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This paper deals with Bayesian selection of models that can be
specified using inequality constraints among the model parameters.
The concept of encompassing priors is introduced, that is, a prior
distribution for an unconstrained model from which the prior
distributions of the constrained models can be derived. It is shown
that the Bayes factor for the encompassing and a constrained model
has a very nice interpretation: it is the ratio of the proportion of the
prior and posterior distribution of the encompassing model in
agreement with the constrained model. It is also shown that, for a
specific class of models, selection based on encompassing priors will
render a virtually objective selection procedure. The paper concludes
with three illustrative examples: an analysis of variance with ordered
means; a contingency table analysis with ordered odds-ratios; and a
multilevel model with ordered slopes.
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1 Inequality constrained statistical models

Researchers often have one or more (competing) theories about their field of

research. Consider, for example, theories about the effect of behavioral therapy

versus medication for children with an attention deficit disorder (ADD). Some

researchers in this area believe medication is the only effective treatment for ADD,

some believe strongly in behavioral therapy, and others may expect an additive effect

of both therapies. To test or compare the plausibility of these theories they need to

be translated into statistical models. Subsequently, empirical data can be used to

determine which model is best. Inequality constraints on model parameters can be

useful in the specification of statistical models.

This paper deals with competing models that have the same parameter vector, but

in one or more of the models parameters are subjected to inequality constraints. To

continue the example, consider an experiment where children with ADD are

randomly assigned to one of four conditions: no treatment (1), behavioral therapy

(2), medication (3), and behavioral therapy plus medication (4). Let the outcome
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variable of interest be the score on an attention test, and lj be the average in group j

(j ¼ 1,. . .,4). The three theories presented above can be translated into the following

models: (l3, l4) > (l1, l2) (positive effect of medication), (l2, l4) > (l1, l3)
(positive effect of behavioral therapy), l4 > (l2, l3) > l1 (additive effect of therapy
and medication).

The unconstrained model is called the encompassing model and plays a central

role in the model selection procedure described in this paper. Note that all the

constrained models are nested in the encompassing model. Two goals are

distinguished: select the best theory of a set of competing theories (i.e. constrained

models) or find out if a theory (i.e. a constrained model) is better than the

unconstrained, encompassing model. Illustrations of both situations will be provided

in the examples of this paper. The notation used for the model parameters of interest,

that is, the vector of parameters subjected to inequality constraints in one or more of

the nested models, is h. Parameters that are unconstrained in all (encompassing and

nested) models, i.e. the nuisance parameters, are denoted by x. Assuming that the

ADD data of the example are normally distributed, h ¼ fl1, l2, l3, l4g and x

contains the nuisance parameter r2.
The model selection procedure is based on the Bayes factor. For data D and

models Mq and Mq
0, the Bayes factor is

BFq0q ¼
PðDjMq0 Þ
P ðDjMqÞ

¼
R
LðDjh;x;Mq0 Þgðh;xjMq0 Þdh;xR
LðDjh;x;MqÞgðh;xjMqÞdh;x

; ð1Þ

that is, the ratio of the marginal likelihoods of Mq
0 and Mq (see for instance, KASS

and RAFTERY (1995)). As can be seen in (1), Bayes factors are sensitive to the prior

distribution of the parameters of each model. However, in this paper it will be shown

that for sets of models where the constrained models are nested in an unconstrained,

encompassing model, only one prior distribution needs to be specified, the so-called

encompassing prior. The prior distributions for the parameters of the nested models

follow from the encompassing prior by restriction of the parameter space according

to the constraints. Furthermore, it will be shown that, for specific classes of models,

model selection based on encompassing priors is virtually objective. Estimation of

the Bayes factor traditionally involves the calculation of marginal likelihoods, which

often involves computational problems. However, using the encompassing prior

approach leads to a straightforward estimate of the Bayes factor, without requiring

the computation of marginal likelihoods.

