Chapter 7

Effect of the number of passages of fetal and adult fibroblasts on nuclear remodelling and first embryonic division in reconstructed horse oocytes after nuclear transfer

Xihe Li¹, JL Tremoleda² and WR Allen¹

¹University of Cambridge, Department of Clinical Veterinary Medicine, Equine Fertility Unit, Mertoun Paddocks, Woodditton Road, Newmarket, Suffolk CB8 9BH, UK.

²Utrecht University, Faculty of Veterinary Medicine, Department of Equine Sciences, Yalelaan 12, 3584 CM Utrecht, The Netherlands

SUMMARY

The effects of repeated passage in vitro of fetal fibroblast cells (FFC) and adult fibroblast cells (AFC) on nuclear remodelling and first embryonic division when used to reconstruct horse oocytes, and the reasons for the developmental block in progression to the two-cell stage, were investigated. A total of 463 metaphase II oocytes produced 427 fibroblast-cytoplasm couplets after nuclear transfer, which finally resulted in 319 reconstructed oocytes. With increasing numbers of passage, the rates of nuclear remodelling decreased in both types of donor cells; about half of the fused donor cell nuclei showed the S-G2-prometaphase stages of the first embryonic division 18-20 h after cell fusion treatment irrespective of the number of donor cells passages (FFC: 49%; AFC: 53%). The rates of first embryonic division in the reconstructed oocytes fell with increasing age of the donor cells (FFC: 32% - 26% - 23%; AFC: 27% - 23% - 24%) and these rates were significantly lower than those obtained from metaphase II oocytes activated parthenogenetically (79%, P<0.05). Microscopic analysis of the organization of the first embryonic division in the developmentally blocked oocytes reconstructed with either FFC and AFC showed that most of these (FFC: 78%; AFC: 92%) could not form the mitotic spindle and the metaphase plate of chromosomes. These findings indicate that either fetal or adult fibroblasts that have undergone relatively few passages in vitro are most suitable as donors. However, both these cells have lower potential to restart first embryonic development after nuclear transfer than do the equivalent cells in other species. Improvement in the rate of donor cell nuclear progression from S-G2-prometaphase to beyond the metaphase stage, and the normal organization of first embryonic division in reconstructed horse oocytes, might be the key to the production of cloned embryos in this species.

INTRODUCTION

Many factors influence the production of cloned animals when using the technique of nuclear transfer. One is the remodelling of the donor cell nucleus within the cytoplasm of the recipient to organize the first embryonic division. Usually, greater extents of donor cell nuclear remodelling and embryonic development can be achieved when transferring embryonic rather than somatic cell nuclei into the cytoplasm of metaphase II oocytes, although this general rule does not hold true for all species (Campbell et al., 1996a; Kato et al., 2000; Westhusin et al., 2001). The number of donor cell passages is another significant factor in cloning by nuclear transfer. Most reports of successful cloning in domestic animals have used cells of limited passage (3-9) as sources of donor nuclei (Wilmut et al., 1997; Kato et al.,
1998; Wells et al., 1999; Hill et al., 2000; Reggio et al., 2001). Roh et al. (2000) reported that nuclei from both early passage (8-16) and late passage (17-32) donor cells were capable of supporting in vitro development after nuclear transfer in cattle, although the rate of blastocyst formation was lower when using the late passage cells. Studies of nuclear transfer in the horse are presently in their infancy (Hinrichs et al., 2000; Li et al., 2000a, 2001a; Reggio et al., 2000) and it is necessary to investigate the differences that both the type and the rate of in vitro passage of the donor cells make on the whole process.

The present study used both fetal and adult fibroblasts as donor cells for nuclear transfer. The effect of the number of cell passage on nuclear remodelling, and the potential of the reconstructed oocytes to progress to the first embryonic division were investigated, together with attempts to trace the developmental block in progression to the two-cell stage.

MATERIALS AND METHODS

Culture media

TCM 199 (Gibco BRL, Grand Island, NY) was used as the basic medium for oocyte maturation and culture of the reconstructed oocytes after nuclear transfer. A monolayer of horse oviduct epithelial cells (OEC) was also used in co-culture with the oocytes during maturation and development. TCM199 was supplemented with 20% (v/v) heat-inactivated FBS (Gibco BRL), 10µg FSH ml⁻¹ (Sigma Chemicals, St Louis, MO), 5µg LH ml⁻¹ (Sigma) and 1µg oestradiol ml⁻¹ (Sigma) for oocyte maturation.

