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4 Chapter 1. General introduction

The process of digitization of pathology imaging has been ongoing for sev-
eral decades. As early as in 1986, telepathology was made possible after
the introduction of video cameras mounted on microscopes, enabling live im-
ages to be shared with experts at remote locations (Al-Janabi et al. 2011;
Pantanowitz et al. 2011). This enabled live teleconsultation and remote dia-
gnosis of frozen sections (Baak et al. 2000), although at a relatively low resol-
ution. In the last two decades, high quality digital cameras became available,
allowing capturing of still digital images from a microscope at a high res-
olution. This was followed by the introduction of whole-slide imaging (WSI)
scanners that are gradually making their way into pathology labs as the digital
age alternative to the conventional microscope. State-of-the-art WSI scanners
are table-top devices that take glass slides as input and produce whole-slide
digital images (sometimes referred to as digital or virtual slides) as output,
automating all intermediate steps such as localization of the tissue and focus
plane selection. The goal of whole-slide imaging, coupled with whole-slide
image viewers, is to simulate slide viewing by a conventional microscope on
a computer screen.

Pathology labs are currently undergoing a transformation towards a fully
digital workflow (Stathonikos et al. 2013). In addition to the digital man-
agement of tissue samples, pathology orders and reports, this includes the di-
gitization of histopathology slides and use of computer monitors for viewing
them, which aims to replace the optical microscope as the primary tool used
by pathologists. This transformation has only recently been enabled by the in-
troduction of cost and time efficient WSI scanners. This process of adoption of
WSI is somewhat analogous to the digitization of radiological imaging. How-
ever, a full analogy is difficult to establish because in pathology the primary
object of analysis is the tissue rather than the image (Hipp et al. 2011). Adop-
tion of a fully digital clinical workflow in radiology benefitted from the ability
to acquire radiological images digitally. By contrast, the barrier to entry is
higher for histology, which is a distinctly analog modality that must always
undergo an analog-to-digital conversion before computerized analysis. Nev-
ertheless, there are numerous advantages to WSI that provide incentives for
acceptance as a primary diagnostic modality. Many advantages stem from
the fact that compared with glass slides, whole-slide images are more port-
able entities that can be easily retrieved from a digital archive. They are
accessible through a computer network from remote locations and allow sim-
ultaneous access by multiple people. Whole-slide image viewers can offer
an enriched user experience, such as showing an overview image along with
the high-power view to enable better orientation and navigation, or simultan-
eously displaying of two or more slides side by side. One of the main benefits
of digital slides compared with conventional glass slides is that they enable
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seamless integration of quantitative automatic image analysis methods into
the workflow. These methods have the potential to tackle the problems that
stem from the subjective interpretation by pathologists and, at the same time,
reduce their workload (Meijer et al. 1997).

A relatively large percentage of the samples that are analyzed in pathology
labs are from breast cancer patients, since this disease is the most prevalent
form of cancer among women (Bray et al. 2004). Analysis methods that are
routinely performed by pathologists, such as determination of the histological
grade and the hormone receptor status by immunohistochemistry, can be tedi-
ous and are hampered by observer variability (Meyer et al. 2005; Perez et al.
2006). The histological tumor grade is commonly determined according to
the modified Bloom-Richardson system, which consists of semi-quantitative
assessment of nuclear atypia, tubule formation and mitotic activity (Elston
et al. 1991; Rakha et al. 2010) in hematoxylin and eosin (H&E) stained sec-
tions. The analysis of immunohistochemically stained slides mainly involves
the estimation of the number of cells that are positive for a particular antigen
and the degree of positivity (staining intensity) (Hammond et al. 2010; Wolff
et al. 2007).

The focus of this thesis is on automatic image analysis of H&E stained
breast cancer histopathology images. Chapter 2 gives a detailed review of
the literature on the topic of analysis of breast cancer histopathology images.
The tissue preparation and imaging processes are also covered and particular
attention is given to techniques for detection and segmentation of various ob-
jects, such as nuclei, tubules and mitotic figures, as well as computer-aided
diagnosis and prognosis methods. In Chapter 3, the development and evalu-
ation of a method for automatic segmentation of nuclei in H&E stained breast
cancer histopathology images is presented. The proposed nuclei segmenta-
tion method is then used in Chapter 4 to extract and evaluate the prognostic
value of nuclear morphometric features in a cohort of 101 male breast cancer
patients. Chapter 5 presents the results from a challenge workshop on the
difficult problem of detection of mitotic figures in H&E stained breast can-
cer histopathology images. The challenge was based on a data set consisting
of 12 training and 11 testing subjects, with more than one thousand annot-
ated mitotic figures by multiple observers. The development and evaluation
of a mitotic figures detection method using the same data set is described in
Chapter 6. Chapter 7 provides a general discussion of the results of this thesis
and wraps up the results once more.
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Summary

In this chapter, an overview of methods that have been pro-
posed for analysis of breast cancer histopathology images is
presented. This research area has become particularly relevant
with the advent of whole slide imaging (WSI) scanners, which can
perform cost-effective and high-throughput histopathology slide
digitization, and which aim at replacing the optical microscope as
the primary tool used by pathologist.

Breast cancer is the most prevalent form of cancers among wo-
men, and image analysis methods that target this disease have a
huge potential to reduce the workload in a typical pathology lab
and to improve the quality of the interpretation. The chapter starts
with an overview of the tissue preparation, staining and slide di-
gitization processes followed by a discussion of the different im-
age processing techniques and applications, ranging from analysis
of tissue staining to computer-aided diagnosis and prognosis of
breast cancer patients.

Based on: Mitko Veta et al. (2014b). „Breast cancer histopathology image
analysis: a review”. In: IEEE Transactions on Biomedical Engineering 61, 1400–
1411



2.1. Introduction 9

2.1 Introduction

In this chapter, we give an overview of image analysis methods that have
been proposed for breast cancer histopathology images. We focus on auto-
matic image analysis of histopathology tissue preparations imaged by bright-
field microscopy, since this covers the bulk of the work that is performed by
pathologists for this disease. However, some techniques developed for other
tissue types or microscopy modalities that are relevant for the scope of this
review are mentioned throughout the text when appropriate. For a broader
overview of digital pathology and the use of automatic methods for analysis of
histopathology slides, we refer the reader to the recent reviews in Di Cataldo
et al. (2012), Fuchs et al. (2011), Ghaznavi et al. (2013), Gurcan et al. (2009)
and Al-Janabi et al. (2011).

2.2 Tissue preparation and imaging

Before we proceed to discuss the different image analysis algorithms and ap-
plications, we give an overview of the tissue preparation and staining pro-
cesses and digitization of histological slides. In the typical hospital workflow,
breast tumor excisions or biopsies are performed in the operating room after
which the material is sent for analysis to the pathology lab. The first step of
the tissue preparation process is formalin fixation and embedding in paraffin.
From the paraffin blocks, sections with a thickness of 3-5 µm are cut using a
microtome (a high precision cutting instrument) and mounted on glass slides.
The structures of interest in the tissue, in most instances the nuclei and cyto-
plasm, are not readily visible on the mounted sections. They therefore need
to be dyed with stains that highlight them. The standard staining protocol
uses hematoxylin and eosin (H&E, Figure 2.1(a)). In spite of the fact that
this staining protocol has been in use for around a century, the diagnostic
and prognostic procedure for all patients still almost always starts by staining
the sections with H&E. Hematoxylin binds to DNA and thereby dyes the nuclei
blue/purple, and eosin binds to proteins and dyes other structures (cytoplasm,
stroma, etc.) pink.

Immunohistochemistry (IHC) is a more advanced staining technique,
which makes use of antibodies to highlight specific antigens in the tissue (Fig-
ure 2.1(b)- 2.1(c)). In breast cancer, IHC is commonly used to highlight the
presence of estrogen (ER), progesterone (PR) and human epidermal growth
factor 2 (HER2) receptors, as well as to assess the proliferation of the tu-
mor, for example, by highlighting the Ki-67 protein, which is associated with
cell proliferation (Fitzgibbons et al. 2000; Hammond et al. 2010; Wolff et
al. 2007). When performing IHC, the tissue is usually counterstained with
hematoxylin to identify the nuclei and to visualize the tissue architecture (in
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case of nuclear antigens — visualize the nuclei in which the target antigen is
absent). When quantification is of primary interest, such as with the determ-
ination of the ER, PR and HER2 receptor status for breast cancer patients by
IHC, the staining protocols need to be standardized and quality-controlled in
order to obtain reproducible results, which are comparable across different
patients (Taylor et al. 2006; Walker 2006).

Very often in breast cancer research, many different markers highlighted
by IHC from hundreds or thousands of patients need to be considered. In
order to achieve high-throughput analysis, researchers resort to using tissue
microarrays (TMAs) (Kononen et al. 1998; Skacel et al. 2002). TMAs are
constructed by punching small core biopsies (usually with a core diameter
of 0.6 mm) from selected regions of the paraffin blocks containing the tissue
to be analyzed, and transferring them to a recipient paraffin block in a reg-
ular pattern. The recipient paraffin block, which now contains tissue from
many different subjects, is then cut and stained in a standardized manner. Be-
cause with TMAs tissues from different patients are stained under the same
conditions, the resulting staining variability is significantly lower than with
routinely prepared histopathology slides, which makes them more suitable
for image analysis.

Currently, the typical pathology lab workflow is concluded by staining and
coverslipping of the glass slides, after which they are sent to the pathologist
for analysis. As digital pathology becomes more commonplace, slide digitiza-
tion is added as an additional stage to this workflow (Stathonikos et al. 2013).
The early slide digitization systems were digital cameras mounted on standard
microscopes, which could capture still images. Present day whole slide ima-
ging scanners, which enable high throughput slide digitization at relatively
low cost, handle the entire scanning procedure automatically. This includes
loading of the slides on the scanning platform, detection of the relevant tis-
sue regions and focus point selection, image acquisition, compression, storing
and registration on a laboratory information system. Most of the WSI scanners
that are currently in use perform slide scanning at ×20 or ×40 magnification
with a spatial resolution in the order of 0.5 µm/pixel and 0.25 µm/pixel, re-
spectively. Because of the large size, the captured RGB image is compressed
most commonly with JPEG or JPEG 2000. For faster navigation, the images
can be stored in a pyramid structure with increasing magnification at each
level of the pyramid. This also facilitates multi-scale image analysis.

The tissue preparation, staining and slide digitization processes can have
a significant impact on the tissue/image appearance, and insight into them
may lead to a better design of image analysis algorithms. The impact can
be manifested in several ways. For example, improper fixation can lead to
changes in tissue morphology and thus induce incorrect tissue morphometry
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(a) Hematoxylin and eosin. (b) IHC staining for ER. (c) IHC staining for HER2.

Figure 2.1: Example histological stains. For the IHC stained sections, the antibody is visu-
alized with the DAB chromogen (3, 3’-Diaminobenzidine) and the tissue is counterstained
with hematoxylin.

by automatic image analysis. If sections are not properly stained (i.e., over- or
under-stained) and mounted, this may result in out-of-focus regions and/or
missing parts. Even small variations of the staining conditions can lead to vari-
ations in tissue appearance and cause problems for automatic image analysis
algorithms. This issue of staining/appearance variability will be considered in
more detail in the following sections.

2.3 Staining analysis

When performing image analysis of histopathology images, it is of interest to
separate the histological stains that dye different tissue components. For in-
stance, if the application is nuclei detection in H&E stained sections, it can
be beneficial to obtain a hematoxylin only image since the eosin-only stained
components can contribute towards false positives. One approach is to per-
form clustering or supervised classification of the RGB pixel values in order to
obtain binary or probability maps for the different stains. These methods re-
quire labeled data or identification of the cluster that corresponds to the stain
of interest. Another approach for staining separations is based on the fact
that the image formation process in brightfield microscopy can be modeled
according to the Lambert-Beer law for light absorption. According to this law,
the optical density (the logarithm of the intensity) is proportional to the con-
centration of stain in the tissue. Given that with RGB image sensors there are
three detection channels, linear decomposition can be performed to determ-
ine the concentration of up to three stains for each pixel location (Ruifrok et
al. 2001). Once the stain concentrations are determined, single-stain images
can be derived by an inverse approach. These techniques require definition
of characteristic absorption spectra for the stains that need to be separated.
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However, there are blind techniques that do not have this limitation (Gav-
rilovic et al. 2013).

It should be noted here that the commonly used DAB chromogen (3, 3’-
Diaminobenzidine) is not a true light absorber but it exhibits light scattering
behavior. Thus, the behavior of DAB cannot be perfectly modelled by the
Lambert-Beer law. However, in practice, good unmixing results can still be
achieved (Taylor et al. 2006).

One of the major difficulties in breast cancer histopathology image ana-
lysis, particularly of H&E stained sections, is appearance variability. In part,
this can be explained by the heterogeneity of the disease, but a large por-
tion is a result of the tissue preparation and staining processes. The color
appearance can significantly vary between different labs owing to differences
in fixation and in staining protocols and reagents. Color appearance may also
vary between samples produced in the same lab as a result of preanalytic fea-
tures as fixation delays and inconsistencies in the staining conditions. Finally,
variability in appearance can be due to slide digitization conditions, includ-
ing notably differences in optics, light detectors or light sources used in the
scanners.

Automatic image analysis methods can be significantly hampered by the
variability of the tissue appearance. In addition, methods that are developed
and tested on data from a single center often must be reevaluated and ad-
justed when used with slides from external labs. It is desirable that histo-
pathology image analysis methods are designed in a way that is robust to
appearance variability, such as in Monaco et al. (2012). Alternatively, the im-
age appearance can be standardized prior to further processing. One simple
approach is to determine the concentrations of the individual stains for each
pixel with some of the staining separation techniques mentioned before, nor-
malize the staining concentrations and then digitally mix the stains with com-
mon characteristic absorption coefficients to obtain a standardized image (Bil-
gin et al. 2012; Macenko et al. 2009). In (Basavanhally et al. 2013a), a
method for color standardization was proposed based on unsupervised seg-
mentation into tissue components. The tissue was divided into four compon-
ents: nuclei, stroma, epithelium and background and the RGB histograms for
each component were aligned to a template image.

2.4 Quantification of immunohistochemistry

In H&E stained slides, the features of the nuclei that are of interest to patho-
logists are relatively complex - their size, shape and texture, their spatial ar-
rangement and organization into tubules, interaction with the stroma, etc. In
contrast with this, most of the information that is of interest in IHC stained
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sections is contained in the color and the intensity of the staining, which
makes IHC stained samples more open to design and implementation of image
processing algorithms. For example, a useful and readily obtained character-
istic of IHC digital slides is the determination of the percentage of pixels that
are positively stained for a particular antigen.

In breast cancer patients, the ER, PR and HER2 receptor statuses can have
a major influence on the planning of adjuvant systemic treatment. Currently,
the standard method of scoring IHC stained slides is by visual examination un-
der a microscope. This procedure is prone to variability among pathologists
even when strict guidelines are followed. Recent recommendations issued by
the American Society of Clinical Oncology and the College of American Patho-
logists for testing of the ER, PR and HER2 receptor status include encourage-
ment of the use of quantitative image analysis techniques with the goal of
improving the consistency of the interpretation (Hammond et al. 2010; Wolff
et al. 2007).

The ER and PR receptor statuses are customarily determined by counting
the percentage of positively stained nuclei. If this percentage is above a pre-
defined threshold (10% in Europe and 1% in the USA) the tissue is defined
positive. The automatic quantification of the ER and PR status thus usually
involves the use of an automated nuclei detection or segmentation algorithm
(Rexhepaj et al. 2008) (this topic will be covered in detail in the following
section). As an alternative to this, the percentage of positively stained nuclear
area can be determined (Tuominen et al. 2010). In Amaral et al. (2013), a
method which computes features that reflect the area of positively stained
nuclei and the nuclear intensity was proposed. These features were then
mapped to an ordinal scale that is used by pathologists.

In comparison with the ER and PR receptors, which are expressed in the
cell nuclei, the HER2 receptor is expressed on the cell membranes. The tumors
are scored positive when more than 30% of the cell membranes show com-
plete, uniform and intensive staining. Cases with complete but non-uniform
or weak staining in more than 10% of the cells are equivocal, and cases with
no staining or incomplete staining are defined to be negative. Equivocal cases
are further evaluated by other methods (Moelans et al. 2009).

The largest challenge in HER2 staining quantification lies in correct mem-
brane segmentation, which can be particularly challenging in negative cases
and cases with incomplete and faint staining. A method for automated assess-
ment of HER2 immunohistochemistry is presented in Masmoudi et al. (2009).
In the first stage of this approach, image pixels are classified as belonging
to epithelial nuclei or cell membranes. The nuclear regions are further seg-
mented into individual nuclei by watershed segmentation and the cell mem-
branes are determined by adaptive ellipse fitting. Slides are then classified
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into one of the three scoring groups based on features describing the mem-
brane staining intensity and completeness. In Ficarra et al. (2011), following
nuclei segmentation, approximate membrane contours were determined by
Voronoi tessellation. The approximate contours were then refined based on
the membrane staining intensity. Hall et al. (2008) proposed a method where
features for HER2 quantification were extracted based on positive controls,
thus eliminating the effect of the variability in the staining between different
slides.

Most of the commercially available image analysis tools include algorithms
for positive nuclei counting and membrane staining quantification. A review
of imaging solutions for quantitative immunohistochemistry can be found in
Rojo et al. (2009). Two publicly available web applications for ER/PR and
HER2 quantifications are described in Tuominen et al. (2012) and Tuominen
et al. (2010). In various recent studies, automatic scoring has shown high
agreement with expert scoring and other methods (such as FISH for HER2
scoring) (Bolton et al. 2010; Brügmann et al. 2012; Gavrielides et al. 2011;
Laurinaviciene et al. 2011; Lloyd et al. 2010; Minot et al. 2012; Mohammed
et al. 2012; Nassar et al. 2011; Turashvili et al. 2009).

2.5 Object detection and segmentation

2.5.1 Tissue and tissue components segmentation

The typical histopathology slide contains a tissue area of approximately
15×15 mm. At the resolutions at which digital slides are captured, this will
result in images with a size of up to several gigapixels. Because processing
of these very large images might result in computational problems, it is com-
mon practice to identify the regions of the slides that are of interest prior to
performing more detailed image analysis.

Generally, large portions of the slides are empty, i.e. they do not contain
tissue. Most WSI scanners have the ability to identify empty tiles in the slide
during the scanning process and avoid scanning them, which results in re-
duction of scanning time and lowers the required amount of storage. One
such approach for supervised tissue localization was proposed in Alomari et
al. (2009).

When analysis of TMAs is performed, the individual TMA cores need to
be identified and segmented and their coordinates on the TMA grid need to
be assigned so they can be matched to the donor paraffin block (Foran et al.
2011; Lahrmann et al. 2010; Wang et al. 2011b).

In general, large areas of the tissue are not relevant for the problem at
hand. For example, for computer-aided diagnosis of breast cancer (classi-
fication into the classes benign or malignant) only the epithelial regions of
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Figure 2.2: Different nuclei appearances in breast cancer histopathology images (from
top-left to bottom-right): small and round with relatively uniform chromatin, organized into
tubules, marginalized chromatin, and prominent nucleoli.

the tissue are relevant. When quantification of IHC or histological grading
needs to be performed, only the tumor tissue is of interest and non-tumor
regions need to be excluded from the analysis. Furthermore, epithelial and
stromal regions of the tumor have different significance for diagnosis and
prognosis. Segmentation of the tumor into these components is often used
as a pre-processing step when performing automatic morphometry and his-
tological grading, or for guidance when constructing TMAs (Karaćali et al.
2007). In the majority of the published studies on tissue segmentation, this
kind of compartmentalization is achieved by supervised pixel-wise classifica-
tion of small rectangular image regions based on color and texture features
(Bahlmann et al. 2012; Linder et al. 2012; McKenna et al. 2013; Peikari et al.
2013; Wang et al. 2011a), although unsupervised methods have been pro-
posed (Khan et al. 2013).

2.5.2 Nuclei detection and segmentation

The segmentation of nuclei in breast cancer histopathology images can be con-
sidered a basic functional block in many different applications. Quantification
of IHC nuclear staining has already been mentioned in the previous section.
Other applications include extraction of prognostically relevant morphometric
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features (size, shape, chromatin texture), automatic nuclear pleomorphism
grading as part of a computer-aided prognosis system, detection of lymph-
ocytic infiltration, and detection of malignancy and tubule formation in a
bottom-up manner.

Nuclei segmentation remains a very challenging problem, particularly for
routinely stained H&E sections, despite the numerous attempts to solve it.
Many of the challenges arise from the variability of the tissue appearance,
which is in part due to imperfections in the staining process. Furthermore,
there is an inherent diversity of the appearance of epithelial cancerous nuclei,
which may vary from almost normal-like round to highly irregularly shaped
and enlarged nuclei with coarse and marginalized chromatin and prominent
nucleoli (small round structures inside the nuclei). This is illustrated in Fig-
ure 2.2. Different nucleus types, such as elongated fibroblasts and lympho-
cyte nuclei, often appear together with epithelial nuclei, which can decrease
the specificity when only epithelial nuclei need to be detected or segmented.
Additionally, nuclei may be overlapping, clustered or tightly clumped, which
makes them difficult to separate. Lastly, hematoxylin-stained “junk” particles,
which tend to appear in high grade tumors, can hamper the nuclei segmenta-
tion.

