ** = p < 0.01 between ETC and DCO groups (Mann Whitney U test). † = p < 0.05 within 
groups (Kruskal Wallis H test).
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DISCUSSION

Although some additional infl ammation occurs during intramedullary osteosynthesis, 
as measured by a moderate increase in plasma IL-6 levels, apparently this was not 
suffi cient to alter the already activated PMNs, measured by phenotype changes. 
The severity of infl ammation was determined by trauma and as we demonstrated 
in this study only moderately increased by surgery. IMN induces increased levels 
of triglycerides in the circulation, which are potentially harmful during a state of 
severe infl ammation. Therefore, before IMN is performed fi rst infl ammation should 
be controlled.     

Infl ammation occurs after trauma and severe infl ammation has been related to 
the development of ALI/ARDS, which was confi rmed in this present study (26,27). 
Additional infl ammation during surgery has been suggested as a possible cause of 
organ failure. Based on this theory damage control strategies have been developed. 
Prevention of the additional infl ammatory response was hypothesized to reduce 
the risk for (pulmonary) organ failure (9,28). Application of DCO in “borderline” (i.e. 
multitrauma) patients who required IMN for femoral fractures resulted in a lower 
incidence of ALI/ARDS (29). In contrast, increased incidence of complications was 
reported when DCO strategy was applied in “stable” patients, which confi rmed 
previous reports on the benefi cial effects for early defi nitive care in these “stable” 
patients (30,31). We corroborated with previous reports that plasma IL-6 levels 
increased after IMN (32). Though, its’ role in the development of ALI/ARDS has not 
been elucidated and PMN phenotype was not altered by the increase in plasma 
IL-6 levels. This lack of change in PMN phenotype during IMN has been suggested 
previously (7,33). Although no clear explanation could be given, those reports 
suggest an important role for factor(s) other then the innate immune one.

High levels of triglycerides have been suggested to be involved in the development 
of ALI/ARDS (19). Micro fat embolisms have been demonstrated in the pulmonary 
vasculature during IMN, therefore triglyceride levels were designated as the most 
likely factor to induce pulmonary endothelial damage/activation during IMN (20). We 
demonstrated that triglyceride levels increased during IMN of femur fractures and 
during IMN in multitrauma patients. Even more, elevation of triglyceride levels was 
most pronounced in patients who developed ALI/ARDS. Although several studies 

A
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have provided supportive evidence for a pathophysiological role of fat embolisms in 
ARDS, this is the fi rst study which demonstrates a clinical relation between increased 
triglycerides levels during IMN and the development of ALI/ARDS. The increase in 
triglyceride levels during IMN was present in both treatment strategies, ETC and 
DCO. Therefore, the risk for pulmonary endothelial injury/activation by triglycerides 
is similar in ETC and DCO.

In total, 2 patients in the DCO group and 7 patients in the ETC group developed 
ALI/ARDS. The 2 patients who developed ARDS after DCO, received their IMN 
on different time points. One patient was deemed stable by the attending surgeon, 
and received his IMN, on the second day after trauma. The second patient was 
considered fi t for IMN on the seventh day after trauma. Both patients demonstrated 
severe systemic infl ammation by severely changed PMN phenotypes. This indicates 
that a general stated window for secondary surgery of 4 – 10 days after trauma, 
should be replaced by tailor made therapy (34,35). This fi nding calls for more 
adequate laboratory tests to assist the clinical decision of the attending physician. 
Additional pulmonary endothelial damage/activation by triglycerides is likely to occur 
frequently during IMN of femur fractures, however additional infl ammation barely 
takes place. Therefore, DCO can only be successful when the patient undergoes 
his/her secondary surgical procedure (IMN) during an attenuated infl ammatory 
state. However, fi nding an adequate clinical applicable tool has proven diffi cult. 

Complications in medicine are often the result of an accumulation of events (36,37). 
ARDS is among the most complex clinical syndromes, harboring multiple disease 
entities (38). Therefore, combinations of multiple etiologic and pathophysiological 
factors would most likely lead to the best predictive model. The clinical applicability is 
related to the availability and complexity of the predictive model. Pathophysiological 
factors which form a common fi nal pathway of several cascades are best suited for 
such tools. PMNs are an excellent example of a common endpoint, indicating the 
infl ammatory state of the patient. In contrast, fi nding the optimal marker for local 
pulmonary endothelial injury or activation appears more challenging. Triglycerides 
are thought to induce endothelial damage or activation but are not a marker of the 
pulmonary endothelial damage or activation itself. Therefore, analysis of pulmonary 
endothelial damage or activation remains circumstantial and most likely incomplete. 
Thus, a predictive model that combines systemic infl ammation and local pulmonary 
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injury would profi t tremendously from a common endpoint marker for local pulmonary 
damage. Unfortunately, this study lacks such a pathophysiological factor. 

In conclusion, we demonstrated that both systemic activation of PMNs and local 
pulmonary endothelial damage or activation synergize for the development of ARDS. 
We therefore suggest not to perform intramedullary osteosynthesis in patients with 
severe infl ammation, identifi ed by changed PMN phenotype. Trauma patients should 
undergo Infl ammatory Control Orthopedics, since pulmonary endothelial damage
(/activation) is likely to be induced during IMN. 
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ABSTRACT

Severe trauma is frequently followed by sepsis. After an initial pro-infl ammatory 
response induced by the injuries sustained, a compensatory anti-infl ammatory state 
is seen. This immune suppressive state facilitates the development of sepsis. The 
hypothesis was tested if the initial immunological response after injury is related to 
the late development of immune dysfunction and septic shock. 
A consecutive series of thirty-six severely injured patients was included and followed 
for 14 days. Admission scores were calculated and sepsis criteria were assessed 
daily. A blood sample was taken daily and analyzed for neutrophil phenotype, 
characterized by expression of adhesion receptor MAC-1, chemotaxis receptor 
CXCR-1, opsonin receptor active FcγRII and inside-out control of fMLP induced 
active FcγRII.
A profound infl ammatory reaction was noted in all trauma patients by the statistically 
signifi cant differences from controls for IL-6, MAC-1, CXCR1 and active FcγRII 
expression. Ten out of 36 patients developed septic shock, invariably 8 – 10 days 
after admission. FMLP induced active FcγRII was signifi cantly decreased in patients 
who later developed septic shock. CXCR-1 and fMLP induced active FcγRII showed 
a gradual decrease in expression prior to clinical signs of septic shock, while no 
additional activation measured by MAC-1 up-regulation was present. 
In conclusion, phenotyping blood neutrophils enables identifi cation of the kinetics 
and magnitude of the initial systemic infl ammatory response after injury. The inability 
of the PMN to react to fMLP is related to the subsequent development of late phase 
septic shock. 
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Multiple Organ Failure (MOF) is a frequent complication of critically ill patients and 
goes with a high mortality (50-80%) and morbidity rates (1). Patients suffering from 
severe trauma are at risk for this complication in two distinct phases; an early phase 1 
- 4 days after injury and a late phase 8 - 14 days after injury (2). Early MOF is thought to 
be the result of an excessive infl ammatory response (Severe Infl ammatory Response 
Syndrome [SIRS]) ensuing the sustained injuries (3,4). Late MOF is thought to be a 
consequence of sepsis or uncontrolled infection during a state of immune paralysis 
(Compensatory Anti-infl ammatory Response Syndrome [CARS]) (5). These clinical 
fi ndings have led to the hypothesis of a biphasic infl ammatory response after trauma 
(6). However, this hypothesis awaits experimental foundation.

In the pursuit for a pathophysiological explanation several approaches were used. 
The initial pro-infl ammatory response, characterized by soluble markers e.g. IL-
1β, IL-6 or CRP, has been qualitatively identifi ed. Although a general increased 
infl ammatory state was found, the quantifi cation of its magnitude has remained 
diffi cult due to the large interpersonal variation of these markers (7). Most research 
on the development of sepsis during CARS determined the role of lymphocytes 
and monocytes in this process, but these studies remained inconclusive (8,9). 
Polymorphonuclear granulocytes (i.e. neutrophils or PMNs) are important in the 
pathogenesis of organ damage during early organ failure, but play an essential role in 
the clearance of bacterial pathogens under normal immunological conditions (10,11). 
We recently demonstrated that PMNs are partially dysfunctional after trauma, as 
measured by the inside-out control of these cells (12). Although basic PMN functions 
such as cytotoxic capacity (reactive oxygen species production) were increased, 
activation of FcγRII in response to bacterial products was decreased. Therefore, it 
was hypothesized that the loss of inside-out control by PMNs might play a role in the 
susceptibility of a patient in the development of sepsis and the additional damage to 
organs during severe sepsis (12,13).

In the present study we tested, whether an excessive initial systemic pro-infl ammatory 
response after severe trauma was related to the late development of immune 
dysfunction and septic shock. 
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MATERIALS AND METHODS

Patients
A consecutive series of severely injured patients who required intensive care support 
(ICU) in the University Medical Centre Utrecht was included. Patients had to be 
between 18 and 80 years old, with an expected ICU stay of ≥ 3 days. Exclusion 
criteria were chronic diseases infl uencing the immune system and/or the use of 
immunosuppressive medication. The patients were followed for a maximum of 14 
days or as long as their stay in the ICU lasted. The institutional ethics committee 
approved the study and written informed consent was obtained from all patients or 
their legal representatives in accordance with the protocol. When needed, results 
obtained from these patients were compared with results from 10 healthy controls.

Clinical parameters
The APACHE-II score and Injury Severity Score (ISS) were calculated on admission 
(14,15). Criteria for SIRS, sepsis or septic shock were assessed on a daily basis as 
defi ned by the criteria proposed by the International Sepsis Defi nitions Conference 
(16,17).

Sampling and phenotyping
A fi rst blood sample was taken 3 – 12 hours after the patients’ admission to the ICU 
(day zero). Serial blood samples were taken on a daily basis during the following 14 
days. Blood was collected in a vacutainer® with sodium heparin as anticoagulant, 
cooled immediately and kept on ice during the whole staining procedure, which started 
directly. The functions of the studied PMN surface receptors have been described 
(10,13). The adhesion molecule MAC-1 (CD11b) was chosen as representative for 
neutrophil activation, because this receptor is up-regulated during granule release 
(18-20). CXCR-1 receptor (CD181) was chosen, as its role in chemotaxis has been 
well documented. CXCR-1 is only down-regulated after strong stimulation, while 
CXCR-2 is a low-affi nity receptor and is rapidly down-regulated (21,22). In addition, 
a pathophysiological role of CXCR-1 has been suggested in the development of 
severe infections and sepsis, as chemotaxis would be impaired (22). Focus was 
given to the expression of active FcγRII (active CD32 or FcγRII*) as read-out for a 
very sensitive marker for activation: inside-out control of FcR’s (23){Kanters, 2007 
700 /idThe expression was measured directly, to study the intrinsic expression as 
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indication of activation of the cells in the blood. The intrinsic activation of FcγRII was 
compared with the responsiveness of circulating PMNs for the innate stimulus fMLP 
in induction of active FcγRII in vitro (24,25). 

Materials
For analysis of PMN receptor expression by fl owcytometry, the following standard 
monoclonal antibodies were commercially purchased: FITC-labeled IgG1 negative 
control (clone DD7) from Chemicon, Hampshire, United Kingdom; RPE-labeled 
IgG2a negative control (clone MRC OX-34), RPE-labeled CD11b (clone 2LPM19c) 
from DAKO, Glostrup, Denmark and FITC-labeled CD181 (clone 42705) from 
R&D Systems, McKinley Place. A monoclonal phage antibody, which recognizes 
active FcγRII (active CD32), was manufactured in the Department of Respiratory 
Medicine at the University Medical Center Utrecht (MoPhap A27, UMCU, Utrecht, 
The Netherlands) (24,26). Interleukin 6 (IL-6) analysis was performed using a 
sandwich ELISA (Pierce Biotechnology Inc., IL, United States) as described by 
the manufacturer. C reactive protein (CRP) was measured in the clinical diagnostic 
laboratory of the UMC Utrecht by immunoturbidimetric analysis (27).

Flowcytometer analysis
Blood samples were stained with directly-labeled antibodies as described previously 
(12). In short, labeled antibodies were added 1:20 to whole blood and incubated for 
60 minutes on ice. After incubation, the red cells were lysed with ice-cold isotonic 
NH4Cl. After a fi nal wash with PBS2+ (phosphate buffered saline with added 
sodiumcitrate (0.38 % wt/vol) and isotonic pasteurized plasma proteins, 10% vol/
vol), the cells were analyzed in a FACScalibur fl owcytometer (Becton & Dickinson, 
Mountain View. CA). The PMNs were identifi ed according to their specifi c side-
scatter and forward-scatter signals. Data from individual experiments are depicted 
as median fl uorescence intensity in arbitrary units (AU) of at least 10000 events. 

To determine the responsiveness of neutrophils for N-formyl-methionyl-leucyl-
phenylalanine (fMLP) the expression of active FcγRII/CD32 (designated FcуRII*) 
was also measured after 5 minutes of stimulation of whole blood at 37 °C with (fMLP 
10-6M). After stimulation, the samples were put on ice and analyzed.
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Soluble proteins
Plasma IL-6 levels have been correlated with the severity of the infl ammatory response 
on admission (28,29). In addition, the initial plasma IL-6 levels have been related to 
the development of both early and late phase organ failure (7). However, longitudinal 
measurements of plasma IL-6 levels did not provide additional information to the 
initial sampling (7). Therefore, we analyzed plasma IL-6 levels between 3 – 12 hours 
after trauma. Plasma was isolated by spinning the sample down at 1000 x g. IL-6 
was determined using a human IL-6 sandwich ELISA according to the procedures 
prescribed by the manufacturer. 

C-reactive protein (CRP) is increased in nearly all trauma patients. However, an 
ongoing rise in plasma CRP levels after several days have been associated with the 
development of severe infections and subsequent sepsis (30,31). Therefore, CRP 
levels were measured on a daily basis by the clinical diagnostic laboratory of the 
UMC Utrecht using immunoturbidimetric analysis (27). 

Statistics
Receptor expression was analyzed as median fl uorescence intensity (MFI) in arbitrary 
units (AU). Results in fi gures are expressed as means ± standard error of mean 
(SEM). Statistical analysis was performed with the non-parametric Mann-Whitney U 
test for two groups. Kruskal Wallis H analysis was used to analyze changes between 
different days. Statistical analysis for PMN receptor expression between patients 
with septic shock and without septic shock during longitudinal measurements was 
performed using generalized estimating equations (GEE), analyzing from day 1 to 
8 per patient. First order autoregressive correlation was used as model. Statistical 
signifi cance was defi ned as p < 0.05. 
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RESULTS

Demographics
Forty patients fulfi lled the inclusion criteria. Two patients were transferred to another 
hospital and two patients did not provide informed consent. These four patients 
suffered slightly less severe injuries (p > 0.05) compared to the thirty-six included 
patients admitted to the ICU after trauma. Thirty-two of the analyzed patients fulfi lled 
the SIRS criteria, 21 patients met the sepsis criteria and 10 patients developed septic 
shock (17). All patients who developed septic shock (n = 10) fulfi lled the criteria 
between days 8 – 10 after admission. Two patients died during their admission, one 
of them during the study period. Cause of death for both patients was multiple organ 
failure (Table 1). 

Table 1. Demographics

Mean (± SD)

Number of patients (n) 36

Male / Female (n) 30 / 6

Age (years) 45 (18-73)

Injury Severity Score 24 (9-57)

APACHE II Score 14 (0-35)

Time on ICU (days) 16 (3-45)

Time on ventilation (days 15 (0-42)

Complications (n)
- SIRS
- Sepsis
- Septic shock
- Mortality

32
21
10
2

Disease severity on admission and ensuing course
No statistically signifi cant difference was found in the admission scores for 
patients who developed sepsis or septic shock as compared to patients without 
complications (APACHE II score p = 0.154; ISS p = 0.376; initial leukocyte counts 
p = 0.810) (Table 2). Plasma IL-6 levels were increased in all patients on admission 
and slightly more pronounced in patients who developed septic shock, however, with 
large interpersonal variation (Figure 1A). CRP demonstrated comparable levels in 
both groups during the fi rst week of admission. In the second week of ICU stay, CRP 
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levels in patients with septic shock remained elevated, whereas patients without 
septic shock demonstrated decreasing levels of CRP (Figure 1B). 

Table 2. Admission severity and occurrence of events.

Mean ± SD No sepsis (n = 15) Sepsis (n = 11) Septic shock (n = 10) P-value

APACHE II Score 12 (± 6.3) 14 (± 8.4) 18 (± 7.2) NS

ISS 24 (± 10.1) 21 (± 9.2) 29 (± 12.7) NS

Leukocytes 10.5 (± 3.7) 11.8 (± 7.2) 13.0 (± 6.9) NS

Control values No septic shock Septic shock
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Figure 1. Severity of infl ammation assessed by acute phase proteins.
Initial plasma IL-6 levels were increased in trauma patients. However, in this relative small population, no 
statistically signifi cant differences were found between patients who later developed septic shock and 
patients who did not (A). CRP increased during the fi rst days of ICU admission for all patients, but was 
only discriminative just prior to the presence of clinical evidence of septic shock (B). Differences were 
seen from day 7 on and septic shock developed in all patients between days 8 – 10. Patients without 
septic shock are depicted as closed circles ● and patients with septic shock (n = 10) are depicted as 
open triangles ∆. Bars represent mean ± standard error of mean. * represent p < 0.05 and ** represent 
p < 0.01.
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Initial inflammatory response within 24 hours after trauma
By evaluating basic PMN phenotype changes, the following results were obtained. 
The expression of the activation marker MAC-1 (CD11b) was statistically signifi cant 
increased (p = 0.009) compared to controls. Chemotaxis receptor CXCR-1 (CD181) 
was statistically signifi cant decreased in patients compared to controls (p = 0.027). 
However, no signifi cant difference for both receptors was found between patients 
who developed septic shock and patients who did not (Figure 2A and 2B). 
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Figure 2. Expression of MAC-1 and CXCR-1 on PMN’s does not relate to late onset sepsis.
Initial levels of (A) PMN MAC-1 and (B) PMN CXCR-1 expression were statistically signifi cant altered in 
patients compared to controls. Septic shock developed in all patients after 8 – 10 days. Control values 
are presented as blocks □. Patients without septic shock are depicted as closed circles ● and patients 
with septic shock (n = 10) are depicted as open triangles ∆. Bars represent mean ± standard error of 
mean. * represent p < 0.05 and ** represent p < 0.01.

Evaluating a more sensitive PMN phenotype, active FcγRII (FcγRII*), revealed 
also decreased intrinsic expression of this active receptor complex in all patients 
(Figure 3A, p < 0.05). However, we failed to demonstrate any statistically signifi cant 
difference between septic and non-septic patients. In contrast, the responsiveness 
of neutrophils for fMLP in inducing inside-out control of FcγRII* was statistically 
signifi cant (p < 0.001) decreased in patients compared to controls. More importantly, 
the responsiveness fMLP could differentiate between patients who developed septic 
shock and those who did not (Figure 3B; p < 0.05).
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Figure 3. fMLP-induced expression of active FcγRII on neutrophils is suppressed in patients that 
develop septic shock.
Initial levels of (A) PMN active FcγRII expression and (B) inside-out control of fMLP induced FcγRII* 
were statistically signifi cant altered in patients compared to controls. In addition, fMLP induced FcγRII* 
was signifi cant decreased in patients who later developed septic shock compared to patients without 
this complication. Control values are presented as blocks □. Patients without septic shock are depicted 
as closed circles ● and patients with septic shock (n = 10) are depicted as open triangles ∆. Bars 
represent mean ± standard error of mean. * represent p < 0.05 and ** represent p < 0.01.

