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Abstract We present a method to control gonality of nonarchimedean curves based
on graph theory. Let k denote a complete nonarchimedean valued field. We first prove
a lower bound for the gonality of a curve over the algebraic closure of k in terms of
the minimal degree of a class of graph maps, namely: one should minimize over all
so-called finite harmonic graph morphisms to trees, that originate from any refinement
of the dual graph of the stable model of the curve. Next comes our main result: we
prove a lower bound for the degree of such a graph morphism in terms of the first
eigenvalue of the Laplacian and some “volume” of the original graph; this can be seen
as a substitute for graphs of the Li–Yau inequality from differential geometry, although
we also prove that the strict analogue of the original inequality fails for general graphs.
Finally, we apply the results to give a lower bound for the gonality of arbitrary Drinfeld
modular curves over finite fields and for general congruence subgroups Γ of Γ (1) that
is linear in the index [Γ (1) : Γ ], with a constant that only depends on the residue field
degree and the degree of the chosen “infinite” place. This is a function field analogue
of a theorem of Abramovich for classical modular curves. We present applications
to uniform boundedness of torsion of rank two Drinfeld modules that improve upon
existing results, and to lower bounds on the modular degree of certain elliptic curves
over function fields that solve a problem of Papikian.

G. Cornelissen (B)
Mathematisch Instituut, Universiteit Utrecht, Postbus 80.010, 3508 TA Utrecht, The Netherlands
e-mail: g.cornelissen@uu.nl

F. Kato
Department of Mathematics, Kumamoto University, Kurokami, Kumamoto 860-8555, Japan
e-mail: kato@sci.kumamoto-u.ac.jp

J. Kool
Max-Planck-Institut für Mathematik, Postfach 7280, 53072 Bonn, Deutschland
e-mail: kool79@mpim-bonn.mpg.de

123



G. Cornelissen et al.

Mathematics Subject Classification (2000) 05C50 · 11G09 · 11G18 · 11G30 ·
14G05 · 14G22 · 14H51

1 Introduction

The gonality gonk(X) of a smooth projective curve X over a field k is defined as the
minimal degree of a non-constant morphism from X to the projective line P1

k . If k = C
is the complex numbers, X can be considered as a compact Riemann surface, and Li
and Yau [37] have established a lower bound on the gonality of X over C in terms of
of the hyperbolic volume and the first eigenvalue of the Laplacian of X . Such a bound
has numerous applications, of which we mention one: Abramovich [2] has combined
it with a lower bound on the eigenvalue arising from the theory of automorphic forms
(of which the currently sharpest value was given by Kim and Sarnak [35]) to prove a
lower bound on the gonality of modular curves for congruence groups that is linear in
the genus of the curves (or, what is the same, linear in the index of the group in the full
modular group). In this paper, we study a nonarchimedean analogue of these results.

The first result is an inequality between the (geometric) gonality gonk(X) of a curve
X defined over a complete nonarchimedean valued field k and the “gonality” of the
reduction graphs of suitable models of the curve. There are various complications,
such as to establish a good theory for the reduction of a covering map X → P1. Such
a map extends to the stable model, but not necessarily as a finite morphism. This can
be remedied by choosing suitable semi-stable models. The problem was studied by
Liu and Lorenzini [40], Coleman [21] and Liu [38], and more recently in [4,5]. In
Sect. 2, we provide another (similar) solution, directly adapted to the applications that
we have in mind.

Next, we relate the gonality of the special fiber to what we call the stable gonality
of the intersection dual graph. For standard graph terminology, we refer to Sect. 3. We
also need the notion of an (indexed) finite harmonic graph morphism, for which we
refer to Definition 3.6. Given a graph G, then another graph G ′ is called a refinement
of G if it can be obtained from G by finitely often performing the two following
operations: (a) subdivision of an edge; (b) addition of a leaf, i.e., the addition of an
extra vertex and an edge between this vertex and a vertex of the already existing graph.
The stable gonality of G, denoted sgon(G), is defined as the minimal degree of a finite
harmonic morphism from any refinement of G to a tree. This relates to, but is different
from previous notions of gonality for graphs as introduced by Baker and Norine [9],
and Caporaso [15] (cf. Appendix A for a discussion of these different notions and how
they relate to stable gonality).

Theorem A (=Corollary 4.5) Let X be a geometrically connected projective smooth
curve over a complete nonarchimedean valued k with valuation ring R, and X the
stable R-model of X. Let k be an algebraic closure of k. Let Δ(X0) denote the
intersection dual graph of the special fiber X0. Then we have

gonk(X) ≥ sgon(Δ(X0)).

Two examples (3.9 and 3.10) illustrate that both refinements operation are necessary.
First, the “banana graph” Bn given by two vertices joined by n > 1 distinct edges has
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stable gonality 2, although the minimal degree of a finite harmonic graph morphism
from Bn itself (without any refinement) to a tree is n. Secondly, the minimal degree
of a finite harmonic graph morphism from any subdivision of the complete graph K4
to a tree is 4. However, by adding leaves, the stable gonality can be shown to be 3.

We then prove an analogue for graphs of the upper bound on gonality from Brill-
Noether theory for the gonality of curves over arbitrary fields (in this generality a
theorem of Kleiman–Laksov [36]):

Theorem B (=Theorem 5.7) For any graph G with first Betti number g ≥ 2, we have
an upper bound

sgon(G) ≤
⌊

g + 3

2

⌋
.

The main result is a spectral lower bound for the stable gonality of a graph. Let λG

denote the first non-trivial (i.e., smallest non-zero) eigenvalue of the Laplacian LG of
G, and let

ΔG := max{deg(v) : v ∈ V (G)}

denote the maximal vertex degree of G. Finally, let |G| denote the number of vertices
of G. Then we have

Theorem C (=Corollary 6.10) The stable gonality of a graph G satisfies

sgon(G) ≥
⌈

λG

λG + 4(ΔG + 1)
|G|
⌉

.

An attractive feature of the formula is that the lower bound depends on spectral
data for the original graph, not on all possible refinements of the graph. Also, in the
bound, one may replace (λG,ΔG , |G|) by the corresponding data (λG ′ ,ΔG ′ , |G ′|) of
any refinement G ′ of the graph G.

A similar result can be proven using the normalized graph Laplacian, replacing |G|
by the “volume” of the graph, cf. Theorem 8.7.

The result can be seen as an analogue of the Li–Yau inequality in differential
geometry [37], which states that the gonality gon(X) of a compact Riemann surface
X (minimal degree of a conformal mapping from X to the Riemann sphere) is bounded
below by

gon(X) ≥ 1

8π
λX vol(X),

where λX is the first non-trivial eigenvalue of the Laplace-Beltrami operator of X , and
vol(X) denotes the volume of X . In Remark 8.4, we will show that the strict graph
theory analog of such a formula fails.

We then apply the two theorems above to Drinfeld modular curves over a general
global function field K over a finite field with q elements, and we find the positive
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characteristic analogue of Abramovich’s result. In the applications, we will write | n |∞
for the valuation corresponding to a fixed “infinite” place ∞ of degree δ of K , we
denote by A the subring of K of elements that are regular outside ∞, and we let Y
denote a rank-two A-lattice in the completion K∞ of K at∞. Up to equivalence, such
lattices correspond to elements of Pic(A). Let H denote the maximal abelian extension
of K inside k = K∞; then Gal(H/K ) ∼= Pic(A). In the “standard” example where
K = Fq(T ) is the function field of P1 and∞ = T−1, Y = A⊕A is unique up to equiv-
alence, and H = K . Congruence subgroups Γ of Γ (Y ) := GL(Y ) (i.e., containing
ker(Γ (Y ) → GL(Y/ n Y )) for some non-trivial ideal n of A) act by fractional linear
transformations on the Drinfeld “upper half plane” Ω , and the quotient analytic space
can be compactified into a smooth projective curve XΓ by adding finitely many cusps.

Theorem D (=Theorem 9.4) Let Γ denote a congruence subgroup of Γ (Y ). Then the
gonality of the corresponding Drinfeld modular curve XΓ satisfies

gonK (XΓ ) ≥ cq,δ · [Γ (Y ) : Γ ]

where the constant cq,δ is

cq,δ := qδ − 2
√

qδ

5qδ − 2
√

qδ + 8
· 1

q(q2 − 1)

This implies a linear lower bound in the genus of modular curves of the form

gonK (XΓ ) ≥ c′K ,δ · (g(XΓ )− 1),

where c′K ,δ is a bound that depends only on the function field K and the degree δ of
∞. If K is a rational function field and δ = 1, then we can put c′K ,δ = 2cq,1.

In the proof, we use the structure of the reduction graph of the principal modular
curve of level n (or rather, its components X (Y, n) indexed by Y running through
classes in Pic(A)). Also used in the proof is a bound of the Laplace eigenvalue for this
graph that follows from the Ramanujan conjecture, proven by Drinfeld (in combination
with the Courant–Weyl inequalities). The proof of the genus bound is not entirely
automatic, due to possible wild ramification. The constant cq,δ is probably not optimal,
and it would be interesting to know whether it can be replaced by an absolute constant,
or at least a constant depending on q, but tending to an absolute non-zero constant as q
increases. Also notice that the bound is vacuous (since a negative number) if qδ < 4,
and that the general upper bound (g + 3)/2 implies that any suitable constant c′K ,δ

should be smaller than 5/2.
All previously known results on gonality of Drinfeld modular curves used point

counting arguments modulo primes, rather than the above “geometric analysis”
method. The best previously known bounds, due to Schweizer [56, Thm. 2.4] are
not linear in the index and are established for a rational function field K = Fq(T )

only. An extra asset of the new method is that it works without much extra effort for
a general function field K , rather than just a rational function field.
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A first application arises from the modularity of elliptic curves over function fields.
Recall that any elliptic curve E/K with split multiplicative reduction at the infinite
place ∞ admits a modular parametrization φ : X0(Y, n) → E (see [33]) for some
suitable Drinfeld modular curve X0(Y, n). This parametrization is defined over H .

Theorem E (=Corollary 10.6) Let E/K denote an elliptic curve with split multi-
plicative reduction at the place∞, of conductor n ·∞. Then the degree of a modular
parametrization φ : X0(Y, n)→ E is bounded below by

deg φ ≥ 1

2
cq,δ[Γ (1) : Γ0(Y, n)].

In particular, we have

deg φ 
q,δ | n |∞.

As usual, X 
y Z means that there exists a constant Cy depending only on y such
that X ≥ Cy Z .

For K = Fq(T ) a rational function field, the final statement of the theorem confirms
a conjecture of Papikian [47], who had proven (using Spziro’s conjecture for function
fields and estimating symmetric square L-functions by the Ramanujan conjecture)
that

degns( jE ) · deg φ 
q,ε | n |1−ε∞ ,

where jE is the j-invariant of E and degns( jE ) is its inseparability degree. Actually,
since he and Pál have also proven an upper bound we conclude that if E is a strong
Weil curve over Fq(T ) with square-free conductor, then

| n |∞ �q deg φ �q,ε | n |2+ε∞

for any ε > 0; cf. Remark 10.8 for a more precise upper bound, and a discussion of
the rôle of the Manin constant of E . Contrary to the case of elliptic curves over Q,
Gekeler has proven that the modular degree always equals the congruence number
of the associated automorphic form [20,31]. Hence these results also hold for the
congruence number.

We then give applications to rational points of bounded degree on general curves
over function fields. In its general form, the theorem gives a finiteness result for points
whose degree is bounded above by “spectral” data associated to the combinatorics of
a special fiber:

Theorem F (=Theorem 11.6) Let X denote a curve over a global function field K ,
such that its Jacobian does not admit a K -morphism to a curve defined over a finite
field. Let K∞ denote the completion of K at a place ∞, and let G denote the stable
reduction graph of X/K∞. Let Δ denote the maximal vertex degree of G, |G| the
number of vertices of G and λ the smallest non-zero eigenvalue of the Laplacian of
G. Then the set
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⋃
[K ′:K ]≤ λ(|G|−1)−4Δ−4

2λ+8Δ+8

X (K ′)

of rational points on X of degree at most λ(|G|−1)−4Δ−4
2λ+8Δ+8 is finite.

This applies in particular to various modular curves, as follows.

Theorem G (=Theorem 12.1) With the same notations as in Theorem D, if XΓ is
defined over a finite extension KΓ of K , then the set

⋃
[L:KΓ ]≤ 1

2 (cq,δ ·[Γ (1):Γ ]−1)

XΓ (L)

is finite.

Applications to uniform bounds on isogenies and torsion points follow by applying
an analogue of a method of Abramovich and Harris [3] and Frey [29]. Recall that H
is the maximal abelian extension of K inside K∞.