A large variety of approaches for segmentation of nuclei in breast cancer
histopathology images have been proposed. They vary not only in the core
segmentation methods, but also in the pre- and postprocessing steps that aim
to improve segmentation performance.

The most difficult aspect of nuclei segmentation in breast cancer histo-
pathology images is the detection of individual nuclei, especially when they
are clustered closely together and overlap. Some proposed methods try and
identify the individual nuclei prior to performing the segmentation proced-
ure (marker extraction), whereas others first segment clumps of nuclei from
the rest of the tissue and then proceed to separate those into individual nuc-
lei. Methods such as the Hough transform (Cosatto et al. 2008) and voting
along the direction of the image gradient to infer the center of the object (Qi
et al. 2012; Veta et al. 2013b) have been used for both identification of nuc-
leus markers and separation of segmented clumps. Another popular approach
to separate clumps of nuclei is to split them along points of high concavity
(Fatakdawala et al. 2010; Wienert et al. 2012). In Jung et al. (2010), separ-
ation of clustered nuclei is achieved by unsupervised Bayesian classification.
Supervised methods for nuclei detection have also been proposed, with good
performance (Vink et al. 2013).

With regards to the core segmentation technique, active contours are
among the more popular methods (Ali et al. 2012; Cosatto et al. 2008; Qi
et al. 2012). Their objective is to find a minimum energy fit of moving con-
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tours to the image, the energy being defined in such a way that the contours
are attracted to the boundaries of the objects of interest. The contours need
to be seeded close to the target nuclei locations, which is why the approach
is usually paired with a nuclei detection method. In Qi et al. (2012) the
level set active contours segmentation includes a repulsion term to prevent
the contours of adjacent cells from overlapping. The active contour model
for nuclei and lymphocyte nuclei segmentation proposed in Ali et al. (2012)
incorporates boundary, region and shape prior terms, and performs simultan-
eous segmentation of multiple objects in the image.

Several methods have been proposed that work by initially defining a large
number of candidate regions and then selecting the ones that are likely to rep-
resent a correctly segmented object. In Arteta et al. (2012), candidate regions
are identified by the maximally stable extremal regions (MSER) detector. This
detector produces a large number of potentially overlapping regions. Each
candidate region is evaluated with a statistical model, and dynamic program-
ming is used to select a set of non-overlapping regions that best fit the model.
The authors of Wienert et al. (2012) proposed generating a very large num-
ber of candidate objects by identifying all possible closed contours within the
image by contour tracing. A set of non-overlapping contours is obtained by
defining the objects that are most “fit” based on the contour gradient strength.
In Veta et al. (2013b), candidate regions are initially identified by a marker-
controlled watershed approach at multiple scales and using multiple marker
types, which yields a large number of overlapping contours. Regions unlikely
to represent valid nuclei are removed based on size, shape, boundary and
chromatin distribution features. Local concurrences are resolved by greedy
selection of the contours most likely to represent nuclei, using the solidity of
the object as a fitness value.

Other recently proposed and promising methods for nuclei segmentation
in breast cancer histopathology are based on dictionaries of discriminative
image patches (Karsnas et al. 2012) and marked point processes (Avenel et
al. 2013; Kulikova et al. 2012).

Detection and segmentation of lymphocyte nuclei and detection of
lymphocytic infiltrations can be considered specials cases of nuclei detec-
tion/segmentation. In Basavanhally et al. (2010), region growing with high
sensitivity and low specificity is used to initially segment lymphocyte nuclei
and other objects. Then, maximum a posteriori (MAP) estimation that incor-
porates size, luminance and spatial proximity information is used to improve
the specificity of the detector. Finally, the results from the lymphocyte nuc-
lei detection are input to a classifier that discriminates between the lympho-
cyte infiltration phenomenon and the baseline level of lymphocytes. In Fatak-
dawala et al. (2010), output from a Gaussian mixture clustering algorithm is
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used to initialize geodesic active contour segmentation. The overlapping ob-
jects are resolved by splitting them along high concavity points. Lymphocyte
nuclei are distinguished from other objects by texture based clustering.

The choice of the segmentation method is closely related to the intended
application and the available time and computational resources. For example,
active contours may yield superior nuclear segmentation, but at the cost of
increased computational complexity, which limits their use for high through-
put applications. When such high throughput processing is needed, a simple
thresholding of the hematoxylin channel followed by morphological opera-
tions and splitting of clusters along high concavity points might be used, but
at the cost of less accurate segmentation results.

So far we have only listed methods that specifically aim at dealing with
nuclei segmentation in breast cancer histopathology sections imaged with
brightfield microscopy as an application. However, methods developed for
other tissue types (e.g., prostate) or microscopy modalities (e.g., fluorescence
microscopy) can also be applied to this problem (Adiga et al. 2006; Cong et
al. 2000; Gudla et al. 2008; Al-Kofahi et al. 2010; Kong et al. 2011; Li et al.
2008; Malpica et al. 1997; Naik et al. 2008; Wahlby et al. 2004). In order
to use these methods, some adaptation of some of the image processing steps
will likely be needed. For example, modification of the way a nuclear staining
image is obtained.

2.5.3 Tubules segmentation

Along with nuclear pleomorphism, the degree of structural differentiation of
the tissue is one of the earliest prognostic factors for breast cancer patients
that have been identified by pathologists. Cancer disrupts the ability of the
nuclei to communicate with each other and organize themselves into struc-
tures such as tubules, making the lack of tubule formation an indicator for
advanced malignancy. The tubules are generally round or oval structures con-
sisting of lumen surrounded by a layer of epithelial cells. The major challenge
in tubule segmentation is the similar appearance of other structures, such as
adipose tissue or tears formed during the tissue preparation process, which
only lack the outside layer of well-arranged epithelial nuclei.

A color gradient-based geodesic active contour model for segmentation of
the tubular lumen areas was proposed in Xu et al. (2010b). The segmentation
is initialized by weighted mean shift clustering and normalized cuts, and per-
forms more favorably than the Chan-Vese region-based active contour model.
This work was extended in Basavanhally et al. (2011) by incorporating do-
main knowledge to distinguish between tubules and other lumen-like areas.
The authors show that the segmentation result can be used to infer the de-
gree of tubule formation as defined in the Bloom-Richardson grading system.
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(a) Region from a PPH3 labeled section.
This staining method is specific to cells in
the M phase which are clearly visible as
dark brown objects (marked with green ar-
rows).

(b) The same section stained with H&E.
The corresponding mitotic figures are vis-
ible as hyperchromatic objects. However,
many other similar objects appear which
complicates mitosis counting.

Figure 2.3: Mitotic figures in breast cancer histopathology images.

Although the literature for tubule segmentation in breast cancer is not extens-
ive, methods developed for segmentation of other related structures are also
applicable to this problem. A very closely related application is segmentation
of glands in prostate cancer histopathology images (Adiga et al. 2006; Nguyen
et al. 2012; Peng et al. 2011; Xu et al. 2010a). The methods developed for
this application might be used for tubule segmentation in breast cancer with
little adaptation. It should also be mentioned that some of the features that
can be derived by performing segmentation of tubules, can also be captured
by computing features that describe the overall architecture of the tissue (van
Diest et al. 1992a; Doyle et al. 2008).

2.5.4 Mitotic figures detection and assessment of proliferation

Of the three components that are part of histological grading of breast cancer,
the assessment of tumor proliferation is probably the most important and pro-
gnostically significant one (van Diest et al. 2004). The oldest and still most
widely used form of assessment of tumor proliferation is counting of mitotic
figures in a predefined tissue area (usually 2 mm2). The nuclei of the cells that
are in the M phase of the cell cycle have distinctive morphological appearance
in the H&E sections. Most commonly, mitotic figures manifest themselves
as hyperchromatic objects without a clear nuclear membrane, with “hairy”
protrusions around the edges and basophilia instead of eosinophilia in the
surrounding cytoplasm. However, these are more instructive than defining
features, and the bulk of the training of pathologists consists of looking at
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specific examples of mitotic figures designated as such by experts. The task
of identifying mitotic figures is notoriously time-consuming and difficult, due
to the fact that many other objects such as apoptotic and necrotic nuclei may
have similar appearance, which renders it difficult even for trained experts to
make a distinction. Lymphocyte nuclei, compressed nuclei, “junk” particles
and other artifacts from the tissue preparation process can also have a hyper-
chromatic appearance.

In addition to mitosis counting in H&E sections, there are also IHC tech-
niques that can be used for assessment of proliferation of breast cancer tu-
mors. However, they are not routinely used owing to increased cost and addi-
tional time delay. The most widely used IHC technique is labeling of the Ki-67
antigen that is associated with cell proliferation and expressed in all cell cycle
phases except G0 (Dowsett et al. 2011). Because Ki-67 labeling is unspecific to
the M phase, the assessment of the number of mitotic figures is usually higher
than by counting in H&E sections and it might not have the same significance.
A proposed alternative to Ki-67 is phosphohistone H3 (PPH3) that has the ad-
vantage of targeting only nuclei in the M phase, and has been shown to have
prognostic significance (Skaland et al. 2007). An example region labeled for
PPH3 is shown in Figure 2.3(a). With both of these staining methods, the
previously discussed techniques for quantification of positively stained nuclei
can be used.

The standard approach of assessing tumor proliferation in pathology labs,
however, still remains mitosis counting. Given that this is the most tedious
part of the Bloom-Richardson grading system, there is a large incentive to de-
velop an automatic mitosis detection algorithm that works with the routinely
prepared H&E sections.

The earliest proposed approaches were unavoidably hampered by the lim-
ited image acquisition quality and computational power (Kaman et al. 1984)
and the need of specialized staining such as Feulgen to better highlight the
chromatin (Beliën et al. 1997; ten Kate et al. 1993). Recently, two publicly
available datasets of H&E stained breast cancer histopathology images with
annotated mitotic figures were made available (Roux et al. 2013; Veta et al.
2014a), which sparked further development of different mitosis detection ap-
proaches (Ciresan et al. 2013; Huang et al. 2012; Irshad 2013; Irshad et al.
2013; Malon et al. 2013; Malon et al. 2012; Rajpoot et al. 2013; Sommer
et al. 2012; Tek 2013; Veta et al. 2013a).

The majority of the proposed approaches work by first identifying can-
didate objects or locations that are then classified as mitotic figures or other
objects. By far, the most distinctive feature of the mitotic figures is their hy-
perchromicity. In most cases, the intensity of the staining of the mitotic figures
is noticeably darker than normal epithelial nuclei and only comparable to ap-
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optotic, necrotic or compressed (artifact from the tissue preparation) nuclei
and lymphocyte nuclei. This is illustrated in Figure 2.3(b). The candidate
extraction phase often may make use of this distinctiveness by performing
thresholding, local intensity minima detection or pixel-wise classification fol-
lowed by refining of the detected regions by morphological operations and/or
active contours segmentation. In the second stage, more specialized features
designed to capture the specific morphology of mitotic figures are used to train
a classification model. However, convolutional neural networks that operate
on raw RGB image patches appear to exhibit the best performance for this de-
tection task (Ciresan et al. 2013; Malon et al. 2013; Malon et al. 2012). The
approach that was proposed in (Ciresan et al. 2013) is unique in the sense that
it uses deep convolutional neural networks and does not perform candidate
detection as an initial stage. Instead, it performs classification at every pixel
location, which achieves excellent results.

A limiting factor of automatic mitosis detection is that whole slide images
are typically scanned at a single focal plane. During mitosis counting, patho-
logists rely on “fine tuning” of the focus — something that is missing in whole
slide images at a single focal plane. Digital slide scanners that perform image
acquisition at multiple focal planes are now becoming more common; how-
ever, this feature is not widely used because of the increased storage demands.
We anticipate that in the future, as storage costs go down and new image com-
pression techniques become available, this limitation will be removed.

2.5.5 Computer-aided diagnosis and prognosis

The objective of image analysis of digitized histopathology slides is to facilit-
ate, and preferably automate, computer-aided diagnosis and prognosis (CAD
and CAP) in pathology labs. CAD is defined as the detection of cancer within
the examined tissue, whereas CAP addresses the more complex problem of
predicting the outcome for the patient based on the available data. There
are numerous challenges in achieving this objective, including the large im-
age sizes and the lack of representative datasets with high quality annotations
by multiple observers, and with patient follow-up. On the other hand, the
incentives for developing CAD and CAP systems are overwhelming. Patients
that are suspected of having breast cancer undergo a biopsy that is examined
by a pathologist. Large numbers of cases are found to be benign (Bulte et al.
2013), often easily distinguishable from cancer, which implies that a CAD sys-
tem operating at high sensitivity can significantly reduce the workload of the
pathologist, even if the specificity is moderate. This kind of system can also
be used for quality control and assurance, for example, to identify positive
cases that have been missed during the routine examination. Furthermore,
the extraction of quantitative parameters from tumor regions can go a long
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way towards reducing the inter- and intra-observer variability of breast can-
cer grading, which has been well documented in the literature.

Some of the proposed breast cancer detection techniques operate by ex-
amining nuclear features, as cancer nuclei have a distinct morphology — large
size, coarse chromatin texture and irregular shape. In Cosatto et al. (2008)
ROIs from breast cancer histopathology slides are classified as benign or ma-
lignant based on two features related to the nuclear size: the median nuc-
lear area and the number of large well-formed nuclei in the region. Nuclear
morphometric features are also used in Chekkoury et al. (2012) in combin-
ation with texture and topology features for malignancy detection in breast
cancer histopathology. The extraction of nuclear morphometric features, in
most cases, relies on a nuclei segmentation procedure. The influence of the
nuclei segmentation accuracy on the subsequent feature extraction for classi-
fication into the classes benign and malignant is examined in Boucheron et al.
(2010). The conclusion of the authors was that perfect segmentation accur-
acy is not needed as it does not necessarily guarantee optimal performance.
In Doyle et al. (2008), cancer tissue is distinguished from non-cancer tissue
based on Gabor texture features, without relying on a nuclei segmentation
algorithm.

It should be noted here that breast cancer grades can be seen as estimates
of patient outcome based on an expert opinion. In that sense, CAP systems
that aim at predicting the histological tumor grade use this as an intermediate
end-point for the prediction of survival. The use of reliable intermediate end-
points is crucial in a situation where the actual patient survival is not known or
it is difficult to obtain. Besides the histological grade, other intermediate end-
points can be used, for example, the risk scores from gene expression assays.
Such work was presented in Basavanhally et al. (2012) and Madabhushi et al.
(2011), where tissue architecture features were used to predict the Oncotype
DX recurrence score with high accuracy, which suggests that image analysis
methods have the potential to be used as a cheap alternative or supplement
to gene expression profiling.

When patient cohorts with known survival outcome are available, systems
can be built that directly predict patient survival based on the available data,
both from imaging and from other sources, thus avoiding the use of possibly
unreliable intermediate end-points. One such example can be found in Veta
et al. (2012), where the mean nuclear area calculated by automatic nuclei
segmentation was shown to be prognostically relevant for male breast can-
cer patients in addition to other histological and clinical features. The fractal
dimension of the tissue, extracted from invasive breast cancer TMAs stained
with pan-cytokeratin (specific to epithelial components), which was previ-
ously associated with tumor grade (Tambasco et al. 2008), was also shown
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to have prognostic value (Tambasco et al. 2010). In Beck et al. (2011), the
authors proposed a system that successfully predicts patient outcome based
on automatically extracted quantitative features from histopathology images.
In addition, they identified three novel and previously unrecognized stromal
features that are significantly associated with patient survival.

An exciting and promising area of research is the integration of imaging
biomarkers from histopathology images with genomic data. Structural in-
formation about the tissue is lost when preparing the molecular assays, hence
imaging biomarkers may be complementary to genomic data. In a recent
study (Yuan et al. 2012), the authors used an image analysis approach to
derive knowledge about the tumor cellular composition (percentage of can-
cer, stromal and lymphocytic nuclei), which they used to correct copy num-
ber data and more accurately estimate the HER2 amplification. In addition,
they combined image features with genomic information to train a predictor
of survival of ER-negative breast cancer patients. This predictor had a better
performance in comparison with using image features or genomic information
only. In another study (Wang et al. 2013), the authors developed a workflow
for image analysis of histopathology images and integration of morphological
features with genomic data for biomarker discovery. Four of the morpholo-
gical features were identified as biomarkers that can separate patients into
groups with different outcomes.

Many of the proposed methods for automatic breast cancer detection,
grading and prognosis have been trained and evaluated only on relatively
small regions from the image slides, either digitized TMA slides or manually
selected regions from whole-slide images. Although these methods are useful
in a semi-automatic setting, it is necessary for a high throughput and auto-
matic application to either produce an output for the entire slide (or even,
from a set of slides originating from one specimen), as in Basavanhally et al.
(2013b), where this is achieved by using a multi-field-of-view framework, or
to perform extraction of relevant ROIs for the problem at hand and limit the
analysis solely to those regions (Bahlmann et al. 2012; Huang et al. 2011;
Peikari et al. 2013).

2.6 Discussion and conclusions

In the past few years the interest in analysis of histopathology images has
been steadily increasing, prompted by the introduction of whole slide imaging
scanners into pathology labs and the imminent acceptance of digital slides as
a primary diagnostic modality.

The use of quantitative techniques is viewed as a solution to the problem
of observer variability of the interpretation of histopathology slides, both by



24 Chapter 2. Breast cancer histopathology image analysis: a review

pathology professionals and image analysis experts. In the case of breast can-
cer, several applications for quantification of immunohistochemically stained
tissue have already gained approval from the United States Food and Drug Ad-
ministration (FDA). Methods that work with routinely prepared H&E stained
slides have great potential to make an impact on the pathology workflow.
However, ensuring robustness is challenging owing to the complexity of the
tissue characteristics that need to be analyzed. Nevertheless, progress has
been made both in the development of basic image analysis tools for H&E
stained sections (i.e., object detection and segmentation methods) and in the
development of systems that predict patient outcome either directly or by use
of intermediate endpoints such as the histological grade as assigned by patho-
logists. Further improvements are needed in order to produce methods that
have performance levels that are suitable for clinical application.

At multiple points throughout the text we have mentioned that the steps of
tissue preparation, staining and slide digitization that precede image analysis
can influence the results. The more quantitative analysis of histopathology
image data will become part of routine pathology practice, the more optim-
ization of tissue preparation, staining and slide digitization will be needed.
However, some variation in the appearance will still be present even under
closely monitored conditions, so analysis methods will have to be developed
in a way that is robust to such variation.

Perhaps the main obstacle in the development of new histopathology im-
age analysis methods lies in the lack of large publicly available annotated
datasets. While the advent of WSI scanners has produced vast quantities of
image data, it is difficult to obtain ground truth annotations in a form that
can readily be used for development and testing of image analysis methods,
even when this data is tied to the pathology reports. For example, the tumor
grade or the mitotic activity index that can be found in pathology reports are
often based on the analysis of a particular region from a single slide viewed
under a microscope, while the slide itself has been selected from a set of slides
originating from the same sample. Information about the selected slide and
the region within that slide where analysis was performed is not recorded
and thus correspondence between the routine annotation and the image data
is difficult to establish. In addition, owing to the large observer variability,
annotation by multiple observers is needed to produce high quality ground
truths, which is both time-consuming and expensive, particularly for large
datasets. Making annotated image datasets publicly available will provide a
breeding ground for the development of new image analysis algorithms and
will enhance the objectivity of method comparison and improve the quality of
computer-aided diagnosis and prognosis.
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Summary

The introduction of fast digital slide scanners that provide
whole slide images has led to a revival of interest in image ana-
lysis applications in pathology. Segmentation of cells and nuclei
is an important first step towards automatic analysis of digitized
microscopy images. We therefore developed an automated nuc-
lei segmentation method that works with hematoxylin and eosin
(H&E) stained breast cancer histopathology images, which repres-
ent regions of whole digital slides.

The procedure can be divided into four main steps: 1) pre-
processing with color unmixing and morphological operators, 2)
marker-controlled watershed segmentation at multiple scales and
with different markers, 3) post-processing for rejection of false re-
gions and 4) merging of the results from multiple scales. The pro-
cedure was developed on a set of 21 breast cancer cases (subset A)
and tested on a separate validation set of 18 cases (subset B). The
evaluation was done in terms of both detection accuracy (sensitiv-
ity and positive predictive value) and segmentation accuracy (Dice
coefficient).

The mean estimated sensitivity for subset A was 0.875
(±0.092) and for subset B 0.853 (±0.077). The mean estimated
positive predictive value was 0.904 (±0.075) and 0.886 (±0.069)
for subsets A and B, respectively. For both subsets, the distribution
of the Dice coefficients had a high peak around 0.9, with the vast
majority of segmentations having values larger than 0.8.

