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Abstract. We present a method to control gonality of nonarchimedean curves based on graph the-
ory.

Let k denote a complete nonarchimedean valued field. We first prove a lower bound for the
gonality of a curve over the algebraic closure of k in terms of the minimal degree of a class of graph
maps, namely: one should minimize over all so-called finite harmonic graph morphisms to trees,
that originate from any refinement of the dual graph of the stable model of the curve.

Next comes our main result: we prove a lower bound for the degree of such a graph morphism
in terms of the first eigenvalue of the Laplacian and some “volume” of the original graph; this can
be seen as a substitute for graphs of the Li–Yau inequality from differential geometry, although we
also prove that the strict analogue of the original inequality fails for general graphs.

Finally, we apply the results to give a lower bound for the gonality of arbitrary Drinfeld modular
curves over finite fields and for general congruence subgroups Γ of Γ(1) that is linear in the index
[Γ(1) : Γ], with a constant that only depends on the residue field degree and the degree of the chosen
“infinite” place. This is a function field analogue of a theorem of Abramovich for classical modular
curves. We present applications to uniform boundedness of torsion of rank two Drinfeld modules
that improve upon existing results, and to lower bounds on the modular degree of certain elliptic
curves over function fields that solve a problem of Papikian.
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Introduction

The gonality gonk(X) of a smooth projective curve X over a field k is defined as the minimal
degree of a non-constant morphism from X to the projective line P1

k. If k = C is the complex
numbers,X can be considered as a compact Riemann surface, and Li and Yau [36] have established
a lower bound on the gonality of X over C in terms of of the hyperbolic volume and the first
eigenvalue of the Laplacian of X . Such a bound has numerous applications, of which we mention
one: Abramovich [2] has combined it with a lower bound on the eigenvalue arising from the theory
of automorphic forms (of which the currently sharpest value was given by Kim and Sarnak [34])
to prove a lower bound on the gonality of modular curves for congruence groups that is linear in
the genus of the curves (or, what is the same, linear in the index of the group in the full modular
group). In this paper, we study a nonarchimedean analogue of these results.

The first result is an inequality between the (geometric) gonality gonk(X) of a curve X de-
fined over a complete nonarchimedean valued field k and the “gonality” of the reduction graphs of
suitable models of the curve. There are various complications, such as to establish a good theory
for the reduction of a covering map X → P1. Such a map extends to the stable model, but not
necessarily as a finite morphism. This can be remedied by choosing suitable semi-stable models.
The problem was studied by Liu and Lorenzini [39], Coleman [20] and Liu [37], and more recently
in [4]. In Section 1, we provide another (similar) solution, directly adapted to the applications that
we have in mind.

Next, we relate the gonality of the special fiber to what we call the stable gonality of the inter-
section dual graph. For standard graph terminology, we refer to Section 2. We also need the notion
of an (indexed) finite harmonic graph morphism, for which we refer to Definition 2.6. Given a
graph G, then another graph G′ is called a refinement of G if it can be obtained from G by finitely
often performing the two following operations: (a) subdivision of an edge; (b) addition of a leaf,
i.e., the addition of an extra vertex and an edge between this vertex and a vertex of the already
existing graph. The stable gonality of G, denoted sgon(G), is defined as the minimal degree of a
finite harmonic morphism from any refinement of G to a tree. This relates to, but is different from
previous notions of gonality for graphs as introduced by Baker and Norine [8], and Caporaso [14]
(cf. Appendix A for a discussion of these different notions and how they relate to stable gonality).

Theorem A (= Corollary 3.5). Let X be a geometrically connected projective smooth curve over
a complete nonarchimedean valued k with valuation ring R, and X the stable R-model of X . Let
k be an algebraic closure of k. Let ∆(X0) denote the intersection dual graph of the special fiber
X0. Then we have

gonk(X) ≥ sgon(∆(X0)).
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Two examples (2.9 and 2.10) illustrate that both refinements operation are necessary. First, the
“banana graph” Bn given by two vertices joined by n > 1 distinct edges has stable gonality 2,
although the minimal degree of a finite harmonic graph morphism from Bn itself (without any
refinement) to a tree is n. Secondly, the minimal degree of a finite harmonic graph morphism from
any subdivision of the complete graph K4 to a tree is 4. However, by adding leaves, the stable
gonality can be shown to be 3.

We then prove an analogue for graphs of the upper bound on gonality from Brill-Noether theory
for the gonality of curves over arbitrary fields (in this generality a theorem of Kleiman–Laksov
[35]):

Theorem B (=Theorem 4.7). For any graph G with first Betti number g ≥ 2, we have an upper
bound

sgon(G) ≤ bg + 3

2
c.

The main result is a spectral lower bound for the stable gonality of a graph. Let λG denote the
first non-trivial (i.e., smallest non-zero) eigenvalue of the Laplacian LG of G, and let

∆G := max{deg(v) : v ∈ V (G)}
denote the maximal vertex degree of G. Finally, let |G| denote the number of vertices of G. Then
we have

Theorem C (= Corollary 5.10). The stable gonality of a graph G satisfies

sgon(G) ≥
⌈

λG
λG + 4(∆G + 1)

|G|
⌉
.

An attractive feature of the formula is that the lower bound depends on spectral data for the
original graph, not on all possible refinements of the graph. Also, in the bound, one may replace
(λG,∆G, |G|) by the corresponding data (λG′ ,∆G′ , |G′|) of any refinement G′ of the graph G.

A similar result can be proven using the normalized graph Laplacian, replacing |G| by the “vol-
ume” of the graph, cf. Theorem 7.7.

The result can be seen as an analogue of the Li–Yau inequality in differential geometry [36],
which states that the gonality gon(X) of a compact Riemann surface X (minimal degree of a
conformal mapping from X to the Riemann sphere) is bounded below by

gon(X) ≥ 1

8π
λXvol(X),

where λX is the first non-trivial eigenvalue of the Laplace-Beltrami operator of X , and vol(X)
denotes the volume of X . In Remark 7.4, we will show that the strict graph theory analog of such
a formula fails.

We then apply the two theorems above to Drinfeld modular curves over a general global function
field K over a finite field with q elements, and we find the positive characteristic analogue of
Abramovich’s result. In the applications, we will write | n |∞ for the valuation corresponding to a
fixed “infinite” place∞ of degree δ of K, we denote by A the subring of K of elements that are
regular outside∞, and we let Y denote a rank-two A-lattice in the completion K∞ of K at∞. Up
to equivalence, such lattices correspond to elements of Pic(A). Let H denote the maximal abelian
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extension ofK inside k = K∞; then Gal(H/K) ∼= Pic(A). In the “standard” example whereK =
Fq(T ) is the function field of P1 and∞ = T−1, Y = A⊕A is unique up to equivalence, andH =
K. Congruence subgroups Γ of Γ(Y ) := GL(Y ) (i.e., containing ker (Γ(Y )→ GL(Y/ nY )) for
some non-trivial ideal n of A) act by fractional linear transformations on the Drinfeld “upper half
plane” Ω, and the quotient analytic space can be compactified into a smooth projective curve XΓ

by adding finitely many cusps.

Theorem D (= Theorem 8.4). Let Γ denote a congruence subgroup of Γ(Y ). Then the gonality of
the corresponding Drinfeld modular curve XΓ satisfies

gonK(XΓ) ≥ cq,δ · [Γ(Y ) : Γ]

where the constant cq,δ is

cq,δ :=
qδ − 2

√
qδ

5qδ − 2
√
qδ + 8

· 1

q(q2 − 1)

This implies a linear lower bound in the genus of modular curves of the form

gonK(XΓ) ≥ c′K,δ · (g(XΓ)− 1),

where c′K,δ is a bound that depends only on the function field K and the degree δ of∞. If K is a
rational function field and δ = 1, then we can put c′K,δ = 2cq,1.

In the proof, we use the structure of the reduction graph of the principal modular curve of level
n (or rather, its components X(Y, n) indexed by Y running through classes in Pic(A)). Also used
in the proof is a bound of the Laplace eigenvalue for this graph that follows from the Ramanujan
conjecture, proven by Drinfeld (in combination with the Courant-Weyl inequalities). The proof of
the genus bound is not entirely automatic, due to possible wild ramification. The constant cq,δ is
probably not optimal, and it would be interesting to know whether it can be replaced by an absolute
constant, or at least a constant depending on q, but tending to an absolute non-zero constant as q
increases. Also notice that the bound is vacuous (since a negative number) if qδ < 4, and that the
general upper bound (g + 3)/2 implies that any suitable constant c′K,δ should be smaller than 5/2.

All previously known results on gonality of Drinfeld modular curves used point counting ar-
guments modulo primes, rather than the above “geometric analysis” method. The best previously
known bounds, due to Andreas Schweizer ([55], Thm. 2.4) are not linear in the index and are es-
tablished for a rational function field K = Fq(T ) only. An extra asset of the new method is that it
works without much extra effort for a general function field K, rather than just a rational function
field.

A first application arises from the modularity of elliptic curves over function fields. Recall that
any elliptic curve E/K with split multiplicative reduction at the infinite place∞ admits a modular
parametrization φ : X0(Y, n) → E [32] for some suitable Drinfeld modular curve X0(Y, n). This
parametrization is defined over H .

Theorem E (= Corollary 9.6). LetE/K denote an elliptic curve with split multiplicative reduction
at the place∞, of conductor n ·∞. Then the degree of a modular parametrization φ : X0(Y, n)→
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E is bounded below by

deg φ ≥ 1

2
cq,δ[Γ(1) : Γ0(Y, n)].

In particular, we have
deg φ�q,δ | n |∞.

As usual, X �y Z means that there exists a constant Cy depending only on y such that X ≥
CyZ.

ForK = Fq(T ) a rational function field, the final statement of the theorem confirms a conjecture
of Papikian [46], who had proven (using Spziro’s conjecture for function fields and estimating
symmetric square L-functions by the Ramanujan conjecture) that

degns(jE) · deg φ�q,ε | n |1−ε∞ ,

where jE is the j-invariant of E and degns(jE) is its inseparability degree. Actually, since he and
Pál have also proven an upper bound we conclude that if E is a strong Weil curve over Fq(T ) with
square-free conductor, then

| n |∞ �q deg φ�q,ε | n |2+ε
∞

for any ε > 0; cf. Remark 9.8 for a more precise upper bound, and a discussion of the rôle of
the Manin constant of E. Contrary to the case of elliptic curves over Q, Gekeler has proven that
the modular degree always equals the congruence number of the associated automorphic form [30]
[19]. Hence these results also hold for the congruence number.

We then give applications to rational points of bounded degree on general curves over function
fields. In its general form, the theorem gives a finiteness result for points whose degree is bounded
above by “spectral” data associated to the combinatorics of a special fiber:

Theorem F (=Theorem 10.6). Let X denote a curve over a global function field K, such that
its Jacobian does not admit a K-morphism to a curve defined over a finite field. Let K∞ denote
the completion of K at a place∞, and let G denote the stable reduction graph of X/K∞. Let ∆
denote the maximal vertex degree ofG, |G| the number of vertices ofG and λ the smallest non-zero
eigenvalue of the Laplacian of G. Then the set⋃

[K′:K]≤λ(|G|−1)−4∆−4
2λ+8∆+8

X(K ′)

of rational points on X of degree at most λ(|G|−1)−4∆−4
2λ+8∆+8 is finite.

This applies in particular to various modular curves, as follows.

Theorem G (= Theorem 11.1). With the same notations as in Theorem D, if XΓ is defined over a
finite extension KΓ of K, then the set ⋃

[L:KΓ]≤ 1
2(cq,δ·[Γ(1):Γ]−1)

XΓ(L)

is finite.
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Applications to uniform bounds on isogenies and torsion points follow by applying an analogue
of a method of Abramovich and Harris [3] and Frey [28]. Recall that H is the maximal abelian
extension of K inside K∞.

Corollary H (= Corollary 11.3). If p is a prime ideal in A, then the set of all rank two Drinfeld
A-modules defined over some field extension L of K that satisfies the degree bound

[LH : H] ≤ 1

2
cq,δ · | p |∞

that admit an L-rational p-isogeny is finite.

We also deduce the following analogue of a result of Kamieny and Mazur [33]:

Corollary I (= Corollary 11.4). Fix a prime p of A. There is a uniform bound on the size of the
p-primary torsion of any rank two A-Drinfeld module over L, where L ranges over all extensions
for which the degree [LH : H] is bounded by a given constant.

This implies that the uniform boundedness conjecture for rank-two A-Drinfeld modules over K
follows from the following statement: for fixed d, there are only finitely many p such that there
exists an L-rational p-torsion point on an A-Drinfeld module over L with [L : K] ≤ d.

For a rational function field K = Fq(T ), the above two corollaries were proven by Schweizer
[54]. The finite bound from these two results is not effective in the number of rational points.
For effective results on the number of points of low degree on some Drinfeld modular curves, see
for example Armana [6]. No analogue of Merel’s theorem (uniform boundedness of torsion) is
currently known for rank-two Drinfeld modules (compare also Poonen [50]).

As a final remark, there has recently been a surge in the use of gonality and graph theory in arith-
metic, but mainly in characteristic zero; for example in the work of Ellenberg, Hall and Kowalski on
generic large Galois image, coupling gonality to expander properties of Cayley graphs embedded
in Riemann surfaces [25]. Also in our applications, in a rather different way, the graph expansion
properties of the reduction graphs of Drinfeld modular curves seem to intervene in a crucial way in
establishing interesting lower bound for their gonality (originally, over rational function fields, we
deduced the bounds from natural bounded concentrator properties of subgraphs, as in the work of
Morgenstern [42]). More generally, the stable gonality in a family of Ramanujan graphs with fixed
regularity is bounded below linearly in the number of vertices (cf. Remark 7.3).

