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Abstract

Low-birth-weight (LBW) children are born with several risk factors for disease, morbidity and neonatal mortality, even if
carried to term. Placental insufficiency leading to hypoxemia and reduced nutritional supply is the main cause for LBW. Brain
damage and poor neurological outcome can be the consequence. LBW after being carried to term gives better chances for
survival, but these children are still at risk for poor health and the development of cognitive impairments. Preventive
therapies are not yet available. We studied the risk/efficacy of chronic prenatal treatment with the anti-oxidative drug
allopurinol, as putative preventive treatment in piglets. LBW piglets served as a natural model for LBW. A cognitive
holeboard test was applied to study the learning and memory abilities of these allopurinol treated piglets after weaning.
Preliminary analysis of the plasma concentrations in sows and their piglets suggested that a daily dose of 15 mg.kg21

resulted in effective plasma concentration of allopurinol in piglets. No adverse effects of chronic allopurinol treatment were
found on farrowing, birth weight, open field behavior, learning abilities, relative brain, hippocampus and spleen weights.
LBW piglets showed increased anxiety levels in an open field test, but cognitive performance was not affected by allopurinol
treatment. LBW animals treated with allopurinol showed the largest postnatal compensatory body weight gain. In contrast
to a previous study, no differences in learning abilities were found between LBW and normal-birth-weight piglets. This
discrepancy might be attributable to experimental differences. Our results indicate that chronic prenatal allopurinol
treatment during the third trimester of pregnancy is safe, as no adverse side effects were observed. Compensatory weight
gain of treated piglets is a positive indication for the chronic prenatal use of allopurinol in these animals. Further studies are
needed to assess the possible preventive effects of allopurinol on brain functions in LBW piglets.
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Introduction

Infants suffering from fetal growth restriction, a pathological

decrease in fetal growth rate, are born with a (very) low birth

weight ((v)LBW) [1,2]. LBW children are born with several risk

factors for disease, morbidity and neonatal mortality [3]. Though

a term born LBW neonate has better prospects for survival than a

preterm LBW neonate [4,5], a child born with LBW is still at risk

for developing several health as well as cognitive problems [5–12].

The possible causes for LBW vary and may be well-defined (i.e.

chromosomal disorders, intra uterine viral infections) [13] or less

clearly be attributable to causes such as smoking, obesity, air

pollution or placental insufficiency [3,14]. Placental insufficiency is

seen as the most common cause [15] and in general it can be said

that a fetus suffering from placental insufficiency adapts to a lack of

nutrients or oxygen (hypoxemia) by slowing down growth rate

[3,16].

Various cognitive deficits are associated with being born with

(v)LBW in humans. They range from general learning problems

[7,17] to an increased risk for depression [18], schizophrenia [19],

anxiety, attention and hyperactivity disorders [20]. Additionally, a

reduced brain volume has been found in these children ([11,21],

see also [22]).

Regarding preventive therapies, except for optimizing time of

delivery, treatments are not yet available [15]. Pregnant women in

developed countries are monitored throughout their pregnancy

and receive multiple heart rate and ultrasonographic (with

additional Doppler) examinations. This aids pre-partum recogni-

tion of the growth restricted fetus by ultrasound technicians and

gynecologists [23]. In case of early detection, if a treatment were

available to limit the adverse consequences, it could be initiated

immediately.
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Brain damage, poor neurological outcome, and the mechanisms

underlying altered neural development as a consequence of intra

uterine growth restriction (IUGR) are not well understood [12,24].

When oxygen and nutrient supply to the brain is compromised,

the fetus attempts to cope with the new situation by protecting its

brain by a process called ‘fetal brain sparing’. At the expense of

blood trunk supply, more blood is diverted to the brain [25,26].

However, if compensatory mechanisms are insufficient, fetal

distress may ensue and this can have far-reaching consequences

extending into adult life [15,27]. Neuronal cell damage or cell

death as a consequence of acute oxygen deprivation of brain tissue

has been well studied in many birth asphyxia studies (e.g. [28,29]).

Longer periods of mild oxygen deprivation are expected to occur

in IUGR fetuses. These periods can be alternated with periods of

re-oxygenation during which oxidative stress may occur, causing

additional collateral damage by free radicals produced [14,28,30].

Pharmacological intervention with neuroprotective substances,

preventing the formation of, or scavenging the free-radicals

produced, may improve neurological outcome in these cases.

Allopurinol (ALLO) is a candidate anti-oxidative drug with

potential neuroprotective properties.

ALLO (1,5-dihydro- 4H-pyrazolo[3,4-d]pyrimidin-4-one) has

been found to reduce free-radical formation in, for example, pig,

sheep, and human fetuses [31–33]. It is oxidized by the enzyme

xanthine oxidase (XO) into the active metabolite oxypurinol

(OXY) [34–36]. The oxidizing process inhibits the formation of

damaging free radicals, and in higher concentrations, ALLO and

OXY can also scavenge the free radicals present [36,37]. ALLO

readily crosses the human and pig placenta and does not interfere

with the parturition process if administered acutely during

parturition [31]. Torrance and colleagues [38] suggested the

therapeutic range for neuroprotection to be .2 mg.L21 for ALLO

and .4 mg.L21 for the active metabolite OXY. Therefore ALLO

seems to be more potent compared to OXY. ALLO is currently

being applied in a clinical trial as a therapy preventing damage

caused by acute birth asphyxia [39].

The neuroprotective capacities of ALLO have mainly been

studied in fetuses and neonates suffering from acute asphyxia

during the parturition process. Treatment usually takes place

during or after birth. Based on these studies it was suggested that

treatment could have a positive effect if 1) ALLO was administered

during or as early as possible after asphyxia and 2) the level of

asphyxia was not too severe (i.e. that it did not induce irreversible

damage) [39]. Under these conditions it is more likely that ALLO

treatment is beneficial for the cognitive outcome in LBW children.

Non-invasive oral treatment could be started during pregnancy as

soon as IUGR has been diagnosed and continue until delivery.

The level of hypoxia is expected to be less severe in LBW children

compared to children suffering from acute birth asphyxia.

The pig is increasingly used to study neurobehavioral dysfunc-

tion because of multiple advantageous characteristics such as its

size and brain development [40]. Complementary to these

advantages, LBW piglets are a common occurrence in commercial

pig rearing [22] due to increasing litter sizes and sow productivity

[41]. Therefore, this species could potentially be used as a natural

model for IUGR as mechanisms behind growth restriction in pigs

and humans are believed to be similar [1]. Poor uteroplacental

perfusion is seen as the main cause of growth restriction in pigs

[42] and occurs naturally in LBW new-born piglets from large

litters [43]. Impaired cognitive performance related to LBW was

shown in one of our earlier studies [22] with the cognitive pig

holeboard task. Therefore, this putative natural animal model was

chosen to study the effects of chronic ALLO treatment.