In Section 2 the new approach to estimating Bayes factors in the context of

encompassing priors is introduced. In Section 3 specification of the encompassing

prior is outlined, and subsequently the sensitivity of Bayes factors to the

encompassing prior is examined. In Sections 4, 5 and 6, three illustrations are

provided, dealing with respectively normal linear data with constraints on

independent means, a three-way contingency table with ordered odds ratios, and a

multilevel analysis with inequality constraints on the slopes. The paper will be

concluded with a short discussion in Section 7.
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2 Estimation of posterior probabilities using encompassing priors

In the encompassing model no constraints are put on the model parameters and all

other models are nested in this model. Furthermore, the prior distribution of the

parameters in the encompassing model will be called the encompassing prior. In

what follows the encompassing model will be denoted M1 and the encompassing

prior distribution will be denoted g(h, x|M1). The prior distribution of any model

Mq, q ¼ 2,. . .,Q that is nested in the encompassing model M1 can be obtained from

g(h, x|M1) by restricting the parameter space in accordance with the constraints

imposed by a model Mq and is given by

gðh;xjMqÞ ¼
gðh;xjM1ÞIMqðh;xÞR

gðh;xjM1ÞIMqðh;xÞdðh;xÞ
: ð2Þ

In (2), IMq
(h, x) is the indicator function for model Mq, such that IMq

(h, x) equals

1 if the parameter values are in accordance with the constraints imposed by model

Mq, and equals 0 otherwise. It should be noted that only the prior distribution of the

parameters of the encompassing model has to be specified and that the prior

distributions of the other models can be derived using (2).

Let fM1, M2,. . .,MQg denote the finite set of all models under consideration, that

is the set of competing models, and D denote the observed data. In the sequel a

method which will be used to compute posterior probabilities is introduced. The

method is based on the principle of encompassing priors and it works as follows:

consider two models, the encompassing model M1 and another model Mq (nested in

M1). In general, for any model Mq, the marginal likelihood can be written as

P ðDjMqÞ ¼
LðDjh;xÞgðh;xjMqÞ

Pðh;xjD;MqÞ
;

where the numerator is a product of the likelihood function of the data and the prior

distribution of (h, x) under modelMq, while the denominator is the posterior density

of (h, x) under model Mq (see CHIB (1995), Section 2). Consequently the Bayes

factor of Mq to M1 is given by:

BFq1 ¼
PðDjMqÞ
PðDjM1Þ

¼ LðDjh;xÞgðh;xjMqÞ=P ðh;xjD;MqÞ
LðDjh;xÞgðh;xjM1Þ=P ðh;xjD;M1Þ

: ð3Þ

Suppose h� is a value of h that is allowed in the constrained model. Then

substituting h ¼ h� in (3) renders

BFq1 ¼
gðh�;xjMqÞP ðh�;xjD;M1Þ
gðh�;xjM1ÞP ðh�;xjD;MqÞ

:

Since Mq is nested in M1, it follows that the densities g(h�, x|Mq) and

P(h�, x|D, Mq) can be rewritten as cq � g(h�, x|M1) and dq � P(h�, x|D, M1)

respectively, where dq and cq are constants. In other words, if model Mq is nested

in model M1 then the prior and posterior densities of Mq can be rewritten in terms

of the prior and posterior densities of M1. Effectively, 1/cq is the proportion of the
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prior distribution of M1 in agreement with Mq and 1/dq is the proportion of the

posterior distribution of M1 in agreement with Mq. This procedure can be applied

to any number of competing models as long as an encompassing model within

which each of them is nested can be specified. A computational advantage of this

method is that a researcher only needs to specify the prior distribution and

subsequently the posterior distribution of the encompassing model and then

sample from each of them to determine the proportion of parameter vectors (i.e.,

1/cq and 1/dq respectively) from each in agreement with any model nested in the

encompassing model. Subsequently, BFq1 ¼ P(Mq|D)/P(M1|D) ¼ cq/dq, for

q ¼ 1,. . .,Q.

Assuming that the models are a priori equally probable (i.e., P(Mq) ¼ 1/Q for

q ¼ 1,. . .,Q), posterior model probabilities can be derived from Bayes factors using

P ðMqjDÞ ¼ BFq1

BF11 þ BF21 þ � � � þ BFQ1
; for q ¼ 1; . . . ;Q; ð4Þ

where BF11 ¼ 1.

