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Introduction

Chow rings in algebraic geometry. The study of algebraic cycles on an algebraic
variety X under the equivalence relation of rational equivalence is a classical topic in
algebraic geometry. This is usually formalized by @€tgow group

CH(X) = @D CH"(X)
P

where CH (X) is the group of codimensiop cycles onX, i.e. the free abelian group on
subvarietie” C X of codimensionp, modulo the subgroup of cycles rationally equiva-
lent to zero. The latter is generated by those cycles that appear as the divisor of a rational
function on a subvariety of codimensign—1 and we can roughly think of the equiva-
lence relation as follows: two cycles are rationally equivalent if one can be continuously
deformed into the other along a projective line (seel98 Section 1.6] for a more pre-
cise statement). The group €K) can be viewed as a generalization of the (Weil) divisor
class group QIX) = CH! (X), which in turn often coincides with the Picard group@i¢
(e.g. whenX is locally factorial). It is named after W.-L. Chow (se@to058).

WhenX is regular, the group CEX) can be made into a graded ring (8kow ring
by defining a product

CHP(X) ® CH?(X) — CHPT9(X) .

Geometrically, this is interpreted as taking the intersection of a cycle class of codimension
p with one of codimensiog, while keeping track of intersection multiplicities. A formal
definition of the product requires some work as the codimension of the intersection may
not always be right and it is not so easy to define the right notion of intersection multi-
plicity. There are (at least) three possibilities to overcome these difficulties: the classical
way is to use the Moving Lemma (see elRop73), two modern apporaches are given by
“deformation to the normal cone” (seEyl98)) and by using the product in the algebraic
K-theory of X (see [Gra78).

Let us remark that Chow groups and the intersection product are used widely in
algebraic geometry, for example for the construction of the categtryf motives over
afieldk. In this category, the morphisms and compaosition of morphisms are defined using
these constructions (se&dh94).

Triangulated categories. The question that is addressed in this thesis is how to ap-
proach the subject from the point of view of (tensor) triangulated categories. Examples
of these arise in algebraic geometry as (several flavors of) derived categories of (quasi)-
coherent sheaves ok that can be viewed as an invariant attached(to In general,
derived categories are the natural domain of study for derived functors and historically,
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the examples just mentioned played a crucial role for the formulation of Grothendieck
duality. They are also studied in mathematical physics in the context of “homological
mirror symmetry” (see e.gKjon95).

Can one reconstruct the ring (or at least the group) XCHrom these triangulated
categories “in purely categorical terms”? Can we give a notion of Chow group (or ring) for
a triangulated category and transport the existing theory from algebraic geometry to other
settings that involve the study of triangulated categories®(&D is the bounded derived
category of coherent sheaves¥rand X is non-singular and has ample canonical or anti-
canonical bundle, a well-known result of Bondal and Orlov (48@Q1]) tells us that
D°(X) is a complete invariant, i.e. we can reconstrificfrom the triangulated category
DP(X). Thus, itis certainly possible to recover CH) from D°(X) in that situation. On
the other hand, iX is a complex abelian variety of dimensigrand)? denotes its dual,
then it is known that there is an equivalence of triangulated categofigé)x DP(X).

This equivalence induces an isomorphism

CHg(X) = CHg(X)

of Chow groups with rational coefficients, but the isomorphism does not preserve the
degree of cycles, for example it senkiss CH(?32 (X)to(=1)%-(0)4 € CH% ()?) (see e.g.
[BLO4, Chapter 16]). Hence, we should not expect that the definition of a Chow group
CH(D(X)) that depends only on the triangulated structure &) would allow us to

talk about subgroups CHDP(X)) for p € Z.

In order to remedy this shortcoming, we allow ourselves to consider more structure
than just a triangulation on the category. To be more precise, we consider for any scheme
X (regular or not), the derived category of perfect complex&& (@) c DP(X), which
naturally has the structure ot@nsor triangulated category.e. it is equipped with a sym-
metric monoidal structure induced by the derived tensor product of complexes of sheaves.
The inclusion D®f(X) c DP(X) is an exact equivalence K is regular. WhenX is sin-
gular however, the derived tensor product of complexes of sheaves does not extend to
DP(X) in general and we have to work witfP£Y(X) instead if we want a tensor structure.

In [Bal04, it is shown that we can associate to every essentially small tensor triangu-
lated category™ a topological space SfIf) such that Sp@Pe"(X)) = X as topological
spaces. It is also shown that one can reconstruct the whole vafiétg. including the
structure sheaf) from #8"(X) considered as a tensor triangulated category. Thus, it is
certainly possible to reconstruct €M) from DPE(X), but we want something more: to
construct a functor C?I(—), that takes a tensor triangulated categ@rand produces a

group CHy(7') such that CK (DP®"(X)) = CH? (X).

The Chow groups of a tensor triangulated category.We show that such a construc-
tion is realized by a definition of C}éi(—) suggested to the author by P. Balmer in 2011
and now available inBal13. One of the characteristic features of this approach is that
in the definition of algebraic cycles, one allows for coefficients in certain Grothendieck
groups of local categories, instead of taking coefficients in the integers. The definition is
constructed in analogy to the situation in the G-theory of a non-singular algebraic vari-
ety X, where CH (X) appears in the Brown-Gersten-Quillen coniveau spectral sequence
associated t (see Rui73).
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For a tensor triangulated categdry the group CIﬁ‘(T) depends on the choice of
a dimension functiordim : Spd7) — Z U {£o0} (see Definitionl.4.1), which should
behave similarly to the way the Krull (co)dimension on spectral topological spaces does.
It gives rise to a filtration

1) = CIp-1) CTp) CT(p+1) C -
of 7 that is used to define CQ{T) (see Definition®.2.3and2.2.4. We prove:

THEOREM(see Theored.3.5. Let X be a non-singular scheme of finite type over a
field. EndowDPe(X) with the opposite of the Krull codimension as a dimension function.
Then for allp € Z,

CHS (DP(X)) = CH(X) .

Apart from reconstructing the classical Chow groups, the definition cﬁ‘@l—] also
behaves well in its own right, when we consider it as an invariarif ofWe show that
CH;‘, (—) is functorial for the class of exact functors with a relative dimensienZ (cf.
Definition 2.4.1). These are exachft ®-exact) functors that preserve the filtration that
the choice of a dimension function induces©nup to a shift byz. We show

PROPOSITION(see Propositior2.4.3. Let F : X — £ be a functor of relative di-
mensiom. Then for allp € Z, F induces a group homomorphism

A . A A
CHA(F) : CH5 (X) — CHA.,,.(2)

and we prove that the proper push-forward and flat pull-back morphisms on the classical
Chow groups can be interpreted as special cases of the above theorem, at least when
the varietyX is nice enough, e.g. non-singular, separated of finite type over a field (see
Proposition2.4.13and Propositior2.4.19.

Examples from representation theory. Tensor triangulated categories appear in nu-
merous areas of mathematics, and our general definition applies to examples that do not
come from algebraic geometry as well. In modular representation theory, for a finite
groupG and a fieldc whose characteristic divide& |, one studies the bounded derived
category D(k G-mod) of finite-dimensionak G-modules and the stable module category
kG-stab. The latter category has the same objecksGasnod and morphisms

HomkG—stab(M, N) = HomkG—mod(Ms N)/J

for all finite-dimensionak G-modulesM, N, whered is the subgroup of homomorphisms
that factor through a projective module (see Examipke§. Both categories Pk G-mod)

andk G-stab are tensor triangulated with tensor prodgigtand we show that they have
isomorphic tensor triangular Chow groups in almost all degrees, which should not come
as a big surprise in view of Rickards equivalence ($&eg9)

k G-stab= D (k G-mod)/ DP*""(k G-mod) .
We prove:

THEOREM (see TheorerB.2.6. Considerk G-stabandDP(k G-mod) with the Krull
dimension of support as a dimension functionSpuk G-stal) and SpaDP(k G-mod)).
Then for allp > 0, there are isomorphisms

CHZ (kG-stal) = CHS, | (D°(kG-mod) .
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We also compute the associated tensor triangular Chow grougs fof./ p" Z and
G=7Z/2Zx7/2Z:

THEOREM (see Proposition3.3.2 3.4.7and3.4.9. Letk be a field of characteristic
p. ForG =7Z/p"Z, we have
(i) CHA(kG-sta) =0 Vi #0,
(i) CHS (kG-stab = 7Z/p"Z,
andifp=2andH =7/27 x 7. /27 then
(iiy CHA(kH-stah =0 Vi #0,1,
(iv) CHS (kH-stab = 727,
(v) CHIA (kH-stah =~ 7Z /27 if k is algebraically closed,
when we endow G-stah k H -stabwith the Krull dimension as a dimension function on
SpakG-stabh, SpakH -stah).

In the course of the above computations, we also see that it is possible to obtain cycle
groups with torsion coefficients (see Proposit8.2), which contrasts with the situation
in the algebro-geometric case. This illustrates that we view a general cycle, rather than
as aZ-linear combination of irreducible subspaces of codimengioof the spectrum
Spa7), as an element of a Grothendieck groug(X )/ 7¢,—1)) of a Verdier subquotient
of the filtration (). Only in the non-singular algebro-geometric examples does this pro-
duce cycles with coefficients i, due to the “coincidence” that the Grothendieck group
of the derived category of finite-length modules over a local ring is isomorptiic(see
Remark2.2.5.

Generalization to the relative case and localizationIn order to increase the flexi-
bility of our approach, we proceed by extending the definition of tensor triangular Chow
groups to the relative case, i.e. we define for eachZ Chow groups Clﬁ(’f, KX) of a
compactly generated triangulated categdfy relative to the action of a tensor triangu-
lated category™ (see Definitiord.2.1and [Stel3 for the formalism of actions of a tensor
triangulated category). Here, bathand X are assumed to have set-indexed coproducts
and are therefore not essentially small. We show that when one considers the full derived
categoryDqgcon(X) of complexes ofd x-modules with quasi-coherent cohomology on a
noetherian schem&, acting on itself via the left-derived tensor product, we recover the
tensor triangular Chow groups ofPE¥(X). This is obtained as an immediate consequence
of the following more abstract result. Denote 5§ C 7 the full subcategory of compact
objects, which is an essentially small tensor triangulated category.

THEOREM (see Propositiod.2.4. Let T be a compactly-rigidly generated tensor
triangulated category with arbitrary set-indexed coproducts, equipped with a dimension
function onT ¢ and such thaBpq 7€) is noetherian. Consider the action ®f on itself
via its tensor product, and assume that the local-to-global principle (cf. Definitibrg
holds for this action. Then we have isomorphisms

A G\ A~ A qc
CH, (T.,7) = CH,(T°)
forall p e Z.

The flexibility we gained by extending the original definition allows us to construct
localization sequences for our tensor triangular cycle groups and Chow groups.
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THEOREM (see Theorerd.3.9. LetT be a compactly-rigidly generated tensor tri-
angulated category with arbitrary set-indexed coproducts such that the local-to-global
principle is satisfied for the action df on itself. LetT¢ C 7 denote the full subcat-
egory of compact objects and assume tB8pt(7¢) is a noetherian topological space.
LetU C SpdT¢) be an open subset with closed compleniéntenote byiz C 7 the
triangulated subcategory of objects with support contained iand by 7y the Verdier
guotientd /7. Then there is an exact sequence

i l
Z5(T.T2) > 25(T7°) 5 25(76) — 0

for all p € Z. Furthermore, if7 ¢ /77 is idempotent complete and> dim(Z), then we
obtain an exact sequence
CHA(T . T7) ~2 CHA(T¢) % CHA (Ty)°) - 0.

Tensor Frobenius pairs and intersection product. The last chapter of the thesis
treats the construction of an intersection product on the tensor triangular Chow groups.
As their definition was by analogy with the coniveau spectral sequence from algebraic
K-theory, one could expect to obtain an intersection product via the higher algebraic K-
theory of the category . It turns out that this is possible under two assumptions.

We first need thaf™ has an algebraic model, i.e. it arises as the derived category
of a tensor Frobenius pait. A tensor Frobenius pair (see Definitiém.2) is a special
case of the concept of Frobenius pair fro8th0g§ and consists of a pair of Frobenius
categoriesAy C - together with a compatible symmetric monoidal structure4orhe
derived category ofA is by definition the Verdier quotient/ A, of the corresponding
stable categories. Frobenius pairs are necessary to be able to define the Waldhausen K-
theory of 7™ (see Schlichting’s article$Sich02Sch08) andtensorFrobenius pairs make it
possible to introduce products in the K-theoryjof The use of the machinery dbgh06§
in conjunction with this new definition requires us to prove that tensor Frobenius pairs
are well-behaved with respect to passing to countable envelopes, a result that is proved
in Chapter5, which lays the technical foundations for Chaper As a side effect of
assuming thaf™ arises as the derived category of a tensor Frobenius pair, we exclude a
priori some tensor triangulated categories not coming from an algebraic setting (e.g. the
stable homotopy category of finite spectra from topology).

Our second and more severe assumption on the category is that the Frobenitis pair
(together with a chosen dimension function for its derived cateQnyeeds to satisfy an
analogue of the Gersten conjecture from algebraic geometry (see Deftdidn This
can be interpreted as a “regularity condition” #n

Under these circumstances we can prove a theorem analogous to the Bloch formula
from algebraic K-theory (se¢-[1198 Section 20.5]). In order to do this, we make a small
adjustment to the definition of Cﬁ‘{?‘), and choose to work with subgrou@@Hﬁ(T) C
CHj(T) instead (see Definitio6.5.1). As the notation suggests, the grorqﬁHﬁ(T)
does not depend on the choice of tensor FrobeniusAaiut only on its derived category.

The tensor Frobenius pai# is used to define a K-theory sheﬁﬁg on Spg7).

THEOREM (see Theorend.5.4. LetT be an essentially small, rigid, topologically
noetherian tensor triangulated category that arises as the derived category of a tensor
Frobenius pair. Assume that the triangulated Gersten conjecture holdsfathen we
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equip its derived category with the opposite of the Krull codimension as a dimension
function. Then we have isomorphisms

ACH2 (7) = H”(SpaT). X 9)
forall p € Z.

In the light of this result, one can ask if we should work wi;ﬁHlA, (—) instead of
CHﬁ (—) in general. After all, our result that states agreement with the usual Chow groups
from algebraic geometry in the non-singular case also holds true wiﬁ*](e}-lreplaced

by nCHﬁ(—) (see Lemm&®.7.6. In the end, both definitions may have their own merits.

We exploit the above theorem to construct an intersection product

o 1 nCHY (7)) x nCHZ(T) — 1CH5, (T)

by combining the cup product from sheaf cohomology and the product in the K-theory
of 4 (see Definition6.6.3. While the groups,CHZ (7)) only depend on the derived
categoryJ, the productr a priori depends on the full tensor Frobenius pair

Using an isomorphierCpr(Dpe”(X)) =~ CH?(X) for a non-singular variety and
aresult of Grayson (se&fa78), we can prove that our construction generalizes the usual
intersection product for a specific choice of tensor Frobenius pair, assuming a compatibil-
ity condition between the products on Quillen and Waldhausen K-theory.

THEOREM(see Theorers.7.7). Let X be a separated, non-singular scheme of finite
type over a field. LesPerfdenote the Frobenius pair of strict perfect complexesXon
(see Definition6.7.1) and 7 the derived category a$Perf. Assume that diagran6)
commutes for alf, ; > 0 and all opensU C X. Letwa denote the intersection product
from Definition6.6.3ande’ the usual intersection product ofi. ThenT = DP¢"f(X) and
the diagram

ACH2,(T) ® nCHA,(T) —— CHA,_(7)

F Lk

CHP(X) ® CHI(X) —% 5 CHP+4(X)
commutes up to a sign-1)#4 for all p,q > 0.

For the reader’s convenience, we include a glossary that briefly explains some impor-
tant notions we use from category theory and algebraic geometry.



CHAPTER 1

A short review of tensor triangular geometry

In this chapter, we review some basic theory of the subject of tensor triangular geom-
etry. For most of the chapter, we follow the treatment in the arti@ea#(5 Bal10gBal07,
Bal10h BF11]. Before we do this, we need to recall the basic theory of triangulated cate-
gories as introduced by Verdier iNgro6. For this, we useNlee0] as our main source,
and in part KralQ for Bousfield localization. This chapter does not contain new results
and for brevity, most proofs will only be referenced. We will, however, sketch the proofs
of some results that will be crucial for the development of the theory in the following
chapters.

1.1. Triangulated categories

The axioms. We begin with the definition of a triangulated category, as given in
Neeman’s bookNee0O1.

1.1.1. DEFINITION. A triangulated categorys an additive category , together with
an additive auto-equivalencey : 7 — T (called theshift or suspensiopand a class of
sequences consisting of three composable morphisms

A— B—C — Z7(A)
in 7 calleddistinguished trianglessatisfying the following axioms:
TRO: The sequence
¥ L x 0 ¥rx

is distinguished. All sequences isomorphic to a distinguished triangle are dis-
tinguished triangles: if in the commutative diagrantin

X Y V4 Y X
Jr Js Jz lﬁyr
X’ Y’ A D¢

the top row is a distinguished triangle and all vertical morphisms are isomor-
phisms, then the lower row is a distinguished triangle as well.

TR1: For any morphisny : X — Y in 7, there exists a distinguished triangle of the
form

x Ly 5z s.x.
TR2: (“Rotating triangles”) Consider the two sequences

h
x Ly Sz s x

1
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and

_ _h 3
vy 5z A sox 25 sy

If one of the two is a distinguished triangle, so is the other.
TR3: For any commutative diagram i of the form

X Y Z Y X
lr ls lETr
X’ Y’ zZ’ D¢

where the rows are distinguished triangles, there exists a morphism

t:Z—7
such that the diagram
X Y Z D¢
X’ Y’ z' Sy X'

commutes.
TR4: (“The octahedron”) Given three distinguished triangles

¥y visox

Y —Soy sy — 87X

X gf Y t 7/ w Eg’X

we can complete them to a commutative diagrar in

X Y z Y7 X
id g m id
gf t w
X Y’ z/ Yo X
S n
0 Y// id Y// 0
v
Xq > —Xq
sex 2 sy T SrZ —Ih 32X

where the first two rows and second column are the given triangles and all rows
and columns are distinguished triangles. Furthermore, we require the sequence

(4

Y —LYezZ—57 2L 5)
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to be a distinguished triangle and the compositidhisf o w andv on to be
equal.

If there is no danger of confusion, we will omit the subscript fr@s and just use
the notationX instead.

1.1.2. REMARK. It can be shown from the axioms that the composition of any
two consecutive arrows in a distinguished triangle is zero, see for exaiptd] Re-
mark 1.1.3].

1.1.3. REMARK. ltis true that the objecE of axiomTR1 is determined up to iso-
morphism - this is follows directly fromNeeO1 Proposition 1.1.20]. However, as a
consequence of the possible non-uniqueness of the morphismMR3, Z is generally
not determined by up to unique isomorphismThus Z does not functorially depend
on f, which is a well-known shortcoming of triangulated categories. Still, we denote by
condg f) any object in the isomorphism class &f

Triangulated categories are very widespread in the mathematical landscape and usu-
ally appear when there is a notion of homotopy involved. The most basic example in the
algebraic setting is the derived category of an abelian category.

1.1.4. XAMPLE. Let s be an abelian category. erived categor () is formed
by considering the category of chain complexegiand formally inverting all morphisms
of chain complexes that induce isomorphisms in homology (these morphisms are called
“quasi-isomorphisms”). The suspension functor is given by shifting the degree of a com-
plex by one and flipping the sign of the differentials. The distinguished trianglesA) D
are exactly those diagrams isomorphic (i) to sequences of chain complexes of the

form '

x* Ly LoD st
wheref : X* — Y * is any map of chain complexes( €) is themapping conef f given
as the chain complex

P yitl oy i (—dtt 0
CH =Xx"@&Y cn TN\ A qn )

i :Y* — C(f) is the canonical injection ang: C( ) — X (X*) is the canonical projec-
tion.

A common variant of the theme is to only consid@undedchain complexes im,
i.e. those that are zero in high and low enough degrees. This yieltwtimeled derived
categoryDP(4A) which is triangulated as well. For more details on the construction, see
e.g. [GMO03].

Another, in a sense more general, construction is the following.

1.1.5. XaMPLE (see Hap88 Chapter 1.2]). A Frobenius categorys an exact cat-
egory & in the sense of Quillen (see e.®Jh1Qq for a comprehensive treatment of the
basic theory of exact categories) that has enough injective and projective objects, and in
which the classes of injective and projective objects coincide. sthlgle categong is
the category with the same objects@snd where the morphisms between two objects
A, B € & are given as

Homg (4, B) := Homg (4, B)/d
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whered is the subgroup of morphisms that factor through a projective-injective object of
&. The categong has a natural triangulation, where the suspension functor is given as
follows: for each objecE of &, choose a fixed conflation

(2) 0—>E—>I—>X(E,I)—>0

with I injective. We definéx(E) as the objecE(E, ) in &, wherel comes from the
fixed conflation B). Using Schanuel’s Lemma for injective objects, one checks that with
a different choice of conflation

0—-FE—>J—>X(E,J)—>0

with J injective, X(E,I) and X(E,I) are actually isomorphic itf. The functorX
defines an endofunct® — & and it is an equivalence with quasi-inverse defined as
follows: for each object of &, choose a conflation

0=>Y ' FP->F—=0

with P projective.
In order to define the class of distinguished triangle§ jmve associate to each con-
flation

0-4-5B2C50
in & astandard triangle

A5 lc Ssa
in the following way: the morphisms 7 are the images af p in & ande is defined as
follows: consider the commutative diagram

A—~p-T .c

[k
A—— ] —— YA

with exact rows in&, where the lower row is the chosen conflati@nfor £ = A andg
exists because of the injectivity @ One checks that the classoin & is independent
of the choice ofg and so we take it as the definition@fWe define a diagram

X—>Y—>Z7Z->3X

in & to be a distinguished triangle iff it is isomorphic to a standard triangle. This defines
the structure of a triangulated category®n

1.1.6. XamPLE (cf. [Hap88 Chapter 1.3] or Kel96, Example 6.1]).Let A4 be an
additive category and consider the category of bounded chain compléxe.CWe
endow @ () with the exact structure where a sequence of morphisms of chain complexes

Ae = Be — C,

is a conflation iff4; — B; — C; is split-exact for alli. Then one checks that’C#)

is a Frobenius category, where the class of projective-injective objects is given by the
contractible complexes. The associated stable categor§(is K the bounded homotopy
category ofA.
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1.1.7. REMARK. We call a triangulated category that arises as the stable category of
a Frobenius categomigebraic It can be shown that the derived category of an abelian
category is algebraic. There are examples of non-algebraic triangulated categories from
topology (e.g. the stable homotopy category of finite spectra,Sael])) but for the rest
of this thesis, our examples will always be algebraic.

Before we proceed, let us introduce the appropriate notion of morphism in the world
of triangulated categories.

1.1.8. DEFINITION. An additive functorF : T — U between two triangulated cate-
goriesT , U is calledexactif we have a natural isomorphism

FoYqg~=3qyoF
and F sends distinguished triangles to distinguished triangles.

Verdier localization. One of the most useful constructions for triangulated cate-
gories is Verdier localization. Given a triangulated cateddrgnd a triangulated subcat-
egory8 C T (see Definitionl.1.9, the basic idea is to construct a triangulated category
T /8 and an exact localization functdt : T — 7 /& such thatF(A4) = 0 for all objects
A € & and the pai(7 /8, F) is universal for that property.

1.1.9. DEFINITION (See e.g. Nee0l Definition 1.5.1]). Let 7 be a triangulated
category and$ C 7 be a subcategory. The subcategérys calledtriangulatedif it
is a full, additive subcategory such that

e Every object off” isomorphic to an object of is already in§ (& is areplete
subcategory).

e X(8)=35.

e For any distinguished triangle

A—-B—>C—> XA
such that4, B are objects o8, the objectC must also be ir§.

We give the basic idea for the construction®f$§ and F. For a comprehensive
treatment in the present context, sé&eg01 Chapter 2]. The objects ¢f /& are the
same as the objects 6f and the morphisms are given as follows: given two objaGts
we consider “fractions”, i.e. diagrams of the form

X<£Z—>Y

where congf’) is an object ofS. We introduce an equivalence relatienon the class of
fractionsa (X, Y). Two fractions

X<iZ—>Y

and
x&z >y
in «(X,Y) are considered equivalent if there is a third fraction

h
X<27Z">Y
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in (X,Y) and morphism&” — Z,Z"” — Z' such that the diagram
Z

AR

Z/
commutes. We now set Homs (X,Y) := a(X,Y)/ ~. Next, one defines a composition
of fractions using “homotopy pullbacks” (selg¢e01 Lemma 2.1.16]) and checks that
this choice of morphisms makgs/$ an additive category, and that one obtains a functor
F :T — 7 /& that is the identity on objects and sends a morphfgmX — Y to the

fraction X <E X L Y. The auto-equivalencEg induces an auto-equivalenésr, s by
componentwise application &+ to fractions. If we define the class of distinguished
triangles in7 /& as those diagrams isomorphic to images of distinguished triangl€s of
underF, this givesy /& the structure of a triangulated category.

1.1.10. THEOREM (see Nee0l Theorem 2.1.8]).Let T be a triangulated category
and§ C 7 a triangulated subcategory. Then the exact fundior 7 — 7 /& has the
property thatF(A4) = 0 for all objects 4 € § and the pair(7 /8, F) is universal for
that property: given any exact functér : 7 — U between triangulated categories such
that F(A) = 0 for all objectsA € 8, G must factor asG = G o F for a unique functor
G:T/8— U.

1.1.11. DeFINITION. We call the functorF : T — 7 /8 of Theorem1.1.10the
Verdier quotient functoor Verdier localization functoassociated t&.

1.1.12. EMARK. For a morphismf € T with cond f) € §, its imageF (/) under
the localization functor is an isomorphism (sékef01 Lemma 2.1.21]). Given an object
S € &, the morphisn® — S has coneS and is therefore an isomorphism. We see that all
objects of§ become isomorphictoin 7/38.

In general, it isnot true that the full subcategory of objects thasends td (called
thekernelof F) is equal tos.

1.1.13. CEFINITION. A triangulated subcategory C T is calledthickif it contains
all direct summands of all objects &f Thethick closureof a triangulated subcategoy
is the smallest thick triangulated subcategoryofontainings.

1.1.14. RoprosITION(see Nee0Ol Remark 2.1.39]).The kernel ofF is the thick
closure of§.

PROOF In [NeeOl Lemma 2.1.33] it is proved that the kernel Bfis precisely the
full subcategory containing all direct summands of all objects oAs the thick closure
of & must contain all direct summands of all objects$gfit must therefore contain the
kernel of F. But kernels of exact functors are always triangulated subcategories, so the
result follows. O

In the case that we are given a chain of triangulated subcateg®riess C 7, the
following isomorphism theorem holds.
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1.1.15. LEMMA. LetR C 8§ C T be triangulated subcategories. Then we have an
exact equivalence of triangulated categories

(T/R)/(8/R)=T/8 .

PrROOF Let Q denote the composition of the Verdier quotient functors: 7 —
T/RandQ,:T/R — (T/R)/(8/R). The functorQ sends all objects of to 0 and
we will show that the pait(7/R)/(8/R), Q) has the universal property from Theorem
1.1.10

Let G : T — U be any exact functor that sends all objectsSofo 0. As R C 3§,
the universal property from Theoreinl.10tells us thatG factors uniquely asX o Q;
with X : 7/R — U. But X sends all objects 0§/R to 0, so another application of
Theoreml.1.10tells us that it factors uniquely vi@,. In conclusionG factors uniquely
via Q0 Q1 = Q, as desired. 0

We also record the following lemma.
1.1.16. LEMMA. The natural functor
I:8/R—>T/R
induced by the inclusiof < T is fully faithful.

PROOF In order to see that is full, let A, B € § be two objects. Then a morphisms
f:A— BinT /R isrepresented by a fraction

3) alctp

in 7 such that con@) € R C §. Thus, we have a distinguished triangle

c A= conah) > xC

with A4, condh) € &, from which it follows that we must hav€ € § as well, as§ was
a triangulated subcategory. Therefore, the fract®)ra(so defines a morphism i/ R
which I maps tof".

To check faithfulness, lets,m’ : D — E be two morphisms ir§ /R represented by
fractions in§

DEFLE
and
pDEFLE

respectively, with con@),conds’) € R. If I(m) = I(m’), there exists a fraction

S// t//
D<—F'—E
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in 7 with conds”) € R and morphisms : F” — F,v: F” — F’ such that the diagram
inT
F

N t
u
" 4

RN

F/

commutes. AsD,conds”) € 8, we conclude again that the same must holdA6rand
therefore, diagram) is actually contained i and thereforen = m’. O

Bousfield localization. Let us introduce a flavor of Verdier localization that will
become useful in Chaptdr

1.1.17. DEFINITION (see NeeOl Definition 9.1.1]). Let 8 C T be a thick triangu-
lated subcategory. We say thaBausfield localization functor exists for the padirc 7
if the Verdier localization functoF : 7 — 7 /& has a right adjoinG.

Bousfield localizations are useful for us, as they let us perform the localization
F:T->7/8
inside of7, as in Theorem..1.19

1.1.18. CEFINITION. Let 8 C 7 be a class of objects. Then we define fheas the
full subcategory ofi” with objects

{x €T :HOomg-(s,x) =0Vse&}.
The categon+ is calledthe subcategory o$-local objects

1.1.19. THEOREM(see Nee01 Theorem 9.1.16])Let§ C T be a thick triangulated
subcategory and suppose a Bousfield localization functor exists for th&gaii™. Then
the subcategory o$-local objects is equivalent as a triangulated category to the Verdier
quotientT /&. More precisely, the composition

St T 57/8
is an exact equivalence of triangulated categories.

Another useful consequence of the existence of a Bousfield localization functor is the
existence of certain functorial triangles. The unit of the adjunction from Definitibri 7
gives us for each objecte 7 a morphisnmy — GF(¢). We denoteGF(¢) by tg.. If we
complete this morphism to a distinguished triangle and rotate, we obtain a distinguished
trianglers — ¢ — g1 — X(ts), so thats = X ~!(condgr — t5.)). It can be shown (see
[Nee01 Proposition 9.1.8]) thats € §.

1.1.20. THEOREM (see KralQ Proposition 4.11.2])Let & C T be a thick triangu-
lated subcategory and suppose a Bousfield localization functor exists for th& gair .
Letx — ¢t — y — X(x) be a distinguished triangle ifi such thatx € § andy € 8.
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Then there exist unique isomorphismsx — ts, 8 : y — g1 such that the diagram

X t y 2(x)
Ja Jid Jﬂ lz(a)
ts t Igl 2(15)

commutes. In other words, the distinguished triangle> ¢ — g1 — X(zg) is unique
among triangless — ¢t — y — = (x) withx € § andy € §+, up to a unique isomorphism
that restricts to the identity on

1.1.21. EMARK. The distinguished triangleg — t — 151 — 3(tg) gives rise to
two functorsL,T" : T — 7 whereL = GF andTI is defined by (¢) := t5. We sometimes
call L thelocalization functor associated t§ andI" theacyclization functor associated
to §. For every object € T we then have a distinguished triangle

r'e)—t—-L1t)—2(T{)).