Corollary H (=Corollary 12.3) If p is a prime ideal in A, then the set of all rank two
Drinfeld A-modules defined over some field extension L of K that satisfies the degree
bound

[L H : H ] ≤ 1

2
cq,δ · | p |∞

that admit an L-rational p-isogeny is finite.

We also deduce the following analogue of a result of Kamieny and Mazur [34]:

Corollary I (=Corollary 12.4) Fix a prime p of A. There is a uniform bound on the size
of the p-primary torsion of any rank two A-Drinfeld module over L, where L ranges
over all extensions for which the degree [L H : H ] is bounded by a given constant.

This implies that the uniform boundedness conjecture for rank-two A-Drinfeld
modules over K follows from the following statement: for fixed d, there are only
finitely many p such that there exists an L-rational p-torsion point on an A-Drinfeld
module over L with [L : K ] ≤ d.

For a rational function field K = Fq(T ), the above two corollaries were proven by
Schweizer [55]. The finite bound from these two results is not effective in the number
of rational points. For effective results on the number of points of low degree on
some Drinfeld modular curves, see for example Armana [7]. No analogue of Merel’s
theorem (uniform boundedness of torsion) is currently known for rank-two Drinfeld
modules (compare also Poonen [51]).

As a final remark, there has recently been a surge in the use of gonality and graph
theory in arithmetic, but mainly in characteristic zero; for example in the work of
Ellenberg, Hall and Kowalski on generic large Galois image, coupling gonality to
expander properties of Cayley graphs embedded in Riemann surfaces [26]. Also in our
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applications, in a rather different way, the graph expansion properties of the reduction
graphs of Drinfeld modular curves seem to intervene in a crucial way in establishing
interesting lower bound for their gonality (originally, over rational function fields, we
deduced the bounds from natural bounded concentrator properties of subgraphs, as
in the work of Morgenstern [43]). More generally, the stable gonality in a family of
Ramanujan graphs with fixed regularity is bounded below linearly in the number of
vertices (cf. Remark 8.3).

2 Extension of covering maps

2.1. Let k denote a complete nonarchimedean valued field with valuation ring R with
uniformizer π and residue field of characteristic p ≥ 0. For any R-scheme X we
denote by Xη (respectively X0) the generic fiber (respectively the closed fiber). We
denote by Xsing the singular locus of X .

2.2. Let X be a geometrically connected projective smooth curve over k. An R-model
of X is a pair X = (X , φ) consisting of an integral normal scheme X that is
projective and flat over R and a k-isomorphism φ : Xη

∼→ X . An R-model X of X
is said to be semi-stable if its special fiber X0 is reduced with only ordinary double
points as singularities. Such a model is called stable if any irreducible component
of the special fiber has a finite automorphism group as a marked curve, where the
marking is given by its intersection points with other components.

2.3. As was shown by Liu and Lorenzini in [40], every finite morphism f : X → Y
between geometrically connected projective smooth curves over k extends to a mor-
phism between the stable models of X and Y , but the resulting map is not necessarily
finite. (Similar problems were already encountered and studied by Abhyankar in [1].)
However, there exists a semi-stable model admitting an extension of the map that is
a finite morphism, as was shown by Coleman [21] and Liu [38]. We need a slightly
different statement, that we prove along similar lines as Liu:

Theorem 2.4 Let f : X → Y be a finite morphism between geometrically connected
projective smooth curves over k, and X an R-model of X. Then there exist a finite
separable field extension k′/k, semi-stable R′-models X ′ and Y ′ of Xk′ and Yk′ ,
respectively, over the integral closure R′ of R in k′, and an R′-morphism ϕ : X ′ → Y ′
such that the following conditions are satisfied:
(a) X ′ dominates XR′ ;
(b) ϕ is finite, surjective, and extends fk′ ;
(c) the induced morphism ϕ0 : X ′

0 → Y ′
0 satisfies ϕ−1

0 ((Y ′
0 )sing) = (X ′

0 )sing.

Proof The proof is a slight modification of the proof of Proposition 3.8 in [38]. We
first prove the theorem in the special case where f is a finite Galois covering. Let G be
the Galois group of f . Then, replacing k by a finite separable extension if necessary,
X has a semi-stable model X ′′ that dominates X and admits an extension of the G-
action (see Corollary 2.5 in [38]). We want to modify this to a semi-stable model with
inversion-free action, as follows. Suppose an element σ ∈ G of order two interchanges
two components C1 and C2 (possibly C1 = C2) intersecting at a node u. Then we
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blow-up X ′′ at the closed point u; we do this at all such nodes. The exceptional curves
have multiplicity two. Then we replace k by a ramified quadratic extension k′, and take
the normalization to obtain a model X ′ of Xk′ ; it is clear that the G-action extends
to X ′. The quotient Y ′ = X ′/G is a semi-stable model of Yk′ (see Proposition 1.6
in [40]), and the quotient map ϕ : X ′ → Y ′ has the desired properties; we postpone
the verification of property (c).

Next, we treat the case where f is separable. Let X̃ denote the Galois closure of
f : X → Y . Then, replacing k by a finite separable extension if necessary, we may
assume that X̃ is smooth over k. As in the proof of Proposition 3.8 in [38], replacing k
furthermore by a finite separable extension if necessary, one has a semi-stable model
X̃ of X̃ that dominates X and admits an extension of the action of G = Gal(X̃/Y ).
As in the first part, we modify X̃ to an inversion-free semi-stable model X̃ ′ (after
replacing K by a finite separable extension). Then the obvious map

ϕ : X ′ = X̃ ′/H → Y ′ = X̃ ′/G,

where H = Gal(X̃/X), gives the desired model of f , as we will see soon below.
In general, we decompose f into a finite separable X → Z followed by a purely

inseparable Frobenius map Z → Y ∼= Z (pr )(see Proposition 3.5 in [38]). The first
part X → Z of the decomposition has an R′-model X ′ → Z ′ obtained as above.
Setting Y ′ = Z ′(pr ), we find that the composite map

ϕ : X ′ → Z ′ → Y ′

gives the answer.
The R′-morphism ϕ : X ′ → Y ′ thus obtained has properties (a) and (b). In order

to show that (c) holds, it suffices to show that neither of the following two situations
occurs:

(i) there exists a double point u of X ′
0 that is mapped to a smooth point of Y ′

0 ;
(ii) there exists a smooth point u of X ′

0 that is mapped to a double point of Y ′
0 .

One can see from the construction (due to the ‘inversion-free’ nature) above that the
situation (i) does not occur. Finally, situation (ii) is also excluded due to Proposition
1.6 in [40]. �


3 Graphs and their stable gonality

3.1. Let G be a connected finite graph. In this paper, a graph can have multiple edges
(this is sometimes called a “multigraph”, but we will not use this terminology). We
denote the sets of vertices and edges by V = V(G) and E = E(G), respectively. We
denote by |G| the cardinality |V(G)| of the vertex set. By E(x, y) we denote the set
of edges connecting two vertices x, y ∈ V(G), and more generally, for two subsets
A, B ⊆ V, we denote by E(A, B) the set of edges in G that connect elements from A
to elements from B:
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E(A, B) =
⋃

x∈A∧y∈B

E(x, y).

Our graphs are, unless clearly indicated, undirected, i.e., E(x, y) = E(y, x). In case
we have an oriented edge we will write (x, y) for an edge with source x and target y.
The set of edges incident to a given vertex x is denoted by Ex . The number of edges in
Ex , where, as usual, edges in E(x, x) (viz., loops) are counted with multiplicity two,
is called the degree or valency of x , and is written dx . A graph is called k-regular if
dx = k for all x ∈ V. A graph is called loopless if |E(x, x)| = 0 for all x ∈ V . Two
vertices x, y are called adjacent if |E(x, y)| ≥ 1, and we denote it by x ∼ y. For a
subset S ⊂ V the volume is defined to be

vol(S) =
∑
v∈S

dv.

In particular, vol(G) = 2 · |E |.
Another important invariant of a graphs is the genus, by which we mean the first

Betti number g(G) = |E | − |V | + 1. Note that this differs from another convention
in graph theory in which “genus” means the minimal genus of a Riemann surface in
which the graph can be embedded without self-intersection. A graph of genus 0 is
called a tree.

Functions f : V → R, are simply called “functions on G”. These form a finite
dimensional vector space, equipped with the standard inner product

〈 f, g〉 =
∑

v∈V(G)

f (v)g(v).

3.2. Denote by A = AG the adjacency matrix of a connected graph G (of which the
(x, y)-entry is |E(x, y)|) and by D = DG the diagonal matrix with the degrees of the
vertices on the diagonal. Then the Laplace operator is defined by L = LG = D − A.

For any graph, LG is a real symmetric positive-semidefinite matrix, and therefore
has non-negative real eigenvalues. The function 1, defined as being identically equal
to 1 on V, is an eigenfunction of LG with eigenvalue 0. The other eigenvalues are
positive. We order the eigenvalues

0 = λ0 < λ1 ≤ λ2... ≤ λn−1,

where n is the number of vertices of the graph. It is the first non-zero eigenvalue which
is important for us; we denote it by λG := λ1.

3.3. Sometimes, one uses the normalized Laplacian of G, defined as

L∼G = D−1/2
G LG D−1/2

G

weighted by vertex degrees (compare Chung [17]).
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Definition 3.4 A graph G is called stable if all vertices have degree at least 3. A graph
G ′ is called a refinement of G if it can be obtained from G by performing subsequently
finitely many times one of the two following operations:

1. subdivision of an edge,
2. addition of a leaf, i.e., the addition of an extra vertex and an edge between this

vertex and a vertex of the already existing graph.

Remark 3.5 One of the main tools in this paper is the notion of harmonic morphisms of
graphs as developed by Urakawa [59] and Baker and Norine [9], and later generalized
to harmonic indexed morphisms by Caporaso [15]. We will use a terminology that
is compatible with that of [4,5], and different from [15], and we will only consider
“unweighted” graphs in the sense of [15]. In the appendix, we will discuss the relations
between different notions of gonality for graphs.

Definition 3.6 Let G, G ′ be two loopless graphs.

1. A finite morphism between G and G ′ (denoted by ϕ : G → G ′) is a map

ϕ : V(G) ∪ E(G)→ V(G ′) ∪ E(G ′)

such that ϕ(V(G)) ⊂ V(G ′) and for every e ∈ E(x, y), we have that ϕ(e) ∈
E(ϕ(x), ϕ(y)). This comes together with, for every e ∈ E(G), a positive integer
rϕ(e), the index of ϕ at e.

2. A finite morphism is called harmonic if for every v ∈ V(G) there exists a well-
defined number, mϕ(v), such that for every e′ ∈ Eϕ(v)(G ′) we have

mϕ(v) =
∑

e∈Ev,ϕ(e)=e′
rϕ(e).

This does not make sense if Eϕ(v)(G ′) = ∅, but then we postulate that mϕ(v) can
be chosen to be any positive integer.

3. For a finite harmonic morphism the following number, which is called the degree
of ϕ, is independent of v′ ∈ V(G ′) or e′ ∈ E(G ′) [9, Lemma 2.3]:

deg ϕ =
∑

v∈ϕ−1(v′)
mϕ(v) =

∑
e∈ϕ−1(e′)

rϕ(e).

From the perspective of this paper, it is natural to define the following notion of
gonality (this is different from existing notions of gonality, but we will discuss these
in the Appendix).

Definition 3.7 A graph G is called stably d-gonal if it has a refinement that allows
a degree d finite harmonic morphism to a tree. The stable gonality of a graph G is
defined to be

sgon(G) = min{deg ϕ |ϕ : G ′ → T }

with G ′ a refinement of G and ϕ a finite harmonic morphism to a tree T .
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Fig. 1 A banana graph Bn with
a finite harmonic morphism of
(minimal) degree n, and its
subdivision, with a finite
harmonic morphism of degree 2
(all indices are 1)

Remark 3.8 Although here, finite harmonic morphisms are defined only for loopless
graphs, stable gonality is defined for all graphs, as loops can be “refined away” by
subdividing the loop edges. Alternatively, one may extend the definition of “harmonic”
to graphs with loops, as in [4,5].

Example 3.9 The “banana graph” Bn (see Fig. 1) given by two vertices joined by
n > 1 distinct edges is the intersection dual graph of two rational curves intersecting
in n points. The minimal degree of a finite harmonic morphism from Bn to a tree is
n. However, if we subdivide each edge once, the resulting graph admits such a finite
harmonic morphism of degree 2 to a tree, which is a vertex with n edges sticking out
(by identifying the two original vertices). Hence the banana graph has stable gonality
equal to 2. This is compatible with the fact that the banana graph can be the intersection
dual graph of both hyperelliptic and non-hyperelliptic (if n > 3) curves, and these are
not distinguished by all subdivisions of their reduction graph.