Based on: Mitko Veta et al. (2013b). „Automatic nuclei segmentation in
H&E stained breast cancer histopathology images”. In: PLoS ONE 8, e70221
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3.1 Introduction

Assessment of breast cancer prognosis from excision biopsy slides relies
largely on the Bloom-Richardson grading system. It is based on semiquantit-
ative scoring of the degree of tubule formation, nuclear pleomorphism, and
mitotic rate, which has proven to be prognostically strong (Elston et al. 1991).
However, the scoring is done traditionally by visual examination through the
microscope which has suboptimal reproducibility (Robbins et al. 1995). The
use of automatic image analysis methods, which can provide reproducible
quantitative parameters that describe the tumor tissue, has been suggested as
a way to overcome this drawback (Meijer et al. 1997).

Traditional image analysis of conventional glass slides was hampered by
the selective approach due to limitations of the scanning equipment and the
need for special stains (Beliën et al. 1997). The introduction of fast digital
slide scanners that provide whole slide images has led to a revival of interest in
image analysis applications in pathology. Optimal integration of such applica-
tions in pathology workflow necessitates using hematoxylin and eosin (H&E)
stained slides since this is the standard staining protocol (the diagnostic pro-
cess for each case always starts with staining the specimen with these dyes).
Given the complexity and the diversity of the tissue appearance, the automatic
analysis of H&E stained images can be very challenging.

Segmentation of cells and nuclei is an important first step towards auto-
matic analysis of digitized microscopy images. Most of the developed cell
and nuclei segmentation techniques revolve around active contours, water-
shed segmentation, pixel-wise clustering/classification or a combination of the
above, supplemented by different pre-processing and post-processing steps
and detection/localization schemes. Bamford et al. (1998) used a dual act-
ive contour model for the task of segmenting cell nuclei from cytoplasm in
conventional Papanicolaou stained cervical cell images. Cosatto et al. (2008)
detected candidate nuclei locations in breast histopathology images using the
Hough transform and evolved an active contour around each point, reject-
ing malformed outlines with a trained classifier. They used the segmentation
output for predicting nuclear pleomorphism scores, however, the segmenta-
tion method by itself was not rigorously evaluated. Fatakdawala et al. (2010)
presented an expectation-maximization driven geodesic active contour with
overlap resolution for segmentation of lymphocytes in breast cancer histo-
pathology images. Ali et al. (2012) presented an active contour model that
integrates region, boundary and shape information, and showed that it can be
used for nuclei, lymphocytes and gland segmentation in prostate and breast
cancer biopsy images. Wienert et al. (2012) proposed a method for nuclei de-
tection and segmentation based on contour tracing and subsequent pruning
of contours to retain the most probable ones. They evaluated the detection
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Table 3.1: Nuclei segmentation dataset summary.

Number of
slides

Pleomorphism
grade
distribution (I,
II and III)

Total number
of manually
segmented
nuclei

Average
number of
manually
segmented
nuclei per slide

Subset A 21 8; 8; 5 2191 104.3 (±12.2)
Subset B 18 1; 10; 7 2073 115.2 (±12.2)

Representative regions from subset A were used for tuning of parameters during the
development of the segmentation procedure. Representative regions from subset B
were used for an independent validation of the chosen parameters. From each slide,
approximately 100 representative nuclei were manually segmented with systematic
random sampling.

performance of the algorithm in a set of breast, liver, gastric mucosa and bone
marrow images.

Watershed segmentation is a method particularly suited for cell and nuc-
lei segmentation (Beucher et al. 1993; Mousses et al. 2003). The results of
the classical watershed segmentation can be significantly improved by modify-
ing the segmentation function (topographical relief) to contain regional min-
ima only at specific locations that mark the objects of interest and the back-
ground. These markers can be obtained in a variety of ways and the pro-
cess is usually application-dependent. Malpica et al. (1997) examined the
use of this technique in bone marrow and peripheral blood microscopy im-
ages. Marker-controlled watershed for segmentation and subsequent track-
ing of cells in time lapse microscopy was proposed by Yang et al. (2006).
Huang et al. (2010) described a method for segmentation of nuclei in hep-
atocellular carcinoma biopsy images based on marker-controlled watershed
segmentation of initial contours followed by refinement with a snake model.
Marker-controlled watershed, with markers produced by template matching,
was also used by Kachouie et al. (2010) for segmentation of mammalian cells
in microscopy images.

Although many nuclei/cell segmentation methods exist in the literature,
they are usually closely related to the microscopy technique, tissue type, stain-
ing and target nuclei/cell types. Thus, they are not directly applicable to an
arbitrary type of image. In this chapter we present a marker-controlled water-
shed based technique for segmentation of cancer nuclei in H&E stained breast
cancer histopathology images. In addition to the combination of the different
processing steps, the novelty of the method lies in the multiscale approach to
the pre-processing of the images and the marker extraction for the watershed
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segmentation, the use of multiple marker types and the relatively simple but
effective merging of the segmentations produced at different scales and from
multiple markers. This multiscale and multimarker approach yields much bet-
ter results than simply performing segmentation at a single scale and with a
single marker type. The method was evaluated with regards to both the detec-
tion and the segmentation accuracy on a set of breast cancer images of diverse
tissue appearance, and showed excellent results. In addition to the evaluation
on our dataset, we evaluated our method on the dataset used in Wienert et al.
(2012) and achieved comparable results.

3.2 Materials and methods

3.2.1 Breast cancer cases

For this study a total of 39 slides from 38 patients from breast cancer excision
biopsies were used. The slides were routinely prepared with the standard pro-
cedure consisting of formalin fixation and paraffin embedding of the tissue,
followed by cutting of 3-5 µm thick sections and staining with H&E. The di-
gitization of the complete slides was done using a ScanScope XT whole slide
scanner (Aperio, Vista, CA, USA) at a magnification of ×40 (0.75 NA) and
a resolution of 0.25 µm/pixel. JPEG2000 compression with a quality factor
of at least 80 was used to reduce the storage requirements. With this com-
pression type and quality, no visible compression artifacts were present in the
digital slides. From each digital slide a representative region of approximately
1×1 mm was selected and marked by an experienced pathologist (PJvD) and
graded for nuclear pleomorphism according to the Bloom-Richardson grading
system (grade I, II or III ranging from good to poor prognosis). The regions
of interest were selected using predefined guidelines that are also used when
performing grading by pathologists. More precisely, only areas with high epi-
thelial cellularity and preferably on the periphery of the tumor were selected.
Regions with severe lymphocytic infiltration and necrosis were avoided, as
well as regions with scanning artifacts and out-of-focus problems.

The regions were divided into two subsets. Subset A consisted of 21 slides
and was used during the development of the segmentation procedure. These
slides were selected by an experienced pathologist (PJvD) to represent the
diversity in tissue appearance and to have an approximately balanced distri-
bution of pleomorphism grades. Subset B consisted of 18 slides of consecutive
patients collected from our Pathology Department archive based solely on the
availability. The segmentation procedure was developed on subset A and val-
idation was performed on subset B. All the experiments in this study were
performed on the selected representative regions from the digital slides.
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3.2.2 Ground truth segmentation

To set the gold standard, manual segmentation was performed in the marked
regions on all 39 slides. Since each region contains many thousands of nuclei,
manual segmentation of all nuclei was impractical and a systematic random
sampling approach was followed (Fleege et al. 1990). This involved overlay-
ing a grid of measurement frames over the marked region and segmenting
one nucleus within each measurement frame (Figure 3.1). The grid was over-
laid starting from an arbitrary location according to a distribution rule. The
distribution rule depended on the area of the measurement frame and of the
region, on the desired number of segmentations and on the estimated tumor
area within the region (for more details see Fleege et al. (1990)). Each meas-
urement frame was subdivided into five rows. Scanning the rows from left
to right, the first unscathed epithelial breast cancer nucleus with identifiable
contours whose center of mass lied within the row was chosen for manual
segmentation (Figure 3.1(a)). Measurement frames of size 50×50 µm and
a target of 100 nuclei per region were used. An expert (RK) performed one
manual segmentation per measurement frame.

A summary of the dataset is presented in Table 3.1. We point out that in
some cases the target number of 100 nuclei was not reached when too many
of the sampling frames fell into non-tumor tissue, while in other cases this
number was overreached. The sample size of 100 nuclei was chosen because
it has been shown that this number of segmentations is sufficient to reliably
estimate certain morphometric features such as the mean nuclear area (Jan-
nink et al. 1995). At the resolution at which the digital slides were scanned,
the average area of the manually segmented nuclei was approximately 900
pixels.

3.2.3 Overview of the method

A block-diagram with an overview of the proposed method is presented in
Figure 3.2. This is an extension and improvement of our previously published
nuclei segmentation method (Veta et al. 2011). The entire procedure can
be divided into four main steps: 1) pre-processing, 2) marker-controlled wa-
tershed segmentation, 3) post-processing and 4) merging of the results from
multiple scales. The aim of the pre-processing is to remove irrelevant content
while preserving the boundaries of the nuclei. The pre-processing starts with
color unmixing for separation of the hematoxylin stain from the RGB image
(the nuclei are dyed by this stain; Figure 3.3(b)). The grayscale version of
the hematoxylin image is then processed with a series of morphological op-
erations in order to remove irrelevant structures (Figure 3.3(c)). The core
part of the procedure is the marker-controlled watershed segmentation. Two
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(a) Systematic random sampling grid
overlay on a representative region.

(b) One measurement frame from the
sampling grid with a manually segmen-
ted nucleus (the arrows represent the
scanning direction).

Figure 3.1: Systematic random sampling method used for manual nuclei segmentation.

types of nuclear markers are used: markers extracted using an image trans-
form that highlights structures of high radial symmetry (Figure 3.3(d)- 3.3(f))
and regional minima of the pre-processed image (Figure 3.3(g)-3.3(h)). In the
post-processing step, regions unlikely to represent nuclei are removed and the
contours of the remaining regions are parameterized as ellipses. By varying
the size of the structuring element in the pre-processing step, the segment-
ation procedure can be tuned to look for nuclei at different scales, allowing
multiscale analysis. The segmentation results from the multiple scales and
two marker types are then merged by resolving concurrent regions to give the
final segmentation.

3.2.4 Color unmixing

The first step is separation of the H&E stains with the color unmixing tech-
nique suggested in Ruifrok et al. (2001), which is a special case of true spec-
tral unmixing techniques that work with multispectral cameras (Garini et al.
2006). The technique uses the fact that the image formation process in bright
field microscopy can be modeled by the Lambert-Beer law. Given that the im-
ages are captured by three detection channels (R, G and B) with known optical
densities and the stain-specific absorption coefficients can be experimentally
determined from single stain images, the concentrations of the two stains can
be determined for each pixel location. These in turn can be used to obtain
single stain images. Since the nuclei are stained with hematoxylin, the gray-
scale version of the hematoxylin single stain image is used in all subsequent
processing. An example of color unmixing is presented in Figure 3.3(b).
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Figure 3.2: Schematic
overview of the different
steps in the automated
image analysis method for
nuclei segmentation.

3.2.5 Morphological operations

The now separated hematoxylin image still contains spurious structures
within the nuclei. These present obstacles for the marker extraction and seg-
mentation and can be filtered out with a series of operations based on mor-
phological grayscale reconstruction (Vincent 1993). Opening by reconstruc-
tion removes unconnected bright objects that are smaller than the structuring
element (SE). Similarly, closing by reconstruction removes unconnected dark
objects smaller than the SE. Applying these two operators in sequence pro-
duces “flat” images and the amount of detail present can be controlled by the
size of the SE. In the hematoxylin images, best results were obtained by first
applying opening and then closing by reconstruction (both with a disk-shaped
SE with radius n). The size of the SE, as defined by the radius n, should be
chosen according to the size of the spurious structures which in turn is related
to the size of the nuclei and the resolution of the image.

After application of these two operations the main contours of the nuc-
lei often have an irregular shape and protrusions emanating from the edges
hampering the segmentation result. To remedy this problem, additional mor-
phological closing with a small SE is applied. This simplifies the shape of the
object, eliminates small protrusions, disconnects “loosely” connected objects
and does not significantly affect the location of the main contours. The SE for
this operation is chosen to be a disk with half the radius of the one used for
the opening and closing by reconstruction operators. An example of prepro-
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(a) Original image. (b) Hematoxylin channel.

(c) Pre-processed image (hematoxylin
channel processed with series of mor-
phological operations).

(d) Fast radial symmetry transform
(FRST).

(e) FRST foreground and background
markers.

(f) Watershed segmentation with FRST
markers.

(g) Regional minima foreground and
background markers.

(h) Watershed segmentation with re-
gional minima markers.

Figure 3.3: Marker imposition and watershed segmentation of nuclei. Prior to applying
the FRST the image is preprocessed with color unmixing and morphological operations
(n = 10). The set of radii for the FRST is R = {10, 11, . . . , 20}. Note: the markers
and watershed ridges (given in green in the figure) were dilated by one pixel for better
visualization.
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cessing with the series of morphological operations is shown in Figure 3.3(c).
It is difficult to set one parameter n that will work well across all images in

our data set, or, in many instances, across different nuclei within one image.
The optimal simplification factor is closely related to the size of the undesired
structures that need to be removed (as all unconnected objects smaller than
the SE will be removed). Employing a large SE oversimplifies the image,
while using too small a SE does not always produce desirable results as many
of the substructures within the large nuclei remain, affecting segmentation
performance. This is why a multiscale approach was chosen — each image
is preprocessed with SEs of different sizes and segmentation is performed
at each scale. For the problem at hand, the range of SE radii is set to be
n ∈ {10, 11, . . . , 18} pixels, which corresponds to the approximately expected
range of minor semi-axes in breast cancer nuclei imaged at this magnification.

3.2.6 Fast radial symmetry transform

The fast radial symmetry transform (FRST) (Loy et al. 2003) is a computation-
ally efficient, non-iterative procedure that operates along the direction of the
image gradient to infer centers of radial symmetry. This transform was origin-
ally developed for face detection tasks in computer vision, but was recently
used in automatic analysis of follicular lymphoma (Kong et al. 2011; Sertel
et al. 2010) and bears similarity to other operators specifically designed for
cell and nuclei segmentation (Schmitt et al. 2008). A generalized version of
this transform was used in Chekkoury et al. (2012) for segmentation of nuclei
in breast cancer biopsy images.

The nuclear contours, in most cases, exhibited high radial symmetry mak-
ing this transform suitable for their localization. To produce candidate nuclei
locations, we use the orientation-based version of the transform, which dis-
cards gradient magnitude information and relies only on the orientation. This
can be beneficial in the case of low contrast between the nuclei and the back-
ground. The FRST is computed for a set of radii R that reflects the size of the
symmetric features that need to be detected. An example of the FRST applied
to a morphologically pre-processed image is given in Figure 3.3(d).

3.2.7 Marker imposition and segmentation

Given an input image preprocessed with the morphological operators at scale
n, two marker-controlled watershed segmentations, each targeting a spe-
cific type of nuclei, are performed — one using FRST markers and one us-
ing regional minima markers. The FRST S is computed for the set of radii
R ∈ {n, n + 1, . . . , 2n} pixels. This set of radii reflects the size of the nuclei
that are reconstructed well in the preprocessed image. The FRST nuclei mark-
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ers are extracted as the extended regional minima of S, with an empirically set
height parameter h = 0.4. The extended regional minima of S are calculated
as the regional minima of the h-minima transformation of S.

For successful watershed segmentation the background also has to be
marked. To achieve this, a naïve assumption that each detected foreground
marker corresponds to a nucleus with maximal size (the largest radius in the
set R) is made. In this way, provisional foreground (nuclei) and background
maps can be formed. The morphological skeleton of the background map is
used as a background marker.

After foreground and background markers have been obtained, the Sobel
gradient magnitude image of the pre-processed image, which is used as a
segmentation function for the watershed, is modified by imposing regional
minima on the locations of the markers. In this way, only one watershed
region per marker is obtained.

Although the FRST markers are very successful in marking nuclei even in
more complex situations like clustered nuclei, sometimes a proper marker is
not produced in situations when the symmetry assumption is violated or in
case of overly elongated nuclei. To address these situations, at each scale,
an additional watershed segmentation is produced using the regional minima
of the pre-processed image as markers as in Huang et al. (2010). The back-
ground markers are defined in the same way as for the FRST case. Figure 3.3
gives an example of marker-controlled watershed segmentation with FRST
and regional minima markers. Figure 3.3(e) and 3.3(g)) give the foreground
and background markers from the FRST and the regional minima respectively,
and corresponding results from the segmentation are given in Figure 3.3(f)
and 3.3(h).

3.2.8 Post-processing

Many of the resulting watershed regions do not correspond to nuclei or rep-
resent erroneous segmentations (severe over- or under-segmentation, regions
spilled into the background etc.). In the post-processing step we aim to re-
move those regions based on the following extracted features:

Solidity (s): The ratio of the area of the object and of the convex hull of the
object (the convex polygon with smallest area that contains the object). This
value should be high for the nuclei regions since they are rarely concave. In
our previous work (Veta et al. 2011) we have shown that this feature can be
highly discriminative between correct and incorrect segmentations produced
by marker-controlled watershed.
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Boundary saliency (l): The difference between the intensity level of the out-
side boundary and the intensity level of the inside boundary of the nucleus.
The outside intensity level is taken as the median of the intensity values in a
tight band around the segmented region. The inside intensity level is defined
in an analogous way.

Mass displacement (d): The distance between the centroid and the
weighted centroid of the region (the pixel locations are weighted by the in-
verse intensity values) normalized by the smaller axis of the region. Low
values of this feature imply near symmetric distribution of the intensity inside
the nucleus region. In certain situations regions that do not correspond to
correct segmentations have high mass displacement (regions spilled into the
background, over-segmentations, under-segmentations etc.).

Although the problem of identifying the non-nuclei regions can be posed
as a one- or two-class statistical classification task, we found that a simple
rule-based rejection scheme is a much better and flexible solution. For each
of the defined features a range of probable values is defined. If for a given
region one of the features is outside of the probable range, the region is dis-
carded. Additionally, regions that are too small (area < n2π) or too large
(area > 4n2π) for the scale at which they are segmented (as defined by n) are
removed. Since the coarseness of the extracted contours depends on the scale
at which they were extracted (smaller scales result in contours with finer de-
tails and vice versa), all the contours are standardized by approximating them
with ellipses.

The ranges for the features were empirically determined and are as fol-
lows: s ∈ (0.875, 1), l ∈ (20, 255), d ∈ (0, 0.08). Qualitative analysis of the
influence of the selected feature ranges can be found in the supplementary
material of Veta et al. (2013b). Most of the segmentations outside of the ex-
cluded range correspond to false objects, and this effect is robust with respect
to difference in tissue appearance.

3.2.9 Merging results from multiple scales

The outputs from the multiple scales and the two types of markers often pro-
duce overlapping regions. For example, a nucleus might be properly segmen-
ted at a certain scale, but a substructure within the nucleus might be segmen-
ted at a higher scale, and/or oversegmentation containing another nucleus
might be produced at a lower scale. Much more commonly, almost identical
segmentations are produced at neighboring scales and/or with the two types
of markers. These situations are resolved by identifying all overlaps and se-
lecting the most probable regions according to a fitness value. For all pairs of
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regions (Xi, Xj) segmented in a given image we define the following overlap
measure:

OV(Xi, Xj) =
|Xi ∩ Xj|

min(|Xi|, |Xj|)
(3.1)

This measure has a maximum value of 1 when one of the regions is com-
pletely contained in the other one and a minimum value of 0 when the two
regions do not intersect. Given this measure, the following adjacency matrix
is defined:

A(i, j) =

{
1 if OV(Xi, Xj) > Th

0 otherwise
(3.2)

The threshold Th defines when two regions are considered to be overlap-
ping. All pairs of regions with a non-zero overlap measure smaller than this
value are considered to be only “touching”. Each region is also assigned a
fitness value f that is used for comparing concurrent regions and selecting the
one that is most likely to represent a nucleus. The region overlaps are then
resolved according to the following simple algorithm:

1. Find the region r with the maximum fitness value f (see below);

2. Mark r as accepted and reject all regions that are adjacent to it;

3. Repeat steps 1. and 2. for the remaining regions until all are accepted
or rejected.

The threshold Th was chosen to be 0.2. This value allows small overlap
of touching nuclei. Simply using the solidity of the region as a fitness value
proved to give good results, although a linear combination of other features
might be an alternative to consider.

3.2.10 Evaluation

The Dice coefficient is a measure of overlap between two regions, commonly
used for evaluation of segmentation techniques. It is defined as:

D(X, Y) = 2
|X ∩Y|
|X|+ |Y| (3.3)

The automatic segmentations were compared with the manual segment-
ations obtained with systematic random sampling in the following way: if a
manual segmentation was not intersected by an automatic segmentation with
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a Dice coefficient of at least 0.2, it was counted as a false negative (FN). Oth-
erwise, it was counted as a true positive (TP). The Dice coefficient was also
taken as a measure of quality of the segmentation.