As only little safety and efficacy data are available about the

consequences of prolonged prenatal ALLO treatment in sows and

their (IUGR) fetuses [31], we performed three exploratory studies

(fully described in Text S2). The first two experiments (S2a and

S2b) addressed the pharmacokinetics of oral ALLO treatment in

late pregnancy in sows in order to gain more insights in the plasma

levels of ALLO and OXY in sows. Subsequently, an exploratory

study was performed (see S2c) to assess the feasibility of long term

oral treatment and to check for possible adverse effects on

placentas and piglets (see Supporting Information S2, experiments

S2a and S2b).

Based on the results of these exploratory studies, we performed

a study addressing the effects of prolonged ALLO treatment via

the sows on LBW and NBW piglets. Several measures were taken

from these piglets and from untreated controls, which included

piglet characteristics at birth, piglet umbilical cord blood gas

values, placental measures (partly derived from experiment S2c,

which is fully described in Text S2, behavior in the open field and

novel object test for emotionality, performance in a cognitive pig

holeboard test for learning and memory and finally body, brain

and spleen weight at slaughter (at the age of approximately 5 to 5.5

months). This experiment mainly focused on learning and

memory performance of the piglets in the cognitive pig holeboard

task. The additional physiological measurements were applied to

support and possibly strengthen the behavioral data.

We expected that chronic prenatal ALLO treatment would be

safe, i.e. that it would not interfere with the progression of

pregnancy or parturition, development of the placenta or growth

of the piglets. Further we hypothesized that no cognitive (brain

and behavior) or emotional measures of NBW piglets would be

influenced by the treatment. LBW piglets treated with ALLO were

expected to perform better in the cognitive holeboard test, and

show less anxiety in the open field and novel object test compared

to LBW controls. Brain, hippocampus and spleen weights were not

expected to be influenced by ALLO treatment.

Materials and Methods

Ethics Statement
The experimental protocols (DEC numbers 2010.I.06.092 and

2011.I.01.011) were approved by the Animal Experiments

Committee of the University Utrecht, The Netherlands. The

Animal Experiments Committee based its decision on the EC

Directive 86/609/EEC (Directive for the Protection of Vertebrate

Animals used for Experimental and other Scientific Purposes). All

animal experiments followed the ‘Principles of Laboratory Animal

Care’ and refer to the Guidelines for the Care and Use of

Mammals in Neuroscience and Behavioral Research (National

Research Council 2003). All surgery was performed under

ketamine/midazolam anesthesia, and all effort was taken to

minimize the number of animals used and their suffering.

Preceding the present study, a series of small experiments was

performed (see Table S1 in Text S1, for an overview of all

experiments performed). First, we determined the dose and dosing

regimen of allopurinol in two exploratory pharmacokinetic studies

(experiments S2a and S2b, described in detail in Text S2). Then, a

small study assessing the feasibility of treating piglets during the

last trimester of pregnancy via oral administration of allopurinol

via the sow was performed (experiment S2c, described in detail in

Text S2). In this experiment, we checked whether chronic

allopurinol treatment had effects on piglet birth weight and the

macroscopic appearance and the measures of the placentas. Data

collected in this study were combined with data from the present

Effects of Allopurinol on Low-Birth-Weight Piglets
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experiment to assess piglet characteristics at birth, placental

measures, and their correlations.

Animals. Twelve multiparous pregnant sows, a (Terra 6
Finnish landrace) 6Duroc mix, were used. They were from two

batches of six sows, with two months between batches (for details,

see Table 1).

Housing. Until one week before farrowing, the sows were

housed in a group housing system for sows with automatic feeders,

straw bedding and ad libitum access to water. The sows had free

access to an outside area where silage was provided. The ambient

inside temperature ranged between 15 and 25uC and light was

provided between 07:00 h and 22:00 h. Except for one kg of

pellets mixed with ALLO, the daily food ration (standard pregnant

sow pellets, de Heus, Ede, The Netherlands) was distributed via an

automatic feeder.

Treatment. Of the twelve pregnant sows (see Table 1), six

were treated with ALLO (15 mg.kg21) for 30 days [62 days

depending on the actual farrowing date, starting at day 86 (+1–3

days) of pregnancy] Six untreated sows served as controls. The last

ALLO dose was administered on the day of farrowing. The dose of

15 mg.kg21 b.w. was based on a simulation of the plasma-

concentration time curve established from two individual sub-

experiments in sows (described in Text S2).

Procedures Around Delivery
Sows. One week prior to the expected farrowing date all sows

were moved to a conventional farrowing stall (ambient temper-

ature 20–23uC, with floor heating, 30uC, in the piglet area). Food

was provided automatically two times a day and access to water

was ad libitum. The sows returned to the group housing stable after

weaning of the piglets.

Drug treatment. Based on the results of our exploratory

pharmacokinetics studies (see experiment S2a and S2b in Text S2)

six sows were treated with allopurinol (15 mg.kg21 b.w.) for 30

days [62 days depending on the actual farrowing date, starting at

day 86 (+1 to 3 days) of pregnancy] and six untreated sows served

as controls (see Table 1). ALLO tablets (300 mg, Ratiopharm, The

Netherlands) were powdered and mixed with 1 kg of pellets, some

honey and water. Animals were observed until all the food was

consumed. Sows were weighed weekly to adapt the dose

corresponding to their weight gain or loss.

Piglets. The piglets were full-term and were delivered

vaginally. A series of birth measures were taken (see below), after

which the piglets were immediately returned to the sow to drink

colostrum. In addition to sow milk, starting at 2–3 days of age

artificial milk for piglets (Milkiwean, Trouw Nutrition, The

Netherlands) was provided in the pen via a drinking bowl. At 3

days of age all piglets were preventively given an iron injection.

When birth diarrhea occurred, all piglets from the affected litter

were treated orally with colistine (Enterogel, Virbac Animal

Health, Barneveld, The Netherlands) for 3 to 5 days. Crippled

piglets before or after weaning were treated with ampicillin

(Ampicillan 20%, Alfasan Nederland B.V., Woerden, The

Netherlands) for 3 to 5 days and if necessary an analgesic with

meloxicam was administered once (Novem 20 mg.ml21, Boehrin-

ger Ingelheim Vetmedica GmbH, Ingelheim, Germany). No tail

docking, castration or other invasive mutilating procedures were

applied in the selected LBW and NBW piglets.

After the piglets had reached 3.5 to four weeks of age the sow

was removed and the piglets were weaned. After one to 1.5

additional week(s) in the farrowing pen the selected LBW and

NBW piglets were mixed and moved to the two pens in the

experimental stable.

