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Introduction

Chow rings in algebraic geometry. The study of algebraic cycles on an algebraic
varietyX under the equivalence relation of rational equivalence is a classical topic in
algebraic geometry. This is usually formalized by theChow group

CH.X/D
M
p

CHp.X/

where CHp.X/ is the group of codimensionp cycles onX , i.e. the free abelian group on
subvarietiesY � X of codimensionp, modulo the subgroup of cycles rationally equiva-
lent to zero. The latter is generated by those cycles that appear as the divisor of a rational
function on a subvariety of codimensionp� 1 and we can roughly think of the equiva-
lence relation as follows: two cycles are rationally equivalent if one can be continuously
deformed into the other along a projective line (see [Ful98, Section 1.6] for a more pre-
cise statement). The group CH.X/ can be viewed as a generalization of the (Weil) divisor
class group Cl.X/DCH1.X/, which in turn often coincides with the Picard group Pic.X/

(e.g. whenX is locally factorial). It is named after W.-L. Chow (see [Cho56]).
WhenX is regular, the group CH.X/ can be made into a graded ring (theChow ring)

by defining a product

CHp.X/˝CHq.X/! CHpCq.X/ :

Geometrically, this is interpreted as taking the intersection of a cycle class of codimension
p with one of codimensionq, while keeping track of intersection multiplicities. A formal
definition of the product requires some work as the codimension of the intersection may
not always be right and it is not so easy to define the right notion of intersection multi-
plicity. There are (at least) three possibilities to overcome these difficulties: the classical
way is to use the Moving Lemma (see e.g. [Rob72]), two modern apporaches are given by
“deformation to the normal cone” (see [Ful98]) and by using the product in the algebraic
K-theory ofX (see [Gra78]).

Let us remark that Chow groups and the intersection product are used widely in
algebraic geometry, for example for the construction of the categoryMk of motives over
a fieldk. In this category, the morphisms and composition of morphisms are defined using
these constructions (see [Sch94]).

Triangulated categories. The question that is addressed in this thesis is how to ap-
proach the subject from the point of view of (tensor) triangulated categories. Examples
of these arise in algebraic geometry as (several flavors of) derived categories of (quasi)-
coherent sheaves onX that can be viewed as an invariant attached toX . In general,
derived categories are the natural domain of study for derived functors and historically,

iii



iv Introduction

the examples just mentioned played a crucial role for the formulation of Grothendieck
duality. They are also studied in mathematical physics in the context of “homological
mirror symmetry” (see e.g. [Kon95]).

Can one reconstruct the ring (or at least the group) CH.X/ from these triangulated
categories “in purely categorical terms”? Can we give a notion of Chow group (or ring) for
a triangulated category and transport the existing theory from algebraic geometry to other
settings that involve the study of triangulated categories? If Db.X/ is the bounded derived
category of coherent sheaves onX andX is non-singular and has ample canonical or anti-
canonical bundle, a well-known result of Bondal and Orlov (see [BO01]) tells us that
Db.X/ is a complete invariant, i.e. we can reconstructX from the triangulated category
Db.X/. Thus, it is certainly possible to recover CH.X/ from Db.X/ in that situation. On
the other hand, ifX is a complex abelian variety of dimensiong and OX denotes its dual,
then it is known that there is an equivalence of triangulated categories Db.X/Š Db. OX/.
This equivalence induces an isomorphism

CHQ.X/Š CHQ. OX/

of Chow groups with rational coefficients, but the isomorphism does not preserve the
degree of cycles, for example it sendsX 2 CH0Q.X/ to .�1/g � .0/ OX

2 CHgQ. OX/ (see e.g.
[BL04, Chapter 16]). Hence, we should not expect that the definition of a Chow group
CH.Db.X// that depends only on the triangulated structure of Db.X/ would allow us to
talk about subgroups CHp.Db.X// for p 2 Z.

In order to remedy this shortcoming, we allow ourselves to consider more structure
than just a triangulation on the category. To be more precise, we consider for any scheme
X (regular or not), the derived category of perfect complexes Dperf.X/ � Db.X/, which
naturally has the structure of atensor triangulated category, i.e. it is equipped with a sym-
metric monoidal structure induced by the derived tensor product of complexes of sheaves.
The inclusion Dperf.X/ � Db.X/ is an exact equivalence ifX is regular. WhenX is sin-
gular however, the derived tensor product of complexes of sheaves does not extend to
Db.X/ in general and we have to work with Dperf.X/ instead if we want a tensor structure.
In [Bal05], it is shown that we can associate to every essentially small tensor triangu-
lated categoryT a topological space Spc.T / such that Spc.Dperf.X//ŠX as topological
spaces. It is also shown that one can reconstruct the whole varietyX (i.e. including the
structure sheaf) from Dperf.X/ considered as a tensor triangulated category. Thus, it is
certainly possible to reconstruct CH.X/ from Dperf.X/, but we want something more: to
construct a functor CH�p .�/, that takes a tensor triangulated categoryT and produces a

group CH�p .T / such that CH�p .D
perf.X//Š CHp.X/.

The Chow groups of a tensor triangulated category.We show that such a construc-
tion is realized by a definition of CH�p .�/ suggested to the author by P. Balmer in 2011
and now available in [Bal13]. One of the characteristic features of this approach is that
in the definition of algebraic cycles, one allows for coefficients in certain Grothendieck
groups of local categories, instead of taking coefficients in the integers. The definition is
constructed in analogy to the situation in the G-theory of a non-singular algebraic vari-
etyX , where CHp.X/ appears in the Brown-Gersten-Quillen coniveau spectral sequence
associated toX (see [Qui73]).
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For a tensor triangulated categoryT , the group CH�p .T / depends on the choice of
a dimension functiondim W Spc.T /! Z[ f˙1g (see Definition1.4.1), which should
behave similarly to the way the Krull (co)dimension on spectral topological spaces does.
It gives rise to a filtration

(1) � � � � T.p�1/ � T.p/ � T.pC1/ � �� �

of T that is used to define CH�p .T / (see Definitions2.2.3and2.2.4). We prove:

THEOREM (see Theorem2.3.5). LetX be a non-singular scheme of finite type over a
field. EndowDperf.X/ with the opposite of the Krull codimension as a dimension function.
Then for allp 2 Z,

CH�p
�
Dperf.X/

�
Š CH�p.X/ :

Apart from reconstructing the classical Chow groups, the definition of CH�
p .T / also

behaves well in its own right, when we consider it as an invariant ofT . We show that
CH�p .�/ is functorial for the class of exact functors with a relative dimensionn 2 Z (cf.
Definition 2.4.1). These are exact (not˝-exact) functors that preserve the filtration that
the choice of a dimension function induces onT , up to a shift byn. We show

PROPOSITION(see Proposition2.4.3). Let F WK ! L be a functor of relative di-
mensionn. Then for allp 2 Z, F induces a group homomorphism

CH�p .F / W CH�p .K/! CH�pCn.L/

and we prove that the proper push-forward and flat pull-back morphisms on the classical
Chow groups can be interpreted as special cases of the above theorem, at least when
the varietyX is nice enough, e.g. non-singular, separated of finite type over a field (see
Proposition2.4.13and Proposition2.4.15).

Examples from representation theory. Tensor triangulated categories appear in nu-
merous areas of mathematics, and our general definition applies to examples that do not
come from algebraic geometry as well. In modular representation theory, for a finite
groupG and a fieldk whose characteristic dividesjGj, one studies the bounded derived
category Db.kG-mod/ of finite-dimensionalkG-modules and the stable module category
kG-stab. The latter category has the same objects askG-mod and morphisms

HomkG-stab.M;N /D HomkG-mod.M;N /=I

for all finite-dimensionalkG-modulesM;N , whereI is the subgroup of homomorphisms
that factor through a projective module (see Example1.2.6). Both categories Db.kG-mod/
andkG-stab are tensor triangulated with tensor product˝k and we show that they have
isomorphic tensor triangular Chow groups in almost all degrees, which should not come
as a big surprise in view of Rickards equivalence (see [Ric89])

kG-stabŠ Db.kG-mod/=Dperf.kG-mod/ :

We prove:

THEOREM (see Theorem3.2.6). ConsiderkG-stabandDb.kG-mod/ with the Krull
dimension of support as a dimension function onSpc.kG-stab/ andSpc.Db.kG-mod//.
Then for allp � 0, there are isomorphisms

CH�p .kG-stab/Š CH�pC1.D
b.kG-mod// :
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We also compute the associated tensor triangular Chow groups forG D Z=pnZ and
G D Z=2Z�Z=2Z:

THEOREM (see Propositions3.3.2, 3.4.7and3.4.9). Letk be a field of characteristic
p. ForG D Z=pnZ, we have

(i) CH�i .kG-stab/D 0 8i ¤ 0,
(ii) CH�0 .kG-stab/Š Z=pnZ,

and ifp D 2 andH D Z=2Z�Z=2Z then

(iii) CH�i .kH -stab/D 0 8i ¤ 0;1,
(iv) CH�0 .kH -stab/Š Z=2Z,
(v) CH�1 .kH -stab/Š Z=2Z if k is algebraically closed,

when we endowkG-stab;kH -stabwith the Krull dimension as a dimension function on
Spc.kG-stab/;Spc.kH -stab/.

In the course of the above computations, we also see that it is possible to obtain cycle
groups with torsion coefficients (see Proposition3.3.2), which contrasts with the situation
in the algebro-geometric case. This illustrates that we view a general cycle, rather than
as aZ-linear combination of irreducible subspaces of codimensionp of the spectrum
Spc.T /, as an element of a Grothendieck group K0.T.p/=T.p�1// of a Verdier subquotient
of the filtration (1). Only in the non-singular algebro-geometric examples does this pro-
duce cycles with coefficients inZ, due to the “coincidence” that the Grothendieck group
of the derived category of finite-length modules over a local ring is isomorphic toZ (see
Remark2.2.5).

Generalization to the relative case and localization.In order to increase the flexi-
bility of our approach, we proceed by extending the definition of tensor triangular Chow
groups to the relative case, i.e. we define for eachp 2 Z Chow groups CH�p .T ;K/ of a
compactly generated triangulated categoryK, relative to the action of a tensor triangu-
lated categoryT (see Definition4.2.1and [Ste13] for the formalism of actions of a tensor
triangulated category). Here, bothT andK are assumed to have set-indexed coproducts
and are therefore not essentially small. We show that when one considers the full derived
categoryDQcoh.X/ of complexes ofOX -modules with quasi-coherent cohomology on a
noetherian schemeX , acting on itself via the left-derived tensor product, we recover the
tensor triangular Chow groups of Dperf.X/. This is obtained as an immediate consequence
of the following more abstract result. Denote byT c � T the full subcategory of compact
objects, which is an essentially small tensor triangulated category.

THEOREM (see Proposition4.2.4). Let T be a compactly-rigidly generated tensor
triangulated category with arbitrary set-indexed coproducts, equipped with a dimension
function onT c and such thatSpc.T c/ is noetherian. Consider the action ofT on itself
via its tensor product, and assume that the local-to-global principle (cf. Definition4.1.6)
holds for this action. Then we have isomorphisms

CH�p .T ;T /Š CH�p .T
c/

for all p 2 Z.

The flexibility we gained by extending the original definition allows us to construct
localization sequences for our tensor triangular cycle groups and Chow groups.
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THEOREM (see Theorem4.3.9). Let T be a compactly-rigidly generated tensor tri-
angulated category with arbitrary set-indexed coproducts such that the local-to-global
principle is satisfied for the action ofT on itself. LetT c � T denote the full subcat-
egory of compact objects and assume thatSpc.T c/ is a noetherian topological space.
LetU � Spc.T c/ be an open subset with closed complementZ, denote byTZ � T the
triangulated subcategory of objects with support contained inZ and byTU the Verdier
quotientT =TZ . Then there is an exact sequence

Z�p .T ;TZ/
ip
�! Z�p .T

c/
lp
�! Z�p .T

c
U /! 0

for all p 2 Z. Furthermore, ifT c=T c
Z is idempotent complete andp � dim.Z/, then we

obtain an exact sequence

CH�p .T ;TZ/
�p
�! CH�p .T

c/
`p

�! CH�p ..TU /
c/! 0 :

Tensor Frobenius pairs and intersection product.The last chapter of the thesis
treats the construction of an intersection product on the tensor triangular Chow groups.
As their definition was by analogy with the coniveau spectral sequence from algebraic
K-theory, one could expect to obtain an intersection product via the higher algebraic K-
theory of the categoryT . It turns out that this is possible under two assumptions.

We first need thatT has an algebraic model, i.e. it arises as the derived category
of a tensor Frobenius pairA. A tensor Frobenius pair (see Definition5.4.2) is a special
case of the concept of Frobenius pair from [Sch06] and consists of a pair of Frobenius
categoriesA0 �A together with a compatible symmetric monoidal structure onA. The
derived category ofA is by definition the Verdier quotientA=A0 of the corresponding
stable categories. Frobenius pairs are necessary to be able to define the Waldhausen K-
theory ofT (see Schlichting’s articles [Sch02,Sch06]) andtensorFrobenius pairs make it
possible to introduce products in the K-theory ofT . The use of the machinery of [Sch06]
in conjunction with this new definition requires us to prove that tensor Frobenius pairs
are well-behaved with respect to passing to countable envelopes, a result that is proved
in Chapter5, which lays the technical foundations for Chapter6. As a side effect of
assuming thatT arises as the derived category of a tensor Frobenius pair, we exclude a
priori some tensor triangulated categories not coming from an algebraic setting (e.g. the
stable homotopy category of finite spectra from topology).

Our second and more severe assumption on the category is that the Frobenius pairA

(together with a chosen dimension function for its derived categoryT ) needs to satisfy an
analogue of the Gersten conjecture from algebraic geometry (see Definition6.4.1). This
can be interpreted as a “regularity condition” onA.

Under these circumstances we can prove a theorem analogous to the Bloch formula
from algebraic K-theory (see [Ful98, Section 20.5]). In order to do this, we make a small
adjustment to the definition of CH�p .T /, and choose to work with subgroups\CH�p .T /�

CH�p .T / instead (see Definition6.5.1). As the notation suggests, the group\CH�p .T /
does not depend on the choice of tensor Frobenius pairA but only on its derived category.
The tensor Frobenius pairA is used to define a K-theory sheafK0

p on Spc.T /.

THEOREM (see Theorem6.5.4). Let T be an essentially small, rigid, topologically
noetherian tensor triangulated category that arises as the derived category of a tensor
Frobenius pair. Assume that the triangulated Gersten conjecture holds forA when we
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equip its derived category with the opposite of the Krull codimension as a dimension
function. Then we have isomorphisms

\CH��p.T /Š Hp.Spc.T /;K0
p/

for all p 2 Z.

In the light of this result, one can ask if we should work with\CH�p .�/ instead of

CH�p .�/ in general. After all, our result that states agreement with the usual Chow groups

from algebraic geometry in the non-singular case also holds true with CH�
p .�/ replaced

by \CH�p .�/ (see Lemma6.7.6). In the end, both definitions may have their own merits.
We exploit the above theorem to construct an intersection product

˛ W \CH�p .T /�\CH�q .T /! \CH�pCq.T /

by combining the cup product from sheaf cohomology and the product in the K-theory
of A (see Definition6.6.3). While the groups\CH�� .T / only depend on the derived
categoryT , the product̨ a priori depends on the full tensor Frobenius pairA.

Using an isomorphism\CH��p.D
perf.X//Š CHp.X/ for a non-singular variety and

a result of Grayson (see [Gra78]), we can prove that our construction generalizes the usual
intersection product for a specific choice of tensor Frobenius pair, assuming a compatibil-
ity condition between the products on Quillen and Waldhausen K-theory.

THEOREM (see Theorem6.7.7). LetX be a separated, non-singular scheme of finite
type over a field. LetsPerf denote the Frobenius pair of strict perfect complexes onX

(see Definition6.7.1) and T the derived category ofsPerf. Assume that diagram (26)
commutes for alli;j � 0 and all opensU � X . Let ˛ denote the intersection product
from Definition6.6.3and˛0 the usual intersection product onX . ThenT ŠDperf.X/ and
the diagram

\CH��p.T /˝\CH��q.T /
˛ //

Š

��

\CH��p�q.T /

Š

��

CHp.X/˝CHq.X/
˛0

// CHpCq.X/

commutes up to a sign.�1/pq for all p;q � 0.

For the reader’s convenience, we include a glossary that briefly explains some impor-
tant notions we use from category theory and algebraic geometry.



CHAPTER 1

A short review of tensor triangular geometry

In this chapter, we review some basic theory of the subject of tensor triangular geom-
etry. For most of the chapter, we follow the treatment in the articles [Bal05,Bal10a,Bal07,
Bal10b,BF11]. Before we do this, we need to recall the basic theory of triangulated cate-
gories as introduced by Verdier in [Ver96]. For this, we use [Nee01] as our main source,
and in part [Kra10] for Bousfield localization. This chapter does not contain new results
and for brevity, most proofs will only be referenced. We will, however, sketch the proofs
of some results that will be crucial for the development of the theory in the following
chapters.

1.1. Triangulated categories

The axioms. We begin with the definition of a triangulated category, as given in
Neeman’s book [Nee01].

1.1.1. DEFINITION. A triangulated categoryis an additive categoryT , together with
an additive auto-equivalence†T W T ! T (called theshift or suspension) and a class of
sequences consisting of three composable morphisms

A! B! C !†T .A/

in T calleddistinguished triangles, satisfying the following axioms:

TR0: The sequence

X
id
�!X �! 0 �!†T X

is distinguished. All sequences isomorphic to a distinguished triangle are dis-
tinguished triangles: if in the commutative diagram inT

X //

r

��

Y //

s

��

Z //

t

��

†T X

†T r

��

X 0 // Y 0 // Z0 // †T X
0

the top row is a distinguished triangle and all vertical morphisms are isomor-
phisms, then the lower row is a distinguished triangle as well.

TR1: For any morphismf W X ! Y in T , there exists a distinguished triangle of the
form

X
f
�! Y �!Z �!†T X :

TR2: (“Rotating triangles”) Consider the two sequences

X
f
�! Y

g
�!Z

h
�!†T X

1



2 A short review of tensor triangular geometry

and

Y
�g
�!Z

�h
�!†T X

�†T f
�! †Y :

If one of the two is a distinguished triangle, so is the other.
TR3: For any commutative diagram inT of the form

X //

r

��

Y //

s

��

Z // †T X

†T r

��

X 0 // Y 0 // Z0 // †T X
0

where the rows are distinguished triangles, there exists a morphism

t WZ!Z0

such that the diagram

X //

r

��

Y //

s

��

Z //

t

��

†T X

†T r

��

X 0 // Y 0 // Z0 // †T X
0

commutes.
TR4: (“The octahedron”) Given three distinguished triangles

X
f
// Y

r // Z
u // †T X

Y
g
// Y 0

s // Y 00
v // †T X

X
gf
// Y 0

t // Z0
w // †T X

we can complete them to a commutative diagram inT

X
f

//

id

��

Y
r //

g

��

Z

m

��

u // †T X

id
��

X
gf

//

��

Y 0
t //

s

��

Z0
w //

n

��

†T X

��

0 //

��

Y 00
id //

v

��

Y 00 //

��

0

��

†T X
†T f // †T Y

†T r // †T Z
�†T u // †2

T
X

where the first two rows and second column are the given triangles and all rows
and columns are distinguished triangles. Furthermore, we require the sequence

Y

0@ g
�r

1A
����! Y 0

˚Z

�
t m

�
������!Z0 vın

��!†T .Y /
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to be a distinguished triangle and the compositions†T f ıw andv ı n to be
equal.

If there is no danger of confusion, we will omit the subscript from†T and just use
the notation† instead.

1.1.2. REMARK . It can be shown from the axioms that the composition of any
two consecutive arrows in a distinguished triangle is zero, see for example [Nee01, Re-
mark 1.1.3].

1.1.3. REMARK . It is true that the objectZ of axiomTR1 is determined up to iso-
morphism - this is follows directly from [Nee01, Proposition 1.1.20]. However, as a
consequence of the possible non-uniqueness of the morphismt in TR3, Z is generally
not determined byf up to unique isomorphism. ThusZ does not functorially depend
onf , which is a well-known shortcoming of triangulated categories. Still, we denote by
cone.f / any object in the isomorphism class ofZ.

Triangulated categories are very widespread in the mathematical landscape and usu-
ally appear when there is a notion of homotopy involved. The most basic example in the
algebraic setting is the derived category of an abelian category.

1.1.4. EXAMPLE . Let A be an abelian category. Itsderived categoryD.A/ is formed
by considering the category of chain complexes inA and formally inverting all morphisms
of chain complexes that induce isomorphisms in homology (these morphisms are called
“quasi-isomorphisms”). The suspension functor is given by shifting the degree of a com-
plex by one and flipping the sign of the differentials. The distinguished triangles in D.A/

are exactly those diagrams isomorphic (in D.A/) to sequences of chain complexes of the
form

X�
f
�! Y � i

�! C.f /
p
�!†.X�/

wheref WX�! Y � is any map of chain complexes, C.f / is themapping coneof f given
as the chain complex

C.f /i WDX iC1˚Y i d iC.f / WD

�
�d iC1X 0

f iC1 d iY

�
;

i W Y �! C.f / is the canonical injection andp W C.f /!†.X�/ is the canonical projec-
tion.

A common variant of the theme is to only considerboundedchain complexes inA,
i.e. those that are zero in high and low enough degrees. This yields thebounded derived
categoryDb.A/ which is triangulated as well. For more details on the construction, see
e.g. [GM03].

Another, in a sense more general, construction is the following.

1.1.5. EXAMPLE (see [Hap88, Chapter I.2]). A Frobenius categoryis an exact cat-
egoryE in the sense of Quillen (see e.g. [Büh10] for a comprehensive treatment of the
basic theory of exact categories) that has enough injective and projective objects, and in
which the classes of injective and projective objects coincide. Thestable categoryE is
the category with the same objects asE and where the morphisms between two objects
A;B 2 E are given as

HomE.A;B/ WD HomE.A;B/=I
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whereI is the subgroup of morphisms that factor through a projective-injective object of
E. The categoryE has a natural triangulation, where the suspension functor is given as
follows: for each objectE of E, choose a fixed conflation

(2) 0!E! I !†.E;I /! 0

with I injective. We define†.E/ as the object†.E;I / in E, whereI comes from the
fixed conflation (2). Using Schanuel’s Lemma for injective objects, one checks that with
a different choice of conflation

0!E! J !†.E;J /! 0

with J injective,†.E;I / and†.E;I / are actually isomorphic inE. The functor†
defines an endofunctorE ! E and it is an equivalence with quasi-inverse defined as
follows: for each objectF of E, choose a conflation

0!†�1F ! P ! F ! 0

with P projective.
In order to define the class of distinguished triangles inE, we associate to each con-

flation

0! A
i
�! B

p
�! C ! 0

in E astandard triangle

A
i
�! B

p
�! C

�
�!†A

in the following way: the morphismsi ;p are the images ofi;p in E and� is defined as
follows: consider the commutative diagram

A
i // B

p
//

g

��

C

�

��

A // I // †A

with exact rows inE, where the lower row is the chosen conflation (2) for E D A andg
exists because of the injectivity ofI . One checks that the class of� in E is independent
of the choice ofg and so we take it as the definition of�. We define a diagram

X ! Y !Z!†X

in E to be a distinguished triangle iff it is isomorphic to a standard triangle. This defines
the structure of a triangulated category onE.

1.1.6. EXAMPLE (cf. [Hap88, Chapter I.3] or [Kel96, Example 6.1]).Let A be an
additive category and consider the category of bounded chain complexes Cb.A/. We
endow Cb.A/with the exact structure where a sequence of morphisms of chain complexes

A�! B�! C�

is a conflation iffAi ! Bi ! Ci is split-exact for alli . Then one checks that Cb.A/
is a Frobenius category, where the class of projective-injective objects is given by the
contractible complexes. The associated stable category is Kb.A/, the bounded homotopy
category ofA.
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1.1.7. REMARK . We call a triangulated category that arises as the stable category of
a Frobenius categoryalgebraic. It can be shown that the derived category of an abelian
category is algebraic. There are examples of non-algebraic triangulated categories from
topology (e.g. the stable homotopy category of finite spectra, see [Sch10]) but for the rest
of this thesis, our examples will always be algebraic.

Before we proceed, let us introduce the appropriate notion of morphism in the world
of triangulated categories.

1.1.8. DEFINITION. An additive functorF W T !U between two triangulated cate-
goriesT ;U is calledexactif we have a natural isomorphism

F ı†T Š†U ıF

andF sends distinguished triangles to distinguished triangles.

Verdier localization. One of the most useful constructions for triangulated cate-
gories is Verdier localization. Given a triangulated categoryT and a triangulated subcat-
egoryS � T (see Definition1.1.9), the basic idea is to construct a triangulated category
T =S and an exact localization functorF W T ! T =S such thatF.A/D 0 for all objects
A 2 S and the pair.T =S ;F / is universal for that property.

1.1.9. DEFINITION (See e.g. [Nee01, Definition 1.5.1]). Let T be a triangulated
category andS � T be a subcategory. The subcategoryS is called triangulated if it
is a full, additive subcategory such that

� Every object ofT isomorphic to an object ofS is already inS (S is a replete
subcategory).
� †.S/D S .
� For any distinguished triangle

A! B! C !†A

such thatA;B are objects ofS , the objectC must also be inS .

We give the basic idea for the construction ofT =S andF . For a comprehensive
treatment in the present context, see [Nee01, Chapter 2]. The objects ofT =S are the
same as the objects ofT and the morphisms are given as follows: given two objectsX;Y

we consider “fractions”, i.e. diagrams of the form

X
f
 �Z! Y

where cone.f / is an object ofS . We introduce an equivalence relation� on the class of
fractions˛.X;Y /. Two fractions

X
f
 �Z! Y

and

X
g
 �Z0

! Y

in ˛.X;Y / are considered equivalent if there is a third fraction

X
h
 �Z00

! Y
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in ˛.X;Y / and morphismsZ00!Z;Z00!Z0 such that the diagram

Z

f
~~||

||
||

||

  
BB

BB
BB

BB

X Z00

h

oo

OO

��

// Y

Z0

g

``BBBBBBBB

>>}}}}}}}}

commutes. We now set HomT =S .X;Y / WD ˛.X;Y /=�. Next, one defines a composition
of fractions using “homotopy pullbacks” (see [Nee01, Lemma 2.1.16]) and checks that
this choice of morphisms makesT =S an additive category, and that one obtains a functor
F W T ! T =S that is the identity on objects and sends a morphismf W X ! Y to the

fractionX
id
 X

f
! Y . The auto-equivalence†T induces an auto-equivalence†T =S by

componentwise application of†T to fractions. If we define the class of distinguished
triangles inT =S as those diagrams isomorphic to images of distinguished triangles ofT

underF , this givesT =S the structure of a triangulated category.

1.1.10. THEOREM (see [Nee01, Theorem 2.1.8]).Let T be a triangulated category
and S � T a triangulated subcategory. Then the exact functorF W T ! T =S has the
property thatF.A/ D 0 for all objectsA 2 S and the pair.T =S ;F / is universal for
that property: given any exact functorG W T !U between triangulated categories such
thatF.A/D 0 for all objectsA 2 S , G must factor asG D G ıF for a unique functor
G W T =S !U.

1.1.11. DEFINITION. We call the functorF W T ! T =S of Theorem1.1.10 the
Verdier quotient functoror Verdier localization functorassociated toS .

1.1.12. REMARK . For a morphismf 2 T with cone.f / 2 S , its imageF.f / under
the localization functor is an isomorphism (see [Nee01, Lemma 2.1.21]). Given an object
S 2 S , the morphism0! S has coneS and is therefore an isomorphism. We see that all
objects ofS become isomorphic to0 in T =S .

In general, it isnot true that the full subcategory of objects thatF sends to0 (called
thekernelof F ) is equal toS .

1.1.13. DEFINITION. A triangulated subcategoryS � T is calledthick if it contains
all direct summands of all objects ofS . Thethick closureof a triangulated subcategoryS

is the smallest thick triangulated subcategory ofT containingS .

1.1.14. PROPOSITION (see [Nee01, Remark 2.1.39]).The kernel ofF is the thick
closure ofS .

PROOF. In [Nee01, Lemma 2.1.33] it is proved that the kernel ofF is precisely the
full subcategory containing all direct summands of all objects ofS . As the thick closure
of S must contain all direct summands of all objects ofS , it must therefore contain the
kernel ofF . But kernels of exact functors are always triangulated subcategories, so the
result follows. �

In the case that we are given a chain of triangulated subcategoriesR � S � T , the
following isomorphism theorem holds.
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1.1.15. LEMMA . Let R � S � T be triangulated subcategories. Then we have an
exact equivalence of triangulated categories

.T =R/=.S=R/Š T =S :

PROOF. Let Q denote the composition of the Verdier quotient functorsQ1 W T !

T =R andQ2 W T =R! .T =R/=.S=R/. The functorQ sends all objects ofS to 0 and
we will show that the pair..T =R/=.S=R/;Q/ has the universal property from Theorem
1.1.10.

Let G W T ! U be any exact functor that sends all objects ofS to 0. As R � S ,
the universal property from Theorem1.1.10tells us thatG factors uniquely asX ıQ1
with X W T =R! U. But X sends all objects ofS=R to 0, so another application of
Theorem1.1.10tells us that it factors uniquely viaQ2. In conclusion,G factors uniquely
viaQ2 ıQ1 DQ, as desired. �

We also record the following lemma.

1.1.16. LEMMA . The natural functor

I W S=R! T =R

induced by the inclusionS ,! T is fully faithful.

PROOF. In order to see thatI is full, letA;B 2 S be two objects. Then a morphisms
f W A! B in T =R is represented by a fraction

(3) A
h
 � C

g
�! B

in T such that cone.h/ 2R � S . Thus, we have a distinguished triangle

C
h
�! A! cone.h/!†C

with A;cone.h/ 2 S , from which it follows that we must haveC 2 S as well, asS was
a triangulated subcategory. Therefore, the fraction (3) also defines a morphism inS=R
whichI maps tof .

To check faithfulness, letm;m0 WD! E be two morphisms inS=R represented by
fractions inS

D
s
 � F

t
�!E

and

D
s0

 � F 0 t
0

�!E

respectively, with cone.s/;cone.s0/ 2R. If I.m/D I.m0/, there exists a fraction

D
s00

 � F 00 t
00

�!E
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in T with cone.s00/ 2R and morphismsu W F 00! F;v W F 00! F 0 such that the diagram
in T

(4)

F

s

~~||
||

||
|| t

  B
BB

BB
BB

B

D F 00
s00
oo t 00 //

u

OO

v

��

E

F 0

s0

``BBBBBBBB t 0

>>}}}}}}}}

commutes. AsD;cone.s00/ 2 S , we conclude again that the same must hold forF 00 and
therefore, diagram (4) is actually contained inS and thereforemDm0. �

Bousfield localization. Let us introduce a flavor of Verdier localization that will
become useful in Chapter4.

1.1.17. DEFINITION (see [Nee01, Definition 9.1.1]). Let S � T be a thick triangu-
lated subcategory. We say that aBousfield localization functor exists for the pairS � T

if the Verdier localization functorF W T ! T =S has a right adjointG.

Bousfield localizations are useful for us, as they let us perform the localization

F W T ! T =S

inside ofT , as in Theorem1.1.19.

1.1.18. DEFINITION. Let S � T be a class of objects. Then we define theS? as the
full subcategory ofT with objects

fx 2 T W HomT .s;x/D 0 8s 2 Sg :

The categoryS? is calledthe subcategory ofS-local objects.

1.1.19. THEOREM(see [Nee01, Theorem 9.1.16]).LetS � T be a thick triangulated
subcategory and suppose a Bousfield localization functor exists for the pairS � T . Then
the subcategory ofS-local objects is equivalent as a triangulated category to the Verdier
quotientT =S . More precisely, the composition

S? ,! T ! T =S

is an exact equivalence of triangulated categories.

Another useful consequence of the existence of a Bousfield localization functor is the
existence of certain functorial triangles. The unit of the adjunction from Definition1.1.17
gives us for each objectt 2 T a morphismt ! GF.t/. We denoteGF.t/ by tS? . If we
complete this morphism to a distinguished triangle and rotate, we obtain a distinguished
triangletS ! t! tS? !†.tS /, so thattS Š†�1.cone.t! tS?//. It can be shown (see
[Nee01, Proposition 9.1.8]) thattS 2 S .

1.1.20. THEOREM (see [Kra10, Proposition 4.11.2]).Let S � T be a thick triangu-
lated subcategory and suppose a Bousfield localization functor exists for the pairS � T .
Let x! t ! y ! †.x/ be a distinguished triangle inT such thatx 2 S andy 2 S?.
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Then there exist unique isomorphisms˛ W x! tS ;ˇ W y! tS? such that the diagram

x //

˛

��

t //

id

��

y //

ˇ

��

†.x/

†.˛/

��

tS // t // tS? // †.tS /

commutes. In other words, the distinguished triangletS ! t ! tS? ! †.tS / is unique
among trianglesx! t! y!†.x/withx 2S andy 2S?, up to a unique isomorphism
that restricts to the identity ont .