Culture drops (500µl) containing 20-30 cumulus-oocyte complexes (COCs) were made under mineral oil (Sigma) on the monolayer of OEC in a four-well Petri culture plate (Nunc, Roskilde). Groups of 5-10 reconstructed oocytes were cultured in 500µl drops of TCM medium on the monolayer of OEC in a four-well Petri culture plate, for development.

Oocyte collection and maturation culture

Horse ovaries were obtained from a commercial abattoir and transported to the laboratory within 20h in PBS containing 1µg gentamicin ml⁻¹ (Gibco BRL) and maintained at a temperature of 10-20°C. COCs were recovered from the ovaries by scraping the walls of follicles of 0.5 - 3.0 cm diameter. Groups of 20-30 COCs were matured in vitro by co-culturing them with OEC for 28-30 h at 38°C in an
atmosphere of 5% CO₂ in air (Li et al., 2000b, 2001b).

Preparation of donor cells

Fetal fibroblast cells (FFC) were derived from a 32-day-old Thoroughbred x Pony fetus and adult fibroblast cells (AFC) were obtained from subdermal biopsies recovered from a 4-yr-old Pony mare. Doubling of the population of cultured cells progressed to full confluence in four-well Petri culture plates at which time the cells were sub-passaged. After 2-3 sub-passages, cultured cells of both the FFC and AFC lines were frozen in Dulbecco's modified Eagle's medium (DMEM, Gibco BRL) containing 10% FBS and 10% dimethyl sulfoxide. The FFC and AFC were thawed and then cultured in DMEM with 10% FBS for totals of, respectively, 3-5, 6-10 and 11-15 passages. Analysis of the cell cycle by flow cytometry showed that the nuclei of 93.3% of FFC and 93.6% of AFC were at the G0-G1 phase of the cycle after starvation culture for 3-5 days in DMEM containing 0.5% (v/v) FBS.

Nuclear transfer

The nuclear transfer procedure (Li et al., 2002) was performed using a Transferman micromanipulator (Eppendorf, Hamburg) attached to an inverted microscope (Olympus IMT-2, Tokyo, Japan). All the manipulations were performed in a basic medium of Earle's balanced salt solution (EBSS, Gibco BRL) and 20% (v/v) FBS on a heated stage (CO 102; Linkam, Tadworth) that provided a working temperature of 30°C.

After 28-30 h maturation in vitro, metaphase II (MII) oocytes were selected after removal of their cumulus cells by treatment in 200 i.u. hyaluronidase ml⁻¹ (Sigma) in EBSS-20% (v/v) FBS for 5 min followed by gentle pipetting. The MII oocytes were placed for 10 min in EBSS-20% (v/v) FBS containing 5µg cytochalasin B ml⁻¹ (CCB; Sigma) and 5µg Hoechst33342 ml⁻¹ (Sigma) before they were enucleated. Oocytes were enucleated in EBSS-20% (v/v) FBS with 5 µg ml⁻¹ CCB and only those oocytes in which removal of both the polar body and the metaphase II nucleus was confirmed by observation under UV light for 3-5s were included in the study. For the donor cells, FFC or AFC were held in EBSS supplemented with 20% (v/v) FBS for1 or 2 h before a cell of 15-20 µm in diameter was selected and injected into the perivitelline space of the recipient enucleated oocyte, in combination with a small volume (two or three times the volume of the oocyte) of inactivated Sendai virus (VR-907, 1-3 x 103 U ml⁻¹; LGC, Teddington).
Cell fusion and activation of the reconstructed oocytes

The fibroblast-cytoplasm couplets were aligned manually in 0.28 mmol mannitol fusion buffer l⁻¹ in a 1.0mm fusion chamber and subjected to two DC pulses, each of 220-250 kv cm⁻¹ for 30 µs and delivered by an ECM830 Electro Square Porator (BTX, San Diego, USA). Couplets that had fused successfully were then activated chemically by immersing them in PBS medium containing 5µmol ionomycin l⁻¹ for 5min, followed by culture for 4h in TCM199 medium containing 10µg ml⁻¹ cycloheximide (Sigma). Metaphase II oocytes in the control group were induced to develop parthenogenetically using the same conditions applied to activate the reconstructed oocytes.

