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Abstract. Many years ago it was observed that the r.e. languages form
an infinite proper hierarchy RE1 ⊂ RE2 ⊂ · · · based on the size of the
Turing machines that accept them. Aside from some basic facts, little
seems known about it in general. We examine the position of the finite
languages and their complements in the hierarchy. We show that for every
finite language L one has L, L̄ ∈ REn for some n ≤ p·(m−blog2 pc+1)+1
where m is the length of the longest word in L, c is the cardinality of
L, and p = min(c, 2m−1). If L ∈ REn, then L̄ ∈ REs for some s =
O(n + m). We also prove that for every n, there is a finite language
Ln with m = O(n log2 n) such that Ln 6∈ REn but Ln, L̄n ∈ REs for
some s = O(n log2 n). Extending this, we show that there exist families
{Fn}n≥1 of finite languages such that F1 ⊂ F2 ⊂ · · · where for every n,
Fn 6∈ REn but Fn ∈ REs for an s with s = O(n log2 n). The proofs make
use of several auxiliary results for Turing machines with advice over a
fixed alphabet.

1 Introduction

The recursively enumerable languages have a core position in computability the-
ory. The computational complexity of these languages is normally studied in
terms of the resources used by the standard Turing machines that accept them,
notably time and space [9]. In the late nineteen sixties, Blum [3] suggested to
study the effects of program size as well. Schmitt [16] made this idea concrete by
proposing the number of states of the accepting one-tape Turing machines over
a fixed alphabet as a resource.

For n ≥ 1, let REn be the class of recursively enumerable languages accept-
able by one-tape Turing machines over a fixed alphabet Σ having at most n
states. The primary characteristic of any size measure is that there should be
only finitely many different machines of any given size. If all other parameters
of a Turing machine are fixed (independently of input size), then the ‘number
? Version dated March 31, 2014. This research was partially supported by RVO

67985807 and GA ČR grant No. P202/10/1333.
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of states’ of a machine indeed satisfies this requirement. It easily follows that
each REn is finite and thus, that the classes form an infinite hierarchy: the
RE-hierarchy.

Schmitt [16] proved that all classes in the RE-hierarchy are non-empty and
that the hierarchy is proper: RE1 ⊂ RE2 ⊂ · · · . He also proved that for n ≥ 2,
every REn contains a finite language, even a finite language that is not in REn−1.
He showed that other well-known families of formal languages, like the non-finite
regular languages and the non-regular context-free languages, spread out over
successive levels in the hierarchy in a similar way. Little seems known beyond
these basic facts, aside from the general properties of size measures [3, 7, 14].

In this paper we examine the position of the finite languages and their comple-
ments in the hierarchy more closely. We show e.g. that for every finite language L
one has L, L̄ ∈ REn for some n ≤ p·(m−blog2 pc+1)+1 where m is the length of
the longest word in L, c is the cardinality of L and p = min(c, 2m−1). We prove
several further detailed results using the same parameters. If L ∈ REn, then
the n-state Turing machine accepting L may not be always-halting. We show
nevertheless that, if L ∈ REn, then L̄ ∈ REs for some s = O(n + m). Finally,
we prove the following main result on the occurrence of the finite languages.

Theorem A For each n ≥ 1 there is a finite language Ln with words of size
at most O(n log2 n) such that Ln 6∈ REn but Ln (and thus also L̄n) ∈ REs, for
some s = O(n log2 n).

As a corollary we show that there exist families {Fn}n≥1 of finite languages
for which F1 ⊂ F2 ⊂ · · · and such that for every n, Fn 6∈ REn but Fn ∈ REs

for an s with s = O(n log2 n).
In the proof of Theorem A we will make use of some results for Turing

machines with advice. These machines are a special variant of oracle machines in
which the oracle is restricted to be a function of the input size only rather than
of the full input string [10, 1]. In Section 2 we define the basic machine model
and recall some useful facts for it. In Section 3 we prove some first results for
classifying finite languages depending on the size of their longest string and their
cardinality. In Section 4 we consider the complexity of the co-finite languages
and in Section 5 we prove Theorem A. In Section 6 we discuss the merit of our
results in the context of formal language theory.

We note that, for any language L, the minimum number of states of a Turing
machine accepting L corresponds closely to the descriptional complexity of L.
If L ∈ REn, then L is accepted by a Turing machine with a programa that
can be represented by a string of length O(n log2 n), obtained by encoding the
instructions for all state-symbol pairs in binary. Conversely, if L is accepted by
a Turing machine with program size r, then L ∈ REn for some n = O(r/ log2 r).
Descriptional complexity has been extensively studied for many classes of special
acceptors, notably for finite automata (see [12] for a survey). For the latter,
the state complexity of finite languages was shown to be θ( 2m

m )-bounded, with
m as above (cf. [5, 4, 6]). In Section 3 we make this bound more precise, and
we show how to improve on it for restricted classes of finite languages. Our
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results hopefully add further perspective to the study of the state complexity of
languages in general.

2 Preliminaries

We first give the Turing machine-related concepts and conventions used in this
paper. We define Turing machines with advice (TM/A’s) and show that a concise
TM/A for a language L helps in estimating the position of its finite initial
segments in the RE-hierarchy. We also give a simple technique to create a concise
always-halting TM/A for L from a given TM/A. The advice mechanism will be
used in all later sections. Without loss of generality we fix the input alphabet to
{0, 1}, the tape alphabet to {0, 1, B} (with B acting as the blank symbol) and
the advice alphabet to {0, 1}.