The experimental pens (365 m) had a concrete floor. A piglet

nest (3 m61 m) could be accessed through rubber flaps. The nest

floor was covered with rubber mats, a heat mat (20–30uC,

70 cm640 cm), sawdust and straw. The pen floor was also

covered with straw. Food was provided ad libitum during the first

1.5 weeks and twice a day during the rest of the experiment (M
before and O after testing) and was scattered on the pen floor.

Water was always available through an automatic drinker. Balls

and chewing sticks were provided as extra enrichment materials.

Birth measures. Sows were observed constantly starting

three days prior to their expected farrowing date. With the onset of

labor, at least two experimenters were present to receive the piglet

when it was expelled and code the umbilical cord with surgical silk

tagged with ‘knots’. These knots were administratively linked to

the piglets’ ear tag, which was given after blood sampling. The

placental side of the umbilical cord was tagged and the other side

was clamped with a kocher. The cord was cut in between at least

7–15 cm away from the piglet. Slightly above the kocher the

umbilical cord was cut again and mixed venous/arterial blood

(max. 1 ml) was gathered in a 1.5 ml Eppendorf tube. Directly

after blood sampling the umbilical cord was disinfected with

Betadine and clamped and/or sutured until the bleeding stopped.

The blood was directly drawn from the tube into a labeled 1 cc

syringe (w/225 Balanced Heparin, Luer Tip Cap, Westmed,

USA) and put on ice. Within 20 minutes the blood sample was

cleared from air and analyzed with a portable blood gas analyzer

(ABL80 SC80, Radiometer, Zoetermeer, The Netherlands) with a

sensor cassette (100/30 Full, no Glu, QC3) and pH, pCO2, pO2,

cNa+, cK
+, cCa2+, cCL2 and Hct were measured.

Selection of piglets. After measuring and weighing the piglet

returned to the sow and stayed here until weaning. LBW and

NBW piglets were determined per litter: the average litter weight

and the accompanying standard deviation (SD) were determined

per litter. Piglets weighing the mean litter weight minus one SD

were classified as LBW. A new litter mean was calculated after

exclusion of all LBW piglets in the litter. Animals with a weight

closest to this new mean and with the same sex as the LBW

animal(s) from the litter were selected as NBW animals. One to

three LBW and one to three NBW animals were selected per litter,

depending on availability.

Placental measures. All placentas that could be gathered

from a sow were stored (4uC) and examined within one week to

look at any possible adverse effects of ALLO treatment on

placental development. Measures included: placenta length

(measured along the inside of the placenta from one end to the

other); placenta width (measured along the base of the placenta at

the broadest point); and placenta circumference (measured by

placing a piece of string exactly around the edges of the placenta).

All placentas were weighed (10 g accuracy, Breuer Weegtechniek

JB-800, Boxtel, The Netherlands). Scaled pictures were taken from

above to calculate the surface area using PDF-Xchange Viewer

2.5.

Behavioral Testing
Open field and novel object test. During the fifth week

after birth, one week after moving and mixing, an open field and

novel object test was performed once with each animal. In a

random order but per pen an animal was separated and let into a

corridor leading to the test arena. It was let into a small waiting

box covered with sawdust as on the test floor. After approximately

30 seconds the animal was released into the open field arena and

the door was closed. The arena [2506205 cm (first batch) and

2506150 cm (second batch)] was fenced with wooden and

synthetic partitions, at least 1.2 m high. The floor of the open

Effects of Allopurinol on Low-Birth-Weight Piglets
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field was covered with sawdust. A radio was playing in the

background to mask environmental noise. Video feed from a

camera hung above the open field was fed to a monitor, and a

transparent sheet placed in front of the monitor divided the open

field into 16 equally sized partitions. Behavior was observed from

the screen and scored with the custom made software Observe6.

Vocalizations were scored independently by another observer,

who was not visible to the pig.

The total duration of the test was ten minutes. After five minutes

an unknown object (a colorful plastic tambourine) was suddenly

lowered by a rope in the middle of the arena and made a noise

when touching the floor. Starting from the time point of lowering

the object, ‘touching the object’ and ‘looking at the object’ were

scored. After ten minutes the animal was led back to its home pen.

Holeboard testing. The cognitive pig holeboard apparatus

(manufacturer Ossendrijver BV, Achterveld, The Netherlands)

consisted of a square arena (5306530 cm) surrounded by a narrow

corridor (width 40 cm). Via this corridor, four guillotine entry

doors could be reached to access the arena. In the arena a 464

matrix of food bowls was placed. Rewards in a bowl could be

found by lifting the balls on top with the snout. For a detailed

description of the apparatus see Gieling et al. [22]. The holeboard

apparatus could be accessed via a group waiting pen. Animals

were always tested individually in the apparatus and a radio played

continuously to mask background noises.

Each food bowl was equipped with a magnet sensor and every

ball with a magnet. A visit was counted when a pig lifted the ball

on top of the food bowl with its snout. A signal between a magnet

sensor placed under the false bottom and a magnet in the ball was

now disconnected. Registration of the hole visits and automatic

termination of the trial was done by an interface (LabJack Data

Acquisition Device, LabJack Corporation, USA) connected to a

laptop running custom made software (Blinq Systems, Delft, The

Netherlands). Raw data were stored as a text file, and in parallel,

pre-processed data were output to a Microsoft Excel file.

Habituation. Five weeks after birth habituation started. An

experimenter sat in the pen and touched the animals gently when

possible. M&M chocolates and some corn cob mix were given to

attract attention of the piglets and to get them used to the rewards.

Piglets were habituated to the corridor leading to the holeboard

waiting area and the waiting area itself (a pen with an automatic

drinker and straw bedding). As a group they were led into the

holeboard using different entry doors. All food bowls were

rewarded with M&M chocolates. After three group sessions the

group was split in two and habituation to the holeboard was

repeated, using only M&M’s as rewards. Finally, the animals were

tested in groups of two individuals (approx. 4 times) and alone

(approx. 4 times). The entire habituation period lasted 13 working

days.

An animal was defined ready for testing when it was able to stay

in the holeboard for at least 60 seconds while searching for

rewards under the balls. For the first training trial, all animals

entered the holeboard through door nr. 1. On all following trials,

the entry door was assigned randomly by the software. A specific

door was never assigned to an animal more than twice in a row.

Every trial lasted until the 4th reward was found or ten minutes

had elapsed, whichever event occurred first. Every animal was

assigned two successive trials a day (one session) in a random

order. The training phase in which every animal was assigned one

specific configuration of rewarded bowls (4 out of 16) lasted for at

least 40 trials per animal. Four different configurations were used

(the configuration as depicted in Fig. 4E in [44]) and three variants

turned 90u, 180u and 270u). A performance criterion (session

average reference memory performance .0.7 for at least two

consecutive sessions) was set before an animal was allowed to

switch from the training configuration (training phase) to a new

one (reversal). All animals were switched to the reversal if not

reaching criterion after a maximum number of 60 training trials

(transfer phase). In total all animals were trained for an equal

number of trials (84), although the number of training and reversal

trials differed per animal (outlined in Figure 1).