1.1.21. REMARK . The distinguished triangletS ! t ! tS? ! †.tS / gives rise to
two functorsL;� W T ! T whereLDGF and� is defined by�.t/ WD tS . We sometimes
callL the localization functor associated toS and� theacyclization functor associated
to S . For every objectt 2 T we then have a distinguished triangle

�.t/! t ! L.t/!†.�.t// :

1.1.22. REMARK (see [Kra10, Proposition 4.9.1]).The localization functorL associ-
ated toS from Remark1.1.21has kerLD S and the unit of the adjunction� W Id!L sat-
isfies the following two properties: the morphismL� WL!L2 is invertible andL�D �L.
Giving a pairS � T for which a Bousfield localization functor exists is equivalent to giv-
ing an exact functorL W T ! T and a morphism� W Id!L satisfying these two properties.
We call such a functor aBousfield localization functorand, in the terminology of Remark
1.1.21, L is the localization functor associated to ker.L/.

We conclude with an existence statement for Bousfield localizations, for triangulated
categories admitting set-indexed coproducts. Recall that a triangulated subcategory of
such a categoryT is called localizing if it closed under the formation of set-indexed
coproducts inT .

1.1.23. DEFINITION. Let T be a triangulated category admitting set-indexed coprod-
ucts. An objectt 2 T is calledcompactif every morphismt !

`
i2I xi into a coproduct

factors through̀ i2J xi , whereJ � I is a finite subset.

1.1.24. DEFINITION. A triangulated categoryT admitting set-indexed coproducts is
calledcompactly generatedif there exists asetof compact objectsC � T and there is no
proper localizing subcategory ofT containingC .

1.1.25. THEOREM(see [Kra10, Proposition 5.2.1]).LetT be a triangulated category
admitting set-indexed coproducts andS � T a localizing subcategory that is compactly
generated. Then a Bousfield localization functor exists for the pairS � T .

Grothendieck groups. We often want to associate an abelian group to a triangulated
category that reflects its triangulated structure. The Grothendieck group provides such a
construction and is defined analogously to the Grothendieck group of an abelian or exact
category.
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1.1.26. DEFINITION. Let T be an essentially small triangulated category. We define
its Grothendieck groupK0.T / as the free abelian group on the isomorphism classes ofT ,
modulo the subgroup generated by expressions of the form

Œa�� Œb�C Œc�

for each distinguished trianglea! b! c!†.a/.

1.1.27. PROPOSITION. LetF W T !U be an exact functor of essentially small tri-
angulated categories. ThenF induces a group homomorphism

K0.T /! K0.U/

by mappingŒa� to ŒF .a/� and extending linearly.

PROOF. This is a consequence of the fact thatF preserves distinguished triangles.
�

1.1.28. PROPOSITION. Let T be an essentially small triangulated category. Then
any element ofK0.T / is represented by an object ofT .

PROOF. The split-exact sequence

a
i1
�! a˚b

p2
�! b

0
�!†.a/

is a distinguished triangle, wherei1 andp2 denote the obvious injection and projection
morphisms: indeed, it is the coproduct of the distinguished triangle

a
id
�! a! 0!†.a/

and the distinguished triangle

0! b
id
�! b! 0

obtained from

b
id
�! b! 0!†.b/

by rotating. The coproduct of two distinguished triangles is a distinguished triangle by
[Nee01, Proposition 1.2.1 and Remark 1.2.2]. This tells us that the equality

Œa�C Œb�D Œa˚b�

holds in K0.T / for all objectsa;b;c of T . This also shows thatŒ0�D 0 holds in K0.T /.

Furthermore, if we rotate the trianglea
id
�! a! 0! †.a/ to get the trianglea!

0!†.a/!†.a/, we see that

Œa�C Œ†.a/�D 0

in K0.T /, which implies that�Œa�D Œ†.a/� in T .
As any element of K0.T / is represented by a (formal) finite sum of isomophism

classes of objects inT and their (formal) inverses, this proves the claim. �

1.1.29. EXAMPLE (see [Ill77, Exposé VIII]). Let A be an essentially small abelian
category. Then K0.Db.A//ŠK0.A/, where K0.A/ denotes the Grothendieck group ofA,
i.e. the free abelian group on the set of isomorphism classes ofA, modulo the subgroup
of generated by expressions of the form

Œa�� Œb�C Œc�
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whenever there is an exact sequence

0! a! b! c! 0

in A.
The isomorphism is explicitly given by

ŒC�� 7!
X
i

.�1/i ŒHi .C�/� :

If F W T !U is an exact functor of essentially small triangulated categories, it is
sometimes possible to describe the kernel of the induced map K0.T /! K0.U/. We
collect the following two results which will prove useful throughout the rest of this thesis.

1.1.30. PROPOSITION(see [Tho97, Corollary 2.3]). Let T ,!U be the inclusion of
a densetriangulated subcategory, i.e. every object ofU is a direct summand of an object
of T . Then the induced map

K0.T /! K0.U/

is injective.

1.1.31. PROPOSITION(see [Ill77, Exposé VIII, Prop. 3.1]).Let I W T ,!U be the
inclusion of a thick triangulated subcategory and denote byP WU!U=T the Verdier
quotient functor. Then there is an exact sequence

K0.T /
K0.I /
���! K0.U/

K0.P /
����! K0.U=T /! 0 :

WhenT is too large, its Grothendieck group is not a useful invariant.

1.1.32. PROPOSITION (Eilenberg swindle).Let T be an essentially small triangu-
lated category admitting countable coproducts. ThenK0.T /Š 0.

PROOF. Let a be an object ofT , then we have a distinguished triangle of the formM
i2N

ai
�
�!

M
i2N

ai ! a!†

 M
i2N

ai

!
whereai D a for all i and�i;j D 0 for j ¤ iC1 and�i;iC1 D id. Thus,

0D

"M
i2N

ai

#
�

"M
i2N

ai

#
C Œa�D Œa�

in K0.T /, which proves the claim. �

1.2. Tensor triangulated categories and the spectrum

Triangulated categories often have some extra structure. One particular bit of such
extra structure is that of a tensor product which is well-behaved with respect to the trian-
gulation.

1.2.1. DEFINITION (see [Bal10b, Definition 3]). A tensor triangulated category is a
triangulated categoryT endowed with a compatible symmetric monoidal structure. That
is, there is a bifunctor

˝ W T �T ! T
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and a unit objectI, together with associator, unitor and commutator isomorphisms: for
all objectsX;Y;Z in T , we have natural isomorphisms

X˝ .Y ˝Z/Š .X˝Y /˝Z; X˝ I ŠX Š I˝X; X˝Y Š Y ˝X

that satisfy the coherence conditions of [ML98, Section XI.1] to makeT a symmetric
monoidal category. Furthermore, the bifunctor˝ is exact in each variable.

1.2.2. REMARK . As an addition to the axiomatic of Definition1.2.1, one can ask
that the following coherence condition holds: by the biexactness of˝, we have natural
isomorphisms.†X/˝�Š†.X˝�/ and�˝†.Y /Š†.�˝Y / for all objectsX;Y 2
T . These fit into a diagram

.†X/˝ .†Y /
� //

o

��

†.X˝†Y /

o

��

†.†X˝Y /
� // †2.X˝Y /

which we require to commute up to a sign, i.e. the composition of the upper and right
isomorphisms should equal the composition of the left and lower isomorphisms or its
additive inverse (see e.g. [Bal10b]). This coherence condition will not be used explicitly
in the following, so we don’t require it for Definition1.2.1.

1.2.3. REMARK . We warn the reader that althoughT � T can be equipped with a
component-wise triangulated structure, the functor˝ W T �T ! T is not exact under the
assumptions of Definition1.2.1if T ¤ 0. In this situation, the unit objectI cannot be the
zero object (otherwise,AŠ A˝ I Š 0 for all objectsA 2 T , by additivity ofI˝�) and

we consider the two distinguished trianglesI
id
�! I! 0!†I andI

0
�! I! I˚†I!†I.

The tensor product of these triangles yields the sequenceI
0
�! I! 0!†2I which cannot

be a distinguished triangle unlessI Š 0, which we forbade.

1.2.4. EXAMPLE . Let R be a commutative ring. Then Kb.R�proj/, the bounded
homotopy category of finitely generated projectiveR-modules, is a tensor triangulated
category, with the tensor product induced by the usual tensor product of chain complexes.

Generalizing Example1.2.4leads to another important example coming from alge-
braic geometry.

1.2.5. EXAMPLE . A schemeX is calledquasi-separatedif the intersection of any
two quasi-compact open subsets ofX is again quasi-compact. LetX be a quasi-compact,
quasi-separated scheme and consider the derived category of perfect complexes Dperf.X/

onX . This is the triangulated subcategory of DQcoh.X/, the derived category of chain
complexes ofOX -modules with quasi-coherent homology, that consists of those com-
plexes that are locally quasi-isomorphic to a complex of locally free sheaves of finite rank.
The category Dperf.X/ carries the structure of a tensor triangulated category, where the
tensor product is given by̋ L , the left-derived tensor product of sheaves ofOX -modules.
The unit object is given by the chain complexI� that hasIj D 0 for j ¤ 0 andI0 DOX .

WhenX is noetherian, the canonical inclusion Db.Coh.X//! D.OX�mod/ has
essential image DbCoh.OX�mod/, the bounded derived category of complexes ofOX -
modules with coherent homology (see [BGI71, Corollaire 2.2.2.1]). As a perfect complex
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must be bounded by the quasi-compactness ofX and we can check locally that it has co-
herent cohomology, we can view Dperf.X/ as a triangulated subcategory of Db.X/ in this
case. WhenX is furthermore separated and regular, every coherent sheaf onX has a finite
resolution by locally free sheaves, which implies that the inclusion Dperf.X/ ,!Db.X/ is
an equivalence.

In the next chapters, we will sometimes consider examples that do not come from
algebraic geometry. The modular representation theory of finite groups provides us with
another source of tensor triangulated categories.

1.2.6. EXAMPLE . LetG be a finite group andk be a field such that char.k/ divides
the order ofG. The group algebrakG is self-injective (i.e. injective as a module over
itself), which implies that the categorykG-mod of finitely generatedkG-modules (=
finite dimensional representations overk) is a Frobenius category. As we saw in Example
1.1.5, the associated stable categorykG-stab is naturally a triangulated category. It is also
a tensor triangulated category, where the tensor product of two modulesM;N is given by
M ˝kN (not˝kG ; theG-action is diagonal) and the unit is the trivial modulek.

It turns out that the extra structure of the tensor product is enough to be able to set up
a geometric theory, if we assume thatT is essentially small. The main object one studies
in tensor triangular geometryis thespectrumof a tensor triangulated category, whose
construction we describe next.

1.2.7. DEFINITION. Let T be a tensor triangulated category. A thick triangulated
subcategoryJ � T is called

� ˝-ideal if T ˝J � J.
� prime if J is a proper̋ -ideal (J ¤ T ) andA˝B 2 J impliesA 2 J orB 2 J

for all objectsA;B 2 T .

1.2.8. DEFINITION (see [Bal05]). Let T be an essentially small tensor triangulated
category. Thespectrumof T is the set

Spc.T / WD fP � T WP is a prime idealg

topologized by the basis of closed sets of the form

supp.A/ WD fP 2 Spc.T / W A …P g

for objectsA 2 T . The set supp.A/ is called thesupport ofA.

1.2.9. REMARK . Let us stress that Spc.T / is defined as a topological space, not
as a (locally) ringed space. It is possible to equip Spc.T / with a sheaf of rings (see
[Bal05, Section 6]), but we do not use this construction.

1.2.10. REMARK . As we assumed thatT is essentially small, Spc.T / is a set (i.e.
not a proper class). Furthermore, it is always true that Spc.T / is a spectraltopological
space, i.e. it is homeomorphic to the prime ideal spectrum of some commutative ring (see
[BKS07, Proposition 3.5]).

Let us give some computations of Spc.T / right away:

1.2.11. EXAMPLE (see [BKS07, Theorem 9.5]).Let X be a quasi-compact, quasi-
separated scheme, then Spc.Dperf.X// Š X . Moreover, the support supp.A�/ of a com-
plexA� 2 Dperf.X/ coincides with the support of the total homology ofA� onX under
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this isomorphism. This was also proved in [Bal05] under the slightly more restrictive
assumption thatX is topologically noetherian. In both cases, the proof of the statement
uses Thomason’s classification result from [Tho97].

1.2.12. EXAMPLE (see [Bal05, Corollary 5.10]). Let G be a finite group andk be
a field such that char.k/ divides the order ofG. Then Spc.kG-stab/ Š VG.k/, thepro-
jective support varietyof k. The varietyVG.k/ is defined as Proj.H�.G;k//, where
H�.G;k/ denotes the cohomology ring ofG overk. The support supp.M/ of a module
M 2 kG-stab coincides with the cohomological support ofM in VG.k/ (see Chapter3,
Definition 3.1.3) under this isomorphism. The proof of the statement uses the classifica-
tion of thick˝-ideals inkG-stab from [BCR97].

These examples should already give the reader the impression that the spectrum is an
object worth studying. The following universal property reassures us that the definition
of Spc.T / is indeed the right one.

1.2.13. DEFINITION. Let T be an essentially small tensor triangulated category. A
support datumon T is a pair.X;�/, whereX is a topological space and� is a function
that assigns to each objectA 2 T a closed subset�.A/�X , such that

(1) �.0/D ; and�.I/DX ,
(2) �.A˚B/D �.A/[�.B/ for all objectsA;B 2 T ,
(3) �.†A/D �.A/ for all objectsA 2 T ,
(4) �.C /� �.A/[�.B/ for every distinguished triangleA! B! C !†A,
(5) �.A˝B/D �.A/\�.B/ for all objectsA;B 2 T .

The pair.Spc.T /;supp/ satisfies the conditions of Definition1.2.13as proved in
[Bal05, Lemma 2.6] and has a special role among the collection of support data onT .

1.2.14. THEOREM (see [Bal05, Theorem 3.2]).Let T be an essentially small tensor
triangulated category and.X;�/ be a support datum onT . Then there exists a unique
continuous mapf WX ! Spc.T / such that�.A/D f �1.supp.A// for all objectsA 2 T ,
explicitly given as

f .x/D fa 2 T W x … �.a/g :

1.2.15. REMARK . It is an immediate consequence of the properties of� that

fa 2 T W x … �.a/g

is a prime ideal ofT .

We can use Theorem1.2.14to explicitly compute Spc.T /. Recall from [Bal05] that
a˝-idealJ � T is calledradical if a˝n 2 J) a 2 J holds for all objectsa 2 T .

1.2.16. DEFINITION (see [Bal05, Definition 5.1]). A support datum.X;�/ on T is
calledclassifyingif

(1) The spaceX is noetherian and any non-empty irreducible closed subset has a
unique generic point.

(2) We have a bijection

fY �Xspecialization closed subsetg
1W1
 ! fJ � T radical˝-idealg

given byY 7! fa 2 T W �.a/� Y g with inverseJ 7!
S
a2J �.a/.
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Knowing a classifying support datum onT is enough to compute Spc.T /.

1.2.17. THEOREM (see [Bal05, Theorem 5.2]).Suppose that.X;�/ is a classifying
support datum onT . Then the mapf W X ! Spc.T / of Theorem1.2.14is a homeomor-
phism.

1.2.18. REMARK . If Spc.T / is noetherian, then.Spc.T /;supp/ is a classifying sup-
port datum onT (see [Bal05, Theorem 4.10]), and thus computing Spc.T / is actually
equivalent to finding a classifying support datum onT .

1.2.19. EXAMPLE . If T D Dperf.X/ for X a topologically noetherian scheme, and
supph.a/�X denotes the homological support ofa 2 T , then.X;supph/ is a classifying
support datum forT (see [Bal05, Theorem 5.5], [Tho97, Theorem 3.15]), which proves
Spc.T /ŠX in this case.

1.2.20. EXAMPLE . Let G be a finite group andk a field such that char.k/ divides
the order ofG. ForM 2 kG-stab, denote by�.M/� VG.k/ the cohomological support
of M . Then.VG.k/;�/ is a classifying support datum onkG-stab (see [Bal05, Theorem
5.9]), which proves Spc.kG-stab/Š VG.k/.

Note that if char.k/ does not divide #G, the statement becomes trivial, as we have
kG-stabD 0 in that case. Indeed, if char.k/ does not divide #G the ringkG is semi-
simple by Maschke’s theorem. Thus, every object ofkG-mod is projective.

We conclude the section by giving a functoriality property of the spectrum. An exact
˝-functor is by definition an exact functor between tensor triangulated categories that
respects the tensor product up to natural isomorphism and preserves the unit.

1.2.21. THEOREM (see [Bal05, Proposition 3.6]).Let F W T ! U be anexact˝-
functorof essentially small tensor triangulated categories. Then the map

Spc.F / W Spc.U/! Spc.T /

P 7! F �1.P /

is well-defined, continuous and for all objectsA 2 T we have

.Spc.F //�1.suppT .A//D suppU.F.A//

PROOF. We give a proof as the statement is only given as an exercise in [Bal05]. It is
straightforward to check thatF �1.P / is a prime̋ -ideal ofT , which gives that Spc.F / is
well-defined. As we can check continuity on a closed basis, this follows from the identity
.Spc.F //�1.suppT .A// D suppU.F.A// which we prove now. LetP 2 suppU.F.A//,
i.e. F.A/ …P . This implies that

A … F �1.P /D Spc.F /.P /, Spc.F /.P / 2 suppT .A/ :

Therefore,P 2 Spc.F //�1.suppT .A//. On the other hand, if

Q 2 Spc.F //�1.suppT .A// ;

then
Spc.F /.Q/D F �1.Q/ 2 suppT .A/, A … F �1.Q/ :

This implies thatF.A/ …Q,Q 2 suppU.F.A// which we wanted to show. �
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1.3. Localization and idempotent completion

Next, we turn our attention to localization and idempotent completion of triangulated
categories and their role in tensor triangular geometry. LetT be a tensor triangulated
category.

Smashing localizations.Let us first investigate the interaction between Bousfield
localizations and the tensor structure onT . Smashing localizationsfirst appeared in stable
homotopy theory, see e.g. [Rav84].

1.3.1. DEFINITION (cf. [BF11, Definition 2.15]). A Bousfield localization functor
L W T ! T (see Remark1.1.22) is calledsmashingif both ker.L/ and ker.L/? are˝-
ideals. In that case we call ker.L/ asmashing ideal.

Smashing localizations have a nice description in terms of the tensor product onT .

1.3.2. PROPOSITION. LetL W T ! T be a smashing localization functor. ThenLŠ
L.I/˝� and� Š �.I/˝�.

PROOF. Consider the triangle

�.I/! I! L.I/!†.�.I//

and applya˝� for an objecta 2 T . By exactness of this functor we obtain a distin-
guished triangle

a˝�.I/! a! a˝L.I/!†.a˝�.I//

wherea˝�.I/ 2 ker.L/ anda˝L.I/ 2 ker.L/? as we assumed that the localization
was smashing and we have�.I/ 2 ker.L/ andL.I/ 2 ker.L/?. By Theorem1.1.20, we
obtain isomorphismsa˝�.I/Š �.a/ anda˝L.I/Š L.a/. �

1.3.3. EXAMPLE . LetX be a quasi-compact, quasi-separated scheme and denote by
T the category DQcoh.X/ (see Example1.2.5). LetZ � X be a closed subset with quasi-
compact complementU and denote by Dperf

Z .X/ the subcategory of perfect complexes

that have the support of their total homology contained inZ. If hDperf
Z .X/i is the smallest

localizing subcategory ofT containing Dperf
Z .X/, then a Bousfield localization functor

for the pairhDperf
Z .X/i � T exists by Theorem1.1.25andhDperf

Z .X/i � T is a smashing
ideal by [BF11, Theorem 4.1]. The essential image ker.L/? of L can be identified with
DQcoh.U / (see [BF11, Remark 5.13]).

Verdier quotients by tensor ideals.

1.3.4. CONVENTION. We assume for the rest of the chapter thatT is essentially
small.

Given a triangulated subcategoryS � T , we can form the Verdier quotientT =S
which will be a triangulated category again. This also works in the context of tensor
triangulated categories: if we takeJ � T a˝-ideal then the Verdier quotientT =J will
inherit the structure of a tensor triangulated category such that the localization functor is
an exact̋ -functor and we can give a precise description of the spectrum Spc.T =J/:
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1.3.5. THEOREM (see [Bal05, Proposition 3.11]).Let q W T ! T =J be the Verdier
quotient of a tensor triangulated categoryT by a tensor idealJ. Then the mapSpc.q/ W
Spc.T =J/! Spc.T / induces a homeomorphism betweenSpc.T =J/ and the subspace

fP 2 Spc.T / W J �P g :

1.3.6. EXAMPLE . For P 2 Spc.T /, the space Spc.T =P / is homeomorphic to the
subspace of Spc.T / consisting of those points containingP , i.e. those that haveP in
their closure. The categoryT =P is local i.e. Spc.T =P / has a unique closed point (see
[Bal10a, Definition 4.1 and Proposition 4.2]).

1.3.7. EXAMPLE . ForX a quasi-compact and quasi-separated scheme, considerT D

Dperf.X/ andZ � X a closed subset with quasi-compact complementU . Let Dperf
Z .X/

denote the̋ -ideal consisting of those objects with support inZ. We have seen in Exam-
ple1.2.11that Spc.Dperf.X//ŠX and it follows that Spc.Dperf.X/=Dperf

Z .X//ŠU . Note

however, that in general we can identify Dperf.X/=Dperf
Z .X/ only with a dense subcategory

of Dperf.U / (namely with the subcategory of those objects whose class in K0.Dperf.U //

belongs to the image of K0.Dperf.X// under the map induced by restriction toU , see
[TT90, Chapter 5]). In order to get an equivalence, we therefore need to take idempotent
completions which we now introduce.

Idempotent completion. For technical and conceptual reasons (see for example the
problem at the end of Example1.3.7) it is often convenient to work in a setting where
idempotent endomorphisms split.

1.3.8. DEFINITION. An additive categoryA is calledidempotent completeif all idem-
potent endomorphisms split: ifA is an object ofA ande W A! A is such thate2 D e,
then there is a decompositionAŠ ker.e/˚ im.e/.

1.3.9. EXAMPLE . Any abelian category is idempotent complete as well as any de-
rived category of an abelian category (see [BS01]). A thick triangulated subcategory of an
idempotent complete triangulated category is idempotent complete. The full subcategory
of the category of finite-dimensionalk-vector spaces consisting of the even-dimensional
spaces is evidently not idempotent complete.

Given an additive categoryA, we can always embed it into itsidempotent completion
A\ (also know as its Karoubi envelope or Cauchy completion), an additive category which
is idempotent complete. This also works for tensor triangulated categories.

1.3.10. THEOREM (see [BS01] and [Bal05, Remark 3.12]).Let T be a tensor trian-
gulated category. Then there exists an idempotent complete tensor triangulated category
T \ and a fully faithful̋ -exact functor� W T ,! T \ such that any exact functorT ! S to
an idempotent complete triangulated category factors via�.

SKETCH OF THE PROOF. The categoryT \ is the idempotent completion of the un-
derlying additive category ofT : its objects are given by pairs.A;e/ whereA is an object
of T ande W A! A is an idempotent endomorphisms. A morphism� W .A;e/! .B;f /

is a morphism� W A! B in T such that� ı e D f ı� D �. The functor� is defined by
sending an objectA to the pair.A; idA/ and it is easy to see that it is fully faithful.
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The categoryT \ naturally inherits an additive structure fromT and we give it a
triangulated structure as follows: The suspension of an object.A;e/ is given by†.A;e/D
.†.A/;†.e// and a diagram

� W .A;e/! .B;f /! .C;g/! .†.A/;†.e//

is a distinguished triangle if there is a diagram�0 of the same form such that�˚�0 is
isomorphic to the image of a distinguished triangle inT under�.

The categoryT \ also inherits a symmetric monoidal structure fromT by setting

.A;e/˝ .B;f / WD .A˝B;e˝f / ;

which makesT \ tensor triangulated. �

The following theorem says that we can always idempotent complete without chang-
ing the spectrum.

1.3.11. THEOREM (see [Bal05, Corollary 3.14]). Let T be a tensor triangulated
category and� W T ! T \ the inclusion into the idempotent completion. The map

Spc.�/ W Spc.T \/! Spc.T /

is a homeomorphism.

1.4. Dimension and decomposition

The spectrum of a tensor triangulated categoryT is always aspectraltopological
space, i.e. it is homeomorphic to the spectrum of a commutative ring (see Remark1.2.10).
Therefore, it is sensible to talk about the Krull (co-)dimension of a closed subset. A
slightly more general notion is the following:

1.4.1. DEFINITION (see [Bal07]). A dimension functiononT is a map

dim W Spc.T /! Z[f˙1g

such that the following two conditions hold:

(1) If Q �P are prime tensor ideals ofT , then dim.Q/� dim.P /.
(2) If Q �P and dim.Q/D dim.P / 2 Z, thenQDP .

For a subsetV � Spc.T /, we define dim.V / WD supfdim.P /jP 2 V g. For everyp 2
Z[f˙1g, we define the full subcategory

T.p/ WD fa 2 T W dim.supp.a//� pg :

We denote by Spc.T /p the set of pointsQ of Spc.T / such that dim.Q/D p.

1.4.2. REMARK . From the properties of supp.�/, it follows thatT.p/ is a thick tensor
ideal inT .

1.4.3. EXAMPLE . The main examples of dimension functions we will consider are
the Krull dimension and the opposite of the Krull co-dimension. ForP 2 Spc.T /, its
Krull dimensiondimKrull .P / is the maximal lengthn of a chain of irreducible closed
subsets

;¨ C0 ¨ C1 ¨ : : :¨ Cn D fP g:

Dually, we define theopposite of the Krull co-dimension

�codimKrull .P /
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as follows: if we have a chain of irreducible closed subsets of maximal length

fP g D C0 ¨ C1 : : :¨ Cn D maximal irred. comp. of Spc.T / containingP

we set
�codimKrull .P /D�n :

A dimension function determines a filtration ofT . We have a chain of̋ -ideals

T.�1/ � �� � � T.p/ � T.pC1/ � �� � � T.1/ D T :

The sub-quotients of this filtration have a local description which we will describe next.
First we will introduce another useful property of tensor triangulated categories.

1.4.4. DEFINITION (see [Bal10b, Definition 20]). A tensor triangulated category
T is calledrigid if there is an exact functorD W T op! T and a natural isomorphism
HomT .a˝ b;c/ Š HomT .b;D.a/˝ c/ for all objectsa;b;c 2 T . The objectD.a/ is
called thedualof a.

1.4.5. REMARK . From the natural isomorphism

HomT .a˝b;c/Š HomT .b;D.a/˝ c/

of Definition 1.4.4, it follows thata˝� andD.a/˝� form an adjoint pair of functors
for all objectsa 2 T .

WhenT is rigid, some useful consequences hold true.

1.4.6. LEMMA (see [Bal07, Corollary 2.5 and Corollary 2.8]).LetT be a rigid tensor
triangulated category. Then

(1) supp.a/D ;, aD 0 for all objectsa 2 T .
(2) supp.a/\supp.b/D ;) HomT .a;b/D 0 for all objectsa 2 T .

SKETCH OF THE PROOF. In order to prove (1), one first shows that supp.a/D ;,
a˝nD 0 for somen� 1 (see [Bal05, Corollary 2.4]). The point is then that thick̋-ideals
J in rigid tensor triangulated categories are alwaysradical (see [Bal07, Proposition 2.4]),
meaning thatx˝n 2 J impliesx 2 J for all x 2 T . Let us prove this statement: it suffices
to show thatx˝x 2 J) x 2 J sinceJ is a˝-ideal and we can therefore assume that if
x˝n 2 J, thenn is a power of2.

Next, we use the unit-counit relation of the adjunction from Remark1.4.5to obtain
two natural transformations

.x˝�/! .x˝D.x/˝x˝�/! .x˝�/

whose composition is the identity. Applying the functors toI, we obtain two maps

x! x˝D.x/˝x! x

that compose to the identity onx, and we therefore conclude thatx is a direct summand
of x˝D.x/˝x. If J containsx˝x, it will also containx˝D.x/˝x as it is a̋ -ideal.
But J is thick, so it is closed under taking direct summands, hencex is contained inJ.

Thus, if supp.a/D ;, there is ann� 1 such thata˝n D 0. But f0g is a thick˝-ideal,
so it follows thata 2 f0g, i.e.aD 0.
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Let us also indicate how (2) follows from (1). By [Bal07, Proposition 2.6] we have
for an objectx 2 T andP 2 Spc.T / thatx 2P ,D.x/ 2P from which it follows that
supp.x/D supp.D.x//. But now,

HomT .a;b/D HomT .a˝ I;b/D HomT .I;D.a/˝b/

and we have supp.D.a/˝ b/ D supp.a/\ supp.b/ D ; by assumption. But by (1) we
therefore must haveD.a/˝b D 0 which implies that

HomT .a;b/D HomT .I;0/D 0 :

�

We now fix a dimension function on a rigid tensor triangulated categoryT and look
at the sub-quotients of the induced filtration. They have a local description.

1.4.7. THEOREM (see [Bal07, Theorem 3.24]).Let T be a rigid tensor triangulated
category equipped with a dimension functiondim such thatSpc.T / is a noetherian topo-
logical space. Then, for allp 2 Z, there is an exact equivalence�

T.p/=T.p�1/

�\
!

a
P2Spc.T /
dim.P /Dp

Min.TP / :

whereTP WD .T =P /
\ andMin.TP / denotes the full triangulated subcategory of objects

with support the unique closed point ofTP (see Example1.3.6).

1.4.8. REMARK . The exact equivalence of Theorem1.4.7is induced by the functor.

T.p/=T.p�1/!

a
P 2Spc.T /
dim.P /Dp

Min.T =P /

a 7! .QP .a//

whereQP is the localization functorT ! T =P . It is shown in [Bal07] that the image
of this functor is dense, so it induces an equivalence after idempotent completion on both
sides.

Let us finish the section with the observation that we can restrict a dimension function
to the tensor triangulated category associated to an open subset of the spectrum. Let
U � T be a quasi-compact open subset with closed complementZ and denote byTZ � T

the˝-ideal of objects with support contained inZ. Set

TU WD .T =TZ/
\ ;

then by Theorem1.3.5and Theorem1.3.11, the spectrum Spc.TU / is homeomorphic toU .
The homeomorphism is induced by the functor ResU given as composition of the Verdier
quotient functorT ! T =TZ and the inclusion functor into the idempotent completion
T =TZ! .T =TZ/

\.

1.4.9. PROPOSITION. Letdim be a dimension function onT . Then

dimjU W Spc.TU /! Z[f˙1g

P 7! dim.Spc.ResU /.P //
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is a dimension function onTU . Furthermore, the restriction of the functorResU to the
subcategoryT.p/ factors through the subcategory.TU /.p/ for all p 2 Z[f˙1g, when
we equipTU with dimjU .

PROOF. As Spc.ResU / constitutes an inclusion-preserving bijection between the sets
fP 2 Spc.TU /g andfP 2 U g, it follows immediately from the definition of a dimension
function that dimjU is one. In order to check the second claim, leta be an object ofT.p/.
Then, by Theorem1.2.21, we have

supp.ResU .a//D Spc.ResU /
�1.supp.a//D supp.a/\U :

Thus,

dimjU .supp.ResU .a///D sup
P 2supp.a/\U

dim.P /

� sup
P 2supp.a/

dim.P /

D dim.supp.a//� p ;

from which it follows that ResU .a/ is an object of.TU /.p/. �





CHAPTER 2

Chow groups of tensor triangulated categories

In this chapter we introduce the central object that is studied in this thesis, the Chow
groups of an essentially small tensor triangulated category. We recall a definition due to
P. Balmer (see [Bal13]), give a proof that it generalizes the classical Chow groups from
algebraic geometry and investigate its functoriality properties.

2.1. Chow groups in algebraic geometry

We aim at generalizing the study of cycles on an algebraic variety modulo rational
equivalence. The basic setup of this theory is as follows: for an algebraic varietyX (by
which we shall mean a separated scheme of finite type over a field) one looks for each
p � 0 at thecodimensionp cycle groupZp.X/, the free abelian group on subvarieties (=
closed integral subschemes) of codimensionp in X . One now introduces an equivalence
relation on Zp.X/. Two cycles in Zp.X/ are consideredrationally equivalentif there
exists a finite number of subvarietiesYi � X of codimensionp� 1 and elements of the
function fieldsfi 2 K.Yi / such that the difference of the two cycles is equal to the sum
of the cycles div.fi /, the divisors associated to the functionsfi . The divisors div.fi /
should be thought of as the sum of the zeroes offi minus the sum of the poles offi , both
counted with multiplicities (see [Ful98] for the formal definition). The cycles rationally
equivalent to zero form a subgroup of Zp.X/ and the corresponding quotient is CHp.X/,
thecodimensionp Chow group ofX .

2.2. Definitions and conventions

Let us state some basic assumptions that we will use for the rest of the chapter.

2.2.1. CONVENTION. For the rest of the chapter, the termtensor triangulated cate-
gory will mean a category as defined in Definition1.2.1, with the additional assumption
that the category is essentially small.

2.2.2. REMARK . We need to assume that our tensor triangulated categories are es-
sentially small in order to be able to talk about their spectrum (see Remark1.2.10). We
will temporarily drop the assumption in Chapter4.

We can now give a definition of tensor triangular cycle groups and Chow groups,
following the ideas from [Bal13].

2.2.3. DEFINITION. Let K be a tensor triangulated category as in Convention2.2.1,
equipped with a dimension function. Forp 2Z we define thep-dimensional cycle group
of K as

Z�p .K/ WD K0

�
.K.p/=K.p�1//

\
�
;

23
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where K0
�
.K.p/=K.p�1//

\
�

is the Grothendieck group (see Definition1.1.26) of the Ver-
dier quotient.K.p/=K.p�1//

\ andK.l/ �K denotes the full triangulated subcategory of
objects with dimension of support� l (see Definition1.4.1), for l D p;p�1.