2.1 Turing machines

The Turing machines we consider will be regular deterministic, one-tape ma-
chines with two distinguished halting states: accept, and reject. Turing ma-
chine M is said to accepts input x if and only if its computation on x ends in
finitely many steps in the state accept. If the computation ends in state reject,
we say that M rejects x. Of course the computation may continue indefinitely,
in which case M is said to reject x as well. We assume w.l.o.g. that M never gets
stuck in a non-halting state. A machine which either accepts or rejects each of
its inputs in finitely many steps, is called an always-halting machine.

Although we stay close to the one-tape convention of [16], it will occasionally
be easier to use a multi-tape Turing machine in stead. This type of machine has
a read-only input tape and one or more separate work tapes. It is well-known
that these machines are not more powerful than the one-tape model, but this
is usually shown by encoding tracks in alphabet symbols (see e.g. [9], Theorem
6.2). This can not be done here, given the strict fixation of alphabets which
we have to respect. The following fact is folklore but a proof seems not widely
known. We sketch it below for completeness.

Lemma 1. Let L be accepted by a q-state multi-tape Turing machine. Then
L ∈ REn for n = O(q).

Proof. Let L be accepted by a q-state multi-tape Turing machine M with t work
tapes. We design a one-tape Turing machine M ′ as follows.

To stay within the conventions of the one-tape model over {0, 1, B}, we en-
code the contents stored on the various tapes of M symbol-wise in term of fixed
equal-size blocks of the form | b < tape >< symbol > |, where b is a bit denot-
ing whether the symbol is currently scanned by the reading head on the tape,
< tape > is a fixed-length binary number between 0 and t indicating the tape
it is stored on (using 0 for the input tape), and < symbol > the actual symbol
stored in the tape-cell. In order to faithfully represents the contents of every par-
ticular tape, we only require that the blocks with a same < tape >-value appear
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in the correct sequential order on the tape and that for each tape precisely one
symbol has the b-bit on (to mark the position of the reading head on that tape).
Note that the blocks can all be assumed to be of (equal) size u with u ≈ 2+log t,
although this is not essential. (The ‘vertical bars’ are not part of the encoding
but only used to denote a block.)

When simulating the actions of M , machine M ′ can easily skip over the
encoded symbols of different tapes, to act on the consecutive symbols of one
particular tape. In order to do the simulation, the instructions of M have to be
recoded into instruction for M ′ so that it respects and maintains the representa-
tion. We do this as follows. First, for each state s of M , M ′ will have a number
of states of the form

< s, goaltape, scanning, sym0, sym1, · · · , symt, z >

Here s is the state for which M ′ wants to simulate a move, < goaltape > is the
number of the tape which it wants to read, < scanning > records the scanning
of the tape number in a block, sym0, · · · symt are the symbols scanned on the
respective tape (insofar as known), and z is one of O(t) ‘control states’.

A ‘move’ of M ′ typically begins by ‘reading’ (collecting) the symbols scanned
on the tapes. It is done by letting < goaltape > step from 0 to t and for each
< goaltape > value move over the tape, stopping only at those blocks which
have their b-bit turned on, building up the < tape >-value of the scanned block
in < scanning > bit by bit and checking whether it matches < goaltape >.
If so, the scanned < symbol > is stored in the corresponding sym-part of the
state. This process is repeated until all tapes have been scanned. After the
scanning is complete the corresponding move (i.e. instruction) of M is simulated,
by changing the symbols in the scanned blocks or simulating a move to the left
or to the right on a tape, by exchanging the b-bit between a block and the ‘first’
block to the left or to the right that has the same < tape >-value, respectively.
In z we keep track of the various stages in the process.

It easily follows that the total number of states needed in this simulation is
bounded by q ·poly(t)·2t+1 = O(q), where poly(t) is a polynomial only depending
on t. Only one final detail is needed, namely the transformation of a given input
Bx1 · · ·xlB to the correct initial representation of the tapes of M . This can be
done by a series of moves, first deleting x1 and moving to the right end of the
tape to deposit a block |10 · · · 0x1| there, and repeating this for each xj for j
from 2 to l but now printing blocks of the form |00 · · · 0xj |, and wrapping up by
adding a t final blocks of the form |1 < tape > B| to the left end. The tape now
looks like

· · ·B|1 < 0 > x1|1 < 0 > x2| · · · |1 < 0 > xl|1 < 1 > B| · · · |1 < t > B|B · · ·

and M ′ can start. This initial phase requires an additional number of states
depending on t only, which is O(1). Machine M ′ clearly accepts L. ut
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2.2 Turing machines with Advice

Turing machines with advice are akin to oracle machines as already introduced
by Turing [17]. Effectively, an oracle allows inserting outside information into the
computation. This information may depend on the concrete input and is given
for free to the respective oracle machine whenever the oracle is queried. Advice
is a special kind of oracle, namely one that returns values which depend only on
the size of the input.

Turing machines with advice (TM/A) were introduced by Karp and Lipton
[10]. (The idea of ‘advice’ can already be recognized in [2].) With advice, a Turing
machine may, and in general will, easily gain super-Turing computing power, as
the advice is not required to be computable.

Definition 1. An advice (function) is a function f : N → {0, 1}∗. An advice f
is called g(n)-bounded for some g : N → N if for all n, |f(n)| ≤ g(n).

Technically, a TM/A with advice function f operates on an input of size n
in much the same way as a standard Turing machine. However, the machine can
also call its advice by entering into a special query state. After doing so, the
value of f(n) will appear on a special read-only advice tape. From this moment
onward, the machine can use the contents of this tape in its computation. (Note
that in our set-up, advices are coded over the fixed alphabet {0, 1}.)