1.1.22. EMARK (see KralQ Proposition 4.9.1]).The localization functol. associ-
ated to§ from Remarkl.1.21has kei. = -§ and the unit of the adjunction: Id — L sat-
isfies the following two properties: the morphidm : L — L? is invertible andLn = L.
Giving a pair§ C T for which a Bousfield localization functor exists is equivalent to giv-
ing an exact functoL. : 7 — 7 and a morphism : Id — L satisfying these two properties.
We call such a functor Bousfield localization functaand, in the terminology of Remark
1.1.21 L is the localization functor associated to ey.

We conclude with an existence statement for Bousfield localizations, for triangulated
categories admitting set-indexed coproducts. Recall that a triangulated subcategory of
such a category™ is calledlocalizing if it closed under the formation of set-indexed
coproducts i

1.1.23. DEFINITION. LetJ be atriangulated category admitting set-indexed coprod-
ucts. An object € T is calledcompacif every morphisnmt — [ [;; x; into a coproduct
factors througH [; s x;, whereJ C I is a finite subset.

1.1.24. DEFINITION. A triangulated categor§ admitting set-indexed coproducts is
calledcompactly generateifithere exists aetof compact object€ C 7 and there is no
proper localizing subcategory @f containingC.

1.1.25. THEOREM(see Kral0, Proposition 5.2.1]) Let T be a triangulated category
admitting set-indexed coproducts afd_ 7 a localizing subcategory that is compactly
generated. Then a Bousfield localization functor exists for the pair7 .

Grothendieck groups. We often want to associate an abelian group to a triangulated
category that reflects its triangulated structure. The Grothendieck group provides such a
construction and is defined analogously to the Grothendieck group of an abelian or exact
category.
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1.1.26. DEFINITION. Let T be an essentially small triangulated category. We define
its Grothendieck groufko(7") as the free abelian group on the isomorphism class&s of
modulo the subgroup generated by expressions of the form

[a] —[b] + [c]
for each distinguished trianglte— b — ¢ — X (a).

1.1.27. ROPOSITION Let F : 7 — U be an exact functor of essentially small tri-
angulated categories. Theh induces a group homomorphism
Ko(7) = Ko(U)
by mappind«] to [F (a)] and extending linearly.
PrRoOOFE This is a consequence of the fact thatpreserves distinguished triangles.
O

1.1.28. ROPOSITION Let T be an essentially small triangulated category. Then
any element okq(7) is represented by an object f.

PrROOF The split-exact sequence

ai—l>a®b£>b£> 3(a)

is a distinguished triangle, where and p, denote the obvious injection and projection
morphisms: indeed, it is the coproduct of the distinguished triangle

a g a—0—X(a)
and the distinguished triangle
0—b i b—0
obtained from
b b0 3(b)

by rotating. The coproduct of two distinguished triangles is a distinguished triangle by
[NeeO] Proposition 1.2.1 and Remark 1.2.2]. This tells us that the equality

[a] + [b] = [a ® b]
holds in Ky(7") for all objectsa, b, ¢ of T . Th_is also shows thd6] = 0 holds in Ky (7).
Furthermore, if we rotate the triangdzeg a — 0 — X(a) to get the triangler —
0— X(a) —» X(a), we see that
[a] +[Z(@)]=0
in Ko(7), which implies that-[a] = [ (a)] in T.
As any element of K(77) is represented by a (formal) finite sum of isomophism
classes of objects ifi and their (formal) inverses, this proves the claim. O

1.1.29. XAMPLE (see [lI77, Exposé VIII]). Let 4 be an essentially small abelian
category. Then K(DP(+4)) = Ko(4A), where K(+4) denotes the Grothendieck groupf
i.e. the free abelian group on the set of isomorphism classds ofodulo the subgroup
of generated by expressions of the form

[a] = [b] +[c]
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whenever there is an exact sequence
0—>a—>b—>c—0
in A.
The isomorphism is explicitly given by

[Cl > ) (=1)'[Hi(Ca)] -

If F:7 — U is an exact functor of essentially small triangulated categories, it is
sometimes possible to describe the kernel of the induced mép )Kk— Ko(U). We
collect the following two results which will prove useful throughout the rest of this thesis.

1.1.30. RRoposITION(see Tho97, Corollary 2.3]). LetT — U be the inclusion of
a densdriangulated subcategory, i.e. every objectlfis a direct summand of an object
of 7. Then the induced map
Ko(7) = Ko(U)
is injective.
1.1.31. RoPosITION(see [II77, Exposé VI, Prop. 3.1]).Let I : T — U be the

inclusion of a thick triangulated subcategory and denotePbyU — U/T the Verdier
guotient functor. Then there is an exact sequence

Ko(T) <2 ko) 22 ko(u/7) >0 .

WhenT is too large, its Grothendieck group is not a useful invariant.

1.1.32. RoprosITION (Eilenberg swindle).Let T be an essentially small triangu-
lated category admitting countable coproducts. THg(T") = 0.

PROOF Leta be an object of”, then we have a distinguished triangle of the form

Da b Pas—a— s (@a,.)

ieN ieN ieN
wherea; = a for alli and¢; ; =0for j #i+1and¢; ;41 =id. Thus,

0= [@a,} - |:@a,-:| +[a] = [d]

ieN ieN
in Ko(7), which proves the claim. d

1.2. Tensor triangulated categories and the spectrum

Triangulated categories often have some extra structure. One particular bit of such
extra structure is that of a tensor product which is well-behaved with respect to the trian-
gulation.

1.2.1. CEFINITION (see Ball0h Definition 3]). A tensor triangulated category is a
triangulated category endowed with a compatible symmetric monoidal structure. That
is, there is a bifunctor

R:TXT >7T
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and a unit object, together with associator, unitor and commutator isomorphisms: for
all objectsX,Y, Z in 7, we have natural isomorphisms

XY ®Z)=(X®Y)®Z, X@IxX=I®X, X®Y=YVY®X

that satisfy the coherence conditions dL[98, Section XI.1] to makel” a symmetric
monoidal category. Furthermore, the bifuncgpis exact in each variable.

1.2.2. EMARK. As an addition to the axiomatic of Definitioh2.1, one can ask
that the following coherence condition holds: by the biexactness,afie have natural
isomorphismgZX)® — =~ (X ®—-)and—® X(Y) = X (—QY) for all objectsX, Y €
T . These fit into a diagram

(ZX)®(ZY) —— S(X @ XY)

T(EXRY) —— 32X Q®Y)

which we require to commute up to a sign, i.e. the composition of the upper and right
isomorphisms should equal the composition of the left and lower isomorphisms or its
additive inverse (see e.d3§l10H). This coherence condition will not be used explicitly

in the following, so we don’t require it for Definitioh.2.1

1.2.3. REMARK. We warn the reader that althoughx 7 can be equipped with a
component-wise triangulated structure, the fun@ary x 7 — T is notexact under the
assumptions of Definitioth.2.1if 7~ # 0. In this situation, the unit objedtcannot be the
zero object (otherwised =~ A ® I = 0 for all objectsA € 7, by additivity of I ® —) and

we consider the two distinguished triang][ega >0 Slandl 51T @ Xl — X1.

The tensor product of these triangles yields the sequ]é#?eé — 0 — 22T which cannot
be a distinguished triangle unleks= 0, which we forbade.

1.2.4. EXAMPLE. Let R be a commutative ring. Then?KR—proj), the bounded
homotopy category of finitely generated projectiRemodules, is a tensor triangulated
category, with the tensor product induced by the usual tensor product of chain complexes.

Generalizing Examplé.2.4leads to another important example coming from alge-
braic geometry.

1.2.5. XAMPLE. A schemeX is calledquasi-separatedf the intersection of any
two quasi-compact open subsets¥ofs again quasi-compact. L&t be a quasi-compact,
quasi-separated scheme and consider the derived category of perfect compfék&y D
on X. This is the triangulated subcategory ofda(X), the derived category of chain
complexes of@x-modules with quasi-coherent homology, that consists of those com-
plexes that are locally quasi-isomorphic to a complex of locally free sheaves of finite rank.
The category PP(X) carries the structure of a tensor triangulated category, where the
tensor product is given bg', the left-derived tensor product of sheave®)gf-modules.
The unit object is given by the chain complixthat hadl; = 0 for j # 0 andl, = Ox.
When X is noetherian, the canonical inclusio®@oh(X)) — D(@x—mod) has
essential image Q)h((QX—moa), the bounded derived category of complexesof-
modules with coherent homology (sé&3171, Corollaire 2.2.2.1]). As a perfect complex
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must be bounded by the quasi-compactnesk¥ ahd we can check locally that it has co-
herent cohomology, we can view’t¥(X) as a triangulated subcategory df(X) in this
case. WhelX is furthermore separated and regular, every coherent sheahas a finite
resolution by locally free sheaves, which implies that the inclusi$ff@ ) < DP(X) is

an equivalence.

In the next chapters, we will sometimes consider examples that do not come from
algebraic geometry. The modular representation theory of finite groups provides us with
another source of tensor triangulated categories.

1.2.6. XAMPLE. Let G be afinite group and be a field such that chér) divides
the order ofG. The group algebr&G is self-injective (i.e. injective as a module over
itself), which implies that the categoyG-mod of finitely generated G-modules (=
finite dimensional representations o¥giis a Frobenius category. As we saw in Example
1.1.5 the associated stable categéiy-stab is naturally a triangulated category. Itis also
a tensor triangulated category, where the tensor product of two motiyI¥sis given by
M ®i N (not®x¢; the G-action is diagonal) and the unit is the trivial modile

It turns out that the extra structure of the tensor product is enough to be able to set up
a geometric theory, if we assume tt7ais essentially small. The main object one studies
in tensor triangular geometris the spectrumof a tensor triangulated category, whose
construction we describe next.

1.2.7. DEFINITION. Let 7 be a tensor triangulated category. A thick triangulated
subcategory C T is called
o ®-idealif T®4 C 4.
e primeif ¢ is a proper-ideal (§ # 7)andA® B € § impliesAe g or B € ¢
for all objects4, B € 7.
1.2.8. DEFINITION (see Bal09]). Let 7 be an essentially small tensor triangulated
category. Thespectrunof T is the set

SpdT) :={P CT :Pisaprimeided
topologized by the basis of closed sets of the form
SUPHA) :={P eSpaT): A ¢ P}
for objectsA € 7. The set supf) is called thesupport ofA.

1.2.9. REMARK. Let us stress that SA€) is defined as a topological space, not
as a (locally) ringed space. It is possible to equip (8pcwith a sheaf of rings (see
[Bal05, Section 6]), but we do not use this construction.

1.2.10. EMARK. As we assumed thdf is essentially small, SPZ’) is a set (i.e.
not a proper class). Furthermore, it is always true thai{ Bpcs a spectraltopological
space, i.e. itis homeomorphic to the prime ideal spectrum of some commutative ring (see
[BKSOQ7, Proposition 3.5]).

Let us give some computations of {9 right away:

1.2.11. XAMPLE (see BKSO07, Theorem 9.5]).Let X be a quasi-compact, quasi-
separated scheme, then @pe(X)) =~ X. Moreover, the support supp®) of a com-
plex A* € DP®f(X) coincides with the support of the total homology 4f on X under
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this isomorphism. This was also proved Bal05 under the slightly more restrictive
assumption thak is topologically noetherian. In both cases, the proof of the statement
uses Thomason'’s classification result frong97.

1.2.12. XAMPLE (see Bal05 Corollary 5.10]). Let G be a finite group and be
a field such that chgt) divides the order ofs. Then Sp¢kG-stah) =~ Vg (k), the pro-
jective support varietyf k. The varietyVg (k) is defined as ProH*(G,k)), where
H*(G, k) denotes the cohomology ring 6f overk. The support sup@/) of a module
M € kG-stab coincides with the cohomological supportMfin Vg (k) (see ChapteB,
Definition 3.1.3 under this isomorphism. The proof of the statement uses the classifica-
tion of thick ®-ideals ink G-stab from BCR97.

These examples should already give the reader the impression that the spectrum is an
object worth studying. The following universal property reassures us that the definition
of Spd7) is indeed the right one.

1.2.13. DEFINITION. Let 7 be an essentially small tensor triangulated category. A
support datunmon 7 is a pair(X,o), whereX is a topological space andis a function
that assigns to each objedte T a closed subset(4) C X, such that

(1) o(0) =@ ando(l) = X,

(2) c(A® B) =0(A)Ua(B) for all objectsA,B € T,

(3) a(2A) =0a(A) for all objects4 € T,

(4) o(C) Ca(A)Ua(B) for every distinguished triangléd —- B — C — X A4,
(5) 0(A® B) =0(A)No(B) forall objectsA,B € T.

The pair(Spd7),supp satisfies the conditions of Definitioh.2.13as proved in
[Bal05 Lemma 2.6] and has a special role among the collection of support d&ta on

1.2.14. HEOREM (see Bal05 Theorem 3.2]).Let T be an essentially small tensor
triangulated category andX, o) be a support datum ofi’. Then there exists a unique
continuous magf : X — Spd7) such thaiz (4) = £~ (supfA4)) for all objectsAd € T,
explicitly given as

f(x)={aeT :x¢a()}.

1.2.15. EMARK. Itis an immediate consequence of the properties thfat
{aeT  :x¢o(a)}
is a prime ideal ofr".

We can use Theoreth2.14to explicitly compute Sp@ ). Recall from Bal0g that
a®-ideald C 7 is calledradical if a®" € ¢ = a € ¢ holds for all objects: € 7.

1.2.16. DEFINITION (see Bal05 Definition 5.1]). A support datum(X,o) on T is
calledclassifyingif

(1) The spaceX is noetherian and any non-empty irreducible closed subset has a
unique generic point.
(2) We have a bijection
{Y C Xspecialization closed sub$eﬂi:—1> {¢ C T radical®-ideal}

given byY + {a € T : o(a) C Y} with inverseg — Uaego(a).
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Knowing a classifying support datum @nis enough to compute S@f).

1.2.17. THEOREM (see Bal05 Theorem 5.2]).Suppose thatX,o) is a classifying
support datum off". Then the map’ : X — Spd7") of Theoren.2.14is a homeomor-
phism.

1.2.18. EMARK. If Spc(T) is noetherian, thefSpd ), supp is a classifying sup-
port datum onJ” (see Bal05 Theorem 4.10]), and thus computing $pg is actually
equivalent to finding a classifying support datum®n

1.2.19. XAMPLE. If 7 = DPe(X) for X a topologically noetherian scheme, and
supphia) C X denotes the homological supportwo€& 7, then(X, supph is a classifying
support datum fofi™ (see Bal05 Theorem 5.5], Tho97 Theorem 3.15]), which proves
SpdT) = X in this case.

1.2.20. XAMPLE. Let G be a finite group and a field such that chét) divides
the order ofG. For M € kG-stab, denote by (M) C Vg (k) the cohomological support
of M. Then(Vg(k),0) is a classifying support datum &G -stab (seeBal05 Theorem
5.9]), which proves Spé G-stah = Vg (k).

Note that if chafk) does not divide &, the statement becomes trivial, as we have
kG-stab= 0 in that case. Indeed, if ch@) does not divide & the ringkG is semi-
simple by Maschke’s theorem. Thus, every objedt 6Ffmod is projective.

We conclude the section by giving a functoriality property of the spectrum. An exact
®-functor is by definition an exact functor between tensor triangulated categories that
respects the tensor product up to natural isomorphism and preserves the unit.

1.2.21. THEOREM (see Bal05 Proposition 3.6]).Let F : T — U be anexact®-
functorof essentially small tensor triangulated categories. Then the map

Spd F) : SpdU) — SpdT)
P F1Y(P)
is well-defined, continuous and for all objects= 7 we have
(SPAF)) ™" (supp- (4)) = suppy (F(A))

PrROOF We give a proof as the statement is only given as an exercigaing. Itis
straightforward to check tha ! () is a prime®-ideal of 7, which gives that Spd@) is
well-defined. As we can check continuity on a closed basis, this follows from the identity
(Spa F))~!(suppr(A)) = suppy (F(A)) which we prove now. Let? € supp,(F(4)),

i.e. F(A) ¢ 2. This implies that
A ¢ F7I(P) = SpAF)(P) ¢ SpAF)(P) € suppr(4) .
Therefore 2 € Spa F))~!(supp-(A)). On the other hand, if

@ € Spd F)) ™ (suppr(4)) ,
then
SpAF)(@) = F~'(Q) esuppr(4) & A¢ F7(Q) .
This implies thatF'(A4) ¢ Q < Q e supp, (F(A)) which we wanted to show. O
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1.3. Localization and idempotent completion

Next, we turn our attention to localization and idempotent completion of triangulated
categories and their role in tensor triangular geometry. fLdie a tensor triangulated
category.

Smashing localizations.Let us first investigate the interaction between Bousfield
localizations and the tensor structure®nSmashing localizatiorfirst appeared in stable
homotopy theory, see e.dRav84.

1.3.1. DerINITION (cf. [BF11, Definition 2.15]). A Bousfield localization functor
L:T — 7 (see Remarld.1.29 is calledsmashingf both ke L) and kefL)* are ®-
ideals. In that case we call Kgr) asmashing ideal

Smashing localizations have a nice description in terms of the tensor prodiict on

1.3.2. RROPOSITION LetL : T — 7 be a smashing localization functor. Thén
LH®—andT =TI (1) ®—.

PrRoOOFE Consider the triangle
') —1I— L) — Z(I'(@))

and applya ® — for an objecta € 7. By exactness of this functor we obtain a distin-
guished triangle

a®@T'(l)—»a—-a® L) - XZ(@®I())

wherea ® T'(I) € ker(L) anda ® L(I) € ker(L)* as we assumed that the localization
was smashing and we haV&l) < ker(L) and L(I) € ker(L)*. By Theorem1.1.2Q we
obtain isomorphisms @ I'(I) =~ I'(a) anda ® L(I) =~ L(a). d

1.3.3. XAMPLE. Let X be a quasi-compact, quasi-separated scheme and denote by
T the category Beon(X) (see Exampld.2.5. Let Z C X be a closed subset with quasi-
compact complemernty and denote by ?rf(X ) the subcategory of perfect complexes
that have the support of their total homology contained irif (D’?rf(X)) is the smallest
localizing subcategory of containing C"(X), then a Bousfield localization functor
for the pair(D%"(X)) C 7 exists by Theoren.1.25and (D% (X)) c 7 is a smashing

ideal by BF11, Theorem 4.1]. The essential image ey of L can be identified with
Dagcon(U) (see BF11, Remark 5.13]).

Verdier quotients by tensor ideals.

1.3.4. @NVENTION. We assume for the rest of the chapter thais essentially
small.

Given a triangulated subcategofyC 7, we can form the Verdier quotiefst /&
which will be a triangulated category again. This also works in the context of tensor
triangulated categories: if we takeC T a ®-ideal then the Verdier quotierdt/ ¢ will
inherit the structure of a tensor triangulated category such that the localization functor is
an exacty-functor and we can give a precise description of the spectrurtUSyo):
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1.3.5. THEOREM (see Bal05, Proposition 3.11)).Letg : T — T /¢ be the Verdier
guotient of a tensor triangulated categdryby a tensor idealf. Then the mafspdy) :
SpdT/¢) — SpdT) induces a homeomorphism betw&pu T /) and the subspace

(P eSpdT): 4 CP}.

1.3.6. XAMPLE. For P € Spd7T), the space Sg& /P) is homeomorphic to the
subspace of Sg&) consisting of those points containir®, i.e. those that havé® in
their closure. The categofy/P is locali.e. SpgT /P) has a unique closed point (see
[Bal10a Definition 4.1 and Proposition 4.2]).

1.3.7. XAMPLE. For X a quasi-compact and quasi-separated scheme, cofisider
DPef(X) and Z C X a closed subset with quasi-compact compleniént_et D%erf(X)
denote thex-ideal consisting of those objects with supportdnWe have seen in Exam-
ple 1.2.11that SpeDP(X)) = X and it follows that SpDPe"(X)/D%"(X)) = U. Note

however, that in general we can identif§a% X )/ D‘}erf(X ) only with a dense subcategory

of DP(U) (namely with the subcategory of those objects whose class PR (U))
belongs to the image of ¢DP"(X)) under the map induced by restriction &5, see
[TT90, Chapter 5]). In order to get an equivalence, we therefore need to take idempotent
completions which we now introduce.

Idempotent completion. For technical and conceptual reasons (see for example the
problem at the end of Examplk3.7) it is often convenient to work in a setting where
idempotent endomorphisms split.

1.3.8. CEFINITION. An additive categorw is calledidempotent compleiéall idem-
potent endomorphisms split: i is an object ofA ande : A — A is such that? = e,
then there is a decompositioh= ker(e) & im(e).

1.3.9. XAMPLE. Any abelian category is idempotent complete as well as any de-
rived category of an abelian category (sB&01). A thick triangulated subcategory of an
idempotent complete triangulated category is idempotent complete. The full subcategory
of the category of finite-dimensionalvector spaces consisting of the even-dimensional
spaces is evidently not idempotent complete.

Given an additive categosg, we can always embed it into itdempotent completion
A (also know as its Karoubi envelope or Cauchy completion), an additive category which
is idempotent complete. This also works for tensor triangulated categories.

1.3.10. THEOREM (see BS0] and [Bal05 Remark 3.12]).Let T be a tensor trian-
gulated category. Then there exists an idempotent complete tensor triangulated category
7% and a fully faithful®-exact functor : 7 < 7' such that any exact funct6f — § to
an idempotent complete triangulated category factora.via

SKETCH OF THE PROOE The categony ! is the idempotent completion of the un-
derlying additive category df: its objects are given by paicsl, ¢) whereA is an object
of 7 ande : A — A is an idempotent endomorphisms. A morphigm(4,e) — (B, f)
is a morphismp : A — B in 7 such thatpoe = f o¢p = ¢. The functor is defined by
sending an object to the pair(4,id4) and it is easy to see that it is fully faithful.
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The category7" naturally inherits an additive structure frofii and we give it a
triangulated structure as follows: The suspension of an objeel) is given byX (4,e) =
(X(A),X(e)) and a diagram

A:(Ae) > (B, f) = (C.g) > (2(4),X(e))
is a distinguished triangle if there is a diagraxhof the same form such that @ A’ is
isomorphic to the image of a distinguished triangl&imnder:.

The category™? also inherits a symmetric monoidal structure fréhby setting

(A,e)®(B.f)=(AQB.e® f).
which makes7? tensor triangulated. d

The following theorem says that we can always idempotent complete without chang-
ing the spectrum.

1.3.11. THEOREM (see Bal05 Corollary 3.14]). Let 7 be a tensor triangulated
category and : 7 — 7 the inclusion into the idempotent completion. The map
Spav) : SpAT*) — SpaT)
is a homeomorphism.

1.4. Dimension and decomposition

The spectrum of a tensor triangulated categdrys always aspectraltopological
space, i.e. itis homeomaorphic to the spectrum of a commutative ring (see Re2arQ.
Therefore, it is sensible to talk about the Krull (co-)dimension of a closed subset. A
slightly more general notion is the following:

1.4.1. DEFINITION (see Bal07]). A dimension functiolon 7 is a map
dim: Spa7) — Z U {+o0}
such that the following two conditions hold:
(1) If @ C & are prime tensor ideals @f, then dimM(@) < dim(P).
(2) If @ c # and diM@) = dim(P) € Z, then@ = P.
For a subseV C Spq7), we define dingl) := sugdim(P)|P € V}. For everyp e
Z U {£o00}, we define the full subcategory
T(p) :=1a € T :dim(supa)) < p} .
We denote by S6™) , the set of point€2 of Spa 7)) such that dini@) = p.
1.4.2. EMARK. From the properties of supp), it follows that7,, is a thick tensor
ideal in7".

1.4.3. XAMPLE. The main examples of dimension functions we will consider are
the Krull dimension and the opposite of the Krull co-dimension. Joe Spd7), its
Krull dimensiondimg () is the maximal lengtl: of a chain of irreducible closed
subsets L

PSCGCiG...CC={P}.
Dually, we define th@pposite of the Krull co-dimension

—codimkeun ()
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as follows: if we have a chain of irreducible closed subsets of maximal length

{P}=Co S C;... S C, = maximal irred. comp. of Sg&") containing?

—codinku () = —n .

A dimension function determines a filtration ®f We have a chain a®-ideals
T—o0) T CTp) CTp+1) T C o) =T .

The sub-quotients of this filtration have a local description which we will describe next.
First we will introduce another useful property of tensor triangulated categories.

1.4.4. DEFINITION (see BallOh Definition 20]). A tensor triangulated category
T is calledrigid if there is an exact functob : 7°° — 7 and a natural isomorphism
Homg (¢ ® b,c) = Homg (b, D(a) ® ¢) for all objectsa,b,c € 7. The objectD(a) is
called thedual of a.

1.4.5. REMARK. From the natural isomorphism
Homgy(a ® b, c) =~ Homg (b, D(a) ® ¢)

of Definition 1.4.4 it follows thata ® — and D(a) ® — form an adjoint pair of functors
for all objectsa € T .

WhenT is rigid, some useful consequences hold true.

1.4.6. LEMMA (see Bal07, Corollary 2.5 and Corollary 2.8])etT be arigid tensor
triangulated category. Then

(1) supfa) =0 < a =0 for all objectsa € 7.
(2) supfa) Nsuppb) =@ = Homy(a,b) = 0 for all objectsa € 7.

SKETCH OF THE PROOE In order to prove 1), one first shows that supp) = 9 <
a®" = 0 for somen > 1 (see Bal05, Corollary 2.4]). The point is then that thigk-ideals
& inrigid tensor triangulated categories are alwedical (see Bal07, Proposition 2.4]),
meaning thak®” e ¢ impliesx € ¢ for all x € 7. Let us prove this statement: it suffices
to show thatt ® x € § = x € ¢ sinced is a®-ideal and we can therefore assume that if
x®" € ¢, thenn is a power of2.

Next, we use the unit-counit relation of the adjunction from Reniagk5to obtain
two natural transformations

xR®-)—>(x®DX)Rx®—-) > (x®—)
whose composition is the identity. Applying the functord teve obtain two maps
X=>xD(xX)®x > x

that compose to the identity on and we therefore conclude thais a direct summand
of x ® D(x) ® x. If g containsx ® x, it will also containx ® D(x) ® x as it is aR-ideal.
But ¢ is thick, so it is closed under taking direct summands, hanisecontained irg.

Thus, if suppa) = @, there is am > 1 such thatz®” = 0. But {0} is a thick®-ideal,
so it follows thata € {0}, i.e.a = 0.
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Let us also indicate how2f follows from (1). By [Bal07, Proposition 2.6] we have
for an objectx € T and® € SpdT) thatx € < D(x) € &L from which it follows that
supp(x) = supgD(x)). But now,

Homg(a,b) = Homg (a ® I,b) = Homg (I, D(a) ® b)
and we have sufi®(a) ® b) = supfa) N supab) = @ by assumption. But byl) we
therefore must hav® (a) ® b = 0 which implies that
Homg(a,b) = Homg(I,0) = 0.
U

We now fix a dimension function on a rigid tensor triangulated cate@oand look
at the sub-quotients of the induced filtration. They have a local description.

1.4.7. THEOREM (see Bal07, Theorem 3.24]).Let T be a rigid tensor triangulated
category equipped with a dimension functiim such thatSpq7") is a noetherian topo-
logical space. Then, for alp € Z, there is an exact equivalence

T e\l .

(Tp/Tp-n)' =[] Min(Tz).
PeSpdT)
dim(P)=p

whereTp := (7/P)" andMin(7p) denotes the full triangulated subcategory of objects
with support the unique closed pointoé (see Examplé.3.6.

1.4.8. REMARK. The exact equivalence of Theordn#.7is induced by the functor.

Tn/Tp-n— | Min@/P)
PeSpdT)
dim(#)=p

a— (Qp(a))
whereQ » is the localization functof” — 7 /&#. It is shown in Bal07] that the image

of this functor is dense, so it induces an equivalence after idempotent completion on both
sides.

Let us finish the section with the observation that we can restrict a dimension function
to the tensor triangulated category associated to an open subset of the spectrum. Let
U C T be a quasi-compact open subset with closed comple#and denote by, C T
the ®-ideal of objects with support containedih Set

Ty :=(T/T2)"
then by Theorem.3.5and Theoreni..3.1] the spectrum S§6y ) is homeomorphic td/.
The homeomorphism is induced by the functor Rgsven as composition of the Verdier
quotient functord — 7 /77 and the inclusion functor into the idempotent completion
T/Tz — (T/Tz)".
1.4.9. RROPOSITION Letdim be a dimension function dii. Then
dim|y : SpdTy) — Z U {00}
P > dim(SpaRes)(P))
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is a dimension function ofiyy. Furthermore, the restriction of the funct®es; to the
subcategornyi, factors through the subcatego(yy ), for all p € Z U {00}, when
we equipfy with dim|y.

PROOFE As SpdReg;) constitutes an inclusion-preserving bijection between the sets
{# € SpdTy)} and{P € U}, it follows immediately from the definition of a dimension
function that dinjy is one. In order to check the second claimddte an object of7 ).
Then, by Theorem.2.21 we have

supi(Res (a)) = SpaReg) ™' (supfa)) = suppa) N U .
Thus,

dim|y (suppReg (a))) = sup  dim(P)
Pesupa)NU
< sup dim(P)
P esupda)

= dim(supfa)) < p .
from which it follows that Reg (a) is an object of 7y ) (p)- 0






CHAPTER 2

Chow groups of tensor triangulated categories

In this chapter we introduce the central object that is studied in this thesis, the Chow
groups of an essentially small tensor triangulated category. We recall a definition due to
P. Balmer (seeBall13), give a proof that it generalizes the classical Chow groups from
algebraic geometry and investigate its functoriality properties.

2.1. Chow groups in algebraic geometry

We aim at generalizing the study of cycles on an algebraic variety modulo rational
equivalence. The basic setup of this theory is as follows: for an algebraic varidiy
which we shall mean a separated scheme of finite type over a field) one looks for each
p > 0 at thecodimensiorp cycle groupZ? (X), the free abelian group on subvarieties (=
closed integral subschemes) of codimengian X. One now introduces an equivalence
relation on Z(X). Two cycles in Z(X) are consideredationally equivalentf there
exists a finite number of subvarieti®s C X of codimensionp — 1 and elements of the
function fields f; € K(Y;) such that the difference of the two cycles is equal to the sum
of the cycles diyf;), the divisors associated to the functiofis The divisors div f;)
should be thought of as the sum of the zeroeg; ohinus the sum of the poles ¢f, both
counted with multiplicities (seeHul98 for the formal definition). The cycles rationally
equivalent to zero form a subgroup of &) and the corresponding quotient is (),
the codimensiorp Chow group ofX .