This example occurs in nature as the stable reduction of the modular curve X0(p)

over Qp, where n is then the number of supersingular elliptic curves modulo p. One
should observe [8, 3.6] that stable reduction graphs are naturally metric graphs, and as
such, the stable reduction graph of X0(p) is only equal to the (unit-length metrized)
banana graph for p = 1 mod 12 with n = (p − 1)/12.

Example 3.10 The minimal degree of a finite harmonic morphism from the complete
graph K4 to a tree is 4 (this can be checked by a somewhat tedious enumeration), but
by adding leaves, such a morphism of degree 3 can be constructed, see Fig. 2.

4 Comparing curve gonality and graph gonality: proof of Theorem A

4.1. Let X and Y be R-models of geometrically connected projective smooth curves
over k, and ϕ : X → Y an R-morphism. Let us say ϕ is inversion-free semi-stable
if the following conditions are satisfied:

(a) X and Y are semi-stable;
(b) ϕ is finite and surjective;
(c) ϕ−1

0 ((Y0)sing) = (X0)sing.

Theorem 2.4 says that any finite cover f : X → Y between geometrically connected
projective smooth curves over k admits, after replacing k by a finite separable exten-
sion, an inversion-free semi-stable model f ; moreover, given an arbitrary R-model
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Fig. 2 A subdivision of K4 with a finite harmonic morphism of degree 4, and a refinement (with leaves)
of K4 with a finite harmonic morphism of degree 3 (all indices are 1)

X of X , we can take such an R-model ϕ : X ′ → Y ′ of f such that X ′ dominates
X .

4.2. Let ϕ : X → Y be an inversion-free semi-stable model of f . Consider the
dual graphs Δ := Δ(X0) and Γ = Δ(Y0) of the special fibers of X0 and Y0,
respectively. The vertices of Δ (respectively Γ ) correspond to irreducible components
of X0 (respectively Y0), and two of them are connected by an edge if and only if they
intersect.

The morphism ϕ induces the following two set-theoretic maps:

– since ϕ is finite, it maps each component of X0 surjectively onto a component of
Y0; in particular, it induces a map V(Δ) → V(Γ ) between the sets of vertices of
the graphs;

– due to the condition (c) above, each double point of X0 is mapped to a double
point of Y0; that is, we have the map E(Δ)→ E(Γ ) between the sets of edges.

Thus we obtain a graph map φ : Δ −→ Γ.

4.3. We now assume that f is separable, and define the index rφ for such f . Let e ∈
E(Δ) be an edge with extremities v, v′ ∈ V(Δ). Let C, C ′ (respectively D, D′) be the
components of X0 (respectively Y0) corresponding to v, v′ (respectively φ(v), φ(v′)),

123



A combinatorial Li–Yau inequality and rational points on curves

respectively. The maps C → D and C ′ → D′ ramify at the intersection point u with
the same decomposition group; then define rφ(e) to be the order of this group. In this
way, φ becomes a finite morphism of graphs in the sense of Definition 3.6.

Proposition 4.4 For a separable f : X → Y that admits an inversion-free semi-
stable model ϕ : X → Y , the finite graph morphism φ : Δ → Γ constructed above
is harmonic of degree deg( f ) (in the sense of Definition 3.6).

Proof Let v ∈ V(Δ) be a vertex, and C (respectively D) the component of X0
(respectively Y0) corresponding to v (respectively φ(v)). Let mφ(v) be the degree of
the covering map C → D. Then for any edge e′ ∈ E(Γ ) emanating from φ(v), we
have

mφ(v) =
∑

φ(e)=e′
rφ(e),

and hence φ is harmonic of degree deg( f ). �

Corollary 4.5 (=Theorem A) Let X be a geometrically connected projective smooth
curve over k, and X the stable R-model of X, and let Δ(X0) denote the intersection
dual graph of the special fiber. Let k be an algebraic closure of k. Then we have

gonk(X) ≥ sgon(Δ(X0)).

Proof Gonality is the minimal degree of a map f : X → P1. Since we work over
an algebraically closed field, we can decompose such a map into a separable part
f : X → Z and a purely inseparable part Z → Z (pr ) ∼= P1. Since the genus is
preserved by the purely inseparable part, we find that Z ∼= P1, too, and hence the
separable part of a general map is a map of lower degree to P1. Hence we can restrict
to bounding the degree of a separable f .

The assertion now follows from Proposition 4.4 and the following auxiliary obser-
vations.

(1) By Theorem 2.4, for any given finite cover f : X → P1
k , replacing k by a finite

separable extension, one has an inversion-free semi-stable model ϕ : X ′ → P ′
of f such that X ′ dominates X . In particular, Δ(X ′

0 ) gives a graph that arises
from Δ(X0) by subdividing some edges (corresponding to blowing up nodes)
and/or adding some leaves (corresponding to blowing up smooth points)—this is
exactly the notion of refinement as we have defined it.

(2) By replacing the base field k by an arbitrary finite extension k′, the base-change
XR′ , where R′ is the integral closure of R in k′, is a semi-stable model of Xk′ (see
Section 1.5 in [40]), which obviously gives the same dual graph as Δ(X0). �


5 The Brill–Noether bound for stable gonality of graphs: proof of Theorem B

One can use this comparison theorem to prove the analog for stable gonality of graphs
of the upper bound for the gonality of curves given by Brill–Noether theory: a curve of
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genus g over an algebraically closed field has gonality bounded above by �(g+3)/2�;
this was proven in general by Kleiman and Laksov [36]. To prove this for graphs,
we first show that finite harmonic morphisms can be “refined”, in a sense to be made
precise.

Definition 5.1 For any two refinements G1 and G2 of a graph G let G1 ∨ G2 be the
set of all common refinements of G1 and G2.

Definition 5.2 A refinement G ′ of a graph G induces refinements of all of its sub-
graphs. If e ∈ E(v,w) is an edge in G that connect two vertices v,w ∈ V(G), denote
by [e] the subgraph of G consisting of the vertices v and w joined by the edge e.
Similarly, for a vertex v, we denote by [v] the subgraph which consists of v only.
Denote with G ′[x] the refinement of [x] in G ′, and for an edge e ∈ E(v,w) denote
with RG ′[e] the restricted refinement:

RG ′[e] = G ′[e] − (G ′[v] − [v])− (G ′[w] − [w]).

Definition 5.3 A refinement of a finite harmonic morphism ϕ : G → T is a finite
harmonic morphism

ϕ′ : G ′ → T ′

such that G ′ (respectively T ′) is a refinement of G (respectively T ), and such that

1. for all v ∈ V(G), ϕ′(v) = ϕ(v);
2. for any v,w ∈ V(G) and any edge e ∈ E(v,w), every refinement of [e] in G ′ is

mapped to the refinement of [ϕ(e)] in T ′, viz.,

ϕ(G ′[e]) = T ′[ϕ(e)];

3. for every e ∈ E(G) and for all e′ ∈ RG ′[e], the index rϕ′(e′) = rϕ(e).

It follows that deg ϕ = deg ϕ′.

Lemma 5.4 Let ϕ : G → T be a finite harmonic morphism. Then

(i) for any refinement T ′ of T , there exists a refinement ϕ′ : G ′ → T ′ of ϕ;
(ii) for any refinement H of G, there exists a refinement ϕ′ : G ′ → T ′ of ϕ such that

G ′ is a refinement of H.

Proof For part (i), use the following recipe:

1. replace every edge e in G by T ′[ϕ(e)];
2. put indices such that conditions (3) in Definition 5.3 is satisfied;
3. extend ϕ in the obvious way to a finite harmonic morphism.

For part (ii), first choose for every edge e0 in T an element in

∨
e∈ϕ−1(e0)

G ′([e]),
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Fig. 3 Left a morphism G → T ; middle a refinement H of G; right a refinement G′ → T ′ with G′ a
refinement of H (only indices > 1 are depicted)

and replace e0 by this common refinement. Call the resulting new graph T ′, and then
apply part (i). �

Example 5.5 In Fig. 3, one sees a finite harmonic morphism G → T on the left,
where all edges have index 1, except the indicated edge that has index two. The
middle picture is a refinement H of the original graph G, and the right hand picture
shows the refinement G ′ → T ′ as constructed in Lemma 5.4. Both morphisms have
degree 3.

Corollary 5.6 Call two graphs equivalent if they are refinements of the same stable
graph. This defines an equivalence relation on the set of all graphs of genus at least
2. The map sgon is defined on equivalence classes of graphs.

Proof Let G ′ be a refinement of G. It follows from the definition that

sgon(G ′) ≥ sgon(G).

Since refinement of morphisms preserves degree, the previous lemmas imply that the
other inequality sgon(G ′) ≤ sgon(G) also holds. �

Theorem 5.7 (=Theorem B) For any graph G of genus g ≥ 2, the Brill–Noether
bound holds:

sgon(G) ≤ �g + 3

2
�.

Proof Since sgon is defined on the equivalence classes of graphs it is sufficient to prove
the bound for one representative of each equivalence class. It is sufficient to show that
any stable graph G of genus g ≥ 2 admits a refinement G ′ such that there exists a
curve X such that G ′ is the dual graph of the minimal model of X . Indeed, since the
genus of X equals the genus of G ′, which equals g (since the genus of a graph doesn’t
change under refinement), the classical bound gonk(X) ≤ �(g + 2)/3� holds (cf.
Kleiman–Laksov [36]). The result follows from sgon(G ′) ≤ gonk(X) (Theorem A).

We now show the existence of such a refinement. Let G be a stable graph of genus
g ≥ 2 and let ΔG = max{dx |x ∈ V(G)}. Choose g edges e1, . . . , eg of G such that
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G − {e1, . . . , eg} is a tree. Replace each edge ei (connecting two vertices xi and yi )
by two edges [xi , vi ] and [wi , yi ], where vi and wi are new vertices not connected to
any other vertex. In this way, G is replaced by a tree TG . Choose an embedding of
TG in the Bruhat–Tits tree T for k = Fq((t)), where q satisfies q + 1 ≥ ΔG . Denote
the images of vi and wi in T by the same letters. Now choose hyperbolic elements
γ1, . . . , γg in PGL(2, k) such that each γi acts as translation along a geodesic through
vi and wi , and γi (vi ) = wi . Then Γ = 〈γ1, . . . , γg〉 is a Schottky group. Denote by
TΓ the subtree of T spanned by the limit set of Γ . Then G ′ � Γ \TΓ , where G ′ is the
refinement of G given by subdividing each of the edges e1, . . . , eg once. Also, G ′ is
the intersection dual graph of the minimal model of the Mumford curve corresponding
to Γ [44, page 164]. �


It would be interesting to have a purely graph theoretical proof of the above result.

Remark 5.8 More general lifting results, such as Lemma 6.3 in [54] or Corollary B.3
from [8] with Theorem 2.4, also imply the existence of the refinement and the curve.

6 A spectral lower bound for the stable gonality of a graph: proof of Theorem C

In this section, we prove an analogue of the Li–Yau bound, viz., a spectral lower bound
for the stable gonality of a graph. The basic philosophy of the proof is to find a lower
bound for the first Laplace eigenvalue using its variational characterization, in terms
of the degree of a finite harmonic morphism ϕ : G ′ → T and the minimal “size” of the
inverse image of the two parts in which the tree gets cut by removing one of its edges.
Then a dichotomy occurs: either the minimal such size is large, or there is a vertex
with a large inverse image. Initially, “large” depends on the maximal vertex degree of
the tree T , but if this degree is too large, we change the refinement and morphism to
produce a lower bound that only depends on the original graph, not the morphism or
tree itself.

We start by studying such “sizes” on trees abstractly:

Definition 6.1 A measured tree (T, ν) is a connected tree T with a probability measure
ν on V(T ). For an edge e ∈ E(T ), we decompose T − e into its two connected
components T1(e) and T2(e):

T − e = T1(e)
⊔

T2(e).

We define the size of an edge e ∈ E(T ) (w.r.t. ν) by

sizeν(e) := min{ν(T1(e)), ν(T2(e))}.

Let c > 0. Call a measured tree (T, ν)c-thick if for every vertex x ∈ V(T ), the
graph T − x has a connected component of measure at least c.

Lemma 6.2 A c-thick measured tree (T, ν) has an edge of size at least c.
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Proof For any vertex x ∈ V (T ), choose a connected component Cx of T − x of
measure at least c. Orient the unique edge that connects x to a vertex in Cx in the
direction of x . By doing this for each vertex, |T | different orientations are assigned to
the |T | − 1 edges of T . Hence at least one edge of T is oriented in both directions,
and such an edge has size at least c. �

Remark 6.3 If (T, ν) is not c-thick, then there exists a vertex x ∈ V(T ) with ν(x) >

1− cdx . Indeed, since T − x has dx components, all of measure less than c, we find
that 1− ν(x) = ν(T − x) < cdx .