One easily verifies that a language L is accepted by a Turing machine M with
oracle O if and only if L is accepted by a TM/A M ′ with 2n-bounded advice f.
(For the ‘if’-part, let f(n) be the bit string of length 2n in which the i-th bit is 0
or 1 depending on whether the lexicographically i-th word of {0, 1}n is accepted
by M with its oracle or not. The ‘only-if’ part follows by definition.)

The following lemma illustrates the power of advice and will be used later on.
Given an arbitrary language L, let L≤m denote the (finite) subset of L consisting
of all its words of length at most m. Let w ∈ {0, 1}∗ be an arbitrary word.

Lemma 2. Let L be accepted by a q-state TM/A with advice function f such
that f(k) = w for k ≤ m and f(k) arbitrary otherwise. Then L≤m ∈ REn with
n = m + |w|+ O(q).

Proof. Let L be accepted by a TM/A M as described. Design a Turing machine
M ′ as follows. (For clarity we do not aim at an optimal construction.)

Let the input have the following form, with the read-head initially positioned
on the leftmost symbol x1:

Bx1 · · ·xkB

Reading the input M ′ first goes through m + 1 states q1, · · · , qm+1 to check the
input’s length. If M ′ reaches the end of the input in state qi for some i ≤ m,
then it moves from qi to state w1 as described below. If M ′ reaches qm+1 exactly
when or before the end of the input is reached, then M ′ moves to a sink state c
in which it simply cycles to the end of the input and rejects (as the input was
found to have length greater than m).
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If M ′ transfers from a qi (1 ≤ i ≤ m) to state w1 (being at the end of the
input), it skips over three blanks at the end of the input and subsequently enters
a row of h states w1, · · · , wh, with h = |w| and each state corresponding to a
symbol of the advice string w. (Note that w is the correct advice for the current
input). M ′ moves from w1 to w2 while printing the block 01w1 and continues to
move from wj to wj+1 (2 ≤ j ≤ h− 1) while printing a block 00wj on the tape.
For j = h this is done while moving from wm to a rewind state d. Arriving in the
latter state, M ′ rewinds its head to the left end of the input, which is recognized
by hitting the first blank symbol after passing the block of three.

Using O(1) states, M ′ now goes through a cycle of deleting the input symbols
x1, · · · , xk one at a time on the left and copying them to the right end side of
the tape as blocks as shown below. After the last input symbol has been copied,
M ′ moves its reading head to block 11x1. The tape now looks as follows:

· · ·BBB|01w1|00w2| · · · |00wh|11x1|10x2| · · · |10xl|BBB · · ·

In this representation the advice and input tape, and the reading heads on these
tapes, are represented ‘in-line’ again and M ′ can start to simulate the moves of
M in the same way as in the proof of Lemma 1. Of course the advice information
can only come into play when the simulation of M calls it.

It is easy to modify the transitions of M so they operate on and maintain the
in-line encoding. It requires that for each state-symbol pair, M ′ goes through
a small gadget that does the cycling to the left or to the right to pick up the
symbols from the tape cells that M currently scans, and deposit changes corre-
sponding to the write and head moves before being ready for a next simulated
transition. The gadgets need to be of size O(1) only, which means that we only
need a total of O(q) states for it. The result will be that M ′ maintains a tape of
the form

B|10σ1| · · · 10σr|00w1| · · · |01wj | · · · |00wh|10σr+1| · · · |11σi| · · · |10σv|B

where σ1 · · ·σrσr+1 · · ·σi · · ·σv is the ‘current’ contents of the main tape of M
and the reading heads are scanning the i’th symbol of this tape (for some 1 ≤
i ≤ v) and the j’th one of the advice. Note that extensions of the main tape
to the left are written in blocks to the left of the advice. M ′ clearly accepts
L≤m. ut

Lemma 2 suggests that one may wish to encode key information for L in
a compact advice and have a ‘small’ TM/A do the rest. Intuitively, the more
complex a language is, the longer the advice needed for it. Karp and Lipton
[10] indeed stated, without proof, that TM/A’s with g(k)-bounded advice are
more powerful than TM/A’s with h(k)-bounded advice, provided g(k) > h(k)
infinitely often. For h(k) = o(g(k)) this was proved by Hermo and Mayordomo
[8] using Kolmogorov complexity, the general case was proved by Verbaan [20].
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3 Bounding State Complexity

We pursue the position of the finite languages and their complements in the
RE-hierarchy. In this Section we give some first, auxiliary bounds on the state
complexity of finite languages, using both the length of their longest word and
their cardinality as the key parameters.

Notation 1 For finite L ⊆ {0, 1}? we let m = max(L) = max{|w| |w ∈ L} and
c = card(L), the number of words in L.

3.1 Bounds from Finite Automata

We can already get interesting bounds by just considering the number of states
we need when we only use a finite-state part of a Turing machine i.e. a finite
automaton as acceptor, over the fixed input alphabet {0, 1}. We begin with some
basic facts.

According to Champarnaud and Pin [5], the question to determine the max-
imum number of states of any minimal (deterministic) finite automaton recog-
nizing a finite language L ∈ {0, 1}m was apparently first raised by H. Straubing
(cf. [5]). They proved that this number is θ( 2m

m ), which easily extends to the
recognition of all languages with maximum word size m (cf. [4]). Thus, for all
finite languages L ∈ {0, 1}∗ we have L ∈ REn, for some n = θ( 2m

m ). Gruber
and Holzer [6] proved that the latter holds for ‘almost all’ finite languages with
maximum word size m, in a suitable probabilistic model.3

We aim at bounds that not only depend on m = max(L) but also on c =
card(L). As a starting point we take the following simple fact.

Lemma 3. Let L be a finite language with card(L) ≥ 2. Then L, L̄ ∈ REn, for
some n ≤ c ·m.