Decrease in inside-out control without further activation during first week 
after trauma
The PMN phenotype was further analyzed during the fi rst week of admission. In 
this fi rst week, no further PMN activation was detectable, as measured by MAC-1 
and FcγRII* (Figure 4A and 4B). Also, no statistically signifi cant differences were 
found between patients who developed septic shock and patients without this 
complication. 

A

A
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Figure 4. Course of PMN surface receptor expression during the fi rst week of admission.
Alterations in PMN phenotype of (A) adhesion associated activation marker MAC-1, (B) chemotaxis 
receptor CXCR-1, (C) opsonin receptors FcγRII and (D) inside-out control by fMLP induced FcуRII*. 
Patients without septic shock during admission are depicted as closed circles ● and patients who 
developed septic shock during admission are depicted as open triangles ∆. Bars represent mean ± 
standard error of mean. 

CXCR-1 demonstrated no statistically signifi cant differences between patients who 
developed septic shock and patients without sepsis (Figure 4C). However, CXCR-1 
showed a gradual decrease in expression during the fi rst week of admission (p < 
0.001). Although fMLP stimulated FcγRII* showed a recovery during the fi rst day 
after trauma in patients who developed septic shock, longitudinal analysis of inside-
out control of FcγRII* showed a gradual decrease during the fi rst week (p < 0.001). 
As a group, patients who developed septic shock demonstrated a more pronounced 
decrease in fMLP stimulated FcγRII* on all days (Figure 4D, GEE: p = 0.017). 



regel 1

regel 2

regel 3

regel 4

regel 5

regel 6

regel 7

regel 8

regel 9

regel 10

regel 11

regel 12

regel 13

regel 14

regel 15

regel 16

regel 17

regel 18

regel 19

regel 20

regel 21

regel 22

regel 23

regel 24

regel 25

regel 26

regel 27

regel 28

regel 29

regel 30

regel 31

regel 32

regel 33

regel 34

regel 35

regel 36

regel 37

regel 38

regel 39

120

Chapter 6

101
102
3

104
105
106
101
101
101
101
101

Septic shock developed in 10 patients in the period thereafter (8 – 10 days after 
admission). MAC-1 and CXCR-1 expression did not demonstrate any statistically 
signifi cant differences after the onset of septic shock. In contrast, fMLP induced 
FcγRII* showed a signifi cant recovery in the group of patients who did not developed 
septic shock (Figure 5, GEE: p = 0.05). 
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Figure 5. Recovery of fMLP induced FcуRII* in patients without septic shock.
Patients without septic shock during admission are depicted as closed circles ● and patients who 
developed septic shock during admission are depicted as open triangles ∆. Bars represent mean ± 
standard error of mean. 
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DISCUSSION

In this study we demonstrated a marked infl ammatory response after severe trauma, 
shown by the acute phase response (measured by IL-6 and CRP) and an increase 
in expression of the activation epitope MAC-1 on PMNs. Moreover, on the fi rst day 
after trauma we could demonstrate a statistically signifi cant difference between 
those patients developing septic shock and those with a less severe complication or 
course, evaluating the responsiveness of PMNs for fMLP in stimulating FcγRII*.

All markers (plasma IL-6 and CRP levels, leukocyte count, but also expression of 
activation epitopes on PMN’s) found in the trauma patients showed statistically 
signifi cant changes compared to controls, demonstrating a severe systemic 
infl ammatory response after trauma. However, these markers could not differentiate 
between patients who developed septic shock and those who did not. Analysis 
of PMN functionality by changes in fMLP induced FcγRII*, showed a signifi cantly 
decreased in responsiveness for fMLP of peripheral blood PMNs in patients who 
developed septic shock. A straightforward explanation for these fi ndings on the day 
of trauma could be that those patients, ultimately developing septic shock, have a 
more profound initial systemic (cellular) innate immune response after injury.

This decreased functionality partly recovered in the fi rst 24 hrs after trauma, however, 
reduced again during the fi rst week after trauma. The lowest PMN expression levels 
were found between 6 – 7 days after injury. For all septic shock patients initial 
shock symptoms became evident between days 8 – 10 after admission. Therefore, 
the impaired responsiveness for fMLP and other changes in receptor expression 
clearly preceded clinical symptoms. In patients who did not develop septic shock, 
a statistically signifi cant recovery of fMLP induced FcγRII* was observed in the 
second week after injury. 

Several authors have evaluated the relevance of analysis of changes in expression 
of single PMN receptors (19-22,32), as well as levels of single cytokines and 
acute phase proteins such as CRP (7,28,30,31). The current study confi rms that 
changes occur both in expression of activation markers on PMN’s and in levels of 
acute phase proteins after trauma. However, our study uniquely shows a decreased 
response of circulating PMNs to fMLP, a bacterial derived product. Other authors 
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have demonstrated increased cytotoxic activity (ROS production) in isolated cells 
(33,34), however, these studies could have been biased by the isolation of PMNs 
(35). The present study, performed by whole blood analysis, lacks ex vivo leukocyte 
manipulation, limiting isolation artifacts. Therefore, these results allow a more direct 
interpretation of the cellular innate immune processes taking place after trauma 
and might open new avenues to develop new prognostics. Although it is tempting 
to extrapolate our data and suggest that fMLP induced FcγRII* could be used as 
a predictor for the development of septic shock, this hypothesis should be tested 
in a prospective study with suffi cient power. This study to evaluate the prognostic 
capacities of this fi nding is currently underway.

It has been suggested that after injury (i.e. acute severe infl ammation) PMNs home 
to the tissues, leaving behind PMNs with an altered or even refractory phenotype 
(3,12,36). It tempting to speculate that the refractory PMNs we found are the result 
of a profound extravasation of non-refractory PMNs in these patients. After the initial 
decrease in inside-out control, a slight recovery in fMLP induced FcγRII* was seen 
on the fi rst day after trauma, which might be the result of functional competent cells 
from the bone marrow as large amounts of functional PMNs are released from the 
bone marrow and marginated pool (13). This rapidly mobilization of a functional pool 
of PMNs from the bone marrow and homing to the tissues is thought to be mediated 
by chemotactic signals (12,36). Due to the ongoing migration, a persistent loss of 
functional PMNs takes place by homing, leaving relatively refractory cells behind in 
the circulation. These refractory PMNs will lead to a progressively less competent 
immune system and a poorer handling of any new bacterial threat. Our fi ndings 
described above, provide additional pathophysiological evidence that supports the 
hypothesis that more pronounced SIRS is associated with more severe CARS and 
therefore the development of septic shock (37).

Although mortality after trauma has decreased over the last decade, the incidence 
of sepsis remains high. In this cohort, the development of septic shock was very 
frequently encountered; an incidence of septic shock of 28% was found. In comparison, 
an incidence of septic shock of 10 – 15% is generally reported in literature (38,39). 
The high incidence in the present study can be attributed to the selection of patients. 
Patients with minor injuries and no post-operative complications, who were expected 
to have a short uneventful intensive care stay, were excluded from this study. In 
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addition, patients who died within three hours after trauma were excluded as well. 
Therefore, the studied population suffered from severe injuries, however survived 
the fi rst hours and was consequently at an increased risk for the development of 
infectious complications and sepsis. Yet, even in this small population with a severe 
infl ammatory response initial fMLP induced FcγRII* differences between patients 
who ultimately developed septic shock and patients who did not with suffi cient power 
and statistical signifi cance. 

In conclusion, this study creates a new perspective on the pathophysiological 
processes of severe infl ammation after trauma. The responsiveness of peripheral 
blood PMNs to respond to bacterial derived products is diminished after severe 
trauma, which is likely related to the development of septic shock 8 – 10 days after 
injury. 
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ABSTRACT

Organ failure after trauma can develop early (1-3 days) mediated by an overactive 
innate immune system, or late (>6 days) due to sepsis as a result of a suppressed 
immune system. Monocytes are important as precursor cells for both antigen 
presenting HLA-DR positive dendritic cells and tissue macrophages. Traditionally, 
changes in monocyte phenotype are thought to be related with second phase organ 
failure (e.g. sepsis). In this study the hypothesis was tested if composition of HLA-
DR positive/negative blood monocytes relates to the early phase (e.g. ARDS) of 
organ failure after trauma.
Fifty-fi ve trauma patients who underwent lower extremity intramedullary nailing (IMN) 
were included. The development of ARDS during the admission was recorded. Blood 
samples were taken prior, 15 minutes after and 18 hours after IMN. The phenotype 
of monocytes in the peripheral blood was determined. 
The percentage of HLA-DR positive monocytes was decreased prior to IMN 
compared to controls and correlated with the Injury Severity Score. A signifi cant 
decrease in the percentage of HLA-DR positive monocytes was seen 18 hours after 
IMN in all patients. Patients who developed ARDS after IMN showed a signifi cantly 
lower percentage of HLA-DR positive monocytes prior to surgery. This monocyte 
population demonstrated an activated phenotype characterized by increased CD11b 
expression. In addition, these cells were refractory to activation with fMLP in the 
context of active FcγRII (CD32).
In conclusion, an early shift in the composition of the monocyte population towards an 
activated phenotype, rich in HLA-DR negative cells, was related to the development 
of ARDS after IMN. This fi nding is in line with the hypothesis that initial hyper- or 
aberrant activation of the innate immune system induced by trauma is a risk factor 
for organ failure.
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INTRODUCTION

Monocytes, as precursor cells for both dendritic cells and macrophages, play an 
important role in the control of immune homeostasis, tissue repair and the host 
defence against invading macro-organisms (1-3). Monocytes enter a site of tissue 
injury within one hour after the initial insult (4). A pool of monocytes is present in 
the peripheral circulation allowing an immediate response to infection, infl ammation 
and/or tissue damage.

Monocytes also play an important role in the connection between the innate and 
adaptive immune system, as these cells can express HLA-DR (MHC-II), a receptor 
complex that allows antigen presentation to CD4+ lymphocytes (5,6). This allows 
these cells to prime the immune response of the host for an amplifi ed response to 
recall antigens.

Several studies have linked a reduction of HLA-DR expression on monocytes and/
or a reduction in the percentage of HLA-DR positive monocytes in the circulation 
with the incidence of late phase infections after injury (7-9). It was demonstrated 
in patients with severe sepsis, that circulating monocytes with a reduced HLA-DR 
expression have a pro-infl ammatory phenotype characterized by increased cytokine 
production and increased expression of adhesion receptors (10).

Presently, there is a general consensus that a hyper-activated innate immune 
response can lead to the systemic infl ammatory response syndrome (SIRS), 
responsible for early organ failure after trauma (11). Interestingly, little is known 
regarding these HLA-DR negative, pro-infl ammatory monocytes in relation with this 
early phase of organ failure such as pulmonary failure (Acute Lung Injury [ALI] or 
Acute Respiratory Distress Syndrome [ARDS]). We hypothesized that a relation is 
present between a reduction in HLA-DR positive monocytes and severity of injury. 
We investigated if HLA-DR expression and expression of activation markers on 
circulating monocytes was related to the development of early phase organ failure. 
In addition, it was investigated if intramedullary osteosynthesis (a well documented 
risk factor for ARDS) (12) infl uenced the percentage of HLA-DR positive monocytes 
in the circulation during and after the surgical procedure.
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MATERIALS AND METHODS

Patients
Fifty-fi ve trauma patients (admitted at the Department of Traumatology, University 
Medical Center Utrecht) with a tibia or femur fracture who required primary 
intramedullary nailing, were included in this study. Exclusion criteria were age < 16 
years or > 80 years and patients with an altered immunological status (e.g. use of 
corticosteroids or chemotherapy). The local medical ethical review board approved 
the study and written informed consent was obtained from all patients or their 
spouses in accordance with the protocol. Ten healthy volunteers were included for 
comparison with control values.

Clinical parameters
The Injury Severity Score (ISS) and APACHE-II score were calculated on admission 
(13,14). During the hospital stay, presence of systemic infl ammation (e.g. systemic 
infl ammatory response syndrome [SIRS]), or the occurrence of pulmonary 
complications (i.e. acute lung injury [ALI], or acute respiratory distress syndrome 
[ARDS]) were assessed by their clinical criteria as determined in the consensus 
conference (15,16). The presence of pneumonia was recorded by a positive sputum 
culture, an infi ltrate on the chest X-ray and clinical symptoms of infection (17). 
Pulmonary problems due to cardiac failure were determined by chest X-ray, high 
venous pressure (as determined by Swahn-Ganz catheter) and clinical signs of 
cardiac pump failure.

A fi rst blood sample was taken within 3-24 hours after the patients’ admission. 
Consecutive blood samples were taken during intramedullary nailing and 18 hours 
after intramedullary osteosynthesis. Blood was collected in a vacutainer® with 
sodium heparin as anticoagulant cooled immediately and kept on ice during the 
whole staining procedure.

Materials
For analysis of monocyte HLA-DR expression by fl owcytometry the following 
monoclonal antibodies were commercially purchased: FITC-labeled IgG1 negative 
control (clone DD7, Chemicon, Hampshire, United Kingdom) and FITC-labeled 
HLA-DR (YE2/36-HLK, Serotec, Dusseldorf, Germany), RPE-labeled CD11b 
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(clone 2LPM19c, DAKO, Glostrup, Denmark) and FITC labeled active FcγRII (A27; 
Respiratory Medicine, UMC Utrecht, Netherlands). Routine hematology parameters 
were determined at the Clinical Laboratory Department of the University Medical 
Center Utrecht (18). The analysis of the monocyte HLA-DR expression was started 
within two hours after the blood sample was obtained. 

Flowcytometry
Blood samples were stained with directly labeled antibodies as described previously 
(19). One sample of whole blood was stimulated for 5 minutes at 37˚C with 10-6 
fMLP, after which active FcγRII was measured. For all samples the directly labeled 
antibodies were added 1:20 to whole blood and incubated for 60 minutes on ice. 
After incubation, the red cells were lysed with ice-cold isotonic NH4Cl. After a fi nal 
wash with PBS2+ (phosphate buffered saline supplement with sodiumcitrate 0.38% 
wt/vol and pasteurized plasma protein solution 10% vol/vol), the cells were analyzed 
in a FACScalibur Flowcytometer (Becton & Dickenson, Mountain view. CA). The 
monocytes were identifi ed according to their specifi c side-scatter and forward-
scatter signals. Data from individual experiments are depicted as fl uorescence 
intensity in arbitrary units (AU) or summarized as the median channel fl uorescence 
(MCF) for all monocytes and/or for HLA-DR positive monocytes. The percentage of 
HLA-DR positive monocytes was defi ned as the percentage of monocytes with a 
higher expression of HLA-DR than its negative control value. 

Statistics
Results in fi gures are expressed as means ± standard error of mean (SEM). 
Statistical analysis was performed with the non-parametric Mann-Whitney U test 
to compare two groups and Kruskal-Wallis H test to compare multiple groups. 
Correlation analysis was performed using non-parametric Spearman correlation 
analysis. Statistical signifi cance was defi ned as p < 0.05. 
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RESULTS

A total of 55 patients fulfi lled the inclusion criteria. Three patients were excluded due 
to technical problems with the analysis of the monocytes: 1 multitrauma patient and 
2 patients with isolated tibia fractures. A total of 52 patients were further analyzed. 
Their mean age was 38 (range 16-80) and the mean ISS was 11 (range 4-43). 
Further demographics are listed in table 1. Eight patients had an ISS > 20, while an 
additional 8 patients suffered multi trauma as defi ned by ISS > 16 and 2 affected 
AIS regions. 

Table 1. Patient demographics. 

 Mean (range)

Number of patients (n) 52

Male / Female (n) 31 / 21

Age (years) 38 (16-80)

Injury Severity Score 11 (4-43)

APACHE II Score 4 (0-24)

Time on ICU (days) 2.5 (0-31)

Time on ventilation (days) 2.2 (0-29)

Packed red blood cells before sampling (units) 0.7 (0-15)

Fresh frozen plasma before sampling (units) 0.2 (0-4)

Cause of trauma (n)
- MVA
- Assault
- Fall of height
- Penetrating trauma

36
0
15
1

Complications (n)
- None
- ALI / ARDS

46
6

A relation between HLA-DR positive monocytes and injury severity (ISS) was found 
(Kruskal-Wallis H p=0.005). Patients with only mild trauma demonstrated a slight 
reduction in HLA-DR positive monocytes, whereas patients suffering severe trauma 
showed the most pronounced decrease in HLA-DR positive monocytes (Figure 1A). 
This difference in HLA-DR positive monocytes between the 3 groups disappeared 
after IMN (Figure 1B), as all patients demonstrated a decreased percentage of HLA-
DR positive monocytes.
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Figure 1. Injury severity and percentage HLA-DR positive monocytes. 
A statistically signifi cant difference was found before surgery (A) between patients with a low or high 
Injury Severity Score and the reduction in HLA-DR positive monocytes (p=0.005). However, this 
difference disappeared 18 hours after intramedullary nailing (B). Gray shaded area depicts normal 
control values.
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All patients underwent intramedullary nailing. Patients were stratifi ed according to 
their injury severity and surgical procedure (intramedullary nailing of tibia or femur 
fracture). Interestingly, all patients demonstrated reduced percentage HLA-DR 
positive monocytes 18 hours after the surgical procedure, regardless of their initial 
injuries (Figure 2). 
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Figure 2. HLA-DR positive monocytes and intramedullary nailing. 
Patients were stratifi ed in 4 groups according to their type of surgery (intramedullary nailing of either tibia 
or femur fracture) and the presence of other severe injuries. Prior to surgery, no statistically signifi cant 
differences were found between the 4 groups. After the surgical procedure, virtually all patients 
demonstrated a reduction in HLA-DR positive monocytes. No differences were found for reamed versus 
unreamed or local versus general anesthesia. Squares ■ represent pre-operative samples (all within 24 
hours after admission), circles ● represent per-operative samples and triangles ▲ represent samples 
taken 18 hours post-operative.