The reasoning behind a cut-off value of 0.2 was to avoid unsegmented
nuclei that are “touched” by a neighboring segmentation to be counted as
true positives. The value of 0.2 is arbitrary, but it should be pointed out that
in case of a lower value, more nuclei will be counted as TP at the cost of
having more segmentations with very poor quality and vice versa.

To estimate the positive predictive value a subset of 100 automatically
segmented nuclei from each slide was randomly generated. An expert (RJK)
labeled all segmentations that did not correspond to epithelial nuclei, such as
stroma, lymphocytes, “junk” particles etc.

For each representative region the sensitivity, positive predictive value and
the median Dice coefficient were estimated. Because of the asymmetric left-
skewed distribution, the median of the Dice coefficient is a better measure of
central tendency than the mean. We refer to the sensitivity, positive predictive
value and median Dice coefficient measures as estimates because they are
based on an annotated subset of the entire population of nuclei in the images.

In addition to the evaluation on our dataset, we evaluated the proposed
method on a publicly available dataset used in a recently published paper on
nuclei detection and segmentation (Wienert et al. 2012). This dataset con-
tains 36 histopathology images of breast, liver, gastric mucosa and bone mar-
row imaged at ×20 magnification. The ground truth is provided as manually
annotated nuclei centroids. We evaluated the detection performance on this
data set in the same way as in (Wienert et al. 2012), i.e. in terms of overall
positive predictive value, sensitivity and conglomerate score (a score of the
ability of the method to successfully separate conglomerates). For this exper-
iment, no parameter values were adapted, except for the adjustment of the
expected range of nuclei semi-axes, to account for the smaller magnification
(n = {5, 6, . . . , 9}).

3.3 Results

Segmentation results for a few regions from our data set are given in Fig-
ure 3.4 for qualitative evaluation, along with the intermediate results prior
to rejection of spurious contours and prior to the merging of concurrent re-
gions. The four examples are chosen to represent tissue types with different
appearance: large and small nuclei, nuclei organized into tubules, highly mar-
ginalized chromatin etc. In the same figure, the intermediate results prior to
the rejection of false contours and merging of the contours from multiple
scales are also shown. The visual examination shows overall good perform-
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ance with a limited number of severe over- or under-segmentations. Also,
it is apparent that a segmentation is produced for most of the nuclei in the
image, with few contours corresponding to non-epithelial nuclei objects. The
results from all the regions in our data set are available for download from:
http://www.isi.uu.nl/People/Mitko/segmentation.html.

The sensitivity, positive predictive value and median Dice coefficient for
each case in subsets A and B are summarized in Figure 3.5. Note that subset A
was used during the development of the algorithm and subset B is used as an
independent validation set. The sensitivity was estimated as the percentage
of manual segmentations that were matched to an automatic segmentation,
as explained in the previous section. The positive predictive value was es-
timated as the percentage of the annotated automatic segmentations (100
per slide) marked as corresponding to an epithelial nucleus. The mean es-
timated sensitivity for subset A was 0.875 (±0.092) and for subset B 0.853
(±0.077). The mean estimated positive predictive value was 0.904 (±0.075)
and 0.886 (±0.069) for subsets A and B, respectively. For both subsets, the
distribution of the estimated Dice coefficients had a high peak around 0.9,
with the vast majority of segmentations having values larger than 0.8. The
one outlier in terms of sensitivity in the first subset was due to the tissue
being over-stained with eosin, which negatively affected the color unmixing
procedure. The cases with low sensitivity in the second subset had a large
proportion of nuclei that were not segmented due to their very small size
(comparable to the size of lymphocytes). The outlying cases with low pos-
itive predictive value were either high grade cancer and/or had a large pro-
portion of relatively large fibroblasts. In the high grade cancer cases, there
were often many junk particles, usually of small size, that were picked up by
the segmentation procedure. Although the scales for the segmentation were
chosen so that most of the lymphocytes were not segmented, some were still
included in the segmentation and they affected the positive predictive value
negatively. Most of the segmentations had a high value of the Dice coefficient.
The tail in the distribution of the Dice coefficients represents severe over- or
under-segmentations (two or more nuclei segmented as one or a segmented
sub-structure of a nucleus).

Specifying wider ranges of probable feature values during the post-
processing will result in higher sensitivity but at the cost of decreasing the
positive predictive value, and vice versa. The solidity feature is the most dis-
criminative between true and false segmentations. This is because highly con-
vex segmented regions are unlikely to occur by chance, and the convex regions
that do occur correspond to correctly segmented nuclei in the vast majority of
cases. This motivated the use of this feature as a fitness value during the
region merging process.
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A comparison of our multiscale method to the same method on only a
single scale and with a single marker (n = 12 and FRST markers were chosen
as best performing) showed that the sensitivity of the multiscale method on
the validation set was significantly higher (0.853 compared to 0.579 on av-
erage). This exemplifies the added value of our multiscale approach. Our
method generalized well when used to detect and segment nuclei in a diverse
set of histopathology images, including breast, liver, gastric mucosa and bone
marrow tissues. We achieved an overall positive predictive value of 0.904,
sensitivity of 0.833 and a conglomerate score of 0.989 which is comparable
to the results of the method presented in (Wienert et al. 2012) (0.908, 0.859
and 0.958 respectively).

One of the potential uses of an automatic nuclei segmentation method is to
extract prognostically meaningful morphometric parameters. As an example,
we show that the proposed nuclei segmentation technique can be used to re-
liably estimate the mean nuclear area (MNA) from the representative regions.
The area of all segmented nuclei was calculated and then averaged for each
representative region to produce the MNA. We trained a linear regression on
the training set to correct for the systematic underestimation of the MNA. We
observed that the main reason for this systematic underestimation is that the
“junk particles” that are segmented are typically several times smaller than
that of the large epithelial nuclei. In addition, undersegmentation of large
nuclei is more common that oversegmentation of small nuclei. The learned
linear regression was used to correct the MNA estimates of the cases in the
validation sets. The results are presented in the form of a scatter plot in Fig-
ure 3.6. It can be observed that there is good correspondence between the
two measurements and that there is no noticeable systematic bias.

3.4 Discussion and conclusions

This study set out to develop a segmentation method for breast cancer nuclei
that works on H&E stained breast cancer histopathology images. The evalu-
ation revealed that the proposed method has good performance in both detec-
tion and segmentation accuracy. The evaluation was done on two subsets of
images, one of which was used for parameter tuning and the other for valid-
ation. The segmentation results were slightly worse for the validation subset,
probably due to the fact that this data set contained more cases with high
grade cancer that are generally more difficult to segment. Nevertheless, the
results on this validation set provide a good idea of the performance of the
algorithm in real life scenarios.

We did not perform standardization of the tissue appearance (Kayser et al.
2008), inasmuch as the techniques we used aim for robustness with respect
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Figure 3.4: Examples of automated nuclei segmentation in breast cancer sections. All
images are shown at the same scale. First row: original images. Second row: intermediate
results prior to the rejection of spurious regions based on solidity, boundary salience and
mass displacement. Third tow: intermediate results prior to the merging of contours from
multiple scales. Fourth row: final segmentation results.
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Figure 3.4: Continued. Examples of automated nuclei segmentation in breast cancer
sections. All images are shown at the same scale. First row: original images. Second row:
intermediate results prior to the rejection of spurious regions based on solidity, boundary
salience and mass displacement. Third tow: intermediate results prior to the merging of
contours from multiple scales. Fourth row: final segmentation results.



3.4. Discussion and conclusions 45

Figure 3.5: Plot of the performance measures. The performance measures in the first
column refer to subset A and in the second row to subset B.
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Figure 3.6: Scatter plot of
the mean nuclear area as
calculated by manual and
automatic segmentation of
nuclei.

to variation in the preparation of the samples that is within the “nominal
range”. However, it should be noted that very poor sample preparation (such
as very thick sections, overstraining, poorly fixed tissue etc.) or poor digitiza-
tion (failed autofocusing, stitching artifacts etc.) can adversely affect the seg-
mentation technique. Still, these problems rarely occur and can be remedied
with a stricter quality control during the tissue preparation and slide scanning.

One possible point of improvement of our segmentation technique may be
the inclusion of a pre-segmentation step that divides the tissue into epithelial
and stromal regions. This would help to eliminate some of the false positives
that arise in the stromal areas. Another improvement would be the use of
a dedicated lymphocyte segmentation/detection procedure, as presented in
Fatakdawala et al. (2010).

In our current work, we decided to concentrate on nuclear size features
and nuclear architecture, because these are more robust with respect to the
tissue preparation and staining processes compared with nuclear shape and
chromatin texture features. For this purpose, elliptical approximations of the
contours were sufficient. However, this approximation is a drawback when
certain morphometric shape features need to be calculated. If computation
of shape features is required, our segmentation algorithm can be extended to
include an additional step of refining the contours.

The implementation of the method was done in MATLAB. The segmenta-
tion procedure for one image of size 1000×1000 pixels takes approximately
90 seconds on a PC with an Intel Core2Quad Q9500 processor. We note that
this is only an experimental implementation, with processing times too slow
for full slide segmentation, but further speed improvements are possible. In
addition to this, tissue sampling methods (Belhomme et al. 2011; Kayser et al.
2009), and/or supervised extraction of relevant regions of interest (Gutiérrez
et al. 2011; Romo et al. 2011) can be used in order to reduce the number of
regions from the full slide that need to be processed, while still providing a
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relevant result.
In another recent study (Veta et al. 2012) we have shown that the mean

nuclear area (MNA) measurement extracted with the method presented in this
chapter is a relevant prognostic marker in a cohort of 101 male breast cancer
patients, outperforming the traditional nuclear pleomorphism score. Devel-
opment of other prognostic markers, derived for example from analysis of the
nuclear texture or architecture of the tissue is also a possibility. This analysis
can potentially be done on whole slide images, which opens the possibility for
integration into the workflow of routine pathology practice. Segmentation of
nuclei can also be used, in a bottom-up manner, to locate the tumor regions
within the slide or to assess the degree of tubule formation.

In conclusion, we have presented an accurate technique for automated
segmentation of nuclei in images derived from digital slides of H&E stained
breast cancer sections. The technique was evaluated on a number of rep-
resentative regions and showed good performance in terms of detection and
segmentation accuracy. This technique can be used to estimate prognostically
relevant quantitative features such as MNA for breast cancer grading.
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Summary

Numerous studies have shown the prognostic significance of
nuclear morphometry in breast cancer patients. Wide acceptance
of morphometric methods has however been hampered by the te-
dious and time consuming nature of the manual segmentation of
nuclei and the lack of equipment for high throughput digitization
of slides. Recently, whole slide imaging became more affordable
and widely available, making fully digital pathology archives feas-
ible. In this study, we employ an automatic nuclei segmentation
algorithm to extract nuclear morphometry features related to size
and we analyze their prognostic value in male breast cancer.

The study population comprised 101 male breast cancer pa-
tients for whom survival data was available (median follow-up
of 5.7 years). Automatic segmentation was performed on digit-
ized tissue microarray slides and for each patient the mean nuc-
lear area and the standard deviation of the nuclear area were cal-
culated. In univariate survival analysis, a significant difference
was found between patients with low and high mean nuclear area
(p = 0.022), while nuclear atypia score did not provide prognostic
value. In Cox regression, mean nuclear area had independent ad-
ditional prognostic value (p = 0.032) to tumor size and tubule
formation

In conclusion, we present an automatic method for nuclear
morphometry and its application in male breast cancer prognosis.
The automatically extracted mean nuclear area proved to be a sig-
nificant prognostic indicator. With the increasing availability of
slide scanning equipment in pathology labs, these kinds of quant-
itative approaches can be easily integrated in the workflow of
routine pathology practice.

Based on: Mitko Veta et al. (2012). „Prognostic value of automatically
extracted nuclear morphometric features in whole slide images of male breast
cancer”. In: Modern Pathology 25, 1559–1565
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4.1 Introduction

Histologic grading of breast cancer is liable to inter- and intra-observer variab-
ility and it has suboptimal reproducibility (Robbins et al. 1995) because of the
subjective nature of the three components that constitute the grading system:
nuclear pleomorphism, tubule formation and mitotic count. The usefulness of
nuclear morphometry by image analysis in providing more objective and re-
producible prognosis for breast cancer patients has been recognized for a long
time (Baak et al. 1985; Chiusa et al. 2000; Cui et al. 2007; Kronqvist et al.
1998; Mommers et al. 2001; Pienta et al. 1991; Tan et al. 2001). Prognostic-
ally important features express the nuclear size and shape (and in some cases
the nuclear texture and the architecture of the tissue (van Diest et al. 1992a))
in a quantitative manner. Incorporating nuclear morphometry features into
grading would therefore make sense, but wider acceptance of such an ap-
proach to histological grading has been hampered by the tedious and time
consuming nature of the manual segmentation of nuclei. Another contribut-
ing factor has been the lack of technology for high throughput digitization
of histological slides. Recently, whole slide imaging (Al-Janabi et al. 2011;
Pantanowitz et al. 2011) has become more affordable and thus more accep-
ted into pathology labs, with the scanning and processing time constantly de-
creasing. Thus, fully digital pathology archives are already feasible (Huisman
et al. 2010). This development of scanning equipment has in turn prompted
the development of automatic image analysis methods of histopathology im-
ages that aim at reducing or completely eliminating the manual input to the
quantitative analysis of the tissue (Gurcan et al. 2009).

In this study, we demonstrate the usefulness of automatic image analysis
in breast cancer grading by employing a segmentation method to extract pro-
gnostically relevant morphometric features related to size from cancer nuclei
in male breast cancer patients. This relatively rare type of cancer represents
less than 1% of all breast cancers. Despite this, the mortality and morbidity of
the disease are significant. Owing to the rare occurrence, large series are lack-
ing and most of the knowledge is generalized from breast cancer in females.
One previous study on 50 male breast cancer patients revealed that nuclear
morphometry features from manually produced segmentations are predictive
for the survival of the patients (Chiusa et al. 2000). In the work presen-
ted here, we extract two morphometric features, the mean nuclear area and
the standard deviation of nuclear area, using a fully automatic segmentation
method on whole slide images, and we analyze their prognostic value.
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4.2 Materials and methods

4.2.1 Patients

The study population comprised 101 invasive male breast cancer patients.
These are consecutive cases from the years 1986 to 2010 from four pathology
labs in The Netherlands: St. Antonius hospital Nieuwegein, Diakonessenhuis
Utrecht, University Medical Center Utrecht, and Laboratory for Pathology East
Netherlands. This group of patients was previously used to analyze the mo-
lecular sub-typing, fibrotic focus and hypoxia in male breast cancer (Korne-
goor et al. 2011; Kornegoor et al. 2012). The patients for whom survival
data was not available were excluded in the current study. Age, tumor size
and lymph node status were extracted from the pathology reports. Cases with
isolated tumor cells were considered as lymph node positive. Hematoxylin
and eosin (H&E) slides were reviewed by three experienced observers (PJvD,
RK, AHJV-M) to confirm the diagnosis and to characterize the tumor. Histo-
logical type (WHO), tubule formation, nuclear grade, mitotic activity index
(MAI) (van Diest et al. 1992b), and histological grade according to the mod-
ified Bloom and Richardson (Elston et al. 1991) score were recorded. The
grades were assigned by consensus of the three observers in one microscope
session. Prognostic information was obtained from the Integral Cancer Centre
Netherlands. A summary of the clinicopathological data is given in 4.3.

4.2.2 Tissue preparation and slide scanning

Hematoxylin and eosin stained slides were used to identify representative tu-
mor areas. From these areas three 0.6 mm punch biopsies from formalin-fixed
and paraffin-embedded tissue blocks were obtained and embedded in a re-
cipient paraffin block to produce a tissue microarray as described previously
(Kornegoor et al. 2011). Sections of 4 µm were cut and stained with H&E.
The tissue microarray slides were digitized using a ScanScope XT whole slide
scanner (Aperio, Vista, CA, USA). The digitization was done at ×40 magni-
fication with a resolution of 0.25 µm/pixel. In order to reduce the storage
requirements, JPEG2000 compression with high quality factor was used. The
tissue microarray cores were manually extracted and stored as separate image
files. Entire cores, or parts of them, were removed from the analysis in certain
cases like folded tissue, non-tumor tissue, poor fixation and poor digitization
due to failed autofocusing. The latter two negatively affect the automatic seg-
mentation method. In total, 16 cores were completely removed and 16 cores
were partially removed. This includes two patients for whom all three cores
were completely removed.
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Table 4.1: Summary of clinicopathological features of 101 male breast cancer patients.

Total number of patients 101

Age
Median 67
Range 32-88

Tumor type
ductal 90
lobular 3
mixed type (ductal/lobular) 2
invasive cribriform 1
papillary 1
mucinous 2
invasive micropapillary 1
adenoid cystic carcinoma 1

Tumor size
< 2.0 cm 47
≥ 2.0 cm 51
unknown 3

Lymph node metastases
absent 42
present 47
unknown 12

Nuclear atypia
I (mild) 7
II (moderate) 60
III (severe) 34

Tubule formation
I (> 75%) 9
II (10− 75%) 41
II (< 10%) 51

Mitotic activity index (MAI)
≤ 8 46
> 8 55

Bloom and Richardson grade
I 21
II 44
III 36
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Figure 4.1: Example automatic nuclei segmentation results in male breast cancer histo-
pathology images (all images are reproduced at the same scale).

4.2.3 Image analysis

For the task of automatic nuclei segmentation of the epithelial nuclei the
method presented in Chapter 3 was used. Automatic nuclei segmentation
was performed on all tissue microarray cores after which the mean and stand-
ard deviation of the nuclear area were calculated for all patients. The values
were corrected to compensate for the systematic over- and under-estimation
error with linear regression trained on the 39 regions mentioned before. Some
example segmentation results are given in Figure 4.1.
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4.2.4 Statistical snalysis

A result was considered statistically significant if p < 0.05. Because the num-
ber of patients with score I for nuclear atypia, tubule formation and Bloom
and Richardson grading system was very low, scores I and II were pooled.
The mean and standard deviation of the nuclear area were correlated with
clinicopathological features using the independent sample t-test.

The median follow-up time for the patients was 5.7 years, so all survival
analysis was based on the 5-year survival rates. For the univariate survival
analysis, patients were divided into groups of high and low mean and stand-
ard deviation of the nuclear area. The low group included the patients in the
first two tertiles, whereas the high group included the last tertile. The ra-
tionale behind this kind of dichotomization was to establish an analogy with
the nuclear and Bloom and Richardson grades, for which approximately one
third of the patients were assigned a high grade. Tumor size and MAI were
dichotomized using previously defined cut-off values (Kornegoor et al. 2012).
Univariate survival analysis was done by plotting the Kaplan-Meier survival
curves and performing the logrank test.

Features that proved significant in univariate analysis were entered in mul-
tivariate survival analysis using Cox’s proportional hazards model (forward
stepwise selection). Due to the relatively high median age of the patients, age
was also taken as a covariate in multivariate survival analysis.

4.3 Results

The comparison of the mean and standard deviation of the nuclear area
between patients grouped by clinicopathological features is summarized in
Table 4.1. Significant differences were found for the mean nuclear area
between patients with low and high nuclear atypia (p = 0.032), low and
high MAI (p = 0.011) and Bloom and Richardson grades I and II versus III
(p = 0.007). For the standard deviation of the nuclear area, significant dif-
ferences were observed between patients with low and high MAI (p = 0.014)
and Bloom and Richardson grades I and II versus III (p = 0.047).

Results from the univariate survival analysis are given in Table 4.3 and the
survival curves according to the mean and standard deviation of the nuclear
area are presented in Figure 4.2. Large tumor size (p = 0.036), low tubule
formation (p = 0.019), high MAI (p = 0.015), high Bloom and Richardson
grade (p = 0.027) and high mean nuclear area (p = 0.022) were associated
with poor survival. Five-year survival rates for low and high mean nuclear
area were 77% and 52%. The standard deviation of the nuclear area was not
a significant predictor of outcome.
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Figure 4.2: Kaplan-Meier survival curves for male breast cancer patients grouped by
automatically extracted nuclear morphometry features.

In Cox proportional regression, tumor size (p = 0.017), tubule formation
(p = 0.035) and mean nuclear area (p = 0.032) were retained as independent
prognostic factors. The coefficients for the model are given in Table 4.4.