Nuclear analysis and development of the reconstructed oocytes to the two-cell stage

Groups of 5-10 reconstructed oocytes were co-cultured on the monolayer of OEC in 500µl drops of development medium at 38°C in an atmosphere of 5% CO₂ in air. Nuclear remodelling was considered to have occurred when the nucleus had enlarged to two to five times the size of that in the original donor cell, or when the condensed chromatin had become organized in the chromosomes to prometaphase, metaphase and then to beyond metaphase stage of the first embryonic division. Nuclear remodelling was in 121 fused oocytes at 18-20 h after cell-fusion treatment by staining with 1 % (w/v) aceto-orcein (Li et al., 2002). Development of the reconstructed oocytes to the two-cell stage was assessed after a further 10-12 h in culture, thus, 28-30 h after cell fusion and treatment with cycloheximide.

Analysis of chromatin, microtubules and microfilaments in the reconstructed oocytes at the first embryonic division block

Reconstructed oocytes from both FFC and AFC that had blocked at the first embryonic division 28-30 h after cell fusion were selected for assessment of cytoskeletal and chromatin structures (Tremoleda et al., 2001). Briefly, the oocytes were permeablized by immersing them for 1h at 38°C in M medium (Simerly and Schatten, 1993), and then fixed for 30 min in 2.5% paraformaldehyde in PBS. The microtubules were then labelled, first by incubating the fixed oocytes for 90 min at 37°C in a 1:250 dilution of a monoclonal anti-α-tubulin antibody (Sigma), and then by incubating them for 1h in a blocking solution (Albertini et al., 1984). Next, the oocytes were exposed to a goat anti-mouse antobody for 1h at 37°C, conjugated to
Effect of number of passages of fetal and adult fibroblasts

Tetramethylrhodamine isothiocyanate (TRITC) and diluted 1:250 in PBS containing 0.5% Triton X-100 and 0.5% BSA. The oocytes were then incubated for 1h in Alexa Fluor 488 phalloidin (15 i.u. ml⁻¹: Molecular Probes, Inc., Eugene, OR) to demonstrate the microfilaments. Finally, the oocytes were washed twice in PBS containing 0.1% BSA before they were incubated in TO-PRO3 (1µmol l⁻¹ in PBS: Molecular Probes) for 15 min to enable visualization of the DNA. The stained oocytes were then mounted under a coverslip with antifade (Vectashield, Vector Lab. Burlingam, CA) and viewed under a confocal laser scanning microscope (Leica TCS MP, Heidelberg) that was mounted on an inverted microscope (Leica DM IRBE) equipped with krypto-Argon-HeNe ion lasers to excite fluorescence for microtubules (TRITC), microfilaments (Alexa Fluor 488) and DNA (TO-PRO3), simultaneously. After treatment, the chromatin was highlighted in blue, the microtubules in red and the microfilaments in green.

Statistical analysis
Each experimental group comprised 3-5 replicates and the results were evaluated by chi-squared analysis. Differences between groups were considered statistically significant when \(P<0.05 \).

RESULTS

Nuclear remodelling of FFC and AFC

A total of 463 MII oocytes produced 427 fibroblast-cytoplasm couplets after nuclear transfer, which resulted in 319 reconstructed oocytes. The rates of nuclear remodelling 18-20 h after cell fusion when using FFC and AFC as donor cells for oocyte reconstruction are shown (Table 1). Representatives stages of the process are illustrated (Fig. 1). The rates of cell fusion between the recipient cytoplasm and either FFC and AFC were 73-82% and 68-73%, respectively. There were no significant differences when using cells that had been passaged 3-5, 6-10 or 11-15 times. Nor were there any differences between FFC and AFC.
Table 1. Influence of the number of donor cell passages on nuclear remodelling 18-20 h after cycloheximide culture when using fetal and adult fibroblasts to reconstruct enucleated horse oocytes