The measure we will use counts vertices of G ′ that belong to the original graph G:

Definition 6.4 Let G denote a graph, and G ′ a refinement of G. The probability
measure μG on V(G ′) is defined by

μG(A) := |A ∩ V(G)|
|G| for A ⊆ V(G ′).

Lemma 6.5 If G ′ is a refinement of a graph G, and ϕ : G ′ → T a finite harmonic
morphism to a tree, then (T, ϕ∗μG) is a measured tree, and for any vertex x ∈ V(T ),
we have

deg ϕ ≥ ϕ∗μG(x) · |G|.

Proof It suffices to remark that

ϕ∗μG(x) · |G| = |ϕ−1(x) ∩ G| =
∑
v∈G

ϕ(v)=x

1 ≤
∑
v∈G

ϕ(v)=x

mϕ(v) ≤ deg ϕ.

�

The next proposition says that size and degree controls the first eigenvalue of the

Laplacian:

Proposition 6.6 If G ′ is a refinement of a graph G, and ϕ : G ′ → T a finite harmonic
morphism, then for any edge e ∈ T , we have an inequality

deg ϕ ≥ 1

2
· λG · sizeϕ∗μG (e) · |G|.

Proof If we let Gi := V(G) ∩ ϕ−1(V(Ti (e))) for i = 1, 2 then the statement to be
proven is equivalent to

1

2
λG min(|G1|, |G2|) ≤ deg(ϕ).

First, note that the inequality is trivial if min(|G1|, |G2|) = 0. Now assume the
minimum is non-zero. The estimate follows from the variational characterization of
λG via the Rayleigh-quotient,
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λG = inf
f⊥1

〈 f, L f 〉
〈 f, f 〉 = inf

f⊥1

∑
u∼v

( f (u)− f (v))2

∑
v f (v)2 ,

where notations are as in 2.1. We construct an appropriate function f based on the
finite harmonic morphism ϕ : G ′ → T and the removed edge e ∈ T , as follows:

f (v) =
{ 1

|G1| if v ∈ G1,

− 1
|G2| if v ∈ G2.

It is easy to check that f ⊥ 1, and therefore,

λG ≤
∑

u∼v( f (u)− f (v))2∑
v f (v)2

= |E(G1, G2)|
(

1

|G1| +
1

|G2|
)

≤ 2|E(G1, G2)|
min(|G1|, |G2|)

We finish the proof by showing that deg(ϕ) ≥ |E(G1, G2)|. Suppose an edge
e ∈ E(G1, G2) is replaced in G ′ by a path, possibly of length 1. Let us describe this
path as a series of edges e1, . . . , en ∈ E(G ′), such that e1 is incident to a vertex in
G1, and en is incident to a vertex in G2. Then for at least one of the ei it holds that
ϕ(ei ) = e. The desired inequality follows. �


A lower bound for the degree of ϕ now follows easily if the map gives a c-thick
measured tree:

Corollary 6.7 If G ′ is a refinement of a graph G, and ϕ : G ′ → T a finite harmonic
morphism such that (T, ϕ∗μG) is c-thick, then

deg ϕ ≥ c

2
· λG · |G|.

Proof Immediate from Lemma 6.2 and Proposition 6.6. �

Remark 6.8 If the tree is not c-thick, we know from Remark 6.3 that the tree has a
vertex x ∈ T with “large” measure: ϕ∗μG(x) ≥ 1 − cdx . Putting, for example, c =
1/(ΔT + 1) (where ΔT is the maximal vertex degree in T ), the previous results gives
a non-trivial lower bound on the degree of ϕ in terms of λG, |G| and ΔT of the form

deg(ϕ) ≥ min

{
λG

2
, 1

} |G|
ΔT + 1

.

However, we want to find a bound that solely depends on G, not on T .

In the next proposition, we engineer another harmonic morphism from a different
refinement of G, whose degree is controlled by that of ϕ and in which we can numeri-
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cally control inequalities between thickness, maximum size of vertices and minimum
size of edges. We then optimize over the various choices of the numerical bounds, to
get the main theorem as corollary.

Proposition 6.9 Let G denote a graph with maximal degree ΔG. Let A, B, C > 0 be
constants such that A + B + C ≤ 1. If G ′ is a refinement of G, and ϕ : G ′ → T a
finite harmonic morphism such that

(i) (T, ϕ∗μG) is not (C/2)-thick; and
(ii) all vertices x ∈ T have measure ϕ∗μG(x) < B,

then there exists a refinement G# of G, a tree T #, and a finite harmonic morphism
ϕ# : G# → T # such that

(a) deg ϕ# ≤ ΔG deg ϕ; and
(b) there exists an edge e# of T # with sizeϕ#∗μG

(e#) ≥ A/2.

We postpone the proof to the next section, and first discuss the main corollary. The
given refinement satisfies the inequalities in the theorem for suitable constants. But
reengineering gives us the possibility to optimize the result over all possible choices
of A, B and C , and thus arrive at:

Corollary 6.10 (=Theorem C) Let G be a graph with maximal vertex degree ΔG and
first Laplace eigenvalue λG. The stable gonality of G is bounded from below by

sgon(G) ≥
⌈

λG

λG + 4(ΔG + 1)
|G|
⌉

.

Proof Let ϕ : G ′ → T be a finite harmonic morphism from a refinement G ′ of G,
and let A, B, C > 0 be constants with A + B + C ≤ 1. If (T, ϕ∗μG) is C/2-thick,
then by Corollary 6.7, we find

deg ϕ ≥ γ · |G| with γ := CλG

4
.

On the other hand, if there is a vertex x ∈ T with ϕ∗μG(x) ≥ B, then by Lemma 6.5,
we get

deg ϕ ≥ β · |G| with β := B.

In the remaining case, Proposition 6.9 implies that

deg ϕ ≥ 1

ΔG
deg ϕ# ≥ λG

2ΔG
sizeϕ#∗μG

(e#)|G| ≥ α · |G| with α := AλG

4ΔG
,

where the second inequality follows from Proposition 6.6.
Translating the constraints A, B, C > 0 and A + B + C ≤ 1, we conclude that it

always holds that
deg ϕ

|G| ≥ max
α,β,γ>0

aα+bβ+cγ≤1

min(α, β, γ ). (6.1)
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with a = 4ΔG/λG, b = 1 and c = 4/λG . The maximum in (6.1) is achieved for
α = β = γ and aα+ bβ + cγ = 1, and plugging this back into (6.1) gives the result.

�


7 Proof of Proposition 6.9

In the proof of Proposition 6.9 we will use the following concept several times to
construct new graphs from old:

Definition 7.1 Let H1, . . . , Hn denote n different graphs and let

(v1
1, . . . , vn

1 ), . . . , (v1
m, . . . , vn

m) ∈ V(H1)× · · · × V(Hn)

denote tuples of their vertices. The graph H obtained by gluing Hi along these vertices
is defined to be

H :=
n⊔

i=1

Hi

/
〈v1

1 = · · · = vn
1 , . . . , v1

m = · · · = vn
m〉.

Lemma 7.2 Let ϕ : G → T be a finite harmonic morphism and let T0 ⊂ T be a
connected subgraph. Then the restriction of ϕ to any of the connected components of
ϕ−1(T0) is a finite harmonic morphism to T0.

Proof Let T0 be such a subgraph and let ϕ0 : G0 → T0 be the restriction of ϕ to
one of the connected components G0 of ϕ−1(T0). Then mϕ0(v) is well-defined for all
v ∈ V (G0), namely, all edges e ∈ Ev(G) which are mapped to an edge e′ ∈ Eϕ(v)(T0)

are contained in Ev(G0), so that in particular mϕ0(v) = mϕ(v). �

Proof (of Proposition 6.9) The proof consists of various steps, in which the new
morphism is constructed from the original map. The switch between example and
main proof is indicated by a diamond (♦). As the proof proceeds, we will show the
constructions on an explicit non-trivial example. The basic idea of the proof is this: the
hypothesis of the Proposition (which is the remaining bad case from the point of view of
getting useful bounds) is that there exists a vertex in the tree (with controlled measure)
such that all connected components of its complement have too small measure to
give a useful bound. We collect these components (and their preimages) into two sets,
which we call the “left” and “right” parts, such that each of these parts has a larger,
more useful, measure. For technical reasons, one should discard leaves first. We want
to map each of these parts as a whole onto a “smaller” tree, but this will increase the
degree of the map. We control it as follows: in the new tree T #, all of these components
are glued to a central vertex. The original morphism ϕ is split into local parts over
each of the components, and these are refined to a harmonic morphism over the left
or right parts of the new tree. Then the left and right parts are glued together over the
new tree, where the indices at preimages of the central point are redefined, and maybe
some leaves are added, to make the result into a harmonic morphism. One then checks
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that the degree of the new morphism hasn’t increased too much, but that both edges
sticking out of the central vertex have large enough measure to give a useful bound.

Example We start with a graph G of the following form

The original graph has |G| = 10 vertices and maximal vertex degree ΔG = 5.
We consider the following refinement G ′ of the graph G, and the harmonic morphism
ϕ to the tree T as indicated in the following picture. We use the following display
conventions: the original vertices and edges are bold, contrary to subdivision vertices
and vertices and edges from leaves. The label on a vertex indicates to what vertex in
the tree it is mapped. A gray square box with a number on an edge indicates that this
edge has index equal to that number; if there is no box, then the index is 1.
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This map has degree deg ϕ = 8. The push-down ϕ∗μG of the normalized counting
measure of G to T takes the following value on the indicated vertices:

ϕ∗μ(v) =
⎧⎨
⎩

0 if v ∈ {B, c, H},
1/10 if v ∈ {d, e, f, g},
1/5 if v ∈ {a, b, h}.

If we set

A = 1/5, B = 3/10, C = 5/10,

then the set-up satisfies conditions (i) and (ii) of Proposition 6.9. Indeed, The push-
down measure is not C/2 = 1/4-thick (all connected components of T − a are of
measure at most 1/5), and all vertices have measure smaller than B = 3/10.

In the proof, we construct a new refinement G# of G and a new tree T # with a finite
harmonic morphism ϕ# : G# → T # of degree deg ϕ# < ΔG deg ϕ = 40 with an edge
of size ≥ A/2 = 1/10. ♦

Write ν = ϕ∗μG . Since (T, ν) is not C/2-thick, we can choose a vertex x0 ∈ V(T )

such that all components of T − x0 have measure < C/2. Let Gs ⊂ G ′ be the
refinement of G which only comprises the subdivided edges of G in G ′, and let T s

denote its image ϕ(Gs). Observe that x0 ∈ V(T s), and let d denote the degree of x0 in
T s . Also note that the maximal degree of Gs is the same as that of G, i.e., ΔGs = ΔG .
Denote by T s

1 , . . . , T s
d the connected components of T s−x0. We divide the connected

components into two sets of approximately the same measure. Since ν(x0) < B and
ν(Ti ) < C/2 for all i = 1, . . . , d, it is possible to find a partition IL∪ IR = {1, . . . , d},
such that

min

⎧⎨
⎩ν(

⋃
i∈IL

T s
i ), ν(

⋃
i∈IR

T s
i )

⎫⎬
⎭ ≥

1− ν(x0)

2
− C

2
>

1− B

2
− C

2
≥ A

2
.

Example (continued) In the example, Gs is the graph

and T s is the graph
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We can choose x0 to be the central vertex labelled “a”, so that all components of
T − x0 have measure < C/2 = 1/4 (indeed, they have measure 0, 1/5 or 1/10), and
divide the d = 7 connected components into “left” and “right” as follows:

x0 = a,

IL = {T1 = {b}, T2 = {h, H}},
IR = {T3 = {c}, T4 = {d}, T5 = {e}, T6 = { f }, T7 = {g}}.

Then the total measure of the left part is 2/5 and the total measure of the right part is
2/5, which is larger than A/2 = 1/10. ♦

We now show how to construct the different pieces of the new map

ϕ# : G# → T #.

The construction of T #. For each i = 1, . . . , d let yi ∈ V(T s
i ) be the unique vertex

which is adjacent to x0 in T s . A new graph S# is obtained by gluing all T s
i together at

the yi , and adding a leaf at the image of the yi . Call x the new vertex of the added leaf.
Take two copies (S#,1, x1) and (S#,2, x2) of the pair (S#, x), and glue them together
at x1 and x2 to obtain a tree T #. Let X0 be the image of x1 and x2 in T #, and call the
image of S#,1 in T # the “left part” T #

L , and the image of S#,2 in T # the “right part” T #
R .