Severe systemic infl ammation is thought to be related to the development of 
infl ammatory complications such as ALI and ARDS. Along this line, a reduction in 
HLA-DR positive monocytes can be viewed as a consequence of this infl ammation. 
Therefore, we analyzed our patients in the context of presence HLA-DR positive 
monocytes in the circulation in relation to the development of complications within the 
fi rst 48 hours after sampling. Two patients developed ALI and four patients fulfi lled 
the ARDS criteria. The severity of the complications of these patients with ALI/ARDS 
is expressed in their days on intensive care support (0-11 vs 5-31) and mechanical 
ventilation (0-9 vs 4-29). The percentage HLA-DR positive monocytes was 
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statistically signifi cant decreased in the initial sampling preceding the development 
of ALI/ARDS (Mann Whitney U test p=0.001, Figure 3). After surgery, no signifi cant 
differences between patients with ALI/ARDS and without ALI/ARDS were detected.
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Figure 3. HLA-DR positive monocytes and development of ARDS. 
When patients were stratifi ed by the development of acute lung injury (ALI) or acute respiratory distress 
syndrome (ARDS) within 48 hours after the surgical procedure a statistically signifi cant lower percentage 
of HLA-DR positive monocytes was found pre-operative (Mann Whitney U test; p=0.035) and during 
surgery (Mann Whitney U test; p=0.039). 18 hours after the surgical procedure no statistically signifi cant 
difference was found. Squares ■ represent pre-operative samples (all within 24 hours after admission), 
circles ● represent per-operative samples and triangles ▲ represent samples taken 18 hours post-
operative.



regel 1

regel 2

regel 3

regel 4

regel 5

regel 6

regel 7

regel 8

regel 9

regel 10

regel 11

regel 12

regel 13

regel 14

regel 15

regel 16

regel 17

regel 18

regel 19

regel 20

regel 21

regel 22

regel 23

regel 24

regel 25

regel 26

regel 27

regel 28

regel 29

regel 30

regel 31

regel 32

regel 33

regel 34

regel 35

regel 36

regel 37

regel 38

regel 39

138

Chapter 7

101
102
3

104
105
106
107
101
101
101
101

Although CD11b (MAC-1) was initially not increased on monocytes in injured 
patients, an increased expression (p=0.02) was found on monocytes 18 hours after 
IMN in patients who developed ALI/ARDS (Figure 4A). In addition, a decreased 
responsiveness for the formylpeptide fMLP visualized by FMLP induced expression 
of active FcγRII was seen after IMN (Figure 4B).
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Figure 4. Activation markers on monocytes after injury. 
Expression of (A) MAC-1 (CD11b) and (B) fMLP induced active FcyRII on monocytes in patients who 
developed pulmonary complications and patients with an uneventful course after trauma. Patients 
who developed ALI/ARDS demonstrated signifi cantly increased MAC-1 (p=0.02) and decreased fMLP 
induced active FcyRII (p=0.023) after surgery. Squares ■ represent pre-operative samples (all within 24 
hours after admission), circles ● represent per-operative samples and triangles ▲ represent samples 
taken 18 hours post-operative. Gray shaded area depicts normal control values.
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DISCUSSION

This is the fi rst study that describes a relation between a decreased percentage 
of HLA-DR positive monocytes and injury severity in trauma patients. A marked 
decrease of the number of HLA-DR positive monocytes at admission precedes the 
occurrence of infl ammatory complications such as ALI or ARDS after IMN. Based 
on these data, the percentage of HLA-DR positive monocytes prior to IMN might 
allow staging of the systemic infl ammatory response in these patients. Interestingly, 
post-operative measurements demonstrated similar reduced percentages HLA-DR 
positive monocytes in virtually all patients and are, therefore, not suitable as read-
out factor for the development of infl ammatory complications early after IMN.

The phenotype of circulating monocytes shifts during the injury induced initial 
infl ammatory response. More pronounced injury is accompanied by the occurrence 
of monocytes characterized by the absence of HLA-DR, increased MAC-1 
expression and a low responsiveness to fMLP. It is tempting to speculate that these 
cells represent a shift from monocytes which are precursors of antigen presenting 
cells to precursors of infl ammatory phagocytic cells (e.g. macrophages). The clinical 
consequence of this change in phenotype of the circulating population of monocytes 
remains to be determined.

Identifi cation of all monocytes in total leukocyte preparations is a matter of concern 
as gating the cells on either scatter characteristics (as in Figure 1) or on the basis of 
immunophenotype (20-22) can induce bias by missing subpopulations of these cells. 
Therefore, no golden standard is available. Aggregation of monocytes might shift 
these cells out of the FSC/SSC gates, but this process is minimized as the staining 
is performed in a cold buffer without Ca2+ present. In addition, a small number of 
NK-cells can be present in the monocyte gate but this low amount of cells (<2%) 
could not have affected our data.. Other authors have provided reliable results by 
analyzing monocytes based on their forward sideward scatter characteristics (23). In 
addition, our results corroborate with previous reports on the presence of HLA-DR 
negative, activated monocytes (10,24).

To circumvent the above mentioned problem, monocytes are also identifi ed by 
CD14 in combination with other markers, such as CD16 or CD45(20,21). However, 
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the use of these markers under pathological conditions can still not guarantee an 
accuracy which is better than identifi cation on FSC/SSC characteristics. A decrease 
of >30% in CD14 expression on monocytes after in vitro incubation with streptotoxin 
and during clinical endotoxemia has been demonstrated (22,25). Identifi cation of 
monocytes can be biased by CD14 expression on both NK cells and PMNs (21). 

Reduced monocyte HLA-DR has been demonstrated after burns, trauma and 
during sepsis (23,26-29). Even the existence of the specifi c phenotype we analyzed 
has been shown previously during surgical patients with sepsis (10). This reduced 
HLA-DR expression is thought to lead to deregulated communication between the 
adaptive and innate immune responses resulting in an impaired immune status and 
the development of severe infections or sepsis. However, a relation between altered 
monocyte phenotype in the peripheral circulation and the development of ARDS 
has not been published yet. Monocyte changes have been related to ARDS, but 
these cells were harvested from the pulmonary interstitium (30,31). Early phase 
organ failure (ARDS) is thought to be the consequence of an excessive infl ammatory 
response (32-35). The relation between the reduced percentage of HLA-DR positive 
monocytes and the development of ARDS, further confi rms this hypothesis. The 
exact mechanisms and consequences need to be further addressed, but this study 
gives a new perspective on the pathophysiological role of monocytes during the 
early stages after trauma. 

This study shows a relation between injury severity and subsequent systemic 
infl ammation measured by a change in monocyte phenotype. This shift to a more 
macrophage type of cell, was related to the development of early infl ammatory 
complications such as ALI or ARDS. Therefore, by limitation of the occurrence of 
HLA-DR negative monocytes is likely to prevent early onset organ failure.
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ABSTRACT

Monocytes connect the innate immune system with the adaptive immune system 
by phagocytosis and antigen presentation. Reduced HLA-DR expression on 
monocytes after injury is thought to mediate immune suppression and, thereby, the 
development of sepsis. However, it is unknown if this is due to down-regulation of 
HLA-DR receptors or by redistribution of monocytes that are HLA-DR positive or 
negative.
A consecutive series of surgical ICU patients were included and monitored daily for 
both HLA-DR expression per individual monocyte as well as the percentage and 
number of HLA-DR positive monocytes. During this 14 day period, criteria for sepsis 
were daily assessed.
Forty-one patients were included of which twelve patients developed septic shock 
during the second week of admission. HLA-DR expression was decreased in all 
patients throughout the study period both at the individual cell and the population 
level. This was the result of both a reduction in HLA-DR expression per monocyte 
and a reduction in the number of HLA-DR positive monocytes. A normalization in 
the absolute number of HLA-DR positive monocytes was found in patients without 
septic shock, which was accompanied by a major increase in HLA-DR negative 
monocytes.
Patients who develop late phase septic shock following major injury are characterized 
by (1) a lack of normalization of HLA-DR positive monocytes and (2) no increase 
of HLA-DR negative monocytes during the recovery phase. The absence of this 
monocyte response points at an exhausted innate immune response in patients who 
develop late onset sepsis after injury.
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Monocytes are precursors of tissue macrophages and myeloid dendritic cells, which 
are important effector cells in clearance of invading pathogens and necrotic tissue 
as well as antigen presentation (1,2). Monocytes and macrophages enter a site of 
infl ammation and/or tissue damage within one hour after the initial infl ammatory 
insult (3). This rapid response is mediated by homing of cells from a circulating pool 
in the peripheral blood. Upon homing to specifi c tissues or organs, monocytes can 
differentiate into tissue-specifi c macrophages, such as Kupfer-cells in the liver or 
alveolar macrophages in the lung (4). 

Monocytes belong to the interphase between the innate and adaptive immune system. 
They can phagocytose and kill targets as true phagocyte-cells and can activate 
CD4+ lymphocytes by antigen presentation via HLA-DR (MHC-II) (5,6). By acting as 
antigen presenting cells (APC’s), these cells can steer T-cells in the direction of Th1 
or Th2 type immune responses. A reduction in HLA-DR expression on monocytes 
is supposed to be an important determinant in the immune suppression after severe 
injury leading to late phase sepsis (7-9). These fi ndings led to the interpretation that 
reduction in HLA-DR expression is involved in the compensatory anti-infl ammatory 
response syndrome (CARS).

Current consensus is that the reduced expression of HLA-DR on monocytes during 
sepsis is caused by an active down-regulation of the molecule from individual cells 
initiated by anti-infl ammatory cytokines. Indeed, after injury high concentrations of 
the anti-infl ammatory cytokine IL-10 (interleukin 10) have been found (10). This is 
consistent with the fi nding that IL-10 exposure to monocytes in vitro induces an 
internalization of the HLA-DR receptors (11). In addition, a correlation has been 
found between the concentrations of plasma IL-10 and the reduction of HLA-DR 
expression on monocytes (12). However, these in vivo fi ndings are not necessarily 
causative related (13). In literature, most studies regarding HLA-DR expression on 
monocytes focused on the whole population of cells. Several reports have described 
that both HLA-DR expression of the whole population as well as the percentage 
of HLA-DR positive monocytes are related to the development of septic shock 
after injury. However, it has not been proven if (1) monocyte HLA-DR expression is 
actively down-regulated, (2) HLA-DR positive monocytes leave the circulation or (3) 
HLA-DR negative monocytes are mobilized from tissues such as the bone marrow. 
Therefore, we analyzed HLA-DR expression both on the whole population and on 
individual monocytes in the circulation of severely injured patients.
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MATERIAL AND METHODS

Patients
A consecutive series of trauma and post-operative patients, who required admission 
to the intensive care unit of the University Medical Centre Utrecht were included. 
Patients were between 18 and 80 years old, with an expected ICU stay of ≥ 3 days. 
Exclusion criteria were chronic disease infl uencing the immune system and the use 
of immunosuppressive medication. The patients were followed for 14 days or as long 
as their stay on the ICU lasted. 
Informed consent was obtained as soon as possible from the patient self or by a 
legal representative. The local ethical committee approved the study and written 
informed consent was obtained from all patients or their spouses in accordance with 
the protocol.

Clinical parameters
The APACHE-II score was calculated on admission (14). The criteria for SIRS 
(Systemic Infl ammatory Response Syndrome), sepsis or septic shock were defi ned 
as proposed by the International Sepsis Defi nitions Conference and were assessed 
on a daily basis (15). 

Sampling
A fi rst blood sample was taken within 3 – 12 hours after the patients’ admission to 
the ICU; this was defi ned as day zero. Serial blood samples were taken on a daily 
basis during the next 14 days of the patient’s admission. Blood was collected in a 
vacutainer® with sodium heparin as anticoagulant, cooled immediately and kept 
on ice during the whole staining procedure. The analysis of the monocyte HLA-DR 
expression was started within two hours after the blood sample was obtained. 

Materials
Monocyte HLA-DR expression was analyzed by fl owcytometry. The following 
monoclonal antibodies were commercially purchased: FITC-labeled IgG1 negative 
control (clone DD7, Chemicon, Hampshire, United Kingdom) and FITC-labeled HLA-
DR (YE2/36-HLK, Serotec, Dusseldorf, Germany). Routine hematology parameters 
were determined at the Clinical Laboratory Department of the University Medical 
Center Utrecht.
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Flowcytometer analysis
Blood samples were stained with directly labeled antibodies (16). The directly 
labeled antibodies were added 1:20 to whole blood and incubated for 60 minutes on 
ice. After incubation, the red cells were lysed with ice-cold isotonic NH4Cl. After a 
fi nal wash with PBS2+ (phosphate buffered saline supplemented with sodiumcitrate 
(0.38% wt/vol) and pasteurized plasma proteins (10% vol/vol)), the cells were 
analyzed in a FACScalibur Flowcytometer (Becton & Dickenson, Mountain view. 
CA). The monocytes were identifi ed according to their specifi c side-scatter and 
forward-scatter signals. Data from individual experiments are depicted as median 
fl uorescence intensity (MFI) in arbitrary units (AU) for all monocytes and/or for HLA-
DR positive monocytes. The percentage of HLA-DR positive monocytes was defi ned 
as the percentage of monocytes with a HLA-DR expression above the 99%-CI of 
negative control values. 

Measurements
Results of a single sample are expressed in fi ve different forms; 1) median HLA-DR 
expression of all monocytes, 2) percentage of monocytes expressing HLA-DR above 
the 99%-CI of negative control value (= HLA-DR positive monocytes), 3) median 
HLA-DR expression of monocytes with HLA-DR expression above the 99%-CI of 
negative control value (e.g. percentage HLA-DR positive monocytes), 4) number of 
HLA-DR positive monocytes and 5) number of HLA-DR negative monocytes.

Statistical analysis
Results are expressed as means ± standard error of mean (SEM). Statistical analysis 
was performed with the non-parametric Mann-Whitney U test to compare 2 groups, 
Kruskal Wallis H test for multiple groups and Pearson correlation for comparison of 
two continues values. Statistical signifi cance was defi ned as p < 0.05. 
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RESULTS

Demographics
Forty-one patients were analyzed. Thirty-six patients were admitted after 
(multi)trauma, the other 5 were post-operative patients after major surgery. The 
mean APACHE-II and ISS score were 15 (SD = 7.7) and 24 (SD = 10.8) respectively. 
Thirty-fi ve of the included patients developed a SIRS and 24 patients met the sepsis 
criteria (15). Twelve patients developed septic shock. All trauma patients (10) that 
developed septic shock fulfi lled the septic shock criteria between days 8-10 after 
admission. One post-operative patient developed septic shock on the second day 
and one post-operative patient developed septic shock on the seventh day of ICU 
admission. Four patients died during their admission, of whom one died during the 
14 day study period. Causes of death were multiple organ failure for 3 patients and 
cardiac arrest for 1 (Table 1). 

Table 1. Demographics

Mean (range)

Number of patients (n) 41

Male / Female (n) 32 / 9

Age (years) 49 (18-73)

Injury Severity Score 24 (9-57)

APACHE II Score 15 (0-35)

Time in ICU (days) 17 (2-67)

Time on ventilator (days 16 (0-65)

Cause of admission (n)
- Trauma
- Post-operative

36
5

Complications (n)
- SIRS
- Sepsis
- Septic shock
- Mortality

35
24
12
4

Number of monocytes
Monocytes numbers remained within the normal range (0.3 – 0.8106/ml) during the 
fi rst week after trauma. However, a massive increase in monocytes numbers was 
seen during the second week of admission, more pronounced in patients who did 
not develop septic shock (p < 0.05) (Figure 1A). 
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Figure 1. Number of monocytes in the circulation
The number of monocytes was within the normal range (0.3 – 0.8 106/ml, indicated by gray shaded 
area) for all patients during their fi rst week of ICU admission. Patients who did not develop septic 
shock showed a marked increase (p < 0.05) in total number of monocytes during the second week of 
admission (A). This increase in monocyte number consisted of monocytes with HLA-DR and monocytes 
(B) without HLA-DR expression (C), while patients who developed septic shock showed low numbers 
of monocytes expressing HLA-DR. Closed circles ● represent patients without development of septic 
shock and open triangles ∆ represent patients who developed septic shock. Data are presented as 
mean ± standard error.
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Figure 2. HLA-DR expression on monocytes throughout admission.
Both the HLA-DR expression on the whole monocyte population (A) and the percentage HLA-DR 
positive monocytes (B) reduced signifi cantly during the fi rst three days of admission. Median HLA-DR 
expression remained decreased in all patients throughout admission. No signifi cant difference was 
found between patients who developed septic shock and patients without septic shock. Gray shaded 
area indicate reference values, closed circles ● represent patients without development of septic shock 
and open triangles ∆ represent patients who developed septic shock. Data are presented as mean ± 
standard error, both patient groups demonstrated signifi cantly lower HLA-DR expression as compared 
to controls (Mann Whitney U test P < 0.05 on all days).
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HLA-DR expression on monocytes
Compared to controls total monocyte HLA-DR expression was reduced directly after 
injury and further decreased during the fi rst days of admission (p < 0.05). No signifi cant 
differences were found between patients that developed septic shock and patients 
without sepsis (Figure 2A). Additionally, compared to controls the percentage of 
HLA-DR positive monocytes was decreased throughout the study period. During the 
study period no signifi cant differences were found between patients with or without 
later development of septic shock (fi gure 2B). Furthermore, the relative expression of 
HLA-DR was decreased on monocytes actually expressing the receptor. Again, no 
differences were found between patients who developed septic shock and patients 
without septic shock (Figure 2C).

HLA-DR expression on HLA-DR positive monocytes
In order to study the cause of the massive reduction of HLA-DR expression on 
monocytes, correlation analysis was performed to differentiate between down-
regulation of HLA-DR on the entire monocyte population versus the reduction of 
HLA-DR per individual cell. A statistically signifi cant correlation (Pearson p = 0.000; 
r = 0.595) was found between these two parameters (fi gure 3A). A decrease in 
numbers of 50% in HLA-DR positive monocytes (from 75% to 25%) resulted in a 50% 
reduction in HLA-DR expression (from 30 AU to 15 AU) for the whole monocytes 
population. 

In contrast, no correlation was found between the percentage of HLA-DR positive 
monocytes and the median HLA-DR expression on these HLA-DR positive 
monocytes (fi gure 3B). Thus, the magnitude of HLA-DR expression on individual 
monocytes was not related to the number of monocytes expressing HLA-DR. Even 
when only 2% HLA-DR positive monocytes were present in a sample, monocytes 
with a high expression of > 500 AU of HLA-DR were present (results not shown).

Number of HLA-DR positive monocytes
The increase in number of monocytes, seen in patients without septic shock during 
the second week of admission, also led to a normalization in the absolute number of 
HLA-DR positive monocytes (Figure 1B). The low percentage of HLA-DR positive 
monocytes in the total monocyte population could completely be attributed to the 
massive increase in the total number of monocytes (Figure 1C). 
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Figure 3. Cause for reduction in relative expression of HLA-DR on monocytes.
A statistically signifi cant correlation was found between the relative median HLA-DR expression on 
monocytes and the percentage of HLA-DR positive monocytes (A), with p = 0.000 and r2 = 0.595 
(Pearson). No correlation was found between the relative median HLA-DR expression on monocytes 
and relative median HLA-DR expression on HLA-DR positive monocytes (B), with p = 0.308 and r2 = 
0.003 (Pearson). 
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DISCUSSION

In this study, a correlation was found between HLA-DR expression on the total 
monocyte population and the percentage monocytes positive for HLA-DR, which 
corroborates with previous studies on this subject. However, our data do not support 
the hypothesis from those studies that immune suppressive cytokines, such as IL-
10, cause active down regulation of HLA-DR on individual monocytes under these 
conditions. Our data support the idea that massive redistribution of monocytes is 
at the basis of the decrease in percentage of HLA-DR positive cells (17,18). This 
conclusion is based on the following.

No correlation was found between the extent of HLA-DR expression on HLA-
DR positive monocytes and the percentage of monocytes expressing HLA-DR in 
the monocyte population during the whole study period. This suggests that the 
reduction in HLA-DR expression in the monocyte population is primarily the result 
of redistribution of HLA-DR positive monocytes from the circulation rather than a 
decreased expression per cell.