3 Sensitivity of posterior probabilities

As explained in the previous section, only g(h, x|M1), that is, the prior distribution

of the parameters of the encompassing model, has to be specified. For notational

convenience, in the sequel the notation g(h, x) is used. Specification of the

encompassing prior is based on the following four principles.

1. The encompassing prior should not favour the unconstrained or any of the

constrained models. This is achieved using similar and independent prior

distributions for each element of h, i.e.

gðh;xÞ ¼ gðhÞ . . . gðhÞgðxÞ: ð5Þ

Stated otherwise, g(hk) ¼ g(h).
2. The prior element g(h) is continuous on the real line or a subsection of the real

line.

3. The prior element g(h) should be vague, that is, it should not exclude regions of

the parameter space with substantial posterior probability. For example, if a

variable is measured on a scale from 1 to 10, the prior distribution for the mean

of this variable could be a uniform distribution on the interval 1–10. If h is a

probability, the interval is �naturally� bounded by 0 and 1. If natural bounds are

not available, priors can also be data-based. For example, if at least 99% of the

posterior distribution of each element of h is within the interval l�u, g(h) could
have a mean and variance computed such that it corresponds to a normal

distribution with 0.05th and 0.95th percentile l and u.
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4. The encompassing prior should be vague with respect to the nuisance

parameters x. This will be achieved using scaled inverse chi-square and inverse

Wishart distributions with one degree of freedom and data based scale factors,

that is, sample variance and sample covariance matrix, respectively.

The sensitivity of posterior probabilities with respect to the actual specification of

the encompassing prior is an issue that deserves further attention. For a large class of

models posterior probabilities are virtually objective, that is, independent of the

actual specification of a vague encompassing prior. This will be illustrated using 1/cq
and 1/dq, the proportion of the encompassing prior and posterior in agreement with

a constrained model, respectively. The sensitivity with respect to g(x) and g(h) will be

discussed separately.

From (5) it is immediately clear that g(x) does not influence 1/cq. It is clear that

g(x) does influence the posterior distribution, and thus 1/dq. However, it is well-

known (see, for example, GELMAN, CARLIN, STERN and RUBIN (2000), p.101) that

this influence is small if the sample size is large compared with the degrees of freedom

of the scaled inverse chi-square and inverse Wishart distributions.

Similarly, if g(h) is vague, its influence on the posterior distribution is negligible,

that is, its influence on 1/dq is negligible. For a specific class of models the choice of

g(h) does not influence 1/cq. Let h ¼ fh(1), h(2)g. The class uses one or more

constraints of the form

XP
p¼1

hð1Þp >
XS
s¼1

hð2Þs ; ð6Þ

with the restriction P ¼ S. For encompassing priors it holds that hð1Þp ; hð2Þs �i:i:d: gðhÞ.
The consequence is that P ð

PP
p¼ 1 hð1Þp >

PS
s¼ 1 h

ð2Þ
s Þ is 0.50, and, consequently,

independent of the actual choice of g(h). The same holds for combinations of con-

straints of the form (6). For example, P(h1 > h2 > h3) ¼ 1/3! ¼ 1/6, independent of

the choice of g(h). Similar considerations holds for models using one or more con-

straints of the form

YP
p¼1

hð1Þp >
YS
s¼1

hð2Þs ; ð7Þ

with the restriction P ¼ S.