Example (continued) In the example, S# is the graph given by gluing all components
T1, . . . , T7 of T s − x0 along their vertex adjacent to x0, and adding a leaf. All but the
component T2 = {h, H} are isolated vertices, so the result is a segment isomorphic to
T2, connected to a new vertex x at h: S# is

Furthermore, T # is the graph given by gluing two copies of (S#, x) along the
common vertex x , so T # is

The construction of G#. For each i = 1, . . . , d, let Si be the subtree of T s obtained
by adding to T s

i the (unique) edge in E(x0, yi ). The subgraph ϕ−1(Si ) ⊂ G ′ might
be disconnected; let G ′′i be the union of the connected components of ϕ−1(Si ) for
which the set of edges has a non-empty intersection with E(Gs). By Lemma 7.2 the
restriction
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ϕ′′i := ϕ|G ′′i : G ′′i → Si .

is finite harmonic.
Now observe that S# is a refinement of Si , so by Lemma 5.4 there exists a finite

harmonic refinement morphism (in the sense of Definition 5.3)

ϕ#
i : G#

i → S#,

with an inclusion map ιi : G ′′i → G#
i .

Example (continued) For each of the seven connected components Ti , we display
the construction of the “local” components Si , G ′′i and the refinement morphism
ϕ#

i : G#
i → S# in Table 1. The construction for i = 5, 6, 7 is entirely similar to

the one for i = 4 (with the label d replaced by e, f, g, respectively), so we don’t list
it in the table. ♦
The construction of G# (continued). For any v ∈ ϕ−1(x0) ∩ V(Gs), define the
integer

d#(v) :=
∑
i∈IL

v∈V(G ′′i )

⎛
⎜⎝ ∑

e∈Eιi (v)(G#
i )

rϕ#
i
(e)

⎞
⎟⎠− ∑

i∈IR
v∈V(G ′′i )

⎛
⎜⎝ ∑

e∈Eιi (v)(G#
i )

rϕ#
i
(e)

⎞
⎟⎠ .

The graph G# is obtained by gluing all G#
i together at ιi (v) for all

v ∈ ϕ−1(x0) ∩ G ′′i ,

and, for any v with d#(v) �= 0, gluing an additional copy (S#,v, xv) of (S#, x) at v.

Example (continued) In the example, the vertices v ∈ ϕ−1(x0) are the numbered
vertices in the following display of Gs :

The vertices labeled 1 and 5 have only neighbouring subgraphs G#
i with i ∈ IL ,

and the indices are all one, and add up to 2. The vertices labeled 3, 4, 7 and 8 have
only neighbouring subgraphs G#

i with i ∈ IR , and the indices are all one, and add up
to 2. Finally, the vertices labeled 2 and 6 have neighbouring subgraph G#

2 with index
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Table 1 The local constructions relating to the maps ϕ#
i : G#

i → S# (i = 5, 6, 7 are similar to i = 4)

in IL , and neighbouring subgraphs G#
3 and two of G#

i (with i = 4, 5, 6, 7) with index
in IR , for which all the indices are all one. Thus,

d#(v) =
⎧⎨
⎩

1+ 1 = 2 if v has label 1 or 5;
1+ 1− (1+ 1+ 1) = −1 if v has label 2 or 6;
−(1+ 1) = −2 if v has label 3,4, 7 or 8.

Thus, we need to glue in one extra copy of S# at every such vertex. ♦
The construction of ϕ#. To define ϕ#, it suffices to define its restriction to G#

i for i =
1, . . . , d, and its restriction to S#,v , and show that these are compatible on intersections.
Define the restrictions as follows:

1. If i ∈ IL , set ϕ#|G#
i
: G#

i

ϕ#
i−→ S# ∼→ T #

L with index rϕ# (e) = rϕ#
i
(e) for all e ∈ G#

i ;
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2. If i ∈ IR , set ϕ#|G#
i
: G#

i

ϕ#
i−→ S# ∼→ T #

R with index rϕ# (e) = rϕ#
i
(e) for all e ∈ G#

i ;

3. If v ∈ ϕ−1(x0) with d#(v) > 0, set ϕ#|S#,v : S#,v ∼→ T #
R with index rϕ# (e) = d#(v)

for all e ∈ S#,v;
4. If v ∈ ϕ−1(x0) with d#(v) < 0, set ϕ#|S#,v : S#,v ∼→ T #

L with index rϕ# (e) =
−d#(v) for all e ∈ S#,v .

One checks that this glues together correctly to a finite graph morphism

ϕ# : G# → T #.

Example (continued) The extra copies of S# that are glued to vertices 1, 3, 4, 5, 7, 8
get index 2 on every edge, but the copies that are glued to 2 and 6 get index one. The
final re-engineered map ϕ# : G# → T # in our example is given as follows:

Here, the vertex X0 is labelled “a”. The map ϕ has degree 18 and the edges {L , a}
and {a, R} of T # both have size 2/5 > A/2 = 1/10. ♦
The finite morphism ϕ# is harmonic. We check that mϕ# (v) is well-defined for all
v ∈ V(G#). For all v �∈ ϕ#−1(X0) there is either a unique i = 1, . . . , d such that
v ∈ V(G#

i ) and then mϕ# (v) = mϕ′′i (v), or there is a unique w ∈ ϕ#−1(X0) such that

v ∈ V(S#,xw) and then mϕ# (v) = |dϕ# (w)|. For all v ∈ ϕ#−1(X0), it holds that

mϕ# (v) = max

⎧⎪⎨
⎪⎩
∑
i∈IL

⎛
⎜⎝ ∑

e∈Ev(G#)∩E(G#
i )

rϕ# (e)

⎞
⎟⎠ ,
∑
i∈IR

⎛
⎜⎝ ∑

e∈Ev(G#)∩E(G#
i )

rϕ# (e)

⎞
⎟⎠
⎫⎪⎬
⎪⎭ .
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The edge e#. Any of the two edges e# ∈ EX0(T
#) satisfies

sizeϕ#∗μG
(e#) ≥ min

⎧⎨
⎩ν(

⋃
i∈IL

T s
i ), ν(

⋃
i∈IR

T s
i )

⎫⎬
⎭ >

A

2
.

The degree of ϕ#. Consider a vertex v ∈ V(G#) ∩ ϕ−1(x0): if v belongs to Gs , then
it belongs to at most ΔG different G#

i for i = 1, . . . , d; and if v /∈ Gs , then there is
a unique i = 1, . . . , d such that the unique path from v to Gs is contained in G ′′i . It
follows that for each v ∈ V(G#) ∩ ϕ−1(x0), at most ΔG of the neighboring G#

i are
either all sent to T #

L , or all to T #
R . Hence

mϕ# (v) ≤ ΔGmϕ(v),

and this implies deg ϕ# ≤ ΔG deg ϕ. �

Remark 7.3 The point x0 (used in the proof) with the property that all components
of T − x0 have measure < C/2 is in fact unique. Indeed, if there are two such
vertices, say, x0 and x1, then let e = (x, y) denote any edge on a path between
x0 and x1. One component of T − x contains T1(e) and one component of T − y
contains T2(e), and hence by assumption, ν(T1(e)) < C/2 and ν(T2(e)) < C/2 but
ν(T1(e))+ ν(T2(e)) = 1. Hence C > 1, but this is impossible with C ≤ 1− A − B
and A, B > 0.

8 Discussion of the spectral lower bound on stable gonality

We now give some examples that illustrate the bound.

Example 8.1 For the banana graph Bn , we have ΔBn = n, |Bn| = 2 and λBn = 2n,
so the lower bound is trivial: sgon(Bn) ≥ 1. However, the stable gonality of Bn (for
n ≥ 2), equals 2. See Fig. 1 for such a map of degree 2.

Example 8.2 For the complete bipartite graph Kn,n , we have ΔKn,n = n, |Kn,n| = 2n
and λKn,n = n. If n is even, then the lower bound is

sgon(Kn,n) ≥
⌈

2n2

5n + 4

⌉
,

We expect that the stable gonality of Kn,n equals n. A morphism which attains
degree n is given by mapping Kn,n to the star with one central vertex and n emanating
edges in the obvious way. For n = pr + 1 (p prime), the graph Kn,n occurs as stable
reduction graph of the curve

Xλ,r : (x pr − x)(y pr − y) = λ
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(seen in P1×P1) with |λ| < 1, over a valued field (k, | · |) of characteristic p, which,
as a fiber product of two projective lines, admits an obvious morphism of degree pr+1
to P1. The stable reduction itself consist of two transversally intersecting families of
pr + 1 rational curves (“check board with p2r squares”). For more details on these
curves, see for example [22].

In the family of Example 8.2, our lower bound has the same order of growth in n as
does the expected gonality, but is about 5 times as small. This seems to be a general
phenomenon; we don’t know an interesting example where our lower bound is sharp.

Example 8.3 If Xn is a family of Ramanujan graphs with (fixed) regularity d and n
vertices (n increasing), then by the Alon–Boppana bound, we get inequalities

√
d − 1− o(1) ≤ λXn /2 ≤ √d − 1,

so we find a lower bound of the form

sgon(Xn) ≥ κd · n

for n sufficiently large with κd a constant only depending on d. In any family of
Mumford curves whose stable reduction graphs are d-regular Ramanujan graphs, the
gonality goes to infinity as the number of components of the stable reduction does so.

Remark 8.4 The famous Li–Yau inequality from differential geometry [37] states that
the gonality gon(X) of a compact Riemann surface X (minimal degree of a conformal
mapping ϕ of X to the Riemann sphere) is bounded below by

gon(X) ≥ 1

8π
λX vol(X),

where λX is the first non-trivial eigenvalue of the Laplace–Beltrami operator of X ,
and vol(X) denotes the volume of X .

For graphs G with any Laplacian (normalized or not), an inequality of the form

“sgon(G) ≥ κ · λG · vol(G)” (∗)

for some constant κ fails. A counterexample is given by the complete graph Kn , which
has stable gonality n−1. However, a lower bound of the form (∗) would be κ ·n2(n−1)

for the usual Laplacian, and κ · n2 for the normalized Laplacian (see Table 3 in the
appendix for the data; one deduces that the analog of the Li–Yau inequality also fails
if one uses any of the other notions of gonality from the existing literature and are
outlined in the Appendix.)

One sees from our result that in a graph, the constant κ needs to be roughly divided
by the maximal edge degree for such an inequality to hold.

As we have seen in Corollary 5.6, stable gonality is defined on equivalence classes
of graphs, in the sense that two graphs G and G ′ are equivalent (notation G ∼ G ′) if
they are refinements of the same stable graph. Hence the result also implies that
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Corollary 8.5 For any graph G with g ≥ 2, we have

sgon(G) ≥ max
G ′∼G

⌈
λG ′

λG ′ + 4(ΔG ′ + 1)
|G ′|

⌉
.

�

Remark 8.6 It is tempting to consider the limiting value for the lower bound in this
theorem when the graph is further and further refined. Whereas it is clear how the
number of vertices and the maximal vertex degree change under refinements, the
change of the eigenvalue under refinements is not so well-understood (apart from
regular graphs). For applications in solid state physics, Eichinger and Martin have
developed an algorithm that computes the change in eigenvalues under refinement by
applying only linear algebra to the original Laplace matrix [25]. Examples (such as
the banana graph) suggest that (iterated) refinement might worsen the lower bound.

There is a similar result for the normalized Laplacian. Denote with λ̃G the first
non-trivial eigenvalue of L∼G .

Theorem 8.7 Let G be a graph with maximal degree ΔG and first normalized Laplace
eigenvalue λ̃G. The stable gonality of G is bounded from below by

sgon(G) ≥ λ̃G

ΔG λ̃G + 4(ΔG + 1)
vol(G).

Proof The proof is virtually the same as Theorem C, so instead of providing all details,
we briefly outline the differences. Instead of μG , we use the measure ηG on V (G ′)
defined for A ⊂ V (G ′) by

ηG(A) :=
∑

v∈A∩G dG
v

vol(G)
,

where dG
v is the degree of v in G. Lemma 6.2 is valid for all probability measures,

and therefore also for ϕ∗ηG . Since ϕ∗ηG(x) counts the number of edges instead of
vertices, the conclusion of Lemma 6.5 changes to

deg ϕ ≥ ϕ∗ηG(x)

ΔG
vol(G).

The analogue of Proposition 6.6 can be derived by using the test function

f (v) =
{

1
vol(G1)

if v ∈ G1,

− 1
vol(G2)

if v ∈ G2.

Proposition 6.9 does not change for this new measure. We conclude that the proof of
Corollary 6.10 only changes in the step where Lemma 6.5 is used. �
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Remark 8.8 For k-regular graphs

kλ̃G = λG and vol(G)/k = |G|,

and hence the lower bounds are identical for the two different Laplace operators.