1. Extension of covering maps

1.1. Let k denote a complete nonarchimedean valued field with valuation ring R with uniformizer
π and residue field of characteristic p ≥ 0. For any R-scheme X we denote by Xη (respectively
X0) the generic fiber (respectively the closed fiber). We denote by Xsing the singular locus of X .

1.2. Let X be a geometrically connected projective smooth curve over k. An R-model of X is a
pair X = (X , φ) consisting of an integral normal scheme X that is projective and flat overR and
a k-isomorphism φ : Xη

∼→ X . An R-model X of X is said to be semi-stable if its special fiber
X0 is reduced with only ordinary double points as singularities. Such a model is called stable if
any irreducible component of the special fiber has a finite automorphism group as a marked curve,
where the marking is given by its intersection points with other components.
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1.3. As was shown by Liu and Lorenzini in [39], every finite morphism f : X → Y between
geometrically connected projective smooth curves over k extends to a morphism between the stable
models of X and Y , but the resulting map is not necessarily finite. (Similar problems were already
encountered and studied by Abhyankar in [1].) However, there exists a semi-stable model admitting
an extension of the map that is a finite morphism, as was shown by Coleman [20] and Liu [37]. We
need a slightly different statement, that we prove along similar lines as Liu:

1.4. Theorem. Let f : X → Y be a finite morphism between geometrically connected projective
smooth curves over k, and X an R-model of X . Then there exist a finite separable field extension
k′/k, semi-stable R′-models X ′ and Y ′ of Xk′ and Yk′ , respectively, over the integral closure R′

of R in k′, and an R′-morphism ϕ : X ′ → Y ′ such that the following conditions are satisfied:

(a) X ′ dominates XR′ ;
(b) ϕ is finite, surjective, and extends fk′ ;
(c) the induced morphism ϕ0 : X ′

0 → Y ′0 satisfies ϕ−1
0 ((Y ′0 )sing) = (X ′

0 )sing.

Proof. The proof is a slight modification of the proof of Proposition 3.8 in [37]. We first prove
the theorem in the special case where f is a finite Galois covering. Let G be the Galois group of
f . Then, replacing k by a finite separable extension if necessary, X has a semi-stable model X ′′

that dominates X and admits an extension of the G-action (see Corollary 2.5 in [37]). We want
to modify this to a semi-stable model with inversion-free action, as follows. Suppose an element
σ ∈ G of order two interchanges two components C1 and C2 (possibly C1 = C2) intersecting at a
node u. Then we blow-up X ′′ at the closed point u; we do this at all such nodes. The exceptional
curves have multiplicity two. Then we replace k by a ramified quadratic extension k′, and take
the normalization to obtain a model X ′ of Xk′ ; it is clear that the G-action extends to X ′. The
quotient Y ′ = X ′/G is a semi-stable model of Yk′ (see Proposition 1.6 in [39]), and the quotient
map ϕ : X ′ → Y ′ has the desired properties; we postpone the verification of property (c).

Next, we treat the case where f is separable. Let X̃ denote the Galois closure of f : X → Y .
Then, replacing k by a finite separable extension if necessary, we may assume that X̃ is smooth
over k. As in the proof of Proposition 3.8 in [37], replacing k furthermore by a finite separable
extension if necessary, one has a semi-stable model X̃ of X̃ that dominates X and admits an
extension of the action of G = Gal(X̃/Y ). As in the first part, we modify X̃ to an inversion-free
semi-stable model X̃ ′ (after replacing K by a finite separable extension). Then the obvious map

ϕ : X ′ = X̃ ′/H → Y ′ = X̃ ′/G,

where H = Gal(X̃/X), gives the desired model of f , as we will see soon below.
In general, we decompose f into a finite separable X → Z followed by a purely inseparable

Frobenius map Z → Y ∼= Z(pr)(see Proposition 3.5 in [37]). The first part X → Z of the
decomposition has an R′-model X ′ → Z ′ obtained as above. Setting Y ′ = Z ′(pr), we find that
the composite map

ϕ : X ′ → Z ′ → Y ′

gives the answer.
The R′-morphism ϕ : X ′ → Y ′ thus obtained has properties (a) and (b). In order to show that

(c) holds, it suffices to show that neither of the following two situations occurs:



8 G. CORNELISSEN, F. KATO, AND J. KOOL

(i) there exists a double point u of X ′
0 that is mapped to a smooth point of Y ′0 ;

(ii) there exists a smooth point u of X ′
0 that is mapped to a double point of Y ′0 .

One can see from the construction (due to the ‘inversion-free’ nature) above that the situation (i)
does not occur. Finally, situation (ii) is also excluded due to Proposition 1.6 in [39]. �

2. Graphs and their stable gonality

2.1. Let G be a connected finite graph. In this paper, a graph can have multiple edges (this is
sometimes called a “multigraph”, but we will not use this terminology). We denote the sets of
vertices and edges by V = V(G) and E = E(G), respectively. We denote by |G| the cardinality
|V(G)| of the vertex set. By E(x, y) we denote the set of edges connecting two vertices x, y ∈
V(G), and more generally, for two subsets A,B ⊆ V, we denote by E(A,B) the set of edges in G
that connect elements from A to elements from B:

E(A,B) =
⋃

x∈A∧y∈B
E(x, y).

Our graphs are, unless clearly indicated, undirected, i.e., E(x, y) = E(y, x). In case we have an
oriented edge we will write (x, y) for an edge with source x and target y. The set of edges incident
to a given vertex x is denoted by Ex. The number of edges in Ex, where, as usual, edges in E(x, x)
(viz., loops) are counted with multiplicity two, is called the degree or valancy of x, and is written
dx. A graph is called k-regular if dx = k for all x ∈ V. A graph is called loopless if |E(x, x)| = 0
for all x ∈ V . Two vertices x, y are called adjacent if |E(x, y)| ≥ 1, and we denote it by x ∼ y.
For a subset S ⊂ V the volume is defined to be

vol(S) =
∑
v∈S

dv.

In particular, vol(G) = 2 · |E |.
Another important invariant of a graphs is the genus, by which we mean the first Betti number

g(G) = |E | − |V | + 1. Note that this differs from another convention in graph theory in which
“genus” means the minimal genus of a Riemann surface in which the graph can be embedded
without self-intersection. A graph of genus 0 is called a tree.

Functions f : V → R, are simply called “functions on G”. These form a finite dimensional
vector space, equipped with the standard inner product

〈f, g〉 =
∑

v∈V(G)

f(v)g(v).

2.2. Denote by A = AG the adjacency matrix of a connected graph G (of which the (x, y)-entry
is |E(x, y)|) and by D = DG the diagonal matrix with the degrees of the vertices on the diagonal.
Then the Laplace operator is defined by L = LG = D −A.

For any graph, LG is a real symmetric positive-semidefinite matrix, and therefore has non-
negative real eigenvalues. The function 1, defined as being identically equal to 1 on V, is an
eigenfunction of LG with eigenvalue 0. The other eigenvalues are positive. We order the eigenval-
ues

0 = λ0 < λ1 ≤ λ2... ≤ λn−1,
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where n is the number of vertices of the graph. It is the first non-zero eigenvalue which is important
for us; we denote it by λG := λ1.

2.3. Sometimes, one uses the normalized Laplacian of G, defined as

L∼G = D
−1/2
G LGD

−1/2
G

weighted by vertex degrees (compare Chung [16]).

2.4. Definition. A graph G is called stable if all vertices have degree at least 3. A graph G′ is
called a refinement of G if it can be obtained from G by performing subsequently finitely many
times one of the two following operations:

(1) subdivision of an edge,
(2) addition of a leaf, i.e., the addition of an extra vertex and an edge between this vertex and

a vertex of the already existing graph.

2.5. Remark. One of the main tools in this paper is the notion of harmonic morphisms of graphs as
developed by Urakawa [58] and Baker and Norine [8], and later generalized to harmonic indexed
morphisms by Caporaso [14]. We will use a terminology that is compatible with that of [4], and
different from [14], and we will only consider “unweighted” graphs in the sense of [14]. In the
appendix, we will discuss the relations between different notions of gonality for graphs.

2.6. Definition. Let G,G′ be two loopless graphs.
(1) A finite morphism between G and G′ (denoted by ϕ : G→ G′) is a map

ϕ : V(G) ∪ E(G)→ V(G′) ∪ E(G′)

such that ϕ(V(G)) ⊂ V(G′) and for every e ∈ E(x, y), ϕ(e) ∈ E(ϕ(x), ϕ(y)), together
with, for every e ∈ E(G), a positive integer rϕ(e), the index of ϕ at e.

(2) A finite morphism is called harmonic if for every v ∈ V(G) there exists a well-defined
number, mϕ(v), such that for every e′ ∈ Eϕ(v)(G

′) we have

mϕ(v) =
∑

e∈Ev ,ϕ(e)=e′

rϕ(e).

This does not make sense if Eϕ(v)(G
′) = ∅, but then we postulate that mϕ(v) can be

chosen to be any positive integer.
(3) For a finite harmonic morphism the following number, which is called the degree of ϕ, is

independent of v′ ∈ V(G′) or e′ ∈ E(G′) ([8], Lemma 2.3):

degϕ =
∑

v∈ϕ−1(v′)

mϕ(v) =
∑

e∈ϕ−1(e′)

rϕ(e).

From the perspective of this paper, it is natural to define the following notion of gonality (this is
different from existing notions of gonality, but we will discuss these in the appendix).

2.7. Definition. A graph G is called stably d-gonal if it has a refinement that allows a degree d
finite harmonic morphism to a tree. The stable gonality of a graph G is defined to be

sgon(G) = min{degϕ |ϕ : G′ → T}
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with G′ a refinement of G and ϕ a finite harmonic morphism to a tree T .

2.8. Remark. Although here, finite harmonic morphisms are defined only for loopless graphs,
stable gonality is defined for all graphs, as loops can be “refined away” by subdividing the loop
edges. Alternatively, one may extend the definition of “harmonic” to graphs with loops, as in [4].

2.9. Example. The “banana graph” Bn (see Figure 1) given by two vertices joined by n > 1
distinct edges is the intersection dual graph of two rational curves intersecting in n points. The
minimal degree of a finite harmonic morphism from Bn to a tree is n. However, if we subdivide
each edge once, the resulting graph admits such a finite harmonic morphism of degree 2 to a tree,
which is a vertex with n edges sticking out (by identifying the two original vertices). Hence the
banana graph has stable gonality equal to 2. This is compatible with the fact that the banana graph
can be the intersection dual graph of both hyperelliptic and non-hyperelliptic (if n > 3) curves,
and these are not distinguished by all subdivisions of their reduction graph.

This example occurs in nature as the stable reduction of the modular curve X0(p) over Qp,
where n is then the number of supersingular elliptic curves modulo p. One should observe ([7],
3.6) that stable reduction graphs are naturally metric graphs, and as such, the stable reduction
graph of X0(p) is only equal to the (unit-length metrized) banana graph for p = 1 mod 12 with
n = (p− 1)/12.

2n

Figure 1. A banana graph Bn with a finite harmonic morphism of (minimal) de-
gree n, and its subdivision, with a finite harmonic morphism of degree 2 (all in-
dices are 1).

2.10. Example. The minimal degree of a finite harmonic morphism from the complete graph K4

to a tree is 4 (this can be checked by a somewhat tedious enumeration), but by adding leaves, such
a morphism of degree 3 can be constructed, see Figure 2.

3. Comparing curve gonality and graph gonality: proof of Theorem A

3.1. Let X and Y be R-models of geometrically connected projective smooth curves over k, and
ϕ : X → Y anR-morphism. Let us say ϕ is inversion-free semi-stable if the following conditions
are satisfied:
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B
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D

D

E
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E

F

F

3

A

B
C

C B

A

A

B

C

4 F

B

Figure 2. A subdivision of K4 with a finite harmonic morphism of degree 4, and
a refinement (with leaves) of K4 with a finite harmonic morphism of degree 3 (all
indices are 1).

(a) X and Y are semi-stable;
(b) ϕ is finite and surjective;
(c) ϕ−1

0 ((Y0)sing) = (X0)sing.
Theorem 1.4 says that any finite cover f : X → Y between geometrically connected projective
smooth curves over k admits, after replacing k by a finite separable extension, an inversion-free
semi-stable model f ; moreover, given an arbitraryR-model X ofX , we can take such anR-model
ϕ : X ′ → Y ′ of f such that X ′ dominates X .

3.2. Let ϕ : X → Y be an inversion-free semi-stable model of f . Consider the dual graphs
∆ := ∆(X0) and Γ = ∆(Y0) of the special fibers of X0 and Y0, respectively. The vertices of ∆
(respectively Γ) correspond to irreducible components of X0 (respectively Y0), and two of them
are connected by an edge if and only if they intersect.

The morphism ϕ induces the following two set-theoretic maps:
• since ϕ is finite, it maps each component of X0 surjectively onto a component of Y0; in

particular, it induces a map V(∆)→ V(Γ) between the sets of vertices of the graphs;
• due to the condition (c) above, each double point of X0 is mapped to a double point of Y0;

that is, we have the map E(∆)→ E(Γ) between the sets of edges.
Thus we obtain a graph map φ : ∆ −→ Γ.