Besides (6) and (7), there are other constraints for which model selection based on

encompassing priors is virtually objective. However, these constraints are not used in

the examples and will not be discussed in this paper. There are also constraints for

which the model selection is strongly affected by the encompassing prior. An

example is a model with approximate equality constraints between model

parameters. The evidence in favour of the constrained model increases with the

amount of vagueness of the encompassing prior, a phenomenon known as Bartlett’s

or Lindley’s paradox (e.g. LINDLEY (1957); BERNARDO and SMITH (1994)).
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4 One-way analysis of variance with ordered means

The data for this illustration deal with sales numbers of breakfast cereals. A food

company wants to test four different package designs: design 1 is a short, thick box

with a cartoon on it; design 2 is a tall, slim box with a cartoon on it; design 3 is a

short, thick box with a photo of an athlete; and design 4 is a tall, slim box with a

photo of an athlete. Each store included in the experiment was randomly assigned

one of the package designs. The stores were chosen to be comparable in location and

sales volume. Other relevant conditions that could affect sales, such as price, amount

and location of shelf space, and special promotion efforts were kept the same for all

stores. Sales, in number of boxes sold, were recorded and are presented in Table 1

(NETER, KUTNER, NACHTSHEIM and WASSERMAN, 1996).

The data D ¼ fy, dg are assumed to be normally distributed:

yi ¼
X4
j¼1

ljdji þ ei; with ei �
iid
Nð0; r2Þ;

where yi denotes the sales for the ith shop (i ¼ 1,. . .,19), and, dji ¼ 1 if the ith shop

has package design j, and zero otherwise. Consequently, the regression coefficient lj
represents the mean sales for the jth package design.

The semi-conjugate encompassing prior distribution with h ¼ fl1, l2, l3, l4g and

x ¼ fr2g, is

gðh;xÞ ¼ Inv-v2ðr2jm;u2Þ �
Y4
j¼1

Nðljjg; s2Þ: ð8Þ

In (8), N(lj|g, s
2) denotes a Normal distribution with mean g and variance s2 and

Inv-v2(r2|m, u2) denotes a scaled inverse Chi-square distribution with degrees of

freedom m and scale u.
Different prior specifications, i.e. values for g, s2 and u2, will be used in the

analysis of this example. The first encompassing prior is data-based, using the

method as described in the example of principle 3 (for lj) and principle 4 (for r2) in
Section 3. This leads to the values g ¼ 20.1, s2 ¼ 11.8, m ¼ 1 and u2 ¼ 12.6. Three

other encompassing prior distributions are specified by varying the values for g, s2

and u2 (see Table 2). These values are chosen such that, going from the first to the

fourth encompassing prior, the distributions become more and more diffuse

(increasing s2). In addition, g and u2 are varied rather randomly.

Table 1. Breakfast cereal sales data.

Design 1 Design 2 Design 3 Design 4

Sales (No. of boxes): 11 12 23 27

17 10 20 33

16 15 18 22

14 19 17 26

15 11 28
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Three competing theories about the effect of the package design on the sales numbers

exist. The first theory states that packages with a photo of an athlete sell better than

packages with a cartoon, and, to a lesser extent, that slim boxes sell better than thick

boxes, that isl1 < l2 < l3 < l4. Theory 2 states that slimboxes sell better than thick

boxes, and, to a lesser extent, that the athlete photo sells better than the cartoon, i.e.

l1 < l3 < l2 < l4. The last theory states that the cartoon sells better than the

athlete, and, to a lesser extent, that slim boxes sell better than thick boxes, that is

l3 < l4 < l1 < l2. Note that these constraints are of the form (6). Also note that the

encompassing model is not included in the set of models of interest.

Posterior probabilities are computed using samples of 100,000 parameter vectors

from each encompassing prior and the corresponding posterior distribution. For

each encompassing prior and each of the three theories, the quantities 1/cq and 1/dq
are estimated using the proportion of the 100,000 parameter vectors from prior and

posterior in agreement with the constraints specified by the model at hand. The

resulting posterior probabilities can be found in Table 2. As can be seen, the

posterior model probabilities are virtually independent of the specification of

the encompassing prior. Stated otherwise, the influence on 1/dq is indeed negligible.

Theory 1 has the largest posterior probability (97–98%) and therefore it can be

concluded that the first theory about the effect of the package designs on sales

numbers has the strongest support from the data.

5 Contingency table analysis with ordered odds ratios

The data (obtained from AGRESTI (2002), p. 322) to be analysed in this section are

presented in Table 3. It is a three-way contingency table containing counts of high

school seniors using (combinations of) alcohol (a), cigarettes (c) and marijuana (m).