Holeboard measures are memory, motivation or strategy

related. (Re)visits to rewarded bowls, (re)visits to unrewarded

bowls and total trial duration were measured. For scoring revisits

two specific rules were applied: a revisit only was counted as such if

at least ten seconds had elapsed between the previous visit to the

same bowl or when another bowl was visited in between.

Several measures were derived from the raw data:

Working memory ratio (WM): (number of rewarded visits)/

(number of visits and revisits to the rewarded set of bowls). WM is

seen as a short term memory measure, reflecting the ability of the

animals to avoid revisiting baited bowls [45].

Reference memory ratio (RM): (number of visits and

revisits to the rewarded set of bowls)/(number of visits and revisits

to all bowls). RM is seen as a long term memory measure and is an

index for the ability of an animal to discriminate between baited

and unbaited holes [45].

Ratio measures were used as these are less biased by incomplete

trials, in which the animal does not collect all rewards [44].

Trial duration (TD): the time elapsed between entering the

holeboard and finding the last reward with a maximum of 600

seconds if not all rewards were found.

Inter visit interval (IVI): the average time between visits to

bowls (s).

Trials to criterion (TC): The number of trials an animal

needs (with 40 as a minimum) till reaching criterion to start with

reversal training.

Response flexibility (RF): The delta of performance (WM,

RM, TD and IVI) of the last trial block of the first configuration,

compared with the performance of the first trial block of the

second configuration (reversal). The larger the difference (delta),

the more difficulty an animal showed to adapt to a new situation.

Choice Correspondence (CC): Visiting order of first visits

to the four rewarded bowls. This measure can give insight in the

strategy an animal applies to solve the task. An animal could

repeatedly follow the same strategy or alter it depending on the

situation (e.g. entry door) to maximize gain [44]. CC is calculated

according to the rules described by van der Staay et al [44]. With

no strategy animals would score an average of 1.72 and a higher

performance indicates use of a searching strategy. When the exact

same visiting order would be applied repeatedly, the maximum

score of 4 would be reached.

Errors per reward (EpR): This newly defined measure

analyses the number of errors [incorrect (re)visits] an animal

makes before finding each of the four rewards in a trial. The errors

are counted per reward found (before finding reward 1, between

finding reward 1 and 2, 2 and 3, and 3 and 4) i.e. four successive

values are determined that are not accumulated over rewards.

These four values are compared with each other per block of trials

(four trials per block) and per body weight group to analyze

whether the EpR increase across successive rewards. This measure

can be used in a descriptive way to interpret the difficulty level of

the test per treatment group. If the number of errors increases

when later rewards are still to be found, memory load is probably

increasing, or executive-attention to fulfill the task correctly is

declining or eventually lost. An executive-attention component

deficit is suggested to be one of the causes of cognitive impairment

in IUGR children [46].
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Data Analyses
Placental measures. The large number of placentas which

could not be traced back to a specific piglet precluded an analysis

of the effects of birth weight. Consequently, this factor was not

included in the analysis of the placenta measures. Using SPSS 16.0

for Windows placenta measures were analyzed using a linear

mixed model with ‘treatment’ as a fixed and ‘sow’ as a random

factor. ‘Litter size’ was used as covariate as the litter size is a major

determinant of the weight of the piglet in a litter, with larger litters

having smaller piglets [47].

Placenta’s collected in an experiment fully described in Text S2

(experiment S2c) and the placentas collected in the present

experiment were combined for analysis. Pearson correlation

coefficients and Spearman’s correlation coefficients were calculat-

ed to check for correlations between placenta variables. Piglet

birth weight was included in the analyses to search for correlations

between birth weight and placental variables. Data were analyzed

with SPSS 16.0 and SAS 9.2.

Piglet measures and blood gas data. Using SPSS 16.0 for

Windows, piglet measures and blood gas data were analyzed using

a linear mixed model for the umbilical cord blood gas values and

piglet measures data. ‘Treatment’ was set as a fixed factor and

‘sow’ as a random factor. ‘Litter size’ was used as covariate.

Open field and novel object data. Open field measures

include line crossings (LC, an activity measure), the number of

vocalizations (V), the number of defecations (D) (all during ten

minutes), looking at the novel object (LNO), and touching the

novel object (TNO) (both measures during the second 5 min of

observations).

Using SPSS 16.0 for Windows, the data were analyzed using a

linear mixed model with ‘treatment’ as a fixed factor, ‘sow’ as a

random factor and ‘litter size’ as a covariate. Birth weight class

(LBW or NBW) was added as well as the interaction ‘treatment by

birth weight class’ as fixed factors. Each variable was checked for

normality by plotting parameter estimates against parameter

residuals in a Q-Q and scatter plot. Significance level was fixed at

#0.05.

Holeboard data. The animals were trained for two consec-

utive trials a day (one session). For each measure, block mean

values of four trials (two sessions) were calculated (methods

adapted from [22,45]). The data was analyzed with SAS 9.2.

NBW and LBW piglet data was averaged per sow (treated or

control) and the repeated measures data (blocks of four trials each,

or doors) of each sow were used in the analysis. Therefore, for each

variable two measures per trial block for each sow were tested in a

General Linear Model for Repeated Measures with trial blocks or

doors as second repeated measures factor. Every variable was

checked for normality with a Shapiro-Wilk test for normality.

Significance level was fixed at #0.05.

Body, brain and spleen weights. The data was analyzed

with SAS 9.2. NBW and LBW piglet data was averaged per sow

(treated or control). To calculate relative weights, the weight of the

brain or spleen was divided by the final body weight of the animal.

The two variables for each sow were tested in a General Linear

Model for Repeated Measures with birth weight as repeated

measures factor. Every variable was checked for normality with a

Shapiro-Wilk test for normality. Significance level was fixed at

#0.05.

Results

Blood Gas Measures
A maximum of 2–10 umbilical cord mixed blood samples per

sow could be collected from the piglets. It was not always possible

to draw blood from an umbilical cord vein after the cord was cut

or broken. The pH values of the samples did not include any

values below 7.0. The pCO2 values did not exceed 100 mm Hg,

although two samples had a very low pCO2 concentration

(,25 mm Hg). No effect of allopurinol treatment was found on

any of the blood gas parameters. The data is shown in Table 2.

Piglet Birth Measures
During delivery no complications occurred. The lengths of

parturition fell within the normal range and all placentas were

released naturally.

Full body length in ALLO treated piglets exceeded that of the

control piglets. No treatment effects were found for snout length,

birth weight or ponderal index (Table 2). Piglets selected as LBW

and NBW animals for behavioral testing ranged at birth between

470 g and 1155 g (LBW: ALLO average weight 956 g; CONT

average weight 867 g) and 950 g and 1750 g (NBW: ALLO

average weight 1519 g; CONT average weight 1455 g).