This is supported by analysis of absolute numbers of monocyte populations rather 
than percentages of these population. It turned out that the major increase in the 
number of HLA-DR negative monocytes caused the decreased percentage of 
HLA-DR positive monocytes during the recovery phase in trauma patients. In fact, 
the absolute number of HLA-DR positive monocytes normalized in the recovery 
phase of the patients who did not develop septic shock (Figure 1B) despite the 
fact that percentage HLA-DR positive cells was markedly decreased (Figure 2B). 
Although the expression of HLA-DR on individual monocytes was also decreased in 
patients compared to controls, this phenomenon was not correlated with the HLA-
DR reduction on the whole monocyte population. Thus, additional suppression of 
HLA-DR on monocytes by e.g. anti-infl ammatory cytokines might be present, but 
apparently plays a minor role in the HLA-DR reduction on the circulating monocyte 
population.
.
Although there occurs restoration to normal numbers of HLA-DR positive monocytes 
in patients without septic shock, the HLA-DR positive monocyte population is 
outnumbered by a population of HLA-DR negative monocytes (17,18). These HLA-
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DR negative monocytes have been described previously as HLA-DR negative 
(“angry”) macrophages. In contrast to the normally required antigen presentation 
function of monocytes in their dendritic cell precursor function, a functional shift 
occurs in severely injured patients towards a more phagocytic phenotype (19,20). It 
is tempting to speculate that these patients require a large amount of phagocytotic 
cells to clear the necrosis and infl ammation from the injured tissues(18). 

Some studies have shown that a low median HLA-DR expression of the whole 
monocyte population or a low percentage of HLA-DR positive monocytes at 
admission is indicative for the development of late sepsis after trauma (8,9). We 
could not demonstrate such an early relation. On the other hand, we corroborated 
the fi nding that a continuous low number of HLA-DR positive monocytes (both 
percentage and absolute number) was related with the development of septic shock. 
These data should be interpreted in the context of two not necessarily connected 
phenomena: modulation of HLA-DR+ and HLA-DR- monocytes.

All our patients were severely injured and exhibited a severe infl ammatory response 
resulting in a very high incidence of SIRS and a high incidence of infectious 
complications presumably caused by a CARS (21,22). This latter period of immune 
suppression in these patients was characterized by two phenomena: low expression 
of HLA-DR+ cells and a lower supra-normal amount of HLA-DR- cells. Previous 
studies focusing on the modulation of HLA-DR+ cells, found moderate signifi cances 
and had to analyze larger patient cohorts. Therefore, these fi ndings are of limited 
applicability for the individual trauma patient. In line with this reasoning are studies 
performed in patients with sepsis on inclusion. These studies showed a trend 
of increased mortality in patients characterized by < 30% of HLA-DR positive 
monocytes, but these fi ndings failed to reach statistical signifi cance(12,23-25). Our 
study was not powered for mortality, but took into account the fact that the number 
of HLA-DR+ normalized during the recovery phase and that the number of HLA-DR- 
negative monocytes drastically increased. Studies focusing purely on percentage 
HLA-DR+ monocytes will be confounded by the modulation of numbers of HLA-DR- 
monocytes. 

Our study could not demonstrate a signifi cant difference in HLA-DR expression on 
monocytes during the fi rst 6 days upon admission in patients who developed septic 
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shock. These data question the importance of immune suppressive cytokines such 
as IL-10 in the fi rst 7 days of trauma (11,12). In addition, it has recently been shown 
that IL-10 concentrations decrease rapidly after its peak in the fi rst 48 hours, thus 
after 3 days do not correlate with decreased HLA-DR expression (13,26). On the 
eight day of sampling patients who developed late phase septic shock demonstrated 
signifi cantly lower percentages as well as absolute numbers of HLA-DR positive 
monocytes, which is in line with the aforementioned studies.

We can only speculate as to why monocytes with high HLA-DR expression 
disappear during the fi rst 48-72 hours after injury in all patients and why HLA-DR+ 
cells normalize and large numbers of HLA-DR negative monocytes appear in the 
circulation during the recovery phase of patients without septic shock (Figure 1). It 
is tempting to speculate that a overzealous innate immune response after trauma 
leads to exhaustion of monocyte mediated immune response. The lack of HLA-DR 
positive monocytes during the CARS phase might be part of a “paralyzed” immune 
response to infectious agents such as broadly speculated in the literature. The low 
numbers of HLA-DR- monocytes might lead to improper repair of injured tissue 
leading to impaired barrier function, contributing to impaired responses to infectious 
conditions. Thus, the magnitude of redistribution of the monocyte populations can 
be used as marker for the risk of development of severe infections and subsequent 
sepsis.

In conclusion, we have demonstrated that the early reduction in HLA-DR expression 
in the monocyte population in response to injury in all trauma patients is largely 
due to the loss of HLA-DR positive monocytes from the circulation. The risk for 
developing late onset sepsis coincides with an impaired monocyte response during 
the recovery phase: no normalization of HLA-DR positive cells together with a low 
mobilization of HLA-DR- cells. Therefore, therapy should be aimed at maintaining 
normal monocyte populations.
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Occurrence of VLA-4 positive neutrophils coincides with suppressed 

functionality of the innate immune system

Falco Hietbrink1

Laurien Ulfman2

Vera Kamp2

Janesh Pillay2

Jeroen Langereis2

Saskia Jol1
Martje Althuizen1

Loek PH Leenen1

Leo Koenderman2

Depts. of Surgery1 and Pulmonary Sciences2

University Medical Center Utrecht, Utrecht, the Netherlands

In preparation



regel 1

regel 2

regel 3

regel 4

regel 5

regel 6

regel 7

regel 8

regel 9

regel 10

regel 11

regel 12

regel 13

regel 14

regel 15

regel 16

regel 17

regel 18

regel 19

regel 20

regel 21

regel 22

regel 23

regel 24

regel 25

regel 26

regel 27

regel 28

regel 29

regel 30

regel 31

regel 32

regel 33

regel 34

regel 35

regel 36

regel 37

regel 38

regel 39

162

Chapter 9

101
102
3

104
105
106
107
108
109
101
101

Septic shock is a leading cause of death (30% mortality) with a world wide 
annual incidence of 18 million affected individuals. Sepsis resulting from a severe 
infl ammatory insult such as burns and trauma typically occurs after 8–14 days and is 
facilitated by a compensatory anti-infl ammatory response syndrome (CARS) caused 
by a dysfunctional innate immune system. Deregulated neutrophils (PMNs) play an 
essential role in the pathogenesis of CARS and characterization of these PMNs was 
the subject of this study.
Forty-seven trauma patients who required ICU support were included and followed 
for 14 days in terms of both clinical and immunological parameters. The study 
focused on the morphology, immuno-phenotype and functionality of PMNs during 
this study period. The functionality of PMN phenotypes was assessed on cells 
that were isolated by cell sorting. The characteristic of these systemic PMNs was 
compared with cells isolated (by sorting) from lung fl uid, bone marrow and lymph 
fl uid of critically ill patients. Tissue samples were obtained post mortem from patients 
who died of severe sepsis.
A complex mixture of PMN subpopulations was identifi ed in the peripheral circulation 
in the 14 days study period after trauma. These phenotypes were identifi ed by 
differences in FcγRIII (CD16)/ VLA-4 (CD49d) expression. Two VLA-4 positive PMN 
phenotypes were found both early and late after major trauma. Sorting revealed 
that (1) CD16Intermediate/CD49dIntermediate cells were (meta)myelocytes and (2) CD16Bright/
CD49dBright cells were end stage toxic PMNs. This latter phenotype was also found 
in the lymph and lung fl uid of patients with organ failure. The VLA-4 expressed on 
these phenotypes was functional as the cells could bind to VCAM-1 coated beads. 
None of the peripheral PMN phenotypes showed any indications for apoptosis. PMN 
apoptosis was only found in spleen, liver and bone marrow in post mortem tissue 
from patients with severe sepsis. 
The appearance of VLA-4 positive PMNs coincides with periods of acute severe 
systemic infl ammation directly caused by trauma and/or during development of 
sepsis. Functionally these cells have a suppressed phenotype and are very similar to 
cells obtained from the tissues. These data support the hypothesis that development 
of CARS 8-10 days after trauma is mediated by development of neutrophils with a 
low functionality from the tissues together with insuffi cient suppletion of functional 
neutrophils from the bone marrow.
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During the systemic infl ammatory response syndrome (SIRS) that follows early after 
injury, PMNs (polymorphonuclear granulocytes or neutrophils) home to both injured 
and non-injured tissues (1,2). In addition, a clear leukocytosis is present in the 
peripheral blood (chapter 6)(2). During this period of acute infl ammation, a marked 
decrease in functionality of PMN was found (3-5). Recently, we could show that at 
approximately 7 days after trauma the impairment of neutrophil function was maximal 
(chapter 6). Strikingly, the kinetics of this process overlaps with the compensatory 
anti-infl ammatory response syndrome (CARS) (6). This syndrome is an important 
risk factor for the development is of late onset (>8 days after) sepsis and septic 
shock (1,6-9) and is characterized by a marked suppression of the innate immune 
system of unknown aetiology. One hypothesis suggests that CARS is induced by the 
production of anti-infl ammatory cytokines (e.g. IL-10), but this conclusion lacks solid 
experimental support (10,11). 

Despite the multitude of studies regarding functionality of neutrophils in vitro 
surprisingly little is know regarding the kinetics and functionality of these cells in 
humans in vivo. The current paradigm describes that neutrophils originate from the 
bone marrow, are distributed through the blood and home to tissues, where they 
eventually are cleared by apoptosis and phagocytosis by resident macrophages 
(12-14). Once released from the bone marrow the half life of neutrophils in the 
peripheral blood is short (8-24 hrs) (15,16). This situation allows PMNs to accurately 
participate in immune surveillance by rapidly responding to an infectious threat and 
fast clearance upon completion of their task. 

Under normal homeostatic conditions neutrophils are found in the peripheral blood as 
a uniform population, which is homogenous in responsiveness to stimuli. Neutrophils 
can acquire a primed phenotype in peripheral blood under conditions of both acute 
and chronic infl ammation (17-19). Strikingly, these conditions are still characterized by 
a homogenous pool of primed cells; i.e. all cells in the blood had a primed phenotype 
and no separate subpopulations were found at the same time. The most convincing 
data that subpopulations of neutrophils can coexist in blood was found under 
extreme conditions found during sepsis (20-22). In this study, Ibottson et al. showed 
the existence of a distinct subpopulation of blood neutrophils that was characterized 
by the expression of VLA-4 next to cells not expressing this integrin. This phenotype 
could be induced in cells from normal donors by incubation of these cells with serum 
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of septic patients. The study did not provide any information on the morphology and 
functionality of these VLA-4 positive neutrophils. In addition, a lower expression of 
FcγRIII (CD16) was demonstrated on a part of the neutrophil population after extra-
corporal circulation during bypass surgery, which was attributed to the presence of 
young PMNs in the circulation (23-26).

We tested the hypothesis that after severe injury PMN subpopulations can be 
identifi ed in the peripheral circulation by characterization of expression of FcγRIII 
(CD16) and VLA-4 (CD49d/CD29) and that these subpopulations are characterized 
by different kinetics, morphology and function. 

A
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MATERIAL AND METHODS

For all different patient populations, the institutional medical ethical review board 
approved the studies and written informed consent was obtained from all patients or 
their legal representatives in accordance with the protocol.

Patients: severely injured trauma patients
A series of 47 consecutive severely injured patients was included who required 
intensive care support (ICU) in the University Medical Centre Utrecht. Patients had 
to be between 18 and 80 years old, with an expected ICU stay of ≥ 3 days. Exclusion 
criteria were chronic diseases infl uencing the immune system and/or the use of 
immunosuppressive medication. The patients were followed for a maximum of 14 
days or as long as their stay in the ICU lasted. Results obtained from these patients 
were compared with results from 10 healthy controls. 

Study set up
Longitudinal sampling
The study was set up as a longitudinal study. Multitrauma patients were included 
as soon as possible after admission in the ICU. The fi rst blood sample was taken 3 
– 12 hours after trauma (day zero). Serial blood samples were taken on a daily basis 
during the following 14 days or as long as the patient stayed in the ICU. Criteria for 
SIRS, sepsis or septic shock as defi ned by the criteria proposed by the International 
Sepsis Defi nitions Conference, were assessed during the ICU stay (27,28). Also the 
SOFA (Sequential Organ Failure Assessment) score as a measurement for disease 
severity was determined on a daily basis (29). Blood was collected in a vacutainer® 
with sodium heparin as anticoagulant and was cooled immediately and kept on ice 
during the whole staining procedure, which started directly. 

Sampling of PMNS from different locations
1. Bone marrow: Bone marrow from 5 healthy donors was obtained by crista 

puncture. One milliliter of bone marrow was obtained before further handling 
of the sample for therapeutic reasons. This bone marrow sample was put in 
a vacutainer® with sodium heparin as anticoagulant. Phosphate buffered 
saline (PBS = 0.5% wt/vol) with added sodiumcitrate (0.38 % wt/vol) and 
isotonic pasteurized plasma proteins (10% vol/vol) (PBS2+) was added to 
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the bone marrow aspirate. The bone marrow PBS2+ solution was fi ltered 
with 500 μm pores, leaving behind larger peaces of bone or medulla. The 
fi ltered fl uid was put on ice and directly analyzed.

2. Lung fl uid: Five patients, who had developed acute lung injury the fi rst day 
after trauma, provided lung fl uid aspiration samples. A non-directed broncho-
alveolar lavage was performed, which is standard of care at the intensive 
care unit (3). The lung fl uid sample was put in a vacutainer® with sodium 
heparin as anticoagulant, which was directly put on ice and analyzed.

3. Lymph fl uid: Five patients, who had developed chylothorax in the fi rst days 
after trauma or surgery, provided thoracic chylus samples. Chylus was 
obtained by aspiration from the thoracic cavity by guidance of the drain 
which was already in situ. The fl uid was drained in a vacutainer® containing 
sodium heparin as anticoagulant.

Flowcytometer analysis
For analysis of PMN receptor expression by fl owcytometry, the following standard 
monoclonal antibodies were commercially purchased: FITC-labeled IgG1 negative 
control (clone DD7) from Chemicon, Hampshire, United Kingdom; RPE-labeled 
IgG2a negative control (clone MRC OX-34), Alexa-labeled CD16 (clone 3G8, 
BD Pharmingen, Franklin Lakes, USA) and RPE-labeled CD49d (clone 9F10, 
Ebioscience, San Diego, USA). Blood samples were stained with directly-labeled 
antibodies as described previously (3). In short, red cells were lysed with with ice-
cold isotonic NH4Cl. Directly labeled antibodies were added 1:20 and samples were 
incubated for 60 minutes on ice. After a fi nal wash with phosphate buffered saline 
(PBS = 0.5% wt/vol) supplemented with sodiumcitrate (0.38 % wt/vol) and isotonic 
pasteurized plasma proteins (10% vol/vol), the cells were analyzed in a FACScalibur 
fl owcytometer (Becton & Dickinson, Mountain View. CA). The PMNs were identifi ed 
according to their specifi c side-scatter and forward-scatter signals. Data from 
individual experiments are depicted as median fl uorescence intensity in arbitrary 
units (AU) of at least 10000 events. 

Characterization of sorted PMN populations
Granulocytes in 5 ml of whole blood were analyzed. Red cells were lysed with 
with ice-cold isotonic NH4Cl. Leukocytes were washed and resuspended in 
PBS supplemented with human serum albumin (0.5% wt/vol) and sodium citrate 

A
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(0.38% wt/vol). Leukocyte samples were directly analyzed by staining of cytospins 
with May-Grunwald-Giemsa as well as by fl owcytometry using a FACScalibur 
fl owcytometer. The presence of subpopulations was analyzed by fl owcytometry. 
When subpopulations were present, 5*106 fresh cells were stained with FITC-
labeled CD16 (LNK16, Serotec, Dusseldorf, Germany) and RPE-labeled CD49d 
(clone 9F10, Ebioscience, San Diego, USA) and sorted. Granulocyte populations 
were sorted with a FACSvantage fl owcytometer (Becton & Dickenson, Mountain 
view. CA). The PMNs were identifi ed according to their specifi c side-scatter and 
forward-scatter signals and sorted based on their CD16 and CD49d expression 
(Figure 1). Five phenotypes of granulocytes were sorted; 1) CD16Bright/CD49dMinus, 2) 
CD16Bright/CD49dBright, 3) CD16Intermediate/CD49dDim, 4) CD16Intermediate/CD49dIntermediate, 5) 
CD16Minus/CD49dBright (see also Figure 2).

Histological examination of post mortem tissue samples
Approval for pathological examination was obtained from the legal representatives of 
fi ve patients who died of organ failure during severe sepsis. Organs were inspected, 
weighted and a specimen per organ was obtained. The specimens were fi xed in 4% 
buffered formalin, embedded in paraffi n until further analysis. Staining of specimens 
was performed as described before (30). Samples were sliced in 4 μm sections, 
which were placed at 56 ˚C overnight. Endogenous peroxidase was blocked with 
blocking buffer (C6H8O7, Na2HPO4 and NaN3 with a pH of 5.8 diluted 1:1000 in H20) 
for 15 minutes. Coupes were pre-treated before the primary antibody was added 
and incubated at room temperature for 1 hour. For MPO and Caspase 3 samples 
were pre-treated with citrate and for Lactoferrin with EDTA. Giemsa and HE staining 
did not require pre-treatment. Caspase 3 was added 1:20. The secondary directly 
labelled antibody was added for 30 minutes at room temperature. Hereafter, the 
staining was developed with DAB substrate for 10 minutes and haematoxylin for 10 
seconds. Finally, the coupes were dehydrated and stored. 

Functional analysis: beads assay
In three patients with VLA-4 positive PMNs, the functionality of the α4 integrins 
expressed on PMN’s was determined by binding to VCAM-1-coated fl uorescent 
microbeads as described before (31). Briefl y, TransFluor-Spheres (488/645 nm, 1.0 
μm; Molecular Probes) were covalently coupled to streptavidin using 1-ethyl-3(3-
dimethylaminopropyl)-carbodiimide in MES buffer (pH 6). Then, beads were coated 



regel 1

regel 2

regel 3

regel 4

regel 5

regel 6

regel 7

regel 8

regel 9

regel 10

regel 11

regel 12

regel 13

regel 14

regel 15

regel 16

regel 17

regel 18

regel 19

regel 20

regel 21

regel 22

regel 23

regel 24

regel 25

regel 26

regel 27

regel 28

regel 29

regel 30

regel 31

regel 32

regel 33

regel 34

regel 35

regel 36

regel 37

regel 38

regel 39

168

Chapter 9

101
102
3

104
105
106
107
108
109
101
101

with biotin-SP-Affi nipure goat anti-human Fc(γ) F(ab’)2 and subsequently coated with 
Fc-VCAM-1. Mixed granulocytes were isolated as described previously (32). In short, 
mononuclear cells were removed by centrifugation over isotonic Ficoll (1.077 g/ml). 
After lysis of erythrocytes with an isotonic icecold NH4Cl solution, granulocytes 
were washed and resuspended in incubation buffer (HEPES supplemented with 
glucose 0.16% wt/vol, calcium 0.8% wt/vol and serum albumin 2% vol/vol). Cells 
(40 –50,000/well) were pre-incubated with control anti-HLA-ABC (W6/32) mAb, 
anti-α4-integrin blocking mAb HP2/1 (10 μg/ml), or pharmacological inhibitors. The 
ligand-coated beads were washed twice and added in a 96-well V-shaped-bottom 
plate. Next, the pre-incubated PMNs were added and incubated for 30 min at 37°C. 
The cells were washed and resuspended in incubation buffer (4°C) and kept on ice 
until measurement. Binding of the fl uorescent beads to the PMNs was determined 
by fl ow cytometry using the FACSCalibur and results reported as the percentage of 
PMNs positive for VCAM-1-coated beads.