We also need a generalized notion of rational equivalence, which we describe next.
Look at the following diagram of subcategories and sub-quotients ofK

K.p/
� � I //

Q

����

K.pC1/

K.p/=K.p�1/
� � J // .K.p/=K.p�1//

\

whereI;J denote the obvious embeddings andQ is the Verdier quotient functor (see
Definition1.1.11). After applying K0 we get a diagram

K0.K.p//
i //

q

����

K0.K.pC1//

K0.K.p/=K.p�1//
� � j

// K0
�
.K.p/=K.p�1//

\
�
D Z�p .K/

where the lowercase maps are induced by the uppercase functors (see Proposition1.1.27).

2.2.4. DEFINITION. Let K be a tensor triangulated category as in Convention2.2.1,
equipped with a dimension function. Forp 2Z we define thep-dimensional Chow group
of K as

CH�p .K/ WD Z�p .K/=j ıq.ker.i//:

2.2.5. REMARK . It may not be immediately obvious to the reader how the above
Definitions are motivated. The following account might remedy the situation for Z�

p : as-
sume thatK is a tensor triangulated category in the sense of Convention2.2.1that is rigid,
equippped with a dimension function and such that Spc.K/ is a noetherian topological
space. By Theorem1.4.7the quotient functorsQP WK!K=P for P 2 Spc.K/ induce
an exact equivalence

(5) .K.p/=K.p�1//
\ �
��!

a
P2Spc.K/p

Min.KP /

where Spc.K/p denotes the set of pointsP in Spc.K/p that have dimensionp (Defini-
tion 1.4.1) and whereKP is the local category.K=P /\. The subcategory Min.KP / �

KP is the full subcategory of objects that are supported on the unique closed point of
Spc.KP / (see [Bal07], where the subcategory Min.KP / is denoted by FL.KP /). The
decomposition (5) is in the main reason why we idempotent-complete the Verdier quo-
tient K.p/=K.p�1/. In analogy with the theory of algebraic cycles, an element of the
p-dimensional tensor triangular cycle group ofK

Z�p .K/D K0

�
.K.p/=K.p�1//

\
�
Š

a
P2Spc.K/p

K0 .Min.KP //
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can thus be regarded as a sum ofp-dimensional (relative to the dimension function) irre-
ducible closed subsets of Spc.K/ with coefficients in K0 .Min.KP //.

In the case thatK DDperf.X/ for X a non-singular noetherian scheme, we show that
the Grothendieck group K0 .Min.KP // group is isomorphic toZ. This will allows us to
conclude that Definition2.2.3 recovers the usual cycle groups ofX for K D Dperf.X/

(see Corollary2.2.10). Let us first recall the following two auxilliary lemmas.

2.2.6. LEMMA . LetR be a commutative local noetherian ring with maximal idealm
andM be a finitely generatedR-module. Then

supp.M/D fmg, length.M/ <1

PROOF. LetM be a module overR of lengthn <1. We will proceed by induction
onn to show that supp.M/D fmg. FornD 1, M is simple and therefore isomorphic to
the residue fieldR=m which has supportfmg. Indeed, pick any non-zero elements 2M ,
then the image of the map

ms WR!M

r 7! r � s

must beM , soM Š R=ker.ms/. But asM was simple, the only possible choice for
ker.ms/ is m (otherwiseR=m would be a proper submodule), proving thatM Š R=m.
Assume now we have proved the statement for alln� n0 and letM be a module of length
n0C1. There is a composition series

M0 �M1 �M2 � �� � �Mn0
�Mn0C1 DM

with simple subquotients. In particular we have an exact sequence

0!Mn0
!Mn0C1!Mn0C1=Mn0

! 0

where we know thatMn0C1=Mn0
ŠR=m. Thus

supp.Mn0C1/D supp.Mn0
/[supp.R=m/D fmg :

For the converse direction, let supp.M/ D fmg. Thus,M is annihilated bymn for
somen� 0, and therefore we obtain a sequence

M �mM �m2M � �� � �mn�1M �mnM D 0 :

For everyi � 0, the modulemiM=miC1M is a finite-dimensionalR=m-vector space by
Nakayama’s Lemma and it therefore has finite length. An induction onn then shows that
M must have finite length as well. �

2.2.7. LEMMA . LetR be a commutative local ring with maximal idealm and denote
byR�fl the abelian category of finite lengthR-modules. Then the map

R�fl! Z

M 7! length.M/

induces an isomoprhism
K0.R�fl/Š Z :
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PROOF. The length function

R�fl! Z

M 7! length.M/

has the property that length.M/D length.M 0/C length.M 00/ if there is an exact sequence

0!M 0
!M !M 00

! 0

and therefore induces a group homomorphism

K0 .R�fl/! Z :

This is an isomorphism, as for any moduleM over OX;�.P / of length n, there is an
equality

ŒM �D n � ŒR=m�

in K0 .R�fl/. Let us prove this by induction: fornD 1, this is true as we saw in the proof
of Lemma2.2.6that any simpleR-module must be isomorphic toR=m.

Assume now we have proved the statement for alln � n0 and letT be a module of
lengthn0C1. There is a composition series

T0 � T1 � T2 � �� � � Tn0
� Tn0C1 D T

with simple subquotients. In particular we have an exact sequence

0! Tn0
! T ! T=Tn0

! 0

where we know thatT=Tn0
ŠR=m. We therefore get the equality

ŒT �D n0 � ŒR=m�C ŒR=m�D .n0C1/ � ŒR=m�

in K0 .R�fl/ which proves the statement. �

2.2.8. THEOREM. LetK DDperf.X/ for X a non-singular noetherian scheme. Then

K0 .Min.KP //Š Z

for all P 2 Spc.K/ŠX (see Example1.2.11).

PROOF. Let � denote the isomorphism Spc.Dperf.X//! X . By [Bal07, Chapter 4,
Section 1], the category Min.KP / is equivalent to

Kb
fin:lg:.OX;�.P /�free/ ;

the bounded homotopy category of complexes of freeOX;�.P /-modules of finite-rank with
finite length homology. AsOX;�.P / is regular by assumption, every bounded complex of
finitely generatedOX;�.P /-modules is quasi-isomorphic to a bounded complex of free
OX;�.P /-modules of finite rank. Therefore, if Dbfin:lg:.OX;�.P /-mod/ denotes the bounded
derived category of complexes of finitely generatedOX;�.P /-modules with finite length
homology, the natural functor

Kb
fin:lg:.OX;�.P /�free/! Db

fin:lg:.OX;�.P /-mod/

gives rise to an equivalence of categories

Kb
fin:lg:.OX;�.P /�free/Š Db

fin:lg:.OX;�.P /-mod/:
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The latter category is in turn equivalent to Db.OX;�.P /�fl/, the bounded derived category
of finite length modules overOX;�.P /. Indeed, by Lemma2.2.6, for a finitely generated
moduleM overOX;�.P /, having finite length is the same as being supported on the unique
closed pointP0 of Spec.OX;�.P //. The result then follows by [Kel99, Section 1.15, Ex-
ample b)], where it is shown that for a commutative noetherian ringR, andA � R-mod
the full abelian subcategory of finitely generatedR-modules supported on a closed sub-
schemeZ of Spec.R/, there is an equivalence of categories

Db.A/Š Db
A.R-mod/ ;

where the latter expression denotes the full subcategory of Db.R-mod/ consisting of com-
plexes with homology inA.

Summarizing, we have

(6) K0 .Min.KP //Š K0
�
Db.OX;�.P /�fl/

�
Š K0

�
OX;�.P /�fl

�
Š Z

where the penultimate isomorphism is the one from Example1.1.29and the last isomor-
phism is induced by the length function as in Lemma2.2.7. �

2.2.9. REMARK . We can make the isomorphism K0 .Min.KP //Š Z from Theorem
2.2.8explicit if we identify K0 .Min.KP // with Kb

fin:lg:.OX;�.P /�free/ as in the proof of
Theorem2.2.8. We compose the formula from Example1.1.29and the length function as
in (6) to obtain the following: ifA� is a chain complex in Kbfin:lg:.OX;�.P /�free/, then the
map is given as

��.P / W ŒA�� 7!
X
i

.�1/i length.Hi .A�// :

2.2.10. COROLLARY. LetX be a non-singular noetherian scheme. LetKDDperf.X/

be equipped with the opposite of the Krull codimension as a dimension function (see
Example1.4.3). Then the map

��p WD

a
�.P /

dim.�.P //D�p

��.P /

with ��.P / as in Remark2.2.9induces an isomorphism

Z��p.K/Š Zp.X/

for all p � 0.

PROOF. Letp � 0. Using Remark2.2.5and the isomorphism Spc.K/ŠX we have
a chain of isomorphisms

Z��p.K/Š
a

P2Spc.K/�p

K0 .Min.KP //

Š

a
�.P /2X.p/

K0

�
Kb

fin:lg:.OX;�.P /�free/
�

Š

a
P2X.p/

Z

Š Zp.X/ ;



28 Chow groups of tensor triangulated categories

where the penultimate map is given by��p. �

2.3. Agreement with algebraic geometry

We want to show now that the tensor triangular Chow groups carry their name for
a reason. As we will see, they are — at least in the non-singular case — an honest
generalization of the classical Chow groups from algebraic geometry.

2.3.1. CONVENTION. We now fix some notation for the rest of the section: if not
explicitly stated otherwise, letX denote a separated, non-singular scheme of finite type
over a fieldk, and Dperf.X/ be the derived category of perfect complexes ofOX -modules,
which is equivalent to Db.X/, the bounded derived category of coherent sheaves onX .
We will also assume that Dperf.X/ is equipped with�codimKrull as a dimension function.

In order to proceed, it is necessary to use some higher algebraic K-theory as devel-
oped by Quillen. We recall the following material from [Qui73, §7]: consider the abelian
category Coh.X/ of coherent sheaves onX . There is a filtration of this category by codi-
mension of support:

� � � �M i
�M i�1

� �� � �M 0
D Coh.X/

whereMp denotes the subcategory of coherent sheaves whose codimension of support is
� p. The subcategoryMp �MpC1 is aSerre subcategory, i.e. a full subcategory such
that if 0!A!B!C ! 0 is an exact sequence inMpC1, thenA;C are objects ofMp

if and only if B is one. This property allows us to define the quotient abelian category
MpC1=Mp and thus, for everyp, there is an exact sequence of abelian categories

MpC1 ,!Mp �Mp=MpC1

which induces a long exact localisation sequence of K-groups

(7)

� � � // Kj .MpC1/
i
p

j
// Kj .Mp/

q
p

j
// Kj .Mp=MpC1/ EDBC

GF b
p

j@A
// Kj�1.M

pC1/
i
p

j �1
// Kj�1.M

p/
q

p

j �1
// Kj�1.M

p=MpC1/ // � � �

Combining these long exact sequences for allp, we can form the associated exact couple
and obtain the Quillen coniveau spectral sequence as in [Qui73, §7, Theorem 5.4] with
E1-page

E
p;q
1 D K�p�q.M

p=MpC1/:

We are especially interested in the boundary map

(8) d1 W K1.M
s�1=M s/

bs�1
1
�! K0.M

s/
qs

0
�! K0.M

s=M sC1/

of this spectral sequence. Using that

(9) Ki .M
s=M sC1/Š

a
x2X.s/

Ki .k.x// ;

whereX .s/ denotes the set of points ofX whose closure has codimensions in X , Quillen
proves the following:
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2.3.2. THEOREM (cf. [Qui73, §7, Proposition 5.14]).The image of

d1 W K1.M
s�1=M s/ �! K0.M

s=M sC1/Š
a

x2X.s/

K0.k.x//Š
a

x2X.s/

ZD Zs.X/

is the subgroup of codimension-p cycles rationally equivalent to zero. In other words, we
havecoker.d1/Š CHs.X/.

In our setting, we work with the triangulated category Dperf.X/Š Db.X/ instead of
the abelian category Coh.X/. Recall that the defining diagram for the tensor triangular
Chow groups in this case is given as follows:

K0.Db.X/.p//
i //

q

����

K0.Db.X/.pC1//

K0.Db.X/.p/=Db.X/.p�1//� _

j
��

K0

�
.Db.X/.p/=Db.X/.p�1//

\
�

�
D Z�p .K/

This diagram maps to a similar one involving the related abelian categories:

(10)

K0
�
Db.X/.p/

� i //

q

���� **UUUUUUUUUUUUUUUUUU
K0
�
Db.X/.pC1/

�
((QQQQQQQQQQQQ

K0
�
Db.X/.p/=Db.X/.p�1/

�
� _

j
��

((QQQQQQQQQQQQQQQQQQQQQ
K0 .M

�p/

q0

��

i0 // K0
�
M�p�1

�

K0

�
.Db.X/.p/=Db.X/.p�1//

\
�

�
D Z�p .K/

K0
�
M�p=M�pC1

�
The diagonal homomorphisms are all given by the formula

(11) ŒC �� 7!
X
i

.�1/i ŒH i .C �/� :

We proceed to show that these are actually all isomorphisms, which follows from the fact
that there are exact equivalences

(12) Db.X/.q/ Š Db.M�q/

and

(13) Db.X/.q/=Db.X/.q�1/ Š Db.M�q=M�qC1/
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for all q 2 Z. Indeed, the diagonal maps are then just the usual isomorphisms between
K0.Db.A// and K0.A/ for some abelian categoryA, as in Example1.1.29. This also
proves thatj is the identity morphism, as the derived category of an abelian category is
idempotent complete [BS01, Corollary 2.10].

The proof of the equivalences (12) and (13) is a consequence of the following theo-
rem:

2.3.3. THEOREM (see [Kel99, Section 1.15]).Let B be an abelian category and
A � B a Serre subcategory with quotientB=A. Assume that the following criterion
holds: for each exact sequence

0! A! B! C ! 0

in B withA 2A, there is a commutative diagram with exact rows

0 // A //

id

��

B //

f

��

C //

g

��

0

0 // A // A0 // A00 // 0

such thatA0;A00 are objects ofA.
Then, there is an exact equivalence of triangulated categories induced by the inclu-

sion

Db.A/! Db
A.B/ ;

whereDb
A
.B/ � Db.B/ denotes the full subcategory of complexes with homology inA.

Furthermore, in the induced sequence of triangulated categories

Db.A/
i
�! Db.B/

q
�! Db.B=A/ ;

the functori is fully faithful andDb.B=A/Š Db.B/=Db.A/ (i.e. the sequence isexact).

Let us verify that the conditions for Theorem2.3.3are satisfied in our case.

2.3.4. LEMMA . Let 0! A! B ! C ! 0 be an exact sequence inCoh.X/. Then
there exist coherent sheavesA0;A00 onX with supp.A0/;supp.A00/� supp.A/ that fit into
a commutative diagram with exact rows

0 // A //

id

��

B //

f

��

C //

g

��

0

0 // A // A0 // A00 // 0

PROOF. Suppose thatA is supported on a closed subscheme with associated ideal
sheafI . As X is noetherian, we can use the sheaf-theoretic version of the Artin-Rees
lemma (cf. [Sta14, Lemma 29.10.3]) which says that there exists ac > 0 such that for all
n > c we haveI nB \A D I n�c.I cB \A/. Now take somen0 such thatI n0�cA D 0,
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then we get the diagram

0 // A //

id

��

B //

��

C //

��

0

0 // A // B=.I n0B/ // C=.I n0C/ // 0

where the vertical arrows are given by the canonical projections. It is easy to see that
the diagram commutes and that all sheaves in the lower row have their support contained
in supp.A/. �

Since we have checked the conditions of Theorem2.3.3, its first statement tells us
that the equivalence (12) holds, because we can write Db.X/.q/ as Db

M�q .Coh.X//. The
equivalence (13) holds by the second statement of Theorem2.3.3, which says that

Db.M�q=M�qC1/Š Db.M�q/=Db.M�qC1/ ;

where the latter expression is equivalent to Db.X/.q/=Db.X/.q�1/ by the first part of
Theorem2.3.3.

As we know that the diagonal maps in diagram (10) are isomorphisms and thatj is
the identity morphism we see that

j ıq.ker.i//Š q0.ker.i0//D q0.im.b0//D im.d1/

(see Theorem2.3.2). We have thus proved the following:

2.3.5. THEOREM. Let X be a separated, non-singular scheme of finite type over
a field and assume that the tensor triangulated categoryDperf.X/ is equipped with the
dimension function�codimKrull . Then there are isomorphisms

Z�p
�
Dperf.X/

�
ŠZ�p.X/ and CH�p

�
Dperf.X/

�
Š CH�p.X/

for all p 2 Z. �

A couple of remarks are in order:

2.3.6. REMARK . Let us sketch the argument for a more “high-level” proof of the
above theorem using Waldhausen models for the categories Dperf.X/.p/: for p 2 Z, we
consider the category Perf.p/.X/ of perfect complexes onX with codimension of ho-
mological support� �p. This category is aWaldhausen category, i.e. a category with
two classes of morphisms called thecofibrationsand theweak equivalences, which both
have to satisfy a list of axioms (see [Wal85]). For a Waldhausen categoryW , we can
define higher algebraic K-groups Ki .W / for i � 0 as in [Wal85]. For Perf.p/.X/, the cofi-
brations are given by the degree-wise split monomorphisms of complexes, and the weak
equivalences are given as the quasi-isomorphisms. If we define the Waldhausen category
Perf.p=p�1/.X/ as the category Perf.p/.X/ with the same class of cofibrations but with
the weak equivalences those morphisms whose mapping cone is quasi-isomorphic to an
object of Perf.p�1/.X/, we obtain a sequence of Waldhausen categories

Perf.p�1/.X/! Perf.p/.X/! Perf.p=p�1/.X/
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where both functors are given by inclusion. From the localization theorem of [TT90,
Theorem 1.8.2], we obtain a long exact localization sequence

(14)

� � � // Kj .Perf.p�1/.X// // Kj .Perf.p/.X// // Kj .Perf.p=p�1/.X// EDBC
GF@A
00aa Kj�1.Perf.p�1/.X// // Kj�1.Perf.p/.X// // � � �

By the regularity ofX , Perfp�1.X/ and Perfp.X/ coincide with Cb.Coh.X//.p�1/ and
Cb.Coh.X//.p/, the categories of bounded complexes of coherent sheaves onX with codi-
mension of homological support� �pC 1 and� �p, respectively. Their Waldhausen
K-theory is in turn isomorphic to the Waldhausen K-theory of Cb.Coh.X/.�pC1// and
Cb.Coh.X/.�p// respectively by [TT90, Theorem 1.9.8], as the natural inclusions induce
equivalences on the corresponding derived categories. The natural functor

Perf.p=p�1/.X/! Cb.Coh.X/.�p/=Coh.X/.�pC1//

also induces an equivalence on the level of derived categories and thus we apply [TT90,
Theorem 1.9.8] again to obtain that the corresponding Waldhausen K-theories of the in-
volved categories coincide. Finally, the comparison to Quillen K-theory of [TT90, The-
orem 1.11.2 and Theorem 1.11.7] yields that the sequences (14) are isomorphic to the
sequences (7) and by forming the associated exact couple, we get a new spectral sequence
which is isomorphic to Quillen’s coniveau spectral sequence. In particular, we can talk
about the cokernel of the mapd1 (as in (8)) in this new spectral sequence which is then
isomorphic to the cokernel ofd1 in Quillen’s coniveau spectral sequence which is in turn
isomorphic to CH�p.X/.

2.3.7. REMARK . As we have already seen in Corollary2.2.10, we don’t need the
isomorphisms

K0
�
Dperf.X/.p/=Dperf.X/.p�1/

�
Š K0

�
M�p=M�pC1

�
Š

a
x2X.s/

K0.k.x//

to show Z�p
�
Dperf.X/

�
Š Z�p.X/.

2.3.8. PROPOSITION. The isomorphism

�X W Z
�
p .D

perf.X//
�
�! Z�p.X/

is explicitly given as follows: ifC � is an object ofDperf.X/.p/=Dperf.X/.p�1/, then

�X .ŒC
��/D

X
i

X
x2X.�p/

.�1/i lengthOX;x

�
Hi
�
C �
�
x

�
� fxg :

PROOF. The isomorphism (9)

Ki .M
p=MpC1/

�
�!

a
x2X.p/

Ki .k.x//

is explicitly given as follows: first note that we have an equivalence of categories

Mp=MpC1 �
�!

a
x2X.p/

OX;x�fl
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induced by the functor

Mp
!

a
x2X.p/

OX;x�fl

a 7! .ax/x2X.p/

(see e.g. [Wei13, Chapter V, §9]) which in turn induces an isomorphism

K i.M
p=MpC1/

�
�!

a
x2X.p/

Ki .OX;x�fl/

Œa� 7! .Œax �/x2X.p/ :

Then we have an isomorphisma
x2X.p/

Ki .OX;x�fl/
�
 �

a
x2X.p/

Ki .k.x//

given by componentwisedévissage(see [Qui73]), i.e. the inclusion of the category of
finite-dimensionalk.x/-vector spaces intoOX;x�fl induces an isomorphism in K-theory.
For i D 0, we have already seen this in Lemma2.2.7: any elementŒax � 2 K0 .OX;x�fl/
can be written asn � Œk.x/�, wheren D length.ax/. We conclude that fori D 0, the iso-
morphism (9) is given explicitly as

Œa� 7!
X

x2X.p/

lengthOX;x
.ax/ � fxg

Precomposing with formula (11), we obtain the explicit description

�X .ŒC
��/D

X
i

X
x2X.�p/

.�1/i lengthOX;x

�
Hi
�
C �
�
x

�
� fxg :

as desired. �

The proof of Theorem2.3.5shows that�X factors through CH�p .D
perf.X// and by

abuse of notation, we shall denote the induced isomorphism

CH�p .D
perf.X//! CH�p.X/

by �X as well.

2.4. Functoriality

As we now have a reasonable definition of tensor triangular Chow groups at hand,
we would like to check that it has the functoriality properties one would expect it to have
from the algebro-geometric Chow groups.

Functors with a relative dimension. We first have to define which class of functors
we allow. In this section,K andL will always denote tensor triangulated categories as in
Convention2.2.1, and we assume that both are equipped with a dimension function.

2.4.1. DEFINITION. LetF WK!L be an exact functor. We say thatF hasrelative
dimensionn if there exists somen 2 Z such thatF.K.p// � L.pCn/ for all p, andn is
the smallest integer such that this relation holds.
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2.4.2. REMARK . Note that wedo notrequire thatF is a tensor functor (cf. Proposi-
tion 2.4.6, Example2.4). The composition of two functors of relative dimensionn andm
is a functor of relative dimension at mostnCm. In all of the examples that follow,nD 0.
However, the extra flexibility of havingn¤ 0 might be useful for future applications.

2.4.3. THEOREM. LetF WK !L be a functor of relative dimension� n. ThenF
induces group homomorphisms

znp.F / W Z
�
p .K/! Z�pCn.L/ and cnp.F / W CH�p .K/! CH�pCn.L/

for all p 2 Z. If F has relative dimension< n, thenznp.F / andcnp.F / are both trivial.

PROOF. We have the following commutative diagram

K.p/
� � JK //

QK

����

Fp

))SSSSSSSSSSSSSSSSS K.pC1/

FpC1

((QQQQQQQQQQQQQ

K.p/=K.p�1/� _

IK

��

F

))SSSSSSSSSSSSSS
L.pCn/

� � JL //

QL

����

L.pCnC1/

.K.p/=K.p�1//
\

OF

))RRRRRRRRRRRRRR
L.pCn/=L.pCn�1/� _

IL

��

.L.pCn/=L.pCn�1//
\

whereFi is the restriction ofF to K.i/ for i D p;pC1, F exists because

F.Kp�1/�LpCn�1 D ker.QL/

and OF exists asIL ıF is a functor to an idempotent complete category. Applying the
functor K0.�/ yields the diagram

K0
�
K.p/

� jK //

qK

����

fp

**TTTTTTTTTTTTTTTTT
K0
�
K.pC1/

�
fpC1

))SSSSSSSSSSSSSS

K0
�
K.p/=K.p�1/

�
� _

iK

��

f

**TTTTTTTTTTTTTTTT
K0
�
L.pCn/

� jL //

qL

����

K0
�
L.pCnC1/

�

K0
�
.K.p/=K.p�1//

\
�

Of

**TTTTTTTTTTTTTTTT
K0
�
L.pCn/=L.pCn�1/

�
� _

iL

��

K0
�
.L.pCn/=L.pCn�1//

\
�

where the lowercase arrows are induced by the corresponding uppercase ones. We set
znp.F / WD Of . From the diagram, we also deduce that

Of ı iK ıqK.ker.jK//� iL ıqL.ker.jL//

which implies that Of also induces a homomorphism cn
p.F / between the factor groups.
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If the relative dimension ofF ismD n� r for somer � 1, then

F.K.p//�L.pCm/ DL.pCn�r/ �L.pCn�1/ :

Therefore znp.F / and cnp.F / are both0 in this case. �

2.4.4. NOTATION. If F WK!L has relative dimensionm, then we will denote the
induced homomorphisms zmp .F / and cmp .F / from Theorem2.4.3by Z�p .F / and CH�p .F /,
respectively.

2.4.5. REMARK . Theorem2.4.3and Remark2.4.2show that for allp, Z�p .�/ and

CH�p .�/ are functors from the category of essentially small tensor triangulated categories
equipped with a dimension function to the category of abelian groups, with respect to the
class of functors with a relative dimension.

Let us finish the discussion with a general example of a functor with relative dimen-
sion0.

2.4.6. PROPOSITION. Leta 2K be an object such thatdim.supp.a//¤˙1. Then
the functor

a˝� WK!K

has relative dimension0.

PROOF. For any objectb 2K, we have

supp.a˝b/D supp.a/\supp.b/� supp.b/ ;

from which it follows that dim.supp.a˝ b// � dim.supp.b//. Thus a˝� has rela-
tive dimension� 0. But supp.a˝ a/ D supp.a/ and therefore dim.supp.a˝ a// D
dim.supp.a//, which shows thata˝� leaves the dimension of support of the object
a fixed and finite. We conclude thata˝� has relative dimension0. �

Projection formulas and relative dimension. For a pair of adjoint functors.f�;f
�/

with relative dimensions dim.f�/ and dim.f �/ that behave similarly as the derived direct
image and inverse image functor in the derived projection formula from algebraic geome-
try (see e.g. [Huy06, p. 83]), we can give a relation between dim.f�/ and dim.f �/.

2.4.7. DEFINITION. Let C ;D be tensor triangulated categories as in Convention
2.2.1, that are both equipped with a dimension function. Assume we are given an ad-
joint pair of exact functors.f �;f�/ betweenC andD

C

f �

��

D

f�

VV

wheref � is also a tensor functor. We say that the pair.f �;f�/ satisfies the projection
formula if for all D 2D ;C 2 C there are isomorphisms

C ˝C f�.D/Š f�.f
�.C /˝D D/

which are natural in both variables.

2.4.8. REMARK . The situation of Definition2.4.7is not restricted to algebraic geom-
etry, see e.g. Theorem3.5.6.



36 Chow groups of tensor triangulated categories

2.4.9. LEMMA . Let.f �;f�/ be a pair of functors betweenC andD that satisfies the
projection formula. Assume thatdim.supp.f�.ID///¤˙1. Then the functorf� ıf

�

has relative dimension0.

PROOF. Using that.f �;f�/ satisfies the projection formula, we have an isomor-
phism

f� ıf
�.C /Š f�.ID/˝C

for all objectsC of C . The result then follows by Proposition2.4.6. �

2.4.10. COROLLARY. Let .f �;f�/ be a pair of functors betweenC andD that satis-
fies the projection formula and assumedim.supp.f�.ID///¤˙1. Furthermore assume
f � andf� have relative dimensionsdim.f �/ anddim.f�/ respectively. Then

dim.f �/Cdim.f�/� 0

PROOF. This is an immediate consequence of the fact that

dim.f� ıf
�/� dim.f �/Cdim.f�/

(see Remark2.4.2) and Lemma2.4.9. �

Let us give two examples from algebraic geometry, which show that functors with a
relative dimension occur naturally.

Example: flat pullback. We fixX;Y integral, separated schemes of finite type over
a field. We consider Dperf.X/ and Dperf.Y / with the standard structure of tensor triangu-
lated categories and assume that they are equipped with the opposite of the Krull codi-
mension function�codimKrull .

We say that a flat morphismf W X ! Y has relative dimensionr , if for all closed
subvarietiesV � Y , we have that dim.f �1.V //D dim.V /C r . For such a morphismf ,
Fulton defines in [Ful98, Chapter 1.7] a pullback homomorphism

f �
W CHn.Y /! CHnCr .X/

for 0� n� dim.Y / by sendingŒV � 2CHn.Y / to Œf �1.V /� 2CHnCr .X/, the class of the
scheme-theoretic inverse image ofV underf .

We now fix a flat morphismf WX ! Y that has relative dimensionr .

2.4.11. LEMMA . For all closed subsetsZ � Y , we have

codim.Z/D codim.f �1.Z// :

PROOF. Assume that dim.Z/D c, then, sincef has relative dimensionr , we have

dim.f �1.Z//D cC r :

AsX;Y are integral of finite type over a field, it follows that

codim.Z/D dim.Y /�dim.Z/D dim.Y /� c;

and similarly that
codim.f �1.Z//D dim.X/� c� r :
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As f �1.Y / D X , we must have that dim.X/ D dim.Y /C r , from which the desired
equality codim.Z/D codim.f �1.Z// follows. �

2.4.12. LEMMA . The functorLf � W Dperf.Y /! Dperf.X/ has relative dimension0.

PROOF. We need to check that for everyA� 2 Dperf.Y /.p/, the complex Lf �.A�/ is
contained in Dperf.X/.p/. Thus, assume that

�codim

 
supp

 M
i

Hi .A�/

!!
D q � p :

As f is flat,f � is exact, and so we haveM
i

Hi
�
Lf �

�
A�
��
D

M
i

f �
�
Hi
�
A�
��

This implies that

�codim

 
supp

 M
i

Hi .Lf �.A�//

!!
D�codim

 [
i

supp
�
f �

�
Hi .A�/

��!

D�codim

 
f �1

 [
i

supp
�
Hi .A�/

�!!
D q � p

where the last equality follows from Lemma2.4.11. This proves the statement. �

Using the previous results, we know now that Lf � induces morphisms between the
tensor triangular cycle and Chow groups of Dperf.Y / and Dperf.X/. The following theorem
shows that these are the expected ones.

2.4.13. THEOREM. Assume thatX;Y are non-singular and forS DX;Y , let

�S W CH�p .D
perf.S//! CH�p.S/

be the isomorphisms from Proposition2.3.8. Then for allp, there is a commutative dia-
gram

CH�p .D
perf.Y //

CH�
p .Lf

�/
//

�Y

��

CH�p .D
perf.X//

�X

��

CH�p.Y /
f �

// CH�p.X/

wheref � denotes the flat pullback homomorphism on the usual Chow group. (cf.[Ful98,
Chapter 1.7]).

PROOF. As bothf � and CH�p .Lf
�/ are induced by the corresponding morphisms

on the cycle level, it is enough to check that the diagram

Z�p .D
perf.Y //

Z�
p .Lf

�/
//

�Y

��

Z�p .D
perf.X//

�X

��

Z�p.Y /
f �

// Z�p.X/
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commutes. In order to do this, letZ � Y be a subvariety (=reduced and irreducible
subscheme) ofY of codimension�p, with associated ideal sheafIZ and cycleŒZ� 2
Z�p.Y /. Consider the classŒW �� in

Z�p .D
perf.Y //D K0

�
.Dperf.Y /.p/=Dperf.Y /.p�1//

\
�

D K0.D
perf.Y /.p/=Dperf.Y /.p�1//

whereW � is the complex concentrated in degree zero with H0.W �/ D OY =IZ DW OZ .
Then,�Y .ŒW ��/DZ 2Z�p.Y /: indeed, using Proposition2.3.8we calculate

�Y .ŒW
��/D

X
i

X
P2Y .�p/

.�1/i lengthOY;P

�
Hi .W �/P

�
� fP g

whereH i .W �/P is the stalk of thei -th cohomology sheaf of the complexW � at the
pointP . Using thatW � is concentrated in degree zero and that lengthOY;PZ

.OZ;PZ
/ is

equal to 1, wherePZ is the generic point ofZ, we see that�Y .ŒW ��/DZ.
Furthermore, using thatf is flat, we compute that Z�p .Lf

�/.ŒW ��/D ŒU ��, where
U � is the complex of sheaves concentrated in degree zero with H0.U �/D OX=If �1.Z/

andf �1.Z/ denotes the scheme-theoretic inverse image ofZ underf . Clearly we have
�X .ŒU

��/D Œf �1.Z/�, the cycle associated to the scheme-theoretic inverse image ofZ,
and so we conclude that

�X ıZ�p .Lf
�/ı��1

Y .ŒZ�/D Œf �1.Z/�D f �ŒZ�

By additivity of the four maps in the diagram the theorem follows. �

Example: proper push-forward. LetX andY be integral, non-singular, separated
schemes of finite type over an algebraically closed field. (The latter assumption will be
needed in order to use [Ser65, Proposition V.C.6.2]). Letf W X ! Y denote a proper
morphism. We consider Dperf.X/;Dperf.Y / with the standard structure of tensor triangu-
lated categories,but this time we choosedimKrull as a dimension function. Note that this
implies CH�p .D

perf.S//Š CHdim.S/�p.S/ for S DX;Y .
As f is proper, we obtain a functor Rf� W Db.Coh.X//! Db.Coh.Y // (see e.g.