12 G. CORNELISSEN, F. KATO, AND J. KOOL

3.3. We now assume that f is separable, and define the index rφ for such f . Let e ∈ E(∆) be
an edge with extremities v, v′ ∈ V(∆). Let C,C ′ (respectively D,D′) be the components of X0

(respectively Y0) corresponding to v, v′ (respectively φ(v), φ(v′)), respectively. The maps C → D
and C ′ → D′ ramify at the intersection point u with the same decomposition group; then define
rφ(e) to be the order of this group. In this way, φ becomes a finite morphism of graphs in the sense
of Definition 2.6.

3.4. Proposition. For a separable f : X → Y that admits an inversion-free semi-stable model
ϕ : X → Y , the finite graph morphism φ : ∆ → Γ constructed above is harmonic of degree
deg(f) (in the sense of Definition 2.6).

Proof. Let v ∈ V(∆) be a vertex, and C (respectively D) the component of X0 (respectively Y0)
corresponding to v (respectively φ(v)). Let mφ(v) be the degree of the covering map C → D.
Then for any edge e′ ∈ E(Γ) emanating from φ(v), we have

mφ(v) =
∑

φ(e)=e′

rφ(e),

and hence φ is harmonic of degree deg(f). �

3.5. Corollary (=Theorem A). Let X be a geometrically connected projective smooth curve over
k, and X the stable R-model of X , and let ∆(X0) denote the intersection dual graph of the
special fiber. Let k be an algebraic closure of k. Then we have

gonk(X) ≥ sgon(∆(X0)).

Proof. Gonality is the minimal degree of a map f : X → P1. Since we work over an algebraically
closed field, we can decompose such a map into a separable part f : X → Z and a purely insepa-
rable part Z → Z(pr) ∼= P1. Since the genus is preserved by the purely inseparable part, we find
that Z ∼= P1, too, and hence the separable part of a general map is a map of lower degree to P1.
Hence we can restrict to bounding the degree of a separable f .

The assertion now follows from Proposition 3.4 and the following auxiliary observations.
(1) By Theorem 1.4, for any given finite cover f : X → P1

k, replacing k by a finite separable
extension, one has an inversion-free semi-stable model ϕ : X ′ →P ′ of f such that X ′ dominates
X . In particular, ∆(X ′

0 ) gives a graph that arises from ∆(X0) by subdividing some edges (cor-
responding to blowing up nodes) and/or adding some leaves (corresponding to blowing up smooth
points) — this is exactly the notion of refinement as we have defined it.

(2) By replacing the base field k by an arbitrary finite extension k′, the base-change XR′ , where
R′ is the integral closure of R in k′, is a semi-stable model of Xk′ (see Section 1.5 in [39]), which
obviously gives the same dual graph as ∆(X0). �

4. The Brill–Noether bound for stable gonality of graphs: proof of Theorem B

One can use this comparison theorem to prove the analog for stable gonality of graphs of the
upper bound for the gonality of curves given by Brill–Noether theory: a curve of genus g over an
algebraically closed field has gonality bounded above by b(g+3)/2c; this was proven in general by
Kleiman and Laksov [35]. To prove this for graphs, we first show that finite harmonic morphisms
can be “refined”, in a sense to be made precise.
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4.1. Definition. For any two refinements G1 and G2 of a graph G let G1 ∨ G2 be the set of all
common refinements of G1 and G2.

4.2. Definition. A refinement G′ of a graph G induces refinements of all of its subgraphs. If
e ∈ E(v, w) is an edge in G that connect two vertices v, w ∈ V(G), denote by [e] the subgraph of
G consisting of the vertices v and w joined by the edge e. Similarly, for a vertex v, we denote by
[v] the subgraph which consists of v only. Denote with G′[x] the refinement of [x] in G′, and for
an edge e ∈ E(v, w) denote with RG′[e] the restricted refinement:

RG′[e] = G′[e]− (G′[v]− [v])− (G′[w]− [w]).

4.3. Definition. A refinement of a finite harmonic morphism ϕ : G → T is a finite harmonic
morphism

ϕ′ : G′ → T ′

such that G′ (respectively T ′) is a refinement of G (respectively T ), and such that
(1) for all v ∈ V(G), ϕ′(v) = ϕ(v);
(2) for any v, w ∈ V(G) and any edge e ∈ E(v, w), every refinement of [e] in G′ is mapped to

the refinement of [ϕ(e)] in T ′, viz.,

ϕ(G′[e]) = T ′[ϕ(e)];

(3) for every e ∈ E(G) and for all e′ ∈ RG′[e], the index rϕ′(e′) = rϕ(e).
It follows that degϕ = degϕ′.

4.4. Lemma. Let ϕ : G→ T be a finite harmonic morphism. Then
(i) for any refinement T ′ of T , there exists a refinement ϕ′ : G′ → T ′ of ϕ;

(ii) for any refinement H of G, there exists a refinement ϕ′ : G′ → T ′ of ϕ such that G′ is a
refinement of H .

Proof. For part (i), use the following recipe:
(1) replace every edge e in G by T ′[ϕ(e)];
(2) put indices such that conditions (3) in Definition 4.3 is satisfied;
(3) extend ϕ in the obvious way to a finite harmonic morphism.

For part (ii), first choose for every edge e0 in T an element in∨
e∈ϕ−1(e0)

G′([e]),

and replace e0 by this common refinement. Call the resulting new graph T ′, and then apply part
(i). �

4.5. Example. In Figure 3, one sees a finite harmonic morphismG→ T on the left, where all edges
have index 1, except the indicated edge that has index two. The middle picture is a refinement H
of the original graph G, and the right hand picture shows the refinement G′ → T ′ as constructed in
Lemma 4.4. Both morphisms have degree 3.
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2
2 2

2

3

Figure 3. Left: a morphism G → T ; middle: a refinement H of G; right: a
refinement G′ → T ′ with G′ a refinement of H (only indices > 1 are depicted).

4.6. Corollary. Call two graphs equivalent if they are refinements of the same stable graph. This
defines an equivalence relation on the set of all graphs of genus at least 2. The map sgon is defined
on equivalence classes of graphs.

Proof. LetG′ be a refinement ofG. It follows from the definition that sgon(G′) ≥ sgon(G). Since
refinement of morphisms preserves degree, the previous lemmas imply that the other inequality
sgon(G′) ≤ sgon(G) also holds. �

4.7. Theorem (= Theorem B). For any graph G of genus g ≥ 2, the Brill–Noether bound holds:

sgon(G) ≤ bg + 3

2
c.

Proof. Since sgon is defined on the equivalence classes of graphs it is sufficient to prove the bound
for one representative of each equivalence class. It is sufficient to show that any stable graph G of
genus g ≥ 2 admits a refinementG′ such that there exists a curveX such thatG′ is the dual graph of
the minimal model ofX . Indeed, since the genus ofX equals the genus ofG′, which equals g (since
the genus of a graph doesn’t change under refinement), the classical bound gonk(X) ≤ b(g+2)/3c
holds (cf. Kleiman–Laksov [35]). The result follows from sgon(G′) ≤ gonk(X) (Theorem A).

We now show the existence of such a refinement. Let G be a stable graph of genus g ≥ 2 and
let ∆G = max{dx|x ∈ V(G)}. Choose g edges e1, ..., eg of G such that G − {e1, ..., eg} is a
tree. Replace each edge ei (connecting two vertices xi and yi) by two edges [xi, vi] and [wi, yi],
where vi and wi are new vertices not connected to any other vertex. In this way, G is replaced by
a tree TG. Choose an embedding of TG in the Bruhat-Tits tree T for k = Fq((t)), where q satisfies
q + 1 ≥ ∆G. Denote the images of vi and wi in T by the same letters. Now choose hyperbolic
elements γ1, ..., γg in PGL(2, k) such that each γi acts as translation along a geodesic through vi
and wi, and γi(vi) = wi. Then Γ = 〈γ1, ..., γg〉 is a Schottky group. Denote by TΓ the subtree
of T spanned by the limit set of Γ. Then G′ ' Γ\TΓ, where G′ is the refinement of G given by
subdividing each of the edges e1, ..., eg once. Also, G′ is the intersection dual graph of the minimal
model of the Mumford curve corresponding to Γ ([43], page 164). �

It would be interesting to have a purely graph theoretical proof of the above result.
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4.8. Remark. More general lifting results, such as Lemma 6.3 in [53] or Corollary B.3 from [7]
with Theorem 1.4, also imply the existence of the refinement and the curve.

5. A spectral lower bound for the stable gonality of a graph: proof of Theorem C

In this section, we prove an analogue of the Li–Yau bound, viz., a spectral lower bound for the
stable gonality of a graph. The basic philosophy of the proof is to find a lower bound for the first
Laplace eigenvalue using its variational characterization, in terms of the degree of a finite harmonic
morphism ϕ : G′ → T and the minimal “size” of the inverse image of the two parts in which the
tree gets cut by removing one of its edges. Then a dichotomy occurs: either the minimal such size
is large, or there is a vertex with a large inverse image. Initially, “large” depends on the maximal
vertex degree of the tree T , but if this degree is too large, we change the refinement and morphism
to produce a lower bound that only depends on the original graph, not the morphism or tree itself.

We start by studying such “sizes” on trees abstractly:

5.1. Definition. A measured tree (T, ν) is a connected tree T with a probability measure ν on
V(T ). For an edge e ∈ E(T ), we decompose T − e into its two connected components T1(e) and
T2(e):

T − e = T1(e)
⊔
T2(e).

We define the size of an edge e ∈ E(T ) (w.r.t. ν) by

sizeν(e) := min{ν(T1(e)), ν(T2(e))}.
Let c > 0. Call a measured tree (T, ν) c-thick if for every vertex x ∈ V(T ), the graph T −x has

a connected component of measure at least c.

5.2. Lemma. A c-thick measured tree (T, ν) has an edge of size at least c.

Proof. For any vertex x ∈ V (T ), choose a connected component Cx of T − x of measure at least
c. Orient the unique edge that connects x to a vertex in Cx in the direction of x. By doing this for
each vertex, |T | different orientations are assigned to the |T | − 1 edges of T . Hence at least one
edge of T is oriented in both directions, and such an edge has size at least c. �

5.3. Remark. If (T, ν) is not c-thick, then there exists a vertex x ∈ V(T ) with ν(x) > 1 − cdx.
Indeed, since T − x has dx components, all of measure less than c, we find that 1 − ν(x) =
ν(T − x) < cdx.

The measure we will use counts vertices of G′ that belong to the original graph G:

5.4. Definition. Let G denote a graph, and G′ a refinement of G. The probability measure µG on
V(G′) is defined by

µG(A) :=
|A ∩V(G)|
|G|

for A ⊆ V(G′).

5.5. Lemma. If G′ is a refinement of a graph G, and ϕ : G′ → T a finite harmonic morphism to a
tree, then (T, ϕ∗µG) is a measured tree, and for any vertex x ∈ V(T ) , we have

degϕ ≥ ϕ∗µG(x) · |G|.
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Proof. It suffices to remark that

ϕ∗µG(x) · |G| = |ϕ−1(x) ∩G| =
∑
v∈G
ϕ(v)=x

1 ≤
∑
v∈G
ϕ(v)=x

mϕ(v) ≤ degϕ.

�

The next proposition says that size and degree controls the first eigenvalue of the Laplacian:

5.6. Proposition. If G′ is a refinement of a graph G, and ϕ : G′ → T a finite harmonic morphism,
then for any edge e ∈ T , we have an inequality

degϕ ≥ 1

2
· λG · sizeϕ∗µG(e) · |G|.

Proof. If we let Gi := V(G) ∩ ϕ−1(V(Ti(e))) for i = 1, 2 then the statement to be proven is
equivalent to

1

2
λG min(|G1|, |G2|) ≤ deg(ϕ).

First, note that the inequality is trivial if min(|G1|, |G2|) = 0. Now assume the minimum is non-
zero. The estimate follows from the variational characterization of λG via the Rayleigh-quotient,

λG = inf
f⊥1

〈f, Lf〉
〈f, f〉

= inf
f⊥1

∑
u∼v

(f(u)− f(v))2∑
v f(v)2

,

where notations are as in 2.1. We construct an appropriate function f based on the finite harmonic
morphism ϕ : G′ → T and the removed edge e ∈ T , as follows:

f(v) =

 1
|G1| if v ∈ G1,

− 1
|G2| if v ∈ G2.

It is easy to check that f ⊥ 1, and therefore,

λG ≤

∑
u∼v

(f(u)− f(v))2∑
v
f(v)2

= |E(G1, G2)|( 1

|G1|
+

1

|G2|
)

≤ 2|E(G1, G2)|
min(|G1|, |G2|)

We finish the proof by showing that deg(ϕ) ≥ |E(G1, G2)|. Suppose an edge e ∈ E(G1, G2)
is replaced in G′ by a path, possibly of length 1. Let us describe this path as a series of edges
e1, . . . , en ∈ E(G′), such that e1 is incident to a vertex in G1, and en is incident to a vertex in G2.
Then for at least one of the ei it holds that ϕ(ei) = e. The desired inequality follows. �

A lower bound for the degree of ϕ now follows easily if the map gives a c-thick measured tree:
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5.7. Corollary. If G′ is a refinement of a graph G, and ϕ : G′ → T a finite harmonic morphism
such that (T, ϕ∗µG) is c-thick, then

degϕ ≥ c

2
· λG · |G|.