2.2. Definitions and conventions
Let us state some basic assumptions that we will use for the rest of the chapter.

2.2.1. ®ONVENTION. For the rest of the chapter, the tetemsor triangulated cate-
gory will mean a category as defined in Definitiar2.1, with the additional assumption
that the category is essentially small.

2.2.2. REMARK. We need to assume that our tensor triangulated categories are es-
sentially small in order to be able to talk about their spectrum (see Rehi21lQ). We
will temporarily drop the assumption in Chapter

We can now give a definition of tensor triangular cycle groups and Chow groups,
following the ideas fromBall3.

2.2.3. DEFINITION. Let X be a tensor triangulated category as in Converii@nl,
equipped with a dimension function. Fpre Z we define thep-dimensional cycle group
of X as

Z5(K) =Ko (K / Kip-1)?) -

23
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where K ((K(p)/K(p—1))") is the Grothendieck group (see Definitibri.2§ of the Ver-

dier quotient( K,/ K (»—1))" andX ), C X denotes the full triangulated subcategory of
objects with dimension of suppott/ (see Definitionl.4.1), for/ = p, p—1.

We also need a generalized notion of rational equivalence, which we describe next.
Look at the following diagram of subcategories and sub-quotien#s of

1
Kipye————— K+
lQ
J
Koy Kip-1y——— (K(p)/ K (p-1))*

where I, J denote the obvious embeddings afidis the Verdier quotient functor (see
Definition1.1.17. After applying Ky we get a diagram

Ko(K(p)) ! Ko(K(p+1))

lq

Ko(K (5 K(p—1)) 1 Ko (Kp/ K p1)?) = Zp(X)

where the lowercase maps are induced by the uppercase functors (see PropdsRigpn

2.2.4. DEFINITION. Let X be a tensor triangulated category as in Converi@nl,
equipped with a dimension function. Fpre Z we define thep-dimensional Chow group
of X as

CHZ(X) := Z5(K)/j og(ker(i)).

2.2.5. REMARK. It may not be immediately obvious to the reader how the above
Definitions are motivated. The following account might remedy the situationﬁoraz—
sume thatX is a tensor triangulated category in the sense of ConveBtihthat is rigid,
equippped with a dimension function and such that($fcis a noetherian topological
space. By Theorerh.4.7the quotient functorg) p : X — K /P for P € Spd.X) induce
an exact equivalence

(5) K/ Kp-)'— || Min(Xp)
PeSpdX)

where Sp¢X), denotes the set of point®® in Spa.X), that have dimensiop (Defini-

tion 1.4.1) and whereX p is the local category.X/P)". The subcategory Mi@#K p) C

K p is the full subcategory of objects that are supported on the unique closed point of
Spd K p) (see Bal07], where the subcategory MifCp) is denoted by FLK p)). The
decomposition§) is in the main reason why we idempotent-complete the Verdier quo-
tient X(,)/K(,—1).- In analogy with the theory of algebraic cycles, an element of the
p-dimensional tensor triangular cycle groupJsf

Z5(K) = Ko (Kp/Kp-1)') =[] KoMin(¥p))
PeSpAK)
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can thus be regarded as a sunpedimensional (relative to the dimension function) irre-
ducible closed subsets of §p¥€) with coefficients in k (Min(Kp)).

In the case thak = DP®"f(X) for X a non-singular noetherian scheme, we show that
the Grothendieck groupMin(Kp)) group is isomorphic t&. This will allows us to
conclude that Definitior2.2.3recovers the usual cycle groups ¥ffor X = DPe(X)
(see Corollarny?.2.10Q. Let us first recall the following two auxilliary lemmas.

2.2.6. LEMMA. Let R be a commutative local noetherian ring with maximal ideal
and M be a finitely generate®-module. Then

SUpAM) = {m} < length M) < oo

PROOF Let M be a module oveR of lengthn < co. We will proceed by induction
onn to show that supp\) = {m}. Forn = 1, M is simple and therefore isomorphic to
the residue fieldR /m which has supporm}. Indeed, pick any non-zero elemert M,
then the image of the map

mg:R— M
r+—r-s
must beM, so M =~ R/ker(m). But asM was simple, the only possible choice for
ker(my) is m (otherwiseR /mu would be a proper submodule), proving thidt=~ R /.

Assume now we have proved the statement for &llny and letM be a module of length
no + 1. There is a composition series

MoCMi CMyC--CMy, CMyyt1=M
with simple subquotients. In particular we have an exact sequence
0— M,y — Mpy+1 = Muy+1/ My, — 0
where we know thaM,,,+1/M,, = R/m. Thus
SUPHMpg+1) = SUPA(Mp,) USUPHR /m) = {m} .

For the converse direction, let sug@) = {m}. Thus,M is annihilated bytn” for
somen > 0, and therefore we obtain a sequence

M>uM>u’?M > >m™ ' M>m"M =0.

For everyi > 0, the modulen’ M/m’ T M is a finite-dimensionaR /m-vector space by
Nakayama’s Lemma and it therefore has finite length. An inductiom thren shows that
M must have finite length as well. O

2.2.7. LEMMA. Let R be a commutative local ring with maximal idealand denote
by R—fl the abelian category of finite leng#®-modules. Then the map
R—fl—>7Z
M +— length M)

induces an isomoprhism
Ko(R—fl) = Z .
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PROOF The length function
R—fl -7
M +— length M)
has the property that lengt® ) = length(M’) + length(M ") if there is an exact sequence
0O—-M —>M-—>M'—0
and therefore induces a group homomorphism
Ko(R—T) > Z .

This is an isomorphism, as for any modul¢ over Oy ,p) of lengthn, there is an
equality
(M]=n-[R/wm]

in Ko (R—fl). Let us prove this by induction: for = 1, this is true as we saw in the proof
of Lemmaz2.2.6that any simpleR-module must be isomorphic ®/u.

Assume now we have proved the statement forall ny and letT be a module of
lengthng + 1. There is a composition series

TycThCchh,C-CTyy CTyos1 =T
with simple subquotients. In particular we have an exact sequence
0Ty —>T—->T/Tyy—0
where we know thal'/ T,,, = R/m. We therefore get the equality
[T]=no-[R/m]+[R/m] = (no+1)-[R/m]
in Ko (R—fl) which proves the statement. O
2.2.8. THEOREM. LetX = DP®(X) for X a non-singular noetherian scheme. Then
Ko(Min(Kp))=Z
forall P € SpdX) =~ X (see Examplé.2.1]).

PROOF. Let p denote the isomorphism Sg@P*f(X)) — X. By [Bal07, Chapter 4,
Section 1], the category M{tf p) is equivalent to
Knig. (Ox,0(p)—Tree) ,

the bounded homotopy category of complexes of #gg,p)-modules of finite-rank with
finite length homology. A®x ,(p) is regular by assumption, every bounded complex of
finitely generated9x ,py-modules is quasi-isomorphic to a bounded complex of free
Ox.p(py-modules of finite rank. Therefore, iffgh 14.(Ox ,(r)-mod) denotes the bounded
derived category of complexes of finitely generaégd ,p)-modules with finite length
homology, the natural functor

Kb ig.(Ox.p(p)—Tree) — DPsinig. (Ox,p(py-MO0d)
gives rise to an equivalence of categories

Kfn1g.(Ox.p(p)—free) = D’ ig.(Ox,p(p)-Mod.
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The latter category is in turn equivalent t8(@@ x,p(P)—Tl), the bounded derived category

of finite length modules ovefx ,(p). Indeed, by Lemma.2.§ for a finitely generated
moduleM overOyx ,(p), having finite length is the same as being supported on the unique
closed pointP, of Spe€Ux ,p)). The result then follows byel99, Section 1.15, Ex-
ample b)], where it is shown that for a commutative noetherian RingndA C R-mod

the full abelian subcategory of finitely generatRemodules supported on a closed sub-
schemeZ of SpeqR), there is an equivalence of categories

D°(+A) = D (R-mod) ,

where the latter expression denotes the full subcategory@nod) consisting of com-
plexes with homology 4.
Summarizing, we have

(6) Ko (Min(X p)) = Ko (DP(Ox, p(py—T1)) = Ko (Ox pcp)—fl) = Z
where the penultimate isomorphism is the one from Exarifle29and the last isomor-
phism is induced by the length function as in Lem#2.7. O

2.2.9. REMARK. We can make the isomorphismMin (K p)) =~ Z from Theorem
2.2.8explicit if we identify Ko (Min(Kp)) with Kﬁnilg.(OX,p(P)—free) as in the proof of
Theorem2.2.8 We compose the formula from Examglel.29and the length function as
in (6) to obtain the following: ifA, is a chain complex in ﬁ;”g_((QX,p(P)—free), then the
map is given as

Op(p) : [Ae] > Y (= 1) length(H' (4.)) .

2.2.10. ®ROLLARY. LetX be a non-singular noetherian scheme. [let= DP(X)
be equipped with the opposite of the Krull codimension as a dimension function (see
Examplel.4.3. Then the map

bp= 1] o
p(P)
dim(o(P))=—p
with 6,(py as in Remark.2.9induces an isomorphism
A ~
Z2,(K) = ZP(X)
forall p > 0.

PROOF Let p > 0. Using Remark.2.5and the isomorphism Sp&’) ~ X we have
a chain of isomorphisms

728, = [] Ko(Min(Xp))
PeSpdX)—p

]_[ KO(Kgn.lg.(OX,p(P)—free))
p(P)eX (P

]_[ 7
Pex )
~77(X),

I

12
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where the penultimate map is given y,,. O
2.3. Agreement with algebraic geometry

We want to show now that the tensor triangular Chow groups carry their name for
a reason. As we will see, they are — at least in the non-singular case — an honest
generalization of the classical Chow groups from algebraic geometry.

2.3.1. ®NVENTION. We now fix some notation for the rest of the section: if not
explicitly stated otherwise, leXY denote a separated, non-singular scheme of finite type
over a fieldk, and **f(X) be the derived category of perfect complexe®gf-modules,
which is equivalent to B(X), the bounded derived category of coherent sheavek .on
We will also assume thati¥(X) is equipped with- codimy, as a dimension function.

In order to proceed, it is necessary to use some higher algebraic K-theory as devel-
oped by Quillen. We recall the following material fro{ii73 87]: consider the abelian
category CohX) of coherent sheaves an. There is a filtration of this category by codi-
mension of support:

.cM cM T c...c M° =CohX)
whereM ? denotes the subcategory of coherent sheaves whose codimension of support is
> p. The subcategory/? C M?*! is aSerre subcategory.e. a full subcategory such
thatif0 - 4 — B — C — 0is an exact sequence M?*1, thend, C are objects o ?

if and only if B is one. This property allows us to define the quotient abelian category
MP*+1/MP and thus, for every, there is an exact sequence of abelian categories

MPT s MP — MP/MPT!
which induces a long exact localisation sequence of K-groups

i? q?
s K (M P —~ S K;MP) —— K;(MP/MP+T) )

) =

"11"—1 » q;’—l

Kj_l(MP'H) S K (MP) —— Kj_l(Mp/Mp‘H) P
Combining these long exact sequences fopallve can form the associated exact couple
and obtain the Quillen coniveau spectral sequence aQuivB 87, Theorem 5.4] with
E1-page
Ef)’q =K-p— (MP/MPF),

We are especially interested in the boundary map

—1 bf_l ‘13 +1
8) di :Ky(M*77 /M?®) — Ko(M?®) — Ko(M*/M*™7)
of this spectral sequence. Using that
©) KiMS /M5 =[] Kik(x)).
xeX®)

whereX ) denotes the set of points &f whose closure has codimensiom X, Quillen
proves the following:
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2.3.2. THEOREM (cf. [Qui73 87, Proposition 5.14]) The image of

di Ky (MY MS) — Ko(MS /M5t =~ ]_[ Ko(k(x)) = ]_[ 7 =2(X)
xeX®) xeX®)

is the subgroup of codimensigneycles rationally equivalent to zero. In other words, we
havecoker(d;) =~ CH*(X).

In our setting, we work with the triangulated categoRPfyX) =~ D°(X) instead of
the abelian category CoK). Recall that the defining diagram for the tensor triangular
Chow groups in this case is given as follows:

Ko(DP(X) () —————— Ko(DP(X)(p+1)
lq
Ko(D°(X)(p)/ DP(X)(p-1))
J

Ko ((0°(X) )/ D*(X)p-1))")

_ 7A
=Z5()
This diagram maps to a similar one involving the related abelian categories:
Ko (D°(X) () ————— Ko (D°(X)(p+1))
T T
Ko (D°(X)(5)/ D°(X) (1) Ko(M~7) ——— Ko (M 77"
(10)

J

Ko ((D"(X)(p)/ DP(X)p-1))")

q0

Ko(M~7/M~P+1)
=Z5(X)

The diagonal homomorphisms are all given by the formula
(11) [C*]— ) (- [H(C*)].
i
We proceed to show that these are actually all isomorphisms, which follows from the fact
that there are exact equivalences
(12) D°(X)(q) = D(M )
and

(13) DP(X)(y)/D°(X)(g—1) = D°(M /M ~9F1T)
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for all ¢ € Z. Indeed, the diagonal maps are then just the usual isomorphisms between
Ko(DP(+)) and Ky(-A) for some abelian categop, as in Examplel.1.29 This also
proves thatj is the identity morphism, as the derived category of an abelian category is
idempotent completeBS01, Corollary 2.10].

The proof of the equivalence&?) and (L3) is a consequence of the following theo-
rem:

2.3.3. THEOREM (see Kel99, Section 1.15]).Let 8 be an abelian category and
A C B a Serre subcategory with quotief®/4. Assume that the following criterion
holds: for each exact sequence

0—-A—-B—-C—=0

in B with A € A, there is a commutative diagram with exact rows

0 A B C 0
1
0 A A A" 0

such thatd’, A” are objects of#.
Then, there is an exact equivalence of triangulated categories induced by the inclu-
sion

D°(4) = D(B) ,

whereD&(:B) c DP(8) denotes the full subcategory of complexes with homology.in
Furthermore, in the induced sequence of triangulated categories

DP(A) 5> DP(B) % DP(B/A) |
the functori is fully faithful andD®(8/4) =~ D°(8)/D"(A) (i.e. the sequence &xac).

Let us verify that the conditions for Theorer8.3are satisfied in our case.

2.3.4. LEMMA. Let0 - A — B — C — 0 be an exact sequence @oh(X). Then
there exist coherent sheava§ A” on X with supgA’),supg4”) C suppA) that fit into
a commutative diagram with exact rows

0 A B C 0
1
0 A A A" 0

PROOFE Suppose tha#l is supported on a closed subscheme with associated ideal
sheaf/. As X is noetherian, we can use the sheaf-theoretic version of the Artin-Rees
lemma (cf. Btal4 Lemma 29.10.3]) which says that there exists>a0 such that for all
n>cwehavel”"BNA=1"°(°BNA). Now take some:, such that/"0=¢4 = 0,
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then we get the diagram

0 A B C 0

o |

0——A——B/(I"™B)—— C/(I"C)——0

where the vertical arrows are given by the canonical projections. It is easy to see that
the diagram commutes and that all sheaves in the lower row have their support contained
in supgA). O

Since we have checked the conditions of Theo&/3 its first statement tells us
that the equivalencel) holds, because we can writé’@()(q) as Ij’M_q (Coh(X)). The
equivalenceX3) holds by the second statement of Theo2m3 which says that

D°(M~1/M~7+") = D°(M 1)/ D°(M~4*1)

where the latter expression is equivalent tB(D)(q)/Db(X)(q_l) by the first part of
Theorem2.3.3

As we know that the diagonal maps in diagrah@)(are isomorphisms and thatis
the identity morphism we see that

Joq(ker(i)) = qo(ker(io)) = go(im(bo)) = im(d1)
(see Theorer2.3.2. We have thus proved the following:

2.3.5. THEOREM. Let X be a separated, non-singular scheme of finite type over
a field and assume that the tensor triangulated cated®§f'(X) is equipped with the
dimension functior- codimy. Then there are isomorphisms

Zf, (Dperf(X)) o~ Z_p(X) and CH;‘, (Dperf(X)) o CH_p(X)
forall p € Z. O
A couple of remarks are in order:

2.3.6. REMARK. Let us sketch the argument for a more “high-level” proof of the
above theorem using Waldhausen models for the categoP%XD),): for p € Z, we
consider the category Peggf(X) of perfect complexes oiX with codimension of ho-
mological support= —p. This category is &Valdhausen category.e. a category with
two classes of morphisms called tbefibrationsand theweak equivalencesvhich both
have to satisfy a list of axioms (se@/fl85). For a Waldhausen catego#ly, we can
define higher algebraic K-groups &) for i > 0 as in Wal85. For Per{,)(X), the cofi-
brations are given by the degree-wise split monomorphisms of complexes, and the weak
equivalences are given as the quasi-isomorphisms. If we define the Waldhausen category
Perf,/p—1)(X) as the category Pgp(X) with the same class of cofibrations but with
the weak equivalences those morphisms whose mapping cone is quasi-isomorphic to an
object of Perf,_1y(X), we obtain a sequence of Waldhausen categories

Perf,—1)(X) — Perf,)(X) — Per{,,,—1)(X)
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where both functors are given by inclusion. From the localization theorer (,
Theorem 1.8.2], we obtain a long exact localization sequence

- — Kj(Perf,—1)(X)) — K (Perf,) (X)) — K (Perf,/p—1)(X))
(14) >

<_> Kj_l (Peer_l)(X)) — Kj_l(PerQ,,)(X)) —_—

By the regularity ofX, Perf,_; (X) and Perf (X) coincide with (?(Coh(X))(p_l) and

ct (Coh(X))(p), the categories of bounded complexes of coherent sheaveéswith codi-
mension of homological support —p + 1 and> —p, respectively. Their Waldhausen
K-theory is in turn isomorphic to the Waldhausen K-theory 8{Coh(X)7*+V) and
Ch(Coh(X)P)) respectively by TT90, Theorem 1.9.8], as the natural inclusions induce
equivalences on the corresponding derived categories. The natural functor

Per{,/,—1)(X) — CP(Coh(X)=P) /Coh(X)=PTD)

also induces an equivalence on the level of derived categories and thus we By [
Theorem 1.9.8] again to obtain that the corresponding Waldhausen K-theories of the in-
volved categories coincide. Finally, the comparison to Quillen K-theoryff @9, The-

orem 1.11.2 and Theorem 1.11.7] yields that the sequere@safe isomorphic to the
sequences’j and by forming the associated exact couple, we get a new spectral sequence
which is isomorphic to Quillen’s coniveau spectral sequence. In particular, we can talk
about the cokernel of the mafy (as in g)) in this new spectral sequence which is then
isomorphic to the cokernel af; in Quillen’s coniveau spectral sequence which is in turn
isomorphic to CH? (X).

2.3.7. REMARK. As we have already seen in Corolla2y2.1Q we don’t need the
isomorphisms

Ko (DP(X)(p)/ DP*"(X)(p-1)) = Ko (M77/M7*) = ] Kolk(x))
xeX®)

to show 2 (DP(X)) = Z77(X).
2.3.8. ROPOSITION The isomorphism
px : Zp(DP(X)) = Z77(X)
is explicitly given as follows: i€ ® is an object one”(X)(p)/ Dpe”(X)(p_l), then
px(C°D) =) > (=Dlengthy, (H'(C*),)-{x}.
i xeX(-=p)
PrRoOOFE The isomorphism9)
KiM?/MP*) = [ Kitk(x)
xeX(®»
is explicitly given as follows: first note that we have an equivalence of categories
MP/MPT S T Ox

xeX®
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induced by the functor

MP— ] Ox.
xeXxX ()
ar (ax)yex
(see e.g.\\eil3 Chapter V, §9]) which in turn induces an isomorphism
KiM?/M?*) = ] Ki(Ox.—f)
xeX
la] = ([ax])xex @ -
Then we have an isomorphism
[] KiOxx—th< ] Kitk(x)
xeX xeX

given by componentwisdévissaggsee Rui73J), i.e. the inclusion of the category of
finite-dimensionak (x)-vector spaces int® x —fl induces an isomorphism in K-theory.
Fori = 0, we have already seen this in Lem@2.7 any elemenfa,] € Ko (Ox »—f1)
can be written ag - [k(x)], wheren = length(a,). We conclude that foi = 0, the iso-
morphism 9) is given explicitly as

[a] > ) lengthy, (ax)-{x}
xexX @
Precomposing with formulal(l), we obtain the explicit description
px((CD) =) > (=1lengthy, (H' (C*),)-{x}.
i xex(=p
as desired. O

The proof of Theoren2.3.5shows thafpy factors through CIﬁ(Dpe”(X)) and by
abuse of notation, we shall denote the induced isomorphism

CHZ (DP*(X)) — CH™?(X)

by px as well.

2.4. Functoriality

As we now have a reasonable definition of tensor triangular Chow groups at hand,
we would like to check that it has the functoriality properties one would expect it to have
from the algebro-geometric Chow groups.

Functors with a relative dimension. We first have to define which class of functors
we allow. In this section/ and£ will always denote tensor triangulated categories as in
Convention2.2.1, and we assume that both are equipped with a dimension function.

2.4.1. DEFINITION. Let F : KX — £ be an exact functor. We say th&thasrelative
dimensiom if there exists some € Z such thatF (KX (,)) C £(p+n) for all p, andn is
the smallest integer such that this relation holds.
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2.4.2. EMARK. Note that wedo notrequire thatF is a tensor functor (cf. Proposi-
tion 2.4.6 Example2.4). The composition of two functors of relative dimensioandm
is a functor of relative dimension at mast-m. In all of the examples that follow, = 0.
However, the extra flexibility of having # 0 might be useful for future applications.

2.4.3. THEOREM. Let F : X — £ be a functor of relative dimension n. ThenF
induces group homomorphisms
ZL(F):Z5(K)—>Z5,,(£) and  Ci(F):CH5(X) — CHS, (L)
forall p € Z. If F has relative dimensior n, thenz/,(F) andc}, (F) are both trivial.
PrRoOOFE We have the following commutative diagram

Jx

Kp)© Kp+1)
lQK Fp Fp+1
Kip)/ Kip-1) 2 (pmy 5 Lptntn)
J}x \ lQ;@
(Kp)/ Kip—1)" Lp+m/ L (p+n—1)

\ \[Ii
(ff(p+n)/°f(p-i-n—l))u
whereF; is the restriction ofF to X ;) fori = p, p+ 1, F exists because
F(f]{pfl) - cfp+nfl =ken(Q¢)

and F exists aslg o F is a functor to an idempotent complete category. Applying the
functor Ko(—) yields the diagram

Jf(p) o(Kp+1)
\ N
Ko (Kpy/Kp-1) o (Lpam) —E— Ko (L(pinin)
Lx qs
Ko (K (p)/ Kp-1)") Ko (£(psn)/ L (ptn-1))

ig
Ko ((x(p+n)/‘$(17+n*1))u)

where the lowercase arrows are induced by the corresponding uppercase ones. We set
Z),(F) := f. From the diagram, we also deduce that

foigogqu(kerjx)) Cigogqe(kerje))
which implies thatf also induces a homomorphisif)(@) between the factor groups.
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If the relative dimension of” ism = n —r for somer > 1, then

F(Kp) CLptm) = Lptn-—r) C Lptn-1) -
Therefore 7 (F) and ¢,(F) are both0 in this case. O
2.4.4. NOTATION. If F: K — £ has relative dimensiom, then we will denote the
induced homomorphismgzF) and ¢ (F) from Theoren®.4.3by ZIA,(F) and CI—Q(F),
respectively.
2.4.5. REMARK. Theorem2.4.3and Remark.4.2show that for allp, Zﬁ(—) and

CHIA, (—) are functors from the category of essentially small tensor triangulated categories
equipped with a dimension function to the category of abelian groups, with respect to the
class of functors with a relative dimension.

Let us finish the discussion with a general example of a functor with relative dimen-
sionO.

2.4.6. ROPOSITION Leta € K be an object such thatim(supfa)) # +oco. Then
the functor
aQ@—: K-> K
has relative dimensio6.
PrROOF For any objecb € X, we have
supfa ® b) = supfa) Nsupab) C suppb) ,

from which it follows that dinfsupga ® b)) < dim(supgd)). Thusa ® — has rela-
tive dimension< 0. But supfia ® a) = supda) and therefore difsuppa ® a)) =
dim(supfa)), which shows that: ® — leaves the dimension of support of the object
a fixed and finite. We conclude thatg — has relative dimensiof. O

Projection formulas and relative dimension. For a pair of adjoint functoréfs, f*)
with relative dimensions diy.) and din{ f *) that behave similarly as the derived direct
image and inverse image functor in the derived projection formula from algebraic geome-
try (see e.g.lHuyO06, p. 83]), we can give a relation between difin) and din{ f *).

2.4.7. DEFINITION. Let €, be tensor triangulated categories as in Convention
2.2.], that are both equipped with a dimension function. Assume we are given an ad-
joint pair of exact functors / *, fx) between¢ andD

€
f*{//)f*
D

where f* is also a tensor functor. We say that the pair, f.) satisfies the projection
formulaif for all D € D, C € € there are isomorphisms

C ®e fu(D) = fi(f*(C)®9p D)
which are natural in both variables.

2.4.8. REMARK. The situation of Definitior2.4.7is not restricted to algebraic geom-
etry, see e.g. Theoref5.6
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2.4.9. LEMMA. Let(f™, f.) be a pair of functors betweéf and D that satisfies the
projection formula. Assume thdtm(supp( f«(Ip))) # £oo. Then the functotfs o f*
has relative dimensio6.

PrROOFE Using that(f™*, fi) satisfies the projection formula, we have an isomor-
phism
feo fH(C) = fulp)®C
for all objectsC of €. The result then follows by Propositiéh4.6 d
2.4.10. @ROLLARY. Let(f*, f«) be a pair of functors betweah and D that satis-

fies the projection formula and assuurien (supp( fx(Ip))) # £oo. Furthermore assume
f* and f, have relative dimensiordim( /*) anddim( f;) respectively. Then

dim(£*) +dim(fy) > 0

PrRoOOFE This is an immediate consequence of the fact that
dim(fi o f*) < dim(f*) +dim(fs)
(see Remar.4.2 and Lemm&2.4.9 O

Let us give two examples from algebraic geometry, which show that functors with a
relative dimension occur naturally.

Example: flat pullback. We fix X, Y integral, separated schemes of finite type over
a field. We consider B5"(X) and D*(Y') with the standard structure of tensor triangu-
lated categories and assume that they are equipped with the opposite of the Krull codi-
mension function-codimky .

We say that a flat morphisnf : X — Y has relative dimension, if for all closed
subvarietied” C Y, we have that diff =1 (7)) = dim(V) + r. For such a morphisnf,
Fulton defines infful98 Chapter 1.7] a pullback homomorphism

f*:CHy(Y) — CHypyr (X)

for 0 <n <dim(Y) by sendingV] € CH,(Y) to [f~1(V)] € CH,4,(X), the class of the
scheme-theoretic inverse imagelofunder £
We now fix a flat morphisny : X — Y that has relative dimension

2.4.11. LEMMA. For all closed subsetZ C Y, we have

codim(Z) = codim(f~1(2)) .

PROOFE Assume that diriZ) = ¢, then, sincef has relative dimension, we have
dim(f~YZ)=c+r.
As X, Y are integral of finite type over a field, it follows that
codim(Z) =dim(Y)—dim(Z) =dim(Y) —c,

and similarly that
codim(f~1(Z)) =dim(X)—c—r.
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As f~1(Y) = X, we must have that ditX) = dim(Y) + r, from which the desired
equality codintZ) = codim( f ~1(Z)) follows. O

2.4.12. IEMMA. The functorL /* : DP®(Y)) — DP®"(X) has relative dimensiof.

PrROOF We need to check that for ever € Dpe”(Y)(p), the complex Lf *(A°®) is
contained in B¥(X),). Thus, assume that

—codim(supp(@ H’(A'))) =qg<p.
As fisflat, f* is exact, and so we have
DH (L1 (4) =D/ (H (4))

This implies that

—codim(supp(@ H"(Lf*(A')))) = —codim(U supp(f* (Hi(A‘))))
= —codim(f‘1 (Usupp(Hi (A'))))

=q=p
where the last equality follows from Lemn2a4.11 This proves the statement. O

Using the previous results, we know now thaf Linduces morphisms between the
tensor triangular cycle and Chow groups ¢ff{Y) and D’*"(X). The following theorem
shows that these are the expected ones.

2.4.13. THEOREM. Assume thak,Y are non-singular and fo§ = X,Y, let
ps : CHS(DP(S)) — CH7(S)

be the isomorphisms from Propositi@8.8 Then for all p, there is a commutative dia-
gram

CHO(LS™)
CHZ (DPer(Y)) —= CHZ (DPer(X))
pr Jpx
CH?(Y) ! CH”(X)

where f* denotes the flat pullback homomorphism on the usual Chow groupF(d€8
Chapter 1.7}

PrROOF As both f* and Cl-ﬁ(Lf*) are induced by the corresponding morphisms
on the cycle level, it is enough to check that the diagram

Y (W)
A f P A f
Z, (DP*(Y)) Z, (DP*(X))

l"y lpx

Z77(Y) Z7P(X)
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commutes. In order to do this, lef C Y be a subvariety (=reduced and irreducible
subscheme) ot of codimension—p, with associated ideal shedf and cycle[Z]
Z~P?(Y). Consider the clagd? *] in

Z5(DPM(¥) = Ko (D) () / DY ) p-1))")
= Ko(D**(Y)()/ D**"(¥ ) p—1))

where W* is the complex concentrated in degree zero withlH®) = Oy /17 =: 0.
Then,py ((W*®]) = Z € Z77(Y): indeed, using Propositiadh3.8we calculate

pr(WD=>" > (~Dilengthy, , (H' (W*)p)-1P}

i pey(=n

where H' (W*)p is the stalk of the-th cohomology sheaf of the complék® at the
point P. Using thatW* is concentrated in degree zero and that Ie@g_r)hz (Oz,p,)is
equal to 1, wherePz is the generic point oZ, we see thapy ((W*°]) = Z.