Statistical analysis
Receptor expression was analyzed as median fl uorescence intensity (MFI) in 
arbitrary units (AU). In addition, cells were analyzed as percentage of positive 
cells. Results in fi gures are expressed as means ± standard error of mean (SEM). 
Statistical analysis was performed with the non-parametric Mann-Whitney U test 
for two groups. Kruskal Wallis H analysis was used to analyze changes between 
multiple groups. Statistical signifi cance was defi ned as p < 0.05. 
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RESULTS 

Patient characteristics
Of the 47 included surgical intensive care (ICU) patients, 13 patients developed 
septic shock during admission. All but 1 patient remained at least 7 days at the 
ICU, illustrating the high severity of trauma these patients suffered (Table 1). In 
analogy to the study of Ibottson et al. the VLA-4 expression on neutrophils was 
determined and analyzed in the context of severity of disease. As is clear from Figure 
1A more severe disease during admission is associated with more VLA-4 positive 
neutrophils in peripheral blood (p = 0.042). Figure 1B shows that patients with this 
high percentage of VLA-4 positive neutrophils during admission (>10%) exhibit 
sustained severe disease during the fi rst 5 days after admission, demonstrated by 
the increased SOFA score.

Table 1. Patient demographics

Mean (range)

Number of patients (n) 47

Male / Female (n) 36 / 11

Age (years) 45 (18-73)

Injury Severity Score 28 (9-75)

APACHE II Score 16 (0-35)

Time on ICU (days) 16 (3-67)

Time on ventilation (days 15 (0-65)

Complications (n)
- SIRS
- Sepsis
- Septic shock
- Mortality

37
25
13
3

Demonstration of multiple immune-phenotypes of PMN’s in trauma patients
Five PMN subpopulations were identifi ed in the peripheral blood of these critically ill 
patients. These populations can be identifi ed on the expression of only two receptors: 
FcγRIII and VLA-4 (see below). The kinetics of occurrence of these subpopulations 
in the different patients differed during the 14 days sampling period demonstrating 
the complexity of the regulation of the innate immune response under these 
conditions. The phenotypes varied in timing of occurrence as well as in magnitude, 
depending on the type and severity of injury. In patients with severe septic shock up 
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to 40% (20x109 cells/L) VLA-4 positive PMNs were found in the circulation. Detailed 
analysis demonstrated the presence of 5 distinct PMN subpopulations characterized 
by 1) CD16Bright/CD49dMinus, 2) CD16Bright /CD49dBright, 3) CD16Intermediate/CD49dDim, 4) 
CD16Intermediate/CD49dIntermediate, 5) CD16Minus/CD49dBright (Figure 2). 

VLA-4 positive PMNs
< 4% 4-10% >10%
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Figure 1. VLA-4 positive PMNs and severity of disease.
Subpopulations based on CD16/CD49d were identifi ed in the investigated population. However, the 
percentage of VLA-4 positive cells varied widely. Patients in who most VLA-4 positive cells were seen, 
demonstrated more severe illness (A) compared to patients without large amounts of VLA-4 positive 
cells (p=0.042, Kruskal Wallis H test). In addition, patients with toxic PMNs during their admission 
demonstrated a more severe and prolonged course of illness (B). †: p < 0.05.
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Figure 2. Subpopulation morphology.
Healthy volunteers have mostly CD16Bright/CD49dMinus PMNs. In contrast, critically ill patients demonstrate 
5 subpopulations based on CD16 and CD49d: 1) CD16Bright/CD49dMinus = mature (segmented) neutrophils; 
2) CD16Bright/CD49dBright = toxic neutrophils; 3) CD16Intermediate/CD49dDim = banded neutrophils and 
metamyelocytes; 4) CD16Intermediate/CD49dIntermediate = metamyelocytes or toxic neutrophils; 5) CD16Minus/
CD49dBright = eosinophils.
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Kinetics and histological characteristics of PMN phenotypes in peripheral 
blood of trauma patients
Immediately (3-12 hours) after trauma only CD16Bright/CD49dMinus and CD16Intermediate/
CD49dDim PMN subpopulations were identifi ed. Hereafter, the most abundant PMN 
subpopulations were characterized by CD16Intermediate/CD49dIntermediate and CD16Bright/
CD49dBright which typically occurred during days 4-8 after trauma (Figure 3). The 
different PMN subpopulations were sorted according the gates indicated in Figure 
2A. Histological assessment of this CD16Intermediate/CD49dIntermediate subpopulation 
showed multiple PMN maturation stages, ranging from myelocytes, metamyelocytes 
to cells with banded phenotypes. Interestingly, the (meta)myelocytes characterized 
by a CD16Intermediate/CD49dIntermediate phenotype contained nuclei with a chromatin 
density which was comparable to that of mature (segmented) PMNs. 

Histological examination of the other sorted subpopulations revealed unique 
features (Figure 2). CD16Bright/CD49dMinus appeared to be mature PMNs with a normal 
nuclear shape and density. CD16Minus/CD49dBright granulocytes were eosinophils. 
CD16Intermediate/CD49dDim were more immature banded PMNs with occasional 
metamyelocytes. CD16Bright/CD49dBright cells had toxic PMN characteristics (i.e. 
toxic neutrophils), with multiple vacuoles and toxic granules. Most cells harvested 
from patients during (or just before) septic shock demonstrated toxic granules in the 
cytoplasm. In contrast to the CD16Bright/CD49dBright cells, the CD16Intermediate/CD49dDim 
and CD16Minus/CD49dBright populations did not demonstrate a comparable abundant 
number of vacuoles. CD16Bright/CD49dBright toxic neutrophils contained mainly hyper-
segmented nuclei. 

Functionality of VLA-4 expressed on neutrophils of trauma patients
In order to analyze the functionality of VLA-4 expressed on PMNs, cells were sorted 
and analyzed in adhesion assays. Hereto, the specifi c binding of VLA-4 positive 
cells to VCAM-1 coated fl uorescent micro-spheres was evaluated. PMN phenotypes 
characterized by CD49dBright and CD49dIntermediate bound VCAM-1 coated beads. This 
response was blocked by the specifi c VLA-4 blocking antibody (clone HP2/1, see 
Figure 4). Binding could not be up-regulated by in vitro stimulation by fMLP (1 μM). 
The presence of functional VLA-4 was found on both the (meta)myelocytes and the 
toxic PMNs. 
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Figure 3. Subpopulation kinetics by fl owcytometry.
Demonstrated scatter-plots are representative for the occurrence and disappearance of CD16/CD49d 
based granulocyte subpopulations after severe trauma. Although no standard pattern was seen in all 
patients, the occurrence of a CD16Intermediate/CD49dIntermediate and/or CD16Bright/CD49dBright population was 
most frequently seen between days 5-8 after injury. 
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Figure 4. Specifi c VCAM beads binding of PMNs is related to VLA-4 expression.
After sorting VLA-4 positive and VLA-4 negative PMNs, binding of VCAM beads was compared before 
and after fMLP stimulation of the cells. The blocking antibody HP 2/1 was compared with it’s negative 
control W632. VCAM binding could be blocked by HP 2/1 in VLA4 positive cells with and without prior 
stimulation by fMLP. Results are expressed as specifi c binding (percentage of binding in the context of 
W632 minus binding in the context of HP 2/1). *: p < 0.05, VLA-4 positive PMNs versus VLA-4 negative 
PMNs.

Ibottson et al have demonstrated that treatment of control PMN’s with plasma of 
septic patients induced binding to VCAM coated beads. Although we confi rmed the 
induction of binding of PMNs to VCAM coated beads after stimulation of the cells 
with plasma from septic patients, this increase was also found with plasma of healthy 
controls. More importantly, this binding could not be blocked by HP2/1 (Figure 5A) 
nor did these cells show increased expression of VLA-4 by FACS analysis (see 
Figure 5B). 

Presence of toxic neutrophils in peripheral blood and other body fluids late 
after trauma
Toxic PMNs were found in blood of 14/47 ICU patients 8 – 10 days after trauma. 
Patients who were characterized by these toxic PMNs during the study period 
suffered a more profound illness (Figure 1B). In order to investigate the possible 
origin of this subpopulation, granulocytes were harvested from different body fl uids 
of patients with severe injury. Large amounts of VLA-4 positive granulocytes were 
found in both the lung fl uid of patients with acute respiratory distress syndrome 
(ARDS) and patients with chylothorax at the time of multiple organ failure (Figure 

A
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6A). Histological assessment after sorting revealed these cells to be end stage 
(hyper)segmented toxic PMNs (Figure 6B). 
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Figure 5. VLA-4 expression on PMNs not inducible by plasma from patients with sepsis, but VCAM 
binding is.
Although binding of PMNs to VCAM coated beads could be induced after stimulation of the cells with 
plasma from septic patients (A), this increased binding could not be blocked by HP2/1 nor did these cells 
show increased expression of VLA-4 by FACS analysis (B). †: p < 0.05 for plasma from septic patients 
versus plasma from healthy controls.

Localizaton of tissue neutrophils in patients died of septic shock
Tissue samples obtained post mortem from patients who died from septic shock 
and organ failure were analyzed in the context of presence of neutrophils. Although 
histological examination of these tissues did not clearly show the typical multilobular 
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nucleus of mature PMNs, expression of MPO (myeloperoxidase) and lactoferrin 
were used to identify tissue PMNs (Figure 7A). In the bone marrow of all patients a 
shift of granulocytes towards progenitor cells was found with a complete depletion 
of mature PMNs (Figure 7A). Leukostasis was present in both the lungs and spleen 
(Figure 7A). PMNs were found in the lymph nodes of patients with septic shock, 
especially in the cap of the germinal zone (Figure 7A). 
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Figure 6. Percentage VLA-4 positive granulocytes in different body compartments.
Fluids and cells were harvested from different body compartments demonstrated statistically signifi cant 
(Kruskal Wallis H; p=0.02) more VLA-4 positive PMNs in critically ill patients, patients with ARDS and in 
chylothorax samples of patients with MOF (A). In addition, VLA-4 positive cells were isolated by sorting 
and then divided (by sorting) according to their forward (FSC) and sideward (SSC) scatter characteristics. 
Normal FSC and SSC characteristics for PMNs and lymphocytes demonstrated lymphocytes and PMNs 
on histological examination (B). †: p < 0.05 versus control values.

Chylus lymphocytes     Chylus PMNs
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Figure 7A. Histological assessment of PMNs in tissues.
Large amounts of PMNs were seen in the lungs, spleen lymph nodes and bone marrow (A), as 
characterized by both MPO and lactoferrin positive staining. Apoptotic PMNs were found in the spleen 
and bone marrow. 
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in other organs of these patients such as intestine, liver, kidney and pancreas. 
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Large amounts of apoptotic (caspase 3 positive) PMNs were found in the spleen 
and bone marrow and were absent in lungs and lymph nodes. The other organ 
samples from these patients (bowel, liver, kidney and pancreas) showed relatively 
small numbers of PMNs (Figure7B). A strong staining of lactoferrin was observed in 
the kidneys, while no MPO staining was present thereby ruling out the presence of 
PMNs (33). 

Expression of HLA-DR on CD16Bright/CD49dBright toxic neutrophils
The presence of PMNs in lymph fl uid and lymph nodes suggested an additional 
role for these cells other than the established antimicrobial function. Therefore, we 
tested the hypothesis that these neutrophils expressed HLA-DR. Analysis of the 
PMN subpopulations for HLA-DR (MHC-II) expression by triple staining revealed 
that neither CD16Bright/CD49dMinus nor CD16Intermediate/CD49dIntermediate expressed HLA-
DR, which was similar to the normal phenotype of neutrophils found in the blood 
of controls. However, the CD16Bright/CD49dBright PMNs demonstrated an increased 
expression of HLA-DR (Figure 8).
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Figure 8. HLA-DR expression on PMN subpopulations.
Expressed are the mean fl uorescence intensity (MFI) for PMN HLA-DR ± SEM. HLA-DR is under normal 
conditions not present on peripheral PMNs. The negative control antibody induces normal background 
fl uorescence of 10 AU. A statistically signifi cant (Paired sample T-test; p<0.001) increased expression of 
HLA-DR was found on toxic PMNs (CD16Bright/CD49dBright). †: p < 0.05 versus control values.
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DISCUSSION

PMN subpopulations exist in humans in vivo, but only a few studies have characterized 
them in any detail (24,34,35). With analysis of only two receptors, VLA-4 and FcγRIII, 
we identifi ed fi ve different subpopulations of granulocytes that can occur preceding, 
during and after severe acute infl ammation in severely injured patients. One can 
only speculate on the origin of these subpopulations, but (meta)myelocytes and 
banded neutrophils likely originate from the bone marrow (36,37) (38). The source of 
the other cells remains to be identifi ed. The study of this important research question 
is complicated by the fact that no consensus is currently present regarding the “life 
cycle” of neutrophil in health and disease. Classical studies provided evidence 
that tissue neutrophils are cleared by apoptosis and phagocytosis by reticular 
macrophages (12,39,40). 

Our data regarding the occurrence of VLA-4 positive toxic neutrophils does not fi t 
this hypothesis. In fact more recent studies provide a mechanism that better fi ts 
our fi ndings. These studies have shown PMNs can recirculate from the tissues 
back to blood and bone marrow. Firstly, in vitro it has been shown that PMNs can 
retro-migrate over endothelial cells in the basal to apical direction and cells with the 
retro-migrated phenotype were found in the circulation under chronic infl ammatory 
conditions (41). Phenotypical analysis of these cells, however, showed that they did 
not express VLA-4 on their surface. Secondly, PMNs injected into the footpad of 
mice were shown to travel through lymphatic vessels towards the draining lymph 
nodes (42) . Thirdly, in a clinical setting, PMNs have been identifi ed in the lymph 
fl uid of the thoracic duct of surgical intensive care patients with multiple organ failure 
due to sepsis (43). Finally, PMNs could emigrate from infl amed glomeruli in patients 
with glomerulonephritis (44). This more modern view of granulocyte physiology is 
important in interpretation of the data of this study.

Our data show that the kinetics of occurrence of the different populations differed 
markedly during the cause of disease in the different patients. Generally. two 
populations of VLA-4 positive granulocytes were seen occurring at different times 
after trauma. The fi rst group comprised of VLA-4 positive (meta)myelocytes, which 
were typically seen between 2-7 days after trauma. These progenitor cells, which 
were not detectable in patients without infl ammatory complications, comprised up to 
40% of all blood PMNs in patients that developed infl ammatory complications after 
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trauma. The second group of VLA-4 positive PMNs was typically seen between 
days 5 – 10 after trauma and consisted of toxic PMNs (see Figure 2). These cells 
had all the characteristics of end stage PMNs. Other authors have shown the 
presence of bacteria in these toxic PMNs, suggesting these cells have participated 
in antimicrobial responses (45). These data fi t the hypothesis that VLA-4 positive 
(meta)myelosites originate from the bone marrow and the VLA-4 positive toxic 
neutrophils are redistributed cells from the tissues.

Both VLA-4 expressing populations, (meta)myelocytes and toxic PMNs, express 
functional VLA-4. This was demonstrated by analysis of binding of FACS sorted VLA-
4 positive PMNs to VCAM-1 coated fl uorescent beads. Our data show that VLA-4 on 
these PMNs is present in a partially activated state, as activation with fMLP hardly 
induced additional binding (5-10%, see Figure 4). The partial functionality of VLA-4 
is very similar to the situation found on other leukocytes such as human eosinophils 
(46). It has been suggested that granulocyte expression of activated VLA-4 is 
involved in constitutive homing of these cells to VCAM-1 expressing vascular beds 
such as lymph vessels, bone marrow and spleen (47).

VLA-4 is expressed on PMN progenitors, however is normally not expressed on 
PMNs in the peripheral circulation (48). Some studies suggest that VLA-4 is used 
by leukocytes to migrate to connective tissue, lymph and bone marrow (47,49,50). 
Extending these fi ndings, we demonstrated VLA-4 positive toxic PMNs both in the 
peripheral circulation, lung fl uid and lymph fl uid in patients suffering from septic 
complications. Therefore, it is likely that cells originate from the tissues. To test this 
hypothesis we tested several tissues obtained from patients post mortem who died 
from septic complications after trauma. PMNs were diffi cult to identify on nuclear 
morphology in these tissue samples stained with either HE or Giemsa. Therefore, 
we studied their presence by immunohistochemistry of the tissue samples for both 
myeloperoxidase (MPO) and lactoferrin which are specifi c markers for PMNs (51,52). 
Neutrophils were preferentially found lymph nodes, spleen, liver and lung. On the 
other hand, they were absent in bone marrow as well as several other tissues such 
pancreas, kidney and gut (see Figure 7). This preferential location of PMN’s under 
these conditions fi ts with the hypothesis that neutrophils are not merely antimicrobial 
effector cells, but also immune modulatory cells that can travel in between tissues 
and even back to the bone marrow.
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Several recent studies suggest that PMNs can modulate the cells of the adaptive 
immune systems. In a murine model Maletto et al. showed that application of PMNs 
together with antigen to the footpad of can steer the adaptive immune response in 
the draining lymph node towards (42). This view was supported by a study providing 
some evidence of differentiation of mature PMNs towards cells expressing co-
stimulatory molecules for T-cells during pathological infl ammation (e.g. tuberculosis). 
During in vitro culture PMNs can lose their chemotactic capacity, but gain the ability 
to present antigens to T-cells (53-55). 

Our data strongly support this hypothesis for an additional immune modulatory role 
of PMNs: 1) large amounts of PMNs can be present in the lymph fl uid (see Figure 6) 
(43,56); 2) large numbers of PMNs were found in the cap of the germinal centre in 
lymphoid tissues of patients died from septic complications (see Figure 7); and 3) the 
CD16Bright/CD49dBright PMNs found in the blood preceding the development of septic 
complications expressed HLA-DR, which is essential in the steering of the adaptive 
immune response.

Accepting the hypothesis that neutrophils redistribute through the body the question 
arises where the cells are cleared by apoptosis. We did not fi nd indications that 
neutrophils exhibit features of apoptosis in peripheral blood, lung fl uid or tissue, 
lymph fl uid or lymph nodes, kidney, pancreas and gut of patients died from septic 
complications (see the absence of caspase3 staining in these tissues in Figure 7). In 
marked contrast, clear apoptotic neutrophils were found in spleen and bone marrow. 
It is tempting to speculate that these hematopoietic tissues are preferentially used 
for clearance of neutrophils at least under conditions of acute infl ammation.