Proof. Immediate from Lemma 5.2 and Proposition 5.6. �

5.8. Remark. If the tree is not c-thick, we know from Remark 5.3 that the tree has a vertex x ∈ T
with “large” measure: ϕ∗µG(x) ≥ 1 − cdx. Putting, for example, c = 1/(∆T + 1) (where ∆T is
the maximal vertex degree in T ), the previous results gives a non-trivial lower bound on the degree
of ϕ in terms of λG, |G| and ∆T of the form

deg(ϕ) ≥ min

{
λG
2
, 1

}
|G|

∆T + 1
.

However, we want to find a bound that solely depends on G, not on T .

In the next proposition, we engineer another harmonic morphism from a different refinement of
G, whose degree is controlled by that of ϕ and in which we can numerically control inequalities
between thickness, maximum size of vertices and minimum size of edges. We then optimize over
the various choices of the numerical bounds, to get the main theorem as corollary.

5.9. Proposition. Let G denote a graph with maximal degree ∆G. Let A,B,C > 0 be constants
such that A+B +C ≤ 1. If G′ is a refinement of G, and ϕ : G′ → T a finite harmonic morphism
such that

(i) (T, ϕ∗µG) is not (C/2)-thick; and
(ii) all vertices x ∈ T have measure ϕ∗µG(x) < B,

then there exists a refinementG# ofG, a tree T#, and a finite harmonic morphism ϕ# : G# → T#

such that
(a) degϕ# ≤ ∆G degϕ; and
(b) there exists an edge e# of T# with size

ϕ#
∗ µG

(e#) ≥ A/2.

We postpone the proof to the next section, and first discuss the main corollary. The given refine-
ment satisfies the inequalities in the theorem for suitable constants. But reengineering gives us the
possibility to optimize the result over all possible choices of A,B and C, and thus arrive at:

5.10. Corollary ( = Theorem C). Let G be a graph with maximal vertex degree ∆G and first
Laplace eigenvalue λG. The stable gonality of G is bounded from below by

sgon(G) ≥
⌈

λG
λG + 4(∆G + 1)

|G|
⌉
.

Proof. Let ϕ : G′ → T be a finite harmonic morphism from a refinement G′ of G, and let
A,B,C > 0 be constants with A+B +C ≤ 1. If (T, ϕ∗µG) is C/2-thick, then by Corollary 5.7,
we find

degϕ ≥ γ · |G| with γ :=
CλG

4
.
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On the other hand, if there is a vertex x ∈ T with ϕ∗µG(x) ≥ B, then by Lemma 5.5, we get

degϕ ≥ β · |G| with β := B.

In the remaining case, Proposition 5.9 implies that

degϕ ≥ 1

∆G
degϕ# ≥ λG

2∆G
size

ϕ#
∗ µG

(e#)|G| ≥ α · |G| with α :=
AλG
4∆G

,

where the second inequality follows from Proposition 5.6.
Translating the constraints A,B,C > 0 and A+ B + C ≤ 1, we conclude that it always holds

that
degϕ

|G|
≥ max

α,β,γ>0
aα+bβ+cγ≤1

min(α, β, γ).(1)

with a = 4∆G/λG, b = 1 and c = 4/λG. The maximum in (1) is achieved for α = β = γ and
aα+ bβ + cγ = 1, and plugging this back into (1) gives the result. �

6. Proof of Proposition 5.9

In the proof of Proposition 5.9 we will use the following concept several times to construct new
graphs from old:

6.1. Definition. LetH1, . . . ,Hn denote n different graphs and let (v1
1, . . . , v

n
1 ), . . . , (v1

m, . . . , v
n
m) ∈

V(H1) × · · · × V(Hn) denote tuples of their vertices. The graph H obtained by gluing Hi along
these vertices is defined to be

H :=

n⊔
i=1

Hi
/
〈v1

1 = · · · = vn1 , . . . , v
1
m = · · · = vnm〉

.

6.2. Lemma. Let ϕ : G → T be a finite harmonic morphism and let T0 ⊂ T be a connected
subgraph. Then the restriction of ϕ to any of the connected components of ϕ−1(T0) is a finite
harmonic morphism to T0.

Proof. Let T0 be such a subgraph and let ϕ0 : G0 → T0 be the restriction of ϕ to one of the
connected components G0 of ϕ−1(T0). Then mϕ0(v) is well-defined for all v ∈ V (G0), namely,
all edges e ∈ Ev(G) which are mapped to an edge e′ ∈ Eϕ(v)(T0) are contained in Ev(G0), so that
in particular mϕ0(v) = mϕ(v). �

Proof of Proposition 5.9. The proof consists of various steps, in which the new morphism is con-
structed from the original map. As the proof proceeds, we will show the constructions on an explicit
non-trivial example. The example is printed in smaller font, and the switch between example and
main proof is indicated by a diamond (♦). The basic idea of the proof is this: the hypothesis of the
Proposition (which is the remaining bad case from the point of view of getting useful bounds) is
that there exists a vertex in the tree (with controlled measure) such that all connected components
of its complement have too small measure to give a useful bound. We collect these components
(and their preimages) into two sets, which we call the “left” and “right” parts, such that each of
these parts has a larger, more useful, measure. For technical reasons, one should discard leaves
first. We want to map each of these parts as a whole onto a “smaller” tree, but this will increase the



A COMBINATORIAL LI–YAU INEQUALITY AND RATIONAL POINTS ON CURVES 19

degree of the map. We control it as follows: in the new tree T#, all of these components are glued
to a central vertex. The original morphism ϕ is split into local parts over each of the components,
and these are refined to a harmonic morphism over the left or right parts of the new tree. Then
the left and right parts are glued together over the new tree, where the indices at preimages of the
central point are redefined, and maybe some leaves are added, to make the result into a harmonic
morphism. One then checks that the degree of the new morphism hasn’t increased too much, but
that both edges sticking out of the central vertex have large enough measure to give a useful bound.

Example. We start with a graph G of the following form

b

a

d

f

g

e

a

h

b h

The original graph has |G| = 10 vertices and maximal vertex degree ∆G = 5. We consider the following refinement
G′ of the graph G, and the harmonic morphism ϕ to the tree T as indicated in the following picture. We use the
following display conventions: the original vertices and edges are bold, contrary to subdivision vertices and vertices and
edges from leaves. The label on a vertex indicates to what vertex in the tree it is mapped. A gray square box with a
number on an edge indicates that this edge has index equal to that number; if there is no box, then the index is 1.
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ϕ
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This map has degree degϕ = 8. The push-down ϕ∗µG of the normalized counting measure of G to T takes the
following value on the indicated vertices:

ϕ∗µ(v) =


0 if v ∈ {B, c,H},

1/10 if v ∈ {d, e, f, g},

1/5 if v ∈ {a, b, h}.

If we set
A = 1/5, B = 3/10, C = 5/10,

then the set-up satisfies conditions (i) and (ii) of Proposition 5.9. Indeed, The push-down measure is not C/2 = 1/4-
thick (all connected components of T − a are of measure at most 1/5), and all vertices have measure smaller than
B = 3/10.

In the proof, we construct a new refinementG# ofG and a new tree T# with a finite harmonic morphismϕ# : G# →
T# of degree degϕ# < ∆G degϕ = 40 with an edge of size ≥ A/2 = 1/10. ♦

Write ν = ϕ∗µG. Since (T, ν) is not C/2-thick, we can choose a vertex x0 ∈ V(T ) such that
all components of T − x0 have measure < C/2. Let Gs ⊂ G′ be the refinement of G which
only comprises the subdivided edges of G in G′, and let T s denote its image ϕ(Gs). Observe that
x0 ∈ V(T s), and let d denote the degree of x0 in T s. Also note that the maximal degree of Gs

is the same as that of G, i.e., ∆Gs = ∆G. Denote by T s1 , . . . , T
s
d the connected components of

T s − x0. We divide the connected components into two sets of approximately the same measure.
Since ν(x0) < B and ν(Ti) < C/2 for all i = 1, . . . , d, it is possible to find a partition IL ∪ IR =
{1, . . . , d}, such that

min

ν(
⋃
i∈IL

T si ), ν(
⋃
i∈IR

T si )

 ≥ 1− ν(x0)

2
− C

2
>

1−B
2
− C

2
≥ A

2
.

Example (continued). In the example, Gs is the graph

b

a

d

f

g

e

a

h

b h

and T s is the graph

b

c

a

H

h

d

e

f

g
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We can choose x0 to be the central vertex labelled “a”, so that all components of T − x0 have measure < C/2 = 1/4
(indeed, they have measure 0, 1/5 or 1/10), and divide the d = 7 connected components into “left” and “right” as
follows:

x0 = a,

IL = {T1 = {b}, T2 = {h,H}} ,
IR = {T3 = {c}, T4 = {d}, T5 = {e}, T6 = {f}, T7 = {g}} .

Then the total measure of the left part is 2/5 and the total measure of the right part is 2/5, which is larger than
A/2 = 1/10. ♦

We now show how to construct the different pieces of the new map ϕ# : G# → T#.

The construction of T#. For each i = 1, . . . , d let yi ∈ V(T si ) be the unique vertex which is
adjacent to x0 in T s. A new graph S# is obtained by gluing all T si together at the yi, and adding a
leaf at the image of the yi. Call x the new vertex of the added leaf. Take two copies (S#,1, x1) and
(S#,2, x2) of the pair (S#, x), and glue them together at x1 and x2 to obtain a tree T#. Let X0 be
the image of x1 and x2 in T#, and call the image of S#,1 in T# the “left part” T#

L , and the image
of S#,2 in T# the “right part” T#

R .

Example (continued). In the example, S# is the graph given by gluing all components T1, . . . , T7 of T s − x0 along
their vertex adjacent to x0, and adding a leaf. All but the component T2 = {h,H} are isolated vertices, so the result is
a segment isomorphic to T2, connected to a new vertex x at h: S# is x . T# is the graph given by gluing two
copies of (S#, x) along the common vertex x, so T# is X0 .♦

The construction of G#. For each i = 1, . . . , d, let Si be the subtree of T s obtained by adding
to T si the (unique) edge in E(x0, yi). The subgraph ϕ−1(Si) ⊂ G′ might be disconnected; let G′′i
be the union of the connected components of ϕ−1(Si) for which the set of edges has a non-empty
intersection with E(Gs). By Lemma 6.2 the restriction

ϕ′′i := ϕ|G′′i : G′′i → Si.

is finite harmonic.
Now observe that S# is a refinement of Si, so by Lemma 4.4 there exists a finite harmonic

refinement morphism (in the sense of Definition 4.3)

ϕ#
i : G#

i → S#,

with an inclusion map ιi : G′′i → G#
i .

Example (continued). For each of the seven connected components Ti, we display the construction of the “local”
components Si, G′′i and the refinement morphism ϕ#

i : G#
i → S# in Table 1. The construction for i = 5, 6, 7 is

entirely similar to the one for i = 4 (with the label d replaced by e, f, g, respectively), so we don’t list it in the table. ♦
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Table 1. The local constructions relating to the maps ϕ#
i : G#

i → S# (i = 5, 6, 7
are similar to i = 4)

i 1(∈ IL) 2(∈ IL) 3(∈ IR) 4(∈ IR)

Si ab aH h ca da

G′′i

b

a

a

b

a

a

a

a

h

h

H

a

a

a

a

c

a

d

a a

ϕ#
i

b

a

a

b

B

B

a

a

2

2

degϕ#
1 = 4

aB b

a

a

h

h

H

a

a

2

2

degϕ#
2 = 4

aH h

a

a

c 2

degϕ#
3 = 2

a c

a

d

a a

3

degϕ#
4 = 3

a d
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The construction of G# (continued). Define, for any v ∈ ϕ−1(x0) ∩V(Gs), the integer

d#(v) :=
∑
i∈IL

v∈V(G′′i )

 ∑
e∈Eιi(v)(G

#
i )

r
ϕ#
i

(e)

− ∑
i∈IR

v∈V(G′′i )

 ∑
e∈Eιi(v)(G

#
i )

r
ϕ#
i

(e)

 .

The graph G# is obtained by gluing all G#
i together at ιi(v) for all v ∈ ϕ−1(x0) ∩ G′′i , and, for

any v with d#(v) 6= 0, gluing an additional copy (S#,v, xv) of (S#, x) at v.

Example (continued). In the example, the vertices v ∈ ϕ−1(x0) are the numbered vertices in the following display of
Gs:

b d

f

g

e

h

b h

1 2

5

3 4

87

6

The vertices labeled 1 and 5 have only neighbouring subgraphs G#
i with i ∈ IL, and the indices are all one, and add

up to 2. The vertices labeled 3, 4, 7 and 8 have only neighbouring subgraphs G#
i with i ∈ IR, and the indices are

all one, and add up to 2. Finally, the vertices labeled 2 and 6 have neighbouring subgraph G#
2 with index in IL, and

neighbouring subgraphs G#
3 and two of G#

i (with i = 4, 5, 6, 7) with index in IR, for which all the indices are all one.
Thus,

d#(v) =


1 + 1 = 2 if v has label 1 or 5;

1 + 1− (1 + 1 + 1) = −1 if v has label 2 or 6;

−(1 + 1) = −2 if v has label 3,4, 7 or 8.