Furthermore, using thaf is flat, we compute thatﬁ(Lf*) (w*]) =[U"], where
U* is the complex of sheaves concentrated in degree zero Wity = Ox/1s-1(z)
and f~1(Z) denotes the scheme-theoretic inverse imagé ahder 1. Clearly we have
ox([U®]) = [f~1(Z)], the cycle associated to the scheme-theoretic inverse image of
and so we conclude that

px o Zy(Lf ) opy (Z]) =/~ (2)] = f*[Z]
By additivity of the four maps in the diagram the theorem follows. O

Example: proper push-forward. Let X andY be integral, non-singular, separated
schemes of finite type over an algebraically closed field. (The latter assumption will be
needed in order to us&grés Proposition V.C.6.2]). Letf : X — Y denote a proper
morphism. We consider 1¥(X), DPe"(Y) with the standard structure of tensor triangu-
lated categoriedyut this time we choosdimg, as a dimension functiorNote that this
implies CH) (DPe(S)) = CHI™®)~r($) for § = X, Y.

As f is proper, we obtain a functor R : D°(Coh(X)) — D°(Coh(Y)) (see e.g.
[Huy06 Theorem 3.23]), and so our regularity assumptionsoandY imply that we
also get a functor R, : DPf(X) — DPe(Y).

2.4.14. IEMMA. The functorR f; : DP®"(X) — DP®"(Y) has relative dimensiof.

PROOF. Let A® be a complex in BF(X) such that dinfsupp(€D; H' (4*))) < d.
There is a spectral sequence

EP? =RP f,(H1(A®)) = HPTI(R £, (4%))

(see for exampleHuy06, p.74 (3.4)]) that converges, & is bounded. By assump-
tion, all the cohomology sheaved (4°) are supported in dimensiend, and by Fer65
Proposition V.C.6.2 (a)], we therefore have dsuppaR? f.(H?(A®)))) < d for all p.
This implies that the term&Z;? are supported in dimension d as well. Therefore,

all objects H19(Rf«(A*)) admit a finite filtration such that the subquotients are sup-
ported in dimensiorx d. An induction argument then shows that the same must hold for
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HPt4(Rf.(A®)). We conclude that

dim (supp(eB H'(Rf <A')))) <d

which shows that R, (A4®) € DP®(Y)(4). In order to show that the relative dimension
of Rf, is 0, we need to show that there isBt € DP®f(X) such that dinisupgB*)) =
dim(suppR f«(B*))). If P is any closed point ok with associated ideal sheap, then
the complexCp, concentrated in degree 0 withy /I p has din{supgCp)) = 0. By the
result we just proved, R.(Cp) € Dpe”(Y)(o), which implies that either R.(Cp) =0

or dim(suppR /+(C3))) =0. If R f4(C3) = 0, we would certainly have HR /x(C})) =

0, but this is impossible by the spectral sequence we used above: indeed, it is easy to
see thatE%® = E9° as H(Cp) = 0 for i # 0. But we haveEy°’ = R*£,.(Cp) =
f«(Ox/Ip) #0. Thus H(Rf«(C}3)) has a non-zero subquotient from which we de-
duce that R, (Cp) # 0. We conclude that digsupgR f«(Cp))) = 0 which completes
the proof. O

The previous lemma establishes thaf.Rnduces homomorphisms
CHS (DP®(X)) — CHA (DP*" (1))
for all p. Again, we can show that these are exactly the ones we would expect.

2.4.15. ROPOSITION Denote byps : CH5 (DP(S)) — CHI™MS)=2(s) for § =
X,Y the isomorphisms from Propositidh3.8 Then for all p, there is a commutative
diagram

CHA (Rfx)
CHZ (DPer(X)) z CHZ (DPr(Y))
CHdim(X)—p(X) S+ 3 CHdim(Y)—p(Y)

where f, denotes the proper push-forward homomorphism on the usual Chow group (cf.
[Ful98 Chapter 1.4]

PROOF Again, it suffices to show the statement for the maps on the cycle groups, as
the maps on the Chow groups are induced by those. By additivity of the four maps in the
diagram it is enough to check that for an (integral) subvariéty X of dimensionp and
an element € Z%(DP(X)) with px (v) = [V], we havepy 0 Z5 (R f+)(v) = fx([V]). So,
fix V as above and consider the complex of coherent shddifethat is concentrated
in degree 0 and has¥W*) = Oy, whereOy = Ox/dy and dy is the ideal sheaf
associated t&’. The complex¥ ® represents a clagt’*] in

Zj (D°(X)) = Ko (D°(X) )/ D°(X) 1)) = Ko ((D°(X) )/ D"(X)p-1))")

and similarly to the calculation in Theore?¥.13we see thapy ((W*]) = V.
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For the next step, we compute

py oZ5RENMW D =Y Y (=1)lengthy, , (H' (RA(W*))g) 10}

i QEY(I,)

=Y > (=Dilengthy, , (R fu(Ov))-{0}

i Q€Y(p
=Y (=)' > lengthy, , (R f:(Ov)o)-{0}.
i Q€Y (p)

Using [Ser65 Proposition V.C.6.2 (b)], we see that this is equalfi@}’), which means
that we have showpy oZﬁ(Rf*)([W']) = f«(V) and thus have finished the proof of the
theorem. d

2.5. An alternative definition of rational equivalence

Instead of choosing the K-theoretic approach of Defini2oR.4in order to obtain
a notion of rational equivalence, one can try to imitate the original construction from
algebraic geometry of taking divisors of functions on subvarieties. FollovBati[3, we
can define “divisors of functions” in the categorical context.

2.5.1. @NVENTION. For the rest of the sectioi{ denotes a tensor triangulated
category in the sense of Convent@i2.1that is rigid and such that SpK) is a noetherian
topological space. We also fix a dimension functionn

Let O denote the composition of the Verdier quotient functor
Koy = K/ Kp-1)
and the inclusion into the idempotent completion
Ko/ Kip—1 = Kip)/ Kp-1)" -
The functorQ® induces a group homomorphism
4" Ko(K ) = Ko (K /Kip-1))*) = Z5 ()
la] ~ [0 ()]
For an object: in the Verdier quotieniX(, 1)/ X () and an automorphism
fra—a,

choose a fraction ﬁ b3 ain K(p+1) representingf’. We will then have cong)
K(p) by definition of the Verdier quotient. We also must have ¢ane X (,): indeed,
a must be an isomorphism i#((,+1)/ X, as the composition o ~! = f is one, and
thus its cone must be zero #i,41y/ K (,). This implies that it is inX(,), as the latter is

a thick subcategory.
We then define thdivisor of f (cf. [Ball3) as

div(f) := ¢*([conga)] — [con&)]) = [Q"(congr))] — [Q"(cone&())]
The following shows that di¥( /) is well-defined.

2.5.2. RROPOSITION The expressiodiv2 (/) does not depend on the choiceaof
andpg.
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PrROOFE If we have an equivalent fracticmf— ¢ %5 a, thereis by definition a com-
mutative diagram i, 1)

b
&N
a # d % a
B’ o
C .
Using the octahedral axiom, we obtain the following distinguished triangleé& j:
cong ) — condy) — congf) — X(cong f))
condg) — condgy) — congp’) — Z(condg))
cong ) — condgx) — condwa) — X (cong f))
condg) — congx) — conda’) — X (condg))
These show thdtconda)] — [conda’)] and[condB)] — [cond8’)] are both equal to the
elemenfcondg)] —[cong /)] in Ko(K(p)). Thus, we have
[conga)] — [congB)] = [conee’)] — [con&B")]

in Ko(K(p))- Applying the homomorphismg® on both sides of the equation yields the
statement. 0

We now define alternative Chow groups as “cycles modulo divisors of functions”.

2.5.3. CEFINITION. Let ¥ denote the subgroup off,Z(JC) generated by all expres-

sions di*(f), where f runs over all automorphisms of all objects &, +1)/Xp)-
Then define
chd () :=Z5(K)/3 .

Let us now investigate the relation betweerf; ¢/() and CH;(X). Recall from

Definition 2.2.4that CH§(J{) = ZIA,(JC)/j og(ker(i)) wherei,q, j are taken from the
diagram

Ko(K(p)) i Ko(K(p+1))
l‘l
Ko(K (p)/ K (p-1)—— Ko (Kp/ Kip-1)?) = Z5 (K) .
2.5.4. RROPOSITION We have an inclusioR C j og(ker(i)).

PROOF. If f :a — ais anisomorphism itK,1)/ K, represented by a fraction

aibﬁ)a

in Kp41), thenin Ky(K,+1)), we have
[conge)] = [cone&p)] = [b] - [d]



42 Chow groups of tensor triangulated categories

and thugconda)] — [congB)] = 0. Therefore[conda)] — [congS)] will certainly be in

ker(i). The statement then follows 8§ = j og. O
2.5.5. MROLLARY. Forall p € Z, there is an epimorphism
A
cht (K) — CHY (X)) .
PrRoOOE This is an immediate consequence of Proposifidnd O

It is not clear to the author if the inclusich > j o g(ker(i)) holds in general, so
chlA,(J{) and CI—ﬁ(J{) are a priori different. We will now prove that the two groups
coincide when we are dealing with separated, non-singular schemes of finite type over a
field that have an ample line bundle.

2.5.6. THEOREM. LetX,DP®(X) be as in ConventioR.3.1and assume furthermore
that X has an ample line bundl. Then there are isomorphisms

ChIA) (Dperf(X)) ~ CHIA, (Dperf(X)) ~ CH_p(X)
forall p € Z.

PrRoOOF Using Theoren®.3.5and Propositior2.5.4 we already know that the sub-
group 3 is contained in the subgroup of cycles rationally equivalent to zero. Thus, it
suffices to show that any cycle rationally equivalent to zero can be obtained“as/div
for some objectz € DP(X)(,+1)/ D°(X)(p) and morphismf € Aut(a). The essential
point is that for a subvariety’ C X of codimension-(p + 1) we can write the function
field of V as

kV)=|Er(x.ove ;fi@f)) ,
(o))

i>0

whereOy := Ox/Jdy anddy is the ideal sheaf associatedto Indeed, this is a con-
sequence ofGro6l, Théoreme 4.5.2] and the fact that the restriction of an ample line
bundle to a closed subscheme is ample.

Thus, forh € k(V), we can writeh = f/g with f.g € T'(X, Oy ® £®") for somen €
N. From this, we obtain exact sequences

s ®n
0— 0y — Oy L®" —cokellmys) -0
and
Mg ®n
0—> 0y — Oy ®L®" — cokel(mg) — 0
wherem r,mg are the obvious multiplication maps. By using the local isomorphisms
£8"|y, = Ox|y, for some open covell; };<r, we obtain that
supfcokelm s)) =V(f)CV
and
suppcokel(mg)) = V(g) C V.

If we interpret the above exact sequences as distinguished triangles in the Verdier quotient
DPE(X) (p+1)/ DPEM(X) (), we therefore see that both, andm, are isomorphisms in
this category, as

codim(V(f)) = codim(V(g)) = —p



CHAPTER 3

Tensor triangular Chow groups in modular
representation theory

So far we have mostly considered examples from algebraic geometry. However, ten-
sor triangulated categories also occur in different contexts. One of these is modular rep-
resentation theory, where one studigs-modules for a finite groupr and a fieldk such
that cha(k) divides|G|. A useful tool in this context is the stable categdry -stab,
which is obtained as the stable categoryk@f-mod, the Frobenius category (see Ex-
ample1.1.5 of finitely generated lefk G-modules. The categoryG-stab is a tensor
triangulated category. By a theorem of Rickard (sR&89), it is closely related to
DP(kG-mod), the bounded derived category of finitely generatédmodules, which is
also tensor triangulated. Using the theory from the previous chapter, we therefore have
a notion of tensor triangular Chow groups for these categories. In this chapter we com-
pare the tensor triangular Chow groupska?-stab and B(k G-mod), compute concrete
examples of these groups and show that stable induction and restriction functors fit in the
framework of functors with a relative dimension.

3.1. Basic definitions and results

We recall some basic definitions and results that we will need. All of them can be
found in the books by CarlsorChr9g and Benson Ben98aBen98h or in Balmer's
article [Bal05. For the rest of the chapte will denote a finite groupk is a field of
characteristicp dividing |G|, andkG is the corresponding group algebra. Associated
to this algebra is the abelian categdrg-mod consisting of the finitely-generated left
kG-modules. Given two moduledf, N € kG-mod, we can form their tensor product
M ®; N, which is again a finitely-generated l&fG-module when we consider it with
the diagonal action

gm®n):=gm®gn
for g € G,m € M andn € N and extend linearly. Furthermore, Hp(@d4, N), the set of
k-linear maps from\f to N can be made a finitely generate@-module by setting

(gf)(m):= f(g"'m)
for g € G,m € M andn € N and extending linearly.

The categoryt G-mod is a Frobenius category (see Examhte.5, and so we can
form the associated stable categany-stab which is naturally triangulated. It can be
given a symmetric-monoidal structure with the tensor product induced ®y — with
unit objectk, the trivial k G-module. ThuskG-stab is an essentially small, tensor trian-
gulated category. It is also rigid, where the dual of an ohjéds given as Hom(M, k).

45
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3.1.1. DeFINITION. Thecohomology ringf kG is defined as the graded ring
H*(G.k) := D EXt g (k.k) .

i>0
Theprojective support varietpf kG is defined as
Ve (k) := Proj(H*(G,k)) .

3.1.2. REMARK. When p is odd, H(G.k) is in general only agradedcommuta-
tive ring, so when we write Pr@fi* (G, k)) we really mean PreH®Y(G,k)) in this case,
where HY(G, k) is the subring of all elements of even degree. Another way to deal with
this difficulty is to extend the definition of Proj to graded-commutafivalgebras (cf.
[BBCO9 Section 1]).

Suppose we are given any two finite-dimensiokél-modulesM, N. Then the
Evens-Venkov theorem (se€4r96 Theorem 9.1]) shows thap, ., Ext ;(M,N) is
a finitely generated graded module over(4, k).

3.1.3. DEFINITION. For akG-moduleM # 0, define JM) C H*(G, k) as the anni-
hilator ideal of Ext, (M, M) in H*(G, k). Thevariety of M is the subvariety oVg (k)
associated to(d1).

3.1.4. DEFINITION. Let M be inkG-mod. Aminimal projective resolution a¥f is
a projective resolutiol’, — M such that for every other projective resolution — M
there exists an injective chain map, — M) — (Q. — M) and a surjective chain map
(Qe > M) — (Ps — M) that both lift the identity onV.

3.1.5. THEOREM (see [Car96 Theorem 4.3]).Let M be a module ikG-mod Then
M has a minimal projective resolution.

3.1.6. DEFINITION. Let M be inkG-mod and letP, — M be a minimal projective
resolution. Theeomplexitycg (M) of M is defined as the least integesuch that there is
a constank > 0 with

dimg(P,) <k-n*"! forn>0
The complexity of a module can be read off from its variety:

3.1.7. THEOREM(cf. [Ben98h Prop. 5.7.2]).If M is a finitely generated G-module,
then

dim(Vg(M)) =cg(M)—1.
The projective support variety &G can be reconstructed frokG-stab:
3.1.8. THEOREM(cf. [Bal05, Corollary 5.10]). There is a homeomorphism
¢ : Vg (k) — SpdkG-stal .

Furthermore, the support of a moduM € k G-stabcorresponds td&Vg (M) under this
map.

For the rest of the chapter, we will take difgy (cf. Examplel.4.3 as a dimension
function fork G-stab. By Theorer3.1.8this coincides with the usual Krull dimension on
Vg (k) under the homeomorphism
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3.2. Derived category vs. stable category

We consider B(kG-mod), the bounded derived category of finitely generateés
modules with its natural triangulation. It becomes a tensor triangulated category with the
usual extension to chain complexes of the tensor progyaf k G-modulesoverk.

Let us immediately state that’k G-mod) andk G -stab are closely related: the cat-
egoryk G-stab arises as a Verdier quotient df(BG-mod). Let K? (k G-proj) denote the
bounded homotopy category of finitely generated projedtiGemodules. Since quasi-
isomorphisms between bounded complexes of projective modules are the same as homo-
topy equivalences, Kk G -proj) embeds into B(k G-mod) as a full triangulated subcate-
gory.

3.2.1. THEOREM((see Ric89). The natural functor

k G -stab— D°(k G-mod)/K? (k G-proj)

induced by the inclusiohG-mod— DP(kG-mod) is an exact equivalence of tensor tri-
angulated categories.

The following theorem tells us that the spectra 8{/BG-mod) andk G-stab differ in
one point only.

3.2.2. THEOREM (see Ball0a Theorem 8.5]).We have an isomorphism
0 SpaDP(k G-mod)) —> Sped(H* (G k))

whereSpeé(H* (G, k)) is the spectrum of homogeneous prime idealsl TG, k). Fur-
thermore the diagram

SpakG-stab Spda), SpaDP(kG-mod))

] ;
Proj(H* (G, k)) Speb(H*(G.k))
commutes, wherg is the isomorphism from Theore3rl.§ Spdg) is the map associated
to the quotient functor
g : DP(kG-mod) — DP(k G-mod)/K? (k G-proj) = k G-stab,

and the lower arrow is the inclusion of the open subset with complement the unique closed
point of Spe€(H* (G, k)) corresponding to the irrelevant ideal.

3.2.3. REMARK. It is crucial here that we consider®lk G-mod) with the tensor
product®y, as opposed t®,g: there is no natural left-module structure &h Qg
N for two left kG-modulesM, N. If G is commutative®xg makes K (kG-proj) C
DP(kG-mod) a tensor triangulated category, but its spectrum is much less interesting, as
it is homeomorphic to the usual prime ideal spectrum Ep&¢.

We start to compare C?{Db(kG-moo)) and CI—ﬁ(kG-stal:).

3.2.4. ROPOSITION Considerk G-stabandDP(k G-mod) with the Krull dimension
of support as a dimension function. Then for al- 0, the Verdier quotient functor

g : D°(kG-mod) — DP(k G-mod)/K? (k G -proj) = kG-stab
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induces isomorphisms
Z5,,(D°(kG-mod)) = Z5 (kG-sta .

PrROOF First, remark that the functer sends an object with dimension of support
p + 1 to an object with dimension of suppgrtfor p > 0. This follows as we have

Sup(g(a))) = Spdq) " (suppa)) = supfa) N SpakG-stal) C SpAD®(kG-mod))
and the space SfdP(kG-mod)) has exactly one closed poifit} C D°(k G-mod) more
than Sp¢k G-stab, which is contained in the closure of every point of @pR(k G-mod)).

If X =DP(kG-mod) andg = K?(kG-proj), we use Lemma.1.15to see that
Kp+1)/ Kpy = (Kp+1)/ P/ (Kp)/§)
= kG-staly,) /kG-stal,_y) .
and the equivalence induces one on the idempotent completions. By apphirg, Me
get the desired result. 0

In order to prove Propositio®.2.4for Chow groups instead of cycle groups, we need
the following elementary lemma about abelian groups.

3.2.5. LEMMA. Let f : A — B be a morphism of abelian group$,c A be a sub-

group andf : A/S — B/f(S) be the induced morphism. Thker / = p(ker f), where
p:A— A/S is the canonical projection.

PROOF. Let[x] € ker f, then0 = £ ([x]) = [ £(x)], which implies thatf (x) € f(S).
Lets € S be such thaff(s) = f(x). Then
fx=s)=fx)—=f(s)=f(x)—f(x) =0
and
px—s) = p(x)—p(s) = [x]
which proves that kef C p(kerf). The other inclusion is trivial. O

3.2.6. THEOREM. Considerk G-staband DP(k G-mod) with the Krull dimension of
support as a dimension function. Then for al> 0, there are isomorphisms

CHZ (kG-staly = CHS, | (D°(kG-mod)) .

PROOF. Let X := D°(kG-mod), T := kG-stab and consider the commutative dia-
gram

Kiptn) == (Kpin/ Kp)'
K ¥
Jt \ \

[t z [ T
Kp+2) Jp) —— (J<p)/J(p—1))u

~

T(p+1)
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where the diagonal functoks A are restrictions of the Verdier quotient
q : DP(kG-mod) — kG-stab
andy is the equivalence from the proof of Propositi®2.4 We have
ker(Ko(1)) = Ko(k)(ker(Ko(1)))
as we are in the situation of Lemm3a2.5 This shows that
Ko(x) (ker(Ko(1))) = Ko(r) o Ko(k) (ker(Ko(1))) = Ko(¥) o Ko(r) (ker(Ko(1)))
which gives the desired result. O

We now proceed to compute some examples of tensor triangular Chow groups com-
ing from k G-stab.

3.3. The cases = Z/p"Z

We begin with the case whe@ = Z/p"Z for some primep andn € N. In the
following, k& will be any field of characteristip. It follows from [Car9§ Theorem 7.3]
thatVg (k) is a point, and so a finitely generate@-module has complexity 1 if and only
if it is non-projective.

Computing the tensor triangular cycle groups&@i-stab amounts to calculating

Ko ((kG-stalqi)/kG-staQ,-_l))”) :
One immediately sees that the only non-trivial case is wher0. Then
Z8 (kG-stah = Ko(kG-stab) ,
askG-stab is idempotent complete. In order to compute this, we use the following result:
3.3.1. RRoPOSITION(See TW91, Proposition 1]).Let B be a Frobenius-algebra,

let B-modbe the category of finitely generated I8fmodules and -stabthe correspond-
ing stable category. Then it holds that

Ko(B-stah = Ko(B-mod)/(proj) ,
where(proj) is the subgroup generated by the isomorphism classes of projective modules.

Note that ky(kG-mod)) =~ Z, ask G is a commutative local artinian ring: indeed, for
modules over artinian rings, being finitely generated and having finite length are equiv-
alent, and then the result follows by Lemra&.7. For local rings, projective and free
modules coincide, and thus it follows from Proposit®8.1that

Z8(kG-sta) = 7./ p" 7. .
We also see that this group coincides with@:(VdG—stat), as we are in the top dimension.
Summarizing, we have the following:
3.3.2. RROPOSITION LetG = Z/p"Z for some primep andn € N andk any field
of characteristicp. Then
Z2(kG-stah = CHA (kG-stah =0 forall i #0
and
Z8 (kG-stah = CHS (kG-stal) = Z./ p" 7.



50 Tensor triangular Chow groups in modular representation theory

3.4. The cases =Z/2Z xZ/2Z

If G =7Z/2Z x7/27 = (x,y|x* = y? = 1,xy = yx) andk is a field of character-
istic 2, the computations become more involved.

As a consequence o€pr9g Theorem 7.6], we have thatg (k) = P!. Therefore
there is a proper subcategorykafi -stab consisting of the modules of complexityi. In
order to work with those, we need the following classification:

3.4.1. LEMMA. All finite-dimensional indecomposabter-modules of odd dimen-
sion have complexity 2.

PROOFE Let M be a odd-dimensional indecomposable module. If we assume that

M has complexity 1, then byBen98h Theorem 5.10.4 and Corollary 5.10. 8, must

be periodic, with period 1. In other words, df: P — M is a projective cover o/,

then we must hav&/ = ker(e¢). However, sincé&s is a2-group, the only indecomposable
projective module is the free module of rank 1 (sBerj98a Section 3.14]), which has
k-dimension 4. Thus, iM has dimensiorzn + 1 and P has dimensiodm, then using
thate is surjective and the dimension formula, we get gdiker(¢)) = 4m —2n — 1. We

see immediately that kér) cannot have dimensio?n + 1, and thusM cannot have
complexity 1. As it is non-projective it therefore must have complexity 2. O

We also see that a complementary result holds for the even-dimensional representa-
tions:

3.4.2. LEMMA. All finite-dimensional, non-projective indecomposable-modules
of even dimension have complexity 1.

ProOOF It follows from [CM12, Proposition 3.1] that a non-projective indecompos-
able kG-module of even dimension is periodic with period 1. As an immediate conse-
guence, those modules have complexity 1. O

3.4.3. EMARK. Lemma3.4.2also follows from the following explicit calculation:
using the classification of all indecomposabi@-modules (cf. Ben98aTheorem 4.3.3]),
one sees that any non-projective, indecomposable even-dimengiGaalodule is iso-
morphic to one of the form

(11 (17
*=No 1 Y=\o 1

wherel is then x n identity matrix and/ is somen x n matrix overk. Note that in this
presentation, the above modules may fail to be mutually non-isomorphic for différent
This type of module will from now on be denoted by, ) and we proceed to find the
first term of a projective resolution for it. In order to do so, fix the badsis + 1,y +
1,xy+x4y+1)for kG and consider fot <i <n then x4 matrices

Bi:=|o £ J o| and E;:=|f 0 0 0
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where f; is thei-th standard basis vector of lengttandJ; is thei-th column vector of/ .
One now verifies the following statement by an explicit computation:

3.4.4. LEMMA. The linear mag : kG" — M, (J) given by then x 4n matrix
B, - B,
E, - E,
is a surjectiveék G-module homomorphism. Furthermore we h&gge) =~ M, (J). O

From this it follows that the complexity of MJ) is < 1. As it is not projective, it
must therefore have complexity 1.

The following is a direct consequence of Lemfd.1land Lemmé3.4.2

3.4.5. @WROLLARY. The indecomposableG-modules of odd dimension are exactly
the indecomposable modules of complexity 2. The non-projective indecompbé&able
modules of even dimension are exactly the indecomposable modules of complekity 1.

Using this classification, we can calculate the zero-dimensional Chow group.

3.4.6. LEMMA. The map
[M]+ dimg(M) mod4
defines an isomorphiskg(k G-stab) — Z /47. Furthermore, if
o : Ko(kG-stalg)) — Ko(kG-stah) = Z /47
denotes the map induced by the inclusion fun&iGrstalyy)) — k G-stah then
im(a) =Z/27Z CZ/4Z .

PROOF TheringkG is local and artinian, and thus it follows from Lemia2.7that
the map
[M]+ length M) = dimi (M)
defines an isomorphismdggk G-mod) — Z. Therefore, the map
[M]+ dimg (M) mod4
defines an isomorphismdgk G-stal) — Z /47 by Lemma3.3.1, as every finitely gener-
ated projective module over a local ring is free.

By Corollary 3.4.5 the image ofx in Ko(k G-stah) consists of exactly those classes
[M]whereM has even dimension, i.e.

dim,(M)=0 mod4
or
dimg(M) =2 mod4 .
Thus, ima) = Z/27. 0
3.4.7. ROPOSITION There is an isomorphism
CHS (kG-staly = 7./27.
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PrROOF By definition,
Z} (kG-stal) = Ko ((kG-stako))*) = Ko(k G-stak)) ,

askG-stal_;) = 0 and thick subcategories of idempotent complete categories are idem-
potent complete themselves. Using this, we have that

CH5 (kG-stab = Z5 (kG-staly / ker(a)

where
a : Ko(kG-stalg)) — Ko(kG-staly;)) = Ko(kG-stah

is the map from Lemm&.4.6 Using the isomorphism theorem for abelian groups, we
conclude that

CHS (kG-stal) = im(a) = Z/27
by Lemma3.4.6 O

For the one-dimensional Chow group we need to work a bit harder. We first take a
closer look at the quotierf := k G-stab/ k G-staly,.

3.4.8. LEMMA. Assumek is algebraically closed. The categow is idempotent
complete.

PrROOF Under the additional hypothesis, it is shown @JW94, Example 5.1] that
up to isomorphism, the only indecomposable objectiis k£, which has endomorphism
ring K := k(¢), a transcendental field extensionkoflt follows that£ is equivalent to the
category of finite-dimensional vector spaces akemwhich is idempotent complete. [J

This enables us to prove the following:

3.4.9. RROPOSITION Assumé is algebraically closed. There is an isomorphism
CH2 (kG-staly = 7Z./27.

ProOFE The sequence of triangulated categories
kG-stalyg) — kG-stab— kG-stab/ k G-stalyg
induces an exact sequence
Ko(kG-stalygy) —> Ko(k G-stal) — Ko(k G-staby k G-staly) — 0
wherex is the map from Lemma8.4.6 Therefore,
CHA (kG-stah) = Ko ((kG-stab/kG-stabo))”) =~ Ko(kG-stab)/im(«) = Z/2Z

as follows from Lemma.4.8and Lemmé&3.4.6 O

3.5. Relative dimension of restriction and induction

We finish the chapter by showing that stable induction and restriction functors from
modular representation theory have a relative dimension as defined in Defth#idn
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Some auxilliary results from representation theory. Let us first give some well-
known representation-theoretic results. Iete a finite group and a field such that
chark) = p divides|G/|.

3.5.1. LEMMA. Let H < G be a subgroup. There is an isomorphism of leff-

modules
kG =~ @ kH
H\G

PROOF Letxy,...,x, € G be a complete set of representatives #bYG. First we
see thatxq,...,x, spankG as a leftt H-module: letay y1 +...amym € kG with a; € k
andy; € G. Then eacly; is contained in exactly one coshtx, , i.e. there is an element
h; € Hxj, such thaty; = h;x,. Therefore,

aryi+...amym = (@ih)xj, +...+ @mhm)x;,, .
In order to check linear independence, assume
b]X] ++bnx,, =0

for b; € kH. We see that this can only happerbjf= 0 for all i as the cosetél x; and
H x; are mutually disjoint foi # j. O

3.5.2. LEMMA. LetH < G be a subgroup. The functors
Ind%, : kH-mod— kG-mod

and
Reg; : kG-mod— k H-mod

are exact.

PrROOF Using LemmaB.5.1we see that G is a free leftk H module, and therefore
Indg = kG ®ry — is exact. As Re‘,% acts as the identity on morphisms, it preserves
injectivity and surjectivity and therefore is exact. O

3.5.3. LEMMA. A functor between abelian categories with an exact right-adjoint
preserves projective objects. Dually, a functor between abelian categories with an exact
left-adjoint preserves injective objects.

PROOF Let F : A — B be a functor with an exact right-adjoidt and P € A a
projective object. By definition, this means that the functor Ham, —) is exact. By
the adjointness property @¥, the functors Hom (F(P),—) and Homy (P,G(—)) are
naturally isomorphic. But the latter one is a composition of the exact functoasid
Homy (P, —) and thus is exact. Therefore HgrF (P),—) is exact and it follows that
F(P) is projective. The argument for the second statement is dual. O

3.5.4. ®ROLLARY. The functorslndg and Re§ preserve projective modules.

PROOF. This follows immediately from the fact that Ifdand Re§ are mutually
adjoint on both sides (see e.€.4r96 Proposition 3.2]) and Lemnt&5.3 O
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3.5.5. ®MROLLARY. The functordnd$, andReg, induce exact functors
Ind%, : kH -stab— kG-stab

and
Re$ : kG-stab— kH-stab

O

3.5.6. THEOREM. The functorslmf, andR_e§ form an adjoint pair that satisfies
the projection formula, in the sense of Definitidd.7.

PrRoOFE The adjunction of the functors_ltidand&% is obtained from the adjunc-
tion of their non-stable counterparts: for moduds= kK G-mod L € kH-mod, the natural
isomorphism

W : Homy (Ind$, (L), M) — Homy i (L, Re&; (M)

is given as
o on

wheren: L — Indg (L) =kG ®yy L is given as the map+— 1 ® [ (see Car9g Proof
of Proposition 3.2]). Now itr factors through a projective modutes module,on will
also factor through the restriction of the same projective moduké,tevhich is projective
again by CorollanB.5.4 ThusW induces an isomorphism between the stable homomor-
phism sets.