Proof. Let T be the full binary tree of depth m − 1, with left branches labeled
0 and right branches labeled 1. Let the nodes be initially unlabeled. We add
two more states: A and R and label them as ‘accept’ and ‘reject’ states already.
Note that m ≥ 1, because card(L) ≥ 2. We now create a finite automaton A as
follows:

– I: enter every word w ∈ L with |w| ≤ m − 1 into T : start at the root, follow the
path as if the nodes are states and w the input, and mark the node of T reached
this way as an ‘accept’ state.

– II: now enter every word wσ ∈ L with |w| = m− 1 and σ ∈ {0, 1} into T : start at
the root, follow the path as if the nodes are states and w the input. Let x be the
node of T reached at the frontier of T by following w. Then add an edge labeled
σ from x to A.

– III: mark every node of T that is not marked as an accept state but is ‘on the way’
to an accept state (i.e. has an accept node as one its descendants, i.e. including
node A), as a ‘reject’ state.

3 The results are reminiscent to the Shannon-Lyapunov bounds on circuit-size for
Boolean functions in n-variables, see e.g. [21].
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– IV: (‘pruning’) delete all nodes of T that did not receive a label, and also delete
the edges that lead to them.

– V: for every remaining (i.e. labeled) node x ∈ T ∪ {A, R} and every σ ∈ {0, 1}, if x
lacks or lost an outgoing edge labeled σ then add a σ-labeled edge from x to R.

Note that, by definition, state A must be reached by at least one word of L.
It is easily seen that the automaton A so constructed is completely specified

and accepts precisely the words of L. Moreover, by switching accept and reject
labels one obtains an automaton that precisely accepts L̄. It remains to estimate
the number of states, i.e. the number of nodes that got labeled.

Note that every labeled node of T ∪ {A} is accounted for as being on the
path from the root to an accept node. The total number of these nodes is thus
certainly bounded by c ·m. As c ≥ 2, the root of T is counted at least twice in
this bound. Now counting the root one time less but including R in stead, shows
that the total number of states of A is bounded by c ·m. ut

Considering the proof of Lemma 3 it is clear that the given bound is not the
sharpest possible. We will improve on the c · m-bound in a few steps, first by
sharpening the analysis in Lemma 3 in general and then specializing it to classes
of languages that satisfy some further constraints.

3.2 Improved bounds

Considering the state-diagram of A, we see that the paths from the root to the
accept nodes are likely to overlap considerably, especially in the top part of the
tree. A better accounting in the tree leads to the following improved bound.

Theorem 1. Let L be a finite language with card(L) ≥ 2. Let p = min(c, 2m−1).
Then L, L̄ ∈ REn, for some n ≤ p · (m− blog2 pc+ 1) + 1.

Proof. By assumption c ≥ 2 and thus m ≥ 1. We proceed as above and first
construct the finite automaton A as in the proof of lemma 3. (We use the same
notation and terminology as in this proof.)

As before the labeled nodes of T can all be accounted for by the nodes that
are either on a path from the root to a deepest accepting node in T (i.e. an
accepting node with no accepting descendants in T anymore), or on a path from
the root to a rejecting node in the frontier of T at depth m−1 which is connected
to A. This adds up to a total of at most p = min(c, 2m−1) paths. (Note that each
deepest accepting node of T can be charged to a depth-(m− 1) node among its
pruned-away descendents, if the node isn’t at depth m− 1 itself.)

Choose k with 0 ≤ k ≤ m − 1. We estimate the number of states in A by
the number of labeled nodes in the top part of T of depth k, plus the number of
labeled nodes remaining on the paths that stick out of it and lead further down,
plus A and R. This amounts to a worst-case bound of

(2k+1 − 1) + p · ((m− 1)− k) + 2 = 2k+1 + p · (m− 1− k) + 1

Choosing integer k such that k = blog2 pc, we have 2k+1 ≤ 2p and we get a
bound of p · (m− blog2 pc+ 1) + 1 on the total number of states. ut
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Corollary 1. Let L be a finite language with 2 ≤ card(L) < 2m. Then L, L̄ ∈
REn, for some n ≤ c · (m− blog2 cc+ 1) + 1.

Proof. Estimate p by c in the preceding proof and take k = blog2 cc (≤ m− 1).
The bound follows. ut

In Corollary 1 the value of c can be restricted to a count of those words of L
whose length is greater than k = blog2cc.

With the θ( 2m

m )-bound in mind for finite languages in general, we note that
Theorem 1 gives the following result for size-bounded languages.

Corollary 2. Let L be a finite language with 2 ≤ c ≤ 2m+1

h(m) log2 h(m) , for some

function h with h(m) > 1. Then L, L̄ ∈ REn for some n with n = O( 2m

h(m) ).

Proof. By assumption we have 2m+1

h(m) log2 h(m) ≥ 2, hence h(m) < 2m. Now choose
k = m−blog2 h(m)c−1 in the previous proof. This gives a bound on the number
of states of

2m

2blog2 h(m)c +
2m+1

h(m) log2 h(m)
· blog2 h(m)c+ 1 ≤ 2 · 2m+1

h(m)
+ 1

which gives the result as claimed. ut

3.3 Combining Subtrees

We now improve on the given bounds further, by considering the state diagram
of automaton A in more detail. Let cj (0 ≤ m) be the number of labeled states
in level j of A. We are interested in the ‘fan-out rate’ of the state diagram which,
by construction, relates to the fan-out of the accepted words as they are entered
into T . The ultimate aim is a further refinement of the θ( 2m

m )-bound for general
finite languages.

Definition 2. An enveloping subset of the j-th level of T is any subset Sj of the
nodes in the corresponding level of the non-pruned version of T which contains
at least all labeled nodes in this level. Let sj = |Sj | (0 ≤ j ≤ m− 1).