Thus, we need to glue in one extra copy of S# at every such vertex. ♦

The construction of ϕ#. To define ϕ#, it suffices to define its restriction to G#
i for i = 1, . . . , d,

and its restriction to S#,v, and show that these are compatible on intersections. Define the restric-
tions as follows:

(1) If i ∈ IL, set ϕ#|
G#
i

: G#
i

ϕ#
i−−→ S# ∼→ T#

L with index rϕ#(e) = r
ϕ#
i

(e) for all e ∈ G#
i ;

(2) If i ∈ IR, set ϕ#|
G#
i

: G#
i

ϕ#
i−−→ S# ∼→ T#

R with index rϕ#(e) = r
ϕ#
i

(e) for all e ∈ G#
i ;

(3) If v ∈ ϕ−1(x0) with d#(v) > 0, set ϕ#|S#,v : S#,v ∼→ T#
R with index rϕ#(e) = d#(v)

for all e ∈ S#,v;
(4) If v ∈ ϕ−1(x0) with d#(v) < 0, set ϕ#|S#,v : S#,v ∼→ T#

L with index rϕ#(e) = −d#(v)

for all e ∈ S#,v.
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One checks that this glues together correctly to a finite graph morphism ϕ# : G# → T#.

Example (continued). The extra copies of S# that are glued to vertices 1, 3, 4, 5, 7, 8 get index 2 on every edge, but
the copies that are glued to 2 and 6 get index one. The final re-engineered map ϕ# : G# → T# in our example is given
as follows:

L

a

R

R

R

R

a

L

L L

l

l

L

l

L

l

l

R r

aRr

aRr

aLl a L l

a L l

a

L

l

r

r

ϕ#

aLl R r

2

2

22

22

22 2 2

2 2
2

2

2

3

3

Here, the vertex X0 is labelled “a”. The map ϕ has degree 18 and the edges {L, a} and {a,R} of T# both have size
2/5 > A/2 = 1/10. ♦

The finite morphism ϕ# is harmonic. We check that mϕ#(v) is well-defined for all v ∈ V(G#).
For all v 6∈ ϕ#−1(X0) there is either a unique i = 1, . . . , d such that v ∈ V(G#

i ) and then
mϕ#(v) = mϕ′′i

(v), or there is a unique w ∈ ϕ#−1(X0) such that v ∈ V(S#,xw) and then
mϕ#(v) = |dϕ#(w)|. For all v ∈ ϕ#−1(X0), it holds that

mϕ#(v) = max


∑
i∈IL

 ∑
e∈Ev(G#)∩E(G#

i )

rϕ#(e)

 ,
∑
i∈IR

 ∑
e∈Ev(G#)∩E(G#

i )

rϕ#(e)


 .

The edge e#. Any of the two edges e# ∈ EX0(T#) satisfies

size
ϕ#
∗ µG

(e#) ≥ min

ν(
⋃
i∈IL

T si ), ν(
⋃
i∈IR

T si )

 >
A

2
.

The degree of ϕ#. Consider a vertex v ∈ V(G#)∩ϕ−1(x0): if v belongs to Gs, then it belongs to
at most ∆G different G#

i for i = 1, . . . , d; and if v /∈ Gs, then there is a unique i = 1, . . . , d such
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that the unique path from v toGs is contained inG′′i . It follows that for each v ∈ V(G#)∩ϕ−1(x0),
at most ∆G of the neighboring G#

i are either all sent to T#
L , or all to T#

R . Hence

mϕ#(v) ≤ ∆Gmϕ(v),

and this implies degϕ# ≤ ∆G degϕ. �

6.3. Remark. The point x0 (used in the proof) with the property that all components of T − x0

have measure < C/2 is in fact unique. Indeed, if there are two such vertices, say, x0 and x1, then
let e = (x, y) denote any edge on a path between x0 and x1. One component of T − x contains
T1(e) and one component of T − y contains T2(e), and hence by assumption, ν(T1(e)) < C/2
and ν(T2(e)) < C/2 but ν(T1(e)) + ν(T2(e)) = 1. Hence C > 1, but this is impossible with
C ≤ 1−A−B and A,B > 0.

7. Discussion of the spectral lower bound on stable gonality

We now give some examples that illustrate the bound.

7.1. Example. For the banana graphBn, we have ∆Bn = n, |Bn| = 2 and λBn = 2n, so the lower
bound is trivial: sgon(Bn) ≥ 1. However, the stable gonality of Bn (for n ≥ 2), equals 2. See
Figure 1 for such a map of degree 2.

7.2. Example. For the complete bipartite graph Kn,n, we have ∆Kn,n = n, |Kn,n| = 2n and
λKn,n = n. If n is even, then the lower bound is

sgon(Kn,n) ≥
⌈

2n2

5n+ 4

⌉
,

We expect that the stable gonality ofKn,n equals n. A morphism which attains degree n is given
by mapping Kn,n to the star with one central vertex and n emanating edges in the obvious way.
For n = pr + 1 (p prime), the graph Kn,n occurs as stable reduction graph of the curve

Xλ,r : (xp
r − x)(yp

r − y) = λ

(seen in P1×P1) with |λ| < 1, over a valued field (k, | · |) of characteristic p, which, as a fiber
product of two projective lines, admits an obvious morphism of degree pr + 1 to P1. The stable
reduction itself consist of two transversally intersecting families of pr + 1 rational curves (“check
board with p2r squares”). For more details on these curves, see for example [21].

In the family of Example 7.2, our lower bound has the same order of growth in n as does the
expected gonality, but is about 5 times as small. This seems to be a general phenomenon; we don’t
know an interesting example where our lower bound is sharp.

7.3. Example. If Xn is a family of Ramanujan graphs with (fixed) regularity d and n vertices (n
increasing), then by the Alon-Boppana bound, we get inequalities

√
d− 1− o(1) ≤ λXn/2 ≤

√
d− 1,

so we find a lower bound of the form

sgon(Xn) ≥ κd · n
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for n sufficiently large with κd a constant only depending on d. In any family of Mumford curves
whose stable reduction graphs are d-regular Ramanujan graphs, the gonality goes to infinity as the
number of components of the stable reduction does so.

7.4. Remark. The famous Li–Yau inequality from differential geometry [36] states that the gonal-
ity gon(X) of a compact Riemann surface X (minimal degree of a conformal mapping ϕ of X to
the Riemann sphere) is bounded below by

gon(X) ≥ 1

8π
λXvol(X),

where λX is the first non-trivial eigenvalue of the Laplace-Beltrami operator of X , and vol(X)
denotes the volume of X .

For graphs G with any Laplacian (normalized or not), an inequality of the form

“sgon(G) ≥ κ · λG · vol(G)” (∗)

for some constant κ fails. A counterexample is given by the complete graph Kn, which has stable
gonality n − 1. However, a lower bound of the form (∗) would be κ · n2(n − 1) for the usual
Laplacian, and κ · n2 for the normalized Laplacian (see Table 3 in the appendix for the data; one
deduces that the analog of the Li–Yau inequality also fails if one uses any of the other notions of
gonality from the existing literature and are outlined in the appendix.)

One sees from our result that in a graph, the constant κ needs to be roughly divided by the
maximal edge degree for such an inequality to hold.

As we have seen in Corollary 4.6, stable gonality is defined on equivalence classes of graphs, in
the sense that two graphs G and G′ are equivalent (notation G ∼ G′) if they are refinements of the
same stable graph. Hence the result also implies that

7.5. Corollary. For any graph G with g ≥ 2, we have

sgon(G) ≥ max
G′∼G

⌈
λG′

λG′ + 4(∆G′ + 1)
|G′|

⌉
.

�

7.6. Remark. It is tempting to consider the limiting value for the lower bound in this theorem
when the graph is further and further refined. Whereas it is clear how the number of vertices and
the maximal vertex degree change under refinements, the change of the eigenvalue under refine-
ments is not so well-understood (apart from regular graphs). For applications in solid state physics,
Eichinger and Martin have developed an algorithm that computes the change in eigenvalues under
refinement by applying only linear algebra to the original Laplace matrix [24]. Examples (such as
the banana graph) suggest that (iterated) refinement might worsen the lower bound.

There is a similar result for the normalized Laplacian. Denote with λ̃G the first non-trivial
eigenvalue of L∼G.
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7.7. Theorem. LetG be a graph with maximal degree ∆G and first normalized Laplace eigenvalue
λ̃G. The stable gonality of G is bounded from below by

sgon(G) ≥ λ̃G

∆Gλ̃G + 4(∆G + 1)
vol(G).

Sketch of proof. The proof is virtually the same as Theorem C, so instead of providing all details,
we briefly outline the differences. Instead of µG, we use the measure ηG on V (G′) defined for
A ⊂ V (G′) by

ηG(A) :=

∑
v∈A∩G

dGv

vol(G)
,

where dGv is the degree of v in G. Lemma 5.2 is valid for all probability measures, and therefore
also for ϕ∗ηG. Since ϕ∗ηG(x) counts the number of edges instead of vertices, the conclusion of
Lemma 5.5 changes to

degϕ ≥ ϕ∗ηG(x)

∆G
vol(G).

The analogue of Proposition 5.6 can be derived by using the test function

f(v) =

 1
vol(G1) if v ∈ G1,

− 1
vol(G2) if v ∈ G2.

Proposition 5.9 does not change for this new measure. We conclude that the proof of Corollary
5.10 only changes in the step where Lemma 5.5 is used. �

7.8. Remark. For k-regular graphs

kλ̃G = λG and vol(G)/k = |G|,

and hence the lower bounds are identical for the two different Laplace operators.

7.9. Remark. Generically (in the sense of algebraic geometry), the gonality of a curve attains the
Brill–Noether bound (cf. for example the references in the Appendix of [51]). However, curves
of fixed genus and fixed stable reduction graph can have widely varying gonality (e.g., the banana
graph Bn has stable gonality 2, but its subdivisions can occur as stable reduction graph of curves
whose gonality takes on all the values 2, . . . , n); in particular, the gonality of the curve can be
much higher than the stable gonality of the reduction graph. One may try to find the most probable
stable gonality of a random connected (multi-)graph and compare it to the most probable value
of the Brill–Noether bound. In this remark, we compute something much simpler: the difference
between the expected value of the Brill–Noether bound and the lower bound in our theorem, for the
Erdős–Rényi random graph model with a specific connection probability in the non-sparse region.

For a random graph model G = Gn,p of Erdős-Rényi type [26] with n vertices and edge proba-
bility p = p(n) = n−δ for some 0 < δ < 1, the threshold for almost sure connectivity holds, the ex-
pected number of edges is n(n−1)p/2, so the first Betti number ofGp,n is g = 1

2n
1−δ(n−1)−n+1

almost surely. Chung, Lu and Vu [17] have shown that (for a class of function including these p(n))
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the normalized eigenvalue λ̃ tends to 1 with high probability. Also, the given assumptions imply
that ∆Gn,p = pn(1 + o(1)) in probability ([10], 3.14).

Hence the lower bound tends with high probability to

≈ n

5
≈ 1

5
2−δ
√

2g,

which is sublinear in g (and for δ → 0, tends to
√

2g/5, up to a constant the actual value of the
stable gonality n − 1 =

√
2g for the complete graph Kn of genus g = (n − 1)2/2), whereas the

Brill–Noether bound is linear in g (which happens if δ → 1).
There are at least two ways to interpret this heuristic observation: either the lower bound is

asymptotically bad for random graphs; or stable gonality of random graphs is significantly lower
than generic gonality of curves.

8. A linear lower bound on the gonality of Drinfeld modular curves: proof of Theorem D

We recall the main concepts and notations from the theory of general Drinfeld modular curves,
cf. [29], [32].

8.1. Let K denote a global function field of a smooth projective curve X over a finite field k = Fq
with q elements and characteristic p > 0, and ∞ a place of degree δ of K. Let π∞ denote a
uniformizer at∞. Let A denote the subring of K of elements that are regular outside∞.

8.2. Let Y denote a rank-twoA-lattice in the completionK∞ ofK at∞. Such lattices are classified
up to isomorphism by their determinant, so they are isomorphic to A ⊕ I , where I runs through a
set of representatives of Pic(A), the ideal class group of A.

Let GL(Y ) denote the automorphism group of the lattice Y :

GL(Y ) = {γ ∈ GL2(K) : γY = Y },
and let Γ denote a congruence subgroup of Γ(Y ) := GL(Y ). This means that Γ contains a principal
congruence group Γ(Y, n) as a finite index subgroup, where

Γ(Y, n) = ker (Γ(Y )→ GL(Y/ nY )) ,

for n an ideal in A. Let Z ∼= F∗q denote the center of GL(Y ).
If Y = A ⊕ A is the “standard” lattice, we revert to the standard notations Γ(1) := Γ(A ⊕ A)

and Γ(n) := Γ(A⊕A, n).

8.3. The groups Γ act by fractional transformations on the Drinfeld space Ω = C∞−K∞, where
C∞ is the completion of an algebraic closure of K∞. The quotient Γ\Ω is an analytic smooth
one-dimensional space, and is the analytification of a smooth affine algebraic curve YΓ, that can
be defined over a finite abelian extension of K inside K∞. It can be compactified to a Drinfeld
modular curve XΓ by adding finitely many points, called cusps.

The C∞-points of the (coarse) moduli scheme M(n) of rank-two Drinfeld A-modules with full
level n-structure (i.e., an isomorphism of (A/ n)2 with the torsion of the Drinfeld module) can be
described as

M(n)(C∞) =
⊔

Y ∈Pic(A)

Γ(Y, n)\Ω.
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We denote such a component by Y (Y, n) := Γ(Y, n)\Ω, and its compactification by X(Y, n).