[Huy06, Theorem 3.23]), and so our regularity assumptions onX andY imply that we
also get a functor Rf� W Dperf.X/! Dperf.Y /.

2.4.14. LEMMA . The functorRf� W Dperf.X/! Dperf.Y / has relative dimension0.

PROOF. Let A� be a complex in Dperf.X/ such that dim
�
supp

�L
i H

i .A�/
��
� d .

There is a spectral sequence

E
p;q
2 D Rpf�.H

q.A�//H) HpCq.Rf�.A
�//

(see for example [Huy06, p.74 (3.4)]) that converges, asA� is bounded. By assump-
tion, all the cohomology sheaves Hq.A�/ are supported in dimension� d , and by [Ser65,
Proposition V.C.6.2 (a)], we therefore have dim.supp.Rpf�.Hq.A�//// � d for all p.
This implies that the termsEp;q1 are supported in dimension� d as well. Therefore,
all objects HpCq.Rf�.A

�// admit a finite filtration such that the subquotients are sup-
ported in dimension� d . An induction argument then shows that the same must hold for
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HpCq.Rf�.A
�//. We conclude that

dim

 
supp

 M
i

Hi .Rf�.A
�//

!!
� d

which shows that Rf�.A
�/ 2 Dperf.Y /.d/. In order to show that the relative dimension

of Rf� is 0, we need to show that there is aB� 2 Dperf.X/ such that dim.supp.B�// D

dim.supp.Rf�.B
�///. If P is any closed point ofX with associated ideal sheafIP , then

the complexC �
P concentrated in degree 0 withOX=IP has dim.supp.C �

P //D 0. By the
result we just proved, Rf�.C

�
P / 2 Dperf.Y /.0/, which implies that either Rf�.C

�
P / D 0

or dim.supp.Rf�.C
�
P ///D 0. If Rf�.C

�
P /D 0, we would certainly have H0.Rf�.C

�
P //D

0, but this is impossible by the spectral sequence we used above: indeed, it is easy to
see thatE0;01 D E

0;0
2 as Hi .C �

P / D 0 for i ¤ 0. But we haveE0;02 D R0f�.C
�
P / D

f�.OX=IP / ¤ 0. Thus H0.Rf�.C
�
P // has a non-zero subquotient from which we de-

duce that Rf�.C
�
P / ¤ 0. We conclude that dim.supp.Rf�.C

�
P /// D 0 which completes

the proof. �

The previous lemma establishes that Rf� induces homomorphisms

CH�p .D
perf.X//! CH�p .D

perf.Y //

for all p. Again, we can show that these are exactly the ones we would expect.

2.4.15. PROPOSITION. Denote by�S W CH�p .D
perf.S//! CHdim.S/�p.S/ for S D

X;Y the isomorphisms from Proposition2.3.8. Then for allp, there is a commutative
diagram

CH�p .D
perf.X//

CH�
p .Rf�/

//

�X

��

CH�p .D
perf.Y //

�Y

��

CHdim.X/�p.X/
f� // CHdim.Y /�p.Y /

wheref� denotes the proper push-forward homomorphism on the usual Chow group (cf.
[Ful98, Chapter 1.4]).

PROOF. Again, it suffices to show the statement for the maps on the cycle groups, as
the maps on the Chow groups are induced by those. By additivity of the four maps in the
diagram it is enough to check that for an (integral) subvarietyV �X of dimensionp and
an elementv 2Z�p .D

b.X// with �X .v/D ŒV �, we have�Y ıZ�p .Rf�/.v/D f�.ŒV �/. So,
fix V as above and consider the complex of coherent sheavesW � that is concentrated
in degree 0 and has H0.W �/ D OV , whereOV D OX=IV and IV is the ideal sheaf
associated toV . The complexW � represents a classŒW �� in

Z�p .D
b.X//D K0

�
Db.X/.p/=Db.X/.p�1/

�
D K0

��
Db.X/.p/=Db.X/.p�1/

�\�
and similarly to the calculation in Theorem2.4.13we see that�X .ŒW ��/D V .
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For the next step, we compute

�Y ıZ�p .Rf�/.ŒW
��/D

X
i

X
Q2Y.p/

.�1/i lengthOY;Q

�
Hi .Rf�.W

�//Q
�
� fQg

D

X
i

X
Q2Y.p/

.�1/i lengthOY;Q

�
Rif�.OV /Q

�
� fQg

D

X
i

.�1/i
X

Q2Y.p/

lengthOY;Q

�
Rif�.OV /Q

�
� fQg:

Using [Ser65, Proposition V.C.6.2 (b)], we see that this is equal tof�.V /, which means
that we have shown�Y ıZ�p .Rf�/.ŒW

��/D f�.V / and thus have finished the proof of the
theorem. �

2.5. An alternative definition of rational equivalence

Instead of choosing the K-theoretic approach of Definition2.2.4 in order to obtain
a notion of rational equivalence, one can try to imitate the original construction from
algebraic geometry of taking divisors of functions on subvarieties. Following [Bal13], we
can define “divisors of functions” in the categorical context.

2.5.1. CONVENTION. For the rest of the section,K denotes a tensor triangulated
category in the sense of Convention2.2.1that is rigid and such that Spc.K/ is a noetherian
topological space. We also fix a dimension function onK.

LetQ\ denote the composition of the Verdier quotient functor

K.p/!K.p/=K.p�1/

and the inclusion into the idempotent completion

K.p/=K.p�1/! .K.p/=K.p�1//
\ :

The functorQ\ induces a group homomorphism

q\ W K0.K.p//! K0

�
.K.p/=K.p�1//

\
�
D Z�p .K/

Œa� 7! ŒQ\.a/�

For an objecta in the Verdier quotientK.pC1/=K.p/ and an automorphism

f W a! a ;

choose a fractiona
ˇ
 � b

˛
�! a in K.pC1/ representingf . We will then have cone.ˇ/ 2

K.p/ by definition of the Verdier quotient. We also must have cone.˛/ 2K.p/: indeed,
˛ must be an isomorphism inK.pC1/=K.p/ as the composition̨ ıˇ�1 D f is one, and
thus its cone must be zero inK.pC1/=K.p/. This implies that it is inK.p/, as the latter is
a thick subcategory.

We then define thedivisor off (cf. [Bal13]) as

div�.f / WD q\.Œcone.˛/�� Œcone.ˇ/�/D ŒQ\.cone.˛//�� ŒQ\.cone.ˇ//�

The following shows that div�.f / is well-defined.

2.5.2. PROPOSITION. The expressiondiv�.f / does not depend on the choice of˛
andˇ.
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PROOF. If we have an equivalent fractiona
ˇ 0

 � c
˛0

�! a, there is by definition a com-
mutative diagram inK.pC1/

b
ˇ

����
��

��
�� ˛

��
>>

>>
>>

>>

a d
x //

y
oo

f

OO

g

��

a

c
ˇ 0

__???????? ˛0

??��������
:

Using the octahedral axiom, we obtain the following distinguished triangles inK.p/:

cone.f /! cone.y/! cone.ˇ/!†.cone.f //

cone.g/! cone.y/! cone.ˇ0/!†.cone.g//

cone.f /! cone.x/! cone.˛/!†.cone.f //

cone.g/! cone.x/! cone.˛0/!†.cone.g//

These show thatŒcone.˛/�� Œcone.˛0/� and Œcone.ˇ/�� Œcone.ˇ0/� are both equal to the
elementŒcone.g/�� Œcone.f /� in K0.K.p//. Thus, we have

Œcone.˛/�� Œcone.ˇ/�D Œcone.˛0/�� Œcone.ˇ0/�

in K0.K.p//. Applying the homomorphismq\ on both sides of the equation yields the
statement. �

We now define alternative Chow groups as “cycles modulo divisors of functions”.

2.5.3. DEFINITION. Let I denote the subgroup of Z�p .K/ generated by all expres-

sions div�.f /, wheref runs over all automorphisms of all objects ofK.pC1/=K.p/.
Then define

ch�p .K/ WD Z�p .K/=I :

Let us now investigate the relation between ch�
p .K/ and CH�p .K/. Recall from

Definition 2.2.4that CH�p .K/ D Z�p .K/=j ı q.ker.i// wherei;q;j are taken from the
diagram

K0.K.p//
i //

q

����

K0.K.pC1//

K0.K.p/=K.p�1//
� � j

// K0
�
.K.p/=K.p�1//

\
�
D Z�p .K/ :

2.5.4. PROPOSITION. We have an inclusionI � j ıq.ker.i//.

PROOF. If f W a! a is an isomorphism inK.pC1/=K.p/ represented by a fraction

a
ˇ
 � b

˛
�! a

in K.pC1/, then in K0.K.pC1//, we have

Œcone.˛/�D Œcone.ˇ/�D Œb�� Œa�
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and thusŒcone.˛/�� Œcone.ˇ/�D 0. Therefore,Œcone.˛/�� Œcone.ˇ/� will certainly be in
ker.i/. The statement then follows asq\ D j ıq. �

2.5.5. COROLLARY. For all p 2 Z, there is an epimorphism

ch�p .K/! CH�p .K/ :

PROOF. This is an immediate consequence of Proposition2.5.4. �

It is not clear to the author if the inclusionI � j ı q.ker.i// holds in general, so
ch�p .K/ and CH�p .K/ are a priori different. We will now prove that the two groups
coincide when we are dealing with separated, non-singular schemes of finite type over a
field that have an ample line bundle.

2.5.6. THEOREM. LetX;Dperf.X/ be as in Convention2.3.1and assume furthermore
thatX has an ample line bundleL. Then there are isomorphisms

ch�p .D
perf.X//Š CH�p .D

perf.X//Š CH�p.X/

for all p 2 Z.

PROOF. Using Theorem2.3.5and Proposition2.5.4, we already know that the sub-
group I is contained in the subgroup of cycles rationally equivalent to zero. Thus, it
suffices to show that any cycle rationally equivalent to zero can be obtained as div�.f /

for some objecta 2 Db.X/.pC1/=Db.X/.p/ and morphismf 2 Aut.a/. The essential
point is that for a subvarietyV � X of codimension�.pC1/ we can write the function
field of V as

k.V /D

0@M
i�0

�
�
X;OV ˝L˝i

�1A
..0//

;

whereOV WD OX=IV andIV is the ideal sheaf associated toV . Indeed, this is a con-
sequence of [Gro61, Théorème 4.5.2] and the fact that the restriction of an ample line
bundle to a closed subscheme is ample.

Thus, forh2 k.V /, we can writehD f=g with f;g 2�.X;OV ˝L˝n/ for somen2
N. From this, we obtain exact sequences

0!OV
mf

��!OV ˝L˝n
! coker.mf /! 0

and

0!OV
mg

��!OV ˝L˝n
! coker.mg/! 0

wheremf ;mg are the obvious multiplication maps. By using the local isomorphisms
L˝njUi

ŠOX jUi
for some open coverfUigi2I , we obtain that

supp.coker.mf //D V.f /� V

and
supp.coker.mg//D V.g/� V:

If we interpret the above exact sequences as distinguished triangles in the Verdier quotient
Dperf.X/.pC1/=Dperf.X/.p/, we therefore see that bothmf andmg are isomorphisms in
this category, as

codim.V .f //D codim.V .g//D�p



CHAPTER 3

Tensor triangular Chow groups in modular
representation theory

So far we have mostly considered examples from algebraic geometry. However, ten-
sor triangulated categories also occur in different contexts. One of these is modular rep-
resentation theory, where one studieskG-modules for a finite groupG and a fieldk such
that char.k/ divides jGj. A useful tool in this context is the stable categorykG-stab,
which is obtained as the stable category ofkG-mod, the Frobenius category (see Ex-
ample1.1.5) of finitely generated leftkG-modules. The categorykG-stab is a tensor
triangulated category. By a theorem of Rickard (see [Ric89]), it is closely related to
Db.kG-mod/, the bounded derived category of finitely generatedkG-modules, which is
also tensor triangulated. Using the theory from the previous chapter, we therefore have
a notion of tensor triangular Chow groups for these categories. In this chapter we com-
pare the tensor triangular Chow groups ofkG-stab and Db.kG-mod/, compute concrete
examples of these groups and show that stable induction and restriction functors fit in the
framework of functors with a relative dimension.

3.1. Basic definitions and results

We recall some basic definitions and results that we will need. All of them can be
found in the books by Carlson [Car96] and Benson [Ben98a, Ben98b] or in Balmer’s
article [Bal05]. For the rest of the chapter,G will denote a finite group,k is a field of
characteristicp dividing jGj, andkG is the corresponding group algebra. Associated
to this algebra is the abelian categorykG-mod consisting of the finitely-generated left
kG-modules. Given two modulesM;N 2 kG-mod, we can form their tensor product
M ˝k N , which is again a finitely-generated leftkG-module when we consider it with
the diagonal action

g.m˝n/ WD gm˝gn

for g 2 G;m 2M andn 2 N and extend linearly. Furthermore, Homk.M;N /, the set of
k-linear maps fromM toN can be made a finitely generatedkG-module by setting

.gf /.m/ WD f .g�1m/

for g 2G;m 2M andn 2N and extending linearly.
The categorykG-mod is a Frobenius category (see Example1.1.5), and so we can

form the associated stable categorykG-stab which is naturally triangulated. It can be
given a symmetric-monoidal structure with the tensor product induced by�˝k � with
unit objectk, the trivialkG-module. Thus,kG-stab is an essentially small, tensor trian-
gulated category. It is also rigid, where the dual of an objectM is given as Homk.M;k/.

45
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3.1.1. DEFINITION. Thecohomology ringof kG is defined as the graded ring

H�.G;k/ WD
M
i�0

ExtikG.k;k/ :

Theprojective support varietyof kG is defined as

VG.k/ WD Proj.H�.G;k// :

3.1.2. REMARK . Whenp is odd, H�.G;k/ is in general only agradedcommuta-
tive ring, so when we write Proj.H�.G;k// we really mean Proj.Hev.G;k// in this case,
where Hev.G;k/ is the subring of all elements of even degree. Another way to deal with
this difficulty is to extend the definition of Proj to graded-commutativek-algebras (cf.
[BBC09, Section 1]).

Suppose we are given any two finite-dimensionalkG-modulesM;N . Then the
Evens-Venkov theorem (see [Car96, Theorem 9.1]) shows that

L
i�0Exti

kG
.M;N / is

a finitely generated graded module over H�.G;k/.

3.1.3. DEFINITION. For akG-moduleM ¤ 0, define J.M/� H�.G;k/ as the anni-
hilator ideal of Ext�

kG
.M;M/ in H�.G;k/. Thevariety ofM is the subvariety ofVG.k/

associated to J.M/.

3.1.4. DEFINITION. LetM be inkG-mod. Aminimal projective resolution ofM is
a projective resolutionP�!M such that for every other projective resolutionQ�!M

there exists an injective chain map.P�!M/! .Q�!M/ and a surjective chain map
.Q�!M/! .P�!M/ that both lift the identity onM .

3.1.5. THEOREM (see [Car96, Theorem 4.3]).LetM be a module inkG-mod. Then
M has a minimal projective resolution.

3.1.6. DEFINITION. LetM be inkG-mod and letP�!M be a minimal projective
resolution. ThecomplexitycG.M/ ofM is defined as the least integers such that there is
a constant� > 0 with

dimk.Pn/� � �n
s�1 for n > 0

The complexity of a module can be read off from its variety:

3.1.7. THEOREM(cf. [Ben98b, Prop. 5.7.2]).If M is a finitely generatedkG-module,
then

dim.VG.M//D cG.M/�1:

The projective support variety ofkG can be reconstructed fromkG-stab:

3.1.8. THEOREM (cf. [Bal05, Corollary 5.10]). There is a homeomorphism

� W VG.k/ �! Spc.kG-stab/ :

Furthermore, the support of a moduleM 2 kG-stabcorresponds toVG.M/ under this
map.

For the rest of the chapter, we will take dimKrull (cf. Example1.4.3) as a dimension
function forkG-stab. By Theorem3.1.8this coincides with the usual Krull dimension on
VG.k/ under the homeomorphism�.



Derived category vs. stable category 47

3.2. Derived category vs. stable category

We consider Db.kG-mod/, the bounded derived category of finitely generatedkG-
modules with its natural triangulation. It becomes a tensor triangulated category with the
usual extension to chain complexes of the tensor product˝k of kG-modulesoverk.

Let us immediately state that Db.kG-mod/ andkG-stab are closely related: the cat-
egorykG-stab arises as a Verdier quotient of Db.kG-mod/. Let Kb.kG-proj/ denote the
bounded homotopy category of finitely generated projectivekG-modules. Since quasi-
isomorphisms between bounded complexes of projective modules are the same as homo-
topy equivalences, Kb.kG-proj/ embeds into Db.kG-mod/ as a full triangulated subcate-
gory.

3.2.1. THEOREM (see [Ric89]). The natural functor

kG-stab! Db.kG-mod/=Kb.kG-proj/

induced by the inclusionkG-mod! Db.kG-mod/ is an exact equivalence of tensor tri-
angulated categories.

The following theorem tells us that the spectra of Db.kG-mod/ andkG-stab differ in
one point only.

3.2.2. THEOREM (see [Bal10a, Theorem 8.5]).We have an isomorphism

� W Spc.Db.kG-mod// �! Spech.H�.G;k//

whereSpech.H�.G;k// is the spectrum of homogeneous prime ideals inH�.G;k/. Fur-
thermore the diagram

Spc.kG-stab/
Spc.q/

// Spc.Db.kG-mod//

�

��

Proj.H�.G;k//

'

OO

� � // Spech.H�.G;k//

commutes, where' is the isomorphism from Theorem3.1.8, Spc.q/ is the map associated
to the quotient functor

q W Db.kG-mod/! Db.kG-mod/=Kb.kG-proj/Š kG-stab;

and the lower arrow is the inclusion of the open subset with complement the unique closed
point ofSpech.H�.G;k// corresponding to the irrelevant ideal.

3.2.3. REMARK . It is crucial here that we consider Db.kG-mod/ with the tensor
product˝k , as opposed tő kG : there is no natural left-module structure onM ˝kG
N for two left kG-modulesM;N . If G is commutative,̋ kG makes Kb.kG-proj/ �
Db.kG-mod/ a tensor triangulated category, but its spectrum is much less interesting, as
it is homeomorphic to the usual prime ideal spectrum Spec.kG/.

We start to compare CH�p .D
b.kG-mod// and CH�p .kG-stab/.

3.2.4. PROPOSITION. ConsiderkG-stabandDb.kG-mod/ with the Krull dimension
of support as a dimension function. Then for allp � 0, the Verdier quotient functor

q W Db.kG-mod/! Db.kG-mod/=Kb.kG-proj/Š kG-stab
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induces isomorphisms

Z�pC1.D
b.kG-mod//Š Z�p .kG-stab/ :

PROOF. First, remark that the functorq sends an object with dimension of support
pC1 to an object with dimension of supportp for p � 0. This follows as we have

supp.q.a///D Spc.q/�1.supp.a//D supp.a/\Spc.kG-stab/� Spc.Db.kG-mod//

and the space Spc.Db.kG-mod// has exactly one closed pointf0g � Db.kG-mod/ more
than Spc.kG-stab/, which is contained in the closure of every point of Spc.Db.kG-mod//.

If K D Db.kG-mod/ andJ D Kb.kG-proj/, we use Lemma1.1.15to see that

K.pC1/=K.p/ Š .K.pC1/=J/=.K.p/=J/

Š kG-stab.p/ =kG-stab.p�1/ ;

and the equivalence induces one on the idempotent completions. By applying K0.�/, we
get the desired result. �

In order to prove Proposition3.2.4for Chow groups instead of cycle groups, we need
the following elementary lemma about abelian groups.

3.2.5. LEMMA . Let f W A! B be a morphism of abelian groups,S � A be a sub-
group and Of WA=S !B=f .S/ be the induced morphism. Thenker Of D p.kerf /, where
p W A! A=S is the canonical projection.

PROOF. Let Œx� 2 ker Of , then0D Of .Œx�/D Œf .x/�, which implies thatf .x/ 2 f .S/.
Let s 2 S be such thatf .s/D f .x/. Then

f .x� s/D f .x/�f .s/D f .x/�f .x/D 0

and
p.x� s/D p.x/�p.s/D Œx�

which proves that kerOf � p.kerf /. The other inclusion is trivial. �

3.2.6. THEOREM. ConsiderkG-stabandDb.kG-mod/ with the Krull dimension of
support as a dimension function. Then for allp � 0, there are isomorphisms

CH�p .kG-stab/Š CH�pC1.D
b.kG-mod// :

PROOF. Let K WD Db.kG-mod/;T WD kG-stab and consider the commutative dia-
gram

K.pC1/
� //

�

��

�

&&MMMMMMMMMMMMM
�
K.pC1/=K.p/

�\
 

''PPPPPPPPPPPP

K.pC2/

�

''NNNNNNNNNNNN
T.p/

�
//

�

��

�
T.p/=T.p�1/

�\
T.pC1/
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where the diagonal functors�;� are restrictions of the Verdier quotient

q W Db.kG-mod/! kG-stab

and is the equivalence from the proof of Proposition3.2.4. We have

ker.K0.�//D K0.�/.ker.K0.�///

as we are in the situation of Lemma3.2.5. This shows that

K0.�/.ker.K0.�///D K0.�/ıK0.�/.ker.K0.�///D K0. /ıK0.�/.ker.K0.�///

which gives the desired result. �

We now proceed to compute some examples of tensor triangular Chow groups com-
ing fromkG-stab.

3.3. The caseG D Z=pnZ

We begin with the case whereG D Z=pnZ for some primep andn 2 N. In the
following, k will be any field of characteristicp. It follows from [Car96, Theorem 7.3]
thatVG.k/ is a point, and so a finitely generatedkG-module has complexity 1 if and only
if it is non-projective.

Computing the tensor triangular cycle groups forkG-stab amounts to calculating

K0

�
.kG-stab.i/ =kG-stab.i�1//

\
�
:

One immediately sees that the only non-trivial case is wheni D 0. Then

Z�0 .kG-stab/D K0.kG-stab// ;

askG-stab is idempotent complete. In order to compute this, we use the following result:

3.3.1. PROPOSITION(see [TW91, Proposition 1]).LetB be a Frobeniusk-algebra,
letB-modbe the category of finitely generated leftB-modules andB-stabthe correspond-
ing stable category. Then it holds that

K0.B-stab/Š K0.B-mod/=hproji ;

wherehproji is the subgroup generated by the isomorphism classes of projective modules.

Note that K0.kG-mod//ŠZ, askG is a commutative local artinian ring: indeed, for
modules over artinian rings, being finitely generated and having finite length are equiv-
alent, and then the result follows by Lemma2.2.7. For local rings, projective and free
modules coincide, and thus it follows from Proposition3.3.1that

Z�0 .kG-stab/Š Z=pnZ :

We also see that this group coincides with CH�
0 .kG-stab/, as we are in the top dimension.

Summarizing, we have the following:

3.3.2. PROPOSITION. LetG DZ=pnZ for some primep andn 2N andk any field
of characteristicp. Then

Z�i .kG-stab/D CH�i .kG-stab/D 0 for all i ¤ 0

and
Z�0 .kG-stab/D CH�0 .kG-stab/D Z=pnZ:
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3.4. The caseG D Z=2Z�Z=2Z

If G D Z=2Z�Z=2ZD hx;yjx2 D y2 D 1;xy D yxi andk is a field of character-
istic 2, the computations become more involved.

As a consequence of [Car96, Theorem 7.6], we have thatVG.k/ D P1. Therefore
there is a proper subcategory ofkG-stab consisting of the modules of complexity� 1. In
order to work with those, we need the following classification:

3.4.1. LEMMA . All finite-dimensional indecomposablekG-modules of odd dimen-
sion have complexity 2.

PROOF. Let M be a odd-dimensional indecomposable module. If we assume that
M has complexity 1, then by [Ben98b, Theorem 5.10.4 and Corollary 5.10.7],M must
be periodic, with period 1. In other words, if� W P � M is a projective cover ofM ,
then we must haveM Š ker.�/. However, sinceG is a2-group, the only indecomposable
projective module is the free module of rank 1 (see [Ben98a, Section 3.14]), which has
k-dimension 4. Thus, ifM has dimension2nC 1 andP has dimension4m, then using
that� is surjective and the dimension formula, we get dimk.ker.�//D 4m� 2n� 1. We
see immediately that ker.�/ cannot have dimension2nC 1, and thusM cannot have
complexity 1. As it is non-projective it therefore must have complexity 2. �

We also see that a complementary result holds for the even-dimensional representa-
tions:

3.4.2. LEMMA . All finite-dimensional, non-projective indecomposablekG-modules
of even dimension have complexity 1.

PROOF. It follows from [CM12, Proposition 3.1] that a non-projective indecompos-
ablekG-module of even dimension is periodic with period 1. As an immediate conse-
quence, those modules have complexity 1. �

3.4.3. REMARK . Lemma3.4.2also follows from the following explicit calculation:
using the classification of all indecomposablekG-modules (cf. [Ben98a, Theorem 4.3.3]),
one sees that any non-projective, indecomposable even-dimensionalkG-module is iso-
morphic to one of the form

x 7!

�
I I

0 I

�
y 7!

�
I J

0 I

�
whereI is then�n identity matrix andJ is somen�n matrix overk. Note that in this
presentation, the above modules may fail to be mutually non-isomorphic for differentJ .
This type of module will from now on be denoted by Mn.J / and we proceed to find the
first term of a projective resolution for it. In order to do so, fix the basis.1;xC 1;yC

1;xyCxCyC1/ for kG and consider for1� i � n then�4 matrices

Bi WD

0BB@
:::

:::
:::

:::

0 fi Ji 0
:::

:::
:::

:::

1CCA and Ei WD

0BB@
:::

:::
:::

:::

fi 0 0 0
:::

:::
:::

:::

1CCA
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wherefi is thei -th standard basis vector of lengthn andJi is thei -th column vector ofJ .
One now verifies the following statement by an explicit computation:

3.4.4. LEMMA . The linear map� W kGn!Mn.J / given by the2n�4n matrix�
B1 � � � Bn
E1 � � � En

�
is a surjectivekG-module homomorphism. Furthermore we haveker.�/ŠMn.J /. �

From this it follows that the complexity of Mn.J / is � 1. As it is not projective, it
must therefore have complexity 1.

The following is a direct consequence of Lemma3.4.1and Lemma3.4.2:

3.4.5. COROLLARY. The indecomposablekG-modules of odd dimension are exactly
the indecomposable modules of complexity 2. The non-projective indecomposablekG-
modules of even dimension are exactly the indecomposable modules of complexity 1.�

Using this classification, we can calculate the zero-dimensional Chow group.

3.4.6. LEMMA . The map

ŒM � 7! dimk.M/ mod4

defines an isomorphismK0.kG-stab/! Z=4Z. Furthermore, if

˛ W K0.kG-stab.0//! K0.kG-stab/Š Z=4Z

denotes the map induced by the inclusion functorkG-stab.0//! kG-stab, then

im.˛/Š Z=2Z� Z=4Z :

PROOF. The ringkG is local and artinian, and thus it follows from Lemma2.2.7that
the map

ŒM � 7! length.M/D dimk.M/

defines an isomorphism K0.kG-mod/! Z. Therefore, the map

ŒM � 7! dimk.M/ mod4

defines an isomorphism K0.kG-stab/! Z=4Z by Lemma3.3.1, as every finitely gener-
ated projective module over a local ring is free.

By Corollary3.4.5, the image of̨ in K0.kG-stab/ consists of exactly those classes
ŒM � whereM has even dimension, i.e.

dimk.M/D 0 mod4

or
dimk.M/D 2 mod4 :

Thus, im.˛/Š Z=2Z. �

3.4.7. PROPOSITION. There is an isomorphism

CH�0 .kG-stab/Š Z=2Z:
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PROOF. By definition,

Z�0 .kG-stab/D K0

�
.kG-stab.0//

\
�
Š K0.kG-stab.0// ;

askG-stab.�1/ D 0 and thick subcategories of idempotent complete categories are idem-
potent complete themselves. Using this, we have that

CH�0 .kG-stab/Š Z�0 .kG-stab/=ker.˛/ ;

where
˛ W K0.kG-stab.0//! K0.kG-stab.1//D K0.kG-stab/

is the map from Lemma3.4.6. Using the isomorphism theorem for abelian groups, we
conclude that

CH�0 .kG-stab/Š im.˛/Š Z=2Z

by Lemma3.4.6. �

For the one-dimensional Chow group we need to work a bit harder. We first take a
closer look at the quotientL WD kG-stab=kG-stab.0/.

3.4.8. LEMMA . Assumek is algebraically closed. The categoryL is idempotent
complete.

PROOF. Under the additional hypothesis, it is shown in [CDW94, Example 5.1] that
up to isomorphism, the only indecomposable object inL is k, which has endomorphism
ringK WD k.�/, a transcendental field extension ofk. It follows thatL is equivalent to the
category of finite-dimensional vector spaces overK, which is idempotent complete. �

This enables us to prove the following:

3.4.9. PROPOSITION. Assumek is algebraically closed. There is an isomorphism

CH�1 .kG-stab/Š Z=2Z:

PROOF. The sequence of triangulated categories

kG-stab.0/ ,! kG-stab! kG-stab=kG-stab.0/

induces an exact sequence

K0.kG-stab.0//
˛
�! K0.kG-stab/! K0.kG-stab=kG-stab.0//! 0

where˛ is the map from Lemma3.4.6. Therefore,

CH�1 .kG-stab/Š K0

�
.kG-stab=kG-stab.0//

\
�
Š K0.kG-stab/= im.˛/Š Z=2Z

as follows from Lemma3.4.8and Lemma3.4.6. �

3.5. Relative dimension of restriction and induction

We finish the chapter by showing that stable induction and restriction functors from
modular representation theory have a relative dimension as defined in Definition2.4.1.
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Some auxilliary results from representation theory. Let us first give some well-
known representation-theoretic results. LetG be a finite group andk a field such that
char.k/D p dividesjGj.

3.5.1. LEMMA . Let H < G be a subgroup. There is an isomorphism of leftkH -
modules

kG Š
M
HnG

kH

PROOF. Let x1; : : : ;xn 2 G be a complete set of representatives forHnG. First we
see thatx1; : : : ;xn spankG as a leftkH -module: leta1y1C : : :amym 2 kG with ai 2 k
andyi 2G. Then eachyi is contained in exactly one cosetHxji

, i.e. there is an element
hi 2Hxji

such thatyi D hixji
. Therefore,

a1y1C : : :amym D .a1h1/xj1
C : : :C .amhm/xjm

:

In order to check linear independence, assume

b1x1C : : :Cbnxn D 0

for bi 2 kH . We see that this can only happen ifbi D 0 for all i as the cosetsHxi and
Hxj are mutually disjoint fori ¤ j . �

3.5.2. LEMMA . LetH <G be a subgroup. The functors

IndGH W kH -mod! kG-mod

and

ResGH W kG-mod! kH -mod

are exact.

PROOF. Using Lemma3.5.1we see thatkG is a free leftkH module, and therefore
IndGH D kG˝kH � is exact. As ResGH acts as the identity on morphisms, it preserves
injectivity and surjectivity and therefore is exact. �

3.5.3. LEMMA . A functor between abelian categories with an exact right-adjoint
preserves projective objects. Dually, a functor between abelian categories with an exact
left-adjoint preserves injective objects.

PROOF. Let F W A! B be a functor with an exact right-adjointG andP 2 A a
projective object. By definition, this means that the functor HomA.P;�/ is exact. By
the adjointness property ofG, the functors HomB.F.P /;�/ and HomA.P;G.�// are
naturally isomorphic. But the latter one is a composition of the exact functorsG and
HomA.P;�/ and thus is exact. Therefore HomB.F.P /;�/ is exact and it follows that
F.P / is projective. The argument for the second statement is dual. �

3.5.4. COROLLARY. The functorsIndGH andResGH preserve projective modules.

PROOF. This follows immediately from the fact that IndGH and ResGH are mutually
adjoint on both sides (see e.g. [Car96, Proposition 3.2]) and Lemma3.5.3. �
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3.5.5. COROLLARY. The functorsIndGH andResGH induce exact functors

IndGH W kH -stab! kG-stab

and

ResGH W kG-stab! kH -stab

�

3.5.6. THEOREM. The functorsIndGH and ResGH form an adjoint pair that satisfies
the projection formula, in the sense of Definition2.4.7.

PROOF. The adjunction of the functors IndGH and ResGH is obtained from the adjunc-
tion of their non-stable counterparts: for modulesM 2 kG-mod;L2 kH -mod, the natural
isomorphism

‰ W HomkG.IndGH .L/;M/! HomkH .L;ResGH .M//

is given as

� 7! ��

where� W L! IndGH .L/D kG˝kH L is given as the mapl 7! 1˝ l (see [Car96, Proof
of Proposition 3.2]). Now if� factors through a projective modulekG module,�� will
also factor through the restriction of the same projective module toH , which is projective
again by Corollary3.5.4. Thus‰ induces an isomorphism between the stable homomor-
phism sets.

Furthermore, Frobenius reciprocity (see e.g. [Car96, Theorem 3.1]) tells us that there
are natural isomorphisms inkG-mod

IndGH .L/˝M Š IndGH .L˝ResGH .M//

and these descend to the stable category to give us natural isomorphisms

IndGH .L/˝M Š IndGH .L˝ResGH .M// :

This shows that the pair.IndGH ;ResGH / satisfies the projection formula as desired. �

3.5.7. REMARK . The adjunction between IndGH and ResGH can also be deduced from
the following more general result: letF W S ! T andG W T ! S be a pair of adjoint
exact functors between triangulated categoriesS ;T and letS 0 � S ;T 0 � T be thick
triangulated subcategories such thatF.S 0/ � T 0 andG.T 0/ � S 0. Then the induced
functorsF W S=S 0! T =T 0 andG W T =T 0! S=S 0 are adjoint as well. This statement is
proved by showing that the unit and the counit of the desired adjunction are given by the
images of the unit and counit of the adjunction betweenF andG under the corresponding
localization functors.