4.4 Discussion and conclusions

The goal of this study was to analyze the prognostic significance of automatic-
ally extracted nuclear morphometric features from whole slide images in male
breast cancer patients. From the two examined features, only the mean nuc-
lear area provided significant prognostic value. In contrast to others studies,
the lymph node status was not a univariate prognostic predictor of survival. It
should be pointed out that this remains the case even if the patients with isol-
ated tumor cells (n = 4) are regarded as node negative. A significant differ-
ence in mean nuclear area was found between patients with low to moderate
and high nuclear atypia as graded by an expert pathologist. This was expec-
ted since subjective assessment of the size of the nuclei is a major part of the
nuclear atypia scoring. Interestingly, nuclear atypia score on its own was not a
significant prognostic factor, which is in agreement with previous studies in fe-
male breast cancer (Abdel-Fatah et al. 2010). In Cox regression, automatically
extracted mean nuclear area was an independent prognostic factor to tumor
size and tubule formation. These results are in agreement with multiple stud-
ies that have shown the prognostic significance of nuclear morphometry in
female and male breast cancer patients (Baak et al. 1985; Chiusa et al. 2000;
Cui et al. 2007; Kronqvist et al. 1998; Mommers et al. 2001; Pienta et al.
1991; Tan et al. 2001). Altogether, this suggest that prognostication in male
breast cancer could benefit from replacing classical nuclear atypia scoring ac-
cording to the Bloom and Richardson grading system by automated nuclear
morphometry of whole slide images.
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Table 4.2: Association between automatically assessed mean and standard deviation of
the nuclear area on whole slide images with classical clinicopathological features in male
breast cancer patients (t-test).

Feature Mean nuclear
area (µm2)

p-value Standard
deviation of the
nuclear area
(µm2)

p-value

All patients 42.80 (8.98) 17.03 (4.34)

Tumor size
< 2.0 cm 43.02 0.884 16.84 0.802
≥ 2.0 cm 42.75 17.06

Lymph node
metastases
absent 42.85 0.976 16.47 0.321
present 42.79 17.42

Nuclear atypia
I and II 41.26 0.032a 16.32 0.065
III 45.37 18.02

Tubule formation
I and II 42.56 0.938 16.94 0.909
III 42.70 16.84

Mitotic activity
index
≤ 8 40.18 0.011a 15.75 0.014a

> 8 44.76 17.87

Bloom and
Richardson grade
I and II 40.85 0.007a 16.25 0.047a

III 45.90 18.05

a Significant at the 5% level.
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Table 4.3: Univariate survival analysis results of male breast cancer patients according to
classic clinicopathological features and automatically extracted mean and standard devi-
ation of nuclear area on whole slide images.

Feature N 5-year survival s.e. p-value

Tumor size
< 2.0 cm 47 0.79 0.07 0.036a

≥ 2.0 cm 51 0.59 0.07

Lymph node
metastases
absent 42 0.82 0.06 0.132
present 47 0.66 0.08

Nuclear atypia
I and II 67 0.71 0.06 0.430
III 34 0.62 0.09

Tubule formation
I and II 50 0.82 0.06 0.019a

III 51 0.55 0.08

Mitotic activity index
≤ 8 46 0.81 0.06 0.015a

> 8 55 0.57 0.07

Bloom and Richardson
grade
I and II 65 0.77 0.06 0.027a

III 36 0.53 0.09

Mean nuclear area
< 46.19 µm2 66 0.77 0.06 0.022a

≥ 46.19 µm2 33 0.52 0.09

Standard deviation of
the mean nuclear area
< 18.3 µm2 66 0.72 0.06 0.328
≥ 18.31 µm2 33 0.61 0.09

a Significant at the 5% level.

Table 4.4: Coefficients for the Cox propor-
tional hazards model. Variables were en-
coded with 0 for the group with better pro-
gnosis and 1 with the group with worse pro-
gnosis. Age, MAI and Bloom and Richardson
grade were not included in the model.

Feature N s.e. p-value

Tumor size 1.060 0.445 0.017
Tubule
formation

0.942 0.447 0.035

Mean
nuclear area

0.858 0.399 0.032
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Careful examination of the results revealed that many of the cases that
have nuclei of small or intermediate size were given grade III for nuclear
atypia due to the irregular chromatin texture and presence of large nucleoli
and vice versa. Chromatin texture and presence of nucleoli are more easily
evaluated by visual examination than nuclear size and thus, arguably, they
are more influential in the grading process. In this study we did not consider
automatically extracted nuclear texture features or nucleolar size, but this
presents an interesting topic for future work.

As mentioned before, the recent advancements in slide scanning equip-
ment and automatic image analysis methods of histopathology images may in-
crease the use of quantitative methods in pathology. Software applications for
analysis of immunohistochemically stained slides are already available from
commercial vendors, some of which have approval by the USA Food and Drug
Administration (Rojo et al. 2009). Such applications should be considered ad-
ditional decision support tools for the pathologists; not overruling them (Hipp
et al. 2011). One application example would be presenting the automated
mean nuclear area to the pathologist at the time of grading a particular case,
together with mean nuclear area values of reference cases and their nuclear
atypia score. This additional quantitative input would help “steer” the de-
cision for the nuclear atypia grading. These “ hybrid”approaches, however,
are yet to be examined in an experimental setting.

It should be pointed out that the automatic estimation has some draw-
backs. Poorly fixed or poorly stained tissue, inclusion of regions with severe
necrosis or lymphocytic infiltration, and failed autofocusing during the digit-
ization may negatively affect segmentation performance, which in turn affects
the estimation of the prognostic features. These situations, however, can be
easily identified in a revision step by an experienced observer.

In conclusion, we here present an automatic method for nuclear morpho-
metry in male breast cancer grading. This approach using whole digital slides
offers all the benefits of a quantitative method while eliminating the tedious-
ness of the previous interactive methods. With the increasing availability of
slide scanning equipment in pathology labs, this kind of quantitative approach
can be easily integrated in the workflow of routine pathology practice.
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Summary

The proliferative activity of breast tumors, which is routinely
estimated by counting of mitotic figures in hematoxylin and eosin
stained histology sections, is considered to be one of the most im-
portant prognostic markers. However, mitosis counting is labori-
ous, subjective and may suffer from low inter-observer agreement.
With the wider acceptance of whole slide images in pathology labs,
automatic image analysis has been proposed as a potential solu-
tion for these issues.

In this chapter, the results from the Assessment of Mitosis De-
tection Algorithms 2013 (AMIDA13) challenge are described. The
challenge was based on a data set consisting of 12 training and 11
testing subjects, with more than one thousand annotated mitotic
figures by multiple observers. Short descriptions and results from
the evaluation of eleven methods are presented. The top perform-
ing method has an error rate that is comparable the inter-observer
agreement among pathologists.

Based on: Mitko Veta et al. (2014a). „Assessment of algorithms for mitosis
detection in breast cancer histopathology images”. Submitted for review
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5.1 Introduction

Breast cancer patients can considerably benefit from adjuvant therapy. How-
ever, aggressive adjuvant therapies are costly, can lead to potentially serious
side effects and thus are only given to patients that are at a high risk. Assess-
ing the patient risk requires use of good prognostic factors. In this regard,
prognostic factors related to tumor proliferation have proven to be among the
most powerful ones (van Diest et al. 2004).

The proliferation of cells occurs through a process that can be divided
into several phases: resting phase (G0), first gap phase (G1), synthesis phase
(S), second gap phase (G2) and mitotic phase (M). After the M-phase, the
cells either enter the G0-phase or the G1-phase repeating the process. The
cells that are in the M-phase can be visually determined under a microscope
by their characteristic morphology. In hematoxylin and eosin (H&E) stained
breast cancer sections, mitoses are discernible as hyperchromatic objects that
lack a clear nuclear membrane and have therefore specific shape properties.
Counting of mitotic figures in H&E stained sections is the oldest and still most
widely used form of assessment of proliferation of breast cancer tumors by
pathologists.

The proliferative activity of the tumor is estimated as the number of mi-
toses in an area of 2 mm2, which corresponds to 8-10 microscope high power
fields (HPFs, refers to the area that is visible using the microscope under very
high magnification, usually ×40) depending on the microscope model. This
number is referred to as the mitotic activity index (MAI). Mitosis counting is
routinely performed in pathology labs all over the world and is widely used
as a prognostic factor. Although MAI assessment can be well reproducible if a
strict protocol is followed after rigorous training (van Diest et al. 1992b), it is
a subjective procedure that is liable to intra-observer variation. Several factors
contribute to this. First of all, the task of identifying mitotic figures in H&E
sections is not trivial. They can display a number of different appearances,
with their hyperchromacity being the most salient feature. Moreover, many
other objects can have a similar hyperchromatic appearance, such as apop-
totic or necrotic nuclei, compressed nuclei, “junk” particles and other artifacts
from the tissue preparation process. This makes the identification of mitoses
difficult. Furthermore, the assessment of the proliferative state by counting
mitotic figures is performed only in a small area of the tumor selected to be
at the tumor periphery and to have high cellularity. The choice of the area is
also a matter of subjective interpretation and one of the potential sources of
low reproducibility.

In addition to being subjective, mitosis counting is a laborious task, com-
pared with the assessment of other prognostic factors for breast tumors, such
as nuclear pleomorphism and tubule formation. For a typical case, it takes
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5-10 min. for a pathologist to perform mitosis counting, and the process must
sometimes be repeated in different areas or different tumor slides for border-
line cases.

In the last decade, pathology labs have started to move towards a fully di-
gital workflow, with the use of digital slides being the main component of this
process (Stathonikos et al. 2013). This was made possible by the introduction
of scanners for whole slide imaging (WSI) that enable cost-effective produc-
tion of digital representations of glass slides. In addition to many benefits in
terms of storage and browsing capacities of the image data, one of the advant-
ages of digital slides is that they enable the use of image analysis techniques
that aim to produce quantitative features to help pathologists in their work.
An automatic mitosis detection method with good performance could allevi-
ate both the subjectivity and the tediousness of manual mitosis counting, for
example, by independently producing a mitotic activity score or guiding the
pathologist to the region within the tissue with highest mitotic activity.

This chapter gives an overview of the Assessment of Mitosis Detection Al-
gorithms 2013 (AMIDA13) challenge that we recently launched. The main
goal of the challenge was to evaluate and compare the performance of dif-
ferent (semi-)automatic mitosis detection methods that work on regions ex-
tracted from whole slide images on a large common data set. Since only the
number of mitoses present in the tissue is of importance, i.e. their size and
shape is not of interest, the challenge was defined as a detection problem.

5.1.1 Challenge format

The challenge was opened on March 28th, 2013, at which point interested
groups or individuals could register on the challenge website and download
the training data set that they could use to develop their methods. The train-
ing data set consisted of image data accompanied by ground truth mitosis
annotations. Approximately two months after the release of the training data
set a testing data set of similar size was released. The testing data set con-
sisted only of image data, i.e. the ground truth annotations were withheld by
the challenge organizers in order to ensure independent evaluation. After the
release of the testing data set, the participants were able to run their methods
and upload results to the challenge website for evaluation. The number of
submissions from each registered participant was limited to three in order to
avoid overfitting of the method to the testing data. Each submission had to be
accompanied by a short method description, or, in the case it was the second
or third submission of the participating team, a description of how the method
differed from previous submissions. The submitted results were evaluated by
the challenge organizers and the evaluation result was made available to the
participants.
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The first part of the AMIDA13 challenge was concluded with the work-
shop held in conjunction with the Medical Image Computing and Computer
Assisted Interventions (MICCAI) 2013 conference on September 22nd, 2013
in Nagoya, Japan. The deadline for submissions that were to be presented
at the challenge workshop and included in this overview was September 8th,
2013. After the conclusion of the workshop, the challenge website was re-
opened for new submissions.

Prior to the challenge workshop, over 110 teams or individuals from more
than 30 countries registered to download the data set. Fourteen teams submit-
ted results for evaluation. All submissions were automatic methods. Although
the option was provided, none of the submissions was a semi-automatic
method. This overview includes eight methods proposed by teams that sub-
mitted results for evaluation and attended the challenge workshop. Addi-
tionally, three methods by teams that submitted results for evaluation and
achieved good performance but could not attend the challenge workshop are
also included. The full list of results along with any new submissions after the
challenge workshop is available on the challenge website.

5.1.2 Previous work

The earliest methods for automatic mitosis detection in breast cancer tissue
date back to more than two decades ago (Beliën et al. 1997; Kaman et al.
1984; ten Kate et al. 1993). However, those approaches were inevitably con-
strained in their performance and potential use by the limited slide digitiz-
ation technology and available computational resources at that time. The
recent interest in this problem (Ciresan et al. 2013; Malon et al. 2012; Roux
et al. 2013; Veta et al. 2013a) was ignited by the increased availability of WSI
scanners. This resulted in the organization of the MITOS challenge in 2012 on
the same topic, which was well attended and helped advance the state of the
art for this problem. However, the challenge was based on a data set of relat-
ively small size (5 slides in total, 10 annotated HPFs per slide), and it did not
account for the inter-subject variability in tissue appearance and staining as
regions of the same slides were included in both the training and testing data
sets. We aim to address these issues with the data set used in this challenge.

For a wider overview of histopathology image analysis techniques for
breast cancer and other tissue types, we refer the reader to the recent reviews
in Gurcan et al. (2009) and Veta et al. (2014b).

5.2 Materials

In this section, we describe the process by which the challenge data set was
compiled and annotated.
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5.2.1 Patient, slide and region selection

The histology slides that were used for the creation of the challenge data set
were produced at the Pathology Department of the University Medical Center
Utrecht, Utrecht, The Netherlands. This is a pathology laboratory of medium
size handling more than 144,000 surgical pathology slides and 12,000 cyto-
logy slides each year. From the archives of the department, slides from 23
consecutive invasive breast carcinoma patients, admitted between July 2009
and January 2010, were retrieved based solely on their availability (other se-
lection criteria were not employed). All slides were prepared according to the
standard laboratory protocol that consists of formalin fixation and paraffin
embedding of the tissue, followed by cutting of 3-5 µm thick sections and
staining with H&E.

One of the most difficult challenges in histopathology image analysis is the
variability of tissue appearance, which is mostly the result of the variability in
the conditions of the tissue preparation and staining processes. The challenge
data set consists of slides that were routinely prepared at different time points
during a longer period of time. In this way, it can be expected that appearance
variability, which can be avoided when the tissues are processed in a single
batch, will be reflected in the data set and the challenge will thus provide
realistic performance estimates.

Data of a single patient typically consist of multiple slides. In clinical prac-
tice, the pathologist selects the slide and the region within the slide that is
most suitable for the analysis at hand. Automating these selection steps is
interesting by itself, and is certainly needed for a fully automatic workflow.
However, for the challenge data set we decided to perform these steps manu-
ally and focus the challenge on the problem of mitosis detection.

An expert pathologist selected one representative slide per patient and
marked a large region of the tumor on the glass slides in which mitosis an-
notation was to be performed. For the larger tumors, the marked areas within
the slides were selected to encompass the most invasive part of the tumor, to
be located at the periphery and to have high cellularity, which are the stand-
ard guidelines for performing mitosis counting. Smaller tumors were included
in their entirety. The size of the outlined area varied from 7 mm2 to 58 mm2

with a median of 26 mm2. It should be noted here that this diverges from the
routine pathology practice of estimating the mitotic activity as the number
of mitotic figures within an area of 2 mm2. The choice of marking a larger
area for mitosis annotation was made in order to ensure that a larger num-
ber of mitoses could be identified, which would result in data set of a size
that is sufficient for training and evaluation of an automatic mitosis detection
method.
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5.2.2 Image acquisition

The representative regions were digitized with a ScanScope XT whole slide
scanner (Aperio, Vista, CA, USA). This scanner model can perform the steps
of tissue selection, patch focus point selection, calibration, image acquisition
and compression in a fully automatic manner. The digitization of the candid-
ate regions was done at ×40 magnification with a spatial resolution of 0.25
µm/pixel. The automatic focus points were manually reviewed before single
focus plane scanning to reduce the possibility of blurry patches. High qual-
ity JPEG2000 compression (quality factor 85) was used to store the images,
almost completely eliminating any visible compression artifacts, which was
confirmed with side-by-side comparison of compressed and uncompressed
versions of several regions. The slide digitization parameters were optimized
to ensure the highest image quality possible and differs from the standard
practice of digital slide archiving at the UMC Utrecht (Huisman et al. 2010).

5.2.3 Ground truth annotation

The ground truth for the challenge was assigned based on the annotations by
multiple observers, to reduce the influence of observer variability. We used
the following protocol to establish the ground truth mitosis annotations.

1. Two pathologists independently traversed the indicated regions of in-
terest and marked the locations of mitoses by drawing an ellipse encom-
passing the object in the whole slide image viewer;

2. The objects on which both pathologists agreed were directly taken as
ground truth mitosis objects;

3. The discordant objects (annotated as mitoses by only one of the observ-
ers) were presented to a panel of two additional pathologists to make
the final decision. Note that the panel did not traverse the slides but
only examined the discordant objects.

With this annotation protocol, all objects that were accepted as ground
truth mitoses have been agreed upon by at least two experts.

The first set of annotations was done by a pathologist at the UMC Utrecht
using the ImageScope whole slide viewer (Aperio, Vista, CA, USA). The second
set of annotations was done by an external pathologist using pathoconsult.nl
— an online digital slide viewing and collaboration platform maintained by
the UMC Utrecht. The second observer was blinded to the results from the first
observer. The observers did not receive a standardized definition for mitotic
figures, but were instructed to perform the mitosis counting using the criteria
they employ in daily practice.
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The total number of annotations made by the first and second observers
was 1088 and 1599, respectively. The number of locations upon which they
agreed was 649, which left 1389 annotations to be resolved by the panel of
two additional observers. The panel revisited all discordant objects and after
discussion, decided together which objects to accept as ground truth mitoses.
The total number of remaining objects after the consensus annotation was
1157 (this number also includes the concordant objects that were directly
accepted as ground truth).

We note here that although the difference in the absolute counts between
the two initial observers is quite large (1088 compared to 1599), a large por-
tion of it can be traced back to only a few subjects (Table 5.1). Later invest-
igation into this showed that this discrepancy can be largely attributed to the
difference in the interpretation of objects that are difficult to interpret without
fine focusing ability. It is also reasonable to assume that some of the difference
can be attributed to the inter-institutional differences in mitosis counting.

5.2.4 Image data distribution

For simplicity, the image data for the challenge was not distributed as whole
slide images, but instead, each whole slide image was divided into a num-
ber of smaller TIFF images that could be easily read by most image analysis
platforms. We chose the size of the TIFF images to be 2000 × 2000 pixels,
representing an area of 0.25 mm2, which is in the order of one microscope
high power field (the exact area of one HPF is different for different micro-
scope models). We refer to the TIFF images as HPFs. HPFs that were out-
side the marked region of interest on the slide or that intersected the black
marker annotation were excluded (Figure 5.1). Since for some subjects the
total number of HPFs was very high (in the order of several hundreds), only
the HPFs that contained at least one mitosis were included as part of the data
set. For the subjects that had fewer than 10 HPFs with mitosis occurrence,
additional empty HPFs were included to extend the total number to 10 in or-
der to include sufficient background image data, necessary for good training
and evaluation. Note that some mitotic figures fell into a HPF that intersects
the marker annotation and are thus not included in the data set. This was the
case for around 6% of the annotations.

The set of 23 subjects was split into two subsets — one intended for train-
ing of the methods and one used as an independent testing data set. The
division into training and testing data sets was done in such a way that the
number of HPFs and ground truth mitoses was approximately balanced. A
summary of the two data sets is given in Table 5.1. The ground truth was
provided to the participants only for the training data set, in the form of co-
ordinates of mitoses (the centres of the elliptical annotations) for each HPF.
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Table 5.1: Data set summary.

ID Outlined
area (mm2)

Number of
annotated
objects by
observer 1

Number of
annotated
objects by
observer 2

Number of
HPFs in the
challenge
data set

Number of
ground
truth
mitotic
figures

Training dataset

1 20 60 188 39 73
2 36 51 32 28 37
3 41 13 46 16 18
4 24 178 338 61 224
5 20 5 8 10 6
6 43 104 89 61 96
7 22 55 140 43 68
8 21 2 5 10 3
9 58 0 12 10 2
10 26 0 4 10 0
11 20 5 25 13 15
12 41 9 5 10 8

Testing dataset

1 7 2 4 10 3
2 36 1 37 15 16
3 40 69 73 49 66
4 21 11 10 10 9
5 27 8 9 10 6
6 26 277 247 67 212
7 7 0 2 10 2
8 26 0 5 10 0
9 31 111 155 44 115
10 34 93 133 48 72
11 23 34 32 22 32

5.2.5 Object-level observer agreement

Given the notorious difficulty of the mitosis detection task even for expert
pathologists, the performance of the automatic mitosis detection methods
should be evaluated within the context of the inter-observer agreement.

The similarity of two sets of annotations can be expressed using the Dice
overlap coefficients, which is computed as:

D(A, B) =
2|A ∩ B|
|A|+ |B| (5.1)

where A and B are the two sets of annotations and | · | indicates the number
of elements in the sets.
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(a) Example slide with the area for annota-
tion indicated with a black marker.

(b) Each rectangle is one HPF. HPFs that
intersect the black marker lines (given in
red) are not included in the data set.

Figure 5.1: Separation into high power fields (HPFs).

On the entire data set of 23 subjects, prior to the separation and selection
of HPFs, the Dice overlap coefficient was 0.483 (i.e., there were 2687 annota-
tions by the two observers in total and they agreed for 649 objects). For the
HPFs in the training data set, the Dice overlap coefficient between the sets of
annotations by the two independent observers was 0.527, and for the testing
data set 0.566. These numbers are higher1 compared to the value for the en-
tire data set due to the selection of non-empty HPFs (prior to separation into
HPFs and rejection) based on the consensus annotation.