8.4. Theorem (= Theorem D). Let Γ denote a congruence subgroup of Γ(Y ). Then the gonality of
the corresponding Drinfeld modular curve XΓ satisfies

gonK(XΓ) ≥ cq,δ · [Γ(Y ) : Γ]

where the constant cq,δ is

cq,δ :=
qδ − 2

√
qδ

5qδ − 2
√
qδ + 8

· 1

q(q2 − 1)

This implies a linear lower bound in the genus of modular curves of the form

gonK(XΓ) ≥ c′K,δ · (g(XΓ)− 1),

where cK,δ is a bound that depends only on the function field K. If K is a rational function field
and δ = 1, then we can put c′K,δ = 2cq,1.

Proof. First observe that gonK(X) = gonK∞(X), so we now consider XΓ as a curve over k =
K∞ and are in a set up where we can apply our previous results. The remainder of the proof has
various parts.

Reduction to principal congruence groups. First of all, we observe that it suffices to prove the
bound for the groups Γ(Y, n). Indeed, if ϕ : XΓ → P1 is a morphism, then from the inclusion
Γ(Y, n) ≤ Γ we get a composed morphism

(2) XΓ(Y,n) → XΓ → P1

of degree
[Γ : Γ(Y, n)]

|Γ ∩ Z|
· degϕ,

and hence

(3) gonK(XΓ) ≥ gonK(X(Y, n))/[Γ : Γ(Y, n)].

Therefore, the desired inequality

gonK(XΓ) ≥ cq[Γ(Y ) : Γ]

follows from
gonK(X(Y, n)) ≥ cq[Γ(Y ) : Γ(Y, n)].

We now prove the gonality bound by invoking Theorem C for the reduction graph of the Drinfeld
modular curve X(Y, n).

Semistable model. First, we construct a semi-stable model for the reduction of X(Y, n) at ∞.
The groups Γ = Γ(Y, n) also act by automorphisms on the Bruhat–Tits tree T of PGL(2,K∞)
[56]. The quotient Γ\T is the union of a finite graph (Γ\T)0 and a finite number of half lines in
correspondence with the cusps of XΓ, and the curve XΓ is a Mumford curve over K∞ [43] such
that the intersection dual graph of the reduction, which is a finite union of rational curves over Fqδ
intersecting transversally in Fqδ -rational points, equals the finite graph (Γ\T)0 ([32] (2.7.8)). In
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particular, the genus of the modular curve XΓ equals the first Betti number of this graph (compare
[29] V.A.11).

Now consider the Γ-stable part Ts of T, defined to consist of those vertices and edges of T

that have trivial stabilizer for the action of Γ. Since the stabilizers of cusps are non-trivial and
stabilizers of edges are subgroups of stabilizers of adjacent vertices, the stable part is a tree that
ends in half-edges (i.e., edges with only an initial vertex). Let Tss denote the tree obtained from
deleting the half-edges, and call the images in Γ\Tss of the remaining vertices that were incident
to the half-lines the boundary points; say there are hc of those, see Figure 4.

}...

...

...

......
...
...

stable part unstable part

cuspidal part

h cusps

hc boundary
 points

GГ

Figure 4. Schematic depiction of the quotient graph Γ\T, including stable, unsta-
ble and cuspidal part.

We claim that the quotient
GΓ := Γ\Tss

is a semistable reduction graph for XΓ. Since it is a subgraph of (Γ\T)0, it suffices to check that
these graphs have the same genus. This can be seen as follows. Since Γ = Γ(Y, n) is p′-torsion
free, [56] II.2.9, Ex. 2b and Thm. 13’(c) imply that

|V(Γ\Ts)| − |E(Γ\Ts)| = χ(Γ) = 1− g(XΓ)− h,
where h is the number of cusps of Γ and χ(G) is the Euler-Poincaré characteristic of G. Since
hc = |E(Γ\Ts)| − |E(Γ\Tss)| and |V(Γ\Tss)| = |V(Γ\Ts)|, we find

g(GΓ) = g(XΓ) + h− hc.
Now observe that h ≥ hc; indeed, h is the number of half-lines of Γ\T. A priori several half-lines
could be attached to the same boundary point. On the other hand, all paths in the unstable graph
attached to boundary vertices have to be part of infinite half-lines (so correspond to cusps). Indeed,
if there would be such a finite path P , let P̃ denote a connected lift of P to T and eP any half-
line of T that contains P̃ . Then the projection of eP in Γ\T has to be infinite, since the orders of



A COMBINATORIAL LI–YAU INEQUALITY AND RATIONAL POINTS ON CURVES 31

the stabilizers are strictly increasing along eP , and hence it would have to intersect the stable part
Γ\Ts. This is impossible, since in the stable part, the stabilizers are trivial.

Since also g(GΓ) ≤ g(XΓ), we conclude that hc = h and g(GΓ) = g(XΓ). This means that
Γ\T is GΓ connected via h paths to the h cusps.

If not indicated otherwise, choose n 6= 1 and write G := GΓ.

A lower bound on the number of vertices. In the Bruhat–Tits tree T of PGL(2,K∞), every vertex
is (qδ + 1)-regular. Let us consider the special vertex of T corresponding to the class of the trivial
rank-two vector bundle [O∞ ⊕O∞] on X , and let v0 denote the corresponding vertex in Γ(Y )\T.
The stabilizer of this vertex is precisely PGL(2,Fqδ) (namely, an element of the stabilizer induces
an automorphism of the “star” of the vertex, which is given by P1(Fqδ).) The stabilizer intersects
Γ(Y )/Z (where Z is the center) in the “constant group” PGL(2,Fq), and the group Γ = Γ(Y, n)
(for n 6= 1) in the trivial group. There is a covering map

Γ\T→ Γ(Y )\T.
We conclude that

(4) |G| ≥ 1

q(q2 − 1)
· [Γ(Y ) : Γ],

since the right hand side is the number of vertices in Γ\T above v0 —which are stable, since they
have trivial stabilizers in Γ—, and PGL(2,Fq) has cardinality q(q2 − 1).

8.5. Remark. This estimate for the number of vertices of G will be enough for our purposes, since
it differs from the index only by a constant in q. But one might also count the total number of
vertices of the graph. For a rational function field K = Fq(T ) with a place∞ of degree one, this
is easily done, the result being

|GΓ(n)| =
2qdeg(n)+1 − q − 1

qdeg(n)+1(q2 − 1)(q − 1)
[Γ(1) : Γ(n)];

compare also with computations in [42] (cf. [15], [52]) and [31]. It seems another proof of the lower
bound on the gonality is possible by using Morgenstern’s result that there is a perfect matching
between a very large (constant fraction depending only on q, not on deg(n)) subset of the vertices
above v0 in GΓ(n) and vertices in the complement, but we did not pursue this, since it would give a
less general and worse result.

8.6. Remark. The gonality is not always realized by the obvious map XΓ → X(1) ∼= P1. For
example, set q = 2 and let p denote an prime of degree 3; then the modular curve X0(p) is
hyperelliptic, but the map X0(p) → X(1) has degree 9. Also notice that for a general base field
K, the modular curve X(1) is not even itself a rational curve.

8.7. Remark. Counting the number of cusps (so the number of vertices above a vertex in Γ(Y )\T
corresponding to a split bundle of high degree) is not enough to get a linear estimate in the index,
since the cusps have rather large stabilizers (of size roughly the third root of the index).

Vertex degrees. Since the tree T is (qδ + 1)-valent and Γ\Ts consists of stable vertices (that have
trivial stabilizers), we find that all vertices in Γ\Ts are (qδ+1)-valent. In particular, for the maximal
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vertex degree, we find

(5) ∆G = qδ + 1.

The boundary vertices v in Γ\(Tss − Ts) have valency qδ, since we have already shown that they
are connected to a unique cusp.

The first eigenvalue of the Laplace operator. We will relate the Laplace operator on the finite
graph G := GΓ to a Hecke operator on (quotients of) the Bruhat-Tits tree.

The Hecke operator that we consider is T∞, associated to the characteristic function of the
double coset

GL(2,O∞)
(
π∞ 0
0 1

)
GL(2,O∞);

equivalently, it acts on the vertices of the Bruhat-Tits tree T of PGL(2,K∞) as the adjacency
operator of T; so

T∞(f)(v) =
∑

w : {v,w}∈E(T)

f(w)

for a function f on V(T). Now T∞ descends to a Hecke operator on Γ\T by

T∞(f)(v) =
∑

w : {v,w}∈E Γ\T

αvw · f(w)

where we set αvw := [StabΓ(v) : StabΓ(e)] (compare also [38]). Now consider the adjacency op-
eratorAG ofG = GΓ, and suppose that f is a function on the vertices ofG that is an eigenfunction
for AG with eigenvalue λ. We claim that it extends uniquely to an eigenfunction f̃ of T∞ on the
vertices of Γ\T. Indeed, on all non-boundary vertices of G, T∞ = AG. Then, if v is a boundary
vertex of AG, and w is the unique vertex outside G that is adjacent to v, we want

λf(v) = T∞f(v) = αvwf̃(w) +AGf(v) = αvwf̃(w) + λf(v).

Hence we should define f̃(w) := 0. Finally, if w1, w2, w3 are three consecutive vertices outside G,
then by computing T∞f̃(w3), we see that we need to define

f̃(w3) :=
λ

αw2w3

f̃(w2)− αw1w2

αw2w3

f̃(w1).

Now D = Γ\T with the weight function αvw forms a diagram in the sense of Morgenstern ([41],
[42]), and f̃ is an eigenfunction for T∞ in the space L0

2(D), the orthocomplement of the constant
functions in the space of square integrable functions on the vertices for the measure given by the
weights αvw. As in Theorem 2.1 of [42], the theory of Eisenstein series implies that the continuous
spectrum of T∞ belongs to the segment [−2

√
qδ, 2

√
qδ], and Drinfeld’s proof of the Ramanujan-

Petterson conjecture for function fields (in a series of papers culminating in [23]) shows that the
discrete eigenvalues λ of T∞ on L0

2(D) satisfy |λ| ≤ 2
√
qδ. We conclude that |λ| ≤ 2

√
qδ holds

for the eigenvalues of AG on G.
The degree matrix of G is given by a diagonal matrix

DG =

(
(qδ + 1) · 1 0

0 qδ · 1

)
,
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where the lower block corresponds to the boundary vertices (which are qδ + 1-valent in Γ\T, but
only qδ-valent in G, since the cusps are not present in G).

Finally, the Laplacian of G is

LG = L′ +B with L′ = qδ1−AG and B =

(
1 0

0 0

)
.

The Courant-Weyl inequalities (e.g., Theorem 2.1 in [22]) imply that λG is larger than the first
eigenvalue of L′ (plus the smallest eigenvalue of B, which is zero), leading to

(6) λG ≥ qδ − 2
√
qδ.

Conclusion of the proof of the main bound. Since the function

λ 7→ λ

λ+ 4(∆ + 1)

is monotonously increasing in λ, we find the result by plugging the data from equations (4), (5)
and (6) in the lower bound from Theorem C.

Linear lower bound in the genus. We now show how to convert the lower bound on the gonality
of XΓ in terms of the index [Γ(Y ) : Γ] into a lower bound that is linear in the genus, of the form

gonK(XΓ) ≥ c′K,δ(g(XΓ)− 1),

for cK a constant depending only on the ground field K and the degree δ of∞. This is not entirely
obvious in positive characteristic, due to wild ramification.

First of all, it is again enough to establish such a bound for a principal congruence subgroup
Γ(Y, n). First, recall the Riemann-Hurwitz formula for a Galois cover X 7→ Y with Galois group
G:

(7) 2gX − 2 = |G|

2gY − 2 +
∑
y∈Y

∞∑
i=0

|Gi(y)| − 1

|G0(y)|

 ,

whereGi(y) are the higher ramification groups of any preimage of y inX (see e.g. [44]). Applying
this to the (Galois) cover (2) and using formula (3), it follows that

gonK(XΓ) ≥
gonK(X(Y, n))

[Γ : Γ(Y, n)]
|Γ ∩ Z|

≥
c′K,δ(g(X(Y, n))− 1)

[Γ : Γ(Y, n)]
|Γ ∩ Z|

≥ c′K,δ(g(XΓ)− 1 + r)

≥ c′K,δ(g(XΓ)− 1),

where we have assumed that the desired bound holds for Γ(Y, n), and r ≥ 0 comes from formula
(7) applied to the cover (2).
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We now establish the bound for X(Y, n). If this curve has genus zero or one, the required bound
for the gonality holds trivially. Therefore, we can assume g(X(Y, n)) ≥ 2. The Riemann-Hurwitz
formula for the cover X(Y, n)→ X(Y ) implies a relation of the form

[Γ(Y ) : Γ(Y, n)] = (g(X(Y, n))− 1) · 2(q − 1)

2g(X(Y ))− 2 +R
,

where R is the term in equation 7 applied to the Galois cover X(Y, n) → X(Y ). Hence to prove
our result, it suffices to prove a bound of the form

2g(X(Y ))− 2 +R ≤ c′′K,δ

for some constant c′′K,δ depending only on K and δ.
We recall some information about the “ramification number” R and the genus g(X(Y )) from

[29] (There, the formulae are worked out for the principal component Y = A ⊕ A only, but hold
in general). First of all, the genus of X(Y ) depends only on K and δ. Secondly, ramification takes
place above elliptic points and cusps of X(Y ). Let us write R = Re +Rc with Re the contribution
from elliptic points, and Rc the contribution from cusps. The ramification above elliptic points is
tame; and the number of elliptic points depends only on K and δ. Hence Re is bounded above by
a constant in K and δ.