In the case of IndGH and ResGH , the adjunction between IndGH and ResGH induces
an exact adjunction between the bounded derived categories Db.kH -mod/ DW S and
Db.kG-mod/ DW T . The roles ofS 0 andT 0 are then played by the thick triangulated
subcategories Kb.kH -proj/ and Kb.kG-proj/, respectively.

The following Lemma will be useful when we discuss the relative dimension of the
induction functor.
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3.5.8. LEMMA . LetM 2 kH -mod. Then

dimk.IndGH .M//D ŒG WH� �dimk.M/:

PROOF. By Lemma3.5.1there is an isomorphism ofkH -modules

ResGH
�
IndGH .M/

�
Š ResGH .kG˝kHM/Š

0@M
G=H

kH

1A˝kHM ŠM
G=H

M

which proves the lemma as ResG
H leaves dimensions intact. �

Relative dimension of restriction. We now consider the stable restriction functor

ResGH W kG-stab! kH -stab :

We fix the Krull dimension as a dimension function forkG-stab andkH -stab. Recall that
for M 2 kX -stab we have dim.supp.M// D cX .M/� 1 for X D G;H . We begin with
the following easy observation:

3.5.9. LEMMA . LetM 2 kG-mod. Then

cH
�
ResGH .M/

�
� cG.M/

PROOF. Assume thatM 2 kG-mod has complexitys. The functor ResGH sends a
minimal projective resolutionP�!M to a projective resolution ResGH .P�/!ResGH .M/

of ResGH .M/ by Lemma3.5.3. A minimal projective resolutionQ�! ResGH .M/ admits
an injective chain map to ResGH .P�/! ResGH .M/ by definition, and therefore we must
have

dimk.Qn/� dimk.ResGH .Pn//D dimk.Pn/� � �n
s�1

asM 2 kG-mod had complexitys. This implies that ResGH .M/ has complexity� s. �

With a little more work we can now compute the relative dimension of ResG
H :

3.5.10. THEOREM. LetH � G be a subgroup such thatp dividesjH j. ThenResGH
has relative dimension 0.

PROOF. It follows from Lemma3.5.9that for all objectsM 2 kG-stab, we have the
inequality dim.supp.ResGH //� dim.supp.M// and thus, if ResGH has a relative dimension,
it must be� 0. In order to prove the statement, it therefore suffices to show that there is an
objectM0 of kG-stab such that dim.supp.ResGH .M0/// � dim.supp.M0// and therefore
dim.supp.ResGH .M0///D dim.supp.M0//.

Let P 2 VH .k/ be a closed point (which exists asp dividesjH j) and look atQ D
Spc

�
ResGH

�
.P / 2VG.k/ which is closed as well since the map Spc

�
ResGH

�
is closed (see

[Bal14, Theorem 2.4 (b)]). TakeM0 2 kG-stab such that supp.M0/D fQg. This is possi-
ble as we can realize any subvariety as the support of a module, see [Ben98b, Chapter 5.9],
or more abstractly [Bal05, Corollary 2.17]. Note that this means that dim.supp.M0//D 0.
We know that

supp.ResGH .M0//D
�
Spc

�
ResGH

���1

.supp.M0//
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which must contain the closed pointP . Thus,

dim.supp.ResGH .M0///� 0D dim.supp.M0// ;

which finishes the proof. �

3.5.11. REMARK . Assume thatp − jH j. Then by Maschke’s theoremkH is semi-
simple (see e.g. [Car96, Theorem 1.7]), which implies that every finitely generated left
kH -module is projective. Consequently,kH -stabD 0 and ResGH .M/D 0 for all modules
M 2 kG-stab. As dim.supp.0// D dim.;/ D �1, the functor ResGH does not have a
relative dimension in this case.

Relative dimension of induction. Let us consider the stable induction functor

IndGH W kH -stab! kG-stab

next. Again, we fix the Krull dimension as a dimension function forkH -stab andkG-stab.

3.5.12. LEMMA . LetM 2 kH -mod. Then

cG
�
IndGH .M/

�
� cH .M/

PROOF. Let M 2 kH -mod have minimal projective resolutionP� !M . Assume
thatM has complexitys, then dimk.Pn/ � � � ns�1 for all n and some constant�. As
IndGH is an exact functor that preserves projectives, IndG

H .P�/! IndGH .M/ is a projective
resolution of IndGH .M/. By Lemma3.5.8, we have that

dimk IndGH .Pn/D ŒG WH�dimk.Pn/� ŒG WH�� �n
s�1

from which it follows that a minimal projective resolution of IndGH .M/ has growth rate at
mosts�1, as it admits an injective chain map to IndG

H .P�/! IndGH .M/. Thus IndGH .M/

has complexity at mosts. �

We now need two easy auxilliary lemmas concerning projectivekG-modules. Recall
thatp D char.k/.

3.5.13. LEMMA (see [Car96, Corollary 1.6]).Letpa be the exact power ofp dividing
jGj andP a projectivekG-module. Thenpa dividesdimk.P /.

PROOF. Let S � G be a Sylowp-subgroup of orderpa. Then ResGS .P / is a projec-
tive kS -module. AsS is ap-group, projectivity and freeness ofkS -modules coincide, so
dimk.ResGS .P //D dimk.P / is a multiple ofjS j D pa. �

3.5.14. LEMMA . LetH � G be a subgroup such thatp dividesjH j. Then we have
IndGH .k/¤ 0, so in particularsupp.IndGH .k// is a non-empty closed subset ofVG.k/.

PROOF. The module IndGH .k/ being non-zero is equivalent to IndGH .k/ being non-
projective. We know that IndGH .k/ is the permutation representation on the cosetsG=H ,
which has dimensionŒG WH�. If pa is the exact power ofp dividing jGj, then assuming
thatp dividesjH j tells us thatpa − ŒG WH�D dimk.IndGH .k//which implies that IndGH .k/
cannot be projective by Lemma3.5.13. �

3.5.15. COROLLARY. LetH �G be a subgroup such thatp dividesjH j. ThenIndGH
has a relative dimension and it is� 0.
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PROOF. From Lemma3.5.12, we see that IndGH .kH -stab.n//� kG-stab.n/ for all n2
Z�0. Since dim.supp.IndGH .k///� 0 by Lemma3.5.14, we have dim

�
IndGH

�
>�1. �

3.5.16. THEOREM. LetH � G be a subgroup such thatp dividesjH j. Then the
functorIndGH has relative dimension0.

PROOF. By Theorem3.5.6, Theorem3.5.10, Lemma3.5.14and Corollary3.5.15,
the assumptions of Corollary2.4.10are satisfied. Therefore

0� dim
�
ResGH

�
Cdim

�
IndGH

�
D dim

�
IndGH

�
since we already know that the relative dimension of ResG

H is zero. Together with Corol-
lary 3.5.15this yields that the relative dimension of IndGH is 0. �

3.5.17. REMARK . If p − jH j, thenkH -stabD 0 and IndGH is the inclusion of0 into
kG-stab. This functor does not have a relative dimension as

dim.supp.0//D dim.;/D�1 :





CHAPTER 4

Relative tensor triangular Chow groups

So far we have considered tensor triangular Chow groups only for essentially small
tensor triangulated categories. For tensor triangulated categories that are not essentially
small we run into problems: for example, for such categoriesT we have no definition of
Spc.T /, so it does not even make sense to define subcategories likeT.p/. The situation
changes when we assume thatT is compactly rigidly generated, i.e. the compact objects
T c � T form a set, coincide with the rigid ones, and they generateT . In this case, it is
shown by Balmer-Favi in [BF11] that there is a notion of support for objects ofT which
assigns to an objectA 2 T a (not necessarily closed) subset supp.A/ � Spc.T c/. This
is generalized by Stevenson in [Ste13], which introduces the concept of an action of a
compactly-rigidly generated tensor triangulated categoryT on a triangulated categoryK
(which need not have a symmetric monoidal structure). In this setting it is possible to
define a notion of relative support for objects ofK, which assigns to an objectA 2K a
subset supp.A/� Spc.T c/. It recovers the notion of [BF11] mentioned before, when we
setK D T and act via the tensor product ofT . This construction is the starting point for
our definition of tensor triangular Chow groups forK, relative to the action ofT .

In the following section, a lot of notation will be introduced. For clarity and reference,
we include an overview below.

4.1. Preliminaries

Let T be a triangulated category.

4.1.1. DEFINITION. The categoryT is called acompactly-rigidly generated tensor
triangulated categoryif

(i) T is compactly generated(see Definition1.1.24).
(ii) T is equipped with a compatible closed symmetric monoidal structure

˝ W T �T ! T

with unit objectI. Here, a symmetric monoidal structure onT is closedif for all
objectsA 2 T the functorA˝� has a right adjoint hom.A;�/. A compatible
closed symmetric monoidal structure onT is one such that̋ satisfies the con-
ditions of Definition1.2.1and Remark1.2.2and such that hom.A;�/ is exact
for all objectsA 2 T . (This last condition is actually redundant since adjoints
of exact functors are automatically exact, see [Nee01, Lemma 5.3.6].)

(iii) I is compact and all compact objects ofT are rigid. Let T c � T denote the
full subcategory of compact objects ofT . Then we require thatI 2 T c and that
all objectsA of T c are rigid, i.e. for every objectB 2 T the natural map

ı W hom.A;I/˝B Š hom.A;I/˝hom.I;B/! hom.A;B/ ;

59
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Table of notations
x 2 Spc.T c/;A 2K;p 2 Z

�V ;LV for V � Spc.T c/ Acyclization and localization functor associated to
a specialization-closed setV � Spc.T c/

p. 61

Yx fP 2 Spc.T c/ W x ª P g p. 62
�xA .�

fxg
LYx

.I//�A p. 62
V�p fx 2 Spc.T c/jdim.x/� pg p. 63
Vp fx 2 Spc.T c/jdim.x/D pg p. 63
�pA .�V�p

LV�p�1
.I//�A p. 63

K.p/ �K.V�p/D fA 2K W supp.A/� V�pg p. 63
Kx Essential image ofLhxi.I/�� p. 64

is an isomorphism.

4.1.2. CONVENTION. Throughout this chapter we assume thatT is a compactly-
rigidly generated tensor triangulated category that satisfies the following conditions (cf.
[BF11, Hypothesis 1.1]:

(i) T c is equipped with a dimension functiondim and Spc.T c/ is a noetherian
topological space. The subcategoryT c is a tensor triangulated category in the
sense of Convention2.2.1that is also rigid (see [BF11, Hypothesis 1.1]). Thus
it makes sense to talk about Spc.T c/ and dimension functions onT c .

(ii) T acts on a (fixed) triangulated categoryK via an action� in the sense of
[Ste13]. We assumeK to be compactly generated as well.

Note thatT is not essentially small since it has set-indexed coproducts.

Let us quickly recall from [Ste13, Definition 3.2] what it means forT to have an
action� onK. We are given a biexact bifunctor

� W T �K!K

that commutes with coproducts in both variables, whenever they exist. Furthermore we
are given natural isomorphisms

˛X;Y;A W .X˝Y /�A
�
�!X � .Y �A/

lA W I �A
�
�! A

for all objectsX;Y 2 T ;A 2K. These natural isomorphisms should satisfy a list of co-
herence relations. ForX;Y;Z objects ofT andA an object ofK, the following diagrams
need to be commutative:

(1)

X � .Y � .Z �A//

X � ..Y ˝Z/�A/

X�˛Y;Z;A

55kkkkkkkkkkkkkk
.X˝Y /� .Z �A/

˛X;Y;Z�A

iiSSSSSSSSSSSSSS

.X˝ .Y ˝Z//�A

˛X;Y ˝Z;A

OO

..X˝Y /˝Z/�A

˛X˝Y;Z;A

OO

oo
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where the lower unlabeled arrow is the associator isomorphism from the sym-
metric monoidal structure onT .

(2)

X � .I �A/
X�lA // X �A I � .X �A/

lX�A // X �A

.X˝ I/�A

˛X;I;A

OO

u�A

99rrrrrrrrrr
.I˝X/�A

˛I;X;A

OO

v�A

99rrrrrrrrrr

whereu;v are the respective left and right unitor isomorphisms from the sym-
metric monoidal structure onT .

(3)

†rI �†sA
f

//

e

��

†rCsA

.�1/rs

��

†r .I �†sA/
†r .l†sA/ // †rCsA

wheree comes from the exactness of� in the first variable, andf is the compo-
sition

†rI �†sA!†s.†rI �A/!†rCs.I �A/
†rCs.lA/
������!†rCsA

with the first two isomorphisms coming from the biexactness of�.

4.1.3. REMARK . With this definition, a tensor triangulated categoryT as in Conven-
tion 4.1.2has an action on itself via̋ . The natural isomorphisms̨X;Y;A; lA are then
given by the associator and unitor of the symmetric monoidal structure onT and one
checks that all the required coherence conditions hold as the coherence conditions for the
monoidal structure onT are satsified and the bifunctor̋ is compatible with the trian-
gulated structure onT . The functor̋ always preserves coproducts in both variables for
any closed symmetric monoidal structure on any category, as the functora˝� has a right
adjoint for all objectsa 2 T (see e.g. [HPS97, Remark A.2.2]).

Following [BF11], we can assign to every objecta 2 T a support supp.a/�Spc.T c/:
given a specialization-closed subsetV � Spc.T c/, we have a distinguished triangle

�V .I/! I! LV .I/!†�V .I/

where�V andLV are the acyclization and localization functors associated to the smashing
ideal that is generated by the compact objects with support inV (see Remark1.1.21and
Definition1.3.1). For objectsA 2K, we set�VA WD �V .I/�A andLVA WD LV .I/�A.
Note that ifK D T and� is given by˝ as in Remark4.1.3, then this definition yields the
similar expressions�V .A/;�VA andLV .A/;LVA. However, by Proposition1.3.2, these
actually give isomorphic objects, so there should be no room for confusion.
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For a pointx 2 Spc.T c/ the subsetsfxg andYx WD fP 2 Spc.T c/ W x ª P g are
specialization-closed and so we define the “residue object”�xI 2 T as�

fxg
LYx

.I/. For
A 2 T , we now define thesupport of an objectA 2 T as

supp.A/ WD fx 2 Spc.T c/j�xI˝A¤ 0g:

In [Ste13], the same residue objects are used to define supports for objects ofK. For an
objectB 2K, set�xB WD �xI �B, then we define thesupport ofB as

supp.B/ WD fx 2 Spc.T c/j�xB ¤ 0g:

This notion of support gives us a way to describe certain subcategories ofK. A
triangulated subcategoryM �K is called localizing T -submoduleif it is a localizing
subcategory (see Section1.1) such thatT �M �M. We obtain order-preserving maps

fsubsets of Spc.T c/g
�K
�
�K

flocalizingT -submodules ofKg

S 7! ft 2K W supp.t/� Sg[
t2M

supp.t/ [ M

where the ordering on both sides is given by inclusion (see [Ste13, Definition 5.9]).
We record the following properties of the support that will be very useful for the

sequel.

4.1.4. PROPOSITION(cf. [Ste13, Proposition 5.7]).Let V � Spc.T c/ be a subset
closed under specialization andA be an object ofK. Then

supp.�V .I/�A/D supp.A/\V

and
supp.LV .I/�A/D supp.A/\ .Spc.T c/nV / :

4.1.5. REMARK . In [Ste13, Proposition 5.7], Proposition4.1.4 is proved for those
specialization-closed subsetsV which are contained in the subset Vis.T c/� Spc.T c/ of
so-calledvisible points of the spectrum. The set Vis.T c/ coincides with Spc.T / in our
case, since we assumed the latter space to be noetherian (see e.g. [Ste13, Section 5]).

4.1.6. DEFINITION (cf. [Ste13, Definition 6.1]). We say that the action� of T onK

satisfies thelocal-to-global principleif for eachA in K

hAi� D h�xAjx 2 Spc.T c/i�

where for a collection of objectsS �K we denote byhSi� the smallest localizingT -
submodule ofK containingS .

4.1.7. REMARK . The local-to-global principle holds very often, e.g. whenT arises
as the homotopy category of a monoidal model category (cf. [Ste13, Proposition 6.8]).
If the local-to-global principle holds, it has the useful consequence that supp detects the
vanishing of an object: if supp.A/D ; then

hAi� D h�xAjx 2 Spc.T c/i� D h0i� D 0

which implies thatAD 0.
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Forp 2 Z, let

V�p WD fx 2 Spc.T c/jdim.x/� pg; Vp WD fx 2 Spc.T c/jdim.x/D pg

and set�pA WD �V�p
LV�p�1

A. In [Ste12], a decomposition theorem analogous to Theo-
rem1.4.7is proved. Let us first fix some notation:

4.1.8. NOTATION (cf. [Ste12, Notation 3.6]).Let Li be a collection of localizing sub-
categories ofK, indexed by a setI . Then

Q
i2I Li denotes the subcategory ofK whose

objects are coproducts of the objects ofLi , where the morphisms and the triangulated
structure are defined componentwise with respect toI .

4.1.9. PROPOSITION(cf. [Ste12, Lemma 4.3]).Suppose that the action ofT on K

satisfies the local-to-global principle and letp 2Z. There is an equality of subcategories

�pK D �K.Vp/D
Y
x2Vp

�xK

where�xK denotes the essential image of the functor�x.I/��. �

We give another description of�pK that bears more resemblance to what we have
seen for essentially small tensor triangulated categories. Forp 2 Z, define

K.p/ WD �K.V�p/ :

4.1.10. LEMMA . Assume the local-to-global principle holds for the action ofT onK.
Then, for allp 2 Z, there is an equality of subcategories

K.p/ D �V�p
K D fA 2Kj9A0

W AŠ �V�p
.I/�A0

g

PROOF. Let A 2 �V�p
K, then we have an isomorphismA Š �V�p

.I/ �A0. By
Proposition4.1.4, we know that supp.A/D supp.�V�p

.I/�A0/D supp.A0/\V�p, from
which it follows thatA is supported in dimension� p . Thus,A 2K.p/.

Conversely, assume thatA 2K.p/. We apply the functor��A to the localisation
triangle

�V�p
.I/! I! LV�p

.I/!†�V�p
.I/

to obtain the triangle

�V�p
.I/�A! A! LV�p

.I/�A!†�V�p
.I/�A

AsA is supported in dimension� p, it follows again from Proposition4.1.4that

supp.LV�p
.I/�A/D ;

and thereforeLV�p
.I/�AD 0 by the local-to-global principle, as shown in Remark4.1.7.

Therefore�V�p
.I/�AŠ A which implies thatA 2 �V�p

K. �

The following statement is the desired description of�pK.

4.1.11. LEMMA . Suppose that the action ofT on K satisfies the local-to-global
principle and letp 2 Z. There is an equality of subcategories

�pK DK.p/=K.p�1/

where we view the latter quotient as the essential image of the functorLV�p�1
.I/ ��

restricted toK.p/.
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PROOF. If A is an object of�pK, we have supp.A/ � Vp � V�p, so we certainly
haveA 2K.p/. If we apply��A to the localization triangle

�V�p�1
.I/! I! LV�p�1

.I/!†�V�p�1
.I/

we obtain the distinguished triangle

�V�p�1
.I/�A! A! LV�p�1

.I/�A!†�V�p�1
�A.I/

where supp.�V�p�1
.I/�A/D V�p�1\supp.A/D; by Proposition4.1.4. Thus, we have

�V�p�1
.I/�AŠ 0 and we obtain an isomorphismAŠLV�p�1

.I/�A, which proves that
A is in the essential image ofLV�p�1

.I/�� restricted toK.p/.
On the other hand, ifA is an object of the essential image ofLV�p�1

.I/�� restricted
to K.p/, there exists an objectA0 of K.p/ such thatA Š LV�p�1

.I/�A0. By Lemma
4.1.10, we know that supp.A0/� V�p. But then by Proposition4.1.4,

supp.A/D supp.A0/\ .Spc.T c/nV�p�1/� V�p\ .Spc.T c/nV�p�1/D Vp

which proves thatA 2 �pK. �

We can push the analogy with Theorem1.4.7even further: forx 2 Spc.T c/, define
Kx as the essential image of the localisation functor

Lhxi.I/��

associated to the localizing subcategoryhxi � T and denote by Min.Kx/�Kx the sub-
category of objects with support contained infxg.

4.1.12. PROPOSITION. Suppose that the action ofT on K satisfies the local-to-
global principle and letx 2 Spc.T c/. Then there is an equality of subcategories

Min.Kx/D �K.fxg/D �xK :

PROOF. For the first equality, ifA is an object of Min.Kx/, then by definition we
have supp.A/� fxg which implies thatA is contained in�K.fxg/.

If A is in �K.fxg/, we need to prove that it is in the essential image of the localisation
functorLhxi.I/��. In order to see this, notice that

x D fB 2 T c
W supp.B/� Yxg

which implies thatLhxi.I/D LYx
.I/. In the corresponding localization triangle

�Yx
.I/�A! A! LYx

.I/�A!†�Yx
.I/�A

we obtain by Proposition4.1.4that

supp.�Yx
.I/�A/� Yx \fxg D ; ;

which implies that�Yx
.I/�AŠ 0 andAŠ LYx

.I/�AŠ Lhxi.I/�A. This shows that
A is in the essential image ofLhxi.I/��.

For the second equality, ifA is an object of�K.fxg/, we have supp.A/� fxg. Using
Proposition4.1.4and the localization triangles

�Yx
.I/�A! A! LYx

.I/�A!†�Yx
.I/�A

and
�

fxg
.I/�A! A! L

fxg
.I/�A!†�

fxg
.I/�A
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we see thatA Š LYx
.I/�A andA Š �

fxg
.I/�A. Combining these isomorphisms, we

get that

AŠ .�
fxg
.I/˝LYx

.I//�AD �xA;

which shows thatA is contained in the essential image of�x.I/��.
If A is in the essential image of�x.I/��, then there is anA0 such that

AŠ .�
fxg
.I/˝LYx

.I//�A0 :

Applying Proposition4.1.4, we get that

supp.A/D fxg\ .Spc.T c/nYx/\supp.A0/� fxg\ .Spc.T c/nYx/D fxg ;

which proves thatA is an object of�K.fxg/. �

Proposition4.1.9and Lemma4.1.11serve as a motivation for the definition of relative
tensor triangular cycle groups (see Definition4.2.1), in the same way that Theorem1.4.7
motivated Definition2.2.3.

We finish the section with a useful result about the subcategoriesK.p/.

4.1.13. PROPOSITION. Suppose that the action ofT on K satisfies the local-to-
global principle. Then the subcategoriesK.p/ are compactly generated for allp and
.K.p//

c D .Kc/.p/.

PROOF. As the setV�p is specialization-closed for allp 2Z, it follows from [Ste13,
Corollary 4.11] that�V�p

K is compactly generated for allp 2 Z. But �V�p
K is equal

to K.p/ by Lemma4.1.10, and soK.p/ is compactly generated for allp 2 Z.
The subcategoryK.p/ is precisely the kernel of the coproduct-preserving localization

functorLV�p
.I/��: indeed, ifA is an object ofK.p/, then by Proposition4.1.4

supp.LV�p
.I/�A/D .Spc.T /nV�p/\supp.A/D ; ;

which implies thatLV�p
.I/�AD 0 as we have assumed the local-to-global principle, and

henceA 2 ker.LV�p
/. On the other hand, if we assume that

A 2 ker.LV�p
.I/��/ ;

then from the localization triangle

�V�p
.I/�A! A! LV�p

.I/�A!†�V�p
.I/�A

we obtain thatA Š �V�p
.I/�A. But supp.�V�p

.I/�A/ D supp.A/\V�p � V�p by
Proposition4.1.4, which implies thatA 2K.p/.

By [Kra10, Proposition 5.5.1] the right adjoint of the inclusion

� WK.p/ D ker.LV�p
.I/��/! T

preserves coproducts and by [Kra10, Lemma 5.4.1] it follows that� preserves compact-
ness. Therefore,.K.p//

c � .Kc/.p/. The converse inclusion is an immediate conse-
quence of the definition of compactness. �

In the light of the equality of subcategories of Proposition4.1.13, we will simply use
the notationKc

.p/
for .K.p//

c D .Kc/.p/ if the local-to-global principle holds.
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4.2. Relative tensor triangular Chow groups

In addition to the hypotheses from Convention4.1.2, we will assume that the local-
to-global principle holds for the action ofT on K for the rest of the section. For clarity,
we will still explicitly mention this hypothesis in the formulation of the results.

The categoryK.p/ is compactly generated for allp 2 Z by Proposition4.1.13. We
therefore have that.K.p/=K.p�1//

c is the thick closure ofKc
.p/
=Kc

.p�1/
in K.p/=K.p�1/

(see [Kra10, Theorem 5.6.1]). Thus, we get an injection

j W K0

�
Kc
.p/=K

c
.p�1/

�
,! K0

�
.K.p/=K.p�1//

c
�
:

Furthermore, the quotient functorKc
.p/
! Kc

.p/
=Kc

.p�1/
and the embeddingKc

.p/
!

Kc
.pC1/

induce maps

q W K0

�
Kc
.p/

�
! K0

�
Kc
.p/=K

c
.p�1/

�
and

i W K0

�
Kc
.p/

�
! K0

�
Kc
.pC1/

�
:

4.2.1. DEFINITION. We define thep-dimensional tensor triangular cycle groups
of K, relative to the action ofT and thep-dimensional tensor triangular Chow groups
of K, relative to the action ofT as follows:

Z�p .T ;K/ WD K0
�
.K.p/=K.p�1//

c
�

and
CH�p .T ;K/ WD Z�.p/.T ;K/=j ıq.ker.i//:

4.2.2. REMARK . As we assumed that the local-to-global principle is satisfied, we can
view an element of Z�p .T ;K/ as a formal sum ofp-dimensional pointsxi of Spc.T c/,
with coefficients in K0

�
.�xK/c

�
for x 2 Vp, by Proposition4.1.9and Lemma4.1.11.

4.2.3. REMARK . The categoryK.p/=K.p�1/ has arbitrary coproducts and is there-
fore idempotent complete (cf. [Nee01, Proposition 1.6.8]). Since.K.p/=K.p�1//

c is
the thick closure ofKc

.p/
=Kc

.p�1/
in K.p/=K.p�1/, we obtain that.K.p/=K.p�1//

c is

equivalent to the idempotent completion.Kc
.p/
=Kc

.p�1/
/\.

Next, we compare CH�p .T ;T / to CH�p .T
c/.

4.2.4. PROPOSITION. Consider the action ofT on itself via the tensor product̋
and assume that the local-to-global principle holds for this action. Then we have isomor-
phisms

Z�p .T ;T /Š Z�p .T
c/ and CH�p .T ;T /Š CH�p .T

c/ :

PROOF. By definition we have Z�p .T ;T /D K0
�
.T.p/=T.p�1//

c
�

and Remark4.2.3

shows that.T.p/=T.p�1//
c is equivalent to

�
T c
.p/
=T c
.p�1/

�\
. We conclude that

Z�p .T ;T /D K0
�
.T.p/=T.p�1//

c
�
Š K0

��
T c
.p/=T

c
.p�1/

�\�
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which is equal to Z�p .T
c/ by definition. The notions of rational equivalence agree as

well as the mapsj;q; i from Definition 4.2.1are equal to the corresponding maps from
Definition2.2.4. �

Now, letX be a noetherian separated scheme and let D.X/ WD D.Qcoh.X// be the
full derived category of complexes of quasi-coherentOX -modules. The category D.X/ is
a compactly-rigidly generated tensor triangulated category with arbitrary coproducts (see
[BF11, Example 1.2]), and we have D.X/c D Dperf.X/ (cf. [BvdB03, Theorem 3.1.1]).

4.2.5. COROLLARY. We have isomorphisms

Z�p .D.X/;D.X//Š Z�p .D
perf.X//

and

CH�p .D.X/;D.X//Š CH�p .D
perf.X//

for all p 2 Z. In particular, ifX is non-singular, of finite type over a field and we equip
D.X/c with the opposite of the Krull codimension as a dimension function, we have

Z�p .D.X/;D.X//Š Z�p.X/ and CH�p .D.X/;D.X//Š CH�p.X/:

PROOF. This is an immediate consequence of Proposition4.2.4and Theorem2.3.5.
The local-to-global prinicple holds for the action of D.X/ on itself as it arises as the homo-
topy category of a monoidal model category by the main result of [Gil07] and therefore
the criterion of [Ste13, Proposition 6.8] applies. �

4.3. Application: restriction to open subsets

Let U � Spc.T c/ be an open subset with complementZ. If we denote byTZ the
smashing ideal inT generated by the subcategory.T c/Z � T c of all objects with support
contained inZ, then the quotient categoryTU WD T =TZ is a tensor triangulated category
satisfying all the assumptions made at the beginning of this chapter, whose spectrum
Spc.T c

U / can be identified withU . We will show that the localization functor induces
surjective maps

Z�p .T
c/! Z�p ..TU /

c/

and

CH�p .T
c/! CH�p ..TU /

c/

for all p. The kernels of these maps can be described with the help of the relative cycle
and Chow groups that we introduced in the previous section.

4.3.1. LEMMA . Let T be a compactly-rigidly generated tensor triangulated cate-
gory (see Definition4.1.1) such thatSpc.T c/ is a noetherian topological space. Let
U � Spc.T c/ be an open subset with complementZ. ThenTU is a compactly-rigidly
generated tensor triangulated category andSpc.T c

U / Š U is a noetherian topological
space. Furthermore, if the local-to-global principle holds for the action ofT on itself, it
also holds for the action ofTU on itself.
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PROOF. The categoryTU is compactly-rigidly generated by [Ste13, Beginning of
Section 8] and Spc.T c

U /Š U , asT c
U D .Tc=.Tc/Z/

\ by [BF11, Theorem 4.1]. The space
U is noetherian as it is a subspace of a noetherian topological space by [Sta14, Lemma
5.8.2]. For the second statement, first note that any localizing˝-ideal I � TU is one
of T as well. Indeed, for objectsA 2 I;S 2 T , we haveS ˝A Š S ˝ .LZ.I/˝A/ Š
.S ˝LZ.I//˝A 2 I asS ˝LZ.I/ 2 TU . Thus it suffices to show that forA 2 TU ,
we have thathAi˝ D h�x.A/jx 2 Spc.T c

U /i˝, where we interpreth�i˝ as the smallest
localizing˝-ideal in T containing�. Then we have

hAi˝ D h�x.A/jx 2 Spc.T c/i˝

D h�x.I/˝Ajx 2 Spc.T c/i˝

by the local-to-global principle. But�x.I/˝LZ.I/D 0 if x … U and�x.I/˝LZ.I/Š
�x.I/ if x 2 U (see [Ste13, Proposition 8.3]), so

h�x.I/˝Ajx 2 Spc.T c/i˝ D h�x.I/˝LZ.I/˝Ajx 2 Spc.T c/i˝

D h�x.A/jx 2 U i˝ :

Finally, as Spc.T c
U /Š U , we have

h�x.A/jx 2 U i˝ D h�x.A/jx 2 Spc.T c
U /i ;

which finishes the proof. �

For the rest of the section, we assume thatT is a tensor triangulated category in the
sense of Convention4.1.2, acting on itself via̋ (i.e. K D T ) and that the local-to-global
principle holds for this action. For any open subsetU � Spc.T c/, we will equipT c

U with
the dimension function obtained as the restriction of the dimension function onT c (see
Proposition1.4.9).

4.3.2. LEMMA . The localization functorLZ W T ! TU induces group homomor-
phisms

lp W Z
�
p .T

c/! Z�p ..TU /
c/

and
`p W CH�p .T

c/! CH�p ..TU /
c/

for all p 2 Z.

PROOF. By [Kra10, Proposition 5.5.1 and Lemma 5.4.1], the localization functor
LZ restricts to

T c LZ
�! T c

U

on the level of compact objects. By Proposition1.4.9, we have thatLZ.T c
.p/
/�

�
T c
U

�
.p/

for all p 2 Z. Thus the restriction of the functorLZ has relative dimension� 0 and
therefore induces maps

lp W Z
�
p .T

c/! Z�p .T
c
U /

and
`p W CH�p .T

c/! CH�p .T
c
U /

for all p 2 Z by Theorem2.4.3. �

4.3.3. PROPOSITION. The mapslp;`p from Lemma4.3.2are surjective.
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PROOF. Given an essentially small, rigid tensor triangulated categoryK with noe-
therian spectrum and equipped with a dimension function, recall that we have a decompo-
sition �

K.p/=K.p�1/

�\
Š

a
Q2Spc.K/
dim.Q/Dp

Min.KQ/

according to Theorem1.4.7. In the situation of Lemma4.3.2we obtain a commutative
diagram for eachp 2 Z�

T c
.p/
=T c
.p�1/

�\ cLZ //

o

��

�
.T c
U /.p/=.T

c
U /.p�1/

�\
o

��a
Q2Spc.T c/
dim.Q/Dp

Min.T c
Q/

LZ

&&MMMMMMMMMMM

a
Q2Spc.T c

U
/

dim.Q/Dp

Min..T c
U /Q/

o

��a
Q2U

dim.Q/Dp

Min.T c
Q/ :

Here, the equivalence a
Q2Spc.T c

U
/

dim.Q/Dp

Min..T c
U /Q/Š

a
Q2U

dim.Q/Dp

Min.T c
Q/

follows asT c
Z �Q for allQ 2U . One now checks that the functorLZ is given on objects

as the canonical projection

.aQ/Q2Spc.T c/ 7! .aQ/Q2U

which induces a surjection of abelian groups upon applying K0. But considering that

K0

��
T c
.p/=T

c
.p�1/

�\�
D Z�p .T ;T /

and

K0

��
.TU /

c
.p/=.TU /

c
.p�1/

�\�
D Z�p .TU ;TU /

this shows that the induced map z0
p.LZ/D lp on the tensor triangular cycle groups is a

surjection. This implies that the same must be true for`p, which is induced bylp on a
quotient of these. �

Next we want to identify the kernels oflp and`p, with the help of our relative Chow
groups.