The number of circulating PMNs remains normal or is even increased during the 
CARS induced after trauma, neutropenia is seldom seen (16,57). Therefore, it is not 
the number of peripheral PMNs that is associated with the dysfunctional immune 
response during CARS, but rather the functionality of the individual cells (chapter 6) 
(3-5). We have shown previously that PMNs after severe trauma are less responsive 
towards fMLP in the context of inside-out control of active FcγRII (3,4). In addition, 
several surface proteins used for chemotaxis or opsonisation demonstrated a 
gradual decrease during 6-7 days after trauma. 
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The hypotheses described above do not seem to explain as to why septic 
complications occur 8-10 days after trauma. However, this time is very similar with 
the transit time through the post-mitotic pool of PMNs in the bone marrow (58-60). 
It takes around 7 days for the whole blood PMN compartment to be depleted when 
mitotic myelopoiesis is acutely stopped (60). Our data are consistent with the idea 
that the severe systemic infl ammatory following multi-trauma leads to mobilization 
of the majority of functional PMNs from the bone marrow, via the blood to the injured 
tissues. This process can deplete the bone marrow from functional granulocytes 
which is illustrated by the “empty” bone marrow from mature neutrophils found in 
post mortem in these patients (see Figure 7). During the fi rst days after trauma the 
massive homing of cells to the tissues can be compensated by the release of young 
PMNs and even (meta)myelocytes from the bone marrow but a gradual decrease in 
neutrophil functionality is still initiated. After around 7 days the bone marrow seems 
to fail to release functional neutrophils. During this phase we found mainly old or 
even toxic PMNs, which are less functional (chapter 6). Therefore, the increase in 
VLA-4 positive PMNs seems to be a sign of innate immune exhaustion, which gives 
the impression to be a main risk factor for CARS and septic complications. 

CONCLUSION

Our data are in line with the hypothesis that long term (> 6 days) severe systemic 
infl ammation induced by multi trauma leads to failing of the output of functional 
neutrophils from the bone marrow, which coincides with the clinical onset of CARS. 
Prevention of this “immune exhaustion” should be focused on antagonism of the initial 
exaggerated infl ammatory response rather than blocking putative anti-infl ammatory 
mediators produced during the CARS. 
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The course of patients suffering severe trauma is often complicated by (multiple) 
organ failure (MOF), an innate immune system driven disease with devastating 
consequences. It has been suggested that tailor-made treatment strategies reduce 
the incidence of organ failure after trauma (1-5). However, the limited knowledge of 
the pathophysiological processes impedes the correct allocation of patients to the 
different surgical options, or the development of new immune modulatory drugs (6-
11). The pathophysiological process of infl ammation after trauma should be further 
analyzed to identify new leads for novel therapeutic strategies. For this, an extensive 
analysis was performed of the kinetics of the cellular innate immune response to 
injury in a clinical setting.

EXCESSIVE INFLAMMATION AND PMN PHENOTYPE

Cells of the innate immune system form the integrated endpoint of several 
immunological cascades (12-15). In addition, these very cells cause additional 
tissue damage leading to MOF (16-22). Therefore, we investigated innate immune 
cells, neutrophils and monocytes, by measuring sensitive activation markers in 
relation with severity of trauma and development of organ failure (23,24). Individual 
PMN receptors or functions (i.e. MAC-1 and oxidative burst) have been previously 
investigated, but were only related to severe trauma and thus severe infl ammation 
(19,25-28). In accordance with previous reports we found an enhanced expression 
of MAC-1. However, no correlation with injury severity was found. In addition, we 
analyzed the active FcγRII complex on PMNs (A17/A27) after in vitro fMLP stimulation 
as a read-out for the functionality of neutrophils (29-32). An increased functionality 
after trauma was anticipated, however, in contrast a decreased responsiveness was 
demonstrated even after mild or moderate injury (chapter 3). Although no satisfactory 
explanation could be provided at that point, this analysis method proved to be a 
sensitive detection method for systemic infl ammation after trauma. In order to further 
analyze this seemingly contradictory fi nding additional studies were performed.
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PMN PHENOTYPE AS READ OUT FOR THE INFLAMMATORY 
RESPONSE

Several authors have tried to correlate the initial infl ammatory response to the 
development of early phase organ failure. Soluble infl ammatory markers, such as 
IL-1β, IL-6, IL-8 and complement factors have been evaluated and most factors 
demonstrated a relation with the development of early phase organ failure, though 
with a large interpersonal variation (13,33-44). For cellular markers, such correlations 
have not been shown. Only a slight relation between MAC-1 and the base defi cit 
(BE) in a small population of trauma patients has been demonstrated (27). Until now, 
no other surface marker for the cellular innate immune system has been correlated 
with the severity of trauma and thus the severity of infl ammation (19,24,28,45-47). 
Functional analysis of innate immune cells demonstrated a moderate relation between 
the development of organ failure and PMN cytotoxic capacity, but a relation with 
severity of infl ammation was not further detailed (6,28,48-50). Functional analysis 
often requires granulocyte isolation (51,52), which has been shown to alter cellular 
functionality (53,54). In addition, measurement of reactive oxygen species (ROS) in 
whole blood remains diffi cult with large variations between samples and protocols 
(55-57). Thus, alternative approaches are needed to analyze cellular innate immune 
function after trauma in relation to the severity of infl ammation and development of 
organ failure.

Although the changes in phenotype of circulating PMNs are not the changes that 
occur in the tissues (chapter 3), the changes of circulating PMNs can be used as 
a read-out for the infl ammatory processes taking place in those tissues. These 
changes in cellular phenotype represent in our opinion the integration of the pro- and 
anti-infl ammatory signals (12,58-62). With this analysis of functional phenotypes 
a relation between the severity of trauma by clinical scores and the magnitude of 
changes in fMLP induced active FcγRII on PMNs was demonstrated (chapter 4). 
Thus, a relation exists between the changes in functional PMN phenotype and the 
infl ammatory response of the host.

Furthermore, specifi c phenotypic changes of circulating PMNs had a close relation 
to the development of early phase pulmonary organ failure, such as ALI and ARDS 
(chapter 4). Other authors have demonstrated a relation between changes in 
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individual PMN receptors or functions and the development of early phase organ 
failure before (19,24,28,46,47). However, this could not be translated to a dose-
dependent mechanism between the magnitude of receptor changes and the severity 
of trauma or the incidence of ARDS. In chapter 4 a relation was found between the 
magnitude of changes in PMN responsiveness towards fMLP in the context of active 
FcγRII and the severity of infl ammatory pulmonary complications. 

This indicates that the functional phenotype of blood PMNs represents the severity 
of the infl ammatory response in the individual patient. By identifying the cellular 
innate immune response after trauma, the effect of several infl ammatory cascades 
becomes visible. This new tool enables analysis of the impact of surgical procedures 
and therapeutic strategies on the infl ammatory status of the individual patient. 

SURGERY DOES NOT SEEM TO HAVE IMPACT ON THE SYSTEMIC 
CELLULAR IMMUNE RESPONSE

It has been suggested that surgery adds to the infl ammatory burden of a patient 
and thus the risk for early phase organ failure (1,63). The prognostic value of 
immunological parameters has been investigated, in order to identify high risk 
patients. High levels of IL-6 (interleukin 6) have been associated with early phase 
organ failure. Unfortunately, due to its’ large individual variation, IL-6 has not been 
widely implicated in a clinical setting. However, in several trauma centers, plasma 
IL-6 levels are used in combination with clinical parameters to identify “stable” or 
“borderline” patients for treatment allocation (34,37,42,64). Plasma IL-6 levels have 
been used to analyze the impact of intramedullary nailing (IMN) in cohort studies 
and this provided ground for the development damage control orthopedics (DCO), 
as IMN increased plasma IL-6 levels (42,65-68). 

Allocation of patients to ETC (early total care) or DCO by clinical parameters plus 
IL-6 levels demonstrated improved outcome of severely injured patients (“borderline 
patients”) treated with DCO (69). Nevertheless, still 10-30% of the patients, which 
were presumed stable by these clinical parameters plus IL-6 levels, developed 
severe pulmonary complications. 
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In chapter 5 it was demonstrated that, although plasma IL-6 levels increased during 
IMN of femoral fractures, the measured changes in functional PMN phenotype were 
determined by the initial trauma and did not change during the surgical procedure. 
This discrepancy between soluble and cellular innate immune components 
has been suggested previously in a single case, based on MAC-1 and IL-6 (70). 
Pathophysiological mechanisms provide a putative explanation of this discrepancy: 
cytokines by themselves do not induce ARDS, but are involved in the modulation 
of activation of leukocytes. These leukocytes, which integrate the signals of the 
cytokines into a activation prone or refractory phenotype. Activation prone neutrophils 
are essential in the alveolar destruction underlying the clinical symptoms of ARDS 
(71). In this view, cytokines are risk factors and the increase of single cytokines, such 
as IL-6, do not necessarily lead to activation of innate immune cells. The absence 
of changes in PMN phenotype suggests that no signifi cant additional infl ammation 
occurs during surgery, but alternative processes might add to the development of 
ARDS.

In chapter 5 it was shown that the nailing procedure releases factors, such as 
triglycerides, as well as IL-6 and TNF-α. These factors can damage or activate the 
(pulmonary) endothelium (72-76). When these factors are produced at the same time 
that neutrophils and monocytes become activated, this will lead to homing to and 
activation of leukocytes in the tissue (77). The increase of triglyceride levels or the 
occurrence of fat embolisms during IMN has been studied extensively (72,73,78). Fat 
embolisms particles are frequently seen during IMN, but seldom lead to clinical signs 
or symptoms (73). It appears that the combination between pulmonary endothelial 
activation/damage and an activated cellular innate immune system leads to ARDS. 
Thus, IMN on itself does not seem to increase the infl ammatory burden, but might 
decrease the threshold for pulmonary complications to develop by damaging or 
activating endothelium by release of triglycerides and further increase of IL-6 and 
TNF-α levels. 
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INITIAL EXCESSIVE INFLAMMATION IS RELATED TO LATE PHASE 
SEPSIS

It has been suggested that the pro-infl ammatory response evokes an anti-
infl ammatory response. This implies that the magnitude of the pro-infl ammatory 
response is related to the compensatory anti-infl ammatory response syndrome or 
CARS (13,79). Indeed, after injury both pro-infl ammatory cytokines such as IL-6, 
TNF-α and IFN-γ as well as anti-infl ammatory cytokines such as IL-4, IL-10 and 
TGF-β appear in increased levels in the circulation (12,37,80,81). However, until now, 
no correlation has been demonstrated between the pro-infl ammatory cytokine levels 
and the anti-infl ammatory cytokine levels, thereby questioning the hypothesized 
mechanism (67). 

In chapter 6 it was demonstrated that in severely injured patients the initial 
infl ammatory response determines the extent of ongoing infl ammation and thereby 
the later state of immune paralysis. By determination of the functional PMN phenotype, 
a direct relation was found between the magnitude of the “pro-infl ammatory” reaction 
and the development of late phase (>7 days) septic shock. This suggests that the 
initial cellular innate immune response after trauma determines the development of 
both early phase and late phase organ failure. 

Acute phase proteins such as C-reactive protein (CRP) and pro-calcitonin (PCT) 
have been associated with late phase sepsis and subsequent organ failure, but 
these were only discriminative 7 days after trauma (33,37,82-85). In chapter 6 a 
similar pattern for CRP was seen, which allowed discriminating between patients 
with or without septic shock 6 days after trauma. This fi nding has little clinical 
consequences as the time to septic shock is much too short. In contrast, the initial (< 
1 day after trauma) decrease in PMN functionality (fMLP induced active FcγRII) after 
trauma is related to late phase organ failure, thus 7 days prior to the onset of clinical 
symptoms. However, our study investigated the pathophysiological mechanisms 
which lead to septic shock. The prognostic value of these PMN phenotype changes 
has yet to be determined. If these changes prove valuable, septic shock in severely 
injured patients can be anticipated 7 days before its’ onset.
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Some authors have shown similar fi ndings in monocytes during infl ammation (62,86-
89). They demonstrated that low median HLA-DR expression of the whole monocyte 
population or a low percentage of HLA-DR positive monocytes at admission is 
indicative for the development of late sepsis (7 days) after trauma (90,91). In chapter 
7 it was found that the percentage of HLA-DR positive monocytes was decreased 
after trauma and that the magnitude of HLA-DR positive monocyte redistribution 
was related to the severity of trauma. In contrast to the PMNs, no studies have 
been published on monocyte HLA-DR expression and the development of ARDS. 
However, similarly to the situation with PMNs, a relation between an activated 
monocyte phenotype and the development of early phase pulmonary organ failure 
was eminent (chapter 7). Furthermore, chapter 8 corroborated the fi nding that 
a continuous low number of HLA-DR positive monocytes (both percentage and 
absolute number) was related with the development of septic shock. 

A more activated phenotype of monocytes was found in chapter 7 characterized by 
increased expression of MAC-1 and decreased responsiveness of active FcγRII to 
fMLP. The hypothesis was tested that similar to leukocytosis a monocytosis would 
occur after trauma,. Although initially there was a change in composition of HLA-DR 
positive and negative monocytes, no monocytosis was present during the fi rst week 
after trauma. On the other hand, a large increase in HLA-DR negative monocytes 
was observed during the second week after trauma in patients who did not develop 
septic shock. Thus, the lack of restoration of normal levels of HLA-DR positive 
monocytes indicates the occurrence of sepsis and late phase organ failure, while the 
occurrence of large amounts of HLA-DR negative monocytes suggests a protective 
role for these cells in the second week after trauma.

The kinetics of monocytes and of PMNs in peripheral blood suggest an opposite role 
of these cells in response to injury. This is exemplifi ed for instance by the fi nding that 
PMN numbers increased in patients with late phase sepsis (second week), whereas 
monocyte numbers remained low. On the other hand, monocyte numbers (especially 
HLA-DR negative monocytes) increased dramatically in patients without late phase 
complications, while the number of neutrophils remained constant or increased 
slightly. It is tempting to speculate that in patients with septic shock, massive 
increased PMN numbers respond excessive to the presence of a new bacterial 
threat, which leads to collateral damage to the tissue with MOF as a result. 
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Increased numbers of HLA-DR negative, MAC-1 high monocytes with altered Fc-
receptor function have been described previously in patients with sepsis (92,93). 
However, the authors concluded that in their population of patients with sepsis, these 
activated monocytes contribute to the development of additional tissue damage. In 
chapter 8 low numbers of these monocytes were found in patients with sepsis, but 
the number of HLA-DR negative monocytes was much higher in patients without 
sepsis, suggesting a protective rather that harmful role for these cells in the later 
phase after trauma. It is tempting to speculate that the presence of these cells during 
sepsis is a physiological consequence of the initial monocyte redistribution during 
excessive infl ammation.

INNATE IMMUNE PARALYSIS CAUSED BY EXHAUSTION

General consensus is that immune paralysis during CARS develops by active down-
regulation of the immune system by anti-infl ammatory processes (12). However, this 
hypothesis has not been proven by clinical and immunological data. The alternative 
hypothesis that the low functionality of the neutrophils in the blood during CARS 
is caused by exhaustion of the immune system. However, this latter hypothesis is 
not in line by the current consensus on the life cycle of the PMN. Many authors 
claim that PMNs are produced in the bone marrow, enter the circulation, leave for 
the tissues where they are cleared by apoptosis and subsequent phagocytosis by 
reticular macrophages (94-96). If this view on the lifecycle of PMNs is true: (1) the 
low functionality of blood neutrophils found after trauma would likely be induced by 
anti-infl ammatory mediators (2) leukocytosis is caused by high mobilization of bone 
marrow derived neutrophils. Indeed, after trauma and during sepsis large amounts 
of young or even premature PMNs have been found in the peripheral circulation 
(28,87,97-99). The half-life of PMNs in the circulation is presumably several hours 
(100,101). Following this view, new PMNs are released into the circulation in large 
numbers on a daily basis. In addition, anti-infl ammatory cytokines found in the blood 
during CARS down-regulate neutrophil functionality (102).

Detailed analysis of neutrophil functionality points at a more complex mechanism. 
The refractory phenotype of PMNs found in the peripheral circulation of trauma 
patients during sepsis is characterized by suppressed inside-out control of 
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FcγRII (chapter 6) and chemotaxis (103). On the other hand, cytotoxic capacity 
was enhanced characterized by an increased capacity to produce ROS (reactive 
oxygen species) (28,104). The initial increased homing of cells with primed cytotoxic 
capacity during severe systemic infl ammation will lead to an enhanced oxidative 
stress in the affected tissues (14,19,28,105). The characteristics of PMN function 
directly after trauma and during sepsis are summarized in table 1, which displays 
a clear discrepancy between functions that are up-regulated and down-regulated. 
In summary, neutrophils acquire a mixed refractory phenotype characterized by an 
enhanced cytotoxic capacity and lowered chemotaxis and Fc-receptors. 

Table 1. Phenotype and function changes in PMNs from trauma to septic shock

PMN functions Trauma Sepsis Septic shock

Chemotaxis Increased (19) Decreased (103) Decreased (103)

Adhesion / MAC-1 Increased (6,27) Increased (87) Increased (87)

Opsonin-receptors Decreased (chapter 3-5) Decreased (chapter 6) Decreased (chapter 6)

Phagocytosis NA Increased (50,99) Increased, (< sepsis) (99)

Oxidative burst Increased (28) Increased (50) Increased, (< sepsis) (99)

Apoptosis Decreased (159) Increased (50) Increased (50)

Based on the fi ndings presented in this thesis, we propose an alternative hypothesis. 
In chapter 6 it was demonstrated that immune paralysis occurs during a period 
of 7 days, measured by PMNs with a refractory phenotype in the circulation. In 
chapter 9 it was shown that this might be the process of exhaustion of the innate 
immune system. The innate immune system can, during ongoing (>6 days) severe 
systemic infl ammation, no longer produce fully functional PMNs and monocytes 
from the bone marrow to challenge a new bacterial threat. This process of ongoing 
infl ammation causes depletion of the rapid mobilizing bone marrow pool of PMNs 
as well as the normal post-mitotic pool and accumulation of activated PMNs in the 
tissues In chapter 9 it was demonstrated that severely injured patients after several 
days no longer produce signifi cant amounts of new PMNs The data imply that PMNs 
which have entered the tissues presumably re-enter the lymph and circulation. We 
demonstrated multiple subpopulations of PMNs, which can only be seen under these 
extreme conditions:
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- VLA-4 positive end stage neutrophils: The re-circulated PMNs were found 
in the blood, lymph and lung fl uid in multi trauma patients and can be recognized 
histologically as toxic PMNs with toxic granules and vacuoles(106,107). The 
cells were also characterized by the expression of VLA-4, an integrin which 
is lacking on normal neutrophils. These characteristics suggest that these 
cells are end-stage and need to be cleared. However, in most patients no 
sign of apoptosis was found in these cells. In two patients with severe septic 
shock 3-6 hours before these patients died, triple staining revealed part (8-
40%) of the VLA-4 positive cells to be annexin V positive, suggesting these 
VLA-4 positive PMNs to be (pre-)apoptotic (results not shown).

- VLA-4 positive metamyelosites: During detailed analysis we found 
another VLA-4 positive neutrophil population with a histological shape 
of (meta)myelocytes. Based on their nuclear shape and cytoplasm these 
(meta)myelocytes seem normal progenitors, but their nuclear density and 
toxic cytoplasm indicates these cells to be older (Figure 2, chapter 9) 
(108-110). In contrast to the presence of similar cells during hematological 
malignancies, after trauma this phenomenon seems to be completely 
reversible in trauma patients, matching the fi nding of these cells during 
tuberculosis infection (108,109). Nevertheless, this maturation dissociation is 
another warning that the demand for fresh PMNs is larger than the PMN bone 
marrow production. Further analysis of these PMN subpopulations in different 
fl uids and post-mortem tissues suggested specifi c PMN subpopulations 
(the VLA-4 positive toxic PMNs) to be able to re-circulate and may have an 
additional immunological function. These VLA-4 positive cells were found 
in the lymph fl uid and large numbers of PMNs were found in an organized 
fashion surrounding the germinal center of lymph nodes (chapter 9). The 
relatively high expression of HLA-DR on these cells suggest an immune 
modulation role for these PMNs (111,112). 