Table 2. Prior sensitivity of posterior model probabilities for sales data.

Prior specification Theory

g(h) g(x) 1 2 3

N(20.1; 11.8) Inv-v2(1; 12.6) 0.9718 0.0282 0.0000

N(20; 25) Inv-v2(1; 25) 0.9775 0.0225 0.0000

N(0; 500) Inv-v2(1; 25) 0.9823 0.0177 0.0000

N(100; 1000) Inv-v2(1; 50) 0.9772 0.0228 0.0000

Table 3. Alcohol, cigarette and marijuana use for high school seniors.

Alcohol use Cigarette use

Marijuana use

Yes No

Yes Yes 911 538

No 44 456

No Yes 3 43

No 2 279
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Note, that this model has no nuisance parameters x, that h is a vector of

probabilities and D ¼ x.

Analysis of these data is based on a multinomial likelihood

Lðx j hÞ /
Y1
a¼0

Y1
c¼0

Y1
m¼0

hxacmacm ;

where 0 denotes the response �No� and 1 the response �Yes�, and a conjugate Dirichlet

encompassing prior distribution

gðhÞ /
Y1
a¼0

Y1
c¼0

Y1
m¼0

hx0�1
acm ;

where x0 denotes the prior sample size in each cell of the contingency table. In the

sequel analyses will be presented for x0 equal to 1, 0.5 and 0.001. If a contingency

table contains only two cells, these correspond to uniform uninformative prior

distributions for h; sin�1ð
ffiffiffi
h

p
Þ and logit(h), respectively (see, for example, GELMAN,

CARLIN, STERN and RUBIN (2000), pp. 55–56; LEE (1997), pp. 83–85). For eight cells

(like in the example at hand) the marginal distribution of each h is Beta(1, 7),

Beta(0.5, 3.5) and Beta(0.001, 0.007), respectively. In Figure 1 these marginal

distributions are displayed. As can be seen, the prior information strongly depends

on the choice of x0: the smaller x0, the larger the prior density of very small and very

large values of h. Note that Figure 1 does not contain a line for the vertical and

horizontal axis. The virtually horizontal and vertical lines displayed in Figure 1

constitute the prior distribution for x0 ¼ 0.001.

AGRESTI and COULL (2002) present an overview of methods for the analysis of

contingency tables under inequality constraints. Apparently, there are no classical

Fig. 1. Marginal prior density for three uninformative encompassing priors.
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alternatives for the Bayesian analysis executed in the sequel. Posterior probabilities

will be computed for five different models. Let cac denote the marginal odds-ratio for

alcohol and cigarettes, that is,

ðh111 þ h110Þðh001 þ h000Þ
ðh101 þ h100Þðh011 þ h010Þ

;

and let cam and ccm have corresponding definitions. Odds-ratios larger than 1

indicate that both substances involved are used together. Odds-ratios smaller than 1

indicate that both substances are not used together.

The first model is the unconstrained model. The second model reflects the theory

that cigarettes and marijuana are often used together, and that cigarette use and

alcohol consumption are often combined, that is, ccm > 1 and cac > 1. Note that

these constraints can be rewritten in the form (7). The third model is an extension of

the second model: ccm > 1, cac > 1 and cam > 1. The fourth model adds to the

third model the theory that the association between alcohol and marijuana use is

weaker than the other two associations, that is, cam < ccm and cam < cac. Note that

these constraints can also be rewritten in the form (7). The fifth model adds to the

third model the theory that the association between alcohol and marijuana use is

stronger than the other two associations, that is, cam > ccm and cam > cac.
In Table 4 the posterior probabilities resulting from the use of different

encompassing priors are displayed. The posterior probabilities are computed using

a sample of 100,000 parameter vectors h from each encompassing prior and the

corresponding unconstrained posterior distribution. For each encompassing prior

the quantities 1/cq and 1/dq are estimated for Models 2–5 using the proportion of the

100,000 parameter vectors from prior and posterior in agreement with the

constraints specified by the model at hand. Subsequently (4) is used to obtain the

posterior probabilities.