Furthermore, Frobenius reciprocity (see e@aif96 Theorem 3.1]) tells us that there
are natural isomorphisms kG -mod

Ind% (L) ® M = Ind% (L @ Re; (M)
and these descend to the stable category to give us natural isomorphisms
Ind% (L) ® M = Ind% (L ® Re; (M)) .

This shows that the paitnd¢ ,R_eg) satisfies the projection formula as desired. [

3.5.7. REMARK. The adjunction between_lﬁdand&% can also be deduced from
the following more general result: |&f : § — T andG : 7 — § be a pair of adjoint
exact functors between triangulated categofie§ and let8’ c 8,7’ c 7 be thick
triangulated subcategories such th&t8’) C 7/ and G(7’) € §’. Then the induced
functorsF : 8/8 — 7 /7" andG : T /T’ — &/&’ are adjoint as well. This statement is
proved by showing that the unit and the counit of the desired adjunction are given by the
images of the unit and counit of the adjunction betw&eandG under the corresponding
localization functors.

In the case of Inf§} and Re§, the adjunction between Ifjd and Re§ induces
an exact adjunction between the bounded derived categofigsiBmod) =: § and
D°(kG-mod) =: 7. The roles of8’ and 7’ are then played by the thick triangulated
subcategories Kk H -proj) and K’ (k G-proj), respectively.

The following Lemma will be useful when we discuss the relative dimension of the
induction functor.
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3.5.8. LEMMA. LetM € kH-mod Then
dimg (Ind$, (M)) = [G : H]-dim (M).

PrROOF By Lemma3.5.1there is an isomorphism &fH -modules

Re$, (Indg(M)) ~Re$ (kG Qi M) = (@kH) Qi M = @M

G/H G/H
which proves the lemma as Redeaves dimensions intact. O

Relative dimension of restriction. We now consider the stable restriction functor
Re$ : kG-stab— kH-stab.

We fix the Krull dimension as a dimension function faf -stab andc H -stab. Recall that
for M € kX -stab we have dilfsupgM)) = cx(M)—1 for X = G, H. We begin with
the following easy observation:

3.5.9. LEMMA. LetM € kG-mod Then
cir (Re (M) = co(M)

PROOF Assume thatM € kG-mod has complexity. The functor Reg sends a
minimal projective resolutio®s — M to a projective resolution R%S(P.) — Reﬁ (M)
of Reg (M) by Lemma3.5.3 A minimal projective resolutioD, — Reg (M) admits
an injective chain map to Rgg P.) — Reg; (M) by definition, and therefore we must
have
dimy(Qy) < dimy (Regj (Py)) = dimg (P,) <k -n*"'
asM e kG-mod had complexity. This implies that Re%(M) has complexity< s. O

With a little more work we can now compute the relative dimensioMfERes

3.5.10. THEOREM. Let H C G be a subgroup such that divides|H |. ThenR_eg,
has relative dimension 0.

PrROOF It follows from Lemma3.5.9that for all objectsM € kG-stab, we have the
inequality din’(supr(R_eg)) <dim(supgM)) and thus, if&% has a relative dimension,
it must be< 0. In order to prove the statement, it therefore suffices to show that there is an
object M, of kG-stab such that di(ﬁupﬂR_eg(Mo))) > dim(supgMy)) and therefore
dim(supp(Res; (Mo))) = dim(Supp(Mo)).

Let P € Vg (k) be a closed point (which exists asdivides|H|) and look atQ =
Spc(Res; ) (P) € Vg (k) which is closed as well since the map $Bes; ) is closed (see
[Ball4, Theorem 2.4 (b)]). Také{, € k G-stab such that sugpfo) = {Q}. This is possi-
ble as we can realize any subvariety as the support of a modul&ee@dh Chapter 5.9],
or more abstractlyBal05, Corollary 2.17]. Note that this means that dsappgM,)) = 0.
We know that

supRes; (Mo)) = (Spc(Res; ) (supiio)



56 Tensor triangular Chow groups in modular representation theory

which must contain the closed poift Thus,

dim(suppRes; (Mj))) > 0 = dim(supgMo)) .
which finishes the proof. O

3.5.11. EMARK. Assume thafp } |H|. Then by Maschke’s theorek¥ is semi-
simple (see e.g.Jar96 Theorem 1.7]), which implies that every finitely generated left
kH-module is projective. Consequenthy -stab= 0 and&% (M) = 0 for all modules
M € kG-stab. As dinisupg0)) = dim(@) = —o0, the functorieg does not have a
relative dimension in this case.

Relative dimension of induction. Let us consider the stable induction functor
Ind% : kH-stab— kG-stab
next. Again, we fix the Krull dimension as a dimension functionifé-stab andk G-stab.

3.5.12. LEMMA. LetM € kH-mod Then
c6 (Indj (M) = ¢z (1)

PROOF. Let M € kH-mod have minimal projective resolutiab, — M. Assume
that M has complexitys, then dim (P,) <« -n*~! for all » and some constant As
Indg is an exact functor that preserves projectivesglnﬂ.) — Indg (M) is a projective
resolution of In§; (M). By Lemma3.5.8 we have that

dimy Ind$, (P,) = [G : H]dimg(P,) <[G : H]ic-n*™!

from which it follows that a minimal projective resolution of Iﬁ(ﬂM) has growth rate at
mosts — 1, as it admits an injective chain map to fhdP,) — Ind% (M). Thus Ind; (M)
has complexity at most O

We now need two easy auxilliary lemmas concerning projeétivemodules. Recall
that p = chat(k).

3.5.13. LEMMA (see [Car96 Corollary 1.6]). Let p? be the exact power gf dividing
|G| and P a projectivek G-module. Therp? dividesdimg (P).

PROOF Let S < G be a Sylowp-subgroup of ordep®. Then Reg(P) is a projec-
tive kS-module. AsS is a p-group, projectivity and freeness bf-modules coincide, so
dime (Re< (P)) = dimg (P) is a multiple of| S| = pe. O

3.5.14. LEMMA. Let H < G be a subgroup such that divides|H|. Then we have
In_dg (k) #0,s0in particularsupnlndf, (k)) is a non-empty closed subsetl@f (k).

PrROOF The moduleﬁﬁ, (k) being non-zero is equivalent to Iﬁo{k) being non-
projective. We know that Irﬁi(k) is the permutation representation on the cos§sts,
which has dimensiofG : H]. If p? is the exact power op dividing |G|, then assuming
that p divides| H | tells us thap? 4 [G : H] = dimy (Ind%, (k)) which implies that In§, (k)
cannot be projective by Lemn®5.13 O

3.5.15. @WROLLARY. Let H < G be a subgroup such thatdivides| H |. Thenln_dg
has a relative dimension and it is 0.
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PROOFE From LemmeB.5.12 we see that_lnﬁ (kH -staly,)) C kG-stahy, foralln €
Z . Since dinfsupp(Ind$ (k))) > 0 by Lemma3.5.14 we have din{Ind) > —co. O

3.5.16. THEOREM. Let H < G be a subgroup such that divides|H|. Then the
functormg has relative dimensio#.

PrRoOOF By Theorem3.5.6 Theorem3.5.1Q Lemma3.5.14and Corollary3.5.15
the assumptions of Corolla:4.10are satisfied. Therefore
0< dim(R_esg,) +dim (m_dz) - dim(mg)
since we already know that the relative dimensiorﬁ%észero. Together with Corol-
lary 3.5.15this yields that the relative dimensiongﬁds 0. O

3.5.17. REMARK. If p } |H|, thenk H -stab= 0 and_Ind; is the inclusion ob into
kG-stab. This functor does not have a relative dimension as

dim(supf0)) = dim(@) = —occ .






CHAPTER 4

Relative tensor triangular Chow groups

So far we have considered tensor triangular Chow groups only for essentially small
tensor triangulated categories. For tensor triangulated categories that are not essentially
small we run into problems: for example, for such categdriase have no definition of
Spad), so it does not even make sense to define subcategorie® JikeThe situation
changes when we assume thiats compactly rigidly generated, i.e. the compact objects
7¢ c T form a set, coincide with the rigid ones, and they genefatén this case, it is
shown by Balmer-Favi inBF11] that there is a notion of support for objects®fwhich
assigns to an object € 7 a (not necessarily closed) subset SuppC SpdT¢). This
is generalized by Stevenson iBtg13, which introduces the concept of an action of a
compactly-rigidly generated tensor triangulated categoon a triangulated categork
(which need not have a symmetric monoidal structure). In this setting it is possible to
define a notion of relative support for objectsJ8f which assigns to an objedte X a
subset sup@) C Spa7¢). It recovers the notion oHF11] mentioned before, when we
setX = T and act via the tensor product ©f This construction is the starting point for
our definition of tensor triangular Chow groups &, relative to the action of .

In the following section, a lot of notation will be introduced. For clarity and reference,
we include an overview below.

4.1. Preliminaries
Let 7 be atriangulated category.

4.1.1. DEFINITION. The categony is called acompactly-rigidly generated tensor
triangulated categoryf
(i) 7 is compactly generate@ee Definitionl.1.29.
(i) T is equipped with a compatible closed symmetric monoidal structure
R:TXT >T
with unit objectl. Here, a symmetric monoidal structure Bris closedif for all
objectsA € 7 the functorA ® — has a right adjoint hoks, —). A compatible
closed symmetric monoidal structure Bnis one such tha® satisfies the con-
ditions of Definition1.2.1and RemarkL.2.2and such that hofl, —) is exact
for all objectsA4 € 7. (This last condition is actually redundant since adjoints
of exact functors are automatically exact, sde¢01 Lemma 5.3.6].)
(iii) I is compact and all compact objects Bfare rigid. Let 7¢ C T denote the
full subcategory of compact objects ®f Then we require thdt € 7¢ and that
all objectsA of 7¢ are rigid, i.e. for every objed® € 7 the natural map

o:hom(4,I) ® B = hom(4, 1) ® hom(I, B) — hom(4, B) ,

59
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Table of notations
xeSpdT¢),Ae K,peZ
I'y, Ly for V. SpdT°¢) | Acyclization and localization functor associated tp. 61
a specialization-closed skt C Spa 7€)

Yy {P eSpdTe) :x L P} p. 62
T A (T Ly, (D) * A p. 62
Vep {x € SpdT“)|dim(x) < p} p. 63

Vy {x € SpAT°)|dim(x) = p} p. 63
r,A (Ty_,Ly_,_ () *xA p. 63
Kp) tx (V<p) ={A € K :SupgA4) C V<p,} p.63
Kx Essential image of. ) (I) » — p.64

is an isomorphism.

4.1.2. @NVENTION. Throughout this chapter we assume thiais a compactly-
rigidly generated tensor triangulated category that satisfies the following conditions (cf.
[BF11, Hypothesis 1.1]:

(i) 7€ is equipped with a dimension functiaim and Spd 7 ¢) is a noetherian
topological spaceThe subcategory ¢ is a tensor triangulated category in the
sense of ConventioR.2.1that is also rigid (seeHF11, Hypothesis 1.1]). Thus
it makes sense to talk about $fp¢) and dimension functions dn©.

(i) 7 acts on a (fixed) triangulated categor¥ via an actionx* in the sense of
[Stel3. We assuméeX to be compactly generated as well.

Note thaty™ is not essentially small since it has set-indexed coproducts.

Let us quickly recall from $tel13 Definition 3.2] what it means fof” to have an
actionx on K. We are given a biexact bifunctor

¥ T xK—> K

that commutes with coproducts in both variables, whenever they exist. Furthermore we
are given natural isomorphisms

axya: (X QY)xA—> X (¥ * A)
ZAZ]I*A;A

for all objectsX,Y € 7,4 € K. These natural isomorphisms should satisfy a list of co-
herence relations. Fdf, Y, Z objects of/ andA an object ofX, the following diagrams
need to be commutative:

(1)
X*x(Y x(ZxA))

X*ay 7.4 AX.Y,Z*A

X*x(Y®Z)xA) (X®Y)*x(ZxA)

WX,Y®Z,AT TWX(X)Y,Z,A

XY R2Z)xA (XRY)®Z)xA
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where the lower unlabeled arrow is the associator isomorphism from the sym-
metric monoidal structure oR.

2
X*ly Ixsa
Xx(IxA)—— XxA Ix(X*xA)—— XxA
O‘X,]I,AT a]I,X,AT
uxA vxA
X®I)*A4 ITX)xA

whereu, v are the respective left and right unitor isomorphisms from the sym-
metric monoidal structure oR.

®)

ST« A f_} Zr+sA

e (=1)7s

= (Igs

ST x25A) % srts g
wheree comes from the exactness:ofn the first variable, and’ is the compo-
sition

ZrJrS(lA)

YTxX5A - D5 T A) > (I A) PILRRY|

with the first two isomorphisms coming from the biexactness.of

4.1.3. REMARK. With this definition, a tensor triangulated categ@nas in Conven-
tion 4.1.2has an action on itself vi®. The natural isomorphismsy. y 4,/4 are then
given by the associator and unitor of the symmetric monoidal structur€ and one
checks that all the required coherence conditions hold as the coherence conditions for the
monoidal structure off” are satsified and the bifunct® is compatible with the trian-
gulated structure ofi. The functor® always preserves coproducts in both variables for
any closed symmetric monoidal structure on any category, as the fungterhas a right
adjoint for all objects: € T (see e.g.HHPS97 Remark A.2.2]).

Following [BF11], we can assign to every object 7 a support sup@) C Spa 7 ):
given a specialization-closed subsetz Spa 7 ¢), we have a distinguished triangle

Fv(]l) -1 — Lv(]l) — Erv(ﬂ)

wherel'yy andLy are the acyclization and localization functors associated to the smashing
ideal that is generated by the compact objects with suppdrt(see Remarli.1.21and
Definition 1.3.1). For objectsd € X, we sell'yA:=Ty ()« AandLy A := Ly (1) * A.

Note that if X = 7 andx is given by® as in Remarkt.1.3 then this definition yields the
similar expression§y (A), 'y A andLy (A), Ly A. However, by Propositiofi.3.2 these
actually give isomorphic objects, so there should be no room for confusion.
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For a pointx € Spa7°¢) the subset§x} and Yy := {P € SpAT¢) : x € P} are
specialization-closed and so we define the “residue objegt’c 7 asT';; Ly, (I). For
A € T, we now define theupport of an objectl € T as

supdA4) := {x € SpAT°)|TxI ® A # 0}.

In [Stel3, the same residue objects are used to define supports for objekts Bdr an
objectB € KX, setl'y B := I'yI x B, then we define theupport ofB as

supfB) := {x € SpAT°)|Tx B # 0}.
This notion of support gives us a way to describe certain subcategori#s oA

triangulated subcategomy( C X is calledlocalizing 7-submoduléf it is a localizing
subcategory (see Sectidrl) such thatr x« M C M. We obtain order-preserving maps

{subsets of SEG°)} é{localizing T -submodules ofK'}
oK

S+ {t € K :supgt) C S}
|J supnr) < M
teM

where the ordering on both sides is given by inclusion (S¢el[3 Definition 5.9]).
We record the following properties of the support that will be very useful for the
sequel.

4.1.4. RopPosITION(cf. [Stel3 Proposition 5.7]).Let V C SpdT¢) be a subset
closed under specialization amtlbe an object ofK. Then
suppTy (I) x A) = supgA) NV

and
supp( Ly (I) * A) = supg4) N (SpAT)\ V) .

4.1.5. REMARK. In [Stel3 Proposition 5.7], PropositioA.1.4is proved for those
specialization-closed subsédtswhich are contained in the subset {s) C SpaT°) of
so-calledvisible points of the spectrum. The set Yi&°) coincides with Spr) in our
case, since we assumed the latter space to be noetherian (s&e1§.Jection 5)).

4.1.6. CEFINITION (cf. [Stel3 Definition 6.1]). We say that the actior of 7 on X
satisfies thdocal-to-global principleif for each A4 in X
(A)x = (TxAlx € SpAT“))x
where for a collection of object§S C K we denote by(S). the smallest localizing -
submodule ofK containings.

4.1.7. REMARK. The local-to-global principle holds very often, e.g. wHErarises
as the homotopy category of a monoidal model category @fel3 Proposition 6.8]).
If the local-to-global principle holds, it has the useful consequence that supp detects the
vanishing of an object: if sugpl) = @ then

(A)x = (TxAlx € SPAT))x = (0)x =0
which implies thatd = 0.
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Forp e Z, let
Vep i={x € SpAT)|dim(x) < p}. V= {x € SpaT)|dim(x) = p}
andset’,4:=Ty_,Ly_,_, A. In[Steld, a decomposition theorem analogous to Theo-
rem1.4.7is proved. Let us first fix some notation:

4.1.8. NOTATION (cf. [Stel2 Notation 3.6]).Let £; be a collection of localizing sub-
categories ofK, indexed by a set. Then[],.; £; denotes the subcategory &f whose
objects are coproducts of the objectsif, where the morphisms and the triangulated
structure are defined componentwise with respeét to

4.1.9. RoPosITION(cf. [Stel2 Lemma 4.3]). Suppose that the action 6f on X
satisfies the local-to-global principle and Igte Z. There is an equality of subcategories

LK =15(Vp)= [] Tk
x€Vp
wherel', X denotes the essential image of the fundiQ(l) x —. O

We give another description df, X that bears more resemblance to what we have
seen for essentially small tensor triangulated categoriesp [Ed¥., define

J((p) = TJ((VSP) .

4.1.10. LEMMA. Assume the local-to-global principle holds for the actiogadn X.
Then, for allp € Z, there is an equality of subcategories

Kpy=Tyv_,K=1{4A¢€ K|FA A~ FVS,)(H)*A/}

PROOF Let 4 € T'y_, X, then we have an isomorphissh = T'y_, (I) * A’. By
Propositior4.1.4 we know that supf) = supfT'y_, (I) x A") = supg4’) N V<,, from
which it follows that4 is supported in dimensios p . Thus,4 € K.

Conversely, assume thate X ,). We apply the functor- * A to the localisation
triangle

Fvﬁp(]l) -1 — LVsp(]I) —> ZFVEP(H)
to obtain the triangle
Fvﬁp(]l) *A—>A— LVﬁp(H) * A — EFVSP(H)*A
As A is supported in dimensiof p, it follows again from Propositiod.1.4that
supLy_,(I)*A) =0
and thereford.y_ , (I) * A = 0 by the local-to-global principle, as shown in Remark.7.
Thereforel'y_ , (I) x A = A which implies that4 € T'y_, K. 0

The following statement is the desired descriptiod"gfK .

4.1.11. LEMMA. Suppose that the action 6f on X satisfies the local-to-global
principle and letp € Z. There is an equality of subcategories

FpK = Kipy/Kip-1)
where we view the latter quotient as the essential image of the fuigtoy_, (I) * —
restricted toX,).
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PrRoOF If A is an object ofl", X, we have supfd) C V,, C V<,, so we certainly
haveA € K(,). If we apply— * A4 to the localization triangle

Ty, (D—>I1-Ly_,  (I)— =Ty, (1)
we obtain the distinguished triangle
Ty, (DxA—>A—Ly_, (DxA—XZTy_,_, *A)

where suppl'y_,_, (I) * A) = V<1 NsupA) = @ by Propositior4.1.4 Thus, we have
I'y_,_, (I) x A = 0 and we obtain an isomorphism== Ly_,_, (I) * A, which proves that
Ais in the essential image dfy_,_, (I) * — restricted toX,).

Onthe other hand, ifl is an object of the essential imagelof_,,_, (I) x — restricted
to K(,), there exists an object’ of K,y such thatd = Ly_,_,(I) x A’. By Lemma
4.1.1Q we know that supf’) C V<,. But then by Propositiod.1.4

SUPR(A) = SUPLA) N (SPAT ) \ V<p—1) C V<p N (SPAT )\ V<p-1) =V
which proves thad e ', K. O

We can push the analogy with Theordmd.7even further: forx € Spa 7€), define
K as the essential image of the localisation functor

L(x)(ﬂ)*—

associated to the localizing subcategry C 7 and denote by Mi(KX ) C K the sub-
category of objects with support contained xy}.

4.1.12. RROPOSITION Suppose that the action &f on X satisfies the local-to-
global principle and letx € Spa 7 ¢). Then there is an equality of subcategories

Min(Kx) = tx ({x}) = Tx K .

PrROOF For the first equality, if4 is an object of Miri.X), then by definition we
have supp4) C {x} which implies that4 is contained ircx ({x}).

If Aisinzy({x}), we need to prove thatit is in the essential image of the localisation
functor Ly (I) = —. In order to see this, notice that

x={B e T°:supdB) C Yy}
which implies thatl () (I) = Ly, (I). In the corresponding localization triangle
IlN'y,(HxA—-A—> Ly ()xA— XTIy, (I)* A
we obtain by Propositiod.1.4that
supTy, (D) xA) CYxN{x} =0,

which implies thatl'y, (I) * A = 0 andA = Ly, (I) * A = L) (I) x A. This shows that
A is in the essential image @f,)(I) * —.

For the second equality, # is an object ofrx ({x}), we have supf) C {x}. Using
Propositiond.1.4and the localization triangles

Ty, (M)*A—A— Ly, (I)* A— STy, (I)* A

and
Tog* A — A — Ly() % A — STy(I) x A
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we see thatl = Ly, (I) x 4 and 4 = I';;7(I) x« A. Combining these isomorphisms, we
get that

Az (P ® Ly, () * A = Tx A,

which shows that is contained in the essential imagelof(l) * —.
If Aisinthe essential image @, (I) x —, then there is ar’ such that

A= (Fm(ﬂ) ® Ly, (I)) * A
Applying Propositiord.1.4 we get that

SUPRA) = {x} N (SPAT )\ Yx) NSUpHA’) C {x} N(SpAT )\ Yz) = {x} ,
which proves that is an object ofcy ({x}). d

Propositiord.1.9and Lemmat.1.11serve as a motivation for the definition of relative
tensor triangular cycle groups (see Definitib2.1), in the same way that Theoreh.7
motivated Definitior2.2.3

We finish the section with a useful result about the subcategdfigs

4.1.13. RROPOSITION Suppose that the action &f on X satisfies the local-to-
global principle. Then the subcategorig§,) are compactly generated for af and

(K@) = (K)p)-

PROOF As the seti’<,, is specialization-closed for afi € Z, it follows from [Ste13
Corollary 4.11] thafl'y_ , K is compactly generated for gl € Z. ButT'y_, K is equal
to K,y by Lemmad.1.1Q and soX,) is compactly generated for gl € Z.

The subcategory,) is precisely the kernel of the coproduct-preserving localization
functor Ly_ , (I) x —: indeed, if4 is an object ofK,), then by Propositio#.1.4

supf Ly, (I) * A) = (SpdT) \ V<p) Nsupf4) =0,

which implies thatlLy_ , (I) * A = 0 as we have assumed the local-to-global principle, and
henceA € ker(Ly_,). On the other hand, if we assume that

Aeker(Ly_,(I)*—),
then from the localization triangle
Fvﬁp(]l) *A—>A— LVﬁp(H) * A — EFVSP(H)*A

we obtain thatd = T'y_, (I) * A. But supgl'y_,(I) x A) = supg4) N V<, C V<, by
Proposition4.1.4 which implies thatd € K.
By [KralQ, Proposition 5.5.1] the right adjoint of the inclusion

L J{(p) = ker(LVS, (]I) *—) — T

preserves coproducts and 10, Lemma 5.4.1] it follows that preserves compact-
ness. Therefore(K(,))¢ C (K) (- The converse inclusion is an immediate conse-
guence of the definition of compactness. O

In the light of the equality of subcategories of Propositioh.13 we will simply use
the notatiorﬂ{(cp) for (K )¢ = (K)(p) if the local-to-global principle holds.
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4.2. Relative tensor triangular Chow groups

In addition to the hypotheses from Conventibi.2 we will assume that the local-
to-global principle holds for the action 6f on X for the rest of the section. For clarity,
we will still explicitly mention this hypothesis in the formulation of the results.

The categoryX,y is compactly generated for gll € Z by Proposition4.1.13 We
therefore have thatK(,)/ K(,—1))“ is the thick closure ofC¢ ) /K¢, in K(p) /K (p—1)
(see KralQ, Theorem 5.6.1]). Thus, we get an injection

J Ko (JC(C,,)/JC(C,,_U) = Ko ((Kip)/ K(p-1)°) -

Furthermore, the quotient functdk¢ | — Kfp)/,}(“’ and the embedding‘c(cp) —

¢ . (p) (r—D
JC(p+1) induce maps

q:Ko (‘K(Cp)> — Ko (JC(CP)/‘K(CP—I)>
and
i 1Ko (5)) = Ko (Ko -
4.2.1. DeFINITION. We define thep-dimensional tensor triangular cycle groups

of X, relative to the action of” and thep-dimensional tensor triangular Chow groups
of X, relative to the action of” as follows:

Z5(T . K) == Ko ((K(p)/ K(p-1))°)

and
CHIA,(T,JC) = Z(Ap)(’J‘,JC)/j og(ker(i)).

4.2.2. REMARK. As we assumed that the local-to-global principle is satisfied, we can
view an element of g(T,JC) as a formal sum op-dimensional points; of Spd7¢),

with coefficients in Ig ((I'x K)¢) for x € V,,, by Propositio.1.9and Lemmad.1.11

4.2.3. REMARK. The categoryX,)/K,-1) has arbitrary coproducts and is there-
fore idempotent complete (cf.NpeOl1 Proposition 1.6.8]). Sinc€X(,)/K(p-1))° is
the thick closure ofK¢ )/ K¢,y in K(p)/K(p-1), we obtain tha(K(,)/ K(p-1)) is

equivalent to the idempotent completioﬁfp)/xfp_l))”.

Next, we compare CRI(T", 7) to CHp (7°).

4.2.4. RopPOSITION Consider the action of” on itself via the tensor producd
and assume that the local-to-global principle holds for this action. Then we have isomor-
phisms
Z5(T.T)=Z5(T) and CH(T.T)=CHY(T).

PROOF. By definition we have 2(7.7) = Ko ((7(p)/T(p-1))°) and Remari¢.2.3

/76

f
(p_l)) . We conclude that

shows thatJ,)/T(p—1))° is equivalent tc(‘f(;)

:
Z,(T.7) = Ko((T(py/ Tp-1)°) = Ko ((1(2)/1<2_1)) )
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which is equal to %(T“) by definition. The notions of rational equivalence agree as
well as the mapg,q,i from Definition4.2.1are equal to the corresponding maps from
Definition 2.2.4 O

Now, let X be a noetherian separated scheme and (&t)D= D(Qcoh(X)) be the
full derived category of complexes of quasi-coher@gt-modules. The category(@) is
a compactly-rigidly generated tensor triangulated category with arbitrary coproducts (see
[BF11, Example 1.2]), and we have(l¥)¢ = DPe(X) (cf. [BvdB0O3 Theorem 3.1.1]).

4.2.5. @ROLLARY. We have isomorphisms
Z5(D(X).D(X)) = Z5 (DP*(X))

and
CHZ(D(X).D(X)) = CHZ (DP*(X))

for all p € Z. In particular, if X is non-singular, of finite type over a field and we equip
D(X)¢ with the opposite of the Krull codimension as a dimension function, we have

Z5(D(X).D(X)) =Z7(X) and CH5(D(X).D(X)) = CH?(X).

PrROOFE This is an immediate consequence of Proposiich4and Theoren2.3.5
The local-to-global prinicple holds for the action of D) on itself as it arises as the homo-
topy category of a monoidal model category by the main resulGid0f] and therefore
the criterion of Btel3 Proposition 6.8] applies. O

4.3. Application: restriction to open subsets

Let U C SpdT¢) be an open subset with complemeéfit If we denote by7 the
smashing ideal iir generated by the subcategd@fy“)z C 7 ¢ of all objects with support
contained inZ, then the quotient categofiy; := 7 /77 is a tensor triangulated category
satisfying all the assumptions made at the beginning of this chapter, whose spectrum
Spq7;) can be identified witl/. We will show that the localization functor induces
surjective maps

Z3(T¢) = Z,(Tv)°)
and
CHZ(T€) — CHY ((Tu)°)

for all p. The kernels of these maps can be described with the help of the relative cycle
and Chow groups that we introduced in the previous section.

4.3.1. LEMMA. Let T be a compactly-rigidly generated tensor triangulated cate-
gory (see Definitiord.1.1) such thatSpa7¢) is a noetherian topological space. Let
U C SpdT¢) be an open subset with compleméht ThenJy is a compactly-rigidly
generated tensor triangulated category aBaq7,7) = U is a noetherian topological
space. Furthermore, if the local-to-global principle holds for the actiofadn itself, it
also holds for the action diy on itself.
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PrROOFE The categoryiy is compactly-rigidly generated bysfel3 Beginning of
Section 8] and SH6;) = U, asTj = (7./(7:)z)" by [BF11, Theorem 4.1]. The space
U is noetherian as it is a subspace of a noetherian topological spa&diy[Lemma
5.8.2]. For the second statement, first note that any locali@irideal I/ C 7y is one
of 7 as well. Indeed, for objectd € I,S € T, we haveS ® A =~ SQ (Lz(I) ® A) =~
S®LzI)®@Aecl asS®Lz(I) € Jy. Thus it suffices to show that fot € 7y,
we have tha{d)g = (I'x(4)|x € Spd7;7))g, Where we interpre{—)g as the smallest
localizing®-idealin 7 containing—. Then we have

(A)e = (Tx(A)|x € SpAT“))e
= (I'x(I) ® A|x € SpAT))e
by the local-to-global principle. BUt,(I) @ Lz (1) =0if x ¢ U andT'y (1) ® Lz (1) =~
I (I) if x € U (see Bte13 Proposition 8.3]), so
(Tx (D) ® Alx € SpAT“))e = (I'x (1) ® Lz(I) ® Alx € SpAT“))e
=(Ix(A)|xel)e .
Finally, as Sp€7;;) = U, we have
(Tx(4)|x € U)g = (T'x(A)|x € SpATy))
which finishes the proof. O
For the rest of the section, we assume thas a tensor triangulated category in the
sense of Conventiof.1.2 acting on itself via (i.e. X = 7) and that the local-to-global
principle holds for this action. For any open subSet Spa7 ), we will equip7;; with

the dimension function obtained as the restriction of the dimension functidi‘(isee
Propositionl.4.9.

4.3.2. LEMMA. The localization functor.z : 7 — Jy induces group homomor-
phisms
lp:Z5(T°) = Z5((Tv)°)
and
€p: CH5(T) — CHY ((Ty)°)
forall p € Z.