Remark 8.9 Generically (in the sense of algebraic geometry), the gonality of a curve
attains the Brill–Noether bound (cf. for example the references in the Appendix of
[52]). However, curves of fixed genus and fixed stable reduction graph can have widely
varying gonality (e.g., the banana graph Bn has stable gonality 2, but its subdivisions
can occur as stable reduction graph of curves whose gonality takes on all the values
2, . . . , n); in particular, the gonality of the curve can be much higher than the stable
gonality of the reduction graph. One may try to find the most probable stable gonality
of a random connected (multi-)graph and compare it to the most probable value of
the Brill–Noether bound. In this remark, we compute something much simpler: the
difference between the expected value of the Brill–Noether bound and the lower bound
in our theorem, for the Erdős–Rényi random graph model with a specific connection
probability in the non-sparse region.

For a random graph model G = Gn,p of Erdős–Rényi type [27] with n vertices
and edge probability p = p(n) = n−δ for some 0 < δ < 1, the threshold for
almost sure connectivity holds, the expected number of edges is n(n − 1)p/2, so the
first Betti number of G p,n is g = 1

2 n1−δ(n − 1) − n + 1 almost surely. Chung et
al. [18] have shown that (for a class of function including these p(n)) the normalized
eigenvalue λ̃ tends to 1 with high probability. Also, the given assumptions imply that
ΔGn,p = pn(1+ o(1)) in probability [11, 3.14].

Hence the lower bound tends with high probability to

≈ n

5
≈ 1

5
2−δ
√

2g,

which is sublinear in g (and for δ → 0, tends to
√

2g/5, up to a constant the actual value
of the stable gonality n−1 = √2g for the complete graph Kn of genus g = (n−1)2/2),
whereas the Brill–Noether bound is linear in g (which happens if δ → 1).

There are at least two ways to interpret this heuristic observation: either the lower
bound is asymptotically bad for random graphs; or stable gonality of random graphs
is significantly lower than generic gonality of curves.

9 A linear lower bound on the gonality of Drinfeld modular curves: proof of
Theorem D

We recall the main concepts and notations from the theory of general Drinfeld modular
curves, cf. [30,33].

9.1. Let K denote a global function field of a smooth projective curve X over a finite
field k = Fq with q elements and characteristic p > 0, and ∞ a place of degree δ of
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K . Let π∞ denote a uniformizer at∞. Let A denote the subring of K of elements that
are regular outside∞.

9.2. Let Y denote a rank-two A-lattice in the completion K∞ of K at∞. Such lattices
are classified up to isomorphism by their determinant, so they are isomorphic to A⊕ I ,
where I runs through a set of representatives of Pic(A), the ideal class group of A.

Let GL(Y ) denote the automorphism group of the lattice Y :

GL(Y ) = {γ ∈ GL2(K ) : γ Y = Y },
and let Γ denote a congruence subgroup of Γ (Y ) := GL(Y ). This means that Γ

contains a principal congruence group Γ (Y, n) as a finite index subgroup, where

Γ (Y, n) = ker(Γ (Y ) → GL(Y/ n Y )),

for n an ideal in A. Let Z ∼= F∗q denote the center of GL(Y ).
If Y = A⊕ A is the “standard” lattice, we revert to the standard notations Γ (1) :=

Γ (A ⊕ A) and Γ (n) := Γ (A ⊕ A, n).

9.3. The groups Γ act by fractional transformations on the Drinfeld space Ω =
C∞−K∞, where C∞ is the completion of an algebraic closure of K∞. The quotient
Γ \Ω is an analytic smooth one-dimensional space, and is the analytification of a
smooth affine algebraic curve YΓ , that can be defined over a finite abelian extension
of K inside K∞. It can be compactified to a Drinfeld modular curve XΓ by adding
finitely many points, called cusps.

The C∞-points of the (coarse) moduli scheme M(n) of rank-two Drinfeld A-
modules with full level n-structure (i.e., an isomorphism of (A/ n)2 with the torsion
of the Drinfeld module) can be described as

M(n)(C∞) =
⊔

Y∈Pic(A)

Γ (Y, n)\Ω.

We denote such a component by Y (Y, n) := Γ (Y, n)\Ω , and its compactification by
X (Y, n).

Theorem 9.4 (=Theorem D) Let Γ denote a congruence subgroup of Γ (Y ). Then the
gonality of the corresponding Drinfeld modular curve XΓ satisfies

gonK (XΓ ) ≥ cq,δ · [Γ (Y ) : Γ ]
where the constant cq,δ is

cq,δ := qδ − 2
√

qδ

5qδ − 2
√

qδ + 8
· 1

q(q2 − 1)

This implies a linear lower bound in the genus of modular curves of the form

gonK (XΓ ) ≥ c′K ,δ · (g(XΓ )− 1),
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where cK ,δ is a bound that depends only on the function field K . If K is a rational
function field and δ = 1, then we can put c′K ,δ = 2cq,1.

Proof First observe that gonK (X) = gonK∞(X), so we now consider XΓ as a curve
over k = K∞ and are in a set up where we can apply our previous results. The
remainder of the proof has various parts.

Reduction to principal congruence groups. First of all, we observe that it suffices
to prove the bound for the groups Γ (Y, n). Indeed, if ϕ : XΓ → P1 is a morphism,
then from the inclusion Γ (Y, n) ≤ Γ we get a composed morphism

XΓ (Y,n) → XΓ → P1 (9.1)

of degree

[Γ : Γ (Y, n)]
|Γ ∩ Z | · deg ϕ,

and hence
gonK (XΓ ) ≥ gonK (X (Y, n))/[Γ : Γ (Y, n)]. (9.2)

Therefore, the desired inequality

gonK (XΓ ) ≥ cq [Γ (Y ) : Γ ]

follows from

gonK (X (Y, n)) ≥ cq [Γ (Y ) : Γ (Y, n)].

We now prove the gonality bound by invoking Theorem C for the reduction graph
of the Drinfeld modular curve X (Y, n).

Semistable model. First, we construct a semi-stable model for the reduction of X (Y, n)

at ∞. The groups Γ = Γ (Y, n) also act by automorphisms on the Bruhat–Tits tree
T of PGL(2, K∞) [57]. The quotient Γ \T is the union of a finite graph (Γ \T)0 and
a finite number of half lines in correspondence with the cusps of XΓ , and the curve
XΓ is a Mumford curve over K∞ [44] such that the intersection dual graph of the
reduction, which is a finite union of rational curves over Fqδ intersecting transversally
in Fqδ -rational points, equals the finite graph (Γ \T)0 [33, (2.7.8)]. In particular, the
genus of the modular curve XΓ equals the first Betti number of this graph (compare
[30] V.A.11).

Now consider the Γ -stable part Ts of T, defined to consist of those vertices and
edges of T that have trivial stabilizer for the action of Γ . Since the stabilizers of cusps
are non-trivial and stabilizers of edges are subgroups of stabilizers of adjacent vertices,
the stable part is a tree that ends in half-edges (i.e., edges with only an initial vertex).
Let Tss denote the tree obtained from deleting the half-edges, and call the images
in Γ \Tss of the remaining vertices that were incident to the half-lines the boundary
points; say there are hc of those, see Fig. 4.
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stable part unstable part

cuspidal part

h cusps

hc boundary
 points

G

Fig. 4 Schematic depiction of the quotient graph Γ \T, including stable, unstable and cuspidal part

We claim that the quotient

GΓ := Γ \Tss

is a semistable reduction graph for XΓ . Since it is a subgraph of (Γ \T)0, it suffices
to check that these graphs have the same genus. This can be seen as follows. Since
Γ = Γ (Y, n) is p′-torsion free, [57] II.2.9, Ex. 2b and Thm. 13’(c) imply that

|V(Γ \Ts)| − |E(Γ \Ts)| = χ(Γ ) = 1− g(XΓ )− h,

where h is the number of cusps of Γ and χ(G) is the Euler–Poincaré characteristic of
G. Since hc = |E(Γ \Ts)| − |E(Γ \Tss)| and |V(Γ \Tss)| = |V(Γ \Ts)|, we find

g(GΓ ) = g(XΓ )+ h − hc.

Now observe that h ≥ hc; indeed, h is the number of half-lines of Γ \T. A priori
several half-lines could be attached to the same boundary point. On the other hand,
all paths in the unstable graph attached to boundary vertices have to be part of infinite
half-lines (so correspond to cusps). Indeed, if there would be such a finite path P , let
P̃ denote a connected lift of P to T and eP any half-line of T that contains P̃ . Then
the projection of eP in Γ \T has to be infinite, since the orders of the stabilizers are
strictly increasing along eP , and hence it would have to intersect the stable part Γ \Ts .
This is impossible, since in the stable part, the stabilizers are trivial.

Since also g(GΓ ) ≤ g(XΓ ), we conclude that hc = h and g(GΓ ) = g(XΓ ). This
means that Γ \T is GΓ connected via h paths to the h cusps.

If not indicated otherwise, choose n �= 1 and write G := GΓ .

A lower bound on the number of vertices. In the Bruhat–Tits tree T of the group
PGL(2, K∞), every vertex is (qδ + 1)-regular. Let us consider the special vertex of
T corresponding to the class of the trivial rank-two vector bundle [O∞ ⊕ O∞] on X ,
and let v0 denote the corresponding vertex in Γ (Y )\T. The stabilizer of this vertex is
precisely PGL(2, Fqδ ) (namely, an element of the stabilizer induces an automorphism
of the “star” of the vertex, which is given by P1(Fqδ ).) The stabilizer intersects Γ (Y )/Z
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(where Z is the center) in the “constant group” PGL(2, Fq), and the group Γ =
Γ (Y, n) (for n �= 1) in the trivial group. There is a covering map

Γ \T → Γ (Y )\T.

We conclude that

|G| ≥ 1

q(q2 − 1)
· [Γ (Y ) : Γ ], (9.3)

since the right hand side is the number of vertices in Γ \T above v0—which are stable,
since they have trivial stabilizers in Γ —, and PGL(2, Fq) has cardinality q(q2 − 1).

Remark 9.5 This estimate for the number of vertices of G will be enough for our
purposes, since it differs from the index only by a constant in q. But one might also
count the total number of vertices of the graph. For a rational function field K = Fq(T )

with a place∞ of degree one, this is easily done, the result being

|GΓ (n)| = 2qdeg(n)+1 − q − 1

qdeg(n)+1(q2 − 1)(q − 1)
[Γ (1) : Γ (n)];

compare also with computations in [43] (cf. [16,53]) and [32]. It seems another proof
of the lower bound on the gonality is possible by using Morgenstern’s result that there
is a perfect matching between a very large (constant fraction depending only on q, not
on deg(n)) subset of the vertices above v0 in GΓ (n) and vertices in the complement,
but we did not pursue this, since it would give a less general and worse result.

Remark 9.6 The gonality is not always realized by the obvious map XΓ → X (1) ∼=
P1. For example, set q = 2 and let p denote an prime of degree 3; then the modular
curve X0(p) is hyperelliptic, but the map X0(p) → X (1) has degree 9. Also notice
that for a general base field K , the modular curve X (1) is not even itself a rational
curve.

Remark 9.7 Counting the number of cusps (so the number of vertices above a vertex
in Γ (Y )\T corresponding to a split bundle of high degree) is not enough to get a linear
estimate in the index, since the cusps have rather large stabilizers (of size roughly the
third root of the index).

Vertex degrees. Since the tree T is (qδ+1)-valent and Γ \Ts consists of stable vertices
(that have trivial stabilizers), we find that all vertices in Γ \Ts have the same valency
(qδ + 1). In particular, for the maximal vertex degree, we find

ΔG = qδ + 1. (9.4)

The boundary vertices v in Γ \(Tss − Ts) have valency qδ , since we have already
shown that they are connected to a unique cusp.

The first eigenvalue of the Laplace operator. We will relate the Laplace operator on
the finite graph G := GΓ to a Hecke operator on (quotients of) the Bruhat–Tits tree.
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The Hecke operator that we consider is T∞, associated to the characteristic function
of the double coset

GL(2,O∞)

(
π∞ 0
0 1

)
GL(2,O∞);

equivalently, it acts on the vertices of the Bruhat–Tits tree T of PGL(2, K∞) as the
adjacency operator of T; so

T∞( f )(v) =
∑

w : {v,w}∈E(T)

f (w)

for a function f on V(T). Now T∞ descends to a Hecke operator on Γ \T by

T∞( f )(v) =
∑

w : {v,w}∈E Γ \T
αvw · f (w)

where we set αvw := [StabΓ (v) : StabΓ (e)] (compare also [39]). Now consider the
adjacency operator AG of G = GΓ , and suppose that f is a function on the vertices
of G that is an eigenfunction for AG with eigenvalue λ. We claim that it extends
uniquely to an eigenfunction f̃ of T∞ on the vertices of Γ \T. Indeed, on all non-
boundary vertices of G, T∞ = AG . Then, if v is a boundary vertex of AG , and w is
the unique vertex outside G that is adjacent to v, we want

λ f (v) = T∞ f (v) = αvw f̃ (w)+ AG f (v) = αvw f̃ (w)+ λ f (v).