Definition 3. A finite language L is called 〈γ, R〉-constraint for some constant
γ > 0 and function R = R(m, c), if its corresponding automaton admits envelop-
ing sets Sj such that sj ≤ O( R

2γ(m−j ) ((0 ≤ j ≤ m− 1).

Note that all finite languages are trivially 〈1, 2m〉-constraint. We will take a
general approach and consider languages L which are 〈γ, R〉-constraint for any,
possibly tighter, enveloping bound R. In the remainder we assume w.l.o.g. that
m ≥ 2 and that R ≥ 16.

Given a finite language L, we first modify its automaton A. Consider the
construction in Lemma 3. Choose an integer z with 0 ≤ z ≤ m− 2 and consider
the labeled nodes of T in level m− z− 1 (reached by an edge from some labeled
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node in level m − z − 2). We can economize by merging ‘identical’, i.e. equally
labeled subtrees at this level into one, redirecting all transitions from level m−
z − 2 to a single instance of each subtree accordingly. The resulting automaton
A′ is clearly equivalent to A but may have fewer states.

Theorem 2. Let L be a finite language with card(L) ≥ 2. If L is 〈γ, R〉-
constraint, then L, L̄ ∈ REn for some n with n = O( R

(log2 R)γ ).

Proof. The labeled nodes of A′ in the first m − z − 2 levels can be counted by
means of the enveloping sets Sj for j up to m− z− 2. This gives a bound in the
order of

Σm−z−2
0 sj ≤ Σm−z−2

0

R

2γ(m−j)
<

1
2γ − 1

· R

2γ(z+1)
= O(

R

2γ(z+1)
)

To estimate the number of states in the merged subtrees at level m− z − 1,
note that these subtrees all result from complete trees of z levels which got
labeled and from which the unlabeled nodes got subsequently removed. Note
that the complete trees have 2z+1−1 nodes and can get labeled in at most 32z+1

ways (including ‘no label’ as a possibility). This bounds the number of different
subtrees that can result in the state diagram of A, even if only in a rough way.
It follows that the number of states of A′ is bounded in the order of

R

2γ(z+1)
+ (2z+1 − 1) · 32z+1

+ 2

Choose z = blog2 log2 Rc − 2. Then 1
4 log2 R ≤ 2z+1 ≤ 1

2 log2 R and thus we
obtain, by substituting:

32z+1
≤ 3

1
2

1
log3 2 log3 R = R

1
log3 4

Substituting further, it follows that

R

2γ(z+1)
+(2z+1−1)·32z+1

+2 ≤ 4γ R

(log2 R)γ
+

1
2

log2 R·R
1

log3 4 +2 = O(
R

(log2 R)γ
)

which proves the desired bound. ut

Theorem 2 generalizes the bound of O( 2m

m ) states on the complexity of finite
languages. This follows because every finite language is 〈1, 2m〉-constraint and
the bound follows by mere substitution. For large classes of non-sparse finite
languages, Theorem 2 can give better bounds and beat the cm-bound as well,
as shown below.

Definition 4. A finite language L is called γ-expansive for some constant γ
with 0 < γ ≤ 1 if its corresponding automaton admits enveloping sets Sj such
that sj ≤ O(2γj) (0 ≤ j ≤ m− 1).

For a γ-expansive language, the enveloping sets can expand only by a factor of at
most 2γ . Clearly a γ-expansive language can have any size up to 1+· · · 2γ(m−1)+
2 · 2γ(m−1) = O(2γm). Note that every finite language is 1-expansive.
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Corollary 3. Let L be a γ-expansive language with cardinality c = Ω( 2γm

m ), for
some γ with 0 < γ ≤ 1. Then L, L̄ ∈ REn for an n with n = O( cm

(log2 cm)γ ).

Proof. Let L be a finite language as given, and let c ≥ α 2γm

m . Assume w.l.o.g.
that cm ≥ 16. We will prove that language L is 〈γ, cm〉-constraint.

To show this, rewrite the condition on c as follows, for every j with 0 ≤ j ≤
m− 1:

c ≥ α
2γm

m
⇒ 2γj ≤ 1

α

cm

2γ(m−j)
⇒ sj ≤

1
α

cm

2γ(m−j)
⇒ sj ≤ O(

cm

2γ(m−j)
)

Note that the second step follows from the γ-expansiveness of L. We conclude
that the requirements of Definition 3 are satisfied and Theorem 2 applies. The
corollary follows by taking R = cm. ut

3.4 Bounds from Turing machines

We were able to improve on the cm-type bound of Lemma 3 by optimizing the
automaton A which we constructed for a finite language L. We may expect to
improve on these bounds further when the full power of Turing machines is used.
We show that in some cases better bounds can indeed be obtained.

Let L be a finite language with m = max(L) ≥ 2 and c = card(L) ≥ 1.
Inspired by Lemma 2 we aim to design a small TM/A for L using as compact
an advice as possible.

Let b = bL ∈ {0, 1}2m+1
be the characteristic bit string of L. This is the

bit string consisting of the consecutive values of the characteristic function of
L, listed from the empty string up to the strings of length m. (Note that this
indeed gives a bit string b with |b| = 2m+1.)

Definition 5. L is said to be k-blocked if k is the smallest integer such that the
characteristic bit string b consists of at most k blocks of consecutive zeros and
at most k blocks of consecutive ones.

Without loss of generality we may assume that the blocks in b are all maximal
and that the zero- and one-blocks alternate. Observe that every finite language
is k-blocked for some k ≤ c + 1.