PrRoOOF By [KralQ, Proposition 5.5.1 and Lemma 5.4.1], the localization functor

L 7 restricts to
7e 22 g
on the level of compact objects. By Propositibd.9 we have thaLz(”J'(;)) C (TUC)(p)
for all p € Z. Thus the restriction of the functdtz has relative dimensior 0 and
therefore induces maps
lp:Z5(T°) — Z5(T¢
and
€y : CHE(T€) — CHY/(TY)

forall p € Z by Theoren2.4.3 O

4.3.3. ROPOSITION The maps,,{, from Lemma}.3.2are surjective.
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PrROOF Given an essentially small, rigid tensor triangulated categiérwith noe-
therian spectrum and equipped with a dimension function, recall that we have a decompo-
sition n

(Kp/Kp-n)' = ] Min(Ko)

QeSpdK)
dim(Q)=p

according to Theorerh.4.7. In the situation of Lemm4.3.2we obtain a commutative
diagram for eaclp € Z

—_—

T c T c n LZ agC g C u
(J(m/J(p—n) ((TH o/ (T 1)

T

[[ Min@g) [ Min(@)e)
QeSpdT ) QeSpdTS)
dim(@)=p dim(Q)=p
Lz
Lz lz
[ Min@g).
QeU
dim(Q)=p

Here, the equivalence

[T Mn(@ @)= [[ Min@g
QespdT) QU
dim(Q)=p dim(@)=p

follows asT; C Q forall Q € U. One now checks that the functb is given on objects
as the canonical projection

(ag)gespare) > (ag)oeu
which induces a surjection of abelian groups upon applyiggBQt considering that

i
ko (76/70) ) =200 7)
and
T \C g2 \C u A
Ko ( (505 /(T0)pen)) ) =25 (70 T0)

this shows that the induced map(LZ) = [, on the tensor triangular cycle groups is a
surjection. This implies that the same must be trueffgrwhich is induced by, on a
quotient of these. O

Next we want to identify the kernels ¢f andZ,,, with the help of our relative Chow
groups.

4.3.4. LEMMA. The categoryiz is compactly generated witt¥z)© = 7%, it has
arbitrary (set-indexed) coproducts and carries a natural actioryof Furthermore the
local-to-global principle holds for the action &f on 7z under our assumption that it
holds for the action of™ on itself.
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PrROOF By definition 7z is the smallest localizing triangulated subcategoryrof
containingT; and thus it must be compactly generated and have set-indexed coproducts
by definition. By BF11, Theorem 4.1] one has théitz) = 7 and that7; is a®-ideal,

i.e. the action of/” on itself restricts to an action & on 7. In order to check that the
local-to-global principle holds for the action Gf on 7z, we need to check that for an
object4 € Tz, we have

(A)x = (TxAlx € SpAT))x .
But this is a direct consequence of the fact that the local-to-global principle holds for
the action ofJ” on itself, since this is true when we considélas an object of” and a
localizing submodule of 7 is also one of7". O

4.3.5. LEMMA. The inclusion functor
TZ —T

induces group homomorphisms

ip:Z5(T.T7) = Z5(T€)
and

. A A -c

tp : CH,(T,Tz) — CH,(T°)

forall p € Z.

PROOFE Again, it follows from [KralQ, Proposition 5.5.1 and Lemma 5.4.1] that the
inclusion functor restricts to the level of compact objects:

1:T;,—>7T°¢

By the universal property of Verdier localization and idempotent completion, one obtains
induced functors

L, (T T e-1) — T/ (T)p-1)
As we saw in Lemmat.3.5the category7z is compactly generated, has set-indexed
coproducts and a natural action Bythat satisfies the local-to-global principle. Thus it
makes sense to talk about the relative cycle grou@(:‘/‘ZTz) and by the discussion at
the beginning of SectioA.2we have that

2T .72) 2= Ko (T / T 1)) -
We see that after applyingoKthe functor/ , induces a map
ip:Zo(T.T7) —> Z5(T€)
and this map respects rational equivalencé asnds
ker(Ko (7)) = Ko ((T2) (p+1))

ker(Ko (7(;)> — Ko (T(;H))) :
Thus we also get an induced map
tp : CHO(T.Tz) — CHH(T€)

as desired. O

to
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4.3.6. RROPOSITION We have an equality of abelian groups
im(i,) = ker(l,)
forall p € Z.

ProoFr Recall from the proof of Propositio4.3.3that!/, is induced by the projec-
tion functor

[ Min@5H— ][] Min@g)

QeSpdT ) QeU
dim(Q)=p dim(Q)=p
(ag)gespare) = (ag)oeu
dim(Q)=p dim(Q)=p

from which we see that kél,) is given as the subgroup

[I KeMin@$nc [ KoMin(7)) = Ko('r(;)/ff(;_l)) .
QezZ QeSpdT )
dim(Q)=p dim(Q)=p

Recall from the proof of Lemm4.3.5thati, is obtained as the map onpKnduced by
the functor
T C [ U T C aqC tl
L, (T T e-1) — (T)n/(T)p-1) -
which in turn is induced by by the inclusidny — 7. The essential image of the functor
1, is precisely the subcategory

[ Min@g).
QeZ
dim(Q@)=p
which proves that, has image equal to k€b,). d

Note that Propositio#.3.6implies that in{t,) C ker({,). For the other inclusion,
the situation seems more subtle and we only obtain the following weaker statement.

4.3.7. ROPOSITION Assume thal ©/77 isidempotent complete, that i, /T, =
(v)¢. Then we have an equality of abelian groups

im(tp) = ker({ )
for all p > dim(2).

PROOF We need to check that ki, ) is the image of ke ,) under the quotient map
Z;‘,(T“) — CHIA,(TC). To prove this, we use the fact thatif> dim(Z), thenT7 C 77,.

Let us first show thaﬁ'(;)/TZC ~ (‘TU)fp). We know thai(7y )¢ is given as(TC/TZ“)“,
which is equal tdr /T by assumption. By Lemm&a.1.16 T(;)/TZC embeds fully faith-
fully into 7¢/7, so all there is left to show is that any object((ii;)fp) =(T¢/T7)p)
is in the essential image of this embedding. In order to see thi$, lbet an object of
(7¢/T5)p) and leta € T¢ be an object that the localization funcof — 7¢/77 sends
to b. As we have sup) = supfa) N U andV only contains points of dimension p,
we must have dirfsupfa)) < p,i.e.a € T(;), which completes the argument.
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Next, consider the commutative diagram

KO(J(p)) Ko(T(p-41)

\ \
’ T/ 1))

KO((JU)(p)) —> KO((JU)(p+1))

K qg]

Ko (((T0)§p)/(T0)Gp1))")

—

=Z5((Ty))

=Z5(7°)

wherei, i, are induced by the respective inclusion functo;%q';] are induced by the
composition of the Verdier quotient functor and the inclusion into the respective idem-
potent completions and,, 7, are induced by taking the Verdier quotient . By
Lemma3.2.5 we have kefiyy) = m,(ker(i)) and therefore

I, 0q"(ker(i)) = gl o m,(ker(i)) = qf, (ker(iy))

As CHy(T¢) = Z5(7°)/q" (ker(i)) and CH) ((T)¢) = Z5((Tu)°)/qf; (kexi)), an-
other application of Lemma&.2.5yields that ke¢Z,) is the image of kei/,,) under the
quotient map 2 (7€) — CHy (7€), as desired. O

4.3.8. xaMPLE. If X is a non-singular, separated scheme of finite type over a field
and7 = D(X), thenT¢ = DP(X) = DP(Coh(X)) andT ¢/7£ = D(Coh(U)) for all
open subsets C X. Indeed, if we look at the Serre subcategory

A := Cohz(X) Cc Coh(X) =
of coherent sheaves with support contained jrthen Lemma.3.4shows that the condi-
tions of Theoren?.3.3are satisfied in this case. It follows that
T¢/T5 = D°(Coh(X))/DP(Coh(X))z = D°(Coh(X)/Cohz (X)) 2 D°(Coh(U)) .

where we used the well-known equivalence CoJyCohz(X) =~ CohU) (see for ex-
ample RoulQ Prop. 3.1]). As B(CohU)) is idempotent complete, the conditions of
Propositiond.3.7are thus met in this case.

The following theorem summarizes the results of the section.

4.3.9. THEOREM. LetT be atensor triangulated category in the sense of Convention
4.1.2such that the local-to-global principle is satisfied for the actioryobn itself. Let
U C Spa7¢) be an open subset with closed complem#&nt Then there is an exact
sequence

j I
Z8(7.T2) 2> 25T 2 Z5(Ty)*) > 0
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for all p € Z. Furthermore, if7 /77 is idempotent complete and> dim(Z), then we
have an exact sequence

L J4
CH(T.T2) = CH5(T¢) —> CH5 ((Ty)) —> 0 .

4.3.10. EMARK. The exact sequences from Theord3.9 should be compared
to the corresponding ones for cycle and Chow groups of algebraic varietied~(d68, [
Proposition 1.8]): ifX is an algebraic varietyZ C X a closed subscheme with open
complement/, then we get exact sequences of cycle groups

Z,(Z) > Zp(X) = Z,(U)—0
and Chow groups
CH,(Z) - CH,(X) - CH,(U) -0
forall p e Z.
Note that we don't have a suitable categeryat our disposal such tha@ZJRC) or

CHIA,(RC) maps to kefl,) or ker(¢,), respectively. This is why we need the relative
groups here. We doot know whether for a non-singuld and5 = D(X), we have
Zy(T.T2) = Z,(2)
or
CHO/(T.72) = CH,(Z) .






CHAPTER 5

The countable envelope of a tensor Frobenius pair

In this chapter, we lay parts of the technical foundations for Chapbsr showing
that the countable envelope of a tensor Frobenius pair (see Defibi#oB naturally
inherits the structure of a tensor Frobenius pair. This is an extension of work of Keller
[Kel90, Appendix B] and Schlichtinggch06 Section 4] to a symmetric monoidal setting.
It will be used in Chapte6 in order to define products in Schlichting’s construction of
algebraic K-theory of a Frobenius pair (s&xh0§).

5.1. Ind-objects in an additive category

In this section we recall some of the theory of ind-objects in the additive setting. We
heavily rely on the exposition iS0€g.

Let & be a small additive category and denote éﬂ?’d := Functgq(E°P, Ab) the
abelian category of additive functors fra#rto the category of Abelian groups. By compo-
sition with the forgetful functor, it can be considered as a full subcategory of the category
of all functorsé := Func{(&°P, Sef) from & to the category of sets (sd€$06, Proposition
8.2.12)).

The Yoneda functor gives an a priori embeddéhg> &, but as Hom-sets are abelian
groups and Hom-functors are additive in our setting, it factors through an embedding
he : € — &394 Given a smalll filtered categodyand a functor : I — & in &, its colimit
in & might not exist. We denote byll)il‘noz the colimit of the inductive systeling o F' in

&, which is also ingadd

5.1.1. DEFINITION (cf. [KS06 Definition 6.1.1]). An ind-objectin & is by definition
an object ofé that is isomorphic ir€ to I@) a for some small filtered category and

a functora : I — &. We denote by In(F) the full subcategory of consisting of the
ind-objects ing. The functorig induces a full embedding : & — Ind(&).

5.1.2. REMARK. Inthe literature, the category of ind-objectsdris often defined as
the full subcategory of consisting of filtered colimits of representable functors (see e.g.
[AGV71]). The resulting category IA¢B) is equivalent to In@8) from Definition5.1.1
and it is also possible to construct an explicit quasi-inverse to the inclusioeend>
Ind(&) as follows: for any objecd € Ind(&), denote by& 4 the category with objects
arrowssy : U — A in Ind(&) with U € & (we identify & with a subcategory of In@)
via tg). A morphism f : sy — sy in &4 is a morphism iné that makes the diagram

75
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in Ind(&)

U—Ys 4

1

Vv

commute. The categor§ 4 is cofinally small and filtered by){S06, Proposition 6.1.5]
and thus we can define a functor

Ind(&) — Ind'(€) C Ind(€)

(15) A tlim” U
—
(U—A)e€4
which has image in I1d€). By [KS06, Proposition 2.6.3 (i)], the natural map
“im” U— A4
—
(U—>A)eE4

is an isomorphism. I = “Ii_rr;"a for some functow : I — &, then there is an associated
functor I — &4 which mapsi € I to the canonical morphisma(i) — A. This functor
is cofinal by KS06, Proposition 2.6.3 (ii)] and we see that the functti)(is indeed the
desired quasi-inverse.

Under our assumptions, I68l) carries the expected additional structure.
5.1.3. LEMMA. The categorynd(&) is additive.

PrROOFE It is immediate from the definition of I@&) as a full subcategory of
that the category In@) is pre-additive, i.e. the morphism sets are abelian groups and
composition is bilinear. A§ is additive it has finite coproducts and B¢306, Proposition
6.1.18], it follows that Ind&) admits small (and in particular finite) coproducts. As finite
coproducts and products coincide in a pre-additive category K&@dq Corollary 8.2.4]),
it follows by [KS06 Lemma 8.2.9] that In@F) is additive. O

We finish the section with two statements about the indization of symmetric monoidal
categories.

5.1.4. RROPOSITION Let& be endowed with a symmetric monoidal structure such
that the functorr ® — is additive for all objects: € &. ThenInd(&) naturally inherits
a symmetric monoidal structure such that the inclusign: & — Ind(&) preserves the
tensor product.

ProoFR The statement seems to be well-known for' (§d, at least in the context of
abelian monoidal categories (see e@elP0, Section 7] or Hai02 Section 3.4]), where
one sets

“im"ae® “lim”g :="“lim"a¢ ®
F AR AR~
witha : I — & andf : J — & functors from small filtered categoriésJ to & and® the
tensor product o&. Thus, we can define a symmetric monoidal structure odndy
pulling back along the equivalences). Explicitly, we set for two objectst, B € Ind(&)

A® B := “Iill" UVv.
(U—A),(V—>B))e€ 4 x8&p
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The unit object of In@€) is given as the image of the unit object®funderig and the
associativity, commutativity and unit isomorphisms are all induced by the ortes df]

5.1.5. REMARK. The product®; is naturally isomorphic to the restriction of the
Day convolution producbn & (see pay7Q) to Ind(&). This product commutes with
colimits in both arguments and the Yoneda embedding takes the tensor prodgidbon
the convolution product of. Therefore, it must be isomorphic &y .

5.1.6. LEMMA. In the situation of Propositio®.1.4 the functor4A ®, — is additive
for all objectsA € Ind(6).

PrROOF By [KS06, Proposition 8.2.15], in order to prove additivity, it suffices to
show that4A ®, — preserves binary products. Assume we are given functarg —
&,8:J —&,y: K— & fromsmall filtered categoriek, J, K to & such that “IJ)ﬁ’a ~

I
AMlim” B = B,"lim”y = C. Then
7 K

s o)) o)
() )

lim” «® (Bxy)
IxJxK

&~ Im ARPXaQYy,
IxJxK

I

I

where we used that “lilhcommutes with finite products and that is additive in each

variable. As the diag_o>nal functdr— I x I is cofinal (see{S06, Corollary 3.2.3]), we
obtain

ILn) dRPXaQy = Im ARBXxaQy
IxJxK IxJxIxK

~ (“Il_nj)”oe ® ,3) X (“Il_rr_l"a ® y)
IxJ IxK
AR BxA® C
as desired. O]

5.2. The countable envelope of an exact category

From now on, we endov¢ with the structure of an exact category (in the sense
of Quillen). We are interested in the countable eveloge @hich is defined as a full
subcategory of In@E). Let I, denote the category

e—>e0e—>0e—>e—>--

where we omit identities and compositions of morphisms.
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5.2.1. DEFINITION (cf. [Kel90, Appendix B]). The countable envelop€g of € is
defined as the full subcategory of &) consisting of all those objects isomorphic to one
of the form “Ii_r)n”oe, wherex : 1o — & is a functor that maps all arrows & to inflations
iné&.

5.2.2. EMARK. The embeddingg — Ind(&) factors via & by choosing for an
objectE € & the functora g that mapd/, to the constant diagram

o L
in&.

Keller shows in Kel90, Appendix B] that & can be endowed with an exact structure
as follows:

5.2.3. THEOREM ([Kel90, Appendix B]). The following defines an exact structure
on CE&: a sequence of map$ — B — C is a conflation if and only if it is isomorphic to
a sequence

“lim” f “lim” g
“lim” o —— “lim” g —— “lim” y
— — —
wherea, 8,y : Ip — & are functors that send all maps & to inflations, andf : « —
B,g : B — y are morphisms of functors such theati) & B@) ﬂ y(i) is a conflation
in & forall i € Iy.
5.2.4. REMARK. It follows that the embeddin§ — CE& is exact.

5.2.5. REMARK. In [Kel90, Appendix B], the exact structure is actually defined on
the category Ind&), but it defines an exact structure on the equivalent categoiyind
as well.

5.3. Tensor exact categories

5.3.1. DEFINITION. A tensor exact categong an exact categor§ equipped with a
compatible symmetric monoidal structuge:, i.e. the functors

ar>a®eb
are exact for all objects € €.

5.3.2. RROPOSITION For a tensor exact categorg, the countable envelop&é
naturally inherits the structure of a tensor exact category such that the embeéding
Cé& is tensor exact.

PrROOF The symmetric monoidal structure orEGs the restriction of the one on
Ind(&) (see Propositiob.1.4. For two functorsy, 8 : I — & with

“im"a =4, “lm”"g=28
we have by definition

A® B = “lim” UV ="lIim"a®pf ="lim"a®p
—> —> —>
((U—)A),(V—)B))ESAXQB 10XIQ I()
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where the first isomorphism follows fronK§06, Proposition 2.6.3 (ii)] and the second
one follows as the diagonal functds — Iy x I, is cofinal (seekS06, Corollary 3.2.3)).
This proves that the tensor product of two objects &§i€in C& again. Indeed, the mor-
phismsx (i) ® B(i) — «(j) ® B(j) are inflations for all objects j € I, by the exactness
property ofg®.

It remains to show that fod € C§&, the functord ®, — is exact. Letw, B,y : [o —> &
be functors andf : « — B,g : B — y be natural transformations such that

A ., &@) .
a(i) — () —> y ()

is a conflation for all objectse /. If A = “Iiﬂ)”&, then applyingd ®, — to the conflation

“lim” f “lim” g

“lim"a —> “Iim"ﬂ —> “”m”)/
— — —
yields a sequence isomorphic to
“Iiﬂl"f®id “IiLn)"g®id
“im"a®§ ——“lim" Q5 ——— “lim"y ®§ .
— — —

As for alli € Iy, the sequence

i) ®id i) ®id
e @50 2% iy 256) L2 () @ 8(1)
is a conflation by the exactness of the tensor producg pit follows that 4 ®, — is
isomorphic to an exact functor and therefore exact itself. O

5.3.3. DEFINITION. We say that a tensor exact categérgatisfieshe pushout prod-
uct axiomif for every two inflationsf : A — B,g : C — D in &, the canonical morphism

A® D ]_[ BRC - B®D
ARC

is an inflation.

Recall from Biih1Q Example 13.11] that for any categofy and an exact category
&, the categong® of functorsd — & inherits an exact structure, where a sequence of
natural transformations

F—-G—H

is defined to be exact iF (d) — G(d) — H(d) is exact in& for all objectsd € D. We
call this thepointwise exact structure o,

5.3.4. LEMMA. Let& be atensor exact category with tensor prod@gt and denote
by C(€) the category of functora : Io — &, such thatx maps all morphisms of, to
inflations, with the pointwise exact structure (§&el90]). ThenC(€) with the pointwise
tensor produc®é(8) makesC(€) a tensor exact category. Furthermoregifsatisfies the

pushout product axiom, then so dd@&s).

PROOF It is clear thatC(€) inherits a symmetric monoidal structure froén the
associator, unitor and commutator isomorphisms are all given pointwise by the symmetric
monoidal structure o and they satisfy the required coherence conditions as they are
satisfied for®g. Note that the exactness properties@§ show that for two functors
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a, B € C(€), their tensor produat ®¢(e) b is again a functor that maps all morphisms of
Iy to inflations. The exactness propertiess also imply that®z ¢, has them as well
and thusC(€) together With®¢¢) is indeed a tensor exact category.

Now let us assume th# satisfies the pushout product axiom. As we can compute
pushouts inC(€) pointwise, it follows that the map in question from Definitiér8.3
is pointwise an inflation and therefore an inflation@¢&) by definition of the exact
structure. O

5.3.5. RROPOSITION Assumeé satisfies the pushout product axiom. Then the same
holds true forCég.

PROOF Let us first remark that by Lemnf3.4 the functor categorZ(€) satisfies
the pushout-product axiom. Furthermore, itis an immediate consequence of the definition
of the exact structure on&and the tensor produgice that the functor

“im” : C(§) — C&
—>
is exact and preserves tensor products.
Now, let f : A — A’, g : B — B’ be two inflations in €. This means that there exist
inflations /” : « — &’ andg’ : B — B’ in C€ such thatf =~ “Ii_rr;”(f’) andg =~ I|_n_1> (g)
(see Theorers.2.3. Look at the pushout diagram &(&)

e’
o Qzg B L a®gg B’

o |

a/®égl3—>a/®68ﬁ [ a®eh

a®ze B

id®g’
o

A
o ®68 13/

where/’ is an inflation asC€ satisfies the pushout product axiom. We now apply the
functor “lim” to this diagram. As exact functors preserve pushouts along inflations (see
[Buh1Q Proposition 5.2]) and _I_|)n‘1 commutes with the tensor products, we obtain a
pushout diagram isomorphic to

id
A®ce B—%% | 4®ce B’

o] j

A ®ceB || A®ceB’
A®cg B

d®g
A ®C8 B——

A
A/ ®C8 B/

wherer is an inflation as Lrﬁ is exact. This finishes the proof. O
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5.4. Tensor Frobenius pairs

Recall that a Frobenius category is an exact category with enough injective objects,
such that the class of injective and projective objects coincide.

5.4.1. DEFINITION (see Bch06 Section 3.4]). A Frobenius pair€ = (§,68)) is a
strictly full, faithful and exact inclusion of Frobenius categori&gs— & such that the
projective-injective objects df, are mapped to the projective-injective object€of

We now give a symmetric monoidal version of Definitiom. 1

5.4.2. DEFINITION. A tensor Frobenius pai€ = (&, &y, ®) consists of a Frobenius
pair (&, &p) and a symmetric monoidal structure 8rwith tensor produc®, that makes
& atensor exact category and satisfies the following properties:

(i) For all objectsA € &, the functorA ® — preserves the projective/injective ob-
jects of§&.
(i) &y isa®-idealinég, i.e. itis stable under tensoring with any objeciof
(iii) The tensor exact catego@ysatisfies the pushout product axiom.

5.4.3. REMARK. In many examples§ will be a category of chain complexes over
some exact category ar&) the subcategory of acyclic complexes. From this point of
view, requiring that&, is a ®-ideal says thaty passes directly to the corresponding
derived category.

The pushout product axiom is there to make sure ¢hahduces a product in the
Waldhausen K-theory of the Frobenius pair (see LerBrbad).

5.4.4. REMARK. Here is an example where the axiom of Definitod.2requiring
that &, is a®-ideal isnot satisfied: letR-mod be the abelian category of finitely gener-
ated modules over a commutative noetherian ihgnd consider & R-mod), the exact
category of bounded chain complexes of finitely gener&adodules, with conflations
the degree-wise split ones and®gR-mod), the exact subcategory of acyclic complexes.
Then(C°(R-mod),aC’(R-mod) is a Frobenius pair and the tensor product of chain com-
plexes® z makes this example almost a tensor Frobenius pair. Howeve{Ra@od) is
not a tensor ideal a® g is not an exact functor in general.

If & is a Frobenius category,&is one as well, with the exact structure from Theorem
5.2.3 according to $ch06 Section 4]. It follows that for a Frobenius pdir= (&, &),
its countable envelope&:= (C&,Cé&)) is again a Frobenius pair. We want to prove an
analogous statement for tensor Frobenius pairs.

5.4.5. THEOREM. Let& = (&, 8y, ®) be a tensor Frobenius pair. Then tsuntable
envelope @ := (C&,C&p, ®) is a tensor Frobenius pair.

ProOOF We know that(C&,C6&y) is a Frobenius pair and PropositiérB3.2gives a
symmetric monoidal structure orGwith tensor produc®, that makes € a tensor exact
category. Furthermore,&will satisfy the pushout product axiom by Propositis3.5

In order to show that € is a®,-ideal in C&, let A =~ “IiLn)”oc,B >~ “IiLn)"ﬂ for two
functorsa : Iy — &,8 : Iy — &y. Then

ARQ B = “Iim)”a ®p
and ast is a®-ideal in &, it follows thate ® B has images, and thusd ®, B € C&y.



82 The countable envelope of a tensor Frobenius pair

It remains to prove thal ®, — preserves the projective-injective objects & ®hich
are given as direct summands of objects isomorphiﬂg"llmheret : [p — &—prinj takes
values in the full subcategory of projective-injective object€ qsee Fch06 Definition
4.3)). For such and any ‘ﬂ)ﬂ’a € C& we have

(1) o1 () = (1)
and ast is a tensor Frobenius pair we see that the funet@r: takes values it§ —prin;.
Thus for anyA4 € C&, A ®; — preserves objects isomorphic to_;rlm wherea : Iy —
&—prinj. As itis an additive functor it also preserves their direct summands. We conclude
that A ® — preserves the projective-injective objects & @hich finishes the proof. O



CHAPTER 6

Intersection products via higher K-theory

In the previous chapters we introduced Chow groups for tensor triangulated cate-
gories and showed that they have a lot of desirable properties, in analogy with the situation
in algebraic geometry. The intersection product, one of the most important operations on
the Chow groups of a non-singular algebraic variety, however, does not have an analogue
in the tensor triangular world yet. In this chapter, we give a construction that provides us
— under favorable circumstances — with an intersection product for a tensor triangulated
category7, that is defined on group$HlA, (7) (see Definition6.5.1) which turn out to
be subgroups of the tensor triangular Chow groupﬁ(‘.‘ﬂ from Chapter2. In the case
that7 = DP®(X) for a separated, non-singular schemef finite type over a field, the
groupsmCHlA,(T) coincide with le(?‘) (see Lemmd.7.6 and thus recover the usual
Chow groups ofX as well. Thus, we may consider them as another useful generalization
of the usual Chow groups of a scheme, competing wittﬁCT—D.

In order to define the intersection product, the categorghould satisfy two condi-
tions: Firstly, 7 should have an “algebraic model” in the sense that there should exist
a tensor Frobenius pair (see Cha@pwith derived category”. Following Schlichting
[Sch0§, the assumption thal has a Frobenius pair as a model gives us the tools of the
higher and negative algebraic K-theory of the model. Our second assumption concerns
the behavior of a localization sequence arising from the K-theory of the Frobenius mod-
els associated to certain sub-quotientsrgfand states that an analogue of the Gersten
conjecture from algebraic geometry should hold (see Defingidril).

6.1. Algebraic models

For the rest of the chapter, I8 denote an essentially small tensor triangulated cat-
egory as in Definitiorl.2.1 It is well-known that there is no K-theory functor from the
category of small triangulated categories to the category of spaces, if we require that it
satisfies some natural axioms (s&eli032). In order to be able to talk about the higher
and negative K-theory di", we therefore work with an algebraic model%f rather than
T itself. The primary aim of this section is, given a tensor triangulated categamjth
an algebraic model, to produce algebraic models for certain triangulated subquotients of
T, as well as for their idempotent completions.

Monoidal models. Recall from Chapteb the notions of Frobenius pair and tensor
Frobenius pair, and from Examplel.5that thestable categoryf a Frobenius category
A is the categorys with objects the same a4 and morphisms those ab modulo
the subgroup of maps that factor through a projective-injective object. The catdgory
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is a triangulated category and for a Frobenius phie= (A, 4¢), Ao is a triangulated
subcategory of4. Thederived categoryf a Frobenius paist = (A, Ay) is the Verdier
quotient of the stable categoriegd®) := A/ Ao.

6.1.1. LEMMA. LetA = (A, A, ®) be atensor Frobenius pair. Thé&n(«A) inherits
the structure of a tensor triangulated category and the localization functet — D(A)
is a tensor functor.

PROOF. As A, is a tensor ideal, the triangulated subcategégyis a tensor ideal in
4 and thus the quotient/ A, is a tensor triangulated category where the tensor product
®T is induced from the one osh. Indeed,® makes OA) a symmetric monoidal
category, where the associativity, commutativity and unit natural isomorphisms are given
as the images of the ones @4, ®) under the functost — D(sA). The functors: @ —
are exact for all objects of D(s#A) since the definition of tensor Frobenius pair guarantees
thata ® — is a map of Frobenius pairs for all objeet®f 4. These maps always induce
exact functors on the derived categories (806 Section 3.5]). O

6.1.2. EXAMPLE. Let X be a non-singular, separated scheme of finite type over a
field. Consider the Frobenius paigPerfX),asPerfX)), where sPe(fX) denotes the
exact category of strict perfect complexes ®nwith conflations the degree-wise split
ones and asPdX) is the subcategory of acyclic complexes (see Definiohl). In
Section6.7we will see that this is a tensor Frobenius pair with respect to the usual tensor
product of chain complexes, with derived categof§'pX).

6.1.3. XAMPLE. Let G be a finite groupk be a field such that ch@r) divides|G|
and letk G-mod be the category of finitely generate@-modules, which is a Frobenius
category (see Chapt8). Denote byk G-proj the subcategory of projective modules, then
(kG-mod kG-proj) is a Frobenius pair. It is also a tensor Frobenius pair with respect to
the tensor product of modules;, and its derived category isG-stab, the stable category
of the Frobenius categokyG-mod.

6.1.4. @ROLLARY. Let § C D(+A) be a tensor ideal and le8 C A be the full
subcategory of those objects that become isomorphic to an objgcaéier passing to
D(+A). Then®8 = (8B, A¢) is a Frobenius pair an® = (A, 8, ®) is a tensor Frobenius
pair, with derived categorieB(8) = ¢ andD(€) = D(A)/ 4.

PrROOFE From [Sch06 Section 5.2], we already know théB, 4() and (4, B) are
Frobenius pairs with corresponding derived categofiesid D(A)/ . The fact that€
is atensorFrobenius pair follows since the localization functér— D(+A) is a tensor
functor and the preimage of a tensor ideal under such a functor is again a tensor ideal.

Models for idempotent completion. If 7 = D(+A) for a given tensor Frobenius pair
A = (A, Ag), we would like to find a tensor Frobenius pair that models the idempotent
completion7 . The idea is to first embed(®) into D(C+A), the derived category of the
countable enevelope ot (see Theoren®.4.5, which is idempotent complete, and then
to take thick closures. Let us give some more details.

The embeddingé — CA (see Remark.2.2 induces a fully faithful embedding

D(4A) — D(C+A)
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(see Bch06 Proposition 4.4]). In particular we can view(#) as a triangulated subcat-
egory of D(CA) and consider its thick closuf@(4) C D(CeA) which is a triangulated
subcategory as well. BySch06 Section 5.2]D(+4) admits a Frobenius modet! given

as follows: if B is the full subcategory of & that consists of objects that are isomorphic
to objects ofD(s4) in D(Cs), thenA! = (B, Csy).