Even though the initial PMN subpopulations kinetics were not studied in this thesis, 
Pillay et al. demonstrated that at least three different subpopulations have very 
distinct kinetics (personal communication). Though based on a different receptor 
expression profi le, they showed that “normal” (segmented), “young” (banded) and 
“old” (hyper-segmented) PMNs all appear after a standardized insult with LPS (E. 
coli derived lipopolysaccharide) in healthy volunteers (113-115). In conclusion, we 
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suggest that the initial infl ammatory response determines the process of ongoing 
infl ammation, bone marrow depletion, PMN recirculation and thereby immune 
paralysis for the PMN population.

This questions the importance of immune suppressive cytokines, such as IL-10 
in the fi rst 7 days after trauma (61,89). Monocytes with high HLA-DR expression 
are outnumbered by HLA-DR negative monocytes after 48-72 hours after injury 
in all patients. In addition, the number of HLA-DR positive cells normalize, while 
large numbers of HLA-DR negative monocytes appear in the circulation during 
the recovery phase of patients without septic shock (chapter 8). It is tempting to 
speculate that an overzealous innate immune response after trauma not only leads 
to exhaustion of the PMN population, but the monocyte mediated immune response 
as well. The lack of HLA-DR positive monocytes during the immune paralysis phase 
might be part of the “paralyzed” immune response to infectious agents, as broadly 
speculated in the literature (116-118). 

Monocytes are important in the clearance of necrosis and PMNs undergoing apoptosis 
(96,119). Through this process, monocytes play an essential role in the homeostasis 
of infl ammation. Relatively low numbers of HLA-DR negative monocytes were found 
in patients with septic shock compared to patients without sepsis. This might lead 
to improper repair of injured tissue and impaired barrier function, which creates or 
maintains an entrance for pathogenic micro-organisms (90,120). 

IN CONCLUSION: EXCESSIVE INFLAMMATION LEADS TO EXHAUS-
TION OF THE INNATE IMMUNE SYSTEM

The results in this thesis corroborate the hypothesis that severe injury leads to a 
marked infl ammatory response. Patients suffering excessive cellular innate immune 
activation are at risk for ARDS when additional risk factors such as local endothelial 
damage or activation are present. In addition, patients with excessive infl ammation 
will undergo a process of a marked ongoing infl ammation, which will lead to innate 
immune exhaustion. This situation can facilitate the development of septic shock in 
the presence of a bacterial threat (Figure 1). A limitation of our studies should be 
taken into account.
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Day 1

Trauma

Day 7

Septic shock

Rapid decrease of A27fMLP
= Initial homing of PMNs

Gradual decrease PMN receptors 
= Continues homing of PMNs

Minimal PMN receptor expression 
= Exhaustion of immune system

Day 8

Ongoing inflammation

Insult

Ex stionhau

Figure 1. Concept of exhaustion after initial severe infl ammation
Injury evokes an infl ammatory response. When excessive, this response can result in early phase organ 
failure like ARDS. In addition, the excessive infl ammation leads to an ongoing immunological response, 
fi nally causing exhaustion of the innate immune system. This phase of innate immune exhaustion 
facilitates the development of septic shock.

Excessive cellular innate immune activation is thought to occur mainly in the tissues. 
In our study the functionality of cellular phenotypes was analyzed to evaluate the 
integrated infl ammatory response of the innate immune system. However, the 
innate immune cells in the tissues actually causing the damage were not studied for 
obvious clinical and ethical reasons. Our data show, however, that the phenotypes 
and subpopulations of the circulating cells are the result of the processes taking 
place in the tissues, which are directly related to both functionality and life cycle of 
these innate immune cells. The infl ammatory response to trauma can, therefore, be 
quantifi ed by analyzing disturbances in the normal cellular innate immune dynamics. 
With the additional knowledge on the life cycle of PMNs shown in this thesis, we 
can explain the seemingly contra-dictionary fi ndings in our fi rst study, as decreased 
responsiveness to the innate immune stimulus fMLP was related to severe trauma

The hypothesis that excessive infl ammation after trauma leads to organ failure, which 
fi ts with the pathophysiology of experimental ischemia/reperfusion models of heart, 
lungs, skin and cerebrum (121-126). In these latter models, total blocking of PMNs 
by e.g. antibodies leads to a massive reduction in ARDS, indicating the importance 
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of these cells in the pathogenesis of this infl ammatory complication (21). Integrins 
are essential in the extravasation of PMNs during reperfusion to the tissues except 
the lung (see below). Therefore, therapeutic strategies against these receptors have 
been developed, but has not reached clinical application yet. This is mainly due 
to a not-expected fi nding. Homing of neutrophils to lung is not mediated by beta-2 
integrins or selectins (127). In knock-out models where integrins and selectins were 
knocked out (even by creating triple knock-out mice) secondary injury to brain and 
heart was prevented, whereas homing of neutrophils to the lung and additional injury 
to the lungs could not be prevented (128). In addition, CD11b (MAC-1) high PMNs 
do not necessarily sequester in the lungs (129). This implicates that integrins are 
not essential in the the extravasation of PMNs to the lungs and that the activation of 
neutrophils in the lung is not mediated by beta-2 integrins. In order to prevent ARDS, 
PMN activation and migration should be countered at an early stage.

Ideally, the systemic infl ammatory response syndrome is to be attenuated. 
Unfortunately, attempts to prevent SIRS by mono-therapy with anti-infl ammatory 
mediators either did not result in a reduction of ARDS or resulted in the development 
of severe sepsis because CARS was induced (9,130,131). The rapid increase and 
decrease of anti-infl ammatory mediators does not refl ect the gradual development 
of cellular innate immune paralysis (37,132). The results shown in this thesis 
suggest that active down-regulation is not the primary cause of PMN and monocyte 
dysfunction. Ongoing severe systemic infl ammation results in the depletion of bone 
marrow of functional neutrophils. This leads even to the release of (meta)myelocytes 
from the bone marrow. Figure 7 in chapter 9 shows that under these conditions the 
bone marrow is devoid of mature neutrophils (133). Most of these (meta)myelocytes 
were characterized by the expression of VLA-4. 

It has been suggested that the presence of VLA-4 positive PMNs is a sign of 
reactive PMNs, which acquire the VLA-4 on the surface by responding to a serum 
factor present in the blood of patients with sepsis (134). This hypothesis does not 
fi t the dynamics of our fi ndings and our longitudinal analysis suggest an alternative 
physiological process. 
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1. Serum obtained from our trauma patients obtained during different time points 
after trauma did not induce any VLA4 expression on neutrophils isolated 
from normal donors (see Figure 5, chapter 9). The fi nding of Ibbotson et al. 
that serum of severe sepsis patients did induce VLA-4 on normal neutrophils 
might be explained by a mechanism not operational post trauma.

2. VLA-4 positive toxic PMNs were found in the circulation, lung fl uid and 
lymph fl uid. These data strongly suggest recirculation of VLA-4 positive 
PMNs. In addition, the presence of small numbers of CD16Bright/CD49dBright 
(meta)myelocytes with a toxic neutrophil appearance allows the speculation 
that a subpopulation of PMNs is released from the bone marrow expressing 
VLA-4, which remain VLA-4 positive, even after recirculation.

The function of these VLA-4 positive PMNs remains elusive. The toxic VLA-4 
positive PMNs could be involved in immune modulation as they express HLA-DR. 
Unfortunately, The co-stimulatory proteins CD80 and CD86 were not measured, 
which are needed for activation of lymphocytes. However, previous reports have 
shown that activated PMNs with up-regulated HLA-DR expression also express co-
stimulatory proteins (135). These HLA-DR positive PMNs could well be involved in 
the steering and regulation of the adaptive immune system. 

Interestingly, it has been demonstrated that subpopulations of PMNs can return to the 
bone marrow (136). where part of these cell go into apoptosis. Upon phagocytosis by 
bone marrow macrophages these cells produce G-CSF, resulting in increased PMN 
production and release from the bone marrow (137). This provides a mechanism 
how the bone marrow can sense the status of the innate immune system even in the 
absence of cytokines.



10
regel 1

regel 2

regel 3

regel 4

regel 5

regel 6

regel 7

regel 8

regel 9

regel 10

regel 11

regel 12

regel 13

regel 14

regel 15

regel 16

regel 17

regel 18

regel 19

regel 20

regel 21

regel 22

regel 23

regel 24

regel 25

regel 26

regel 27

regel 28

regel 29

regel 30

regel 31

regel 32

regel 33

regel 34

regel 35

regel 36

regel 37

regel 38

regel 39

205

Discussion and future perspectives

1
102
103
104
105
106
107
108
109
1010
101

FUTURE PERSPECTIVES

Limiting the excessive infl ammatory response by (pharmacological) intervention 
without paralyzing the innate immune system will prove challenging. Anti-infl ammatory 
therapeutic interventions often lead to immune suppression (9,130,131). Short-term 
limiting the initial infl ammatory response appears benefi cial, however, there is only 
circumstantial evidence (6). Thus, therapy should be aimed at modulating the innate 
immune system rather then paralyzing it. One of the key steps in the development of 
early phase organ failure and ongoing infl ammation is the extravasation of activated 
PMNs. Several authors have blocked PMN adhesion or created ROS (Reactive 
Oxygen Species) knockout mice, all with adverse outcomes (21). Although the 
incidence of ARDS is severely decreased in those studies, the incidence of severe 
infections and sepsis was unacceptably increased. How PMN extravasation should 
be blocked remains unclear. It can even be questioned if ARDS can be prevented 
at all. Elegant studies have shown that upon activation, PMNs become more rigid 
and get struck in the small pulmonary capillaries. In studies where PMN integrins 
were blocked, secondary damage to the brain, heart, skin and peritoneum could 
be prevented, but pulmonary damage could not (121-126,128). In addition, current 
treatment regimes do not adequately attack PMNs and monocytes. Studies on 
the applicability of corticosteroids in the treatment of sepsis, brain injury or ARDS 
demonstrated increased incidence of infections and mortality in the group treated with 
corticosteroids (9,131). Part of this pathology might be attributed to the stimulating 
effects corticosteroids have on PMNs (138).

Inhibition of cellular innate immune function could harbor severe side effects. Most 
trauma patients suffer large wounds which can easily be invaded by micro-organisms 
(139,140). In addition, mechanical ventilation leads to decreased respiratory barrier 
function and alters the infl ammatory response even further (141,142). Although 
we did not provide the solution to bypass this delicate balance between innate 
immune activation and paralysis, we have shown new details concerning the 
pathophysiological processes leading to organ failure. Initial excessive infl ammation 
leads to ARDS, ongoing infl ammation, immune exhaustion and sepsis. By limiting 
the initial excessive infl ammatory response, the entire cascade will be attenuated. 
In order to prevent late phase organ failure it should be assured the innate immune 
system of the patient can suffi ciently handle a new threat. According to the hypothesis 



regel 1

regel 2

regel 3

regel 4

regel 5

regel 6

regel 7

regel 8

regel 9

regel 10

regel 11

regel 12

regel 13

regel 14

regel 15

regel 16

regel 17

regel 18

regel 19

regel 20

regel 21

regel 22

regel 23

regel 24

regel 25

regel 26

regel 27

regel 28

regel 29

regel 30

regel 31

regel 32

regel 33

regel 34

regel 35

regel 36

regel 37

regel 38

regel 39

206

Chapter 10

101
102
3

104
105
106
107
108
109
1010
101

described above, the initial excessive infl ammatory response should be minimized in 
order to limit late phase immune paralysis (Figure 2). When pulmonary leukocytosis 
and ARDS develops, future treatment strategies should be aimed at stimulation of 
the recirculation process rather than blocking of homing. Immune modulation should 
be aimed at inducing suffi cient myelopoiesis after 7 days in patients that show initial 
excessive activation of the innate immune system (143-147). Again, identifi cation of 
suitable patients is essential. 

1

2

3

Lungs

Bone marrow

Spleen

Lymph node

Figure 2. Possibilities for intervention by immune modulation
After trauma, massive release of fresh PMNs from the bone marrow is induced to compensate the 
massive homing and extravasation of circulating PMNs. This phase of extravasation and bone marrow 
release determines the development of early phase organ failure, innate immune exhaustion and 
subsequent late phase septic shock. Blocking or modulating PMN extravasation might reduce the 
incidence of both early and late phase organ failure (1). When the extravasation has already occurred, 
the process of recirculation should be stimulated. Clearing the tissues from the potentially dangerous 
PMNs could aid in the reduction of secondary organ damage. In addition, it is tempting to speculate 
that PMNs re-circulating to the lymph nodes may fulfi ll their immune-modulatory role and inhibit the 
excessive infl ammatory response (2). Finally, re-circulation of PMNs might reduce the need for bone 
marrow release of young PMNs as well as the stimulation of bone marrow granulopoeisis (3). 

A
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Alternatively, therapeutic strategies for the prevention of septic shock could be aimed 
at the monocyte population. However, we question the use of monocyte HLA-DR 
restoration drugs, as the absolute number of HLA-DR positive monocytes is only 
limited affected. Treatment strategies, such as application of IFN-у or hemofi ltration, 
were designed to normalize HLA-DR expression on circulating monocytes and were 
successful in this respect (118,148). However, the clinical effect of this seemingly 
improved immunological function was not further detailed. The interventions 
appeared benefi cial, but large scale therapeutic trials have not been conducted 
to draw fi rm conclusions. In addition, caution should be taken as IFN-γ leads to 
activation of monocytes and in chapter 7 we demonstrated monocyte activation 
was related to the development of ARDS.  

Both trauma and subsequent surgery are well documented risk factors for the 
development of ARDS. It was hypothesized that surgery amplifi es the infl ammatory 
burden after trauma (general introduction). However, in our study surgery did 
not seem to add signifi cantly to the infl ammatory burden, as determined by the 
PMN responsiveness towards fMLP. It could be argued that the presented studies 
were performed on relatively small patient groups and additional cellular innate 
immune activation could have been missed with the measurements used. However, 
conventional measurements with MAC-1 did not demonstrate increased activation 
and in chapter 5 PMNs were measured with a more sensitive method focused on 
analysis of inside out control of FcR’s. Surgery might in fact induce factors which 
damage or activate the endothelium, which would act as risk factors for enhanced 
homing and activation of innate immune cells. Although the results might be 
considered circumstantial evidence, the suggestion is supported by several reports 
in literature. Unfortunately, no adequate marker to quantify the extent of endothelial 
damage or activation is currently available to further analyze this hypothesis (149).

Based on the only limited contribution of surgery to the infl ammatory response, 
we suggest that surgery is safe in patients with a limited infl ammatory response: 
infl ammation control surgery. This has a direct impact on the current debate on 
non-discriminative ETC or DCO protocols all over the world (4,150-152). Adequate 
quantifi cation of the cellular innate immune response would allow correct allocation 
of patients to the different treatment regimes. 
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Supplementary to the treatment strategies for the prevention of early phase organ 
failure, several treatment regimes have attempted to limit late phase complications. 
The “Surviving Sepsis Campaign” has been organized to improve outcome of 
septic patients (153). An essential challenge in the “Surviving Sepsis Campaign” is 
the early identifi cation of patients with sepsis or patients at risk for sepsis (8,154). 
Immediate application of treatment has shown to reduce mortality and morbidity, 
which has been implemented in the “early goal directed therapy”. Therapeutic 
measures are mostly aimed at limiting the infl ammatory response, such as the use 
of corticosteroids or activated protein C (9,155). However, the results of these studies 
are still the subject of debate as some therapeutic measures proved detrimental. 
Part of this adverse outcome might be attributed to the allocation of patients to 
specifi c treatment strategies. Identifi cation of high risk patients eight days prior to 
the onset of symptoms, would greatly aid in prevention of this clinical condition. The 
analysis of fMLP induced active FcγRII provides a new pathophysiological insight, 
allowing the development of prognostic tools which might predict the development 
of septic shock 7 days in advance.

FMLP induced active FcγRII on PMNs on admission is related with severe 
complications. However, the studies presented in this thesis were developed to 
investigate the pathophysiology of acute infl ammation after trauma leading to organ 
failure. In order to use this parameters as a prognostic value a large prospective cohort 
study is required (156). In addition, a future prediction rule for these complications 
based on PMN and monocyte phenotype changes is likely to be improved by 
combining these factors with patient characteristics such as location of trauma or 
age. Combining several PMN markers (with or without stimulation by fMLP) would 
provide additional power of such a prediction rule. Currently, the prognostic value 
of the parameter (fMLP induced active FcγRII) is evaluated in a large prospective 
international cohort series.

In addition to the determination of the prognostic value of the described PMN 
characteristics, it is currently investigated if there is a close correlation between 
PMN phenotype changes and current standard clinical laboratory investigations. 
Analysis of the PMN phenotype is still slow and time consuming (approximately 1 
hour), time which is not available in the acute phase after trauma (157,158). Leukocyte 
analysis in standard clinical care can be performed in minutes and can provide a 



10
regel 1

regel 2

regel 3

regel 4

regel 5

regel 6

regel 7

regel 8

regel 9

regel 10

regel 11

regel 12

regel 13

regel 14

regel 15

regel 16

regel 17

regel 18

regel 19

regel 20

regel 21

regel 22

regel 23

regel 24

regel 25

regel 26

regel 27

regel 28

regel 29

regel 30

regel 31

regel 32

regel 33

regel 34

regel 35

regel 36

regel 37

regel 38

regel 39

209

Discussion and future perspectives

1
102
103
104
105
106
107
108
109
1010
101

tremendous amount of information. If fMLP induced active FcγRII on PMNs proves 
a valuable prognostic factor, it would aid tremendously if a surrogate parameter is 
readily available in the current clinical setting. 

In conclusion, the research described in this thesis provides new insight in the 
pathophysiological processes that leads to organ failure after trauma. With this new 
information, tools can be developed to improve treatment allocation for patients at 
risk and new ground for therapeutic interventions has been created. By limiting the 
excessive infl ammatory response after trauma, the incidence of both early and late 
phase organ failure could be reduced. Thereby, mortality rates, morbidity rates and 
annual health care costs can be reduced tremendously. 
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KERN: IMMUUN SYSTEEM PUT ZICHZELF UIT NA TRAUMA

Bij patiënten met ernstig letsel treedt een overmatige activatie van het immuun 
systeem op. Leukocyten (witte bloedcellen) gaan dan naar de organen en veroorzaken 
extra schade, waardoor orgaanfalen kan optreden. Tijdens deze activatie worden 
leukocyten massaal verbruikt en is de productie van verse witte bloedcellen door 
het beenmerg onvoldoende om een adequaat aantal cellen in het bloed te houden. 
Als gevolg hiervan komen oude, gebruikte leukocyten terug in het bloed, waardoor 
patiënten extra vatbaar zijn voor ernstige infecties. 