4.3.4. LEMMA . The categoryTZ is compactly generated with.TZ/
c
D T c

Z , it has
arbitrary (set-indexed) coproducts and carries a natural action ofT . Furthermore the
local-to-global principle holds for the action ofT on TZ under our assumption that it
holds for the action ofT on itself.
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PROOF. By definition TZ is the smallest localizing triangulated subcategory ofT

containingT c
Z and thus it must be compactly generated and have set-indexed coproducts

by definition. By [BF11, Theorem 4.1] one has that.TZ/
c
D T c

Z and thatTZ is a˝-ideal,
i.e. the action ofT on itself restricts to an action ofT on TZ . In order to check that the
local-to-global principle holds for the action ofT on TZ , we need to check that for an
objectA 2 TZ , we have

hAi� D h�xAjx 2 Spc.T c/i� :

But this is a direct consequence of the fact that the local-to-global principle holds for
the action ofT on itself, since this is true when we considerA as an object ofT and a
localizing submodule ofTZ is also one ofT . �

4.3.5. LEMMA . The inclusion functor

TZ ,! T

induces group homomorphisms

ip W Z
�
p .T ;TZ/! Z�p .T

c/

and
�p W CH�p .T ;TZ/! CH�p .T

c/

for all p 2 Z.

PROOF. Again, it follows from [Kra10, Proposition 5.5.1 and Lemma 5.4.1] that the
inclusion functor restricts to the level of compact objects:

I W T c
Z ,! T c

By the universal property of Verdier localization and idempotent completion, one obtains
induced functors

Ip W
�
.T c
Z /.p/=.T

c
Z /.p�1/

�\
�!

�
.T c/.p/=.T

c/.p�1/

�\
:

As we saw in Lemma4.3.5 the categoryTZ is compactly generated, has set-indexed
coproducts and a natural action byT that satisfies the local-to-global principle. Thus it
makes sense to talk about the relative cycle groups Z�

p .T ;TZ/ and by the discussion at
the beginning of Section4.2we have that

Z�p .T ;TZ/Š K0

��
.T c
Z /.p/=.T

c
Z /.p�1/

�\�
:

We see that after applying K0, the functorIp induces a map

ip W Z
�
p .T ;TZ/! Z�p .T

c/

and this map respects rational equivalence asI sends

ker
�
K0
�
T c
Z /.p/

�
! K0

�
.T c
Z /.pC1/

��
to

ker
�
K0

�
T c
.p/

�
! K0

�
T c
.pC1/

��
:

Thus we also get an induced map

�p W CH�p .T ;TZ/! CH�p .T
c/

as desired. �
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4.3.6. PROPOSITION. We have an equality of abelian groups

im.ip/D ker.lp/

for all p 2 Z.

PROOF. Recall from the proof of Proposition4.3.3that lp is induced by the projec-
tion functor a

Q2Spc.T c/
dim.Q/Dp

Min.T c
Q/ �!

a
Q2U

dim.Q/Dp

Min.T c
Q/

.aQ/Q2Spc.T c/
dim.Q/Dp

7! .aQ/Q2U
dim.Q/Dp

from which we see that ker.lp/ is given as the subgroupa
Q2Z

dim.Q/Dp

K0.Min.T c
Q//�

a
Q2Spc.T c/
dim.Q/Dp

K0.Min.T c
Q//D K0

�
T c
.p/=T

c
.p�1/

�
:

Recall from the proof of Lemma4.3.5that ip is obtained as the map on K0 induced by
the functor

Ip W
�
.T c
Z /.p/=.T

c
Z /.p�1/

�\
�!

�
.T c/.p/=.T

c/.p�1/

�\
;

which in turn is induced by by the inclusionT c
Z ,! T c . The essential image of the functor

Ip is precisely the subcategory a
Q2Z

dim.Q/Dp

Min.T c
Q/ ;

which proves thatip has image equal to ker.lp/. �

Note that Proposition4.3.6 implies that im.�p/ � ker.`p/. For the other inclusion,
the situation seems more subtle and we only obtain the following weaker statement.

4.3.7. PROPOSITION. Assume thatT c=T c
Z is idempotent complete, that is,T c=T c

Z D

.TU /
c . Then we have an equality of abelian groups

im.�p/D ker.`p/

for all p � dim.Z/.

PROOF. We need to check that ker.`p/ is the image of ker.lp/ under the quotient map
Z�p .T

c/! CH�p .T
c/. To prove this, we use the fact that ifp � dim.Z/, thenT c

Z � T c
.p/

.

Let us first show thatT c
.p/
=T c
Z Š .TU /

c
.p/

. We know that.TU /c is given as.T c=T c
Z /
\,

which is equal toT c=T c
Z by assumption. By Lemma1.1.16, T c

.p/
=T c
Z embeds fully faith-

fully into T c=T c
Z , so all there is left to show is that any object of.TU /c.p/ D .T

c=T c
Z /.p/

is in the essential image of this embedding. In order to see this, letb be an object of
.T c=T c

Z /.p/ and leta 2 T c be an object that the localization functorT c! T c=T c
Z sends

to b. As we have supp.b/D supp.a/\U andV only contains points of dimension� p,
we must have dim.supp.a//� p, i.e.a 2 T c

.p/
, which completes the argument.



72 Relative tensor triangular Chow groups

Next, consider the commutative diagram

K0.T
c
.p/
/ i //

q\

��

�p

((QQQQQQQQQQQQQQQQQQQQ
K0.T

c
.pC1/

/

�pC1

''OOOOOOOOOOOOOOOOOOO

K0

�
.T c
.p/=T

c
.p�1//

\
�

�
D Z�p .T

c/

lp

&&MMMMMMMMMM
lp

&&MMMMMMMMMM

K0..TU /
c
.p/
/

q
\
U

��

iU // K0..TU /
c
.pC1/

/

K0

�
..TU /

c
.p/=.TU /

c
.p�1//

\
�

 
D Z�p ..TU /

c/

wherei; iu are induced by the respective inclusion functors,q\;q
\
U are induced by the

composition of the Verdier quotient functor and the inclusion into the respective idem-
potent completions and�p;�pC1 are induced by taking the Verdier quotient byT c

Z . By
Lemma3.2.5, we have ker.iU /D �p.ker.i// and therefore

lp ıq
\.ker.i//D q\U ı�p.ker.i//D q\U .ker.iU //

As CH�p .T
c/ D Z�p .T

c/=q\.ker.i// and CH�p ..TU /
c/ D Z�p ..TU /

c/=q
\
U .ker.iU //, an-

other application of Lemma3.2.5yields that ker.`p/ is the image of ker.lp/ under the
quotient map Z�p .T

c/! CH�p .T
c/, as desired. �

4.3.8. EXAMPLE . If X is a non-singular, separated scheme of finite type over a field
andT DD.X/, thenT c D Dperf.X/D Db.Coh.X// andT c=T c

Z D Db.Coh.U // for all
open subsetsU �X . Indeed, if we look at the Serre subcategory

A WD CohZ.X/� Coh.X/DWB

of coherent sheaves with support contained inZ, then Lemma2.3.4shows that the condi-
tions of Theorem2.3.3are satisfied in this case. It follows that

T c=T c
Z D Db.Coh.X//=Db.Coh.X//Z Š Db.Coh.X/=CohZ.X//Š Db.Coh.U // ;

where we used the well-known equivalence Coh.X/=CohZ.X/ Š Coh.U / (see for ex-
ample [Rou10, Prop. 3.1]). As Db.Coh.U // is idempotent complete, the conditions of
Proposition4.3.7are thus met in this case.

The following theorem summarizes the results of the section.

4.3.9. THEOREM. LetT be a tensor triangulated category in the sense of Convention
4.1.2such that the local-to-global principle is satisfied for the action ofT on itself. Let
U � Spc.T c/ be an open subset with closed complementZ. Then there is an exact
sequence

Z�p .T ;TZ/
ip
�! Z�p .T

c/
lp
�! Z�p ..TU /

c/! 0
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for all p 2 Z. Furthermore, ifT c=T c
Z is idempotent complete andp � dim.Z/, then we

have an exact sequence

CH�p .T ;TZ/
�p
�! CH�p .T

c/
`p

�! CH�p ..TU /
c/! 0 :

4.3.10. REMARK . The exact sequences from Theorem4.3.9 should be compared
to the corresponding ones for cycle and Chow groups of algebraic varieties (see [Ful98,
Proposition 1.8]): ifX is an algebraic variety,Z � X a closed subscheme with open
complementU , then we get exact sequences of cycle groups

Zp.Z/! Zp.X/! Zp.U /! 0

and Chow groups
CHp.Z/! CHp.X/! CHp.U /! 0

for all p 2 Z.
Note that we don’t have a suitable categoryR at our disposal such that Z�p .R

c/ or

CH�p .R
c/ maps to ker.lp/ or ker.`p/, respectively. This is why we need the relative

groups here. We donot know whether for a non-singularX andT DD.X/, we have

Z�p .T ;TZ/Š Zp.Z/

or
CH�p .T ;TZ/Š CHp.Z/ :





CHAPTER 5

The countable envelope of a tensor Frobenius pair

In this chapter, we lay parts of the technical foundations for Chapter6 by showing
that the countable envelope of a tensor Frobenius pair (see Definition5.4.2) naturally
inherits the structure of a tensor Frobenius pair. This is an extension of work of Keller
[Kel90, Appendix B] and Schlichting [Sch06, Section 4] to a symmetric monoidal setting.
It will be used in Chapter6 in order to define products in Schlichting’s construction of
algebraic K-theory of a Frobenius pair (see [Sch06]).

5.1. Ind-objects in an additive category

In this section we recall some of the theory of ind-objects in the additive setting. We
heavily rely on the exposition in [KS06].

Let E be a small additive category and denote byOEadd WD Functadd.E
op;Ab/ the

abelian category of additive functors fromE to the category of Abelian groups. By compo-
sition with the forgetful functor, it can be considered as a full subcategory of the category
of all functorsOE WDFunct.Eop;Set/ from E to the category of sets (see [KS06, Proposition
8.2.12]).

The Yoneda functor gives an a priori embeddingE! OE, but as Hom-sets are abelian
groups and Hom-functors are additive in our setting, it factors through an embedding
hE W E! OE

add. Given a small filtered categoryI and a functor̨ W I ! E in E, its colimit
in E might not exist. We denote by “lim

�!
” ˛ the colimit of the inductive systemhE ıF in

OE, which is also inOEadd.

5.1.1. DEFINITION (cf. [KS06, Definition 6.1.1]).An ind-objectin E is by definition
an object ofOE that is isomorphic inOE to “lim

�!
” ˛ for some small filtered categoryI and

a functor˛ W I ! E. We denote by Ind.E/ the full subcategory ofOE consisting of the
ind-objects inE. The functorhE induces a full embedding�E W E! Ind.E/.

5.1.2. REMARK . In the literature, the category of ind-objects inE is often defined as
the full subcategory ofOE consisting of filtered colimits of representable functors (see e.g.
[AGV71]). The resulting category Ind0.E/ is equivalent to Ind.E/ from Definition5.1.1
and it is also possible to construct an explicit quasi-inverse to the inclusion Ind0.E/ ,!

Ind.E/ as follows: for any objectA 2 Ind.E/, denote byEA the category with objects
arrowssU W U ! A in Ind.E/ with U 2 E (we identifyE with a subcategory of Ind.E/
via �E ). A morphismf W sU ! sV in EA is a morphism inE that makes the diagram

75
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in Ind.E/

U
sU //

f

��

A

V

sV

??~~~~~~~

commute. The categoryEA is cofinally small and filtered by [KS06, Proposition 6.1.5]
and thus we can define a functor

Ind.E/! Ind0.E/� Ind.E/

A 7! “lim
�!

”
.U!A/2EA

U(15)

which has image in Ind0.E/. By [KS06, Proposition 2.6.3 (i)], the natural map

“lim
�!

”
.U!A/2EA

U ! A

is an isomorphism. IfAD “lim
�!

”˛ for some functor̨ W I ! E, then there is an associated
functor I ! EA which mapsi 2 I to the canonical morphism̨.i/! A. This functor
is cofinal by [KS06, Proposition 2.6.3 (ii)] and we see that the functor (15) is indeed the
desired quasi-inverse.

Under our assumptions, Ind.E/ carries the expected additional structure.

5.1.3. LEMMA . The categoryInd.E/ is additive.

PROOF. It is immediate from the definition of Ind.E/ as a full subcategory ofOE
that the category Ind.E/ is pre-additive, i.e. the morphism sets are abelian groups and
composition is bilinear. AsE is additive it has finite coproducts and by [KS06, Proposition
6.1.18], it follows that Ind.E/ admits small (and in particular finite) coproducts. As finite
coproducts and products coincide in a pre-additive category (see [KS06, Corollary 8.2.4]),
it follows by [KS06, Lemma 8.2.9] that Ind.E/ is additive. �

We finish the section with two statements about the indization of symmetric monoidal
categories.

5.1.4. PROPOSITION. Let E be endowed with a symmetric monoidal structure such
that the functora˝� is additive for all objectsa 2 E. ThenInd.E/ naturally inherits
a symmetric monoidal structure such that the inclusionhE W E ! Ind.E/ preserves the
tensor product.

PROOF. The statement seems to be well-known for Ind0.E/, at least in the context of
abelian monoidal categories (see e.g. [Del90, Section 7] or [Hái02, Section 3.4]), where
one sets

“lim
�!

”
I

˛˝I “lim
�!

”
J

ˇ WD “lim
�!

”
I�J

˛˝ˇ

with ˛ W I ! E andˇ W J ! E functors from small filtered categoriesI;J to E and˝ the
tensor product onE. Thus, we can define a symmetric monoidal structure on Ind.E/ by
pulling back along the equivalence (15). Explicitly, we set for two objectsA;B 2 Ind.E/

A˝I B WD “lim
�!

”
..U!A/;.V!B//2EA�EB

U ˝V :
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The unit object of Ind.E/ is given as the image of the unit object ofE underhE and the
associativity, commutativity and unit isomorphisms are all induced by the ones ofE. �

5.1.5. REMARK . The product̋ I is naturally isomorphic to the restriction of the
Day convolution producton OE (see [Day70]) to Ind.E/. This product commutes with
colimits in both arguments and the Yoneda embedding takes the tensor product onE to
the convolution product onOE. Therefore, it must be isomorphic tőI .

5.1.6. LEMMA . In the situation of Proposition5.1.4, the functorA˝I � is additive
for all objectsA 2 Ind.E/.

PROOF. By [KS06, Proposition 8.2.15], in order to prove additivity, it suffices to
show thatA˝I � preserves binary products. Assume we are given functors˛ W I !

E;ˇ W J ! E;
 WK! E from small filtered categoriesI;J;K to E such that “lim
�!

”
I

˛ Š

A; “lim
�!

”
J

ˇ Š B; “lim
�!

”
K


 Š C . Then

A˝I .B �C/Š

 
“lim
�!

”
I

˛

!
˝I

  
“lim
�!

”
J

ˇ

!
�

 
“lim
�!

”
K




!!

Š

 
“lim
�!

”
I

˛

!
˝I

 
“lim
�!

”
J�K

ˇ�


!
Š “lim
�!

”
I�J�K

˛˝ .ˇ�
/

Š “lim
�!

”
I�J�K

˛˝ˇ�˛˝
 ;

where we used that “lim
�!

” commutes with finite products and that̋ is additive in each
variable. As the diagonal functorI ! I � I is cofinal (see [KS06, Corollary 3.2.3]), we
obtain

“lim
�!

”
I�J�K

˛˝ˇ�˛˝
 Š “lim
�!

”
I�J�I�K

˛˝ˇ�˛˝


Š

 
“lim
�!

”
I�J

˛˝ˇ

!
�

 
“lim
�!

”
I�K

˛˝


!
Š A˝I B �A˝I C

as desired. �

5.2. The countable envelope of an exact category

From now on, we endowE with the structure of an exact category (in the sense
of Quillen). We are interested in the countable evelope CE, which is defined as a full
subcategory of Ind.E/. Let I0 denote the category

�! �! �! �! �� �

where we omit identities and compositions of morphisms.
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5.2.1. DEFINITION (cf. [Kel90, Appendix B]). The countable envelopeCE of E is
defined as the full subcategory of Ind.E/ consisting of all those objects isomorphic to one
of the form “lim

�!
”˛, where˛ W I0! E is a functor that maps all arrows ofI0 to inflations

in E.

5.2.2. REMARK . The embeddingE ! Ind.E/ factors via CE by choosing for an
objectE 2 E the functor̨ E that mapsI0 to the constant diagram

E
id
�!E

id
�!E

id
�!E! �� �

in E.

Keller shows in [Kel90, Appendix B] that CE can be endowed with an exact structure
as follows:

5.2.3. THEOREM ([Kel90, Appendix B]). The following defines an exact structure
on CE: a sequence of mapsA! B! C is a conflation if and only if it is isomorphic to
a sequence

“ lim
�!

” ˛
“ lim
�!

” f

����! “ lim
�!

” ˇ
“ lim
�!

” g

����! “ lim
�!

” 


where˛;ˇ;
 W I0! E are functors that send all maps ofI0 to inflations, andf W ˛!

ˇ;g W ˇ! 
 are morphisms of functors such that˛.i/
f .i/
��! ˇ.i/

g.i/
��! 
.i/ is a conflation

in E for all i 2 I0.

5.2.4. REMARK . It follows that the embeddingE! CE is exact.

5.2.5. REMARK . In [Kel90, Appendix B], the exact structure is actually defined on
the category Ind0.E/, but it defines an exact structure on the equivalent category Ind.E/

as well.

5.3. Tensor exact categories

5.3.1. DEFINITION. A tensor exact categoryis an exact categoryE equipped with a
compatible symmetric monoidal structure̋E , i.e. the functors

a 7! a˝E b

are exact for all objectsb 2 E.

5.3.2. PROPOSITION. For a tensor exact categoryE, the countable envelopeCE

naturally inherits the structure of a tensor exact category such that the embeddingE !

CE is tensor exact.

PROOF. The symmetric monoidal structure on CE is the restriction of the one on
Ind.E/ (see Proposition5.1.4). For two functors̨ ;ˇ W I0! E with

“lim
�!

”˛ D A; “lim
�!

”ˇ D B

we have by definition

A˝I B D “lim
�!

”
..U!A/;.V!B//2EA�EB

U ˝V Š “lim
�!

”
I0�I0

˛˝ˇ Š “lim
�!

”
I0

˛˝ˇ
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where the first isomorphism follows from [KS06, Proposition 2.6.3 (ii)] and the second
one follows as the diagonal functorI0! I0� I0 is cofinal (see [KS06, Corollary 3.2.3]).
This proves that the tensor product of two objects in CE is in CE again. Indeed, the mor-
phisms̨ .i/˝ˇ.i/! ˛.j /˝ˇ.j / are inflations for all objectsi;j 2 I0 by the exactness
property of˝.

It remains to show that forA 2 CE, the functorA˝I � is exact. Let̨ ;ˇ;
 W I0! E

be functors andf W ˛! ˇ;g W ˇ! 
 be natural transformations such that

˛.i/
f .i/
��! ˇ.i/

g.i/
��! 
.i/

is a conflation for all objectsi 2 I0. If AŠ “lim
�!

”ı, then applyingA˝I� to the conflation

“lim
�!

”˛
“lim
�!

”f

����! “lim
�!

”ˇ
“lim
�!

”g

����! “lim
�!

”


yields a sequence isomorphic to

“lim
�!

”˛˝ ı
“lim
�!

”f˝id

������! “lim
�!

”ˇ˝ ı
“lim
�!

”g˝id

������! “lim
�!

”
˝ ı :

As for all i 2 I0, the sequence

˛.i/˝ ı.i/
f .i/˝id
�����! ˇ.i/˝ ı.i/

g.i/˝id
�����! 
.i/˝ ı.i/

is a conflation by the exactness of the tensor product onE, it follows thatA˝I � is
isomorphic to an exact functor and therefore exact itself. �

5.3.3. DEFINITION. We say that a tensor exact categoryE satisfiesthe pushout prod-
uct axiomif for every two inflationsf WA!B;g WC !D in E, the canonical morphism

A˝D
a
A˝C

B˝C ! B˝D

is an inflation.

Recall from [Büh10, Example 13.11] that for any categoryD and an exact category
E, the categoryED of functorsD ! E inherits an exact structure, where a sequence of
natural transformations

F !G!H

is defined to be exact ifF.d/! G.d/!H.d/ is exact inE for all objectsd 2D . We
call this thepointwise exact structure onED .

5.3.4. LEMMA . LetE be a tensor exact category with tensor product˝E and denote
by QC.E/ the category of functors̨ W I0 ! E, such that̨ maps all morphisms ofI0 to
inflations, with the pointwise exact structure (see[Kel90]). Then QC.E/ with the pointwise
tensor product̋ QC.E/ makesQC.E/ a tensor exact category. Furthermore, ifE satisfies the

pushout product axiom, then so doesQC.E/.

PROOF. It is clear that QC.E/ inherits a symmetric monoidal structure fromE: the
associator, unitor and commutator isomorphisms are all given pointwise by the symmetric
monoidal structure onE and they satisfy the required coherence conditions as they are
satisfied for˝E . Note that the exactness properties of˝E show that for two functors
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˛;ˇ 2 QC.E/, their tensor producta˝QC.E/ b is again a functor that maps all morphisms of
I0 to inflations. The exactness properties of˝E also imply that̋ QC.E/ has them as well

and thusQC.E/ together with̋ QC.E/ is indeed a tensor exact category.
Now let us assume thatE satisfies the pushout product axiom. As we can compute

pushouts inQC.E/ pointwise, it follows that the map in question from Definition5.3.3
is pointwise an inflation and therefore an inflation inQC.E/ by definition of the exact
structure. �

5.3.5. PROPOSITION. AssumeE satisfies the pushout product axiom. Then the same
holds true forCE.

PROOF. Let us first remark that by Lemma5.3.4, the functor categoryQC.E/ satisfies
the pushout-product axiom. Furthermore, it is an immediate consequence of the definition
of the exact structure on CE and the tensor product̋CE that the functor

“lim
�!

” W QC.E/! CE

is exact and preserves tensor products.
Now, letf WA!A0, g WB!B 0 be two inflations in CE. This means that there exist

inflationsf 0 W ˛! ˛0 andg0 W ˇ! ˇ0 in QCE such thatf Š “lim
�!

”.f 0/ andgŠ “lim
�!

”.g0/

(see Theorem5.2.3). Look at the pushout diagram inQC.E/

˛˝QCE ˇ
id˝g0

//

f 0˝id

��

˛˝QCE ˇ
0

�� id˝g0

��

˛0˝QCE ˇ
//

f 0˝id
--

˛0˝QCE ˇ
`

˛˝QCEˇ

˛˝QCE ˇ
0

h0

((

˛0˝QCE ˇ
0

whereh0 is an inflation asQCE satisfies the pushout product axiom. We now apply the
functor “lim

�!
” to this diagram. As exact functors preserve pushouts along inflations (see

[Büh10, Proposition 5.2]) and “lim
�!

” commutes with the tensor products, we obtain a
pushout diagram isomorphic to

A˝CE B
id˝g

//

f˝id

��

A˝CE B
0

�� id˝g

��

A0˝CE B //

f˝id
--

A0˝CE B
`

A˝CEB

A˝CE B
0

h

((

A0˝CE B
0

whereh is an inflation as “lim
�!

” is exact. This finishes the proof. �
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5.4. Tensor Frobenius pairs

Recall that a Frobenius category is an exact category with enough injective objects,
such that the class of injective and projective objects coincide.

5.4.1. DEFINITION (see [Sch06, Section 3.4]).A Frobenius pairE D .E;E0/ is a
strictly full, faithful and exact inclusion of Frobenius categoriesE0 ,! E such that the
projective-injective objects ofE0 are mapped to the projective-injective objects ofE.

We now give a symmetric monoidal version of Definition5.4.1.

5.4.2. DEFINITION. A tensor Frobenius pairE D .E;E0;˝/ consists of a Frobenius
pair .E;E0/ and a symmetric monoidal structure onE with tensor product̋ , that makes
E a tensor exact category and satisfies the following properties:

(i) For all objectsA 2 E, the functorA˝� preserves the projective/injective ob-
jects ofE.

(ii) E0 is a˝-ideal inE, i.e. it is stable under tensoring with any object ofE.
(iii) The tensor exact categoryE satisfies the pushout product axiom.

5.4.3. REMARK . In many examples,E will be a category of chain complexes over
some exact category andE0 the subcategory of acyclic complexes. From this point of
view, requiring thatE0 is a˝-ideal says that̋ passes directly to the corresponding
derived category.

The pushout product axiom is there to make sure that˝ induces a product in the
Waldhausen K-theory of the Frobenius pair (see Lemma6.6.2).

5.4.4. REMARK . Here is an example where the axiom of Definition5.4.2requiring
thatE0 is a˝-ideal isnot satisfied: letR-mod be the abelian category of finitely gener-
ated modules over a commutative noetherian ringR and consider Cb.R-mod/, the exact
category of bounded chain complexes of finitely generatedR-modules, with conflations
the degree-wise split ones and aCb.R-mod/, the exact subcategory of acyclic complexes.
Then.Cb.R-mod/;aCb.R-mod// is a Frobenius pair and the tensor product of chain com-
plexes˝R makes this example almost a tensor Frobenius pair. However, aCb.R-mod/ is
not a tensor ideal as̋R is not an exact functor in general.

If E is a Frobenius category, CE is one as well, with the exact structure from Theorem
5.2.3, according to [Sch06, Section 4]. It follows that for a Frobenius pairE D .E;E0/,
its countable envelope CE WD .CE;CE0/ is again a Frobenius pair. We want to prove an
analogous statement for tensor Frobenius pairs.

5.4.5. THEOREM. LetE D .E;E0;˝/ be a tensor Frobenius pair. Then itscountable
envelope CE WD .CE;CE0;˝I/ is a tensor Frobenius pair.

PROOF. We know that.CE;CE0/ is a Frobenius pair and Proposition5.3.2gives a
symmetric monoidal structure on CE with tensor product̋ I that makes CE a tensor exact
category. Furthermore, CE will satisfy the pushout product axiom by Proposition5.3.5.

In order to show that CE0 is a˝I-ideal in CE, letAŠ “lim
�!

”˛;B Š “lim
�!

”ˇ for two
functors˛ W I0! E;ˇ W I0! E0. Then

A˝I B Š “lim
�!

”˛˝ˇ

and asE0 is a˝-ideal inE, it follows that˛˝ˇ has imageE0 and thusA˝I B 2 CE0.
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It remains to prove thatA˝I� preserves the projective-injective objects of CE which
are given as direct summands of objects isomorphic to “lim

�!
” �where� W I0!E�prinj takes

values in the full subcategory of projective-injective objects ofE (see [Sch06, Definition
4.3]). For such� and any “lim

�!
”˛ 2 CE we have�

“lim
�!

”˛
�
˝I

�
“lim
�!

” �
�
Š

�
“lim
�!

”˛˝ �
�

and asE is a tensor Frobenius pair we see that the functor˛˝ � takes values inE�prinj.
Thus for anyA 2 CE, A˝I � preserves objects isomorphic to “lim

�!
”˛ where˛ W I0 !

E�prinj. As it is an additive functor it also preserves their direct summands. We conclude
thatA˝I� preserves the projective-injective objects of CE which finishes the proof. �



CHAPTER 6

Intersection products via higherK-theory

In the previous chapters we introduced Chow groups for tensor triangulated cate-
gories and showed that they have a lot of desirable properties, in analogy with the situation
in algebraic geometry. The intersection product, one of the most important operations on
the Chow groups of a non-singular algebraic variety, however, does not have an analogue
in the tensor triangular world yet. In this chapter, we give a construction that provides us
— under favorable circumstances — with an intersection product for a tensor triangulated
categoryT , that is defined on groups\CH�p .T / (see Definition6.5.1) which turn out to

be subgroups of the tensor triangular Chow groups CH�
p .T / from Chapter2. In the case

thatT D Dperf.X/ for a separated, non-singular schemeX of finite type over a field, the
groups\CH�p .T / coincide with CH�p .T / (see Lemma6.7.6) and thus recover the usual
Chow groups ofX as well. Thus, we may consider them as another useful generalization
of the usual Chow groups of a scheme, competing with CH�

p .T /.
In order to define the intersection product, the categoryT should satisfy two condi-

tions: Firstly,T should have an “algebraic model” in the sense that there should exist
a tensor Frobenius pair (see Chapter5) with derived categoryT . Following Schlichting
[Sch06], the assumption thatT has a Frobenius pair as a model gives us the tools of the
higher and negative algebraic K-theory of the model. Our second assumption concerns
the behavior of a localization sequence arising from the K-theory of the Frobenius mod-
els associated to certain sub-quotients ofT , and states that an analogue of the Gersten
conjecture from algebraic geometry should hold (see Definition6.4.1).

6.1. Algebraic models

For the rest of the chapter, letT denote an essentially small tensor triangulated cat-
egory as in Definition1.2.1. It is well-known that there is no K-theory functor from the
category of small triangulated categories to the category of spaces, if we require that it
satisfies some natural axioms (see [Sch02]). In order to be able to talk about the higher
and negative K-theory ofT , we therefore work with an algebraic model ofT , rather than
T itself. The primary aim of this section is, given a tensor triangulated categoryT with
an algebraic model, to produce algebraic models for certain triangulated subquotients of
T , as well as for their idempotent completions.

Monoidal models. Recall from Chapter5 the notions of Frobenius pair and tensor
Frobenius pair, and from Example1.1.5that thestable categoryof a Frobenius category
A is the categoryA with objects the same asA and morphisms those ofA modulo
the subgroup of maps that factor through a projective-injective object. The categoryA
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is a triangulated category and for a Frobenius pairA D .A;A0/, A0 is a triangulated
subcategory ofA. Thederived categoryof a Frobenius pairAD .A;A0/ is the Verdier
quotient of the stable categories D.A/ WDA=A0.

6.1.1. LEMMA . LetAD .A;A0;˝/ be a tensor Frobenius pair. ThenD.A/ inherits
the structure of a tensor triangulated category and the localization functorq WA!D.A/

is a tensor functor.

PROOF. As A0 is a tensor ideal, the triangulated subcategoryA0 is a tensor ideal in
A and thus the quotientA=A0 is a tensor triangulated category where the tensor product
˝L is induced from the one onA. Indeed,˝L makes D.A/ a symmetric monoidal
category, where the associativity, commutativity and unit natural isomorphisms are given
as the images of the ones of.A;˝/ under the functorA! D.A/. The functorsa˝L�
are exact for all objectsa of D.A/ since the definition of tensor Frobenius pair guarantees
thata˝� is a map of Frobenius pairs for all objectsa of A. These maps always induce
exact functors on the derived categories (cf. [Sch06, Section 3.5]). �

6.1.2. EXAMPLE . Let X be a non-singular, separated scheme of finite type over a
field. Consider the Frobenius pair.sPerf.X/;asPerf.X//, where sPerf.X/ denotes the
exact category of strict perfect complexes onX with conflations the degree-wise split
ones and asPerf.X/ is the subcategory of acyclic complexes (see Definition6.7.1). In
Section6.7we will see that this is a tensor Frobenius pair with respect to the usual tensor
product of chain complexes, with derived category Dperf.X/.

6.1.3. EXAMPLE . LetG be a finite group,k be a field such that char.k/ dividesjGj
and letkG-mod be the category of finitely generatedkG-modules, which is a Frobenius
category (see Chapter3). Denote bykG-proj the subcategory of projective modules, then
.kG-mod;kG-proj/ is a Frobenius pair. It is also a tensor Frobenius pair with respect to
the tensor product of modules̋k and its derived category iskG-stab, the stable category
of the Frobenius categorykG-mod.

6.1.4. COROLLARY. Let J � D.A/ be a tensor ideal and letB � A be the full
subcategory of those objects that become isomorphic to an object ofJ after passing to
D.A/. ThenB D .B;A0/ is a Frobenius pair andC D .A;B;˝/ is a tensor Frobenius
pair, with derived categoriesD.B/D J andD.C /D D.A/=J.

PROOF. From [Sch06, Section 5.2], we already know that.B;A0/ and.A;B/ are
Frobenius pairs with corresponding derived categoriesJ and D.A/=J. The fact thatC
is a tensorFrobenius pair follows since the localization functorA! D.A/ is a tensor
functor and the preimage of a tensor ideal under such a functor is again a tensor ideal.�

Models for idempotent completion. If T DD.A/ for a given tensor Frobenius pair
AD .A;A0/, we would like to find a tensor Frobenius pair that models the idempotent
completionT \. The idea is to first embed D.A/ into D.CA/, the derived category of the
countable enevelope ofA (see Theorem5.4.5), which is idempotent complete, and then
to take thick closures. Let us give some more details.