Placental Measures (Data from Experiment S2c in Text
S2), and from the Present Experiment)

A total of 125 placentas derived from 17 sows (from the 5 sows

of exp. S2c, see Text S2, and from the12 sows of the present study)

were collected (see Table 2) during three data collection periods

(piglets of the 5 sows of experiment S2c in Text S2, that were

delivered by Caesarean section; and piglets of the 12 sows of the

present experiment, that were vaginally delivered). From these

placentas, 57 could be linked to specific piglets. From sow 12 of the

present study no piglets could be linked to their placentas (see

Table 1).

Figure 1. Timeline of holeboard training.
doi:10.1371/journal.pone.0086396.g001
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Placenta length was found to be shorter in ALLO treated piglets

than in control piglets. No other effects of treatment were found

for placenta width, circumference or surface area (see Table 2).For

the following correlation analysis, data from exp. S2c, reported in

Text S2, and from the present experiment were combined.

Pearson product moment correlation coefficients between the

placental measures and of placental measures with birth weight

are shown in Table 3. Placenta length was correlated with

circumference (rPM = 0.945, P = 0.000), surface area (rPM = 0.597,

P = 0.015) and placenta weight (rPM = 0.502, P = 0.040). Placenta

width was only correlated with weight (rPM = 20.614, P = 0.009).

Placenta circumference correlated with length (rPM = 0.945,

P = 0.00) and surface area (rPM = 0.543, P = 0.024). Placenta

surface area correlated with length (rPM = 0.597, P = 0.015), and

weight (rPM = 0.700, P = 0.002). Placenta weight correlated with

length (rPM = 0.502, P = 0.040), width (rPM = 20.614, P = 0.009),

and surface area (rPM = 0.700, P = 0.002). Finally, piglet birth

weight correlated with placenta circumference (rPM = 0.642,

P = 0.007) but not with any other measure.

Open Field and Novel Object
In total 37 piglets were tested in the open field test with the

number of piglets tested per sow ranging between 1 and 3 per birth

weight group. The only effect found was that LBW piglets

vocalized more than NBW animals [F1,7 = 4.895, P = 0.036; LBW

(mean 6 SEM): 327.61656.01), NBW: 238.05654.61)]. Neither

effects of treatment nor treatment by birth weight interactions

were found.

Holeboard
Results for Working memory (WM), Reference memory (RM),

Trial duration (TD), Inter-visit-interval (IVI), Trials to criterion

(TC), Choice correspondence (CC), and Response flexibility (RF)

are listed in Table 4.

Training improved performance (block effect for WM, RM,

TD, and IVI both for the training and the reversal phase; see

Figure 2). An interaction effect between blocks and treatment was

found for the measure IVI during the reversal phase (F5,40 = 3.28,

P,0.014). ALLO treated piglets had a longer IVI during blocks 13

and 14 of reversal training (contrast variables block 13: F1,8 = 5.64,

P,0.001; block 14: F1,8 = 8.28, P,0.021). No other treatment,

birth weight or treatment by birth weight group interaction effect

was found for the training or reversal phase for the measures WM,

RM, TD, and IVI. Comparing the RF and TC of the four groups,

no effects of birth weight or ALLO treatment were found.

Choice Correspondence. Comparing the visiting order of

rewarded visits per block of four trials for the first ten blocks of

training, none of the four groups significantly changed their

strategy over the blocks (F9,63 = 0.56, P = 0.8211) and the slopes

showed no differences between groups (data not shown). The

average CC calculated per door over 40 training trials did not

show different levels of food searching strategies per door, neither

did treatment or BW group influence CC. Delta’s of mean CC

score per door per BW group minus performance at chance level

(1.72) showed that strategy performance for all doors was

significantly above random performance level (LBW group: door

1, t9 = 2.86, P = 0.0.019; door 2, t9 = 5.03, P = 0.001; door 3,

t9 = 3.74, P = 0.005; door 4, t9 = 4.37, P = 0.002; NBW group: door

1, t9 = 3.24, P = 0.010; door 2, t9 = 4.64, P = 0.001; door 3,

t9 = 4.18, P = 0.002; door 4, t9 = 4.08, P = 0.003).

Errors per reward (EpR). During the first and the 10th

block of training, the number of errors made before finding the

first bowl containing a reward and between finding the following

rewards increased in order of the rewards obtained (see Figure 3A,

block 1: F1,7 = 12.53, P,0.001; Figure 3B, block 10: F3,24 = 6.79,

P,0.002). ALLO treatment or birth weight or their interaction

did not affect EpR.

Body, Brain, Hippocampal, and Spleen Weight
No overall effect of ALLO treatment on final (slaughter) weight

of the pigs (age between 5 and 5.5 months) was found. There was a

marginal interaction between birth weight and treatment (see

Table 2. Effects of Allopurinol treatment on piglet birth measures.

Measure ALLO treated Controls

F DF P , Mean SEM N Mean SEM N

Placenta Length (cm) 4.886 1,14.335 0.044 63.86 1.64 74 74.95 2.60 51

Width (cm) 0.249 1,13.398 0.626 15.67 0.26 70 15.96 0.28 48

Circumference (cm) 2.557 1,15.216 0.130 147.47 3.47 74 167.25 5.52 51

Surface area (cm2) 0.320 1,13.888 0.581 583.64 30.73 69 624.97 37.32 45

Weight (g) 0.200 0.663 0.273 0.01 74 0.266 0.01 51

Piglets Birth weight (g) 3.044 1,12.463 0.106 1470.97 31.61 105 1255.08 37.55 103

Full length (cm) 6.347 1,12.421 0.026 37.296 0.34 93 33.203 0.49 72

Snout length (cm) 0.081 1,12.687 0.387 12.350 0.18 94 11.232 0.18 74

Ponderal index 1.479 1,11.907 0.247 27.693 0.46 93 33.502 1.39 72

Blood gases pH 1.603 1,8.686 0.238 7.377 0.02 26 7.420 0.02 19

pCO2 0.008 1,8.229 0.930 47.35 1.80 26 45.58 2.15 19

pO2 1.217 1,3.540 0.339 39.62 6.50 26 52.37 8.98 19

Hct 0.315 1,8.910 0.588 25.56 0.65 26 26.67 1.86 19

Degrees of freedom, F-values, associated probabilities, mean, SEMs and Ns op the ALLO-treated and untreated control piglets are listed.
Differences in birth measures between piglets from the six sows treated with allopurinol and four control sows. Note that the data of two sows of the control condition
(no ALLO treatment) were not used because they did not give birth to LBW piglets (see Table 1 for details). Full body length (cm) = snout to tail base; snout length
(cm) = snout to end of skull; ponderal index = weight/length3.
doi:10.1371/journal.pone.0086396.t002
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Tables 5 and 6). LBW control animals seemed to have a lower

body weight compared to the LBW animals treated with ALLO.