PROBLEEMSTELLING: MAATSCHAPPIJ

Wereldwijd is trauma de belangrijkste doodsoorzaak en in de Westerse wereld de 
belangrijkste oorzaak van invaliditeit en verlies van arbeidsjaren bij personen onder 
de 50 jaar. Patiënten kunnen direct overlijden aan de uitgebreidheid van het letsel 
(bijvoorbeeld verbloeding of hersenletsel), maar een belangrijk deel (50%) van de 
mortaliteit ontstaat in de fase na de resuscitatie (initiële opvang). In deze fase kunnen 
organen uitvallen die niet noodzakelijkerwijs zijn aangedaan door het primaire 
letsel, ook wel (meervoudig) orgaanfalen genoemd. Orgaanfalen komt voornamelijk 
voor bij patiënten die een stomp trauma hebben ondergaan (in tegenstelling tot de 
steek en schotverwondingen). In Nederland betreft dit meestal verkeersslachtoffers 
en ongevallen in de bouw. Hoewel het aantal verkeersdoden de laatste jaren is 
afgenomen, blijft het aantal ziekenhuisgewonden vrijwel gelijk. Patiënten overlijden 
tegenwoordig minder vaak aan orgaanfalen na trauma, maar de incidentie 
(voorkomen) van deze ernstige complicatie is niet signifi cant afgenomen. Patiënten 
die orgaanfalen ontwikkelen kunnen met de huidige medische kennis beter worden 
behandeld voor hun symptomen. Ruim 15% van de opgenomen patiënten met ernstig 
trauma ontwikkelt enkel of meervoudig orgaanfalen. Deze patiënten hebben vaak 
langdurig mechanische beademing en intensive care behandeling nodig. Hierdoor 
gebruiken patiënten met orgaanfalen jaarlijks 1,7% van het Nederlandse zorgbudget 
(170 miljoen euro). 
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PROBLEEMSTELLING: OORZAAK VAN ORGAANFALEN

Hoe meervoudig orgaanfalen na trauma ontstaat, is nog altijd niet volledig bekend. 
Initiële studies lieten zien dat het immuun systeem betrokken is bij deze aandoening. 
Bij obductie van patiënten die overleden waren aan orgaanfalen werden grote 
hoeveelheden witte bloedcellen (leukocyten) gevonden in de organen die faalden. 
Opvallend was dat dit ook vaak het geval was in organen zonder duidelijke infectiebron. 
Verdere studies toonden aan dat orgaanfalen voorkomt in 2 fasen. De verdeling 
van orgaanfalen over deze 2 fasen is ieder 50%. De vroege fase (tot 4 dagen na 
trauma) gaat vrijwel nooit gepaard met een infectie, terwijl de late fase (vanaf 8 
dagen na trauma) vrijwel altijd voorafgegaan wordt door een infectie. Op basis van 
deze studies werd gesteld dat de vroege fase van orgaanfalen het gevolg is van een 
buitensporige ontstekingsreactie (excessieve infl ammatie) op de weefselschade die 
door het trauma is geïnduceerd. Symptomen van patiënten die deze reactie hebben 
worden samengevat in het systemische infl ammatoire respons syndroom (SIRS). 
Tijdens dit syndroom is de long het orgaan dat het meest frequent faalt, dit wordt het 
acuut respiratoir distres syndroom genoemd (ARDS). ARDS wordt veroorzaakt door 
overmatige activatie van neutrofi elen (i.e. PMNs), cellen van het immuunsysteem die 
normaal gesproken bacteriën en dood weefsel opruimen. Deze cellen produceren 
stoffen die de long kunnen beschadigen. Door de reactie van het lichaam op het 
letsel worden grote hoeveelheden neutrofi elen geactiveerd die massaal in de longen 
vastlopen en dit orgaan vervolgens beschadigen. 

De huidige theorie is dat bij gezonde mensen neutrofi elen aangemaakt worden in 
het beenmerg en 12-24 uur in het bloed zijn voor immuun surveillance. Zodra deze 
cellen het juiste signaal krijgen treden ze uit naar de weefsels om daar hun werk te 
doen: fagocyteren (opeten en vernietigen) van necrose (dood weefsel) en bacteriën. 
Als hun werk is voltooid gaan de neutrofi elen in apoptose (gereguleerde celdood) en 
worden ze door weefselmacrofagen (gedifferentieerde monocyten) opgeruimd. 

In de late fase is er juist sprake van een te slecht werkend immuunsysteem, waardoor 
bacteriën vrij spel krijgen. Deze situatie wordt het compensatoire anti-infl ammatoire 
respons syndroom (CARS) genoemd. Deze naam omvat de huidige theorie, 
waarin het ontstaan van CARS gezien wordt als een actief proces. Een overmatige 
ontstekingsreactie na trauma zou een compensatie mechanisme uitlokken, wat op 
zichzelf weer door kan slaan en zo een inactief immuunsysteem kan veroorzaken. 
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De monocyte wordt gezien als een belangrijke witte bloedcel in deze fase. 
Monocyten zijn ongedifferentieerde cellen, wat betekent dat ze nog van vorm en 
functie kunnen veranderen in de loop van hun leven. De hoofdtaak van monocyten 
is het fagocyteren van bacteriën en dode cellen. Daarnaast vormen monocyten 
een brug met het aangepaste immuun systeem. Monocyten maken, zoals alle 
leukocyten, gebruik van specifi eke eiwitten op hun celoppervlak (receptoren), om te 
communiceren met andere cellen. Zo kunnen monocyten met HLA-DR receptoren 
specifi eke antigenen (bijvoorbeeld stukjes bacterie) presenteren aan lymfocyten en 
zo deze cellen instrueren. Lymfocyten zijn witte bloedcellen die van belang zijn voor 
immuniteit tegen bacteriën en virussen. Doordat de monocyten direct invloed op 
deze lymfocyten uit kunnen oefenen kunnen ze als het ware het immuunsysteem 
sturen. 

Meervoudig orgaanfalen tijdens SIRS (vroege fase) wordt dus gezien als een passieve 
reactie op het letsel. Door dit excessieve proces ontstaat additionele schade aan de 
organen door het eigen immuunsysteem. Meervoudig orgaanfalen tijdens CARS 
ontstaat door een actief proces. In reactie op de excessieve infl ammatoire respons 
treedt down-regulatie van het immuunsysteem op. Belangrijke immunologische 
cellen (o.a. monocyten) functioneren hierdoor niet meer optimaal.

BEHANDELING VAN ORGAANFALEN

De huidige therapieën om orgaanfalen na trauma te behandelen zijn gebaseerd 
op bovenstaande theorieën over de ontstaanswijze van het orgaanfalen en 
de levenscyclus van neutrofi elen en monocyten. Van oudsher werd de ernstig 
gewonde traumapatiënt te “ziek” geacht om uitgebreide chirurgische interventies te 
ondergaan. Dit leidde vaak tot complicaties, zoals een longembolie of infectie. Door 
de vooruitgang op het gebied van anesthesie werd het vanaf de jaren 80 mogelijk 
uitgebreide interventies toe te passen. Volgens deze uitgebreide strategie ondergaat 
een patiënt met bijvoorbeeld meerdere fracturen direct operatieve fi xatie van al 
zijn/haar fracturen. Dit beleid van volledige directe behandeling in de acute fase is 
effectief gebleken. Het leidt gemiddeld tot afname van de genoemde complicaties 
en sneller herstel. Echter, een deel van de patiënten bleef ernstige complicaties, 
zoals orgaanfalen, ontwikkelen. Na een analyse van de Duitse ongevallen database, 
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bleek dat patiënten met een ernstig letsel een slechte prognose hebben bij de 
directe volledige strategie. Er werd gesteld dat een operatie als additioneel trauma 
fungeert bij deze patiënten die al een excessieve infl ammatoire reactie hebben en 
zo bijdraagt aan het ontstaan van orgaanfalen. Minimale operatieve belasting of 
uitstel van operaties heeft bij deze patiënten de voorkeur. Echter, dit beleid leidt 
tot een slechter lokaal resultaat met meer infecties en slechte genezing van de 
fracturen. Bovendien wordt de identifi catie van de geschikte patiënt voor de twee 
uiteenlopende behandelingsstrategieën bemoeilijkt door de beperkte kennis van de 
pathofysiologie (ontstaanswijze) van orgaanfalen na trauma. Samenvattend is er 
voor vroege fase orgaanfalen na letsel nog geen effectieve preventie of therapie 
voor handen.

Ook voor orgaanfalen tijdens CARS (late fase) is nog geen effectieve therapie 
voor handen. Door de “Surviving Sepsis Campaign” worden patiënten met sepsis 
(bloedvergiftiging) eerder herkend en behandeld op de intensive care, maar het 
ontstaan van sepsis wordt niet voorkomen. Experimentele therapieën zijn o.a. het 
up-reguleren van HLA-DR op monocyten en het remmen van neutrofi elen om extra 
schade aan de organen te voorkomen. Ondanks adequate up-regulatie van HLA-DR 
op monocyten is het klinische effect hiervan nog niet aangetoond. Het remmen van 
neutrofi elen tijdens sepsis lijkt eerder averechts te werken, er treden meer ernstige 
infecties op. Meer kennis van de pathofysiologie (ontstaanswijze) van orgaanfalen is 
dus nodig om hoogrisico patiënten te identifi ceren en orgaanfalen tijdens SIRS en 
CARS beter te behandelen.

STUDIE OPZET

Voor de ontwikkeling van nieuwe preventieve en therapeutische strategieën is eerst 
meer kennis van de onderliggende processen nodig. Zoals hierboven uitgelegd 
spelen neutrofi elen en monocyten een belangrijke rol in zowel de vroege als late 
fase van orgaanfalen na letsel. Het onderzoek heeft zich dan ook voornamelijk op 
deze cellen van het immuunsysteem gericht. 

In eerste instantie moet de juiste analyse methode voor beide soorten cellen 
gekozen worden, zodat de veranderingen die optreden na trauma in kaart kunnen 
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worden gebracht. Met de gekozen methode kunnen vervolgens de veranderingen 
van de neutrofi elen en monocyten in relatie tot het ontstaan van orgaanfalen worden 
onderzocht. Daarnaast kan de invloed van chirurgie worden geanalyseerd. Tot slot 
kan door neutrofi elen en monocyten in de tijd te vervolgen het dynamische proces 
dat leidt tot late fase orgaanfalen worden onderzocht. 

ANALYSE VAN NEUTROFIELEN

Bovenstaande hypotheses en therapieën zijn gebaseerd op analyses van cytokinen 
(hormonen van het immuunsysteem). Echter, de cellen, neutrofi elen en monocyten, 
zijn de uitvoerende factoren in het ontstaan van orgaanfalen. Analyse van deze cellen 
kan meer inzicht verschaffen in de ontstaanswijze van deze ernstige complicatie. 
Neutrofi elen zijn slechts beperkt onderwerp van onderzoek geweest, maar zijn 
wel de belangrijkste cel in vroege fase orgaanfalen. De activiteit van neutrofi elen 
kan op meerdere manieren onderzocht worden. Ten eerste kan de productie van 
schadelijke stoffen (ROS) kan gemeten worden. Echter, hiervoor moeten cellen 
geïsoleerd worden wat de betrouwbaarheid van de test beïnvloed. Ten tweede kan 
het receptorprofi el van de cel kan bepaald worden, maar dit laat vaak een grote 
variatie zien en is meestal niet erg gevoelig. Echte veranderingen treden pas op als 
een patiënt ernstig ziek is. Ten slotte kan de inside-out controle van neutrofi elen kan 
geanalyseerd worden. Hierbij wordt onderzocht in hoeverre een cel zijn fenotype 
(totaal aan eiwitten op het oppervlak van de cel) kan reguleren in reactie op bepaalde 
signalen. Dit kan een erg sensitieve maat zijn en cellen hoeven niet geïsoleerd te 
worden. Wij hebben dan ook neutrofi elen onderzocht door het functionele fenotype 
te meten.

Volgens de huidige theorie worden neutrofi elen geactiveerd door trauma, treden 
deze cellen massaal uit in de long en veroorzaken daar extra schade. Er zal dus 
sprake zijn van een toename in het functionele fenotype. Echter, in hoofdstuk 3 
wordt aangetoond dat het functionele fenotype na trauma juist verlaagd is. Er is een 
lagere up-regulatie van FcγRII na stimulatie met fMLP bij traumapatiënten dan bij 
gezonde controle personen. De afname in functioneel fenotype was wel gerelateerd 
aan een toename in functioneel fenotype van neutrofi elen in de longen van deze 
patiënten. In een vervolg studie wordt in hoofdstuk 4 gedemonstreerd dat de mate 
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van afname in functioneel fenotype van neutrofi elen in het bloed gerelateerd is aan 
de ernst van de complicaties in de longen. Er is dus een verband tussen wat er met 
de cellen in de weefsels gebeurt en wat er aan de cellen in het bloed gemeten kan 
worden. 

INVLOED VAN CHIRURGIE

Chirurgie wordt gezien als risicofactor voor het ontstaan van orgaanfalen, doordat 
chirurgie de excessieve infl ammatoire reactie nog verder opjaagt. We anticipeerden 
dan ook een verdere afname in het functionele fenotype tijdens het plaatsen van een 
femur (bovenbeen) pen, een operatie waarvan bekend is dat deze een hoog risico 
geeft op het ontstaan van ARDS. In hoofdstuk 5 laten we zien dat er inderdaad een 
toename is van cytokinen en factoren die het endotheel (binnenwand van de vaten) 
kunnen activeren of beschadigen. Echter, een afname in het functionele fenotype van 
neutrofi elen werd niet gezien tijdens of na de operatieve ingreep. Dit suggereert dat 
er geen extra invloed is van chirurgie op neutrofi elen, maar wel op andere factoren 
voor het ontstaan van ARDS.

FUNCTIONEEL FENOTYPE EN SEPSIS

Neutrofi elen laten na trauma een afname zien in het functionele fenotype. Er werd als 
hypothese gesteld dat deze afname in functie van neutrofi elen gerelateerd zou kunnen 
zijn aan het ontstaan van CARS en daarmee ernstige infecties en sepsis. Hiervoor 
werd het functionele fenotype van neutrofi elen bij ernstig gewonde traumapatiënten 
gedurende 2 weken geanalyseerd. In hoofdstuk 6 wordt aangetoond dat er na de 
eerste dag na letsel een langzame afname is in het functionele fenotype en dat 
deze afname meer uitgesproken is bij patiënten die uiteindelijke ernstige sepsis 
ontwikkelen. De afname duurt tot dag 7, sepsis begon bij alle patiënten tussen 
dag 8 – 10. Direct na trauma werd al een meer uitgesproken afname gezien in het 
functionele fenotype van patiënten die uiteindelijk sepsis ontwikkelen. Een directe 
relatie tussen de mate van afname in neutrofi el functioneel fenotype en het ontstaan 
van sepsis werd gevonden, maar wellicht belangrijker is de bevinding dat de initiële 
afname gerelateerd is aan het ontstaan van sepsis 7 dagen later. 
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MONOCYTEN NA TRAUMA

Na trauma is er sprake van een afname in HLA-DR op monocyten, een afname die 
in de literatuur al gerelateerd werd aan het ontstaan van sepsis. In aanvulling hierop 
wordt in hoofdstuk 7 aangetoond dat deze afname in HLA-DR gerelateerd is aan 
het ontstaan van ARDS. Ook het functioneel fenotype van monocyten was verlaagd 
bij patiënten die ARDS ontwikkelden. In patiënten die geen ARDS ontwikkelden 
had chirurgie wel invloed op de HLA-DR expressie van monocyten. Een verdere 
reductie werd gezien 18 uur na de operatie. Opvallend was dat de afname in HLA-DR 
voornamelijk toe te schrijven was aan een toename van HLA-DR negatieve cellen 
en niet zozeer een afname van HLA-DR positieve monocyten. In hoofdstuk 8 wordt 
gedemonstreerd dat niet actieve down-regulatie door cytokinen (bijvoorbeeld IL-10) 
de oorzaak is voor een verlaagde HLA-DR, maar dat het grootste deel van reductie 
het gevolg is van redistributie van monocyten. In patiënten die sepsis ontwikkelen 
lijkt de monocyten populatie uitgeput te zijn. Er vindt geen toename in het aantal 
monocyten plaats tijdens de herstel fase in de tweede week na trauma.

UITPUTTING VAN NEUTROFIELEN NA TRAUMA

Doordat de monocytenpopulatie van traumapatienten uitgeput lijkt te zijn, vroegen 
wij ons af of dit bij de neutrofi elenpopulatie van septische patiënten ook het geval 
kon zijn. Een langzame uitputting zou de geleidelijke afname in fenotype kunnen 
verklaren. In hoofdstuk 9 demonstreren we dat er meerdere soorten neutrofi elen 
na trauma in het bloed voorkomen. Initieel na letsel komen er jonge (banded) 
neutrofi elen in het bloed. Bij excessieve infl ammatie komen er zelfs (meta)myelocyten 
in de circulatie terecht. Dit zijn premature cellen die eigenlijk nog verder zouden 
moeten uitrijpen in het beenmerg. Cellen met die specifi eke uiterlijke kenmerken 
worden normaal gesproken alleen bij mensen met leukemie gezien. In tegenstelling 
tot leukemie verdwijnen deze cellen bij traumapatiënten vanzelf weer. Het beenmerg 
heeft ongeveer 7 dagen nodig om nieuwe neutrofi elen te maken. Door de hoge vraag 
zijn de te jonge cellen eerder het bloed ingestuurd. Na een paar dagen verschijnen 
geleidelijk aan toxische neutrofi elen in het bloed. Dit zijn neutrofi elen met toxische 
korreling, gaten in het cellichaam en gefagocyteerde bacteriën. Ze hebben dus het 
uiterlijk van gebruikte, oude cellen. In hoofdstuk 9 wordt aannemelijk gemaakt 
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dat deze toxische cellen uit de weefsels komen; bij gebrek aan verse cellen uit het 
beenmerg. Dit proces van uitputting van de neutrofi elen populatie is te meten met 
specifi eke eigenschappen van deze cellen. 

Deze geleidelijke uitputting in 7 dagen komt overeen met het ontstaan van 
complicaties bij de patiënt op de intensive care. Sepsis ontstaat in de door ons 
onderzochte populatie vrijwel altijd na 8 – 10 dagen. De uitputting gaat dus vooraf 
aan sepsis. Daarnaast duurt ook de langzame afname in functioneel fenotype van 
neutrofi elen ongeveer 7 dagen. Hierdoor wordt de theorie dat CARS het gevolg is 
van actieve down-regulatie door cytokinen aangetast. De resultaten gepresenteerd 
in dit proefschrift suggereren een fysiologisch proces dat alleen optreedt onder 
extreme omstandigheden. 

CONCLUSIES

Trauma leidt tot buitensporige infl ammatie. Tijdens dit proces treden neutrofi elen 
uit naar de weefsels. Hierbij kan ARDS ontstaan. De achtergebleven cellen in 
het bloed hebben een verlaagd functioneel fenotype. De mate van afname in het 
bloed is gerelateerd aan de schadelijke processen in de weefsels. Voorschrijdende 
infl ammatie leidt tot uitputting van het immuunsysteem. Neutrofi elen en monocyten 
reageren dan niet meer adequaat op een infectie. Hierbij kan sepsis ontstaan. 
De initiële immuun respons bepaalt dus het verdere beloop. Ter voorkoming van 
orgaanfalen dient de initiële respons te worden geremd en de redistributie van 
monocyten gemoduleerd. 
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