6.1.5. LEMMA. Assume tha#A is a tensor Frobenius pair. Then the Frobenius pair
Al is a tensor Frobenius pair, with the tensor structure inherited from the oAof

PrROOF According to Theoren®.4.5 CA is naturally a tensor Frobenius pair. The
Frobenius paitA! is given ag(8B, +¢), where3 is the full subcategory of 4 that con-
sists of objects that are isomorphic to object®¢f#t) in D(CA). From this perspective,
it is clear that all we have to prove is th@&tis closed under takin@c-products.

To do this, notice that by Propositidn3.2 the embedding RA) — D(CA) pre-
serves tensor products, and therefoeAD is closed unde®c4-products when we con-
sider it as a triangulated subcategory qfd»®). Now, take two objectst, B of B8 C +4
and denote by. : CA — D(C«) the localization functor given as the composition

Cs — Coh — C/Cihg = D(CA) .

The functorL preserves tensor products since both functors in the composition do. By
definition of thick closure there exist two object$, B’ € 8 such thatL(4) ® L(4') €
D(sA) andL(B) & L(B) € D(«). Thus
(L(A) @ L(A") Qg a) (L(B)® L(B')) =
>~ (L(A) Qpw ) L(B)) ® (L(A) Qps ) L(B")) & (L(B) Qps ) L(A"))
® (L(B) ®p(s4) L(B))

which shows thal (4) ®pca) L(B) = L(A ®cx B) is isomorphic to a direct summand
of an object in BA) and proves thatl ®c4 B € B. O

6.1.6. LEMMA. The categonD (eAu) realizes the idempotent completidD(A))”
as a tensor triangulated category.

PrRoOOF This follows as BC) is idempotent complete (since it has countable co-
products by $ch06 Proposition 4.4]) and I()A“) is the thick closure of RA) in D(CA).
The equivalence is explicitly given by sending a gaire) in D (,A,)”, with a an object of
D(+A) ande : a — a an idempotent endomorphism, to(em € D (A”). We see that this
equivalence preserves the tensor product, as the embedding B D (A”) preserves
tensor products by Propositi@n3.2 O

6.1.7. LEMMA. The assignmen#t — A" is functorial for maps of Frobenius pairs.

PROOFE The assignmen#t — CA is functorial (see$ch06 Definition 4.3]) and so
a map of Frobenius pairs : A — B gives a map @ : CA — C8. By the additivity of
Cm it follows that its restriction toA” maps into8" which proves the lemma. O

As a consequence of Lemrfal.§ we now have a Frobenius model f((D(A))“.
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6.2. Higher and negative algebrai&-theory of a Frobenius pair

Let A = (A, A9) be a Frobenius pair. ISch06 Section 11], Schlichting defines
a K-theory spectruni (+) for 4 that we will use in the following. The associated K-
groups of« are given as follows (se&Eh06 Theorem 11.7]):

e Fori > 0, the groupsK; (+A) are the Waldhausen K-groups #f. That is, we
make into a category with cofibrations and weak equivalences by declaring
the cofibrations to be the inflations df and the weak equivalences those mor-
phisms that become isomorphismsiin ThenkK;(+) is thei-th Waldhausen
K-group K (+4) of the category with cofibrations and weak equivalenges

o Ko(s4) = Ko (D(A)").

e Fori < 0 one defineX; (4A) as follows: Let 94 denote the full subcategory
of CsA consisting of all objects in the kernel of the Verdier quotient functor

D(CoA) — D(CA)/D(A) .

The suspensions® of «A is defined as the Frobenius p&A, Sy«A), and for
n > 1, S'+A denotes the Frobenius pair obtained frefnby applying the sus-
pension construction times. Fori < 0, Schlichting (see$ch06 Definition
4.7]) defines

K; (A) :=Ko(S ) .
One then obtains long exact localization sequences. Let
B>A->TC
be an exact sequence of Frobenius pairs, i.e. one such that the induced sequence
D(8) — D(A) — D(€)

is exact up to factors: the composition is zero, the funct@BbP— D(A) is fully faithful
and the induced functor

D(+)/D(8) — D(€)
is cofinal. Then we obtain a long exact localization sequence
= Kp(B) = Kp(A) = Kp(€) > Kpoy (B) > -
forall p € Z (see pch06 Theorem 11.10]).

6.2.1. REMARK. Assume thatir = D(«A) for atensorFrobenius pairt, such that
T is a tensor triangulated category. LgtC T be a tensor ideal. Corollar§.1.4and
Lemmas6.1.5and6.1.6 provide models forB and € for ¢ and (7 /)", respectively.
The sequence of Frobenius pairs

B>A->TC
induces the sequence of derived categories
g7~ (T/9)f
which is exact up to factors. This gives us a long exact sequence in K-theory

e K p(B) > K p(A) > K (€) > Koy (B) > - .
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6.2.2. REMARK. An application of the localization sequence implies the following: if
we are given two Frobenius pairs with equivalent derived categories, and the equivalence
is induced by a functor on the level of Frobenius pairs (which meg¢te an equivalence),
then the K-groups arising from the two different models will be isomorphic. This is
why we informally think of the K-theory of the Frobenius padr as the K-theory of the
triangulated category @%). One must be careful though: it is not true that any model of
D(+A) yields the same K-theory (se8¢h03).

6.3. K-theory sheaves orSpd7)
Let us start by proving a basic but useful lemma.

6.3.1. LEMMA. Let 7 be an essentially small tensor triangulated category that is
equipped with a dimension functialim. Then for alll € Z, the subcategory

Ty C (T”)
0 "

is dense. Therefore the inclusion induces an equivalence

P h2<,~q)
(Tw)" = (7 ~

PROOF As T is dense ir7”!, for every objecu € 7!, a @ =(a) € T. Indeed, this
follows by Thomason'’s classification of dense subcategories {$e®[]) which gives

T = {a e T [a] € Ko(T) C Ko (T”)} .

Givenb € (7
S(b)eT. As

dim(suppb & X (b))) = dim(suppb) U supp(Z (b))) = dim(suppb)) <1,

it follows thath & £ (b) € Ty). This shows that every object () , is a direct summand

of an object off(;) and therefore proves the claim. O

we haveX (b) € (T”) as well and by our previous argumentp

(O O]

Before we define K-theory sheaves on 8pgwe fix some assumptions ¢n that
we will need for the rest of this chapter.

6.3.2. @NVENTION. For the rest of the chapter, we fix a tensor Frobeniusais
(A, Ao, ®) and letd” = D(A). We assumé to be essentially small, rigid, equipped with
a dimension function dim and such that 8pg is noetherian.

6.3.3. CEFINITION. Foranyp € Zso,l € Z, the sheafK},l) on Spdf is defined as
the sheaf associated to the presheaf

UKy ((Av)ay)

for an openU C Spd7’) with complementZ. Here, (Ay)) is the Frobenius pair
obtained fromeA by subsequently taking models for the Verdier quotigntiz, then
for the triangulated subcatego(y /7z);, and finally for the idempotent completion

((T/’J‘Z)(,))n = (TJu)qy by Lemma6.3.1, as described in Sectighl By construction,
we then have

D((Av)1y) = (Tv)q) -
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The restriction mapKff)(U) — JCf,”(V) for two opensV C U C Spd7) with com-
plementsW O Z respectively is induced in the following way: the Frobenius pair that

models(7 /Tz) is given by (AY, . Az), whereA is the full subcategory of4 con-
0] )

sisting of those objects that become isomorphic to objeci&;df D(A) andﬁg) is the

full subcategory ofA consisting of those objects that become isomorphic to objects of
(T/Tz)q) in D((+, Az)) = T /Tz. Using Propositiori.4.9 we see that there is a map
of Frobenius pairs

given by inclusion. After applying idempotent completion as in Len@ria7we obtain
a map of Frobenius pairs

(Av)ay = (Av)a)
which induces the restriction map.

Similarly for any p € Z>y,! € Z, we define the sheave%},l/l_l) on Spg7) as the
sheaves associated to the presheaves

UK, ((Av)aya-n)
for an openU C Spq7") with complementZ. Here,(Ay)qy/q—1) is the Frobenius pair

associated to the subquotie(r(ﬁ'y)(l)/(TU)(I_l))t' of 7, given as(,Ag),,Ag_l))”. By
construction,

D (Al Al-0)) = T /T2y T/ T2y
and thus we indeed have

i
D ((AZ),Ag_I)) ) = ((T/T2)a/ (T [ T2)a—)’

f
=~ (/7204 | (TIT2)} )

~ ((’J'U)(z)/(TU)(l—l))tl

by [Bal07, Proposition 1.13] and Lemm&3.1 For an oper/ C U, there is a map of
Frobenius pairs

U 4U N4
('A(l)"’”"(z—n) - (f""(lw“’a—l))
given by inclusion. Again, after applying idempotent completion as in Lef@rh& we
obtain a map of Frobenius pairs

(Av)@y/a-1) = (Av)y/a-1)
which induces the restriction map.

The next result is a key instrument for the constructions of the following sections, as
it shows that we can use the sheaﬂég/l_l) to calculate cohomology.

6.3.4. RROPOSITION Foranyp € Z>¢,l € Z, the sheave§€§,”l_1) are flasque.
PROOF We show that the presheaf
UK, ((Av)aya-n)
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is already a sheaf and that it is flasque. The main point here is that the equivalence

(16) (@)ay/T)a-n)'= [] MinTp)
Wﬁéﬁ#

from Theoreml.4.7is induced on the level of Frobenius models.

For 0 € U,dim(P) =, the Frobenius pair associated to M) is constructed as
follows: we letA o C + be the full subcategory of those objects becoming isomorphic to
objects ofQ C 7 in D(A) = 7. Let Ayin C s be the full subcategory of objects becom-
ing isomorphic to objects with minimal support in(D4, A¢)) = 7/Q. The Frobenius

model we use for Mi(0p) is then given agAwmin. ,AQ)” which we will denote byMin ¢.
Indeed, by construction we have

D(Ming) =D ((,A,Mm,AQ)“) ~ (Min(T/Q))" = Min(7p) .

The last equivalence follows by Lemnga3.1as Min(7/Q) = (7/Q)), wheren € Z
is the dimension of the unique closed pointiof Q.
There is an inclusiomfl’_l) C 4 (see Definitior6.3.3 by [Bal07, Prop. 3.21]. We

also haveAg) C Awin Which implies that we get a map of Frobenius pairs
(A A1) = (Amin. Ag)
for all Q € U, given by inclusion. After idempotent completion we obtain maps

(Av)a)/a—1) — Ming

and the sum of these maps for &lle U

v (Av)aya-ny— || Ming
QeU
dim(Q)=I
induces the equivalenc&®) on the derived categories.

As a consequence, we see that the sk}égfl_l) is given as the sheafification of the
presheaf

U ]_[ Mln Q
QeU
dim(Q)=!

Now, for two opend’ C U consider the diagram

(A1) (1-1) ———— (AV) 1)/ (-1)

€U %

]_[ Min 0 L} ]_[ Min 1)
oeU Qev
dim(Q)=I dim(Q)=I



90 Intersection products via higher K-theory

where res is the restriction functor from Definiti6r8.3andz is the canonical projection.
One checks that this square is commutative. The nagpandey become equivalences
on the corresponding derived categories and theréforey ). K, (ey-) become isomor-
phisms and the square commutes after applfing—). It follows that the restriction

maps of the presheaf

U+ ]_[ » (Min o)

dlm(Q) 1
are given as the canonical projections.

We now show that this presheaf is already a sheaf (and will therefore coincide with
JC,(,W_I)): from the nature of the restriction maps, it is clear that an element of the group
K, (#Av)@y/@—1)) With trivial restriction to an open cover must be trivial oh Further-
more, if we are given an open coveritg= |J V; ands; € K, ((+Av;))/a—1)) With

€
compatible restrictions to the mutual interséc{ions, we can glue them together to an ele-
ments € K, (Av)@)/a-n): from thes; we know what the germp of s at P should be
for every P € U. In order to check that there are only finitely many non-zgris, we
use that Sp@) was assumed to be noetherian and thus finitely many. ., V;, suffice
to coverU. By definition, (s;,) p = 0 for all but finitely manyP € V;, for j =1,...,
This implies thats» = 0 for all but finitely manyP € U and thuss € K, (.AU)(Z)/(Z,I))
as desired.

The flasqueness oK},l/l_l) now follows directly, as its restriction maps coincide

with those of the presheaf, and these are clearly surjective. O

6.4. The triangulated Gersten conjecture

We stick to our assumptions from Convent®s3.2 For anyl € Z andU C Spd7)
we have a sequence of Frobenius pairs

(Av)-1) = (Av)a) = (Av)ay/a-1)
which induces a sequence of tensor triangulated categories
(gyd [ (g2d (g2d ﬂ
(Tv)a-1 = Tay = () / (Tv)a-1)
that is exact up to factors. Therefore we obtain localization sequences
Ky (Av)y) = Kp ((Av)ay/a-1) = Kp-1 ((Av)a-1) —
which, by applying sheafification, give us a long exact sequence of sheaves
a7) v JCI(JI_I) — JCI(JI) — J{g/l_l) — J{l(,l__ll) —

6.4.1. DEFINITION. We say thathe triangulated Gersten conjecture holds for the
Frobenius pair (see Conventio.3.2 in bidegree(l, p) for (I, p) € Z? if in the above
long exact sequencé?), the mapKI(,l_l) — J(I(,l) vanishes.

6.4.2. REMARK. Whether the triangulated Gersten conjecture holds#Aomight
depend on the choice of dimension function Jor

6.4.3. REMARK. As we will see in Lemm®.7.5 the triangulated Gersten conjecture
can be viewed as a generalization of the usual Gersten conjecture from algebraic K-theory.
Let us recall the statement of the usual conjecture.
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CONJECTURE(Gersten).Let X be the spectrum of a regular local ring. LetM; (X)
denote the category of coherent sheaveXonith codimension of support / with asso-
ciated QuillenK-groupsK ,(M; (X)) for p > 0. Then the maps

Kp(M741(X)) — Kp(M; (X))
induced for allp > 0 by the inclusiorM; ; (X) — M;(X) vanish.

The conjecture was proved by Quillen iQUi73 for the case thai is a finitely
generated algebra over a field, and later PaRamP3 removed the finite generation hy-
pothesis. Quillen uses his result iQyi73 to prove theBloch formula which identifies
the Chow groups of a non-singular variétywith certain conomology groups of K-theory
sheaves ork. We will use the triangulated Gersten conjecture for a similar purpose in
Theorem6.5.4

A more direct relation of the usual Gersten conjecture to Definiignl becomes
visible as follows: one may check the vanishing of the maps

llp : JCS_I) — JC;I)

on the level of stalks. Fo© € Spa7), we have Frobenius pair¥ := (A,Q_I,AQ)”
and¥ = (AQ,AQ)”. Here A is the full subcategory of objects of in the kernel

of the Verdier localization RA) =7 — 7/Q and AnQ is the full subcategory oft of
objects that in DA, A o) become isomorphic to an object of the triangulated subcategory
D(A,AQ)(n) = (T/OQ)m), forn =1—1,1. The derived categories(X), D(¥) are given
as(Tg)a-1 and(Tp)q), respectively. Furthermore, we have a map of Frobenius pairs
X — ¥ given by inclusion which induces the megpon the stalks aQ:

()0 K p(%) > K,(¥).
The triangulated Gersten conjecture holds in bidegtge), if the maps(L;)Q vanish for
all pointsQ € Spd 7).

If A satisfies the triangulated Gersten conjecture in bidegile@s and (/, p — 1),
then the long exact sequendg) contains the short exact sequence

@) I/1-1 (-1
(18) 0— K" — X; - Ko —0.
6.5. The triangulated Bloch formula

For any essentially small tensor triangulated catedgbmguipped with a dimension
function and € Z, we can define sheaves of Grothendieck groups os8pas follows:
let #!(£) denote the sheaf associated to the presheaf

UKo ((£v)@)))
and let7!/!=1(£) denote the sheaf

U~ Kp (((SCU)(I)/(QCU)(I—I))H)

so that we have! (D(4)) = X and#!/1=1(D(A)) = X/!~" as special cases (see
Definition6.3.3. Note that for¥!/!~1(&£), we don’t need to sheafify by Propositiér8.4
There is also a map of sheaves

(19) B:Fl L) > F1(2)
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which is obtained as the sheafification of a map of preshe@viesluced by the composi-
tion of the Verdier localization functor and the inclusion into the idempotent completion:

B'(WU):Ko((Lv)wy) = Ko (L) y/ (Ev)a-1y) = Ko (((fo)(l)/(IU)(lfl))u) .

For £ = D(«A), the mapg is the one of the localization sequender); We will be
interested in the group of global sections

200 TmB) T (F/71@) =Ko ((Lw/La-1)") =Z}@) .

where ZA(:E) is the dimensiord tensor triangular cycle group & from Chapter2. The
image of the map of presheavg’son the level of global sections is the subgroup

r(m(B") =Ko (£, /£{,_,)) < Ko((La/La-1)") -

As the presheaf iigf’) is separated (it is, after all, a sub-presheaf of a sheaf), the natural
map im(8’) — im(B) from presheaf to sheafification is injective and thus we have an
inclusion

(21) j i Tm(B) =Ko (£, /£{,_y)) = T(m(B)

as well. Leti : Ko(:(itél)) — Ko(iﬁlﬂ)) be the map induced by the inclusion a#d
Ko(jtiEl)) — Ko(jﬁlél)/é‘i?l_l)) be the map induced by the Verdier quotient functor.

6.5.1. DEFINITION. Thel/-dimensionah-cycle groupof £ is defined as the group
AZR (L) :=T(im(B)) C ZM (L) .
Thel-dimensionaN-Chow groupf is defined as the quotient

ACHA (L) := 1Z8(£)/) o p(Ker(i)) .

6.5.2. REMARK. We will see in Theorent.5.4that thesen-Chow groups show up
in the cohomology of the shedf},o) (see Definitior6.3.3. From Definition2.2.4 it also
follows that

ACHA (L) C CHA(D) .

Wheni?l)/:ﬁ?l_l) is idempotent complete already, it follows fro21j that
nZHE) =ZP(E) and CH (L) = CH ().

This is true for the cases we considered in the example computations of Th2@ém
and Proposition8.3.2 3.4.7and3.4.9

6.5.3. XAMPLE. Let X be a non-singular separated scheme of finite type over a field
and£ = DP®(X), the derived category of perfect complexes equipped with the opposite
of the codimension of support as a dimension function. In Thed&hy it is proved
that Zén (£)=Z"(X)and Cl-ﬁn(:(i) =~ CH"(X) for all n € Z. In this case we also have
isomorphisms,Z2,(£) = Z2,(£) and ,CH2,(£) = CH2,(£) by Remark6.5.2 (see
also Lemmd.7.6.
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We now assume that the dimension function dim Jor= D(+A) is given as the
opposite of the Krull codimension and furthermore, that the triangulated Gersten con-
jecture holds forA and for this choice of dimension function in bidegrdeés;j) with
—p—2<i<0and—1 < j < p. Splicing the short exact sequenc&8)(together yields
a partial flasque resolution of the sh&f@ 0)

- —p+1/—p) &1 —p/—p—1) %o —p—1/—p—2
(22) JC;O)—>J€§,°/ 1>—>---—>J€f” /p)_)x(() p/—p )_)(Kﬁlp /—p—2)
that we can use to calculate its cohomology.

6.5.4. THEOREM (Triangulated Bloch formula) Assume that the dimension function
dim for 7 is given as the opposite of the codimension and that the triangulated Gersten
conjecture holds fost and for this choice of dimension function in bidegrégs ) with
—p—2<i<0and—1 < j < p. Then we have isomorphisms

nCH2,(7) = H? (Spa7). X )
forall p e Z.

ProoF We will use the partial flasque resolutia2?j of JC},O) to calculate the group
H7 (SpaT). X ). The maps
J(f—pH/—p) N JC(()—p/—p—l) N J{E—lp—l/—p—Z)

are spliced together from the exact sequent8gi( the following way:

0
0o—— JC;—P-FU s <ycf—P-H/—P) d J{(()‘P) 0
X‘ 8
J{é—p/—p—l)

do
Y

0— Jci—lp—l) s*} :K‘ﬁ—lp—l/—P—z)

0

In order to calculate cohomology, we apply the global section functor. As taking global
sections is a left-exact functdr¢) is injective and so we have that

ker(I"(8)) = ker(I'(y)) = ['(ker(y)) = T'(im(8)) = nZ2,(7) ,

again by left-exactness of the global section functor.

Recall that the mapa, 8 are given as sheafifications of magspg’ between the
corresponding presheaves. By the functoriality of sheafification it follows@hat is
given as the sheafification of the compositi®ie «’. But g’ oo’ is already a map of
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sheaves and we therefore have thatr = 8’ oa’. The mapl' (8 o «) is therefore given
as the composition of the maps

¥ Ko ((Ax) (pt1y/-p)) = Ko (T(H_,,))
with X = Spd7) and

#:Ko(7 ) = Ko (T /T )
from the corresponding localization sequences. By the exactness of the localization se-
quence, infyr) = ker(i) with

;L T e
i:Kp (J(—p)) — Ko (”’(—p+l))
as in Definition6.5.1 Thus, we obtain i’ (B o)) = ¢ (ker(i)).
By our previous calculations we conclude that

HP (SpaT), K () = ker(I'(80))/im(T"(81))

= Z2,(T)/j o ¢ (ker(i))

= (CH2,(7)
which was to be shown. O

6.5.5. REMARK. From the proof of Theorerf.5.4 we can get a simpler definition
of ﬁZép(?‘), not using K-theory sheaves. Namely, we see that the map of sheaves
coy: Ké—p/—p—l) N ch—lp—l/—p—Z)

can be computed on global sections as the composition of the maps

Y 1Ko (Tiepy/Tiepny)* = K1 ((Ax)(<p1)
with X = Spd7’) and

€' K1 ((Ax)(p-1) = K1 (Ax) (- p-1)/(-p-2)) -

both coming from the corresponding long exact localization sequences. We therefore see
that

nZ2,(T) = T(im(B)) = (v) " (ker(¢")) .
This reformulation of Definitior6.5.1has the disadvantage that it needs tensor Frobenius

pairs in order to talk abouf _; and it is not obvious that it is actually independent of a
choice of such a tensor Frobenius pair.

6.6. The intersection product

Recall our assumptions far from Conventior6.3.2 We now let dim be the opposite
of the Krull codimension and require furthermore that the triangulated Gersten conjecture
holds for« in bidegreesgi, j) with —p—2 <i <0and—1<j < p.

First, let us recall a general well-known fact about cup products in sheaf cohomology
(see Bre67, Theorem 7.1 and Proposition 7.2]). L¥tbe a topological space arfd, &
be sheaves of abelian groupsXnThen there exists a unique associative bilinear product

U:HP(X,F)xHY(X,8) > HPTI(X,F ®z78)
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for all p,q € Z>o such that forp = ¢ = 0, the product is the one induced by the tensor
productl’ (X, F) xI'(X,§) —» I'(X, ¥ ® §) and the axioms offre67, Theorem 7.1] are
satisfied. The product is called thecup product

An application of Theorerg.5.4then yields the following:

6.6.1. @ROLLARY. Under the assumptions of Theoréb.4and for p,q € Z>o
there are bilinear maps

ACHA (T) x (CHA, (T) — HP+4 (Spc(‘T), KO @ chm) .

In order to construct the intersection product, we need aJﬁﬁb@Z ch(,o) — JCI(,O}rq,
which will then induce the product map
HPH(SpaT), K @z K(V) — HPT4(SpAT), K ),) = nCHE,_,(T)
It will be derived from a bilinear map on Waldhausen K-theory induced by the tensor
product.

6.6.2. LEMMA. Let A = (A, A¢,®) be a tensor Frobenius pair. If we consider
A as a Waldhausen category, thenis a biexact functord x A — 4 in the sense of
[Wal85, Section 1.5]

PrROOF By assumptiong ® — is an exact functor for all objects of A which im-
plies that it preserves cofibrations, as those are just the inflationsf Let— y be a
weak equivalence, i.e. a map that becomes an isomorphism after passitg }o This
means that the object cof€) of A is in A(. As 4, is a tensor ideal ip4 and passing
from + to the stable categong preserves tensor products, it follows that @ f is an
isomorphism in D+A) as well. Thereforer ® — preserves weak equivalences. Finally,
it is proved in Buh1Q Proposition 5.2] that exact functors of exact categories preserve
pushouts along inflations, which in our case means that pushouts along weak equivalences
are preserved. Therefore, the functer® — (and by symmetry- ® a) are exact in the
sense of Waldhausen (s&#dI85, Section 1.5]).

It remains to check tha satisfies the “more technical condition” &M/al85 Section
1.5]. This asserts that for two cofibrations a > a’, 8 : b > b’ in the diagram

a®idb ’
a®@b———a' ®b

o]

ad®b|]axb
a®b’ a®b

id,/ ®B

A

a/ ® b/
the arrowg is a cofibration, i.e. an inflation. This is exactly the pushout product axiom of
Definition5.4.2 O

A biexact functor® : A x A — A in the above sense gives rise to bilinear maps
Kp(fA’) Xz Kq (A) > Kp+q (A)
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for all p,g > 0 (see Wal85 Section 1.5]). In particular, we obtain maps
Kp(Av) @z Kq(Av) = Kpig(Av)

as Ay = (Ay)(o) Inherits the structure of a tensor Frobenius pair freérby Corol-
lary 6.1.4and Lemmab.1.5 These maps sheafify to

X0 @z KO — x)

pt+q-
and give us
(23) HPHa (Spc(T),JCI(,O) oz J<§°>) — HPH (Sp((?‘), J(},‘Qq) = (CHA,_.(T)
forall p,g > 0.

6.6.3. DEFINITION. Let A be a tensor Frobenius pair with derived categfrihat
satisfies the assumptions of Theorérb.4 For p,q € Z>¢, theintersection products
the bilinear map

o1 nCH2,(T) ® \CH2,(T) — nCHA,_(7)
that arises as the composition of the map in Corol&6s1and in £3).

6.6.4. REMARK. While the groups,CH2 (7)) only depend on RA) = 7, the prod-
ucto of Definition 6.6.3might depend on the whole modd.

6.6.5. EMARK. Let«A, B be two tensor Frobenius pairs satsifying the assumptions
of Theoren®.5.4andF : A — B a map of tensor Frobenius pairs (i.e. a map of Frobenius
pairs that respects the tensor products up to natural isomorphism) such that the induced
maps on the derived categories has relative dimension 0 (see Defiididn Then F
induces maps
ACH(F)-, : n\CHZ,, (D(A)) > ,CH,, (D(8B))
for all p € Z>¢ and there is a commutative diagram

nCH2, (D(4)) x ,CHA, (D(44)) —*— \CH2,_ (D())

ﬂCH(F)_”XﬂCH(F)—ql lmCH(F)—p—q
o
ACHA2, (D(B)) x nCH2, (D(8B)) —— ~CH,__ (D(B))

with x4, ag the respective products from Definitién6.3 In this sense, the construction
is functorial.

6.6.6. REMARK. The author expects that properties of the product in Waldhausen
K-theory and the cup product in sheaf cohomology as in CorobiaBylimply that the
intersection product from Definitio®.6.3makes

B nCcH2, ()
p=0

a graded-commutative ring with unit the clasd af ﬁCH@(?‘).
If G =27/27 x 7 /27 andk is an algebraically closed field of characteritjdhe
results of ChapteB show that

P CH2, (kG-stay = Z/2Z & Z./2Z .
p=0
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The only possible commutative unital ring structure on this group, that also has a nilpotent
element is(Z/27)[€]/(¢?). Thus, if the above assumption holds true, any choice of
tensor Frobenius pair with derived categbiy-stab that satisfies the triangulated Gersten
conjecture in the relevant degrees (if it exists) must yield the same intersection product.

6.7. Example: strict perfect complexes on a non-singular algebraic variety

We now introduce the main example of Definiti6r6.3 which justifies the name
“intersection product”. LetX be a non-singular separated scheme of finite type over a
field. Recall that astrict perfect complexon X is a bounded complex of locally free
O x-modules of finite rank.

6.7.1. DEFINITION. Let sPerf denote the category of strict perfect complexes on
X endowed with the following structure of exact category: a sequence of strict perfect
complexes

F*—8° - ¥°
is a conflation if it is degree-wise a split exact sequence. We denote the full subcategory
of acyclic strict perfect complexes by asPerf.

6.7.2. LEMMA. The triplesPerf= (sPerfasPerf®e, ) is a tensor Frobenius pair.

PROOF. For an exact catego#, let CH () denote the exact category of all bounded
chain complexes oveg, with the conflations defined as the degree-wise split exact se-
quences. Let Ay(&) c CHP (&) denote full subcategory of acyclic complexes. $th06
Section 5.3], it is shown thaCH’ (€),Ac?(€)) is a Frobenius pair. Thus, when we con-
sider the full subcategory of locally free sheaves of finite rank in(@ghas an exact
category, it follows thatsPerfasPerf is a Frobenius pair.

It is clear that the tensor product of two strict perfect complexes is again strict perfect
and as tensoring with a strict perfect complex is an exact functor, it follows that asPerf is a
®oy -ideal. It remains to check that the pushout product axiom of Defingiidr2holds
true. Thus, letf : A« = X, andg : B, > Y, be two inflations in sPerf. This means that
for eachi € Z we have automorphisms : X; — X; andg; : Y; — Y; such thaty; o f; is
a splitinjectiond; < A; ® C; andp; o g; is a split injectionB; <— B; & D;. The maps
f®idp, and id4, ®g are given componentwise as

(f ®idp )k : GB Ai® Bj — @ X; ® B;

i+j=k i+j=k
(id4, ®)x : @ A ®B; — @ Ai®Y;
i+j=k i+j=k

and after post-composing with the isomorphisms consisting of diagonal matrices with
entriesy; ®idpg; and idy, ®B; respectively, we obtain split injections

@ A, ®B; — @ (4i®Bj)®(C; ® B))
i+j=k i+j=k

@ Ai®B; — @ (Ai®Bj)®(A; ®Dj) .
i+j=k i+j=k
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We see that therefore

4egY.) [[ Xe®B)| = @ (4®B)@&A®D,)S(C®B)
Ae®Be e iti=k

Similarly, we see that
Xe®Yo )= P (4 ®B)S(A®D)B(Ci®B;)®(C;®D))
i+j=k
and the induced map

(A0®Yo) ]_[ (X.®B.) _>(X0®Yo)k

A.®B. k
is given as the canonical inclusion, which is split. This shows that the pushout product
axiom holds in sPerf and finishes the proof of the lemma. O

6.7.3. LEMMA. The categonD(sPerf) is equivalent tdPe(X) as a tensor triangu-
lated category.

ProoFE The inclusion functor from the exact category of strict perfect complexes
into the exact category of perfect complexes induces an exact equivalence of derived
categories between(®Perf) and D*"(X) if X has an ample family of line bundles, as
follows from [TT9O0, Proposition 2.3.1], as mentioned in the proof BTP0, Lemma 3.8].