The embeddingA! CA (see Remark5.2.2) induces a fully faithful embedding

D.A/! D.CA/
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(see [Sch06, Proposition 4.4]). In particular we can view D.A/ as a triangulated subcat-
egory of D.CA/ and consider its thick closureD.A/ � D.CA/ which is a triangulated
subcategory as well. By [Sch06, Section 5.2],D.A/ admits a Frobenius modelA\ given
as follows: ifB is the full subcategory of CA that consists of objects that are isomorphic
to objects ofD.A/ in D.CA/, thenA\ D .B;CA0/.

6.1.5. LEMMA . Assume thatA is a tensor Frobenius pair. Then the Frobenius pair
A\ is a tensor Frobenius pair, with the tensor structure inherited from the one ofCA.

PROOF. According to Theorem5.4.5, CA is naturally a tensor Frobenius pair. The
Frobenius pairA\ is given as.B;A0/, whereB is the full subcategory ofF A that con-
sists of objects that are isomorphic to objects ofD.A/ in D.CA/. From this perspective,
it is clear that all we have to prove is thatB is closed under taking̋ CA-products.

To do this, notice that by Proposition5.3.2, the embedding D.A/! D.CA/ pre-
serves tensor products, and therefore D.A/ is closed under̋ CA-products when we con-
sider it as a triangulated subcategory of D.CA/. Now, take two objectsA;B of B �A

and denote byL W CA! D.CA/ the localization functor given as the composition

CA! CA! CA=CA0 D D.CA/ :

The functorL preserves tensor products since both functors in the composition do. By
definition of thick closure there exist two objectsA0;B 0 2 B such thatL.A/˚L.A0/ 2

D.A/ andL.B/˚L.B/ 2 D.A/. Thus�
L.A/˚L.A0/

�
˝D.F A/

�
L.B/˚L.B 0/

�
Š

Š
�
L.A/˝D.F A/L.B/

�
˚
�
L.A/˝D.F A/L.B

0/
�
˚
�
L.B/˝D.F A/L.A

0/
�

˚
�
L.B/˝D.F A/L.B

0/
�

which shows thatL.A/˝D.CA/L.B/DL.A˝CAB/ is isomorphic to a direct summand
of an object in D.A/ and proves thatA˝CAB 2B. �

6.1.6. LEMMA . The categoryD
�
A\
�

realizes the idempotent completion.D.A//\

as a tensor triangulated category.

PROOF. This follows as D.CA/ is idempotent complete (since it has countable co-
products by [Sch06, Proposition 4.4]) and D

�
A\
�

is the thick closure of D.A/ in D.CA/.

The equivalence is explicitly given by sending a pair.a;e/ in D.A/\, with a an object of
D.A/ ande W a! a an idempotent endomorphism, to im.e/ 2 D

�
A\
�
. We see that this

equivalence preserves the tensor product, as the embedding D.A/! D
�
A\
�

preserves
tensor products by Proposition5.3.2. �

6.1.7. LEMMA . The assignmentA 7!A\ is functorial for maps of Frobenius pairs.

PROOF. The assignmentA 7! CA is functorial (see [Sch06, Definition 4.3]) and so
a map of Frobenius pairsm WA!B gives a map Cm W CA! CB. By the additivity of
Cm it follows that its restriction toA\ maps intoB\ which proves the lemma. �

As a consequence of Lemma6.1.6, we now have a Frobenius model for.D.A//\.
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6.2. Higher and negative algebraicK-theory of a Frobenius pair

Let A D .A;A0/ be a Frobenius pair. In [Sch06, Section 11], Schlichting defines
a K-theory spectrumK.A/ for A that we will use in the following. The associated K-
groups ofA are given as follows (see [Sch06, Theorem 11.7]):

� For i > 0, the groupsKi .A/ are the Waldhausen K-groups ofA. That is, we
makeA into a category with cofibrations and weak equivalences by declaring
the cofibrations to be the inflations ofA and the weak equivalences those mor-
phisms that become isomorphisms inT . ThenKi .A/ is thei -th Waldhausen
K-group Kwi .A/ of the category with cofibrations and weak equivalencesA.
� K0.A/D K0

�
D.A/\

�
.

� For i < 0 one definesKi .A/ as follows: Let S0A denote the full subcategory
of CA consisting of all objects in the kernel of the Verdier quotient functor

D.CA/! D.CA/=D.A/ :

The suspension SA of A is defined as the Frobenius pair.CA;S0A/, and for
n � 1, SnA denotes the Frobenius pair obtained fromA by applying the sus-
pension constructionn times. Fori < 0, Schlichting (see [Sch06, Definition
4.7]) defines

Ki .A/ WD K0.S
�iA/ :

One then obtains long exact localization sequences. Let

B!A! C

be an exact sequence of Frobenius pairs, i.e. one such that the induced sequence

D.B/! D.A/! D.C /

is exact up to factors: the composition is zero, the functor D.B/!D.A/ is fully faithful
and the induced functor

D.A/=D.B/! D.C /

is cofinal. Then we obtain a long exact localization sequence

� � � !Kp.B/!Kp.A/!Kp.C /!Kp�1.B/! �� �

for all p 2 Z (see [Sch06, Theorem 11.10]).

6.2.1. REMARK . Assume thatT D D.A/ for a tensorFrobenius pairA, such that
T is a tensor triangulated category. LetJ � T be a tensor ideal. Corollary6.1.4and
Lemmas6.1.5and6.1.6provide models forB andC for J and .T =J/\, respectively.
The sequence of Frobenius pairs

B!A! C

induces the sequence of derived categories

J! T ! .T =J/\

which is exact up to factors. This gives us a long exact sequence in K-theory

� � � !Kp.B/!Kp.A/!Kp .C /!Kp�1.B/! �� � :
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6.2.2. REMARK . An application of the localization sequence implies the following: if
we are given two Frobenius pairs with equivalent derived categories, and the equivalence
is induced by a functor on the level of Frobenius pairs (which neednotbe an equivalence),
then the K-groups arising from the two different models will be isomorphic. This is
why we informally think of the K-theory of the Frobenius pairA as the K-theory of the
triangulated category D.A/. One must be careful though: it is not true that any model of
D.A/ yields the same K-theory (see [Sch02]).

6.3. K-theory sheaves onSpc.T /

Let us start by proving a basic but useful lemma.

6.3.1. LEMMA . Let T be an essentially small tensor triangulated category that is
equipped with a dimension functiondim. Then for alll 2 Z, the subcategory

T.l/ �
�
T \
�
.l/

is dense. Therefore the inclusion induces an equivalence�
T.l/

�\
Š

�
T \
�
.l/
:

PROOF. As T is dense inT \, for every objecta 2 T \, a˚†.a/ 2 T . Indeed, this
follows by Thomason’s classification of dense subcategories (see [Tho97]) which gives

T D
n
a 2 T \

W Œa� 2 K0.T /� K0

�
T \
�o
:

Given b 2
�
T \
�
.l/

, we have†.b/ 2
�
T \
�
.l/

as well and by our previous argumentb˚
†.b/ 2 T . As

dim.supp.b˚†.b///D dim.supp.b/[supp.†.b///D dim.supp.b//� l ;

it follows thatb˚†.b/2 T.l/. This shows that every object of
�
T \
�
.l/

is a direct summand
of an object ofT.l/ and therefore proves the claim. �

Before we define K-theory sheaves on Spc.T / we fix some assumptions onT that
we will need for the rest of this chapter.

6.3.2. CONVENTION. For the rest of the chapter, we fix a tensor Frobenius pairAD

.A;A0;˝/ and letT DD.A/. We assumeT to be essentially small, rigid, equipped with
a dimension function dim and such that Spc.T / is noetherian.

6.3.3. DEFINITION. For anyp 2 Z�0; l 2 Z, the sheafK.l/
p on SpcT is defined as

the sheaf associated to the presheaf

U 7!Kp

�
.AU /.l/

�
for an openU � Spc.T / with complementZ. Here, .AU /.l/ is the Frobenius pair
obtained fromA by subsequently taking models for the Verdier quotientT =TZ , then
for the triangulated subcategory.T =TZ/.l/ and finally for the idempotent completion�
.T =TZ/.l/

�\
Š .TU /.l/ by Lemma6.3.1, as described in Section6.1. By construction,

we then have
D..AU /.l//D .TU /.l/ :
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The restriction mapK.l/
p .U /! K

.l/
p .V / for two opensV � U � Spc.T / with com-

plementsW � Z respectively is induced in the following way: the Frobenius pair that
models.T =TZ/.l/ is given by.AU

.l/
;AZ/, whereAZ is the full subcategory ofA con-

sisting of those objects that become isomorphic to objects ofTZ in D.A/ andAU
.l/

is the
full subcategory ofA consisting of those objects that become isomorphic to objects of
.T =TZ/.l/ in D..A;AZ//D T =TZ . Using Proposition1.4.9, we see that there is a map
of Frobenius pairs

.AU
.l/;AZ/! .AV

.l/;AW /

given by inclusion. After applying idempotent completion as in Lemma6.1.7we obtain
a map of Frobenius pairs

.AU /.l/! .AV /.l/

which induces the restriction map.
Similarly for anyp 2 Z�0; l 2 Z, we define the sheavesK

.l=l�1/
p on Spc.T / as the

sheaves associated to the presheaves

U 7!Kp

�
.AU /.l/=.l�1/

�
for an openU � Spc.T / with complementZ. Here,.AU /.l/=.l�1/ is the Frobenius pair

associated to the subquotient
�
.TU /.l/=.TU /.l�1/

�\
of T , given as.AU

.l/
;AU

.l�1/
/\. By

construction,

D
��

AU
.l/;A

U
.l�1/

��
Š .T =TZ/.l/ =.T =TZ/.l�1/

and thus we indeed have

D

��
AU
.l/;A

U
.l�1/

�\�
Š
�
.T =TZ/.l/ =.T =TZ/.l�1/

�\
Š

�
.T =TZ/

\

.l/
=.T =TZ/

\

.l�1/

�\
Š
�
.TU /.l/=.TU /.l�1/

�\
by [Bal07, Proposition 1.13] and Lemma6.3.1. For an openV � U , there is a map of
Frobenius pairs �

AU
.l/;A

U
.l�1/

�
!

�
AV
.l/;A

V
.l�1/

�
given by inclusion. Again, after applying idempotent completion as in Lemma6.1.7we
obtain a map of Frobenius pairs

.AU /.l/=.l�1/! .AV /.l/=.l�1/

which induces the restriction map.

The next result is a key instrument for the constructions of the following sections, as
it shows that we can use the sheavesK

.l=l�1/
p to calculate cohomology.

6.3.4. PROPOSITION. For anyp 2 Z�0; l 2 Z, the sheavesK.l=l�1/
p are flasque.

PROOF. We show that the presheaf

U 7!Kp

�
.AU /.l/=.l�1/

�
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is already a sheaf and that it is flasque. The main point here is that the equivalence

(16)
�
.TU /.l/=.TU /.l�1/

�\
Š

a
Q2U

dim.Q/Dl

Min.TQ/

from Theorem1.4.7is induced on the level of Frobenius models.
ForQ 2 U;dim.P /D l , the Frobenius pair associated to Min.TQ/ is constructed as

follows: we letAQ �A be the full subcategory of those objects becoming isomorphic to
objects ofQ� T in D.A/D T . Let AMin �A be the full subcategory of objects becom-
ing isomorphic to objects with minimal support in D

�
.A;AQ/

�
D T =Q. The Frobenius

model we use for Min.TQ/ is then given as.AMin ;AQ/
\ which we will denote byMinQ.

Indeed, by construction we have

D
�
MinQ

�
D D

�
.AMin ;AQ/

\
�
Š .Min.T =Q//\ ŠMin.TQ/ :

The last equivalence follows by Lemma6.3.1as Min.T =Q/D .T =Q/.n/, wheren 2 Z
is the dimension of the unique closed point ofT =Q.

There is an inclusionAU
.l�1/

�AQ (see Definition6.3.3) by [Bal07, Prop. 3.21]. We

also haveAU
.l/
�AMin which implies that we get a map of Frobenius pairs

.AU
.l/;A

U
.l�1//! .AMin ;AQ/

for all Q 2 U , given by inclusion. After idempotent completion we obtain maps

.AU /.l/=.l�1/!MinQ

and the sum of these maps for allP 2 U

�U W .AU /.l/=.l�1/!
a
Q2U

dim.Q/Dl

MinQ

induces the equivalence (16) on the derived categories.
As a consequence, we see that the sheafK

.l=l�1/
p is given as the sheafification of the

presheaf

U 7!
a
Q2U

dim.Q/Dl

Kp

�
MinQ

�
:

Now, for two opensV � U consider the diagram

.AU /.l/=.l�1/

�U

��

res // .AV /.l/=.l�1/

�V

��a
Q2U

dim.Q/Dl

MinQ
� //

a
Q2V

dim.Q/Dl

MinQ
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where res is the restriction functor from Definition6.3.3and� is the canonical projection.
One checks that this square is commutative. The maps�U and�V become equivalences
on the corresponding derived categories and thereforeKp.�U /;Kp.�V / become isomor-
phisms and the square commutes after applyingKp.�/. It follows that the restriction
maps of the presheaf

U 7!
a
Q2U

dim.Q/Dl

Kp

�
MinQ

�
are given as the canonical projections.

We now show that this presheaf is already a sheaf (and will therefore coincide with
K
.l=l�1/
p ): from the nature of the restriction maps, it is clear that an element of the group

Kp

�
AU /.l/=.l�1/

�
with trivial restriction to an open cover must be trivial onU . Further-

more, if we are given an open coveringU D
S
i2I

Vi and si 2 Kp

�
.AVi

/.l/=.l�1/
�

with

compatible restrictions to the mutual intersections, we can glue them together to an ele-
ments 2Kp

�
AU /.l/=.l�1/

�
: from thesi we know what the germsP of s atP should be

for everyP 2 U . In order to check that there are only finitely many non-zerosP ’s, we
use that Spc.T / was assumed to be noetherian and thus finitely manyVi1 ; : : : ;Vin suffice
to coverU . By definition,.sij /P D 0 for all but finitely manyP 2 Vij for j D 1; : : : ;n.
This implies thatsP D 0 for all but finitely manyP 2 U and thuss 2Kp

�
AU /.l/=.l�1/

�
as desired.

The flasqueness ofK.l=l�1/
p now follows directly, as its restriction maps coincide

with those of the presheaf, and these are clearly surjective. �

6.4. The triangulated Gersten conjecture

We stick to our assumptions from Convention6.3.2. For anyl 2 Z andU � Spc.T /
we have a sequence of Frobenius pairs

.AU /.l�1/! .AU /.l/! .AU /.l/=.l�1/

which induces a sequence of tensor triangulated categories

.TU /.l�1/ ,! .TU /.l/!
�
.TU /.l/=.TU /.l�1/

�\
that is exact up to factors. Therefore we obtain localization sequences

� � � !Kp

�
.AU /.l/

�
!Kp

�
.AU /.l/=.l�1/

�
!Kp�1

�
.AU /.l�1/

�
! �� �

which, by applying sheafification, give us a long exact sequence of sheaves

(17) � � � !K.l�1/
p !K.l/

p !K.l=l�1/
p !K

.l�1/
p�1 ! �� � :

6.4.1. DEFINITION. We say thatthe triangulated Gersten conjecture holds for the
Frobenius pairA (see Convention6.3.2) in bidegree.l;p/ for .l;p/ 2 Z2 if in the above
long exact sequence (17), the mapK.l�1/

p !K
.l/
p vanishes.

6.4.2. REMARK . Whether the triangulated Gersten conjecture holds forA might
depend on the choice of dimension function forT .

6.4.3. REMARK . As we will see in Lemma6.7.5, the triangulated Gersten conjecture
can be viewed as a generalization of the usual Gersten conjecture from algebraic K-theory.
Let us recall the statement of the usual conjecture.
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CONJECTURE(Gersten).LetX be the spectrum of a regular local ringR. LetMl .X/

denote the category of coherent sheaves onX with codimension of support� l with asso-
ciated QuillenK-groupsKp.Ml .X// for p � 0. Then the maps

Kp.MlC1.X//! Kp.Ml .X//

induced for allp � 0 by the inclusionMlC1.X/!Ml .X/ vanish.

The conjecture was proved by Quillen in [Qui73] for the case thatR is a finitely
generated algebra over a field, and later Panin [Pan03] removed the finite generation hy-
pothesis. Quillen uses his result in [Qui73] to prove theBloch formula, which identifies
the Chow groups of a non-singular varietyX with certain cohomology groups of K-theory
sheaves onX . We will use the triangulated Gersten conjecture for a similar purpose in
Theorem6.5.4.

A more direct relation of the usual Gersten conjecture to Definition6.4.1becomes
visible as follows: one may check the vanishing of the maps

�lp WK
.l�1/
p !K.l/

p

on the level of stalks. ForQ 2 Spc.T /, we have Frobenius pairsX WD .AQ

l�1
;AQ/

\

andY WD .A
Q

l
;AQ/

\. HereAQ is the full subcategory of objects ofA in the kernel

of the Verdier localization D.A/ D T ! T =Q andA
Q
n is the full subcategory ofA of

objects that in D.A;AQ/ become isomorphic to an object of the triangulated subcategory
D.A;AQ/.n/D .T =Q/.n/, for nD l�1; l . The derived categories D.X/;D.Y / are given
as.TQ/.l�1/ and.TQ/.l/, respectively. Furthermore, we have a map of Frobenius pairs
X! Y given by inclusion which induces the map�lp on the stalks atQ:

.�lp/Q WKp.X/!Kp.Y / :

The triangulated Gersten conjecture holds in bidegree.l;p/, if the maps.�lp/Q vanish for
all pointsQ 2 Spc.T /.

If A satisfies the triangulated Gersten conjecture in bidegrees.l;p/ and.l;p�1/,
then the long exact sequence (17) contains the short exact sequence

(18) 0!K
.l/
i !K

.l=l�1/
i !K

.l�1/
i�1 ! 0 :

6.5. The triangulated Bloch formula

For any essentially small tensor triangulated categoryL equipped with a dimension
function andl 2 Z, we can define sheaves of Grothendieck groups on Spc.L/ as follows:
let F l .L/ denote the sheaf associated to the presheaf

U 7! K0
�
.LU /.l/

�
/

and letF l=l�1.L/ denote the sheaf

U 7! K0

��
.LU /.l/=.LU /.l�1/

�\�
so that we haveF l .D.A//DK

.l/
0 andF l=l�1.D.A//DK

.l=l�1/
0 as special cases (see

Definition6.3.3). Note that forF l=l�1.L/, we don’t need to sheafify by Proposition6.3.4.
There is also a map of sheaves

(19) ˇ W F l .L/! F l=l�1.L/
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which is obtained as the sheafification of a map of presheavesˇ0 induced by the composi-
tion of the Verdier localization functor and the inclusion into the idempotent completion:

ˇ0.U / W K0
�
.LU /.l/

�
/! K0

�
.LU /.l/=.LU /.l�1/

�
,! K0

��
.LU /.l/=.LU /.l�1/

�\�
:

For L D D.A/, the mapˇ is the one of the localization sequence (17). We will be
interested in the group of global sections

(20) �.im.ˇ//� �
�
F l=l�1.L/

�
D K0

�
.L.l/=L.l�1//

\
�
D Z�l .L/ ;

where Z�
l
.L/ is the dimensionl tensor triangular cycle group ofL from Chapter2. The

image of the map of presheavesˇ0 on the level of global sections is the subgroup

�.im.ˇ0//D K0

�
L
\

.l/
=L

\

.l�1/

�
� K0

�
.L.l/=L.l�1//

\
�
:

As the presheaf im.ˇ0/ is separated (it is, after all, a sub-presheaf of a sheaf), the natural
map im.ˇ0/! im.ˇ/ from presheaf to sheafification is injective and thus we have an
inclusion

(21) j W �.im.ˇ0//D K0

�
L
\

.l/
=L

\

.l�1/

�
,! �.im.ˇ//

as well. Leti W K0.L
\

.l/
/! K0.L

\

.lC1/
/ be the map induced by the inclusion and� W

K0.L
\

.l/
/! K0.L

\

.l/
=L

\

.l�1/
/ be the map induced by the Verdier quotient functor.

6.5.1. DEFINITION. Thel-dimensional\-cycle groupof L is defined as the group

\Z�l .L/ WD �.im.ˇ//� Z�l .L/ :

Thel-dimensional\-Chow groupL is defined as the quotient

\CH�l .L/ WD \Z�l .L/=j ı�.ker.i// :

6.5.2. REMARK . We will see in Theorem6.5.4that these\-Chow groups show up
in the cohomology of the sheafK

.0/
p (see Definition6.3.3). From Definition2.2.4, it also

follows that

\CH�l .L/� CH�l .L/ :

WhenL
\

.l/
=L

\

.l�1/
is idempotent complete already, it follows from (21) that

\Z�l .L/D Z�l .L/ and \CH�l .L/D CH�l .L/ :

This is true for the cases we considered in the example computations of Theorem2.3.5
and Propositions3.3.2, 3.4.7and3.4.9.

6.5.3. EXAMPLE . LetX be a non-singular separated scheme of finite type over a field
andLD Dperf.X/, the derived category of perfect complexes equipped with the opposite
of the codimension of support as a dimension function. In Theorem2.3.5, it is proved
that Z��n.L/Š Zn.X/ and CH��n.L/Š CHn.X/ for all n 2 Z. In this case we also have
isomorphisms\Z��n.L/ Š Z��n.L/ and\CH��n.L/ Š CH��n.L/ by Remark6.5.2(see
also Lemma6.7.6).
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We now assume that the dimension function dim forT D D.A/ is given as the
opposite of the Krull codimension and furthermore, that the triangulated Gersten con-
jecture holds forA and for this choice of dimension function in bidegrees.i;j / with
�p�2 � i � 0 and�1 � j � p. Splicing the short exact sequences (18) together yields
a partial flasque resolution of the sheafK

.0/
p

(22) K.0/
p !K.0=�1/

p ! �� � !K
.�pC1=�p/
1

ı1
�!K

.�p=�p�1/
0

ı0
�!K

.�p�1=�p�2/
�1

that we can use to calculate its cohomology.

6.5.4. THEOREM (Triangulated Bloch formula).Assume that the dimension function
dim for T is given as the opposite of the codimension and that the triangulated Gersten
conjecture holds forA and for this choice of dimension function in bidegrees.i;j / with
�p�2� i � 0 and�1� j � p. Then we have isomorphisms

\CH��p.T /Š Hp.Spc.T /;K.0/
p /

for all p 2 Z.

PROOF. We will use the partial flasque resolution (22) of K
.0/
p to calculate the group

Hp.Spc.T /;K.0/
p /. The maps

K
.�pC1=�p/
1 !K

.�p=�p�1/
0 !K

.�p�1=�p�2/
�1

are spliced together from the exact sequences (18) in the following way:

0

��

0 // K
.�pC1/
1

// K
.�pC1=�p/
1

˛ //

ı1 ''NNNNNNNNNNN
K
.�p/
0

//

ˇ

��

0

K
.�p=�p�1/
0




��

ı0

''OOOOOOOOOOO

0 // K
.�p�1/
�1

��

�
// K

.�p�1=�p�2/
�1

0

In order to calculate cohomology, we apply the global section functor. As taking global
sections is a left-exact functor,�.�/ is injective and so we have that

ker.�.ı0//D ker.�.
//D �.ker.
//D �.im.ˇ//D \Z��p.T / ;

again by left-exactness of the global section functor.
Recall that the maps̨ ;ˇ are given as sheafifications of maps˛0;ˇ0 between the

corresponding presheaves. By the functoriality of sheafification it follows thatˇ ı ˛ is
given as the sheafification of the compositionˇ0 ı ˛0. But ˇ0 ı ˛0 is already a map of
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sheaves and we therefore have thatˇ ı˛ D ˇ0 ı˛0. The map�.ˇ ı˛/ is therefore given
as the composition of the maps

 WK1

�
.AX /.�pC1/=.�p/

�
! K0

�
T
\

.�p/

�
with X D Spc.T / and

� W K0

�
T
\

.�p/

�
! K0

�
T
\

.�p/
=T

\

.�p�1/

�
from the corresponding localization sequences. By the exactness of the localization se-
quence, im. /D ker.i/ with

i W K0

�
T
\

.�p/

�
! K0

�
T
\

.�pC1/

�
as in Definition6.5.1. Thus, we obtain im.�.ˇ ı˛//D �.ker.i//.

By our previous calculations we conclude that

Hp.Spc.T /;K.0/
p /D ker.�.ı0//= im.�.ı1//

D \Z��p.T /=j ı�.ker.i//

D \CH��p.T /

which was to be shown. �

6.5.5. REMARK . From the proof of Theorem6.5.4, we can get a simpler definition
of \Z��p.T /, not using K-theory sheaves. Namely, we see that the map of sheaves

� ı
 WK
.�p=�p�1/
0 !K

.�p�1=�p�2/
�1

can be computed on global sections as the composition of the maps


 0
W K0

�
T.�p/=T.�p�1/

�\
!K�1

�
.AX /.�p�1/

�
with X D Spc.T / and

�0
WK�1

�
.AX /.�p�1/

�
!K�1

�
.AX /.�p�1/=.�p�2/

�
;

both coming from the corresponding long exact localization sequences. We therefore see
that

\Z��p.T /D �.im.ˇ//D .

0/�1.ker.�0// :

This reformulation of Definition6.5.1has the disadvantage that it needs tensor Frobenius
pairs in order to talk aboutK�1 and it is not obvious that it is actually independent of a
choice of such a tensor Frobenius pair.

6.6. The intersection product

Recall our assumptions forT from Convention6.3.2. We now let dim be the opposite
of the Krull codimension and require furthermore that the triangulated Gersten conjecture
holds forA in bidegrees.i;j / with �p�2� i � 0 and�1� j � p.

First, let us recall a general well-known fact about cup products in sheaf cohomology
(see [Bre67, Theorem 7.1 and Proposition 7.2]). LetX be a topological space andF ;G
be sheaves of abelian groups onX . Then there exists a unique associative bilinear product

[ W Hp.X;F /�Hq.X;G /! HpCq.X;F ˝Z G /
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for all p;q 2 Z�0 such that forp D q D 0, the product is the one induced by the tensor
product�.X;F /��.X;G /! �.X;F ˝G / and the axioms of [Bre67, Theorem 7.1] are
satisfied. The product[ is called thecup product.

An application of Theorem6.5.4then yields the following:

6.6.1. COROLLARY. Under the assumptions of Theorem6.5.4and forp;q 2 Z�0

there are bilinear maps

\CH��p.T /�\CH��q.T /! HpCq
�
Spc.T /;K.0/

p ˝Z K.0/
q

�
:

In order to construct the intersection product, we need a mapK
.0/
p ˝Z K

.0/
q !K

.0/
pCq ,

which will then induce the product map

HpCq.Spc.T /;K.0/
p ˝Z K.0/

q /! HpCq.Spc.T /;K.0/
pCq/D \CH��p�q.T /

It will be derived from a bilinear map on Waldhausen K-theory induced by the tensor
product.

6.6.2. LEMMA . Let A D .A;A0;˝/ be a tensor Frobenius pair. If we consider
A as a Waldhausen category, then̋ is a biexact functorA�A! A in the sense of
[Wal85, Section 1.5].

PROOF. By assumption,a˝� is an exact functor for all objectsa of A which im-
plies that it preserves cofibrations, as those are just the inflations. Letf W x ! y be a
weak equivalence, i.e. a map that becomes an isomorphism after passing to D.A/. This
means that the object cone.f / of A is in A0. As A0 is a tensor ideal inA and passing
from A to the stable categoryA preserves tensor products, it follows that ida˝f is an
isomorphism in D.A/ as well. Thereforea˝� preserves weak equivalences. Finally,
it is proved in [Büh10, Proposition 5.2] that exact functors of exact categories preserve
pushouts along inflations, which in our case means that pushouts along weak equivalences
are preserved. Therefore, the functorsa˝� (and by symmetry�˝ a) are exact in the
sense of Waldhausen (see [Wal85, Section 1.5]).

It remains to check that̋ satisfies the “more technical condition” of [Wal85, Section
1.5]. This asserts that for two cofibrations˛ W a� a0;ˇ W b � b0 in the diagram

a˝b //
˛˝idb //

��

ida˝ˇ

��

a0˝b

�� ida0 ˝ˇ

��

a˝b0 //

˛˝idb0 ..

a0˝b
à˝b

a˝b0

�
&&

a0˝b0

the arrow� is a cofibration, i.e. an inflation. This is exactly the pushout product axiom of
Definition5.4.2. �

A biexact functor̋ WA�A!A in the above sense gives rise to bilinear maps

Kp.A/˝Z Kq.A/!KpCq.A/
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for all p;q � 0 (see [Wal85, Section 1.5]). In particular, we obtain maps

Kp.AU /˝Z Kq.AU /!KpCq.AU /

asAU WD .AU /.0/ inherits the structure of a tensor Frobenius pair fromA by Corol-
lary 6.1.4and Lemma6.1.5. These maps sheafify to

K.0/
p ˝Z K.0/

q !K
.0/
pCq :

and give us

(23) HpCq
�
Spc.T /;K.0/

p ˝Z K.0/
q

�
! HpCq

�
Spc.T /;K.0/

pCq

�
D \CH��p�q.T /

for all p;q � 0.

6.6.3. DEFINITION. Let A be a tensor Frobenius pair with derived categoryT that
satisfies the assumptions of Theorem6.5.4. Forp;q 2 Z�0, the intersection productis
the bilinear map

˛ W \CH��p.T /˝\CH��q.T /! \CH��p�q.T /

that arises as the composition of the map in Corollary6.6.1and in (23).

6.6.4. REMARK . While the groups\CH�n .T / only depend on D.A/D T , the prod-
uct˛ of Definition6.6.3might depend on the whole modelA.

6.6.5. REMARK . Let A;B be two tensor Frobenius pairs satsifying the assumptions
of Theorem6.5.4andF WA!B a map of tensor Frobenius pairs (i.e. a map of Frobenius
pairs that respects the tensor products up to natural isomorphism) such that the induced
maps on the derived categories has relative dimension 0 (see Definition2.4.1). ThenF
induces maps

\CH.F /�p W \CH��p .D.A//! \CH��p .D.B//

for all p 2 Z�0 and there is a commutative diagram

\CH��p .D.A//�\CH��q .D.A//
˛A //

\
CH.F /�p�

\
CH.F /�q

��

\CH��p�q .D.A//

\
CH.F /�p�q

��

\CH��p .D.B//�\CH��q .D.B//
˛B //

\CH��p�q .D.B//

with ˛A;˛B the respective products from Definition6.6.3. In this sense, the construction
is functorial.

6.6.6. REMARK . The author expects that properties of the product in Waldhausen
K-theory and the cup product in sheaf cohomology as in Corollary6.6.1imply that the
intersection product from Definition6.6.3makesM

p�0

\CH��p.T /

a graded-commutative ring with unit the class ofI in \CH�0 .T /.
If G D Z=2Z�Z=2Z andk is an algebraically closed field of characteristic2, the

results of Chapter3 show thatM
p�0

\CH��p.kG-stab/D Z=2Z˚Z=2Z :
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The only possible commutative unital ring structure on this group, that also has a nilpotent
element is.Z=2Z/Œ��=.�2/. Thus, if the above assumption holds true, any choice of
tensor Frobenius pair with derived categorykG-stab that satisfies the triangulated Gersten
conjecture in the relevant degrees (if it exists) must yield the same intersection product.

6.7. Example: strict perfect complexes on a non-singular algebraic variety

We now introduce the main example of Definition6.6.3 which justifies the name
“intersection product”. LetX be a non-singular separated scheme of finite type over a
field. Recall that astrict perfect complexon X is a bounded complex of locally free
OX -modules of finite rank.

6.7.1. DEFINITION. Let sPerf denote the category of strict perfect complexes on
X endowed with the following structure of exact category: a sequence of strict perfect
complexes

F �
! G �

!H �

is a conflation if it is degree-wise a split exact sequence. We denote the full subcategory
of acyclic strict perfect complexes by asPerf.

6.7.2. LEMMA . The triplesPerfD .sPerf;asPerf;˝OX
/ is a tensor Frobenius pair.

PROOF. For an exact categoryE, let Chb.E/ denote the exact category of all bounded
chain complexes overE, with the conflations defined as the degree-wise split exact se-
quences. Let Acb.E/�Chb.E/ denote full subcategory of acyclic complexes. In [Sch06,
Section 5.3], it is shown that.Chb.E/;Acb.E// is a Frobenius pair. Thus, when we con-
sider the full subcategory of locally free sheaves of finite rank in Coh.X/ as an exact
category, it follows that.sPerf;asPerf/ is a Frobenius pair.