As can be seen in Table 4, the posterior probabilities are almost independent of

the choice of the encompassing prior. This provides some support for our claim that

1/dq is almost independent of the encompassing prior. The encompassing priors

chosen are quite different and even probabilities associated with very small cell

counts in Table 3 appear to be unaffected. It can furthermore be concluded that

model five has the largest posterior probability. Stated otherwise, it can be concluded

that the marginal association between alcohol and marijuana use is stronger than the

other two marginal associations, and that all marginal associations are positive.

Table 4. Prior sensitivity of posterior probabilities for substance use.

x0

Model

1 2 3 4 5

0.001 0.0364 0.1459 0.1867 0.0001 0.6300

0.5 0.0347 0.1385 0.2086 0.0004 0.6178

1 0.0300 0.1363 0.2123 0.0009 0.6165
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6 Multilevel model with ordered slopes

The data to be used in this section have been introduced and analysed by

VERBEKE and LESAFFRE (1999). The data consist of craniofacial growth

measurements of 50 male Wistar rats. The rats were randomized to either a

control group or one of the two treatment groups where the treatment consisted

of a low or high dose of the drug Decapeptyl. This drug is an inhibitor for

testosterone production in rats. The primary aim of the experiment was to

investigate the effect of the inhibition of the production of testosterone on the

craniofacial growth in male Wistar rats. The responses of interest are distances (in

pixels) between well-defined points on X-ray pictures of the skull of each rat,

taken after the rat had been anaesthetized.

In the same spirit as VERBEKE and LESAFFRE (1999), in this paper we will consider

one of the measurements that can be used to characterize the height of the skull. The

treatment started at the age of 45 days, and measurements taken every 10 days until

the age of 110 days, with the first measurement taken at the age of 50 days. This

would give seven measurements for each rat. For each treatment group the

individual profiles are shown in Figure 2. As can be seen in the figure, not all rats

have up to seven measurements. This is because some rats did not survive the

anaesthesia and therefore dropped out before the end of the study. In their analyses,

VERBEKE and LESAFFRE (1999) use these data to investigate the effect of drop-out on

the efficiency of longitudinal experiments.

To analyse these data the following model proposed by VERBEKE and MOLE-

NBERGHS (2000, Chapter 3) will be used:

yjk ¼ ðb1 þ u1jÞ þ ðb2Cj þ b3Lj þ b4Hj þ u2jÞtjk þ ejk; ð9Þ
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Fig. 2. Profiles for each of the treatment groups.
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uj ¼ ðu1j; u2jÞT � Nð0;VÞ; ejk � Nð0; r2Þ;

in which yjk denotes the k ¼ 1,. . .,Kjth measurement for the j ¼ 1,. . .,50th rat and

tjk ¼ ln[1þ(Agejk�45)/10)]. In (9), Cj, Lj, and Hj are indicator variables defined to be

one if the subject belongs to the control, low-dose group or the high-dose group

respectively, and zero otherwise. So, here D ¼ fy, C, L, H, tg. Further, V is the

covariance matrix of the random effects uj and r2 is the variance of the level 1

residuals ejk. The transformation of the original time (age in days) implies that t ¼ 0

corresponds to the start of the treatment. Note that the randomization in

combination with this transformation of the original time scale allows one to

assume that the subject-specific intercepts b1j (¼b1þu1j) do not depend on treatment.

Consequently the parameter b1 represents the average response at the start of

treatment. The parameters b2, b3 and b4 represent the average slopes for the control,
low dose and high dose groups respectively. In this paper, interest lies in

investigating some theory about the treatment effect. This theory will be translated

into a model by putting constraints on the average slopes parameters since these

directly measure the effect of treatment on the craniofacial growth. In this example

h ¼ fb2, b3, b4g and x ¼ fV, r2, b1g.
Two models 1 and 2 will be compared. Model 1 is the unconstrained model. Model

2 reflects the theory that the higher the dose, the lower the growth rate. This renders

the constraint b2 > b3 > b4. Note that this constraint can be rewritten in the form