The following simple observation will be the key for improving over the cm-
type bound from Subsections 3.1 and 3.2 again, for large classes of finite lan-
guages.

Theorem 3. Let L be a finite language. If L is k-blocked, then L, L̄ ∈ REn with
n ≤ O(mk log2

2c
k ).

Proof. Let L be a finite language as specified. We design a TM/A M for L as
follows. We begin by constructing its advice. Of course b = bL seems perfect for
this. With b as advice, only O(1) states would suffice to recognize the words of
L. We first show that b can be compressed.
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We compress b to a string b′ as follows. By assumption b consist of at most
k blocks of zeroes and at most k blocks of ones, in alternating order. Say the
blocks have lengths p1, · · · , pk and q1, · · · , qk respectively. (Note that k ≤ c.)
Compress each block of, say, p zeros to the binary number for p, and each block
of q ones to the binary number for q. It leads to compressed blocks of a total
length at most log2 p1 + · · · log2 pk + log2 q1 + · · ·+ log2 qk + 2k. Now observing
that q1 + · · · + qk = c and thus p1 + · · · + pk = 2m+1 − c and using Jensen’s
inequality, this length is bounded by

k log2

2m+1 − c

k
+ k log2

c

k
+ 2k = k log2

2m+1c− c2

k2
+ 2k = O(mk log2

c

k
)

To combine the compressed blocks into one new advice string b′, we use
a simple in-line encoding, putting the compressed blocks in the correct se-
quence and pairing every symbol of a compressed zero-block with a 0 and every
symbol of a compressed one-block with a 1. Thus b′ simply encodes b, with
|b′| = O(mk log2

c
k ).

Define the advice function f ′ by f(k) = b′ for k ≤ m and f(k) = λ (the
empty string) for k > m. Design a TM/A M that accepts L using f as follows.
Given an input x, machine M immediately asks for advice. If the advice is λ, M
rejects because the input will be longer than m. If the advice is b′, then M goes
through a simple routine to decode b′ and decompress the blocks to retrieve b.
It then reads its input, and inspects the position corresponding to x. If the bit
is 1 it accepts x, otherwise it rejects. One easily verifies that M needs only O(1)
states for this.

Now apply Lemma 2. It follows that L = L≤m ∈ REn with n such that
n = m + |b′|+ O(1) = O(km log2

2c
k ). ut

As every finite language is k-blocked for k ≈ c, Theorem 3 gives a worst-
case state complexity that is no better than O(cm). However, as soon as some
degree of clustering among the words of L arises, one gets an improvement of
this bound. For example, Theorem 3 immediately gives the following.

Corollary 4. Let L be a finite language. Let L be k-blocked for some k ≤ (cm)γ

m
with 0 < γ ≤ 1. Then L, L̄ ∈ REn with n ≤ O((cm)γ log2 cm).

4 Positioning the Cofinite Languages

In this section we will be interested in the state complexity of the complement
of a (finite) r.e. language L. This immediately lead us to the question whether
one can convert an arbitrary Turing machine for L into one with a ‘small piece
of advice’ that is always halting.

We show in fact how one can convert any TM/A into an equivalent TM/A
that always halts, thus generalizing Proposition 5 from [18] to the case of arbi-
trary TM/A’s. It can also be seen as a generalisation of Barzdin’s lemma (see [2],
Theorem 1) to TM/A’s. We show several consequences of this result, including
the observation that for any finite language L, L̄ is never far away from L in the
RE-hierarchy.
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Lemma 4. Let M1 be a TM/A with g(k)-bounded advice. Then there exists an
equivalent TM/A M2 with (g(k)+k+1)-bounded advice that halts on each input.

Proof. Let f1 be the g(k)-bounded advice function of M1. We build a new advice
function f2 as follows. For each k, let wk be an input of length k which is accepted
by M1 with the longest running time of all accepting computations of M1 on
inputs of length k (compare [2], Theorem 1). If M1 has no accepting computation
on an input of length k, then let wk be an arbitrary string of length k. Define
advice function f2 by: f2(k) = f1(k) · wkσk where σk = 1 if M1 has accepting
computations on inputs of length k and σk = 0 if it doesn’t. By design it is
always easy to retrieve f1(k), σk and wk from f2(k).

Now design a TM/A M2 as follows. On input w of length |w| = m, M2

first calls its advice f2(m) and extracts f1(m), σm and wm. Then it alternately
simulates one step of M1’s computation on w and one step of M1’s computation
on wm if the latter is meaningful. Due to the choice of σm and wm, one of the
following conditions must arise first:

– σk = 0: then M2 halts and rejects its input w (as M1 does not have accepting
computations).

– the computation on w halts in an accept state of M1: then M2 halts and accepts
the input w;

– the computation on w halts in a reject state of M1: then M2 halts and rejects the
input w;

– the computation on wm halts: then we know that the computation of M1 on w will
not halt and hence M2 rejects its input w.

Note that the latter condition can only arise if σk = 0 hasn’t arisen first, i.e. if
σk = 1. In this case wm is indeed a correct indicator for the rejection.

Thus, M2 accepts the same language as M1, halts on all inputs, and its advice
is (g(k) + k + 1)-bounded. ut

The bound g(k)+k+1 in Lemma 4 can be improved to g(k)+log2 cL(k)+1,
where cL(k) is the census function of L (see e.g. [19]). This will give a shorter
advice in the case of ‘sparse’ languages.

Corollary 5. For any Turing machine M1 - with or without advice - accepting
a language L, there exists a TM/A M2 that accepts L̄ and always halts.

As a special case it follows that the complement of any r.e. language is ac-
cepted by an always halting TM/A. We elaborate on this observation in the
following variant of Lemma 2.