Hence we should define f̃ (w) := 0. Finally, if w1, w2, w3 are three consecutive
vertices outside G, then by computing T∞ f̃ (w3), we see that we need to define

f̃ (w3) := λ

αw2w3

f̃ (w2)− αw1w2

αw2w3

f̃ (w1).

Now D = Γ \T with the weight function αvw forms a diagram in the sense of Mor-
genstern ([42,43]), and f̃ is an eigenfunction for T∞ in the space L0

2(D), the ortho-
complement of the constant functions in the space of square integrable functions on
the vertices for the measure given by the weights αvw. As in Theorem 2.1 of [43],
the theory of Eisenstein series implies that the continuous spectrum of T∞ belongs
to the segment [−2

√
qδ, 2

√
qδ], and Drinfeld’s proof of the Ramanujan–Petterson

conjecture for function fields (in a series of papers culminating in [24]) shows that
the discrete eigenvalues λ of T∞ on L0

2(D) satisfy |λ| ≤ 2
√

qδ . We conclude that

|λ| ≤ 2
√

qδ holds for the eigenvalues of AG on G.
The degree matrix of G is given by a diagonal matrix

DG =
(

(qδ + 1) · 1 0
0 qδ · 1

)
,
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where the lower block corresponds to the boundary vertices (which are qδ + 1-valent
in Γ \T, but only qδ-valent in G, since the cusps are not present in G).

Finally, the Laplacian of G is

LG = L ′ + B with L ′ = qδ1− AG and B =
(

1 0
0 0

)
.

The Courant–Weyl inequalities (e.g., Theorem 2.1 in [23]) imply that λG is larger than
the first eigenvalue of L ′ (plus the smallest eigenvalue of B, which is zero), leading to

λG ≥ qδ − 2
√

qδ. (9.5)

Conclusion of the proof of the main bound. Since the function

λ �→ λ

λ+ 4(Δ+ 1)

is monotonously increasing in λ, we find the result by plugging the data from equations
(9.3), (9.4) and (9.5) in the lower bound from Theorem C.

Linear lower bound in the genus. We now show how to convert the lower bound on
the gonality of XΓ in terms of the index [Γ (Y ) : Γ ] into a lower bound that is linear
in the genus, of the form

gonK (XΓ ) ≥ c′K ,δ(g(XΓ )− 1),

for cK a constant depending only on the ground field K and the degree δ of ∞. This
is not entirely obvious in positive characteristic, due to wild ramification.

First of all, it is again enough to establish such a bound for a principal congruence
subgroup Γ (Y, n). First, recall the Riemann–Hurwitz formula for a Galois cover X �→
Y with Galois group G:

2gX − 2 = |G|
⎛
⎝2gY − 2+

∑
y∈Y

∞∑
i=0

|Gi (y)| − 1

|G0(y)|

⎞
⎠ , (9.6)

where Gi (y) are the higher ramification groups of any preimage of y in X (see e.g.
[45]). Applying this to the (Galois) cover (9.1) and using formula (9.2), it follows that

gonK (XΓ ) ≥ gonK (X (Y, n))

[Γ : Γ (Y, n)] |Γ ∩ Z |

≥ c′K ,δ(g(X (Y, n))− 1)

[Γ : Γ (Y, n)] |Γ ∩ Z |
≥ c′K ,δ(g(XΓ )− 1+ r)

≥ c′K ,δ(g(XΓ )− 1),
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where we have assumed that the desired bound holds for Γ (Y, n), and r ≥ 0 comes
from formula (9.6) applied to the cover (9.1).

We now establish the bound for X (Y, n). If this curve has genus zero or one, the
required bound for the gonality holds trivially. Therefore, we can assume g(X (Y, n)) ≥
2. The Riemann-Hurwitz formula for the cover X (Y, n) → X (Y ) implies a relation
of the form

[Γ (Y ) : Γ (Y, n)] = (g(X (Y, n))− 1) · 2(q − 1)

2g(X (Y ))− 2+ R
,

where R is the term in Eq. 9.6 applied to the Galois cover X (Y, n) → X (Y ). Hence
to prove our result, it suffices to prove a bound of the form

2g(X (Y ))− 2+ R ≤ c′′K ,δ

for some constant c′′K ,δ depending only on K and δ.
We recall some information about the “ramification number” R and the genus

g(X (Y )) from [30] (There, the formulae are worked out for the principal component
Y = A⊕ A only, but hold in general). First of all, the genus of X (Y ) depends only on
K and δ. Secondly, ramification takes place above elliptic points and cusps of X (Y ).
Let us write R = Re + Rc with Re the contribution from elliptic points, and Rc the
contribution from cusps. The ramification above elliptic points is tame; and the number
of elliptic points depends only on K and δ. Hence Re is bounded above by a constant
in K and δ.

The ramification above the cusps is wild, but weak; this means that the second
ramification groups are trivial, and the first ramification group is just the p-Sylow
group of the stabilizer of the cusp (this follows, for example, from the fact that X (Y ) are
Mumford curves, hence ordinary—since their Jacobian admits a Tate uniformization,
and hence has maximal p-rank—, by applying a result of Nakajima [45]). In the end,
we need an upper bound on

Rc = qd+1 − 2

(q − 1)qd

where d = deg(n) ≥ 1, that is independent of d; for example,

Rc ≤ q

q − 1

(the limit of Rc as d tends to +∞) will do, and this finishes the proof. �


Remark 9.8 In the “standard” case of a rational function field K = Fq(T ) with a place
∞ of degree one, one can make all data explicit. The cover X (n) → X (1) ∼= P1 is
ramified tamely at the unique elliptic point, of order q + 1, and at the unique cusp, of
order qd(q − 1), where d = deg(n). Hence the Riemann-Hurwitz formula becomes
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2(g(X (n))− 1) = [Γ (1) : Γ (n)]
(

1− 1

q + 1
− 1

qd(q − 1)
− 1

qd

)

≤ [Γ (1) : Γ (n)],

and it follows that one can set c′K ,δ = 2cq in this case.

Remark 9.9 The previous best bounds, due to Schweizer [56, Thm.2.4], where non-
linear in the index; more precisely, he showed that if K is a rational function field,
then one has, for example,

gonFq (T ) X0(n) ≥ 1√
(q2 + 1)(q + 1)

· [Γ (1) : Γ0(n)] q−1
2q .

10 Modular degree of elliptic curves over function fields: proof of Theorem E

10.1. Assume that K is a global function field, ∞ a place of K , and let E denote
an elliptic curve over K with split multiplicative reduction at∞ (every non-isotrivial
curve acquires such a place of reduction after a finite extension of the ground field K ).
From the work of Drinfeld, it follows that E admits a modular parametrization

φ : X0(Y, n) → E

(see Gekeler and Reversat [33]) for some suitable modular curves X0(Y, n). This
parametrization is defined over the maximal abelian extension H of K that is con-
tained in the completion K∞. One may study the (minimal) degree of such a modular
parametrization, called the modular degree.

Remark 10.2 Contrary to the case of elliptic curves over Q, in the case where K =
Fq(T ), Gekeler has proven that the modular degree always equals the congruence
number of the associated automorphic form [20,31].

10.3. We first describe some of the structure of the modular curves X0(Y, n). The
scheme M0(n), (coarsely) representing the moduli problem of rank-two Drinfeld mod-
ules with an n-isogeny, is defined over K , but is not absolutely irreducible if Pic(A)

is non-trivial; it decomposes over C∞ as

M0(n)(C∞) =
⊔

Y∈Pic(A)

Γ0(Y, n)\Ω,

where the components are defined over H , and sharply transitively permuted by the
Galois group Gal(H/K ) ∼= Pic(A). One may also describe the modular parameteri-
zations for different Y simultaneously by a K -rational map M0(n)→ E , with M0(n)

not absolutely irreducible.

10.4. Since the elliptic curve E admits a map of degree two to P1, we find that

gonK (X0(Y, n)) ≤ 2 deg(φ).
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Since we now have a lower bound

gonK (X0(Y, n)) ≥ cq,δ[Γ (Y ) : Γ0(Y, n)],

we conclude that

deg(φ) ≥ 1

2
cq,δ[Γ (Y ) : Γ0(Y, n)].

The desired result deg φ 
q,δ | n |∞ follows from the following lemma.

Lemma 10.5 [Γ (Y ) : Γ0(Y, n)] ≥ | n |∞.

Proof Since both groups Γ (Y ) and Γ0(Y, n) contain the center Z , this index is
the degree of the covering X0(Y, n) → X (Y ). Although the different components
X0(Y, n) of M0(n) and X (Y ) of M(1) depend on Y , they are Galois conjugate by
Gal(H/K ) ∼= Pic(A). Therefore, the covering degree of this cover does not depend
on Y . Hence we can put Y = A⊕ A, and a standard computation then shows that there
is a bijection

GL(2, A)/Γ0(n)
∼→ P1(A/ n A)(

a b
c d

)
�→ (a : c)

and hence

[Γ (Y ) : Γ0(Y, n)] = [GL(2, A) : Γ0(n)] = | n |∞ ·
∏
p|n

(1+ | p |−1∞ ) ≥ | n |∞,

as was to be proven. �

Corollary 10.6 (=Theorem E) Let E/K denote an elliptic curve with split multi-
plicative reduction at the place∞, of conductor n ·∞. Then the degree of a modular
parametrization φ : X0(Y, n)→ E is bounded below by

deg φ ≥ 1

2
cq,δ[Γ (Y ) : Γ0(Y, n)] ≥ 1

2
cq,δ| n |∞.

Remark 10.7 Previously, Papikian [47] had proven (using Spziro’s conjecture for
function fields and estimating symmetric square L-functions by the Ramanujan con-
jecture) that for K = Fq(T ) a rational function field,

degns( jE ) · deg φ 
q,ε | n |1−ε∞ ,

where jE is the j-invariant of E and degns( jE ) is its inseparability degree. He had
also proven that degns( jE ) = 1 if n is prime and the curve is optimal, i.e., of minimal
modular degree in its isogeny class—a.k.a. a strong Weil curve [48, 1.3]. Our lower
bound deg φ 
q,δ | n |∞ confirms a conjecture that he made in [47].
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Remark 10.8 In the other direction, Papikian [49] has proven an upper bound on the
modular degree of an optimal semistable elliptic curve E with square-free conductor
for a general function field, depending on the Manin constant cE . Contrary to the case
of elliptic curves over Q, one really needs to assume that the curve is optimal, because
of the existence of isogenies of arbitrary high degree, arising from the Frobenius
operator. One should also note that in [49] the bound is given without the Manin
constant as a factor, since it was at first conjectured to always equal one, but Pál [46]
has given examples where this is not the case. Also, Pál has proven a general upper
bound for cE that combines with [49] to give an upper bound of the form

deg(φ) �K ,δ | n |2∞(logq | n |∞)3

for the degree of an optimal modular cover φ with square-free conductor n, and such
that the class number of K is coprime to the characteristic p. In particular, the analogue
of the degree conjecture

deg φ �q,ε | n |2+ε∞

for any ε > 0 holds in this case, and combines with our lower bound.

Remark 10.9 Papikian expects that the j-invariant of an optimal semi-stable elliptic
curve over K = Fq(T ) is separable, and then a lower bound of the form deg φ 

c2

E | n |1−ε∞ can be shown to hold in many cases, where cE is the Manin-constant of

E . The results of Pál imply that cE can vary essentially from 1 to | n |1/2∞ , and thus,
the value of the Manin constant seems to influence how good our lower bound on the
modular degree is.

11 Rational points of higher degree on curves: proof of Theorem F

We first quote the positive characteristic analogue of a theorem of Frey [29]:

Proposition 11.1 Let X denote a curve over a global function field K , such that its
Jacobian does not admit a K -morphism to a curve defined over a finite field. If d is an
integer such that 2d + 1 ≤ gonK (X), then the set of points of degree d on X is finite,
i.e.,

∣∣∣∣∣∣
⋃

[K ′:K ]≤d

X (K ′)

∣∣∣∣∣∣ ≤ ∞.�

Remark 11.2 The result was proven in [55, Theorem 2.1] under the assumption that
X has a K -rational point (similar to a hypothesis of Frey), but Clark has shown that
this hypothesis is unnecessary, cf. [19, Theorem 5].

Remark 11.3 This result has now been improved into a quantitative statement over
more general fields by Cadoret and Tamagawa [13], as follows: recall that gonality
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may alternatively be defined as the minimal d for which there exists a non-constant
morphism from a P1 to the d-th symmetric power X (d) of the curve X . Define the
isogonality isogonK (X) of X as the minimal d for which there exists a non-constant
morphism from a K -isotrivial curve to the d-th symmetric power X (d) of the curve
X . Then the result from [13] says: for any finitely generated field K of positive char-
acteristic p > 0, and any smooth geometrically integral curve X over K , if d is a
natural number with 2d + 1 ≤ gonK (X) and d + 1 ≤ isogonK (X), then the set of
points of degree ≤ d on X is finite.