The ramification above the cusps is wild, but weak; this means that the second ramification
groups are trivial, and the first ramification group is just the p-Sylow group of the stabilizer of the
cusp (this follows, for example, from the fact that X(Y ) are Mumford curves, hence ordinary—
since their Jacobian admits a Tate uniformization, and hence has maximal p-rank—, by applying a
result of Nakajima [44]). In the end, we need an upper bound on

Rc =
qd+1 − 2

(q − 1)qd

where d = deg(n) ≥ 1, that is independent of d; for example,

Rc ≤
q

q − 1

(the limit of Rc as d tends to +∞) will do, and this finishes the proof. �

8.8. Remark. In the “standard” case of a rational function field K = Fq(T ) with a place ∞ of
degree one, one can make all data explicit. The coverX(n)→ X(1) ∼= P1 is ramified tamely at the
unique elliptic point, of order q+ 1, and at the unique cusp, of order qd(q− 1), where d = deg(n).
Hence the Riemann-Hurwitz formula becomes

2(g(X(n))− 1) = [Γ(1) : Γ(n)]

(
1− 1

q + 1
− 1

qd(q − 1)
− 1

qd

)
≤ [Γ(1) : Γ(n)],

and it follows that one can set c′K,δ = 2cq in this case.
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8.9. Remark. The previous best (non-linear) bounds were due to Schweizer ([55], Thm. 2.4), who
showed that if K is a rational function field, then one has, for example,

gon
Fq(T )

X0(n) ≥ 1√
(q2 + 1)(q + 1)

· [Γ(1) : Γ0(n)]
q−1
2q .

9. Modular degree of elliptic curves over function fields: proof of Theorem E

9.1. Assume that K is a global function field,∞ a place of K, and let E denote an elliptic curve
over K with split multiplicative reduction at∞ (every non-isotrivial curve acquires such a place of
reduction after a finite extension of the ground field K). From the work of Drinfeld, it follows that
E admits a modular parametrization

φ : X0(Y, n)→ E

(see Gekeler and Reversat [32]) for some suitable modular curves X0(Y, n). This parametrization
is defined over the maximal abelian extensionH ofK that is contained in the completionK∞. One
may study the (minimal) degree of such a modular parametrization, called the modular degree.

9.2. Remark. Contrary to the case of elliptic curves over Q, in the case where K = Fq(T ),
Gekeler has proven that the modular degree always equals the congruence number of the associated
automorphic form [30] [19].

9.3. We first describe some of the structure of the modular curves X0(Y, n). The scheme M0(n),
(coarsely) representing the moduli problem of rank-two Drinfeld modules with an n-isogeny, is
defined over K, but is not absolutely irreducible if Pic(A) is non-trivial; it decomposes over C∞
as

M0(n)(C∞) =
⊔

Y ∈Pic(A)

Γ0(Y, n)\Ω,

where the components are defined over H , and sharply transitively permuted by the Galois group
Gal(H/K) ∼= Pic(A). One may also describe the modular parametrizations for different Y simul-
taneously by a K-rational map M0(n)→ E, with M0(n) not absolutely irreducible.

9.4. Since the elliptic curve E admits a map of degree two to P1, we find that

gonK(X0(Y, n)) ≤ 2 deg(φ).

Since we now have a lower bound

gonK(X0(Y, n)) ≥ cq,δ[Γ(Y ) : Γ0(Y, n)],

we conclude that

deg(φ) ≥ 1

2
cq,δ[Γ(Y ) : Γ0(Y, n)].

The desired result deg φ�q,δ | n |∞ follows from the following lemma.

9.5. Lemma. [Γ(Y ) : Γ0(Y, n)] ≥ | n |∞.
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Proof. Since both groups Γ(Y ) and Γ0(Y, n) contain the center Z, this index is the degree of the
covering X0(Y, n)→ X(Y ). Although the different components X0(Y, n) of M0(n) and X(Y ) of
M(1) depend on Y , they are Galois conjugate by Gal(H/K) ∼= Pic(A). Therefore, the covering
degree of this cover does not depend on Y . Hence we can put Y = A ⊕ A, and a standard
computation then shows that there is a bijection

GL(2, A)/Γ0(n)
∼→ P1(A/ nA)(

a b
c d

)
7→ (a : c)

and hence

[Γ(Y ) : Γ0(Y, n)] = [GL(2, A) : Γ0(n)] = | n |∞ ·
∏
p|n

(1 + | p |−1
∞ ) ≥ | n |∞,

as was to be proven. �

9.6. Corollary (= Theorem E). LetE/K denote an elliptic curve with split multiplicative reduction
at the place∞, of conductor n ·∞. Then the degree of a modular parametrization φ : X0(Y, n)→
E is bounded below by

deg φ ≥ 1

2
cq,δ[Γ(Y ) : Γ0(Y, n)] ≥ 1

2
cq,δ| n |∞.

9.7. Remark. Previously, Papikian [46] had proven (using Spziro’s conjecture for function fields
and estimating symmetric square L-functions by the Ramanujan conjecture) that for K = Fq(T )
a rational function field,

degns(jE) · deg φ�q,ε | n |1−ε∞ ,

where jE is the j-invariant of E and degns(jE) is its inseparability degree. He had also proven
that degns(jE) = 1 if n is prime and the curve is optimal, i.e., of minimal modular degree in its
isogeny class – a.k.a. a strong Weil curve ([47], 1.3). Our lower bound deg φ�q,δ | n |∞ confirms
a conjecture that he made in [46].

9.8. Remark. In the other direction, Papikian [48] has proven an upper bound on the modular
degree of an optimal semistable elliptic curve E with square-free conductor for a general function
field, depending on the Manin constant cE . Contrary to the case of elliptic curves over Q, one
really needs to assume that the curve is optimal, because of the existence of isogenies of arbitrary
high degree, arising from the Frobenius operator. One should also note that in [48] the bound is
given without the Manin constant as a factor, since it was at first conjectured to always equal one,
but Pál [45] has given examples where this is not the case. Also, Pál has proven a general upper
bound for cE that combines with [48] to give an upper bound of the form

deg(φ)�K,δ | n |2∞
(
logq | n |∞

)3
for the degree of an optimal modular cover φ with square-free conductor n, and such that the class
number of K is coprime to the characteristic p. In particular, the analogue of the degree conjecture

deg φ�q,ε | n |2+ε
∞

for any ε > 0 holds in this case, and combines with our lower bound.
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9.9. Remark. Papikian expects that the j-invariant of an optimal semi-stable elliptic curve over
K = Fq(T ) is separable, and then a lower bound of the form deg φ � c2

E | n |1−ε∞ can be shown
to hold in many cases, where cE is the Manin-constant of E. The results of Pál imply that cE can
vary essentially from 1 to | n |1/2∞ , and thus, the value of the Manin constant seems to influence how
good our lower bound on the modular degree is.

10. Rational points of higher degree on curves: proof of Theorem F

We first quote the positive characteristic analogue of a theorem of Frey [28]:

10.1. Proposition. Let X denote a curve over a global function field K, such that its Jacobian
does not admit a K-morphism to a curve defined over a finite field. If d is an integer such that
2d+ 1 ≤ gonK(X), then the set of points of degree d on X is finite, i.e.,∣∣∣∣∣∣

⋃
[K′:K]≤d

X(K ′)

∣∣∣∣∣∣ ≤ ∞.�
10.2. Remark. The result was proven in [54] (Theorem 2.1) under the assumption that X has
a K-rational point (similar to a hypothesis of Frey), but Clark has shown that this hypothesis is
unnecessary, cf. [18], Theorem 5.

10.3. Remark. This result has now been improved into a quantitative statement over more general
fields by Cadoret and Tamagawa [12], as follows: recall that gonality may alternatively be defined
as the minimal d for which there exists a non-constant morphism from a P1 to the d-th symmetric
power X(d) of the curve X . Define the isogonality isogonK(X) of X as the minimal d for which
there exists a non-constant morphism from a K-isotrivial curve to the d-th symmetric power X(d)

of the curve X . Then the result from [12] says: for any finitely generated field K of positive
characteristic p > 0, and any smooth geometrically integral curve X over K, if d is a natural
number with 2d + 1 ≤ gonK(X) and d + 1 ≤ isogonK(X), then the set of points of degree ≤ d
on X is finite.

10.4. Remark. We will typically apply our bound in the following situation: let K be a finitely
generated field, and k the fraction field of an excellent discrete valuation ring, with K ⊆ k; for
example, K is a global function field and k = K∞ is the completion of K at a place ∞; then
gonK(X) = gonk(X), so the lower bound that we obtained for gonk(X) from the stable gonality
of its reduction graph applies equally well to gonK(X).

10.5. Remark. If X/K is a Mumford curve over a valued field k ⊇ K, then its Jacobian has split
reduction, and hence it admits no map to an isotrivial curve, and isogonK(X) = gonK(X).

Proposition 10.1 and our spectral bound on gonality now immediately imply the following gen-
eral finiteness result for points on curves whose degree is bounded in terms of spectral data associ-
ated to a special fiber:

10.6. Theorem (=Theorem F). Let X denote a curve over a global function field K, such that its
Jacobian does not admit a K-morphism to a curve defined over a finite field. Let K∞ denote the
completion of K at a place ∞, and let G denote the stable reduction graph of X/K∞. Let ∆
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denote the maximal vertex degree of G and λ the smallest non-zero eigenvalue of the Laplacian of
G. Then the set ⋃

[K′:K]≤λ(|G|−1)−4∆−4
2λ+8∆+8

X(K ′)

of rational points on X of degree at most λ(|G|−1)−4∆−4
2λ+8∆+8 is finite. �

10.7. Example. Consider the curve Xλ,r from Example 7.2, with λ = λ(T ) ∈ K := Fp(T ) of
negative degree in T . Observe that Xλ,r is a Mumford curve over k = Fp((T

−1)). Our gonality
bound from Example 7.2 implies for example that if pr > 14, then the set of points on Xλ,r of
degree ≤ pr/6 is finite. Note that the set of points of degree pr + 1 is infinite, so the result is best
up to a constant (for varying p and r).

11. Rational points of higher degree on Drinfeld modular curves: proof of Theorem G

We now further specialise the results to the case of Drinfeld modular curves:

11.1. Theorem (= Theorem G). If XΓ is defined over a finite extension KΓ of K, then the set⋃
[L:KΓ]≤ 1

2(cq,δ·[Γ(1):Γ]−1)

XΓ(L)

is finite.

Proof. The curvesXΓ are Mumford curves for the∞-valuation. Therefore, the conditions to apply
Proposition 10.1 are satisfied by X = XΓ and K = KΓ. �

11.2. Remark. Since Γ is a congruence group, the curve XΓ is covered by some X(Y, n), and
hence the curve XΓ is defined over H . Hence one may always choose KΓ = H , but KΓ might be
chosen smaller. Also, Drinfeld modular curves always have H-rational points, namely, the cusps,
so the refinement of result 10.1 by Clark is not necessary for this application.

We also deduce the following analogue of a result of Kamieny and Mazur [33]:

11.3. Corollary (= Theorem H). If p is a prime ideal in A, then the set of all rank two Drinfeld
A-modules defined over some field extension L of K that satisfies the degree bound

[LH : H] ≤ 1

2
cq,δ · | p |∞

that admit an L-rational p-isogeny is finite.

Proof. Recall that the schemeM0(p), coarsely representing this moduli problem, decomposes over
C∞ as

M0(p)(C∞) =
⊔

Y ∈Pic(A)

Γ0(Y, p)\Ω,

where the components are defined over H , and all components have H-rational points, namely, the
cusps.
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Now a rank-two A-Drinfeld module φ over a field L with an L-rational p-isogeny gives rise to
an L-rational point of M0(p), and hence to an HL-rational point [φ] ∈ X0(Y, p)(HL) for some Y .
Now the above theorem implies that ⋃

[HL:H]≤ 1
2

(gonH(X0(Y,p)−1)

X0(Y, p)(HL)

is finite. Now since by Theorem D,

gonH(X0(Y, p)) ≥ cq,δ[Γ(Y ) : Γ0(Y, p)],

and we have
[Γ(Y ) : Γ0(Y, p)] = | p |∞ + 1,

the result follows. �

11.4. Corollary (= Corollary I). Fix a prime p of A. There is a uniform bound on the size of the
p-primary torsion of any rank two A-Drinfeld module over L, where L ranges over all extensions
for which the degree [LH : H] is bounded by a given constant.

Proof. The method of proof is similar to the one in Kamieny-Mazur [33], as used in [54], Thm.
2.4: the moduli space M0(pe) has only finitely many LH-points as soon as

e ≥ logq(2[LH : H]/cq,δ)/ logq(| p |∞).

For each of the finitely many Drinfeld modules φ over LH corresponding to these points, Breuer
[11] has shown that the open adelic image result of Pink and Rütsche [49] implies that the p-
primary torsion φ[p∞] of φ is bounded by C[LH : H], where C depends on φ, K and p. One may
now maximize the bound as φ runs through these finitely many Drinfeld modules. Also, for any
Drinfeld module φ,

|φ[pe−1]| ≤ | p |2(e−1)
∞ .