The Dice overlap coefficients between the individual annotations and the
consensus annotation are 0.749 and 0.763 for the first and second observer
respectively for the selected HPFs in the training data set, and 0.796 and 0.773
for the selected HPFs in the testing data set. It should be noted however that
this is a biased measure since the consensus annotation is partly based on the
two independent annotations.

1Note that the annotation procedure led to rejection of some HPFs that had only discordant
annotations by the two initial observers that were then in turn all rejected by the consensus
annotation. This produces higher values for the Dice overlap when only the selected HPFs are
considered.
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5.3 Methods

5.3.1 CCIPD/MINDLAB 2

Preprocessing: In addition to the three color channels from the RGB
input images, four additional color channels were computed and used for
candidate segmentation and feature extraction: L from the LAB color space,
V and L from the LUV color space and the blue ratio image (ratio of the blue
color channel and the sum of the other two channels in the RGB color space).

Candidate detection and segmentation: For each HPF, a set of candidate
regions was defined by thresholding the blue ratio image.

Feature extraction and classification: This method fuses two classific-
ation strategies: a feature learning method based on Convolutional Neural
Networks (CNN), and a set of handcrafted features combined with a random
forests (RF) classifier. For each candidate region, both learned features and
handcrafted features were extracted independently, and then classified using
the corresponding classifier. The CNN model has 4-layer architecture, includ-
ing two consecutive convolution-pooling layers, a fully-connected layer and a
softmax classification layer. It operates on 80× 80 pixel patches in the YUV
color space centered at the candidate regions. The first 3 layers comprise
64, 128, and 256 neurons, respectively. For the convolution-pooling layers,
fixed 8× 8 convolutional kernel and 2× 2 pooling kernel were applied. The
CNN was trained using stochastic gradient descent. In addition, morpholo-
gical, statistical and texture features were extracted for each of the seven
color channels. Principal component analysis (PCA) was applied to reduce
the dimension of the extracted features by retaining 98.5% of the principal
components. Using this reduced representation, a cascade of two RF classi-
fiers with 100 random trees was trained. To balance the numbers of mitosis
and non-mitosis objects, the number of non-mitosis nuclei was reduced by
eliminating overlapping objects and oversampling the positive class. The final
prediction score is a weighted average of the outputs of the two classifiers.
More details about this method can be found in (Wang et al. 2014).

5.3.2 DTU 3

Preprocessing: Candidate detection was performed on the blue ratio im-
age, calculated as the ratio of the blue color channel and the sum of the red
and green channels.

2CCIPD at Case Western Reserve University, USA and MindLab at National University of
Colombia

3Technical University of Denmark
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Candidate detection and segmentation: Candidate detection was per-
formed by thresholding of the Gaussian of Laplacian blob detector applied to
the blue ratio image, followed by connected component labelling.

Feature extraction and classification: For each detected candidate ob-
ject, a 100× 100 pixel patch was extracted and each RGB color channel was
independently normalized to have values in the range [0, 1]. From the color
normalized patches, three types of image features were extracted:

1. Color intensity histograms, one for each color channel;

2. Gradient orientation histograms. The orientations of the gradients are
calculated relative to a vector from the cell center to the location of the
gradient;

3. Shape index histograms (Larsen et al. 2014). The shape index captures
second-order differential structure from the local Hessian eigenvalues.
The two eigenvalues are mapped to a continuous interval providing a
smooth and intuitive transition between the second-order shapes (cup,
rut, saddle, ridge and cap).

Each image feature was computed for different concentric donut-like spa-
tial pooling regions centered on the candidate object. The donut-shaped pool-
ing regions vary in radius and width such that they capture image structure
in different parts of the candidate object. Note that the features are rotation-
ally invariant because both the image features and the spatial decomposition
are rotationally invariant. The extracted image features were used to train
a support vector machine (SVM) classifier with radial basis function (RBF)
kernel.

5.3.3 IDSIA 4

In this approach, Multi Column Max-Pooling Convolutional Neural Networks
(MCMPCNN) are used for supervised pixel classification. MPCNNs alternate
convolutional layers with max-pooling layers. A similar technique won the
MITOS mitosis detection competition (Ciresan et al. 2013) and recently pro-
duced outstanding results in image classification (Ciresan et al. 2012a) and
segmentation (Ciresan et al. 2012b).

The inputs to the MPCNN are 63× 63 pixel patches directly sampled from
the raw RGB images. The output is the probability that the central pixel of
the patch is within 20 pixels of the centroid of a mitosis. Three networks with
identical 10-layer architecture were trained on 20 million patches extracted

4IDSIA, Dalle Molle Institute for Artificial Intelligence, USI-SUPSI, Lugano, Switzerland
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from the training images. One tenth of such instances were randomly sampled
from mitosis pixels (which represent a tiny fraction of all pixels in the training
data set); 40% were randomly sampled from all non-mitosis pixels; the re-
maining 50% were sampled only from non-mitosis pixels that were found to
be similar to mitosis (therefore, more challenging to classify) during a simple
preprocessing phase. The resulting training data set was augmented by adding
rotated and mirrored instances. Each network was trained for a maximum of
five epochs, which required about three days of computation using an op-
timized GPU implementation. Mitoses in the test images were detected by
sliding the neural network detectors over the images by means of an efficient
algorithm (Giusti et al. 2013). This resulted in a map where each pixel rep-
resented the probability of belonging to the mitosis class. Each test image
was processed in eight different rotation/mirroring combinations by each of
the three networks. The 24 resulting probability maps were averaged, and
then convolved with a 20-pixel radius disk kernel. Nonzero values obtained
after performing non-maxima suppression in a 50-pixel radius corresponded
to detected centroids of mitotic figures.

5.3.4 ISIK 5

This method is an extension of previous work on mitosis detection (Tek 2013).

Preprocessing: Prior to candidate detection, image contrast stretching
was performed.

Candidate detection and segmentation: Candidate objects were initially
segmented by a morphological double threshold operation. The resulting bin-
ary image was filtered by an area opening operation (with the minimum area
set to 50 pixels), to remove isolated spurious regions. The candidate extrac-
tion procedure was finalized with a morphological hole filling step.

Feature extraction and classification: The candidate object classifica-
tion consists of two separate stages. In the first stage, a set of simple object
features were employed to significantly reduce the number of false objects,
while keeping the loss of true mitotic figures to a minimum. The following
set of features was used in this stage: area, major- and minor-axis lengths,
perimeter, equivalent diameter, ratio of the area to the perimeter, eccentri-
city, extent, mean intensities of the three RGB channels and the ratios of the
mean intensities of the three RGB channels to the corresponding means of all
candidate components of the same image.

5Department of Computer Science and Engineering, Isik University, Istanbul, Turkey
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In the second stage, which operates on candidate objects that have not
been eliminated in the first stage, a set of windows of increasing width around
the candidate object were defined. For each window, a feature vector that is
formed of five different groups of features is calculated: color (statistics of the
RGB color channels and similarities to the average mitosis and non-mitosis
histograms), binary shape, Laplacian, morphological (area granulometry) and
gray-level co-occurrence. For both stages of the classification, an ensemble of
multi-stage AdaBoost classifiers was used.

5.3.5 MINES 6

Preprocessing: Separate hematoxylin and eosin channels were obtained
with color unmixing (deconvolution) (Ruifrok et al. 2001).

Candidate detection and segmentation: The segmentation of candidate
objects was performed entirely using the hematoxylin channel. In order to de-
tect potential nuclei (candidates), a diameter closing operation (Walter et al.
2007) was applied to the median filtered image removing all dark structures
with maximal extension smaller than a predefined parameter. By calculating
the difference to the median filtered image, these small dark structures could
be segmented by simple double thresholding. The connected components of
this binary image were considered candidate objects.

Feature extraction and classification: The candidate segmentation pro-
cedure failed to identify only 2 mitoses in the training data set. With the
aim to reduce the high number of false positives, a supervised classifier was
trained. For each candidate object, shape and texture features (basic geomet-
ric and gray level features, Haralick features, statistical geometric features,
morphological granulometries, convex hull features, etc.), as defined in (Wal-
ter et al. 2010), were computed. In addition, Haralick and basic gray level
features were calculated for the candidate region in the eosin channel and for
a ring around each candidate region in the hematoxylin channel in order to
quantify the local environment.

A training data set of three classes was built: non-mitosis, early mitosis
(prophase/prometaphase) and late mitosis (metaphase, anaphase). The ra-
tionale of transforming the binary classification problem into a three-class
problem was that the two mitosis classes are morphologically very different
and some preliminary runs showed that this strategy gives better results (for
this particular problem). In order to distinguish the three classes, an SVM

6Centre for Computational Biology - Mines ParisTech, Institut Curie and U900 INSERM, Paris,
France
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classifier was trained (RBF kernel, parameters automatically determined by
a grid search with 5-fold cross validation). The mitotic cells were taken as
the union of the early mitosis and the late mitosis class obtained from this
classifier.

5.3.6 NTUST 7

In this approach, a diverse cascade learning framework (Wang et al. 2010b)
with the cwBoost learning algorithm (Wang et al. 2010a) is used for super-
vised pixel classification. The hierarchical ensemble classifier contains 10 lay-
ers of simple mitosis detectors, which evaluate various types of inputs with
different models, and can quickly filter out negative areas. A similar tech-
nique was used for obscured human head detection in video sequences (Wang
et al. 2010b). The inputs to the learning methods were 50× 50 pixel patches
directly sampled from image data extracted from the red color channel. The
red color channel was chosen because in preliminary tests it was found to give
the best cross-validation accuracy compared to the other color channels. Ten
layers of boosting ensembles were trained on image patches extracted from
the training images. Each ensemble contained 10 C4.5 decision tree classifiers
(Quinlan 1996). Mitoses in the test images were then detected by sliding the
hierarchical boosting detectors over the images. The output from the detector
was the probability that the central pixel of the patch is within 25 pixels of
the centroid of a mitosis. A confidence weight is generated by computing the
number of detections in the same area, and regions with a weight greater than
2 are defined as possible mitosis regions.

5.3.7 PANASONIC 8

Preprocessing: The RGB images were first transformed into a number
of different color spaces that later facilitated the candidate segmentation and
feature extraction: L*a*b, HSV, blue ratio image (BR), red ratio image (RR)
and blue-red ratio image (BRR). The blue ratio image, which accentuates the
nuclear dye, was computed as the ratio of the blue channel and the sum of the
other two channels. The red ratio and red-blue ratio image were computed in
a similar manne

Candidate detection and segmentation: Candidate mitosis regions were
extracted by binary thresholding of the BR image. The threshold was auto-

7Graduate Institute of Biomedical Engineering, National Taiwan University of Science and
Technology

8Panasonic Healthcare Co., Ltd.



76 Chapter 5. Assessment of algorithms for mitosis detection

matically determined as three times the standard deviation of the BR image.
Regions that were smaller than 80 pixels were eliminated.

Feature extraction and classification: The following morphological fea-
tures were computed for each candidate region: area, major axis length,
minor axis length, eccentricity, orientation, convex area, filled area, equival-
ent diameter, solidity, extent, and perimeter. In addition to this, for each can-
didate region, a rectangular window was defined, and the following features
were extracted within the window:

1. Histogram of local binary patterns (LBP) for the BR, RR, BRR, L*, H, S,
and V images. The LBP features were computed for three radii (1, 3 and
5 pixels), and the histograms were concatenated;

2. Haralik features (contrast, correlation, energy, and homogeneity) for the
BR, RR, BRR, L*, H, S, and V images;

The candidate objects were classified as mitoses or non-mitoses using a
random forest classifier.

5.3.8 POLYTECH/UCLAN 9

Preprocessing: The candidate detection was performed in the blue cor-
rected images, which were intensity adjusted to calibrate both the image con-
trast and the average intensity, partially compensating for the differences in
tissue appearance.

Candidate detection and segmentation: Candidate objects were de-
tected by thresholding and binary morphological operations. Patches of
128× 128 pixels were then extracted around the centroid of each candidate
object and subsequently used for feature extraction and classification.

Feature extraction and classification: The features used for classifica-
tion of the candidate objects were selected to represent both textural and
shape information. The first set of 10 features was extracted from the average
of the run-length matrices calculated in four directions 0◦, 45◦, 90◦, 135◦ (Ir-
shad et al. 2013). The second set of eight features was extracted from the av-
erage of the co-occurrence matrices for the same four directions and includes:
energy, entropy, correlation, difference moment, inertia, cluster shade, cluster
prominence and Haralick’s correlation. To capture spatial information, each
patch was divided into seven rings and a central circle, and for each region an

9University Nice - Sophia Antipolis, France and University of Central Lancashire, UK
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eight bin intensity histogram was calculated giving in total 64 features. The
final feature that was calculated is the area of the segmented candidate re-
gion by binary thresholding. The OpenCV implementation of random forests
was used for classification. Due to the highly imbalanced training data set,
additional positive (mitosis) patches were randomly selected within a small
neighborhood of the ground truth mitosis location.

5.3.9 SURREY 10

Preprocessing: To compensate for the variability of the tissue staining
and preparation, the images were first aligned in color space. This was done
using histogram matching, with the mean histogram from the whole training
data set as the target, and the histograms of the individual subjects as the
input. Each color channel was adjusted independently. The computed histo-
grams excluded pixels that belong to regions that do not contain tissue (i.e.,
white regions), found by thresholding of the green channel.

Candidate detection and segmentation: Candidate mitosis locations
were detected based on color. Each color channel was quantized to 64 levels,
and these values were used to address a 3-dimensional (RGB) lookup table
that points to the likelihoods of the color being present in a mitotic figure.
The color lookup table was defined based on the histograms of 10-pixel circu-
lar neighborhoods of ground truth locations.

After obtaining a likelihood map for an input image, it was low-pass
filtered and thresholded, and the centers of the connected component re-
gions were taken as candidate locations. Around each candidate location,
70x70 pixel patches were extracted and converted to grayscale. Up to two
largest objects within the patch were segmented by a threshold that provides
the best combination of high boundary gradient and low variance within the
object(s). Objects that had area and contrast with the background below pre-
defined thresholds were removed. When a pair of objects was segmented, it
was ensured that they had roughly the same area and intensity.

Feature extraction and classification: For each candidate, a set of ro-
tation invariant features reflecting the shape, contrast, edge properties and
texture of both the segmented object and the background was calculated. In
addition, pairs were characterized by the ratio and average of a subset of
parameters from each of the objects. For classification, RBF SVM classifier
was used with dominant class subsampling and model averaging, to deal with
the class imbalance.

10Centre for Vision, Speech and Signal Processing (CVSSP), University of Surrey, UK
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5.3.10 SHEFFIELD/SURREY 11

This method requires a minimal input in its design and models the space of
mitosis images using a low-dimensional manifold. An advantage of manifold
learning models is that they enable practitioners to easily visualize the range
of mitosis appearances.

The preprocessing and candidate extraction steps of this submission are
the same as the ones described in SURREY, but instead of computing a set of
predefined features, the normalized gray-level candidate patches were repres-
ented as vectors and modeled as observations by a Bayesian Gaussian Pro-
cess Latent Variable Model (BGPLVM) (Titsias et al. 2010). This method
learns a low dimensional latent space that is mapped nonlinearly back to
the original space of observations. In addition, it enables the computation
of an approximate density function of novel samples given the known image
samples. Therefore, one BGPLVM was used for the positive samples (mitotic
cells) and another for the negative samples (false-positive candidate objects).
The two classes were assumed to be independent and classification was done
using maximum likelihood. Visual inspection of the models (by reconstruct-
ing samples in different positions of the latent space) showed that images
reconstructed from the positive model were sharper than those of the neg-
ative samples, i.e, there was a higher appearance variation among negative
samples. Furthermore, by navigating through the positive latent space, the
reconstructed images showed a smooth transition between different phases of
mitosis as well as between different types of mitosis appearances (including
tripolar mitosis that occur in cancer cells). However, the classification res-
ults were relatively poor, probably because the assumption of independence
between the classes does not hold, indicating that a method that jointly mod-
els samples and labels can be more promising (e.g. using Manifold Relevance
Determination (Damianou et al. 2012)).

5.3.11 WARWICK 12

Preprocessing: Staining normalization by non-linear color mapping
(Khan et al. 2014) was performed in order to neutralize the inherent vari-
ation in the color of the staining.

Candidate detection and segmentation: Candidate objects were extrac-
ted by statistical modelling of the pixel intensities of the b-channel from the
Lab color space. The pixel intensities from mitosis regions were modeled by a

11Department of Computer Science and Sheffield Institute for Translational Medicine, Univer-
sity of Sheffield, UK and Centre for Vision, Speech and Signal Processing (CVSSP), University of
Surrey, UK

12University of Warwick, UK
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Gamma distribution and those from non-mitosis regions by a Gaussian distri-
bution (Rajpoot et al. 2013). Maximum-likelihood estimation was employed
in order to estimate the unknown parameters of the distributions. The pos-
terior probability map was then binarized to identify candidate objects. The
threshold value for obtaining the binary map was selected by performing re-
ceiver operating characteristic (ROC) curve analysis. All candidate objects
with an area between 40 and 500 pixels were considered candidate objects.
This range of areas was obtained by examining the size of the ground truth
mitoses in the training data set.

Feature extraction and classification: For each candidate object, a set
of object level color, shape and texture features was computed. In addition,
a small context window around the candidate objects was defined, and used
to compute contextual features (first order statistics over a set of textural fea-
tures). These contextual features were combined with the object features
to train a classifier. Since the number of non-mitosis candidate objects was
disproportionately higher compared to mitosis candidate objects, the classi-
fication was performed with the RUSBoost classifier (Seiffert et al. 2010),
which combines under-sampling and boosting to handle the class imbalance
problem. Other classifiers (such as SVM, LDA) were also evaluated, but their
cross-validation performance on training data proved to be lower than RUS-
Boost.

5.4 Evaluation

A detected object was considered to be a true positive if the Eucledian dis-
tance to a ground truth location is less than 7.5 µm (30 pixels). This value
corresponds approximately to the average size of mitotic figures in the data
set, and provides a reasonable tolerance for misalignment of the ground truth
location and the detection. When multiple detections fell within 7.5 µm of a
single ground truth location (eg., when two components of a single mitotic
figure were detected separately), they were counted as one true positive. All
detections that were not within 7.5 µm of a ground truth location are counted
as false positives. All ground truth locations that do not have detected objects
within 7.5 µm were counted as false negatives.

For each proposed method two types of evaluation measures relating to
the detection accuracy were computed. The first evaluation measure was the
overall F1-score, where all ground truth objects were considered a single data
set regardless to which subject they belong. The F1-score was defined as the
harmonic mean of the precision (Pr; positive predictive value) and the recall
(Re; sensitivity):
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Table 5.2: Overall F1-scores of the proposed methods. To compute the overall F1-score,
all ground truth objects were considered a single data set regardless to which subject they
belong.

IDSIA 0.610 0.612 0.611
DTU 0.427 0.555 0.483
SURREY 0.357 0.332 0.344
ISIK 0.306 0.351 0.327
PANASONIC 0.336 0.310 0.322
CCIPD/MINDLAB 0.353 0.291 0.319
WARWICK 0.171 0.552 0.261
POLYTECH/UCLAN 0.186 0.263 0.218
MINES 0.139 0.490 0.217
SHEFFIELD/SURREY 0.119 0.107 0.113
NTUST 0.011 0.685 0.022

F1 =
2Pr× Re
Pr + Re

(5.2)

The overall F1-score is dominated by the subjects that have a high number
of mitotic figures. To complement this measure, individual F1-scores for each
subject were also calculated. For the submissions that included probability
estimates associated with the detections, the precision-recall (PR) curves were
also computed.

After a visual inspection of the detection results, it was observed that many
of the false positives produced by the top performing methods closely re-
semble mitotic figures. Indeed, owing to the difficulty of the task it is possible
that some mitotic figures were missed during the ground truth annotation, but
were then detected by the automatic methods. To further examine this, the
false positives from the top two methods, which had notably better perform-
ance than the remaining methods, were presented to a panel of two observers
for re-annotation, along with the ground truth mitoses as a control. This
panel consisted of one of the observers that initially traversed the slides and
one of the observers that participated in the panel that resolved the discordant
objects. Separate images of size 200× 200 pixels, centered at the false posit-
ive detections and the ground truth objects, were extracted and presented in
random order to the new panel for re-annotation, i.e., labelling as mitosis or
non-mitosis.

The mitotic activity of the tumors was ultimately expressed as the density
of mitotic figures, i.e., the number of mitoses per tissue area. To evaluate the
performance of the methods for this task, the correlation coefficient between
the number of detections and the number of ground truth mitoses per HPF for
the subjects in the testing set was computed.
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Figure 5.2: Precision-recall curves of the two top ranking methods. The performance of
the other methods is plotted for comparison.