This didn’t seem to be the case for the NBW groups (see

Figure 4A). Overall, LBW animals had a lower slaughter weight

than NBW animals (F1,8 = 5.20, P,0.005). Brain weights (see

Figure 4B) and hippocampus weights (see Figure 4C) did not differ

between the ALLO treated animals and the controls. Spleen

weight, however, was marginally lower in the ALLO treated

animals (F1,8 = 4.23, P,0.007, see Figure 4D).

Brain and hippocampus ratio measures were influenced by birth

weight but not by treatment. In absolute terms the brains of LBW

pigs weighed significantly less than the brains of NBW pigs

(analysis not shown, mean brain weight LBW animals 100.5 g;

mean brain weight NBW animals 106.86 g). The relative brain

and hippocampus weights, i.e. the weights expressed per kg

body weight, were found to be higher in the LBW than the

NBW animals (F1,8 = 6.15, P,0.005 and F1,8 = 6.87, P,0.031

respectively).

Discussion

The final aim of the present series of experiments was to assess

the safety and efficacy of chronic prenatal oral treatment with

ALLO of the sow on her piglets postnatally. Mainly parameters

related to cognition were measured but emotional reactivity and

growth were also taken into account. The progress of pregnancy

and delivery including the placenta were registered for safety

reasons. All sows were observed starting before the onset of

parturition until the end of the weaning period. No adverse effects

of chronic allopurinol treatment were found on farrowing, birth

weight, open field behavior, learning abilities, relative brain,

hippocampus or spleen weights. LBW piglets showed increased

anxiety levels in an open field test for emotional reactivity, but

neither piglet working nor reference memory was affected by

allopurinol treatment. LBW animals treated with ALLO showed

the largest postnatal compensatory body weight gain. During

delivery no complications occurred. The lengths of parturition fell

within the normal range and all placentas were released naturally.

Blood Gas Levels
Blood gases were measured immediately after birth to identify

piglets that may have suffered from acute birth asphyxia.

Allopurinol did not influence blood gas values of neonatal piglets

prenatally treated from day 86 (+1–3 days) of gestation including

the day of delivery. None of the sampled piglets seemed to have

suffered from acute asphyxia as no pH levels below 7.0 or pCO2

levels above100 mDobberkem HG were measured [48–50],

though these levels are generally based on venous or arterial

blood samples rather than the mixed samples drawn in the present

experiment. Variation between pH and pCO2 levels in mixed,

venous or arterial blood of piglets is unknown. In total 35% of the

behaviorally tested piglets were sampled for blood gas values. As

blood samples couldn’t be drawn from all piglets, this might

implicate that an unwanted bias selected piglets that were easy to

sample. Umbilical cords from specific sows seemed to break much

easier compared to cords of other sows, hindering blood sampling.

Blood samples were drawn as soon as possible after delivery and

cutting the umbilical cord, but gas exchange through breathing

could not be prevented. This could have influenced the results

[50]. Some analyses failed due to excessive air in the samples.

Possibly, the level of oxidative stress determined by blood gas

parameters may in the future be substituted or complemented by

evaluating (anti-)oxidative parameters of placental tissue or

maternal plasma [14].

Placental Features and Body Measures
To assure that chronic ALLO treatment had no effects on

general placental features, basic measures were taken from

placentas of treated and control piglets. Most placental features

were unaffected by prolonged ALLO treatment, except that

placentas derived from treated piglets were found to be shorter.

This contrasts with our finding that body length is longer in the

ALLO treated piglets. According to Wilson [51] placental size is

inversely correlated with its efficiency, i.e. smaller placentas seem

to be relatively more efficient. As the ALLO treated piglets are

found to be taller but not heavier compared to controls, placenta

length does not seem to be a factor of biological relevance for the

health and viability of ALLO treated piglets.

Open Field and Novel Object Test
To assess the effects of ALLO treatment on the anxiety level of

the piglets, an open field and novel object test (combined) was

performed just after weaning. Emotional reactivity of ALLO

treated piglets in the open field test did not seem to differ from that

Table 3. Correlation between placental measures and birth weight.

Placenta width Placenta circumference
Placenta
surface area

Placenta
weight

Piglet
birth weight

Placenta length rPM 20.176 0.945 0.579 0.502 0.488

(N) P , (17) 0.500 (17) 0.000 (17) 0.015 (17) 0.040 (16) 0.055

Placenta width rPM 20.027 20.270 20.614 0.188

(N) P , (17) 0.917 (17) 0.295 (17) 0.009 (16) 0.486

Placenta circumference rPM 0.543 0.361 0.642

(N) P , (17) 0.024 (17) 0.154 (16) 0.007

Placenta surface area rPM 0.700 0.180

(N) P , (17) 0.002 (16) 0.504

Placenta weight rPM 20.045

(N) P , (16) 0.867

Pearson’s product moment correlation coefficients (rPM), the associated probabilities (two tailed), and the number of measurements (Ns) are listed. Correlation
coefficients with associated probabilities ,0.05 are printed bold, whereas coefficients with 0.1 .P .0.05 are printed in italics.
doi:10.1371/journal.pone.0086396.t003
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of the controls in the LBW or the NBW group. However, LBW

piglets vocalized more than NBW piglets. Increased vocalizations

in piglets are shown to be correlated with unpleasant or painful

situations [52] and social isolation [53], all known to be stressful

and anxiety inducing events. Epidemiological studies in (v)LBW

children showed anxiety to be increased [20], which suggests that

increased anxiety related to LBW is shared amongst humans and

pigs.

Stress-reducing drugs as azaperone are found to decrease the

number of vocalizations in piglets when subjected to a stressful

environment [53]. Piglets born from cortisol treated sows, a

prenatal stress model, were found to vocalize more compared to

controls in a novel environment test in a study by Kranendonk

et al [54]. Our finding that LBW piglets vocalize more in the open

field test compared to NBW sibling corroborates findings of Weary

et al. [55], who found that isolated LBW piglets vocalized more

than NBW piglets. Chronic ALLO treatment did not affect the

increased anxiety levels in LBW piglets in any direction (mean

frequency 6 SEM; LBW ALLO: 318.80649.92; LBW CONT:

338.63630.29).