Lemma 5. Let L be accepted by a q-state TM/A with advice function f such
that f(k) = w for k ≤ m and f(k) arbitrary otherwise. Then L≤m can be accepted
by an n-state Turing machine that always halts, for some n = O(m + |w|+ q).

Proof. Let L be accepted by a TM/A M1 as described. We design a Turing
machine M ′ for L≤m that always halts. The construction follows the idea of
Lemma 4 and applies it to the proof of Lemma 2.
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Following the recipe of Lemma 4, we first modify the advice function f of M1.
As we need to accept L≤m, the advice we need to add to f(k) should use wk =
‘the input of length k which is accepted by M1 with the longest running time of
all accepting computations of M1 on inputs of length k’ (or some default value of
length k when M1 does not accept any words of size k). Using the notation from
the proof of Lemma 4, let the new advice f ′ be defined by f ′(k) = f(k) · wkσk.

The further construction amounts to a simulation of M1 as in Lemma 4, but
formatted as in Lemma 2 so as to stay within the framework of one-tape Turing
machines with standard work-tape alphabet {0, 1, B}. To embed the advice f ′

into the design of the machine we now also have to hardwire the relevant σk-
values (0 ≤ k ≤ m) into it, which takes no more than O(m) states. If the length
check on an input x of length k succeeds, we immediately check σk and reject
the input if σk = 0.

The remainder of the construction is easily adapted as well. In stead of two
in-line tracks we lay out four, in order to carry out a simultaneous simulation
of M1’s computation on input x using advice w and on yardstick wk (also with
advice w and only when σk = 1). To set up the extra simulation, we only need
O(m) extra states.

The resulting Turing machine halts on every input and uses no more than
O(m + |w|+ q) states ut

We use Lemma 5 to argue that for finite languages, L and L̄ can never be
very far apart in the RE-hierarchy. Of course L and L̄ belong to the same class if
the smallest Turing machine accepting L is always halting: one simply swaps the
accepting and rejecting states to obtain a Turing machine for L̄ with the same
number of states! However, even if the accepting machine for L is nót always
halting, then the indexes of L and L̄ in the hierarchy will differ by an amount
at most linear in max(L).

Theorem 4. Let L be a finite language with m = max(L) (m ≥ 1). If L ∈ REn,
then L̄ ∈ REs for some s = O(n + m).

Proof. Let M be a Turing machine with n states accepting L. Because L is finite
with max(L) = m, we have L = L≤m.

We now construct a Turing machine M ′ that accepts L≤m and that always
halts, using the technique of Lemma 5. Note that M can be viewed as a TM/A
with advice function f(k) = λ. Hence, the machine M ′ constructed in the proof
of Lemma 5 will have O(n+m) states. By swapping the accepting and rejecting
states, we have a machine that accepts L̄. Hence L̄ ∈ REs for s = O(n+m). ut

5 Separating the RE-hierarchy

We now return to the RE-hierarchy. How are the finite languages spreading
through the RE-hierarchy concretely? In Section 3 we gave some first results on
the position of both L and L̄ depending on max(L) and card(L), but these were
all upperbounds. In this Section we give a more fundamental bounding result
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for the finite languages and their complements in the RE-hierarchy. We take the
finite languages as the core sets.

We now prove the result stated earlier as Theorem A. The proof implicitly
uses various techniques developed in Section 2 and in the previous Section.

Theorem 5. For each n ≥ 1 there is a finite language Ln with max(Ln) =
O(n log2 n) such that Ln 6∈ REn but Ln ∈ REs, for some s = O(n log2 n).

Proof. We construct the languages Ln by a diagonalisation argument. We first
state our conventions and then define Ln.

Conventions
Every Turing machine of n states can be encoded in N = Nn = O(n log2 n)
bits, by a fixed standard representation of the transition table over our standard
alphabet. The encoding can be done in such a way that it is easily recognized
whether a given string of N bits is the encoding of an actual Turing machine
with n-states. We use N throughout to denote the fixed code size for n-state
machines, omitting the subscript n when n is understood.

Language Ln

We now want to associate a Turing machine with every string w ∈ {0, 1}N . In
order to achieve it, we consider a standard e.g. lexicographic enumeration of the
strings in {0, 1, B}N (with wrap-around) and let each string w ∈ {0, 1}N corre-
spond to the machine described by the first string following in the enumeration
starting from w that corresponds to a concrete Turing machine encoding. This is
well-defined, due to the wrapping around of the enumeration.

Let Mw be the n-state Turing machine thus associated with a string w ∈
{0, 1}N . (Note that, as a consequence, different strings w can thus correspond
to the same n-state machine but this is no problem.) Define Ln by

Ln = {w | w ∈ {0, 1}N , w is not accepted by Mw}

By a standard argument one sees that Ln 6∈ REn. For, suppose that Ln could
be accepted by an n-state Turing machine Z. Let Z = Mw for some N -bit code
w. Then the assumptions w ∈ Ln and w 6∈ Ln both lead to a contradiction. We
will aim to design a Turing machine that does accept Ln.

Machine M
Before we do so, we design an auxiliary machine. Define L =

⋃
n≥1 Ln. By the

same argument as above one sees that L is not accepted by any Turing machine
with finitely many states. Indeed, assuming that L would be accepted by an
r-state Turing machine for some r, will give a contradiction in the same way as
before. However, by an argument similar to that in Lemma 4 one easily shows
that L is accepted by a TM/A M with advice function f defined by

f(k) =
a. λ : if there is no r such that k = Nr,
b. λ : if there is no string string w with |w| = k for which Mw halts on

input w,



16 Jan van Leeuwen and Jǐŕı Wiedermann

c. w : if w is the lexicographically least string with |w| = k for which
Mw halts on w using the longest possible number of steps over all w
of size k for which Mw halts on w.