Remark 11.4 We will typically apply our bound in the following situation: let K be a
finitely generated field, and k the fraction field of an excellent discrete valuation ring,
with K ⊆ k; for example, K is a global function field and k = K∞ is the completion
of K at a place ∞; then gonK (X) = gonk(X), so the lower bound that we obtained
for gonk(X) from the stable gonality of its reduction graph applies equally well to
gonK (X).

Remark 11.5 If X/K is a Mumford curve over a valued field k ⊇ K , then its Jaco-
bian has split reduction, and hence it admits no map to an isotrivial curve, and
isogonK (X) = gonK (X).

Proposition 11.1 and our spectral bound on gonality now immediately imply the
following general finiteness result for points on curves whose degree is bounded in
terms of spectral data associated to a special fiber:

Theorem 11.6 (=Theorem F) Let X denote a curve over a global function field K ,
such that its Jacobian does not admit a K -morphism to a curve defined over a finite
field. Let K∞ denote the completion of K at a place ∞, and let G denote the stable
reduction graph of X/K∞. Let Δ denote the maximal vertex degree of G and λ the
smallest non-zero eigenvalue of the Laplacian of G. Then the set

⋃
[K ′:K ]≤ λ(|G|−1)−4Δ−4

2λ+8Δ+8

X (K ′)

of rational points on X of degree at most λ(|G|−1)−4Δ−4
2λ+8Δ+8 is finite. �

Example 11.7 Consider the curve Xλ,r from Example 8.2, with λ = λ(T ) ∈ K :=
Fp(T ) of negative degree in T . Observe that Xλ,r is a Mumford curve over k =
Fp((T−1)). Our gonality bound from Example 8.2 implies for example that if pr > 14,
then the set of points on Xλ,r of degree ≤ pr/6 is finite. Note that the set of points of
degree pr + 1 is infinite, so the result is best up to a constant (for varying p and r ).

12 Rational points of higher degree on Drinfeld modular curves: proof of
Theorem G

We now further specialise the results to the case of Drinfeld modular curves:

Theorem 12.1 (=Theorem G) If XΓ is defined over a finite extension KΓ of K , then
the set
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⋃
[L:KΓ ]≤ 1

2 (cq,δ ·[Γ (1):Γ ]−1)

XΓ (L)

is finite.

Proof The curves XΓ are Mumford curves for the ∞-valuation. Therefore, the con-
ditions to apply Proposition 11.1 are satisfied by X = XΓ and K = KΓ . �

Remark 12.2 Since Γ is a congruence group, the curve XΓ is covered by some
X (Y, n), and hence the curve XΓ is defined over H . Hence one may always choose
KΓ = H , but KΓ might be chosen smaller. Also, Drinfeld modular curves always
have H -rational points, namely, the cusps, so the refinement of result 11.1 by Clark is
not necessary for this application.

We also deduce the following analogue of a result of Kamieny and Mazur [34]:

Corollary 12.3 (=Theorem H) If p is a prime ideal in A, then the set of all rank two
Drinfeld A-modules defined over some field extension L of K that satisfies the degree
bound

[L H : H ] ≤ 1

2
cq,δ · | p |∞

that admit an L-rational p-isogeny is finite.

Proof Recall that the scheme M0(p), coarsely representing this moduli problem,
decomposes over C∞ as

M0(p)(C∞) =
⊔

Y∈Pic(A)

Γ0(Y, p)\Ω,

where the components are defined over H , and all components have H -rational points,
namely, the cusps.

Now a rank-two A-Drinfeld module φ over a field L with an L-rational p-isogeny
gives rise to an L-rational point of M0(p), and hence to an H L-rational point [φ] ∈
X0(Y, p)(H L) for some Y . Now the above theorem implies that

⋃
[H L:H ]≤ 1

2 (gonH (X0(Y,p)−1)

X0(Y, p)(H L)

is finite. Now since by Theorem D,

gonH (X0(Y, p)) ≥ cq,δ[Γ (Y ) : Γ0(Y, p)],

and we have

[Γ (Y ) : Γ0(Y, p)] = | p |∞ + 1,

the result follows. �
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Corollary 12.4 (=Corollary I) Fix a prime p of A. There is a uniform bound on the size
of the p-primary torsion of any rank two A-Drinfeld module over L, where L ranges
over all extensions for which the degree [L H : H ] is bounded by a given constant.

Proof The method of proof is similar to the one in Kamieny–Mazur [34], as used in
[55, Thm. 2.4]: the moduli space M0(p

e) has only finitely many L H -points as soon
as

e ≥ logq(2[L H : H ]/cq,δ)/ logq(| p |∞).

For each of the finitely many Drinfeld modules φ over L H corresponding to these
points, Breuer [12] has shown that the open adelic image result of Pink and Rütsche
[50] implies that the p-primary torsion φ[p∞] of φ is bounded by C[L H : H ], where
C depends on φ, K and p. One may now maximize the bound as φ runs through these
finitely many Drinfeld modules. Also, for any Drinfeld module φ,

|φ[pe−1]| ≤ | p |2(e−1)∞ .

The result follows. �

Remark 12.5 In general, [L H : H ] is bounded from above by [L : K ] (with equality if
L and H are linearly disjoint). This shows that a bound of the form [L : K ] ≤ d implies
a bound of the form [L H : H ] ≤ d. Hence the uniform boundedness conjecture for
rank-two A-Drinfeld modules over K [52] follows from the following statement: for
fixed d, there are only finitely many p such that there exists an L-rational p-torsion
point on an A-Drinfeld module over L with [L : K ] ≤ d.
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Schweizer for very useful comments on a previous version of the manuscript. We also thank the authors of
[4,5] and [13] for providing us with a preliminary version of their manuscripts.

Appendix A: Other notions of gonality from the literature

In this appendix, we describe various other notions of graph gonality from the literature,
and discuss the relation of stable gonality to these alternatives.

A.1. We first recall the notion of graph gonality from Caporaso [15], but we change the
terminology to be compatible with [4,5] and the current paper. For the convenience
of the reader, we include a dictionary between the terminology in [15] and this paper
in Table 2.

A morphism between two loopless graphs G and G ′ (denoted by ϕ : G → G ′) is
a map

ϕ : V(G) ∪ E(G)→ V(G ′) ∪ E(G ′)

such that ϕ(V(G)) ⊂ V(G ′), and for every edge e ∈ E(x, y), either ϕ(e) ∈
E(ϕ(x), ϕ(y)) or ϕ(e) ∈ V(G ′) and ϕ(x) = ϕ(y) = ϕ(e); together with, for every
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Table 2 Small dictionary of
terminology

Terminology in [15] Terminology in this paper

Indexed morphism Morphism

Homomorphism Finite morphism

Stable refinement Refinement

Pseudo-harmonic Harmonic

e ∈ E(G), a non-negative integer rϕ(e), the index of ϕ at e, such that rϕ(e) = 0 if and
only if ϕ(e) ∈ V(G ′).

Previously, in Definition 3.6, we only considered finite morphisms, which are mor-
phisms that map edges to edges. The notions of harmonicity and degree that we
introduced in Definition 3.6 make sense for morphisms, even if they are not finite. A
harmonic morphism is called non-degenerate if mϕ(v) ≥ 1 for every v ∈ V(G) (this
is automatic if it is finite).

A.2. The gonality of a graph is defined to be

gon(G) = min{deg ϕ|ϕ a non-degenerate harmonic morphism

from G to a tree T }.

Caporaso proves that the gonality of a complex nodal curve is bounded below by the
gonality of any refinement of its intersection dual graph.

Lemma A.3 The stable gonality of a graph G is equal to the minimum of the gonalities
of all its refinements:

sgon(G) = min{gon(G ′)|G ′ is a refinement of G}.

Proof It suffices to prove that any non-degenerate harmonic morphism ϕ : G → T
from a graph G to a tree T admits a refinement ϕ′ : G ′ → T ′ that is a finite harmonic
morphism of the same degree as ϕ. Thus, let e = (v1, v2) ∈ G denote an edge that
is mapped to a vertex ϕ(e) = x ∈ V(T ). Add an extra leaf � to T at x , subdivide e
into two edges (v1, m) and (m, v2), and map both e1 and e2 to �. Set rϕ′(ei ) = mϕ(vi )

for i = 1, 2. Finally, add a leaf �w to all w ∈ ϕ−1(x), map them all to �, and set
rϕ′(�w) = mϕ(w). �


The following elementary fact, a “trivial” spectral bound on the gonality, does not
seem to have been observed before:

Proposition A.4 The gonality of a graph G is bounded below by the edge-connectivity
(viz., the number of edges that need to be removed from the graph in order to disconnect
it):

gon(G) ≥ η(G).

If G is a simple graph (i.e., without multiple edges), unequal to a complete graph, then

gon(G) ≥ λG .
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Table 3 Some graphs and their invariants, including gonalities

Graph G sgon(G) gon(G) dgon(G) η(G) tw(G) �G λG |G| λ∼G vol(G)

Complete graph Kn n − 1 n − 1 n − 1 n − 1 n − 1 n − 1 n n n
n−1 n(n − 1)

Cycle graph Cn 2 2 2 2 2 2 4 sin2( π
n ) n 2 sin2( π

n ) 2n

Utility graph K3,3 3 3 3 3 3 3 3 6 1 18

Banana graph Bn 2 n 2 n 2 n 2n 2 2 2n

3 3 3 2 2 3 5−√7 ≈ 2.35 3 λG 10

Proof Let ϕ : G → T denote a harmonic non-degenerate morphism. Choose any edge
e ∈ E(T ). Since removing e from T disconnects it, ϕ−1(e) is a set of edges of G whose
removal disconnects G. Hence

gon(G) ≥ |ϕ−1(e)| ≥ η(G).

For a simple graph which is not complete, the bound

η(G) ≥ λG

is one of the inequalities of Fiedler [28, 4.1 & 4.2]. �

Remark A.5 The “trivial” spectral bound in the above proposition is not very useful
in practice, since it does not contain a “volume” term (like the Li–Yau inequality).
Also, since every graph acquires edge connectivity two or one by refinements, the
lower bound in the proposition trivializes under refinements (which are required by
the reduction theory of morphisms).

A.6. (Relation with divisorial gonality). Another notion of gonality of graphs G and,
more generally, of metric graphs Γ was introduced by Baker in [8], defined as the
minimal degree d for which there is a g1

d on Γ (in analogy to the definition from
algebraic geometry). Following Caporaso, we call this gonality of graphs divisorial
gonality. In [14], Caporaso has proven a Brill–Noether upper bound for divisorial
gonality. For a fixed unmetrized graph, the relation between gonality and divisorial
gonality is studied in [15], especially Examples 2.18, 2.19 and Corollary 3.2.

Since the reduction of a stable curve is naturally a metric graph (cf. [8]), one should
not ignore the metric in connection with gonality of curves. Baker has proven that the
gonality of a curve X is larger than or equal to the divisorial gonality of its metric
reduction graph [8, Cor. 3.2].

Also, the stable gonality of a graph is larger than or equal to its stable divisorial
gonality (i.e., the minimum of the divisorial gonality of all refinements).

The banana graph Bn has divisorial and stable gonality 2 but edge connectivity
n (cf. Table 3), showing that an equality analogous to the one in Proposition A.4
cannot hold for divisorial or stable gonality. Dion Gijswijt remarked that dgon(G) ≥
min{|G|, η(G)}. With van Dobben de Bruyn, he has also proven that the divisorial
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gonality of a graph is larger than or equal to its treewidth (unpublished, but some
preliminaries can be found in [60]), but the entries in Table 3 show that the inequality
can be strict. Lower bounds on treewidth imply such bounds on divisorial gonality
(e.g., [10,58]).

A.7. It seems that our notion of stable gonality of a graph coincides with the notion
of gonality introduced in [4] from the viewpoint of tropical geometry. The connection
between tropical curves and metric graphs can already be found in Mikhalkin [41],
and the notion of harmonic morphism of metric graphs in Anand [6].

A.8. We have collected some sample values in Table 3. As above, λG is the first
eigenvalue of LG , and λ∼G is the first eigenvalue of the normalized Laplacian L∼G ; η(G)

is the edge connectivity, ΔG the maximal vertex degree, vol(G) is the volume of the
graph, tw(G) its treewidth; gon(G) is the gonality, dgon(G) is the divisorial gonality,
and sgon(G) is the stable gonality of G. We leave out the lengthy but elementary
calculations (for the divisorial gonality of Kn , we refer to [8, 3.3]).
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