Holeboard
The measures WM and RM clearly showed that all four groups

were well able to learn both the initial configuration and a reversal

of the holeboard task. These results are in line with earlier pig

holeboard studies [22,45,56]. However, one of our earlier studies

[22] showed LBW animals to have more difficulty with the

transition from one learned configuration to a new one (reversal),

compared to NBW siblings. This difference in WM performance

was not found in the current experiment. A methodological

difference between the studies was the moment at which the

reversal was commenced. In the experiment by Gieling et al. [22]

all pigs started the first reversal after 26 trials. The current

experiment applied a RM performance criterion before switching

to the reversal and a minimal number of 40 trials during the

acquisition phase of the first configuration. Especially the response

flexibility (see Figure 2) of WM, RM and TD (calculated as

difference score between the end of training on the 1st

configuration of baited holes minus performance at the start of

reversal learning) clearly shows that if all animals reached a

minimal performance level before they start learning a new

Figure 2. Behavior of four different treatment groups in a spatial holeboard task. Groups: low birth weight (LBW) and normal birth weight
(NBW) piglets, prenatally treated with allopurinol and untreated controls. Means and SEM for the ten trial blocks of the training phase (1–10) and six
trial blocks of the reversal phase (11–16) are shown for (A) WM (stippled lines) and RM (solid lines), (B) trial duration and (C) IVI.
doi:10.1371/journal.pone.0086396.g002
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configuration, they switch easier to the new configuration of baited

holes. The general rules of the task (which are RM related [57])

might have been stored better after a longer training period, which

makes switching easier. Another difference was that trials were

presented once a day as a set of two massed trials. In the previous

study two trials a day were given but they were spaced over the

day. To be able to conclude whether WM and RM performance

under these different conditions truly differ, we analyzed

performance of the untreated LBW and NBW animals and

compared it with the results of Gieling et al. [22] after 26 training

trials. WM and RM performance under the two given circum-

stances was found to be very similar. In the present study the sow

was the unit of treatment (and analysis) and not the individual

piglets. This causes a loss of statistical power and affects the

sensitivity of tracing possible subtle behavioral differences between

groups.

Human studies comparing cognitive performance of LBW

children with healthy controls differ substantially for their setup.

Not all of them found LBW (but term) born children to be affected

by prenatal growth restriction later in life [5]. Altogether we could

speculate that not all LBW piglets are clearly cognitively affected

by growth restriction. A clear discrepancy between the present pig

study and human studies is that our piglets were kept under

conventional farm circumstances which are not optimal for

survival of the piglets which are most severely affected by growth

restriction. As survival rates of the most affected LBW children is

improving in the western world [58], optimally this high level of

neonatal care should be imitated in the translational pig studies to

ensure inclusion of the most affected animals and avoid a bias

through loss of the less viable animals.

Except for a treatment by block interaction effect on inter-visit-

interval during the reversal phase, no learning and memory

differences were found between the ALLO treated and control

group. No conclusions can be drawn about the possible positive

effect of prenatal ALLO treatment on the cognitive performance

of LBW piglets. However, we also did not find any indication that

ALLO had a detrimental effect on cognitive performance when

piglets were tested from seven weeks of age.

Clearly more EpR were made during the 1st block of training

compared to the last communal block of training (block ten).

During the first block, the number of EpR increased with each

successive reward in a trial, but no differences between treatment

or birth weight groups were seen. During a later stage of training

(block ten), the number of errors stayed more or less similar till the

3rd reward is found. This measure reflects that 1) most animals

reached a high, but not errorless performance level, and 2) that in

particular from the 3rd reward onwards the task becomes more

difficult for most of the pigs. The latter could be related to the

attention span of the animals or their memory load capacities and

is a fact to keep in mind when defining the difficulty level of a

learning task. Although attention span is found to be impaired in

(v)LBW children [59], this was not confirmed in our LBW piglets

by the EpR analysis.

No treatment effects of ALLO were found on the food search

strategy, as reflected by the measure CC. Both BW groups were

found to apply a partial strategy per specific entry door, but no

clear development of a search strategy was seen over blocks, when

‘door’ was not included in the analysis. All CC scores per door

clearly differ from the random performance score 1.72, calculated

over all training trials of both BW groups [60]. As average CC

scores are found to be 2.263 (6 SEM 0.139) for the LBW and

2.257 (6 SEM 0.131) for the NBW animals, it is clear that the

animals adopt a search pattern per entry door, although optimal

performance (a score of 4) was never reached. According to Oades

[75] a fixed search pattern in the holeboard can be considered as

reflecting efficient learning. We did not detect one specific food

search strategy if the analysis was run across all entry doors.

However, if entry door was considered in the analysis, it became

obvious that the search pattern differed per entry door. This shows

that most pigs are able to develop a (partial) strategy per entry

door. This accounts for both BW groups and strengthens the idea

that having more than one entry door increases the difficulty of the

task [45].

Brain, Spleen and Body Weight
The LBW piglets did not show compensatory weight gain and

their final body weight was still lower compared to the average

weight of NBW animals at slaughter. Lasting effects on body

weight are in agreement with previous studies [61,62] and are also

observed in human LBW children [63]. Additionally, a marginal

treatment by birth weight interaction effect was found, suggesting

that the birth weights of ALLO treated LBW pigs were higher

than those of the untreated LBW animals. This effect of ALLO

was not found in the NBW pigs. This effect is not reflected by the

relative brain and hippocampus weights of the animals. The

findings are in agreement with the data from LBW children that

remain atypically small during early years and run a larger risk of

less than optimal cognitive development [64]. Therefore postnatal

growth is an important developmental factor.

Spleen weights (corrected for body weight, as spleen weight

increases with body weight [65]) of ALLO treated animals tended

to be lower than those of controls. In particular, the relative spleen

weights of ALLO treated but NBW animals tended to be lower

than those of the other three groups. A characteristic of chronic

stress (as we hypothesized to occur during the prenatal period of

LBW piglets) is a change of size in stress-related tissues [66]. Long-

lasting stress is known to decrease the weight of organs such as the

spleen [67–69], but this involution of the organ is also found to

eventually return to normal after termination of stress [70]. On the

contrary, Blanchard et al [66] found spleen weights corrected for

Figure 3. Average number of errors* made per birth weight
and treatment group between finding rewarded bowls. X-axis:
1: before locating the 1st reward, 2: between locating reward 1–2, 3:
between locating reward 2–3, 4: between locating reward 3–4. Groups:
low birth weight (LBW) and normal birth weight (NBW) piglets,
prenatally treated with allopurinol and untreated controls. Means and
SEM for the 1st (panel A) and 10th trial block (panel B) of the training
phase are shown. *Error = visiting an unrewarded or previously
rewarded bowl. **Trial block = 2 sessions of 2 consecutive trials (i.e. 4
trials in total).
doi:10.1371/journal.pone.0086396.g003
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body weight to increase in chronically stressed animals, but this

may reflect an inflammatory response to wounding as male

dominance hierarchies were studied in their experiment. Further-

more, the actual organ weight is largely determined by the actual

blood flow and erythrocyte storage into this organ [71]. It would

be premature to indicate whether and how stress levels were

influenced by ALLO treatment in one of the BW groups based on

this marginal finding and considering the discrepancies in

literature, but this does indicate a potential avenue for future

research.