On any given input x, with |x| = k for some k > 0, M checks whether x is of
length N = Nr for some r. If it is not, M rejects x. Otherwise M simply calls its
advice f(k). If f(k) = λ then M accepts x. If f(k) = w 6= λ, then M proceeds
by interlacing the simulation of Mx on x and that of Mw on w, using the latter
as a yardstick to stop the simulation if Mx would run infinitely long on x. Note
that M is always halting. Suppose M has b states (b a constant).

Accepting Ln

We now modify M into a TM/A M ′ that accepts Ln, viewed as a slice of L. The
easiest way to do this is to allocate an extra Nn states and let M ′ check that
|x| = Nn. One can do this also in O(n + log2 n) states and create the needed
yardstick of length Nn on the tape, namely by spending O(n) states to lay out
a yardstick of size n and iterating through another O(log2 n) states O(n) times.
This will give a suitable M ′ for Ln. However, as the advice will now be called
only on inputs of the right length k = Nn, we can restrict the range of the advice
f and simplify it to the advice function f ′ defined by

f ′(k) =
a. λ : if k > Nn,
b. λ : if there is no string w with |w| ≤ Nn for which Mw is well-defined

(i.e. |w| = Nr for some r) and halts on w, and
c. w : if w is the lexicographically least string with |w| ≤ Nn for which

Mw is well-defined and halts on w using the longest possible number
of steps over all w of length ≤ Nn for which Mw is well-defined and
halting on w.

It is easily argued that M ′ with advice f ′ is a valid TM/A accepting precisely
the strings of Ln. Observe that M ′ uses q = O(b+Nn) = O(Nn) states (or in the
more economic version, O(b + n + log2 n) = O(n) states). The advice function
f ′ is Nn-bounded. M ′ is again always halting.

Wrapping up
By applying lemma 5 it now follows that Ln = (Ln)≤Nn can be accepted by an
s-state Turing machine that always halts, for some s = O(Nn + Nn + Nn) =
O(Nn) = O(n log2 n). ut

The proof of Theorem 5 is non-constructive because machine M cannot be
found by effective means. Nevertheless, the proof is sufficient for giving upper-
and lowerbounds on the position of each language Ln in the RE-hierarchy. Note
that by swapping accepting and rejecting states in M ′ one obtains that L̄n REs

as well. It can be noticed that the O(n log2 n)-bound for s is due entirely to the
coding we used.

We can draw a further conclusion from the proof of Theorem 5 which shows
even more clearly how the finite languages separate the classes of the RE-
hierarchy.
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Corollary 6. There exist a family {Fn}n≥1 with F1 ⊂ F2 ⊂ · · · such that for
every n, max(Fn) = O(n log2 n), Fn 6∈ REn, but Fn ∈ REs with s = O(n log2 n).

Proof. Let {0, 1}∗k denote the set of binary strings of length less than k. Using
the languages Ln as defined in the proof above, let Fn = Ln ∪ {0, 1}∗Nn . One
easily verifies that the arguments given in the proof above for Ln apply to Fn

just the same. In particular one sees that Fn /∈ REn.
We now only need to modify M ′ so it no longer rejects its inputs x with

|x| < Nn but accepts them. The advice function f ′ can remain unchanged as the
advice is never called on inputs of length less than Nn.

It follows by the same argument as in the proof of Theorem 5 that Fn ∈ REs

for some s = O(n log2 n). ut

As a curiosity we note that the family {Fn}n≥1 just constructed has the
property that

⋃
n≥1 Fn = {0, 1}∗. In other words, {0, 1}∗ can be decomposed

into an infinite ascending chain of finite languages which spread to higher and
higher classes in the RE-hierarchy, although {0, 1}∗ ∈ RE1.

6 Conclusions

The study of program size originated with Blum [3]. The notion was intensively
studied in abstract complexity theory in the nineteen seventees and later. Start-
ing with the classic paper of Meyer et al. [15], notions of program size and state
complexity have been put forward as measures of descriptional complexity for
functions, sets, automata, and other systems.

In this note we studied the RE-hierarchy, the hierarchy of r.e. languages
based on the number of states (‘size’) of the accepting Turing machine. The basic
results for this hierarchy go back more than 40 years as well, to Schmitt [16]. The
hierarchy is indicative for the computational richness that can be encoded into
a Turing machine’s program. In particular it gives a way to classify languages
by the number of states needed to accept them. Considerable attention to state
complexity was given e.g. for the case of finite automata.

Our main aim has been to add some hopefully new perspectives to the com-
binatorial nature of the RE-hierarchy. We have investigated the position of the
finite languages in the hierarchy, using not only max(L) but also card(L) as a
parameter. We proved several results which vary on or improve the θ( 2m

m )-bound
for finite languages known from automata theory. However, our main results have
aimed to separate the classes of the RE-hierarchy by ‘concrete’ finite languages.

The separation results proved in Section 5 shown that the classes in the
RE-hierarchy can be separated by finite languages F with very limited max(F )
value. It would be interesting to refine the results along this line and achieve
tighter bounds. Also, can the results be extended from finite languages to e.g. the
non-finite regular languages or non-regular contextfree languages like Schmitt’s
results? One can probably pad the languages in the proof of Theorem 5 with
an infinite part to make them non-finite and have the property one desires. We
leave these and other questions to future studies.
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As a new technique in this domain we have employed various results for
Turing machines ‘with advice’. We have shown that optimizing the (length of
the) advice in a Turing machine can be an effective intermediate step in bounding
the state complexity of finite languages. It would be interesting to explore this
technique for other classes of languages as well.
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