5.5 Results

5.5.1 Mitosis detection

The overall F1-scores along with the precision and recall of the proposed meth-
ods are summarized in Table 5.2. The top ranking method is IDSIA with an
overall F1-score of 0.611. The individual F1-scores for each subject are sum-
marized in Table 5.3, along with the average across all subjects. Note that
subject #8 from the testing data set has zero annotated ground truth mitotic
figures, thus the F1-score is undefined. Instead of the F1-score, for this subject,
Table 5.3 contains the number of false positive detections. According to this
evaluation measure, the top ranking method is again IDSIA with an average
F1-score of 0.445.

Figure 5.2 gives the PR curves for the IDSIA and DTU methods. The per-
formance of the other methods is also plotted on the same graph for compar-
ison.

Note that these results are based on the original ground truth data and are
not influenced by the re-annotation of false positives.
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Table 5.3: Individual (per subject) and average F1-scores of the proposed methods. To
compute the individual F1-scores, every subject was considered a separate dataset

Team name 1 2 3 4 5 6 7 8a 9 10 11 Average
F1-score

IDSIA .50 .00 .66 .57 .29 .73 .00 0 .46 .60 .64 0.445
DTU .00 .11 .41 .56 .20 .63 .00 0 .35 .61 .68 0.352
WARWICK .13 .34 .14 .59 .40 .62 .00 3 .09 .38 .34 0.302
ISIK .00 .10 .37 .44 .00 .47 .00 1 .16 .26 .46 0.226
PANASONIC .00 .00 .28 .20 .40 .52 .00 0 .10 .30 .33 0.213
CCIPD/MINDLAB .00 .15 .36 .38 .00 .42 .00 0 .07 .38 .33 0.208
SURREY .00 .10 .48 .30 .00 .47 .00 2 .14 .19 .38 0.205
MINES .00 .14 .11 .40 .16 .49 .00 1 .07 .32 .34 0.203
POLYTECH/UCLAN .00 .00 .07 .18 .00 .50 .00 0 .04 .30 .39 0.148
SHEFFIELD/SURREY .03 .07 .35 .15 .00 .05 .00 54 .09 .08 .18 0.099
NTUST .01 .03 .01 .09 .03 .23 .02 29 .01 .05 .21 0.068

a Subject #8 has no ground truth mitotic figures, thus the F1-score is not defined.
For this subject, the number of false positives is given in the table. This subject was
excluded when computing the average F1-score.

5.5.2 Re-annotation of false positives

The results from the re-annotation experiment are given in Figure 5.3. The
proportion of false positives from the IDSIA method re-annotated as mitotic
figures was p = 0.29, 95% CI [0.23, 0.36] . In other words, out of the 208
false positives from the IDSIA method, 61 were re-annotated as true mitotic
figures. The proportion of false positives from the DTU method re-annotated
as mitotic figures was p = 0.16, 95% CI [0.12, 0.19]. In other words, out of
the 397 false positives from the DTU method, 62 were re-annotated as true
mitotic figures. This is illustrated in Figure 5.3(a).

The proportion of objects re-annotated as mitotic figures from the en-
tire set of detections produced by the IDSIA method was p = 0.61, 95% CI
[0.57, 0.65]. This means that out of the 534 detections that this method pro-
duced, 326 were re-annotated as true mitotic figures. The corresponding pro-
portion for the DTU method was p = 0.42, 95% CI [0.39, 0.46] (293 out of 693
detected objects). For comparison, the proportion of objects re-annotated as
mitotic figures from the ground truth dataset was p = 0.71, 95% CI [0.67, 0.75]
(379 out of 533 objects). This is illustrated in Figure 5.3(b).

5.5.3 Number of mitoses per HPF

The scatter plots for the number of detections and the number of ground truth
objects per HPF for the four methods with highest performance according to
the overall F1-score is given in Figure 5.4. The plots for the other methods are
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(a) Proportion of the false positives from
the IDSIA and DTU methods that were re-
annotated as mitoses and non-mitoses .

(b) Proportion of the entire set of detections
from the IDSIA and DTU methods that were
re-annotated as mitoses and non-mitoses.
The re-annotation of the ground truth is also
given for comparison.

Figure 5.3: Results from the re-annotation of the false positives.

Figure 5.4: Scatter plots for the estimated and ground truth number of mitoses per HPF
for the first four methods with highest overall F1-score.

omitted for brevity. The best correlation was achieved by the IDSIA method (
r = 0.90, 95% CI [0.62, 0.96]).

Tables with more detailed results are available for download from the chal-
lenge website.

5.6 Discussion

5.6.1 Summary of the proposed methods

The majority of the proposed methods followed a two-step object detection
approach. The first step identified candidate objects that were then classi-
fied in the second step as mitoses or non-mitoses. Some of the proposed
methods prior to the candidate extraction and classification steps performed
transformation of the color channels (DTU, PANASONIC, POLYTECH/UCLAN)
or staining unmixing (MINES) to obtain a nuclear/hematoxylin channel, thus
eliminating eosinophylic structures that can hamper the detection perform-
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ance. Three of the proposed methods (SURREY, SHEFFIELD/SURREY and
WARWICK) perform explicit staining normalization to tackle the problem of
staining variability.

The most popular technique for candidate extraction was thresholding of
a grayscale image in combination with linear filtering or morphology operat-
ors. This technique worked relatively well because of the hyperchromacity of
the mitoses — by selecting only the “darkest” nuclei in the images as candid-
ates, a large number of the non-mitoses can be rejected while achieving high
sensitivity for the mitosis class. Three of the proposed methods (SURREY,
SHEFFIELD/SURREY and WARWICK) used a supervised method to obtain a
mitosis likelihood map, which was then thresholded in order to obtain can-
didate objects.

In the second step, features were computed for segmented mitosis candid-
ates and/or image patches centered at the detected candidate locations. The
size of the image patches varied from 63× 63 to 128× 128 pixels. These patch
sizes were selected to be somewhat larger than the expected size of mitotic
figures in order to capture contextual information. Spatial pooling was em-
ployed by some methods (DTU, POLYTECH/UCLAN) to capture information
about structures in different regions of the candidate objects.

A variety of different generic color, texture and shape features, with em-
phasis on rotational invariance, was employed by the different methods. The
CCIPD/MINDLAB method used a combination of classification based on hand-
crafted features and a feature learning method (convolutional neural net-
works), and SHEFFIELD/SURREY models the set of observations with mani-
fold learning.

For classification, RBF SVMs (DTU, SURREY, MINES) and random forests
(CCIPD/MINDLAB, PANASONIC, POLYTEC/UCLAN) were the most com-
monly used classifiers, with some methods employing different boosting tech-
niques (ISIK, WARWICK, NTUST). The problem of class imbalance was ad-
dressed by subsampling of the dominant negative class or oversampling of the
class of mitotic figures.

The IDSIA and NTUST methods did not perform candidate extraction, but
instead, evaluated the detector for every pixel location. IDSIA used a very
efficient implementation of deep convolutional neural networks to obtain a
mitosis probability map for each image, from which mitoses were detected by
non-maxima suppression.

5.6.2 Performance of the proposed methods

The best performing method according to all evaluation measures was ID-
SIA. The overall F1-score of this method was comparable to the inter-observer
agreement among pathologists. The DTU method also achieved solid per-
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formance according to the overall and average F1-scores. The performance of
these two methods was notably better than that of the remaining methods.
The analysis of the PR curves (Figure 5.2) indicated that this is not related to
the choice of the operating point of the detectors (the points indicating the
performance of the other methods are in the interior of the areas spanned by
the curves).

The majority of the false positives produced by the methods with lower
performance were dark objects that lack other characteristics of mitotic figures
such as protrusions around the edges. On the other hand, many of the mitotic
figures that had less intensive staining were not correctly detected. This can
be either explained by the fact that the texture and shape features used lack
discriminative ability and do not capture these fine structural details or by the
fact that the mitotic figures with less intensive staining were underrepresented
in the training set. Examples of the most commonly detected and missed
mitotic figures are given in Figure 5.5.

The results from the re-annotation experiment indicate that a large portion
of the “false positives” from the IDSIA method can in fact be considered true
mitotic figures (Figure 5.3). They may have been missed during the ground
truth annotation because of the intricacy of the task and the observer variabil-
ity. In addition, the distribution of the assigned labels during the re-annotation
of the original ground truth set and of the set of detections from this method
was very similar.

Good correlation between the ground truth and estimated number of mi-
toses per HPF was achieved even for some proposed methods that have lower
overall and average F1-scores (Figure 5.4). This indicates that estimation of
the mitotic activity index or the mitotic activity grade might be possible with
lower object-level detection performance or even from global image features.
This represents an interesting subject for future research. It should be also
pointed out that the number of mitoses per HPF does not correspond to the
estimated MAI of the outlined regions in the slides because empty HPFs were
removed when forming the challenge data set.

Experiments with combining the results from the different methods by
majority voting or intersection of the better performing methods did not show
improved results over the best individual method. One of the conclusions
of the discussion during the challenge workshop was that the variation in
the staining appearance is one of the major obstacles for mitosis detection.
After the workshops, attempts to improve the IDSIA and DTU methods were
made by incorporating explicit staining normalizations that showed promising
results. However, due to the preliminary nature of the experiments we chose
not to include the results here.
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(a) Mitotic figures that were detected my most (at least ten) of the proposed
methods.

(b) Mitotic figures that were not detected by any of the proposed methods.

Figure 5.5: Examples of the most commonly detected and missed mitotic figures.



5.6. Discussion 87

5.6.3 Performance for individual subjects

The worst performance in terms of the F1-score was achieved for subjects #1
and #7. They both have very low mitotic activity, and the few ground truth
mitoses have atypical appearance (lack of hyperchromacity). The methods
that have good overall performance produce a very low number of false posit-
ives for these two subjects, suggesting that they would produce a low mitotic
activity estimate.

Another subject for which very poor performance was achieved is #2. Note
that for this subject there was large discrepancy between the numbers of ob-
jects indicated as mitoses by the two independent observers (Table 5.1). This
indicates that there is an intrinsic difficulty in identifying mitotic figures in
this particular case. Case #9 contained many dark nuclei that are not mitotic
figures, thus the methods that extensively rely on the staining intensity as a
features had very low performance.

The best performance was achieved for subject #6 that had very high mi-
totic activity and most of the hyperchromatic objects indeed represented mi-
totic figures.

5.6.4 Feasibility of mitosis counting on whole slide images

Digital slides are still not widely accepted as primary diagnostic modality
pending validation studies, with the main concern being the image quality
and lack of fine focusing ability (Al-Janabi et al. 2011). In the context of
breast cancer histopathology grading, the image quality of whole slide images
is principally sufficient for the scoring of nuclear atypia and tubule formation,
which together with mitosis counting constitute the commonly used modified
Bloom-Richardson grading system (Elston et al. 1991). However, the task of
mitosis counting is a more delicate one. Detailed examination is required to
distinguish mitoses from other mitosis-like objects, which requires the use of
fine focusing on the conventional microscope. This feature is missing in whole
slide images captured with a single focal plane. Although whole slide imaging
scanners that support slide digitization at multiple focal planes are becoming
increasingly available, the use of this feature is still rather limited due to the
increased time and storage requirements. Taking this into account, there is
a possibility of discrepancy between the mitotic activity as estimated by light
microscopy and on unifocal whole slide images.

This challenge compared the performance of human experts and computer
algorithms on digital slides. It should be emphasized that both the automatic
algorithms and the expert observers worked with the same input. The patient
and slide selection was done in a way that captures the intra-laboratory vari-
ability of the tissue preparation. However, it is likely that the inter-laboratory
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variability is greater due to suppliers of reagents, different staining protocols
and different scanners. One possible extension of this challenge is inclusion
of data from multiple centers.

At the time when we started the work on annotating the challenge data
set, studies that examined the feasibility of mitosis counting on digital slides
were lacking. The qualitative impression of pathologists that we interviewed
was that the image quality of digital slides imaged at ×40 magnification and
a single focal plane is sufficient for mitosis counting in most cases, but for
some instances it can be difficult to make a firm decision if an object repres-
ents mitosis without the possibility to fine tune the focus. We performed a
small scale internal validation study and concluded that there is generally a
good correlation between the assessment of the mitotic activity index by light
microscopy and on whole slide images (Stathonikos et al. 2013). In a recent
larger study involving multiple observers and a large number of subjects it
was found that the scoring of mitotic activity on whole slide images is as re-
liable as on conventional glass slides viewed under a microscope (Al-Janabi
et al. 2013).

As an alternative to expert annotation, we are currently investigating the
use of Phosphohistone H3 (PPH3) labelling of mitotic figures to produce
ground truth mitotic figure locations in a more objective manner. These
ground truth locations can then be registered to conventionally stained H&E
slides. The initial results look promising, but we are still optimizing the pro-
cedure.

5.7 Conclusions

In this chapter, we summarized the proposed methods and results from a chal-
lenge workshop on mitosis detection in breast cancer histopathology images.
The challenge data set consisted of 12 subjects for training and 11 for testing,
both with more than 500 annotated mitotic figures by multiple observers. In
total 14 teams submitted methods for evaluation, 11 of which are described
here. The best performing methods achieved an accuracy that is in the order
of inter-observer variability.

Our intention is for this challenge to be ongoing with incremental exten-
sions of the training and testing data sets. By keeping the challenge website
(http://amida13.isi.uu.nl) open for new submissions, we hope to keep a re-
cord of the state of the art of mitosis detection in breast cancer histopathology
images.
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Summary

This chapter describes the development and evaluation of an
automated method for mitosis detection in breast cancer histo-
pathology images. The proposed mitosis detection method follows
a two stage approach. In the first stage, candidate mitosis objects
are detected and segmented based on the staining intensity and
in the second stage the candidate objects are classified as mitotic
figures or non-mitoses using a set of size, shape, color and tex-
ture features. A staining normalization procedure is employed to
reduce the influence of the staining variability. The method was
evaluated on the AMIDA13 dataset and achieved good results com-
pared to other methods on the same dataset. Two baseline models,
one omitting the staining normalization and one omitting texture
features were evaluated for comparison. They achieved worse res-
ults compared to the full model, which illustrates the added value
of the staining normalization and the texture features.

Based on: M. Veta et al. (2013a). „Detecting mitotic figures in breast
cancer histopathology images”. In: SPIE Medical Imaging. Vol. 8676, 867607–
867607-7
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6.1 Introduction

In this chapter, we present a mitosis detection method that is an extension
and improvement of the one published in Veta et al. (2013a). That study
was performed prior to the Assessment of Mitosis Detection Algorithms 2013
(AMIDA13) challenge using the same image data but with ground truth from
only a single observer. Here we repeat the experiments with the AMIDA13
dataset and make several extensions and improvements of the method. Fol-
lowing the conclusions from AMIDA13, we examine the added value of tex-
ture features, compared to using size, shape and intensity/color features only.
In addition, we analyse the influence of employing a staining normalization
procedure on the detection results.

6.2 Materials and methods

6.2.1 Dataset

The dataset used in this study consists of 23 cases divided into two subsets,
one with 12 cases for training and another one with 11 cases for testing of
the detection method. The cases are represented with a number of images
(at least 10 per case) each corresponding to an area of 0.25 mm2 or one
microscope high power field (HPF). The spatial resolution of the images is
0.25 µm/pixel. The ground truth is provided in the form of ground truth
mitotic figure locations for each HPF. The annotation was performed by two
observers that independently traversed the slides. Discordant objects were
resolved by a panel of additional two observers. In total there are 1157 ground
truth mitotic figures, 550 of which are in the training set. More details about
the patient selection, slide digitization and annotation are given in Chapter 5.

6.2.2 Overview of the method

The proposed mitosis detection method follows a two stage approach. In the
first stage, candidate mitosis objects are detected and segmented and in the
second stage the candidate objects are classified as mitotic figures or non-
mitoses. Prior to the candidate detection, a staining normalization procedure
is employed to reduce the influence of the staining variability on the detection.

6.2.3 Staining normalization

One of the main difficulties in automatic image analysis of hematoxylin and
eosin stained tissue is the appearance variability. This is mainly the result of
variations in the tissue preparation and staining processes that are difficult
to control. Consequently, even tissue sections that are prepared in the same
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lab but at different time points, as is the case with this dataset, can exhibit
substantial variability of the staining intensity and color appearance. One of
the ways to tackle this issue is by performing staining normalization prior to
the analysis. For this task, we use the method outlined in Macenko et al.
(2009). In short, this method consists of the following steps:

1. For each image in the dataset, stain-specific absorption coefficients
(staining vectors) are automatically determined;

2. Using the automatically determined absorption coefficients each image
is decomposed into two staining concentration maps (one for each con-
stituent stain) by performing staining unmixing (Ruifrok et al. 2001);

3. For each image, the staining concentration distributions are normalized
to have the same maximum value across the dataset;

4. The images are recomposed from the normalized concentration maps
using common staining absorption coefficients.

The third step of this method normalizes the intensity of the staining across
the dataset and the fourth step normalizes the color appearance of the hem-
atoxylin and eosin stains. The stain-specific absorption coefficients for each
image are automatically determined based on the distribution of the optical
density vectors of the image pixels (ODs). More details can be found in Ma-
cenko et al. (2009) and Vink et al. (2013).

6.2.4 Candidate detection and segmentation

The most salient feature of mitotic figures is their hyperchromicity. Mitoses are
stained noticeably darker than non-dividing epithelial nuclei, however, other
objects such as lymphocytes and necrotic nuclei can also have hyperchromatic
appearance. Nevertheless, by identifying the “darkest” objects in the images,
most mitoses can be successfully detected along with a limited number of false
positives.

We detect candidate objects by performing non-minima suppression in a
radius R on the staining-normalized red color channel. Prior to performing
non-minima suppression, the image is filtered with a Gaussian low-pass filter
with standard deviation σ to eliminate small structures that can be regarded
as noise. Only local minima below a threshold T are considered to be can-
didate objects. By varying this threshold value, different combinations of true
and false positive rates can be obtained, which can be used to plot the free-
response receiver operating characteristic (FROC) curve.

Following the detection, candidate objects are segmented by the level-set
method proposed in Chan et al. (2001). This methods fits a piecewise con-
stant model to the image, and can segment objects whose boundaries are not
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necessarily defined by a strong gradient or are discontinuous. It works by
minimizing the following energy functional:

F(C, c1, c2) = µ · Length(C) + λ1 ·
∫

inside(C)
|I(x, y)− c1|2 dx dy

+ λ2 ·
∫

outside(C)
|I(x, y)− c2|2 dx dy (6.1)

In the previous equation, I is the image function, C denotes the segmentation
curve and c1 and c2 are the average intensity of I inside and outside C. The
parameters µ > 0, λ1 > 0 and λ2 > 0 are fixed and defined by the user. The
parameter µ controls the scale of the segmented objects (smaller µ means that
smaller objects will be segmented and vice versa) and λ1, λ2 are the fit pen-
alties for the inside and outside of the curve. For each candidate location, the
level-set segmentation was performed in a local rectangular support region
centered at the local minimum.

6.2.5 Feature extraction and classification

The candidate classification component aims at classifying all extracted can-
didates as being a mitotic figure (or part of a mitotic figure) or a false object.
To achieve this we trained a statistical classifier with a set of size, shape, color
and texture features. Mitotic figures often exhibit specific structures at the
border regions, usually in the form of protrusions. In addition, the immediate
context of mitotic figures is free from other hyper-chromatic objects in most
cases, and can contain other potentially useful information. To capture this
information, for each segmented candidate region, two additional regions are
defined in which features are extracted: boundary region and neighborhood
region (Figure 6.1).

Following the candidate detection and segmentation, the locations of the
detected objects are compared to the ground truth to produce labels. In con-
cordance with the evaluation criteria of the AMIDA13 challenge, all objects
that are within 30 pixels of a ground truth location are labelled as belonging
to the positive class. Note that multiple objects can be matched to a single
ground truth location.

For each candidate object, the following features were extracted:

1. Size and shape features: Area, perimeter, compactness, eccentricity, solid-
ity and sphericity of the segmented candidate region.

2. Color features: Mean, standard deviation, skewness, kurtoris, median,
minimum and maximum value of the three color channels from the RGB
color space of the segmented candidate region and the two additional
regions.
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3. Texture features: The texture features were extracted by recording the re-
sponses from a set of Gaussian, Laplacian of Gaussian, edge and bar fil-
ters (first and second order Gaussian derivatives), similar to the MR8 fil-
ter bank described in Varma et al. (2005) (Figure 6.1). The images were
processed at six scales for each filter type. The scales for the Gaussian
and Laplacian filters were chosen to be σ = {1,

√
2, 2
√

2, 4, 4
√

2}. The
scales for the edge and bar filters, which are anisotropic, were chosen to
be (σx, σy) = {(1, 3), (

√
2, 3
√

2), . . . , (4
√

2, 12
√

2)}. Since the Gaussian
derivative filters are oriented, to achieve orientation invariance the fil-
tering is performed at six orientations uniformly spread between 0 rad
and π rad, with the maximum response for each pixel taken as the fil-
ter output. The mean, standard deviation, skewness, kurtosis, median,
minimum and maximum value of the responses from all filters for each
of the three color channels, and for each of the three regions are used
as texture features.