Neither relative brain nor hippocampus weights were influenced

by ALLO treatment in any direction. Both measures are found to

Figure 4. Absolute body and relative organ weights of low (LBW) and normal birth weight (NBW) pigs derived from allopurinol
treated and control sows at the age of 5 and 5.5 months. Panel A: body weight, panels B–D: relative organ weights. Ratios are calculated by
dividing the organ weight through the end body weight per animal.
doi:10.1371/journal.pone.0086396.g004

Table 5. Effect of birth weight, ALLO treatment and their interaction on slaughter weight, and relative hippocampal and spleen
weight (for means and SEMs see Table 6).

Treatment (TM) Birth weight (BW) BW6TM

Measure F DF P , F DF P , F DF P ,

End body weight 0.27 1,8 0.616 5.20 1,8 0.005 3.92 1,8 0.083

Mean brain weight 0.19 1,8 0.676 6.15 1,8 0.038 0.08 1,8 0.791

Mean hippocampal weight 0.65 1,8 0.443 6.87 1,8 0.031 0.33 1,8 0.581

Mean spleen weight 4.23 1,8 0.074 0.22 1,8 0.655 0.14 1,8 0.715

doi:10.1371/journal.pone.0086396.t005
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be higher in LBW compared to NBW animals, whereas absolute

weights were lower. In preterm (v)LBW children, lower brain and

hippocampal weights were found [72]. In human children, head

circumference (a measure correlating to brain weight) at eight

months of age appears to be the best growth parameter for

predicting IQ at the age of three years. Adequate compensatory

brain growth during the first year of life could prevent much of the

negative effects on IQ at three years of age [73]. The brains of the

pigs in this study were weighed at 5–5.5 months of age. Because

the LBW piglets selected probably suffered from relatively mild

IUGR, partial compensatory postnatal brain growth could have

taken place.

Conclusions
The aim of this study was to assess both safety and efficacy of

prolonged prenatal oral ALLO treatment in piglets via the sow.

Preliminary analysis of the plasma concentrations in sows and

their piglets suggested that a daily dose of 15 mg.kg21 results in

effective plasma concentration of ALLO in piglets. In contrast to

studies with other animal species as well as humans, only relevant

ALLO but not OXY levels were measured in the unborn/

neonatal piglets and no accumulation of the drug was measured in

the sows.

ALLO treatments, even over a slightly longer period, had no

adverse effects on farrowing, confirming previous findings in pigs

by Boda et al. [31]. These authors applied a dose of 30 mg.kg21

during 4–8 days preceding delivery. In the present study, none of

the piglets sampled showed blood gas values indicating that they

had suffered from acute birth hypoxia.

The placental circumference was found to correlate with piglet

birth weight. ALLO treated piglets seemed to have shorter

placentas. As the treated pigs were also found to have taller bodies,

placenta length does not seem to be a naturally relevant factor

influencing the growth of treated piglets. No interaction effects

between treatment and birth weight were found.

An open field test for emotional reactivity at five weeks of age

did not reveal any differences between treated and untreated

animals. Though, LBW animals were found to vocalize more

compared to NBW siblings. Anxiety levels in LBW piglets may be

increased, as is found for LBW human children. We therefore

suggest this is a shared phenomenon between humans and pigs.

Evaluating the cognitive capacities of ALLO treated piglets in

the cognitive holeboard task we could not identify any effects of

the ALLO treatment, nor were there any differences between

LBW and NBW piglets. These findings contrast with the results of

a previous study in which we observed differences in response

flexibility between LBW and NBW piglets after switching to a new

configuration [22]. This discrepancy might be attributable to the

fact that the experimental unit differed between both experiments

(affecting statistical power and sensitivity). Also, in the present

study we trained animals until a specific (higher) level of

performance was reached. However, results clearly indicated that

a prolonged prenatal treatment with ALLO can be regarded as

safe as no undesirable side effects on cognitive performance were

observed.

LBW piglets did not reach the same final body weights as NBW

animals, but body weight at 5 to 5.5 months of age showed evidence

of postnatal compensatory growth, as did brain and hippocampus.

LBW animals treated with ALLO showed the largest postnatal

compensatory body weight gain, a positive indication for the

chronic prenatal use of ALLO in these animals. Further research

should take into account that relative spleen weights tended to be

lower in treated NBW animals, although relative brain and

hippocampus weights were not influenced by treatment.

We conclude that prolonged prenatal ALLO treatment during

the third trimester in sows and their LBW and NBW piglets is safe

during pregnancy and delivery, and did not affect the postnatal

period. The efficacy of treatment on the cognitive performance of

the piglets remains unclear, despite the fact that the plasma-

concentrations time curves measured in sows and also the piglets

confirmed the diaplacental transfer of ALLO reaching steady state

concentrations [74] which are believed to be therapeutically

active. Relative brain and hippocampus weights seem to be

unaffected by treatment but the final growth of treated LBW pigs

appears to be improved compared to the other three groups.

Supporting Information

Text S1 This text contains Table S1 that lists all
experiments performed.

(PDF)

Text S2 This text reports allopurinol (ALLO) and
oxypurinol (OXY) plasma levels in sows and their piglets
(experiment S2a) and possible short-term effects of
chronic allopurinol treatment on birth measures and
placental measures (experiment S2b). The text contains

Tables S2.1, S2.2 and S2.3, and Figure S2.1

(PDF)

Table 6. Absolute and relative weights per birth weight by treatment group.

Absolute weights Relative weights (organ weight/end body weight)

Group Mean SEM Group Mean SEM Group Mean SEM Group Mean SEM

End body weight
(kg)

LBW ALLO 87.10 7.10 NBW ALLO 98.60 4.75

LBW CONT 73.00 7.15 NBW CONT 103.78 3.47

Brain (g) LBW ALLO 102.00 1.51 LBW ALLO 105.60 2.51 LBW ALLO 1.24 0.10 LBW ALLO 1.09 0.04

LBW CONT 99.00 4.63 LBW CONT 108.11 2.85 LBW CONT 1.35 0.08 LBW CONT 1.05 0.05

Hippocampus (g) LBW ALLO 3.18 0.06 LBW ALLO 3.30 0.09 LBW ALLO 0.039 0.0033 LBW ALLO 0.034 0.0015

LBW CONT 2.86 0.27 LBW CONT 3.03 0.10 LBW CONT 0.042 0.0039 LBW CONT 0.030 0.0015

Spleen (g) LBW ALLO 118.00 9.46 LBW ALLO 121.30 6.10 LBW ALLO 0.79 0.23 LBW ALLO 0.34 0.20

LBW CONT 104.29 11.49 LBW CONT 131.78 6.98 LBW CONT 0.82 0.28 LBW CONT 0.68 0.22

The means and standard errors of the mean (SEM) are listed.
doi:10.1371/journal.pone.0086396.t006
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