The result follows. �

11.5. Remark. In general, [LH : H] is bounded from above by [L : K] (with equality if L and H
are linearly disjoint). This shows that a bound of the form [L : K] ≤ d implies a bound of the form
[LH : H] ≤ d. Hence the uniform boundedness conjecture for rank-two A-Drinfeld modules over
K [51] follows from the following statement: for fixed d, there are only finitely many p such that
there exists an L-rational p-torsion point on an A-Drinfeld module over L with [L : K] ≤ d.

Appendix A. Other notions of gonality from the literature

In this appendix, we describe various other notions of graph gonality from the literature, and
discuss the relation of stable gonality to these alternatives.

A.1. We first recall the notion of graph gonality from Caporaso [14], but we change the terminology
to be compatible with [4] and the current paper. For the convenience of the reader, we include a
dictionary between the terminology in [14] and this paper in Table 2.

A morphism between two loopless graphs G and G′ (denoted by ϕ : G→ G′) is a map

ϕ : V(G) ∪ E(G)→ V(G′) ∪ E(G′)
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such that ϕ(V(G)) ⊂ V(G′), and for every edge e ∈ E(x, y), either ϕ(e) ∈ E(ϕ(x), ϕ(y)) or
ϕ(e) ∈ V(G′) and ϕ(x) = ϕ(y) = ϕ(e); together with, for every e ∈ E(G), a non-negative
integer rϕ(e), the index of ϕ at e, such that rϕ(e) = 0 if and only if ϕ(e) ∈ V(G′).

Previously, in Definition 2.6, we only considered finite morphisms, which are morphisms that
map edges to edges. The notions of harmonicity and degree that we introduced in Definition
2.6 make sense for morphisms, even if they are not finite. A harmonic morphism is called non-
degenerate if mϕ(v) ≥ 1 for every v ∈ V(G) (this is automatic if it is finite).

Table 2. Small dictionary of terminology

Terminology in [14] Terminology in this paper

indexed morphism morphism

homomorphism finite morphism

stable refinement refinement

pseudo-harmonic harmonic

A.2. The gonality of a graph is defined to be

gon(G) = min{degϕ|ϕ a non-degenerate harmonic morphism from G to a tree T}.
Caporaso proves that the gonality of a complex nodal curve is bounded below by the gonality of
any refinement of its intersection dual graph.

A.3. Lemma. The stable gonality of a graph G is equal to the minimum of the gonalities of all its
refinements:

sgon(G) = min{gon(G′)|G′ is a refinement of G}.

Proof. It suffices to prove that any non-degenerate harmonic morphism ϕ : G→ T from a graphG
to a tree T admits a refinement ϕ′ : G′ → T ′ that is a finite harmonic morphism of the same degree
as ϕ. Thus, let e = (v1, v2) ∈ G denote an edge that is mapped to a vertex ϕ(e) = x ∈ V(T ). Add
an extra leaf ` to T at x , subdivide e into two edges (v1,m) and (m, v2), and map both e1 and e2

to `. Set rϕ′(ei) = mϕ(vi) for i = 1, 2. Finally, add a leaf `w to all w ∈ ϕ−1(x), map them all to
`, and set rϕ′(`w) = mϕ(w). �

The following elementary fact, a “trivial” spectral bound on the gonality, does not seem to have
been observed before:

A.4. Proposition. The gonality of a graph G is bounded below by the edge-connectivity (viz., the
number of edges that need to be removed from the graph in order to disconnect it):

gon(G) ≥ η(G).

If G is a simple graph (i.e., without multiple edges), unequal to a complete graph, then

gon(G) ≥ λG.



A COMBINATORIAL LI–YAU INEQUALITY AND RATIONAL POINTS ON CURVES 41

Proof. Let ϕ : G→ T denote a harmonic non-degenerate morphism. Choose any edge e ∈ E(T ).
Since removing e from T disconnects it, ϕ−1(e) is a set of edges of G whose removal disconnects
G. Hence

gon(G) ≥ |ϕ−1(e)| ≥ η(G).

For a simple graph which is not complete, the bound

η(G) ≥ λG
is one of the inequalities of Fiedler [27] (4.1 & 4.2). �

A.5. Remark. The “trivial” spectral bound in the above proposition is not very useful in practice,
since it does not contain a “volume” term (like the Li–Yau inequality). Also, since every graph
acquires edge connectivity two or one by refinements, the lower bound in the proposition trivializes
under refinements (which are required by the reduction theory of morphisms).

A.6 (Relation with divisorial gonality). Another notion of gonality of graphs G and, more gener-
ally, of metric graphs Γ was introduced by Baker in [7], defined as the minimal degree d for which
there is a g1

d on Γ (in analogy to the definition from algebraic geometry). Following Caporaso,
we call this gonality of graphs divisorial gonality. In [13], Caporaso has proven a Brill–Noether
upper bound for divisorial gonality. For a fixed unmetrized graph, the relation between gonality
and divisorial gonality is studied in [14], especially Examples 2.18, 2.19 and Corollary 3.2.

Since the reduction of a stable curve is naturally a metric graph (cf. [7]), one should not ignore
the metric in connection with gonality of curves. Baker has proven that the gonality of a curve X
is larger than or equal to the divisorial gonality of its metric reduction graph ([7], Cor. 3.2).

Also, the stable gonality of a graph is larger than or equal to its stable divisorial gonality (i.e.,
the minimum of the divisorial gonality of all refinements).

The banana graph Bn has divisorial and stable gonality 2 but edge connectivity n (cf. Table
3), showing that an equality analogous to the one in Proposition A.4 cannot hold for divisorial or
stable gonality. Dion Gijswijt remarked that dgon(G) ≥ min{|G|, η(G)}. With Josse van Dobben
de Bruyn, he has also proven that the divisorial gonality of a graph is larger than or equal to its
treewidth (unpublished, but some preliminaries can be found in [59]), but the entries in Table 3
show that the inequality can be strict. Lower bounds on treewidth imply such bounds on divisorial
gonality (e.g., [9], [57]).

A.7. It seems that our notion of stable gonality of a graph coincides with the notion of gonality
introduced in [4] from the viewpoint of tropical geometry. The connection between tropical curves
and metric graphs can already be found in Mikhalkin [40], and the notion of harmonic morphism
of metric graphs in Anand [5].

A.8. We have collected some sample values in Table 3. As above, λG is the first eigenvalue of LG,
and λ∼G is the first eigenvalue of the normalized Laplacian L∼G; η(G) is the edge connectivity, ∆G

the maximal vertex degree, vol(G) is the volume of the graph, tw(G) its treewidth; gon(G) is the
gonality, dgon(G) is the divisorial gonality, and sgon(G) is the stable gonality of G. We leave out
the lengthy but elementary calculations (for the divisorial gonality of Kn, we refer to [7], 3.3).



42 G. CORNELISSEN, F. KATO, AND J. KOOL

References
1. Shreeram Abhyankar, On the ramification of algebraic functions, Amer. J. Math. 77 (1955), 575–592.
2. Dan Abramovich, A linear lower bound on the gonality of modular curves, Internat. Math. Res. Notices (1996),

no. 20, 1005–1011.
3. Dan Abramovich and Joe Harris, Abelian varieties and curves in Wd(C), Compositio Math. 78 (1991), no. 2,

227–238.
4. Omid Amini, Matthew Baker, Erwan Brugallé and Joseph Rabinoff, Lifting harmonic morphisms of tropical curves,

metrized complexes, and Berkovich skeleta, preprint arxiv:1303.4812 (2013).
5. Christopher Kumar Anand, Harmonic morphisms of metric graphs, in: Harmonic morphisms, harmonic maps, and

related topics (Brest, 1997), pp. 109–112, Chapman & Hall/CRC Res. Notes Math., vol. 413, Boca Raton, FL, 2000.
6. Cécile Armana, Torsion des modules de Drinfeld de rang 2 et formes modulaires de Drinfeld, Alg. & Numb. Th. 6

(2012), 1239–1288.
7. Matthew Baker, Specialization of linear systems from curves to graphs, Algebra Number Theory 2 (2008), no. 6,

613–653, With an appendix by Brian Conrad.
8. Matthew Baker and Serguei Norine, Harmonic morphisms and hyperelliptic graphs, Int. Math. Res. Not. IMRN

(2009), no. 15, 2914–2955.
9. Hans L. Bodlaender and Arie M.C.A. Koster, Treewidth computations II. Lower bounds, Information and Compu-

tation 209 (2011) 1103–1119.
10. Béla Bollobás, Random graphs, second ed., Cambridge Stud. in Adv. Math., vol. 73, Cambridge University Press,

Cambridge, 2001.
11. Florian Breuer, Torsion bounds for elliptic curves and Drinfeld modules, J. Number Theory 130 (2010), no. 5,

1241–1250.
12. Anna Cadoret and Akio Tamagawa, Points of bounded degree on curves in positive characteristic, manuscript, 2013.
13. Lucia Caporaso, Algebraic and combinatorial Brill-Noether theory, Compact moduli spaces and vector bundles,

Contemp. Math., vol. 564, Amer. Math. Soc., Providence, RI, 2012, pp. 69–85.
14. Lucia Caporaso, Gonality of algebraic curves and graphs, Algebraic and Complex Geometry, Springer Proceedings

in Mathematics & Statistics, vol. 71, Springer Verlag, 2014, pp. 73–103.
15. Lisa Carbone, Leigh Cobbs, and Scott H. Murray, Fundamental domains for congruence subgroups of SL2 in

positive characteristic, J. Algebra 325 (2011), 431–439.
16. Fan R. K. Chung, Spectral graph theory, CBMS Regional Conf. Series in Math., vol. 92, Published for CBMS,

Washington, DC, 1997.
17. Fan Chung, Linyuan Lu and Van Vu, The spectra of random graphs with given expected degrees, Internet Math. 1

(2004), no. 3, 257–275.
18. Pete L. Clark, On the Hasse principle for Shimura curves, Israel J. Math. 171 (2009), 349–365.
19. Alina Carmen Cojocaru and Ernst Kani, The modular degree and the congruence number of a weight 2 cusp form,

Acta Arith. 114 (2004), no. 2, 159–167.
20. Robert F. Coleman, Stable maps of curves, Doc. Math. (2003), 217–225, Extra Vol. (Kazuya Kato’s fiftieth birthday).
21. Gunther Cornelissen, Fumiharu Kato, and Aristides Kontogeorgis, The relation between rigid-analytic and alge-

braic deformation parameters for Artin-Schreier-Mumford curves, Israel J. Math. 180 (2010), 345–370.
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26. P. Erdős and A. Rényi, On random graphs. I, Publ. Math. Debrecen 6 (1959), 290–297.
27. Miroslav Fiedler, Algebraic connectivity of graphs, Czechoslovak Math. J. 23(98) (1973), 298–305.
28. Gerhard Frey, Curves with infinitely many points of fixed degree, Israel J. Math. 85 (1994), no. 1-3, 79–83.



A COMBINATORIAL LI–YAU INEQUALITY AND RATIONAL POINTS ON CURVES 43

29. Ernst-Ulrich Gekeler, Drinfeld modular curves, Lecture Notes in Mathematics, vol. 1231, Springer-Verlag, Berlin,
1986.

30. Ernst-Ulrich Gekeler, Analytical construction of Weil curves over function fields, J. Théor. Nombres Bordeaux 7
(1995), no. 1, 27–49.

31. Ernst-Ulrich Gekeler and Udo Nonnengardt, Fundamental domains of some arithmetic groups over function fields,
Internat. J. Math. 6 (1995), no. 5, 689–708.

32. Ernst-Ulrich Gekeler and Marc Reversat, Jacobians of Drinfeld modular curves, J. Reine Angew. Math. 476 (1996),
27–93.

33. Sheldon Kamienny and Barry Mazur, Rational torsion of prime order in elliptic curves over number fields,
Astérisque (1995), no. 228, 3, 81–100.

34. Henry H. Kim and Peter Sarnak, Refined estimates towards the Ramanujan and Selberg conjectures, Appendix 2 to:
Henry H. Kim, Functoriality for the exterior square of GL4 and the symmetric fourth of GL2, J. Amer. Math. Soc.
16 (2003), no. 1, 139–183.

35. Steven L. Kleiman and Dan Laksov, On the existence of special divisors, Amer. J. Math. 94 (1972), 431–436.
36. Peter Li and Shing Tung Yau, A new conformal invariant and its applications to the Willmore conjecture and the

first eigenvalue of compact surfaces, Invent. Math. 69 (1982), no. 2, 269–291.
37. Qing Liu, Stable reduction of finite covers of curves, Compos. Math. 142 (2006), no. 1, 101–118.
38. Oliver Lorscheid, Graphs of Hecke operators, Algebra Number Theory 7 (2013), no. 1, 19–61.
39. Qing Liu and Dino Lorenzini, Models of curves and finite covers, Compositio Math. 118 (1999), no. 1, 61–102.
40. Grigory Mikhalkin, Tropical geometry and its applications, in: Proceedings International Congress of Mathemati-

cians, Vol. II, pp. 827–852, Eur. Math. Soc., Zürich, 2006.
41. Moshe Morgenstern, Ramanujan diagrams, SIAM J. Disc. Math. 7 (1994), no. 4, 560–570.
42. Moshe Morgenstern, Natural bounded concentrators, Combinatorica 15 (1995), no. 1, 111–122.
43. David Mumford, An analytic construction of degenerating curves over complete local rings, Compositio Math. 24

(1972), 129–174.
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Table 3. Some graphs and their invariants, including gonalities
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