As being noetherian, separated and regular already impliexthdmits an ample family

of line bundles (seegGI71, Corollaire 2.2.7.1]), our assumptions dhguarantee that

the inclusion is an equivalence. It is also a tensor functor as we can compute the derived
tensor product by tensoring with a quasi-isomorphic strict perfect complex. 0

6.7.4. @NVENTION. For the remaining part of the chapter, we $et= sPerfand
7 := D(sPerf) = DP®f(X). We fix the opposite of the codimension of support as a di-
mension function o

6.7.5. LEMMA. The Frobenius paisPerf satisfies the triangulated Gersten conjec-
ture in bidegreeg!/, p) forl <0andp > —1.

PROOF First, let us introduce some maps of exact sequences of Frobenius pairs,
which will allow us to ged rid of idempotent completions and work with complexes of
coherent sheaves instead of perfect ones.

ForU C X open with complement, we start with

(24) Tv)ig-1)y ——— (v)oy ——— (W wye-»

T T T

(sPerfé’_l),sPeer) — (sPerf(%,sPeer) — (sPerf(%,sPerf(?_l)>

in the notation of Definitior.3.3 where the vertical arrows are given as the inclusion into

the countable envelope. The vertical arrows induce induce equivalences of the correspond-
ing derived categories a§is regular (see Sectiéh3) and thus they induce isomorphisms

in K-theory.
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For an abelian categoog, define the Frobenius pair
Chb(4) := (CHP(4),Acl (4)) ,

where CH () is the category of bounded chain complexestimnd A () is the full
subcategory of complexes homotopy equivalent to an acyclic chain complex. The confla-
tions in Ch? (.4) are by definition the degree-wise split exact sequences. There is a map
of exact sequences of Frobenius pairs

(25)

(sPerf(?_l),sPerfz) — (sPerf(%,sPerfz) SN (sPerf(%,sPerf(?_l))

| J J

Ch? ((CoNU)(-1y) — Ch® (Coh(U)y) — Ch? (Coh(U)z)/CoNU ) —1y)

where the vertical maps are given by restrictiolto Again, we check that they induce
equivalences of the corresponding derived categories and therefore induce isomorphisms
in K-theory.

Using the mapsa4) and @5) and [Sch06 Theorem 11.10], we see that the localiza-
tion sequences corresponding to

Tv)a-» — Ty — Tv)aya-1
and
Ch? ((CoNU)—1y) — Ch? (CohU) (1)) — Ch? (Coh(U)zy/CONU ) i—1y)

are isomorphic. This proves the lemma for= —1 by [Sch06 Theorem 9.1], which
shows thatk_; (Ch? (+)) = 0 for any abelian categor. For p > 0, [TT90, Theorem
1.11.7] shows that both localization sequences are in turn isomorphic to the localization
sequence

Coh(U)q)
Coh(U) -1

from Quillen K-theory for alll € Z, where ColiU)(;) denotes the abelian category of
coherent sheaves on the open subsch&ne X, with codimension of support —/.
Therefore the stalks of the exact sequericg ére exact sequences isomorphic to the
usual ones in the Gersten conjecture, which is satisfied for regular local rings of finite type
over a field (seeQui73 Theorem 5.11]). This implies the statement as we can check the
vanishing of a map of sheaves on the stalks. O

~~—>Kp (CO*’(U)([))—)KP( ) —>Kp_1 (CO}“(U)([_I))—>--~

6.7.6. LEMMA. There are isomorphisms
nCH2,(T) = CH”(X)
forall p € Z.

PrROOFE Under our assumptions, Theor&i3.5shows thatCIﬂp(T) =~ CH?(X) for
all peZ. The isomorphismgCHél,(T) ~ CHéP(T) are a consequence of the fact that
the categorie@’(”_P) / f/‘(”_P_l) can be expressed as derived categories of abelian categories
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(as we assumed that is non-singular) and are therefore idempotent complete already
(see Sectiorz.3). Thus there is an equivalence

i
Ten/Tp-n = (J(—p)/J(—p—l)> = (Tp)/T=p-1))

induced by the inclusion functor, which gives the isomorphism by Re®.&x2 O

We now want to compare the usual intersection produck’cand the product from
Definition 6.6.30n the tensor triangular Chow groups oFf X'), coming from the tensor
Frobenius paisPerf. In order to do this, consider the isomorphisms

K;(9v) — K:(CohU))

that were constructed in the proof of Lem®&.5 If we denote them by,.U, then for all
i,j >0andU C X open, they fit into a diagram

Ki(Tv) ®K;(Ty) ———— Ki+;(Jv)

(26) [ Ji#
K; (COI’(U)) (034 Kj (CO}”(U)) R KH—j (CONU))

where the horizontal arrows are given by the products in the Waldhausen K-thefiy of
and in the Quillen K-theory of Cqlt/), respectively.

6.7.7. THEOREM. Leta denote the intersection product from Definiti®®.3coming
from the tensor Frobenius pasPerfand leta’ be the usual intersection product dh.
Assume that diagran26) commutes for ali, ; > 0 and all opensU C X. Then the
diagram

ACH2 (T) ® nCHA,(T) —“— (CHA,_(7)

Lk

CHP(X) ® CHY(X) —%— CHP+4(X)
commutes up to a sigh-1)7? for all p,g > 0.

6.7.8. REMARK. The construction of the products in Quillen and Waldhausen K-
theory is so natural that it seems very plausible that diageralways commutes for all
i,j >0and all opend/ C X. However, we could not find the statement in the literature
and we were unable to prove it.

PROOF OFTHEOREMG6.7.7. Aswe have Sp@) =~ X andX is regular, the sheaves
JC},O) will be isomorphic to the sheavefs, associated to the preshdafi— K, (Coh(U))
on X via the isomorphisms,. By the Bloch formula, M (X, ¥,) = CH? (X). The state-
ment now follows by the commutativity of diagrar®d) and the main result ofGra74,
where it is shown that the product

H?(X,%,) @ HI (X, F,) — HP?TI(X,F, @ Fy) — HPTU(X, Fpiy)

agrees with the usual intersection product up to a ¢igh?9, where the second map
comes from the product on Quillen K-theory induced by the tensor product. d



Glossary

Category theory

Abelian categoryA category is abelian if it is additive, every morphism has a kernel and
a cokernel and every monomorphism is a kernel and every epimorphism is a cokernel.
Additive category A category is additive if it has a zero object, all finite biproducts exist
and all Hom-sets are endowed with the structure of an abelian group, such that composi-
tion is bilinear.
Biexact functor An additive functorF : A x 8 — € for 4, 8,€ exact (resp. triangu-
lated) categories is biexact if for all objectse A and B € 8, the functorsF(4,—) and
F(—, B) are exact, i.e. they send conflations to conflations (resp. distinguished triangles
to distinguished triangles and commute with the corresponding suspension functors).
Cofibration SeeWaldhausen category
Cofinal functor A fully faithful functor ¢ : § — 4 into a filtered category is cofinal
if for any object! € 4 there exists an object € ¢ and a morphismi — ¢(J). If ¢ is
cofinal, then for any functax : 4 — €, we have an isomorphisrl)limow >~ Ii_m)a (see
[KSO0€]).
Cofinally small category A category€ is cofinally small if there exists a small category
€o and a cofinal functot, — €.
Conflation SeeExact category
Deflation SeeExact category
Dense subcategonA triangulated subcategor§ C 7 of a triangulated category is
dense if each object df is a direct summand of an object isomorphic to an obje&.of
Enough injective/projective objectsAn exact categorg has enough injective objects if
for every objectd there exists an inflatiod — I to an injective object of €. Dually, &
has enough projective objects if for every objddhere exists a deflatioR — A from a
projective objectP of &.
Essential imageThe essential image of a functér: § — T is the full subcategory df”
consisting of those objec® such thatB =~ F(A) for some objec € §.
Essentially small categoryA category is essentially small if it is equivalent to a small
category.
Exact category (in the sense of QuillenAn exact category is an additive categ@y
equipped with a clasg of pairs of composable morphismg, g)

4L i c
such thatf" is a kernel forg andg is a cokernel forf. The morphismgf, g that appear
in such a pair have to satisfy a list of axioms that mimick the behavior of monomor-
phisms and epimorphisms in an abelian category (seeRiihlf]). A pair (f,g) in E is
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called aconflation(or admissible exact sequencé’ is called arinflation (or admissible
monomorphistnandg is called adeflation(or admissible epimorphisnit can be shown
that any small exact catego/ can be embedded into an abelian categarguch that
the embedding sends conflationirto short exact sequencess#andé is closed under
extensions in4. One associates to any exact category based topological space BQ
whose higher homotopy groups are theillen K-groupsof & (see Rui73).

Filtered category A categoryd is filtered if it is non-empty and satisfies the following
conditions:

(1) For all objectsl, J € 4 there exists an objedt € 4 and morphismd — K
andJ — K.

(2) For all parallel morphismg. g : I = J in 4, there exists a morphism: J — K
suchthatio f = hog.

Frobenius categoryA Frobenius category is an exact category that has enough injective
and enough projective objects and is such that the classes of injective objects and projec-
tive objects coincide.

Full subcategory A subcategoryD C € is full if Hom g (A, B) = Home (A, B) for all
objectsA, B of D.

Inflation SeeExact category

Injective object An object/ of an exact categor§ is injective if the functor

Homg(—,1): &°° — Ab

is exact.

Localizing subcategoryA triangulated subcategosy C 7 of a triangulated category
is localizing if § is closed under taking set-indexed coproducts.

Projective object An object P of an exact categor§ is projective if the functor

Homg(P,—): & — Ab

is an exact functor.

Quasi-inverseA quasi-inverse to a functaf : A — B is a functorG : 8 — 4 such that
G o F is naturally isomorphic to ig and F o G is naturally isomorphic to ig. If F has
a quasi-inverse, thef is an equivalence of categories.

Quillen K-groups seeExact category

Serre subcategoryA subcategoryB of an Abelian categoryt is a Serre subcategory if
it is non-empty, full and for all short exact sequences

O->M —->M-—->M"-0

in 4, we have thab/ is in 8 if and only if bothM’ andM” are inB.

Small categoryA category is small if it has a set (as opposed to a proper class) of objects
and a set of morphisms.

Symmetric monoidal categoryA symmetric monoidal category is a categorys which

is equipped with a commutative “tensor product”. That is, we are given a bifunctor
®:8x8 — &, a unit objectl € § and natural isomorphismd I @ A =~ 1 ® 4,
AR(BRC)~(A®B)®C, A® B =~ B® A for all objectsA, B,C € § which have to
satisfy some coherence conditions (Sek98]).

Waldhausen categoryA Waldhausen category is a category with a zero object that
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is equipped with two classes of morphisms, toéibrationsco('W) and theweak equiva-
lenceswe('W), which have to satisfy a number of axioms (s@é[85). One associates
to any Waldhausen categohy a based topological spa€gwS, W| whose higher ho-
motopy groups are thé/aldhauserK-groupsof ‘W. If we are given an exact categoéy
and let c@E) be the class of inflations ie and we& &) the class of isomorphisms, thén
becomes a Waldhausen category in this way.

WaldhausenK-groups seeWaldhausen category

Weak equivalenceSeeWaldhausen category

Algebraic geometry

Homological support The homological support of a chain complex of modules/sheaves
is the support of the coproduct over all its homology modules/sheaves.

Perfect complexA perfect complex on a schem&,Ox) is a chain complex of)x -
modules that is locally quasi-isomorphic to a bounded chain complex of locally free
sheaves of finite rank.

Quasi-separated schemA scheme is quasi-separated if the intersection of any two quasi-
compact open subsets is quasi-compact.

Regular schemeA scheme( X, Ox) is regular if for any poink € X the local ringOx x

is a regular local ring.

Separated schemé schemeX over a base schentgis separated if the diagonal map

X — X xg X is a closed immersion.

Specialization closedA subsetY of a topological spac& is specialization closed if

P €Y implies that{P} C Y.

Topologically noetherian schemeA scheme(X, Oy) is topologically noetherian iX is

a noetherian topological space.
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Samenvatting

In dit hoofdstuk zal de inhoud van dit proefschrift worden samengevat voor lezers met
enige achtergrondkennis op het gebied van algebraische meetkunde en/of getrianguleerde
categorieén.

Algebraische variéteiten en Chow-groepenDe objecten die in in de algebraische
meetkunde worden bestudeerd zijn schema’s en morfismes van schema’s. In deze samen-
vatting beperken wij ons tot makkelijkere (maar zeker niet-triviale!) varianten van een
schema, namelijlalgebraische variéteiten (ové€r). Voor een geheel getal > 0 wordt
A, deaffienen-ruimte overC, gegeven als de verzameliif’ voorzien van deariski-
topologie een verzameling’ C A¢, is gesloten als er een verzamelifig- C[xy, ..., x,]
bestaat zodat de gezamenlijke nulpuntenverzamelingen van de polynom&nsn Een
affiene algebraische variéteit (ové)) is een gesloten deelverzameliigc A%, samen
met decodrdinatenring

A(V):=Clxy,....,x,]/I(V) .

Hierbijis (V) € C[xy,...,x,] hetideaal van alle polynomen die dpverdwijnen.

VOORBEELD. Zij f € C[xy,...,x,]. Het polynoomf definieert een affiene alge-
braische variétel (/) C A¢. waarbij7 = { f}. Men kan laten zien dat

AWV () =Clx1,....xal/ V() ,

waarbij/( f) het ideaal
{g:3r>0zo0datg" € ()} C Clxy,...,xu]

VOORBEELD. Zij V' C Ag een affiene algebraische variéteit gre C[xy,...,x,].
Men kan laten zien dat de open deelverzameling

Uy :=V\V(f)cV

weer een affiene algebraische variéteit is met codrdinatentiiig A de lokalisering van
A (V) bij de multiplicatieve vezamelinQf” : n € Zo}.

Een algebraische variéteit is grofweg een object, dat lokaal “eruit ziet” als een affiene
algebraische variéteit. Voor het topologische gedeelte is dat eenvoudig te realiseren: de
onderliggende ruimte van een algebraische variéteit is een topologische Xuimeteeen
eindige open overdekking

x=Jw
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zodatV; homeomorf is met een affiene algebraische variéteit. Om lokaal over coordi-
natenringen te kunnen spreken eisen wijdatoorzien is van eeachoof van ringei® x :

voor elke open deelverzameliig C X zijn ringen Ox (U) gegeven, en voor een in-
clusieU; C U, zijn er ringhomomorfisme® x (U,) — Ox (U,), derestrictieafbeeldin-

gen welke aan een aantal axioma’s moeten voldoen. In het geval van onze algebraische
variéteitX eisen wij dat9y (U}’") = A(V;) r voor alle f, en dat de restrictieafbeeldingen
overeenkomen met de lokaliseringsafbeeldingen via dit isomorfisme. Omdat de verza-
meIingenUV" een basis voor de topologie dpvormen, zijn de ringe® x (U) op deze
manier volledig vastgelegd voor alle open verzamelingea X .

VOORBEELD. Zij V een affiene algebraische variéteit. DarVigen algebraische
variéteit: de schoot)y wordt vastgelegd door te eisen cia(U}’) =A(V) s en dat de
restrictieafbeeldingen gegeven worden door de lokaliseringsafbeeldingen. We noemen
Oy deschoof van reguliere rationale functies dp

VOORBEELD. De RiemannsfeeP/. is een voorbeeld van een algebraische variéteit
die niet affien is. We kunne]ﬁé overdekken met de open deelverzamelingen

Up:=P{\{oo} en U,:=PE\{0}.

Een toepassing van de stereografische projectie laat zien dat Zqwads U, homeo-
morf zijn metC, wat men kan schrijven als de nulpuntenverzamelingOvanC [x]. Wij
definieren nu een schoof van ringen]b@ door de schoven van reguliere rationale func-
ties opU; = C aan elkaar te plakken ofg; N U, = C \ {0} door middel van de functie
x+—1/x.

De Chow-groepetan een algebraische variét&itzijn invarianten varX in de vorm
van abelse groepen CKX), p > 0, die voortkomen uit de systematische studie van irre-
ducibele gesloten deelvariéteiten van“modulo rationale equivalentie”. Een deelva-
riéteitY van een algebraische variét&itis grofweg een gesloten deelverzameling wan
die zelf weer een algebraische variéteit is. Een deelvariétisitrreducibel al§” niet kan
worden geschreven als een eindige vereniging van gesloten deelvarigtditevioor een
geheel getap > 0 beschouwt men alle irreducibele deelvariéteiten ¥aran codimensie
p en maakt dit tot een abelse groef(&) door formele eindige sommen van codimen-
sie p deelvariéteiten vark (zogenaamdeykeld met geheeltallige coéfficiénten toe te
laten. Nu definiéren wij op deze groep een equivalentierelatie waarbij twee codimpensie
cykelsrationeel equivalentijn als zij door middel van een “algebraische homotopie in
X" in elkaar over kunnen gaan. Dit kan men zich voorstellen als volgt: de twee cykels
zijn elementen van een continue familie van cyk€ls X x P!, waarbijC zelfs weer
een deelvariéteit vail x P! is. Wij formaliseren dit idee door te zeggen dat twee cykels
rationeel equivalent zijn als hun verschil gelijk is aan de divisor (d.w.z. de formele som
van nulpunten en polen, geteld met multipliciteiten) van een rationele functie op een irre-
ducibele deelvariéteit vaki van codimensig — 1. Het quotiént van Z(X) modulo deze
equivalentierelatie is de codimengieChow-groep CH (X).

VOORBEELD. Voor een algebraische variétditis Z°(X) = CH’(X) de vrije abelse
groep op de irreducibele componenten vanVoor een grote klasse van algebraische va-
riteitenX is CH!(X) gelijk aan Pi¢X), de Picardgroep vai .
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Op een gladde algebraische variéteit kan van

CH(X) = @D CH"(X)

p>0
een gegradueerde ring worden gemaakt doorsegproduct
CHP(X)x CHY(X) — CHPT4(X)

voor alle p,q > 0 te definiéren. Het idee achter deze constructie is om deelvariéteiten
V,W C X van codimensie engq te snijden en een deelvariétéitn W c X van codi-
mensiep + ¢ te verkrijgen. De deelvariéteit N W is niet noodzakelijk irreducibel maar
heeft een eindig aantal irreducibele componenten, die een cyk#l definiéren. Om
rekening te houden met snijmultipliciteiten voorzien we elk irreducibel component van
V N W van de bijbehorende multipliciteit als coéfficiént. Dit kunnen wij vervolgens li-
neair uitbreiden tot cykels. Aan dit idee zijn echter een aantal problemen verbonden:
zoals men snel ziet kan het gebeuren dat de codimensid’vaml’ niet gelijk is aan

p +¢q (neem bijvoorbeeld” = W, met codin{l’) > 0) en het blijkt ook niet makkelijk

te zijn om een goede definitie van snijmultipliciteiten te geven. Voor gladde algebraische
variéteiten is er echter een oplossirfghow’s moving lemméL956) zegt dat er altijd’’

en W’ in de respectievelijke equivalentieklassen Jaren W in CH(X) zijn, zodat de
codimensie varv’ N W’ gelijk is aanp + ¢. Verder is het mogelijk om in dit geval een
goede definitie voor intersectiemultipliciteiten te geven, bijvoorbeeld dododéormule

van Serrg1965). Grayson (1978) geeft een andere methode om het snijproduct door mid-
del van de hogere algebraisdéeheorie vanX te definiéren.

Afgeleide en getrianguleerde categorieénEen categorie is een wiskundig object
dat kan worden beschouwd als een formele abstractie van de volgende algemene obser-
vatie: in alle takken van de wiskunde bestudeert men een bepaalde klasse van objecten
(zoals verzamelingen, topologische ruimtes, groepen etc.) en een bepaalde soort van af-
beeldingen tussen deze objecten (zoals functies, continue functies, groepshomomorfismes
etc.). Een categorié bestaat uit de data van een verzamelingafgjecterOb(€) en voor
elk tweetal van objectenl, B € Ob(€) een verzameling vamorfismesHome (4, B).
Verder is er voor elk drietal van objecteh B,C € Ob(€) een associatieve samenstel-
lingsafbeelding

o:Home (A4, B) x Home (B, C) — Home (A4, B) x Home (B, C)

en een identiteitselement joc Home (A4, A) voor elk objectA, dat als links- en rechts-
eenheid voor de samenstellingsafbeelding fungeert.

Veel categorieén hebben meer structuur dan de boven genoemde: getrianguleerde ca-
tegorieén zijn een soort categorie die men vooral tegenkomt in de context van homotopie,
zowel in de algebraische zin (homotopie van ketencomplexen) als in de topologische zin
(homotopietheorie van topologische ruimtes). Het meest basale voorbeeld aan de alge-
braische kant is dafgeleide categorigan een abelse categorie, voor het eerst bestudeert
door Grothendieck en Verdier (1967). Dit leggen wij nu verder uit.

Een abelse categorie is grofweg een categorie waarin men morfismes kan optellen,
en waarin elk morfisme een kern en een cokern heeft. Het naamgevende voorbeeld is
de categorie van abelse groep&in. Een observatie die leidt tot de constructie van de
bijpbehorende afgeleide categorie is dat in veel wiskundige contexten ketencomplexen van
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abelse groepen een belangrijke rol spelen, zoals in de volgende twee voorbeelden: bij het
uitrekenen van de homologiegroepen van een topologische ruimte, of bij het uitrekenen
van groepencohomologie kunnen verschillende methodes worden toegepast, die allemaal
het doel hebben om een ketencomplex van abelse groepen te produceren, waarvan men
vervolgens homologiegroepen berekent. Een ketencomplex van abelse groepen is een
diagram
Bit1 0;

Ae:vr— Al'+1 — A — Aj—1 — -
waarbij A; abelse groepen zijn eh morfismes ervan (ddifferentialer), end;d; 1 =0
voor allei geldt. De eerste stap in de constructie van de afgeleide categorie is de construc-
tie van de categorie van ketencomplexeidB). De objecten van @\b) zijn ketencom-
plexen van abelse groepen en een afbeelding> B. is een verzameling groepshomo-
morfismesA; — B; die moeten commuteren met de differentialen. We merken op dat
C(Ab) weer een abelse categorie is.

VOORBEELD. Voor een topologische ruimt& produceert men heatinguliere keten-
complexC.(X), waarbijC, (X) wordt gegeven als de vrije abelse groep op de continue
afbeeldingen van de standaargimplex naatX . De differentialen worden gegeven door
restrictie tot de zijvlakken.

Zij G een groep. Om de cohomologie van éemoduulM uit te rekenen produceert
men eeninjectieve resolutie vad/ en bekijkt de restrictie van de resolutie tot et
invariante deel. Het resultaat is ook hier een ketencomplex van abelse groepen.

In de boven genoemde voorbeelden is men eigenlijk niet geinteresseerd in het keten-
complexA, zelf, maar in de homologiegroepen

H;(As) := kerd; /im(d;+1) .

In het geval van de groepencohomologie is het zelfs zo, dat een andere keuze van injec-
tieve resolutie kan leiden tot een niet-isomorf ketencomplex. Er is echter één belangrijk
verband: een keuze van twee injectieve resoluties geeft altijd een afbeelding tussen de
twee geassocieerde ketencomplexen, die isomorfismes op de homologiegroepen induc-
eren. Wij noemen afbeeldingen van ketencomplexen, die isomorfismes op de homolo-
giegroepen induceraguasi-isomorfismes

Met deze observaties in het achterhoofd zien wij dat de categgAe)C'te groot”
is: wij zijn op zoek naar een categorie waarin quasi-isomorfe ketencomplexen kunnen
worden geidentificeerd. Het idee om dit probleem op te lossen is makkelijk: De afgeleide
categorie [DAb) wordt geconstrueerd uit(@b) door de quasi-isomorfismes formeel te
inverteren. Een morfisme¢, — B, in D(Ab) wordt gerepresenteerd door een “breuk”

Ao < C, — B,

waarbijo een quasi-isomorfisme is (die wij als “noemer” beschouwen). Op deze manier
forceren wij dat quasi-isomorfe ketencomplexen isomorf worden(itd).

De prijs die men hiervoor moet betalen is datAD) geen abelse categorie meer is.
De categorie [DAb) heeft nog wél een additieve structuur: wij kunnen morfismes optellen.
Een kenmerkende eigenschap van abelse categorién, het bestaan van kernen en cokernen,
is echter niet meer gegeven. Daardoor kan men (Al niet meer praten over exacte
rijen. Er bestaat wél een vervanger voor dit belangrijke conceptieract driehoekn
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D(Ab) is een diagram van de vorm

Ae = Be — Co — X (A.)
dat afkomstig is van een korte exacte rij

0— A¢ — Be > Co — 0

in de (abelse!) categorie(&b) die in elke graad split. De uitdrukkin@ (4.) staat

hier voor het ketencomplex, metA; = 4;,, en 8;4/' = —8,.‘1;1. Wij merken op dat de
constructie van D4) voor een willekeurige abelse categosein volledige analogie is

met de constructie van(@b).

VOORBEELD. Op een algebraische variétd&itbeschouwen wij de categorie van co-
herente schoven vafiy-modulen CokiX). De objecten van deze categorie zijn schoven
van abelse groepefi op X zodanig dat¥ (U) een eindig voortgebraclity (U)-moduul
is en zodanig dat deze moduulstructuur compatibel is met de restrictieafbeeldingen van
F enOy. De categorie CotX) is abels en B(Coh(X)) is de volle deelcategorie van
D(Coh(X)) van begrensde ketencomplexen in Cbh, d.w.z. complexer¥, met¥; # 0
voor eindig veel. Als X een affiene algebraische variéteit is, dan is de categori€¥Qoh
equivalent met AX)-mod, de categorie van eindig voortgebrachteXA-modulen en
geldt D’(Coh(X)) = DP(A(X)-mod).

Een getrianguleerde categorie kan men beschouwen als de axiomatisering van een
afgeleide categorie: hetis een additieve catedgorisamen met een additieve equivalentie
van categoriérEs : 7 — T (deshift of suspensionen een klasse van exacte driehoeken

A—B—C — X(A)

die aan een aantal axioma’s moeten voldoen. Een fudttdf — § tussen twee getrian-
guleerde categorieén hestactals hij met de shifts commuteert en exacte driehoeken in
T naar exacte driehoeken fstuurt.

In dit proefschrift bestuderen wij een klasse van getrianguleerde categorieén die nog
meer structuur hebben: een tensor-getrianguleerde categorie is een getrianguleerde cate-
gorieJ samen met een compatibele symmetrisch-monoidale structuur, dat wil zeggen er
is een bi-functor

R :TXT —>T
die, op natuurlijk isomorfisme na, een associatieve en commutatieve operatieng
eenheidsobjedt definieert. Verder eisen wij dat voor elk objett 7 de functor

AQR—:T =T
exact is.

VOORBEELD. Zij X een niet-singuliere algebraische variéteit. Dan induceert het
tensorproduc®® e, van coherente schoven een bi-functor

®" : D’(Coh(X)) x D°(Coh(X)) — D°(Coh(X))

die D°(Coh(X)) de structuur van een tensor-getrianguleerde categorie geeft. Wij merken
op dat de constructie vag- op D’(Coh(X)) niet altijd mogelijk is alsX niet glad is: voor

twee begrensde ketencomplex&n g, € DP(Coh(X)) is het ketencomple%, ®" ¢, dan
mogelijk niet begrensd.
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Chow-groepen van tensor-getrianguleerde categorieérEen bekende stelling van
P. Gabriel (1962) zegt dat alle informatie over een algebraische vaétedvat is in
de abelse categorie Coti): men kan voor elke abelse categosieeen topologische
ruimte Sg+4) en een schoof van ringefi, op Sg+4) definieren, zodanig dat het paar
(SP(Co(X)), Oconx)) isomorf is met de algebraische variétit Een natuurlijke vraag
die hieruit voorkomt is of de getrianguleerde categorié@dh(X)) ook alle informatie
over X bevat. Het antwoord hierop is negatief: voor een abelse variEteit de duale
variéteit X zijn de categorieén BCoh(X)) en D’(Coh(X)) altijd equivalente getrian-
guleerde categorieén, magiren X zijn niet noodzakelijk isomorf.

Een mogelijkheid om dit te “repareren” is omP@oh(X)) in het niet-singuliere
geval als tensor-getrianguleerde categorie te beschouwen. Een stelling van P. Balmer
(2005) zegt, dat men voor elke tensor-getrianguleerde catefj@ém topologische ruimte
SpdT) en een schoof van ringefy op SpgT ) kan definiéren zodat

(SpAD°(CoN(X))). Ops(conx)
isomorf is metX. De stelling is nog algemener: voor een willekeurige (mogelijk sin-
guliere) algebraische variétett beschouwen wij de getrianguleerde deelcategorie van
perfecte complexeBPe(X) c DP(Coh(X)). De categorie PF(X) is altijd eenten-
sor-getrianguleerde categorie eI X) is equivalent met B(Coh(X)) als X glad is.
\olgens de stelling geldt altijd dat

(SPADP(X)). Opperi(x))

isomorf is metX .

Uit het oogpunt van deze stelling zou het daarom in theorie mogelijk moeten zijn
om de studie van een algebraische variétete vervangen door de studie vaRef{ X).
Andersom kan men de studie van tensor-getrianguleerde categorieén opvatten als een uit-
breiding van de studie van algebraische variéteiten. In dit proefschrift wordt de vraag
bestudeert in hoeverre het mogelijk is om de invarianten “Chow groepen van een alge-
braische variéteik” uit te breiden naar tensor-getrianguleerde categorieén. Wij verkrij-
gen onder andere de volgende resultaten:

e Een definitie van cykelgroepen en Chow-groepen voor tensor-getrianguleerde
categorieéry” van P. Balmer (2013) geeft invarianten die de cykelgroepen en
Chow-groepen van een niet-singuliere algebraische varigtegconstrueren
als7 = DPef(X).

e Deze invarianten hebben goede functorialiteitseigenschappen. Hiermee bedoe-
len wij dat een grote klasse van functoren tussen tensor-getrianguleerde cate-
gorieén groepshomomorfismes induceert tussen de bijpbehorende cykelgroepen
en Chow-groepen.

e De theorie is toepasbaar in nieuwe situaties, bijvoorbeeld in de modulaire re-
presentatietheorie.

e Onder speciale voorwaarden kan men de methode van Grayson generaliseren
om een snijproduct op de Chow-groepen van tensor-getrianguleerde categorieén
te verkrijgen.

Wij verwijzen de lezer naar de introductie voor de exacte formuleringen van bovenstaande
uitspraken.
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