It is clear that the tensor product of two strict perfect complexes is again strict perfect
and as tensoring with a strict perfect complex is an exact functor, it follows that asPerf is a
˝OX

-ideal. It remains to check that the pushout product axiom of Definition5.4.2holds
true. Thus, letf W A� �X� andg W B� � Y� be two inflations in sPerf. This means that
for eachi 2Z we have automorphisms̨i WXi !Xi andˇi W Yi ! Yi such that̨ i ıfi is
a split injectionAi ,! Ai ˚Ci andˇi ıgi is a split injectionBi ,! Bi ˚Di . The maps
f ˝ idB�

and idA�
˝g are given componentwise as

.f ˝ idB�
/k W

M
iCjDk

Ai ˝Bj !
M
iCjDk

Xi ˝Bj

.idA�
˝g/k W

M
iCjDk

Ai ˝Bj !
M
iCjDk

Ai ˝Yj

and after post-composing with the isomorphisms consisting of diagonal matrices with
entries̨ i ˝ idBj

and idAi
˝ˇj respectively, we obtain split injectionsM

iCjDk

Ai ˝Bj !
M
iCjDk

.Ai ˝Bj /˚ .Ci ˝Bj /M
iCjDk

Ai ˝Bj !
M
iCjDk

.Ai ˝Bj /˚ .Ai ˝Dj / :
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We see that therefore0@.A�˝Y�/
a

A�˝B�

.X�˝B�/

1A
k

Š

M
iCjDk

.Ai ˝Bj /˚ .Ai ˝Dj /˚ .Ci ˝Bj /

Similarly, we see that

.X�˝Y�/k Š
M
iCjDk

.Ai ˝Bj /˚ .Ai ˝Dj /˚ .Ci ˝Bj /˚ .Ci ˝Dj /

and the induced map0@.A�˝Y�/
a

A�˝B�

.X�˝B�/

1A
k

�! .X�˝Y�/k

is given as the canonical inclusion, which is split. This shows that the pushout product
axiom holds in sPerf and finishes the proof of the lemma. �

6.7.3. LEMMA . The categoryD.sPerf/ is equivalent toDperf.X/ as a tensor triangu-
lated category.

PROOF. The inclusion functor from the exact category of strict perfect complexes
into the exact category of perfect complexes induces an exact equivalence of derived
categories between D.sPerf/ and Dperf.X/ if X has an ample family of line bundles, as
follows from [TT90, Proposition 2.3.1], as mentioned in the proof of [TT90, Lemma 3.8].
As being noetherian, separated and regular already implies thatX admits an ample family
of line bundles (see [BGI71, Corollaire 2.2.7.1]), our assumptions onX guarantee that
the inclusion is an equivalence. It is also a tensor functor as we can compute the derived
tensor product by tensoring with a quasi-isomorphic strict perfect complex. �

6.7.4. CONVENTION. For the remaining part of the chapter, we setT WD sPerf and
T WD D.sPerf/ Š Dperf.X/. We fix the opposite of the codimension of support as a di-
mension function onT .

6.7.5. LEMMA . The Frobenius pairsPerf satisfies the triangulated Gersten conjec-
ture in bidegrees.l;p/ for l � 0 andp � �1.

PROOF. First, let us introduce some maps of exact sequences of Frobenius pairs,
which will allow us to ged rid of idempotent completions and work with complexes of
coherent sheaves instead of perfect ones.

ForU �X open with complementZ, we start with

(24) .TU /.l�1/ // .TU /.l/ // .TU /.l/=.l�1/

�
sPerfU.l�1/;sPerfZ

�
//

OO

�
sPerfU.l/;sPerfZ

�
//

OO

�
sPerfU.l/;sPerfU.l�1/

�
OO

in the notation of Definition6.3.3, where the vertical arrows are given as the inclusion into
the countable envelope. The vertical arrows induce induce equivalences of the correspond-
ing derived categories asX is regular (see Section2.3) and thus they induce isomorphisms
in K-theory.
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For an abelian categoryA, define the Frobenius pair

Chb.A/ WD .Chb.A/;Acb.A// ;

where Chb.A/ is the category of bounded chain complexes inA and Acb.A/ is the full
subcategory of complexes homotopy equivalent to an acyclic chain complex. The confla-
tions inChb.A/ are by definition the degree-wise split exact sequences. There is a map
of exact sequences of Frobenius pairs
(25)�

sPerfU.l�1/;sPerfZ
�

��

//

�
sPerfU.l/;sPerfZ

�
��

//

�
sPerfU.l/;sPerfU.l�1/

�
��

Chb
�
.Coh.U /.l�1/

�
// Chb

�
Coh.U /.l/

�
// Chb

�
Coh.U /.l/=Coh.U /.l�1/

�
where the vertical maps are given by restriction toU . Again, we check that they induce
equivalences of the corresponding derived categories and therefore induce isomorphisms
in K-theory.

Using the maps (24) and (25) and [Sch06, Theorem 11.10], we see that the localiza-
tion sequences corresponding to

.TU /.l�1/! .TU /.l/! .TU /.l/=.l�1/

and

Chb
�
.Coh.U /.l�1/

�
! Chb

�
Coh.U /.l/

�
! Chb

�
Coh.U /.l/=Coh.U /.l�1/

�
are isomorphic. This proves the lemma forp D �1 by [Sch06, Theorem 9.1], which
shows thatK�1.Chb.A//D 0 for any abelian categoryA. Forp � 0, [TT90, Theorem
1.11.7] shows that both localization sequences are in turn isomorphic to the localization
sequence

� � � ! Kp
�
Coh.U /.l/

�
! Kp

�
Coh.U /.l/

Coh.U /.l�1/

�
! Kp�1

�
Coh.U /.l�1/

�
! �� �

from Quillen K-theory for alll 2 Z, where Coh.U /.l/ denotes the abelian category of
coherent sheaves on the open subschemeU �X , with codimension of support� �l .

Therefore the stalks of the exact sequence (17) are exact sequences isomorphic to the
usual ones in the Gersten conjecture, which is satisfied for regular local rings of finite type
over a field (see [Qui73, Theorem 5.11]). This implies the statement as we can check the
vanishing of a map of sheaves on the stalks. �

6.7.6. LEMMA . There are isomorphisms

\CH��p.T /Š CHp.X/

for all p 2 Z.

PROOF. Under our assumptions, Theorem2.3.5shows that CH��p.T /ŠCHp.X/ for

all p 2 Z. The isomorphisms\CH��p.T /Š CH��p.T / are a consequence of the fact that

the categoriesT \

.�p/
=T

\

.�p�1/
can be expressed as derived categories of abelian categories
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(as we assumed thatX is non-singular) and are therefore idempotent complete already
(see Section2.3). Thus there is an equivalence

T
\

.�p/
=T

\

.�p�1/
!

�
T
\

.�p/
=T

\

.�p�1/

�\
Š
�
T.�p/=T.�p�1/

�\
induced by the inclusion functor, which gives the isomorphism by Remark6.5.2. �

We now want to compare the usual intersection product onX and the product from
Definition6.6.3on the tensor triangular Chow groups of Dperf.X/, coming from the tensor
Frobenius pairsPerf. In order to do this, consider the isomorphisms

Ki .TU /! Ki .Coh.U //

that were constructed in the proof of Lemma6.7.5. If we denote them bysUi , then for all
i;j � 0 andU �X open, they fit into a diagram

(26)

Ki .TU /˝Kj .TU / //

sU
i

˝sU
j

��

KiCj .TU /

sU
iCj

��

Ki .Coh.U //˝Kj .Coh.U // // KiCj .Coh.U //

where the horizontal arrows are given by the products in the Waldhausen K-theory ofTU
and in the Quillen K-theory of Coh.U /, respectively.

6.7.7. THEOREM. Let˛ denote the intersection product from Definition6.6.3coming
from the tensor Frobenius pairsPerf and let˛0 be the usual intersection product onX .
Assume that diagram (26) commutes for alli;j � 0 and all opensU � X . Then the
diagram

\CH��p.T /˝\CH��q.T /
˛ //

Š

��

\CH��p�q.T /

Š

��

CHp.X/˝CHq.X/
˛0

// CHpCq.X/

commutes up to a sign.�1/pq for all p;q � 0.

6.7.8. REMARK . The construction of the products in Quillen and Waldhausen K-
theory is so natural that it seems very plausible that diagram (26) always commutes for all
i;j � 0 and all opensU � X . However, we could not find the statement in the literature
and we were unable to prove it.

PROOF OFTHEOREM 6.7.7. As we have Spc.T /ŠX andX is regular, the sheaves
K
.0/
p will be isomorphic to the sheavesFp associated to the presheafU 7! Kp.Coh.U //

onX via the isomorphismssp. By the Bloch formula, Hp.X;Fp/Š CHp.X/. The state-
ment now follows by the commutativity of diagram (26) and the main result of [Gra78],
where it is shown that the product

Hp.X;Fp/˝Hq.X;Fq/!HpCq.X;Fp˝Fq/! HpCq.X;FpCq/

agrees with the usual intersection product up to a sign.�1/pq , where the second map
comes from the product on Quillen K-theory induced by the tensor product. �



Glossary

Category theory

Abelian categoryA category is abelian if it is additive, every morphism has a kernel and
a cokernel and every monomorphism is a kernel and every epimorphism is a cokernel.
Additive category A category is additive if it has a zero object, all finite biproducts exist
and all Hom-sets are endowed with the structure of an abelian group, such that composi-
tion is bilinear.
Biexact functor An additive functorF W A�B ! C for A;B;C exact (resp. triangu-
lated) categories is biexact if for all objectsA 2A andB 2B, the functorsF.A;�/ and
F.�;B/ are exact, i.e. they send conflations to conflations (resp. distinguished triangles
to distinguished triangles and commute with the corresponding suspension functors).
Cofibration SeeWaldhausen category.
Cofinal functor A fully faithful functor ' W J ! I into a filtered categoryI is cofinal
if for any objectI 2 I there exists an objectJ 2 J and a morphismI ! '.J /. If ' is
cofinal, then for any functor̨ W I! C , we have an isomorphism lim

�!
˛ ı' Š lim

�!
˛ (see

[KS06]).
Cofinally small categoryA categoryC is cofinally small if there exists a small category
C0 and a cofinal functorC0! C .
Conflation SeeExact category.
Deflation SeeExact category.
Dense subcategoryA triangulated subcategoryS � T of a triangulated categoryT is
dense if each object ofT is a direct summand of an object isomorphic to an object ofS .
Enough injective/projective objectsAn exact categoryE has enough injective objects if
for every objectA there exists an inflationA ,! I to an injective objectI of E. Dually,E
has enough projective objects if for every objectA there exists a deflationP �A from a
projective objectP of E.
Essential imageThe essential image of a functorF W S! T is the full subcategory ofT
consisting of those objectsB such thatB Š F.A/ for some objectA 2 S .
Essentially small categoryA category is essentially small if it is equivalent to a small
category.
Exact category (in the sense of Quillen)An exact category is an additive categoryE

equipped with a classE of pairs of composable morphisms.f;g/

A
f
�! B

g
�! C

such thatf is a kernel forg andg is a cokernel forf . The morphismsf;g that appear
in such a pair have to satisfy a list of axioms that mimick the behavior of monomor-
phisms and epimorphisms in an abelian category (see e.g. [Büh10]). A pair .f;g/ in E is
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called aconflation(or admissible exact sequence), f is called aninflation (or admissible
monomorphism) andg is called adeflation(or admissible epimorphism). It can be shown
that any small exact categoryE can be embedded into an abelian categoryA such that
the embedding sends conflations inE to short exact sequences inA andE is closed under
extensions inA. One associates to any exact categoryE a based topological space BQE

whose higher homotopy groups are theQuillenK-groupsof E (see [Qui73]).
Filtered category A categoryI is filtered if it is non-empty and satisfies the following
conditions:

(1) For all objectsI;J 2 I there exists an objectK 2 I and morphismsI ! K

andJ !K.
(2) For all parallel morphismsf;g W I � J in I, there exists a morphismh W J !K

such thathıf D hıg.

Frobenius categoryA Frobenius category is an exact category that has enough injective
and enough projective objects and is such that the classes of injective objects and projec-
tive objects coincide.
Full subcategory A subcategoryD � C is full if HomD.A;B/ D HomC .A;B/ for all
objectsA;B of D .
Inflation SeeExact category.
Injective object An objectI of an exact categoryE is injective if the functor

HomE.�;I / W E
op
! Ab

is exact.
Localizing subcategoryA triangulated subcategoryS � T of a triangulated categoryT
is localizing ifS is closed under taking set-indexed coproducts.
Projective objectAn objectP of an exact categoryE is projective if the functor

HomE.P;�/ W E! Ab

is an exact functor.
Quasi-inverseA quasi-inverse to a functorF WA!B is a functorG WB!A such that
G ıF is naturally isomorphic to idA andF ıG is naturally isomorphic to idB . If F has
a quasi-inverse, thenF is an equivalence of categories.
Quillen K-groupsseeExact category.
Serre subcategoryA subcategoryB of an Abelian categoryA is a Serre subcategory if
it is non-empty, full and for all short exact sequences

0!M 0
!M !M 00

! 0

in A, we have thatM is in B if and only if bothM 0 andM 00 are inB.
Small categoryA category is small if it has a set (as opposed to a proper class) of objects
and a set of morphisms.
Symmetric monoidal categoryA symmetric monoidal categoryS is a categoryS which
is equipped with a commutative “tensor product”. That is, we are given a bifunctor
˝ W S � S ! S , a unit objectI 2 S and natural isomorphismsA˝ I Š A Š I˝A,
A˝ .B˝C/Š .A˝B/˝C , A˝B Š B˝A for all objectsA;B;C 2 S which have to
satisfy some coherence conditions (see [ML98]).
Waldhausen categoryA Waldhausen categoryW is a category with a zero object that
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is equipped with two classes of morphisms, thecofibrationsco.W/ and theweak equiva-
lenceswe.W/, which have to satisfy a number of axioms (see [Wal85]). One associates
to any Waldhausen categoryW a based topological space�jwS�W j whose higher ho-
motopy groups are theWaldhausenK-groupsof W . If we are given an exact categoryE

and let co.E/ be the class of inflations inE and we.E/ the class of isomorphisms, thenE

becomes a Waldhausen category in this way.
WaldhausenK-groupsseeWaldhausen category.
Weak equivalenceSeeWaldhausen category.

Algebraic geometry
Homological support The homological support of a chain complex of modules/sheaves
is the support of the coproduct over all its homology modules/sheaves.
Perfect complexA perfect complex on a scheme.X;OX / is a chain complex ofOX -
modules that is locally quasi-isomorphic to a bounded chain complex of locally free
sheaves of finite rank.
Quasi-separated schemeA scheme is quasi-separated if the intersection of any two quasi-
compact open subsets is quasi-compact.
Regular schemeA scheme.X;OX / is regular if for any pointx 2X the local ringOX;x
is a regular local ring.
Separated schemeA schemeX over a base schemeS is separated if the diagonal map
X !X �S X is a closed immersion.
Specialization closedA subsetY of a topological spaceX is specialization closed if
P 2 Y implies thatfP g � Y .
Topologically noetherian schemeA scheme.X;OX / is topologically noetherian ifX is
a noetherian topological space.
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Samenvatting

In dit hoofdstuk zal de inhoud van dit proefschrift worden samengevat voor lezers met
enige achtergrondkennis op het gebied van algebraïsche meetkunde en/of getrianguleerde
categorieën.

Algebraïsche variëteiten en Chow-groepen.De objecten die in in de algebraïsche
meetkunde worden bestudeerd zijn schema’s en morfismes van schema’s. In deze samen-
vatting beperken wij ons tot makkelijkere (maar zeker niet-triviale!) varianten van een
schema, namelijkalgebraïsche variëteiten (overC). Voor een geheel getaln � 0 wordt
AnC, deaffienen-ruimte overC, gegeven als de verzamelingCn voorzien van deZariski-
topologie: een verzamelingV �AnC is gesloten als er een verzamelingT �CŒx1; : : : ;xn�
bestaat zodatV de gezamenlijke nulpuntenverzamelingen van de polynomen inT is. Een
affiene algebraïsche variëteit (overC) is een gesloten deelverzamelingV � AnC, samen
met decoördinatenring

A.V / WDCŒx1; : : : ;xn�=I.V / :

Hierbij is I.V /�CŒx1; : : : ;xn� het ideaal van alle polynomen die opV verdwijnen.

VOORBEELD. Zij f 2 CŒx1; : : : ;xn�. Het polynoomf definieert een affiene alge-
braïsche variëteitV.f /�AnC waarbijT D ff g. Men kan laten zien dat

A.V .f //DCŒx1; : : : ;xn�=
p
.f / ;

waarbij
p
.f / het ideaal

fg W 9 r > 0 zo datgr 2 .f /g �CŒx1; : : : ;xn�

is.

VOORBEELD. Zij V � AnC een affiene algebraïsche variëteit enf 2 CŒx1; : : : ;xn�.
Men kan laten zien dat de open deelverzameling

U Vf WD V nV.f /� V

weer een affiene algebraïsche variëteit is met coördinatenring A.V /f , de lokalisering van
A.V / bij de multiplicatieve vezamelingff n W n 2 Z�0g.

Een algebraïsche variëteit is grofweg een object, dat lokaal “eruit ziet” als een affiene
algebraïsche variëteit. Voor het topologische gedeelte is dat eenvoudig te realiseren: de
onderliggende ruimte van een algebraïsche variëteit is een topologische ruimteX met een
eindige open overdekking

X D
[
Vi
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zodatVi homeomorf is met een affiene algebraïsche variëteit. Om lokaal over coördi-
natenringen te kunnen spreken eisen wij datX voorzien is van eenschoof van ringenOX :
voor elke open deelverzamelingU � X zijn ringen OX .U / gegeven, en voor een in-
clusieU1 � U2 zijn er ringhomomorfismesOX .U2/! OX .U1/, de restrictieafbeeldin-
gen, welke aan een aantal axioma’s moeten voldoen. In het geval van onze algebraïsche
variëteitX eisen wij datOX .U

Vi

f
/ŠA.Vi /f voor allef , en dat de restrictieafbeeldingen

overeenkomen met de lokaliseringsafbeeldingen via dit isomorfisme. Omdat de verza-
melingenU Vi

f
een basis voor de topologie opX vormen, zijn de ringenOX .U / op deze

manier volledig vastgelegd voor alle open verzamelingenU �X .

VOORBEELD. Zij V een affiene algebraïsche variëteit. Dan isV een algebraïsche
variëteit: de schoofOV wordt vastgelegd door te eisen datO.U V

f
/ D A.V /f en dat de

restrictieafbeeldingen gegeven worden door de lokaliseringsafbeeldingen. We noemen
OV deschoof van reguliere rationale functies opV .

VOORBEELD. De RiemannsfeerP1C is een voorbeeld van een algebraïsche variëteit
die niet affien is. We kunnenP1C overdekken met de open deelverzamelingen

U1 WD P1C n f1g en U2 WD P1C n f0g :

Een toepassing van de stereografische projectie laat zien dat zowelU1 als U2 homeo-
morf zijn metC, wat men kan schrijven als de nulpuntenverzameling van0 2 CŒx�. Wij
definïeren nu een schoof van ringen opP1C door de schoven van reguliere rationale func-
ties opUi Š C aan elkaar te plakken opU1\U2 D C n f0g door middel van de functie
x 7! 1=x.

DeChow-groepenvan een algebraïsche variëteitX zijn invarianten vanX in de vorm
van abelse groepen CHp.X/;p � 0, die voortkomen uit de systematische studie van irre-
ducibele gesloten deelvariëteiten vanX “modulo rationale equivalentie”. Een deelva-
riëteitY van een algebraïsche variëteitX is grofweg een gesloten deelverzameling vanX

die zelf weer een algebraïsche variëteit is. Een deelvariëteitY is irreducibel alsY niet kan
worden geschreven als een eindige vereniging van gesloten deelvariëteiten¤ Y . Voor een
geheel getalp � 0 beschouwt men alle irreducibele deelvariëteiten vanX van codimensie
p en maakt dit tot een abelse groep Zp.X/ door formele eindige sommen van codimen-
siep deelvariëteiten vanX (zogenaamdecykels) met geheeltallige coëfficiënten toe te
laten. Nu definiëren wij op deze groep een equivalentierelatie waarbij twee codimensiep

cykelsrationeel equivalentzijn als zij door middel van een “algebraïsche homotopie in
X ” in elkaar over kunnen gaan. Dit kan men zich voorstellen als volgt: de twee cykels
zijn elementen van een continue familie van cykelsC � X �P1, waarbijC zelfs weer
een deelvariëteit vanX �P1 is. Wij formaliseren dit idee door te zeggen dat twee cykels
rationeel equivalent zijn als hun verschil gelijk is aan de divisor (d.w.z. de formele som
van nulpunten en polen, geteld met multipliciteiten) van een rationele functie op een irre-
ducibele deelvariëteit vanX van codimensiep�1. Het quotiënt van Zp.X/modulo deze
equivalentierelatie is de codimensiep Chow-groep CHp.X/.

VOORBEELD. Voor een algebraïsche variëteitX is Z0.X/DCH0.X/ de vrije abelse
groep op de irreducibele componenten vanX . Voor een grote klasse van algebraïsche va-
riëteitenX is CH1.X/ gelijk aan Pic.X/, de Picardgroep vanX .
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Op een gladde algebraïsche variëteit kan van

CH.X/D
M
p�0

CHp.X/

een gegradueerde ring worden gemaakt door eensnijproduct

CHp.X/�CHq.X/! CHpCq.X/

voor allep;q � 0 te definiëren. Het idee achter deze constructie is om deelvariëteiten
V;W � X van codimensiep enq te snijden en een deelvariëteitV \W � X van codi-
mensiepCq te verkrijgen. De deelvariëteitV \W is niet noodzakelijk irreducibel maar
heeft een eindig aantal irreducibele componenten, die een cykel opX definiëren. Om
rekening te houden met snijmultipliciteiten voorzien we elk irreducibel component van
V \W van de bijbehorende multipliciteit als coëfficiënt. Dit kunnen wij vervolgens li-
neair uitbreiden tot cykels. Aan dit idee zijn echter een aantal problemen verbonden:
zoals men snel ziet kan het gebeuren dat de codimensie vanV \W niet gelijk is aan
pC q (neem bijvoorbeeldV D W , met codim.V / > 0) en het blijkt ook niet makkelijk
te zijn om een goede definitie van snijmultipliciteiten te geven. Voor gladde algebraïsche
variëteiten is er echter een oplossing:Chow’s moving lemma(1956) zegt dat er altijdV 0

enW 0 in de respectievelijke equivalentieklassen vanV enW in CH.X/ zijn, zodat de
codimensie vanV 0\W 0 gelijk is aanpC q. Verder is het mogelijk om in dit geval een
goede definitie voor intersectiemultipliciteiten te geven, bijvoorbeeld door deTor-formule
van Serre(1965). Grayson (1978) geeft een andere methode om het snijproduct door mid-
del van de hogere algebraïscheK-theorie vanX te definiëren.

Afgeleide en getrianguleerde categorieën.Een categorie is een wiskundig object
dat kan worden beschouwd als een formele abstractie van de volgende algemene obser-
vatie: in alle takken van de wiskunde bestudeert men een bepaalde klasse van objecten
(zoals verzamelingen, topologische ruimtes, groepen etc.) en een bepaalde soort van af-
beeldingen tussen deze objecten (zoals functies, continue functies, groepshomomorfismes
etc.). Een categorieC bestaat uit de data van een verzameling vanobjectenOb.C/ en voor
elk tweetal van objectenA;B 2 Ob.C/ een verzameling vanmorfismesHomC .A;B/.
Verder is er voor elk drietal van objectenA;B;C 2 Ob.C/ een associatieve samenstel-
lingsafbeelding

ı W HomC .A;B/�HomC .B;C /! HomC .A;B/�HomC .B;C /

en een identiteitselement idA 2 HomC .A;A/ voor elk objectA, dat als links- en rechts-
eenheid voor de samenstellingsafbeelding fungeert.

Veel categorieën hebben meer structuur dan de boven genoemde: getrianguleerde ca-
tegorieën zijn een soort categorie die men vooral tegenkomt in de context van homotopie,
zowel in de algebraïsche zin (homotopie van ketencomplexen) als in de topologische zin
(homotopietheorie van topologische ruimtes). Het meest basale voorbeeld aan de alge-
braïsche kant is deafgeleide categorievan een abelse categorie, voor het eerst bestudeert
door Grothendieck en Verdier (1967). Dit leggen wij nu verder uit.

Een abelse categorie is grofweg een categorie waarin men morfismes kan optellen,
en waarin elk morfisme een kern en een cokern heeft. Het naamgevende voorbeeld is
de categorie van abelse groepenAb. Een observatie die leidt tot de constructie van de
bijbehorende afgeleide categorie is dat in veel wiskundige contexten ketencomplexen van



114 Samenvatting

abelse groepen een belangrijke rol spelen, zoals in de volgende twee voorbeelden: bij het
uitrekenen van de homologiegroepen van een topologische ruimte, of bij het uitrekenen
van groepencohomologie kunnen verschillende methodes worden toegepast, die allemaal
het doel hebben om een ketencomplex van abelse groepen te produceren, waarvan men
vervolgens homologiegroepen berekent. Een ketencomplex van abelse groepen is een
diagram

A� W � � � ! AiC1
@iC1

���! Ai
@i
�! Ai�1! �� �

waarbijAi abelse groepen zijn en@i morfismes ervan (dedifferentialen), en@i@iC1 D 0
voor allei geldt. De eerste stap in de constructie van de afgeleide categorie is de construc-
tie van de categorie van ketencomplexex C.Ab/. De objecten van C.Ab/ zijn ketencom-
plexen van abelse groepen en een afbeeldingA�! B� is een verzameling groepshomo-
morfismesAi ! Bi die moeten commuteren met de differentialen. We merken op dat
C.Ab/ weer een abelse categorie is.

VOORBEELD. Voor een topologische ruimteX produceert men hetsinguliere keten-
complexC�.X/, waarbijCn.X/ wordt gegeven als de vrije abelse groep op de continue
afbeeldingen van de standaardn-simplex naarX . De differentialen worden gegeven door
restrictie tot de zijvlakken.

Zij G een groep. Om de cohomologie van eenG-moduulM uit te rekenen produceert
men eeninjectieve resolutie vanM en bekijkt de restrictie van de resolutie tot hetG-
invariante deel. Het resultaat is ook hier een ketencomplex van abelse groepen.

In de boven genoemde voorbeelden is men eigenlijk niet geïnteresseerd in het keten-
complexA� zelf, maar in de homologiegroepen

Hi .A�/ WD ker@i= im.@iC1/ :

In het geval van de groepencohomologie is het zelfs zo, dat een andere keuze van injec-
tieve resolutie kan leiden tot een niet-isomorf ketencomplex. Er is echter één belangrijk
verband: een keuze van twee injectieve resoluties geeft altijd een afbeelding tussen de
twee geassocieerde ketencomplexen, die isomorfismes op de homologiegroepen induc-
eren. Wij noemen afbeeldingen van ketencomplexen, die isomorfismes op de homolo-
giegroepen inducerenquasi-isomorfismes.

Met deze observaties in het achterhoofd zien wij dat de categorie C.Ab/ “te groot”
is: wij zijn op zoek naar een categorie waarin quasi-isomorfe ketencomplexen kunnen
worden geïdentificeerd. Het idee om dit probleem op te lossen is makkelijk: De afgeleide
categorie D.Ab/ wordt geconstrueerd uit C.Ab/ door de quasi-isomorfismes formeel te
inverteren. Een morfismeA�! B� in D.Ab/ wordt gerepresenteerd door een “breuk”

A�

˛
 � C�! B�

waarbij˛ een quasi-isomorfisme is (die wij als “noemer” beschouwen). Op deze manier
forceren wij dat quasi-isomorfe ketencomplexen isomorf worden in D.Ab/.

De prijs die men hiervoor moet betalen is dat D.Ab/ geen abelse categorie meer is.
De categorie D.Ab/ heeft nog wél een additieve structuur: wij kunnen morfismes optellen.
Een kenmerkende eigenschap van abelse categoriën, het bestaan van kernen en cokernen,
is echter niet meer gegeven. Daardoor kan men in D.Ab/ niet meer praten over exacte
rijen. Er bestaat wél een vervanger voor dit belangrijke concept: eenexact driehoekin
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D.Ab/ is een diagram van de vorm

A�! B�! C�!†.A�/

dat afkomstig is van een korte exacte rij

0! A�! B�! C�! 0

in de (abelse!) categorie C.Ab/ die in elke graad splijt. De uitdrukking†.A�/ staat

hier voor het ketencomplexA0
� metA0

i D AiC1 en@A
0
�

i D �@
A�

iC1. Wij merken op dat de
constructie van D.A/ voor een willekeurige abelse categorieA in volledige analogie is
met de constructie van D.Ab/.

VOORBEELD. Op een algebraïsche variëteitX beschouwen wij de categorie van co-
herente schoven vanOX -modulen Coh.X/. De objecten van deze categorie zijn schoven
van abelse groepenF opX zodanig datF .U / een eindig voortgebrachtOX .U /-moduul
is en zodanig dat deze moduulstructuur compatibel is met de restrictieafbeeldingen van
F en OX . De categorie Coh.X/ is abels en Db.Coh.X// is de volle deelcategorie van
D.Coh.X// van begrensde ketencomplexen in Coh.X/, d.w.z. complexenF� metFi ¤ 0
voor eindig veeli . AlsX een affiene algebraïsche variëteit is, dan is de categorie Coh.X/

equivalent met A.X/-mod, de categorie van eindig voortgebrachte A.X/-modulen en
geldt Db.Coh.X//Š Db.A.X/-mod/.

Een getrianguleerde categorie kan men beschouwen als de axiomatisering van een
afgeleide categorie: het is een additieve categorieT , samen met een additieve equivalentie
van categoriën†T W T ! T (deshift of suspension) en een klasse van exacte driehoeken

A! B! C !†.A/

die aan een aantal axioma’s moeten voldoen. Een functorF W T ! S tussen twee getrian-
guleerde categorieën heetexactals hij met de shifts commuteert en exacte driehoeken in
T naar exacte driehoeken inS stuurt.

In dit proefschrift bestuderen wij een klasse van getrianguleerde categorieën die nog
meer structuur hebben: een tensor-getrianguleerde categorie is een getrianguleerde cate-
gorieT samen met een compatibele symmetrisch-monoïdale structuur, dat wil zeggen er
is een bi-functor

˝ W T �T ! T

die, op natuurlijk isomorfisme na, een associatieve en commutatieve operatie opT met
eenheidsobjectI definieert. Verder eisen wij dat voor elk objectA 2 T de functor

A˝� W T ! T

exact is.

VOORBEELD. Zij X een niet-singuliere algebraïsche variëteit. Dan induceert het
tensorproduct̋ OX

van coherente schoven een bi-functor

˝
L
W Db.Coh.X//�Db.Coh.X//! Db.Coh.X//

die Db.Coh.X// de structuur van een tensor-getrianguleerde categorie geeft. Wij merken
op dat de constructie van̋L op Db.Coh.X// niet altijd mogelijk is alsX niet glad is: voor
twee begrensde ketencomplexenF�;G� 2Db.Coh.X// is het ketencomplexF�˝

L G� dan
mogelijk niet begrensd.
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Chow-groepen van tensor-getrianguleerde categorieën.Een bekende stelling van
P. Gabriel (1962) zegt dat alle informatie over een algebraïsche variëteitX bevat is in
de abelse categorie Coh.X/: men kan voor elke abelse categorieA een topologische
ruimte Sp.A/ en een schoof van ringenOA op Sp.A/ definieren, zodanig dat het paar
.Sp.Coh.X//;OCoh.X// isomorf is met de algebraïsche variëteitX . Een natuurlijke vraag
die hieruit voorkomt is of de getrianguleerde categorie Db.Coh.X// ook alle informatie
overX bevat. Het antwoord hierop is negatief: voor een abelse variëteitX en de duale
variëteit OX zijn de categorieën Db.Coh.X// en Db.Coh. OX// altijd equivalente getrian-
guleerde categorieën, maarX en OX zijn niet noodzakelijk isomorf.

Een mogelijkheid om dit te “repareren” is om Db.Coh.X// in het niet-singuliere
geval als tensor-getrianguleerde categorie te beschouwen. Een stelling van P. Balmer
(2005) zegt, dat men voor elke tensor-getrianguleerde categorieT een topologische ruimte
Spc.T / en een schoof van ringenOT op Spc.T / kan definiëren zodat

.Spc.Db.Coh.X///;ODb.Coh.X///

isomorf is metX . De stelling is nog algemener: voor een willekeurige (mogelijk sin-
guliere) algebraïsche variëteitX beschouwen wij de getrianguleerde deelcategorie van
perfecte complexenDperf.X/ � Db.Coh.X//. De categorie Dperf.X/ is altijd eenten-
sor-getrianguleerde categorie en Dperf.X/ is equivalent met Db.Coh.X// alsX glad is.
Volgens de stelling geldt altijd dat

.Spc.Dperf.X//;ODperf.X//

isomorf is metX .
Uit het oogpunt van deze stelling zou het daarom in theorie mogelijk moeten zijn

om de studie van een algebraïsche variëteitX te vervangen door de studie van Dperf.X/.
Andersom kan men de studie van tensor-getrianguleerde categorieën opvatten als een uit-
breiding van de studie van algebraïsche variëteiten. In dit proefschrift wordt de vraag
bestudeert in hoeverre het mogelijk is om de invarianten “Chow groepen van een alge-
braïsche variëteitX ” uit te breiden naar tensor-getrianguleerde categorieën. Wij verkrij-
gen onder andere de volgende resultaten:

� Een definitie van cykelgroepen en Chow-groepen voor tensor-getrianguleerde
categorieënT van P. Balmer (2013) geeft invarianten die de cykelgroepen en
Chow-groepen van een niet-singuliere algebraïsche variëteitX reconstrueren
alsT D Dperf.X/.
� Deze invarianten hebben goede functorialiteitseigenschappen. Hiermee bedoe-

len wij dat een grote klasse van functoren tussen tensor-getrianguleerde cate-
gorieën groepshomomorfismes induceert tussen de bijbehorende cykelgroepen
en Chow-groepen.
� De theorie is toepasbaar in nieuwe situaties, bijvoorbeeld in de modulaire re-

presentatietheorie.
� Onder speciale voorwaarden kan men de methode van Grayson generaliseren

om een snijproduct op de Chow-groepen van tensor-getrianguleerde categorieën
te verkrijgen.

Wij verwijzen de lezer naar de introductie voor de exacte formuleringen van bovenstaande
uitspraken.
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