The total number of computed features is 1581. Many of the texture fea-
tures, however, are highly correlated, and thus contain redundant informa-
tion. To reduce the dimensionality of the set of texture features, principal
component analysis (trained on the training set) is performed prior to the
classification, retaining only the principal components that account for 99%
of the variance.

For classification, we used the L2-regularized linear support vector ma-
chine classifier as implemented in the LIBLIENAR library (Fan et al. 2008).
This implementation supports class weighting, which can be used to address
the class imbalance problem (there are many more objects from the non-
mitosis class than mitoses). In initial cross-validation experiments on the
training set, this classifier proved to give the best performance among sev-
eral examined classification models including k-NN and non-linear support
vector machines.

6.2.6 Parameter selection and training

We used an H&E stained slide that was not part of the mitosis detection data-
set to define reference maximum concentrations and staining absorption coef-
ficients for the staining normalization method. Prior to performing candidate
detection, segmentation and feature extraction, all images in the dataset were
normalized. A staining normalization example using this method is given in
Figure 6.2. It can be observed that after the normalization, both images have
similar intensities and color, which can also seen from the OD distributions.

The parameters R and σ for the candidate detection were optimized
on the training set by performing exhaustive search for the ranges R =
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Figure 6.1: Example texture feature extraction. Left: A segmented mitotic figure with
two additionally defined regions. Right: Filter responses for different scales. From top
to bottom, the filter responses correspond to the edge, bar, Laplacian of Gaussian and
Gaussian filters.

(a) Original images. (b) Staining-normalized images.

(c) Distribution of the OD values of the ori-
ginal images.

(d) Distribution of the OD values of the
staining-normalized images.

Figure 6.2: Staining normalization example.
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Figure 6.3: Candidate detection FROC
curve for (R, σ) = (45, 2). The
threshold for the selected operating
point is T = 70.

{7.5, 15, 30, 45, 60} pixels and σ = {1, 2, 4, 8, 10, 12} pixels. For each combina-
tion of parameters (R, σ), the free-response ROC curve was plotted by varying
the threshold T. The optimal set of parameters was chosen to be the one that
produced the lowest number of false positives for a target true positive rate
of 95%. This was determined to be (R, σ) = (45, 2) pixels, which produces
approximately 150 false candidates per HPF at 95% TP rate for a threshold
T = 70 (Figure 6.3).

Note that by using this set of parameters and threshold value, an estimated
5% loss of mitotic figures after the candidate detection stage is introduced in
the system. This, however, provides a good compromise between the number
of detected true objects and false positives that are input to the segmentation
and candidate classification stages.

Experiments using the hematoxylin channel obtained by staining unmixing
for candidate detection instead of the red color channel were also performed
but this approach did not provide superior results.

For each candidate, the level-set segmentation was performed in a local
rectangular support region of 120× 120 pixels (30× 30 µm) around the detec-
ted location. The segmentation was initialized with a circular region with a
diameter of 15 pixels (3.75 µm). The parameters µ, λ1 and λ2 were empiric-
ally set to be 0.2, 5, and 1, respectively. The segmentation results proved to be
robust with respect to the choice of parameters and initialization, as very sim-
ilar results were obtained for a wide range of values. Example segmentation
results using the chosen parameters are given in Figure 6.4.

The boundary region that aids the feature extraction was defined as a band
with a width of 3 pixels (0.75 µm) on the interior boundary of the segmented
candidate region. Similarly, the neighborhood region was defined as a band
with a width of 20 pixels (5 µm) outside of the segmented candidate region.
The size of these additional regions was empirically set based on the expected
size of mitotic figures and their distance to neighboring objects.
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Figure 6.4: Example segmentation results. The dots indicate the detected local minima.
Ground truth mitotic figures have green outlines, the other objects are false positives. All
images are shown at the same scale and are staining-normalized.

The candidate detection and segmentation generated 47955 non-mitoses
and 529 mitosis candidates that were used to train the classifier. The regu-
larization parameter C for the L2-regularized linear support vector machine
classifier was optimized by leave-one-patient-out cross-validation on the train-
ing set using the area under the receiver operating characteristic curve (AUC)
as classification performance measure. The dimensionality reduction of the
texture features was performed within each fold separately. To address the
imbalance in the dataset, the classes were weighted by the inverse of their
frequencies. The optimal regularization parameter was used to train a clas-
sifier using all cases in the training set. The optimal operating point of the
classifier (probability cut-off) was selected to be the one that maximizes the
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Figure 6.5: Precision-
recall curves.

F1-score in the leave-one-out experiment.
In addition to the full mitosis detection model, two additional models were

trained for comparison. The first one omits the staining normalization proced-
ure prior to the candidate extraction, segmentation and feature extraction.
The second one omits the texture feature extraction, and performs classific-
ation using size, shape and color features only. In both cases, complete re-
training of the detection system was performed, including optimization of the
candidate detection and classifier. These baseline models illustrate the influ-
ence of different components of the proposed method on the detection results.

6.3 Results

The evaluation of the detection results is performed according to the
AMIDA13 rules, i.e., a detection is considered to be a true positive if the Euc-
ledian distance to a ground truth location is less than 7.5 µm or 30 pixels.

The precision-recall (PR) curves of the proposed method along with the
two baseline models (without staining normalization and without texture fea-
tures) are given in Figure 6.5. In addition, the PR curves for the two top
performing methods from the AMIDA13 challenge described in the previous
chapter are also shown for comparison.

The detection results for the optimal operating point of the classifier are
given in Table 6.1. The overall precision, recall and F1-score are 0.63, 0.33
and 0.43, respectively. Example detection results for visual evaluation are
shown in Figure 6.6.

The correlation coefficient between the estimated and ground truth num-
ber of mitotic figures per HPF was r = 0.54 CI = [−0.34, 0.97].
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Figure 6.6: Example detection results. From top left to bottom right, the examples origin-
ate from cases #1, #3, #4, #6, #9 and #10 in the testing set. The images are shown at the
same scale and are not staining-normalized.
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Table 6.1: Performance of the mitosis detection method for the individual cases in the
testing set.

Case # True
positives

False
positives

False
negatives

Precision Recall F1-Score

1 0 5 3 0.00 0.00 0.00
2 0 0 16 0.00 0.00 0.00
3 31 3 35 0.91 0.47 0.62
4 2 0 7 1.00 0.22 0.36
5 0 0 6 0.00 0.00 0.00
6 102 59 110 0.63 0.48 0.55
7 0 7 2 0.00 0.00 0.00
8 - 7 0 - - -
9 6 6 109 0.50 0.05 0.09
10 18 4 54 0.82 0.25 0.38
11 14 9 18 0.61 0.44 0.51

6.4 Discussion and conclusions

In this chapter, we proposed a two-stage method for the challenging task of
mitosis detection in breast cancer histopathology images. In the first stage,
candidate objects are identified and segmented, and in the second stage, the
candidate objects are classified as mitoses or non-mitoses. With the first
stage, a large number of locations that are distinctly not mitotic figures are
quickly eliminated, which reduces the required computational resources and
enables the second stage to be focused on the more challenging instances.
Two baseline methods, produced by omission of different components of the
processing pipeline, were also analysed for comparison.

The overall detection results that were achieved by the proposed method
are relatively good. From Figure 6.5 it can be concluded that the overall per-
formance of the proposed mitosis detection method is comparable to the DTU
method from the AMIDA13 challenge, but somewhat below the IDSIA method.
The same conclusion can be drawn from the overall precision, recall and F1-
score. The omission of the texture features from the system significantly re-
duced the detection performance. This signifies that the texture features add
important information in addition to the size, shape and color features. The
inclusion of the staining normalization prior to the candidate detection and
feature extraction had a moderate positive effect on the detection perform-
ance. However, the method performs poor for some of the individual cases
in the testing dataset, as can be seen from Table 6.1. This is also reflected
in the correlation between the estimated and ground truth number of mitotic
figures per HPF, which is relatively low compared to the top performing meth-
ods of the AMIDA13 challenge. Relative to the IDSIA and DTU methods, the
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worst performance is achieved for case #9. This case represents a unique
challenge because it both contains many non-mitotic objects with appreciably
strong staining intensity, and mitotic figures with weak staining intensity. This
can not be successfully addressed by the staining normalization procedure. In
fact, this procedure has a negative effect for this case as the staining concen-
trations are normalized with respect to the maximum concentration within
each HPF.

In this study we examined only one staining/image normalization tech-
nique. Other approaches may provide more robust results and a good candid-
ate for future analysis.

A larger dataset, preferably consisting of hundreds of cases from multiple
centers, is needed in order to better capture the variability of the tissue and
mitotic figure appearance. However, this kind of dataset is difficult to obtain
because of the time-consuming nature of the annotation process. An altern-
ative to slide annotation by expert observers is to use a specialized stain that
is specific to mitotic figures, such as PPH3, to obtain ground truth locations
that can then be registered to an H&E stained image. This would not only
enable “mass production” of ground truth data, but would also eliminate any
observer variability and disagreement. We are currently investigating the feas-
ibility of such an approach.
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Wide acceptance of whole-slide imaging (WSI) in pathology labs now
seems imminent. The proliferation of WSI is driven by the reduced cost of
implementation as well as the many advantages that whole-slide images can
offer to the end users. This includes easy access to the slides even from remote
locations, improved slide annotation, ability to simultaneously view and com-
pare multiple slides and use of automated image analysis tools. This chapter
presents a short summary of the research and results in this thesis that is
focused on breast cancer histopathology image analysis.

In Chapter 2, a review of the literature on breast cancer histopathology im-
age analysis is presented. The greatest progress has been made in automatic
analysis of immunohistochemistry (IHC), which has resulted in regulatory ap-
proval of image analysis tools for routine use. This is not surprising since IHC
stained sections are more amenable to image analysis. Progress has also been
made in automatic analysis of hematoxylin and eosin (H&E) stained sections,
although at a slower pace. For this staining, the features that are of interest are
more complex, thus ensuring robustness is more challenging. A large number
of object detection/segmentation techniques and computer-aided diagnosis
and prognosis methods have been proposed. However, further improvements
are needed in order to reach performance levels that are suitable for routine
practice. Two major issues that need to be addressed in order to speed up
the development of histopathology image analysis algorithms were identified.
First, the tissue preparation process needs to become more standardized in
order to reduce the variability of the appearance that is a major debilitating
factor for automated image analysis. Second, there is an increasing need for
large and well-annotated datasets that can be used for training and evaluation
of new methods.

Automatic nuclei segmentation can be an important first step in the ana-
lysis of histopathology images. Chapter 3 describes a nuclei segmentation
method that works with images from routinely prepared breast cancer H&E
sections. The proposed method is based on marker-controlled watershed seg-
mentation that operates on multiple scales and uses multiple marker types.
The multi-scale approach enables nuclei with a wide range of sizes to be suc-
cessfully segmented. This is very important as the size of the nuclei can have
prognostic significance for the patients. The technique was evaluated on a
dataset of 18 slides with more than 2000 manually segmented nuclei. It
showed very good performance in terms of nuclei detection and segmenta-
tion accuracy as well in the ability to estimate the mean nuclear area, which
is an established morphometric parameter. In Chapter 4, this technique was
used to extract and evaluate nuclear morphometric features related to size
in a cohort of 101 male breast cancer patients. In univariate survival ana-
lysis, a significant difference was found between patients with low and high
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mean nuclear area as estimated by automatic nuclei segmentation. The mean
nuclear area was retained as an independent prognostic factor in multivariate
survival analysis, in addition to tumor size and tubule formation score.

Chapters 5 and 6 deal with automatic detection of mitotic figures. Iden-
tification of mitotic figures in H&E stained breast cancer histology sections is
challenging even for expert pathologists. It is the most tedious and time-
consuming component of histological grading of breast cancer and suffers
extensively from observer variability. Regardless of these issues, the mitotic
activity index, which is expressed as the number of mitoses in a tissue area
of 2 mm2 is a very powerful proven prognostic factor. Automatic detection
of mitotic figures can reduce the workload and the impact of the subjective
interpretation.

Recently we organized a challenge workshop on this difficult problem,
titled Assessment of Mitosis Detection Algorithms 2013 (AMIDA13). The main
goal of the challenge was to evaluate and compare the performance of differ-
ent automatic mitosis detection methods on a common dataset. The chal-
lenge dataset consists of 12 cases for training and 11 for testing with more
than 1000 annotated mitotic figures by multiple observers. Chapter 5 sum-
marizes the achieved results from this workshop. The detection error of the
best scoring method is on a par with the inter-observer variability. After a
visual examination of the results, it was observed that many of the false posit-
ives closely resemble mitotic figures and might actually represent objects that
have been missed during the annotation owing to the difficulty of the task. In
a reannotation experiment, close to 30% of the false positives of the best per-
forming method were annotated as true mitotic figures. This result suggests
that the state-of-the art methods for mitosis detection can already be used in a
semi-automatic setting with the goal of reduced variability and faster annota-
tion.

In Chapter 6, the development and evaluation of a two-stage mitosis detec-
tion method was described. In the first stage, candidate objects are detected
and segmented based on the staining intensity. Since hyperchromicity is the
most salient feature of mitotic figures, a large number of locations that are
distinctly not mitotic figures can be quickly eliminated. In the second stage
the candidate objects are classified as mitoses or non-mitoses using a statist-
ical classifier trained with a number of size, shape, color and texture features.
Prior to the candidate detection and classification, a staining normalization
procedure is employed in order to reduce the impact of the staining variabil-
ity. The achieved detection results are comparable to the second best method
from AMIDA13.
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Nederlandse samenvatting

Pathologielaboratoria zijn vandaag de dag bezig over te gaan op een volledig
digitale werkwijze. Naast het digitaal beheren van laboratoriumaanvragen
en uitslagen, worden tegenwoordig ook de weefselpreparaten zelf gedigita-
liseerd. Met behulp van weefselscanners worden preparaten opgeslagen en
bekeken op een computerscherm. Die zou hierdoor de microscoop als het
werkpaard van de patholoog kunnen vervangen. Dit proces is min of meer
analoog aan de digitalisatie van de radiologische beeldvorming. Een van
de grote voordelen van digitale weefselpreparaten in vergelijking met con-
ventionele glaasjes is dat hierdoor een naadloze integratie van kwantitatieve,
automatische beeldanalysetechnieken in de werkwijze van het pathologielab
mogelijk is.

Een relatief hoog percentage van de weefselpreparaten die in pathologiela-
boratoria worden geanalyseerd behelzen borstkanker, daar dit de meest voor-
komende vorm van kanker bij vrouwen is. Met behulp van deze preparaten
bepalen pathologen de differentiatiegraad van de tumor en onderzoeken zij
via immuunhistochemie de aanwezigheid van hormoonreceptoren. Dit soort
bepalingen zijn lastig uit te voeren en veelal onderhevig aan interbeoorde-
laarsvariabiliteit. De preparaten ondergaan allereerst een Haematoxyline-
eosine-kleuring (H&E) en met het Bloom-Richardson systeem wordt vervol-
gens de differentiatiegraad bepaald. Hierbij wordt gekeken naar de celkern,
de onderlinge rangschikking van de cellen en het aantal cellen dat mitose (cel-
deling) vertoont. De analyse met immuunhistochemie wordt uitgevoerd om
cellen die reageren met een specifiek antilichaam te lokaliseren en tellen.

Brede invoering van weefselscanners in pathologielaboratoria lijkt slechts
een kwestie van tijd. De verspreiding van scanners wordt gedreven door de la-
gere kosten alsook door de vele voordelen die digitale beelden bieden aan de
gebruiker. Deze voordelen omvatten makkelijke toegang tot de beelden, zelfs
van een afstand, betere methoden voor annotatie van de beelden, de moge-
lijkheid gelijktijdig een aantal preparaten te bekijken en te vergelijken, en het
gebruik van automatische beeldanalysetechnieken. Dergelijke beeldanalyse-
technieken voor borstkankerhistopathologie zijn het focus van dit proefschrift
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en dit hoofdstuk biedt een kort overzicht van de resultaten.

Hoofdstuk 2 bevat een literatuuroverzicht van beeldanalysetechnieken
voor weefselpreparaten. De grootste voortgang is geboekt in de automatische
analyse van immuunhistochemie, vooral omdat deze beelden wat eenvoudi-
ger te analyseren zijn. Dit heeft geresulteerd in goedkeuring voor het gebruik
van deze beeldanalysetechnieken in de kliniek. De automatische analyse van
H&E preparaten verloopt wat moeizamer. De benodigde analyses hiervan zijn
complexer en lastig om betrouwbaar uit te voeren. Inmiddels zijn er wel veel
technieken ontwikkeld voor automatische segmentatie, diagnose en prognose
op basis van deze beelden, maar de kwaliteit is nog niet klinisch acceptabel.
De twee grootste knelpunten zijn: 1) het ontbreken van een goede gestan-
daardiseerde procedure voor het prepareren van het weefsel, waardoor grote
verschillen tussen preparaten ontstaan die automatische analyse zwaar be-
moeilijken en 2) onvoldoende beschikbaarheid van geannoteerde preparaten
waarmee automatische technieken kunnen worden getraind en geëvalueerd.

Een belangrijke eerste stap in automatische beeldanalyse is de detectie van
celkernen in weefselpreparaten. In Hoofdstuk 3 wordt een automatische de-
tectiemethode beschreven die werkt op H&E preparaten van borstkanker. De
methode is gebaseerd op een marker-controlled watershed techniek, die werkt
op een aantal schalen en met verschillende markertypes. De multischaal aan-
pak is geschiks om celkernen van verschillende groottes te detecteren. Dit is
noodzakelijk, omdat de grootte van een celkern belangrijk is voor de prog-
nose. De resultaten van de methode zijn geëvalueerd op 18 weefselprepa-
raten, waarin meer dan 2000 celkernen handmatig waren geannoteerd. De
methode was zeer succesvol in het detecteren en segmenteren van de celker-
nen, evenals in het bepalen van de grootte van de cel. In Hoofdstuk 4 is deze
techniek vervolgens gebruikt om verschillende vormkenmerken van cellen te
onderzoeken in een populatie van 101 mannen met borstkanker. De grootte
van de cel bleek een bepalende factor binnen een univariate overlevingsana-
lyse. Ook in een multivariate overlevingsanalyse werd dit bevestigd, samen
met de grootte van de tumor en de formatie van tubulus.

Hoofdstukken 5 en 6 gaan beide over technieken voor het automatisch
detecteren van mitose in H&E preparaten. Dit is een erg lastige en tijdro-
vende klus voor een patholoog en daarbij ook nog onderhevig aan een grote
interbeoordelaarsvariabiliteit. Deze problemen ten spijt, de mitotische activi-
teit (uitgedrukt in aantal mitosen in een gebied van 2 vierkante millimeter)
is echter wel een belangrijke prognostische factor. Automatische detectie van
mitose kan de werkdruk van een patholoog verlichten en draagt bij aan een
meer objectieve beoordeling.

Recentelijk hebben we een zogenaamde challenge georganiseerd met de ti-
tel “Assessment of Mitosis Detection Algorithms 2013” (AMIDA13). Het voor-
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naamste doel van deze challenge was verschillende automatische technieken
voor mitose detectie op een gemeenschappelijke dataset te evalueren en ver-
gelijken. De dataset bestaat uit 12 preparaten om methoden te trainen en 11
preparaten waarop methoden getest worden, met in totaal meer dan 1000
mitosen aangegeven door verscheidenen beoordelaars. De resultaten van de
challenge zijn opgenomen in Hoofdstuk 5. De beste automatische methode
presteert vergelijkbaar met de interbeoordelaarsvariabiliteit. De door de me-
thoden gemaakte fouten, de fout-positieve detecties, bleken bij een visuele
inspectie veel op mitosen te lijken en ze zouden mogelijk ware mitosen kun-
nen zijn die gemist werden in deze moeilijke taak. In een herevaluatie bleek
dat bijna 30% van de fout-positieven van de beste methode alsnog echte mi-
tose was. Dit resultaat is een indicatie dat de beste automatische methoden
van een niveau zijn dat ze in een semi-automatische werkwijze ingezet kun-
nen worden om de variabiliteit tussen pathologen te verminderen en ook om
het proces te versnellen.

In Hoofdstuk 6 wordt een twee-staps methode beschreven voor de automa-
tische lokalisering van mitose. De eerste stap bestaat uit een analyse op basis
van de histologische kleuring: mitose is vaak donker gekleurd (hyperchromi-
citeit, absorptie van licht). Zo worden locaties waar in ieder geval geen mitose
plaatsvindt eenvoudig geëlimineerd. De overige locaties worden in de tweede
stap geclassificeerd als wel/geen mitose op basis van grootte, vorm, histolo-
gische kleuring en textuur. Dit gebeurd nadat de preparaten automatisch zijn
bewerkt zodat ze een vergelijkbare, gestandaardiseerde histologische kleuring
hebben. De behaalde resultaten zijn vergelijkbaar met die van de op een na
beste methode van de AMIDA13 challenge.
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