(6). Consequently we have two competing models, M1 : b1, b2, b3 and

M2 : b2 > b3 > b4.
From (9), the likelihood function of the data is

Lð:j:Þ ¼
Y50
j¼1

Z
uj

YKj

k¼1

1ffiffiffiffiffiffi
2p

p
r
exp �

ðyjk � xTjkb� zTjkujÞ
2r2

 !( )
Nðuj j 0;VÞduj;

where xTjk ¼ ð1; Cjtjk; Ljtjk ; HjtjkÞ and zTjk ¼ ð1; tjkÞ. Using conjugate prior specifi-

cations and assuming independence between the model parameters, the encompas-

sing prior to be used is

gðh;xÞ ¼ Inv-WðVjk;SÞ � Inv-v2ðr2jm;u2Þ �
Y4
p¼1

Nðbpjgp; s2pÞ: ð10Þ

In (10), Inv-v2(r2|m, u2) denotes a scaled inverse Chi-square distribution with

degrees of freedom m and scale u, Inv-W(V|k, S) denotes an inverse Wishart

distribution with degrees of freedom k and scale matrix S and Nðbpjgp; s2pÞ denotes a
Normal distribution with mean gp and standard deviation sp.

For the analysis, the first encompassing prior is data-based, using the method as

described in principles 3 and 4 in Section 3. This leads to a N(68.6, 0.3) for b1 and a

N(7.2, 0.7) for each of b2, b3 and b4 respectively. Turning to the prior distribution

on V, we take k ¼ 1 and S ¼ 3:5 �0:06
�0:06 0:3

� �
. Finally for the prior on r2 we set
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t0 ¼ 1 and r0 ¼ 1.5. In the sequel the above mentioned specification will be referred

to as Prior 1.

For a sensitivity analysis, two other specifications for the encompassing prior will

be used and will be referred to as Prior 2 and Prior 3 respectively. These are obtained

by increasing the variance of the (common) normal prior for the parameters b2, b3
and b4 by factors of 4 and 9 respectively. Consequently under Prior 2, each of the

parameters b2, b3 and b4 will have a N(7.2, 2.8) distribution and under Prior 3 they

will each have a N(7.2, 6.3) distribution. Note that the prior specifications of the

other parameters (b1, V and r2) remain as they were specified under Prior 1.

Subsequently 200,000 samples are drawn from each encompassing prior and the

corresponding unconstrained posterior distribution. For each encompassing prior

and posterior, these samples are used to estimate the quantities 1/c2 and 1/d2
respectively. Next, Bayes factors and posterior model probabilities are estimated

using the procedure presented in Section 2. The results are displayed in Table 5.

From the table it is evident that the posterior probabilities are virtually

independent of the choice of encompassing prior. These findings provide more

support for our claim that for models with constraints of the form (6), the quantity

1/d2 is almost independent of the choice of encompassing prior. Further, Model 2

has the highest posterior probability. This result somewhat favours the theory that

inhibiting testosterone production in rats slows down their cranofacial growth. In

particular the higher the dose of the drug Decapeptyl, the lower the growth rate.

7 Discussion

In this paper we showed that to select the best model of a set of inequality

constrained models, Bayesian model selection can be virtually objective for specific

classes of constraints. Our approach is based on the so-called encompassing prior,

which is the prior for the unconstrained model. The prior distributions for the

constrained models can be derived from the encompassing prior. Using this set up,

we showed that the Bayes factor for the encompassing model and any constrained

model is the ratio of two proportions: the proportion of the encompassing prior

(1/cq), respectively posterior (1/dq), in agreement with the constraints of the model at

hand. We derived that 1/cq is independent of the encompassing prior. Furthermore,

we claimed that 1/dq is virtually independent of the encompassing prior. The results

Table 5. Prior sensitivity of posterior probabilities for rat data.

Model

1 2

Prior 1 0.3724 0.6276

Prior 2 0.3701 0.6299

Prior 3 0.3697 0.6303
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of three examples supported this claim. This means that for the presented classes of

inequality constrained models a virtual objective Bayesian model selection procedure

is obtained.
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