<table>
<thead>
<tr>
<th>Donor cell</th>
<th>Total / Fused (%) of oocytes</th>
<th>Cell cycle of donor nuclear chromatin (% fused oocytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Type</td>
<td>Passages</td>
</tr>
<tr>
<td>FFC</td>
<td>3-5</td>
<td>20 / 16 (80)</td>
</tr>
<tr>
<td></td>
<td>6-10</td>
<td>28 / 23 (82)</td>
</tr>
<tr>
<td></td>
<td>11-15</td>
<td>30 / 22 (73)</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>78 / 61 (78)</td>
</tr>
<tr>
<td>AFC</td>
<td>3-5</td>
<td>32 / 22 (69)</td>
</tr>
<tr>
<td></td>
<td>6-10</td>
<td>26 / 19 (73)</td>
</tr>
<tr>
<td></td>
<td>11-15</td>
<td>28 / 19 (68)</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>86 / 60 (70)</td>
</tr>
</tbody>
</table>

G₀ – G₁ = size was similar to the original (15-20µm) and showed condensed chromatin.
S-G₂/prometaphase = Nuclear size expanded to 40-60µm and the chromatin homogenized within a nuclear envelope.
≥ Metaphase = metaphase and beyond. Nuclear envelope broke down and the chromosomes arranged on the metaphase plate, or separating towards the two poles of the spindle.
FFC = fetal fibroblast cells
AFC = adult fibroblast cells
a,b Values with different superscripts are significantly different (P<0.05)
Effect of number of passages of fetal and adult fibroblasts

Fig. 1. Donor cell nuclear remodelling in reconstructed horse oocytes 18-20 h after cell fusion after nuclear transfer. (a) Original donor cell (G0-G1 stage); (b) swelling nucleus; (c) prometaphase stage; (d) metaphase stage; (e) anaphase stage (chromosomes separating); (f) two nuclei. Arrows indicate the position of the chromatin or nucleus. Scale bar represents 20 µm

When passaging the donor cells, the number of nuclei that showed no change in G0-G1 configuration in the reconstructed oocytes after fusion with FFC increased significantly when using cells that had been passaged 11-15 times compared to those passaged 3-5 times (36% versus 19%, P<0.05). However, this was not the case for oocytes fused with AFC. With both types of cells, about half of the fused donor cell nuclei showed the S-G2-prometaphase stages of the first cell cycle (FFC: 41-56%; AFC: 42-63%), irrespective of the number of donor cell passages. On average, only 23% of the FFC and 25% of the AFC progressed to the metaphase stage (or beyond) of the first cell cycle after chemical activation treatment.

Cleavage of the reconstructed oocytes

After in vitro culture for 28-30h after cell fusion, the rates of first embryonic division in oocytes reconstructed with both FFC and AFC tended to decline with increasing number of passages of the donor cells (Table 2, FFC: 32% - 26% - 23%; AFC: 27% - 23% - 24%), although not significantly. Some abnormal two-cell
embryos showing a polynucleus, or a nucleus-free blastomere, or unequal cleavage with some fragments, were found after nuclear transfer using both FFC (8%) and AFC (8%). In the control group, 19 of 24 (79%) treated metaphase II oocytes developed parthenogenetically to the two-cell stage, a significantly higher proportion than that obtained with the reconstructed oocytes (P<0.05).

Fig. 2. Morphology of chromatin (blue), microtubules (red) and microfilaments (green) of developmentally blocked horse oocytes at first embryonic division after nuclear transfer. (a) Unchanged donor nucleus at the interphase stage; (b) swelling nucleus; (c) and (d) prometaphase stage; (e) metaphase stage; (f) and (g) anaphase stage (chromosomes separating); (h), (i) and (j): abnormalities of structure in the chromosomes and microtubular reorganization at the first embryonic division. Arrows indicate the position of the chromatin or microtubules. Scale bars represent 20 µm.
Table 2. Rates of first embryonic division 28-30 h after cell fusion in the nuclei of either fetal or adult fibroblast cells used to reconstruct enucleated horse oocytes

<table>
<thead>
<tr>
<th>Donor cell Type</th>
<th>Passages</th>
<th>No. fused oocytes</th>
<th>No of 2-cell embryos (% fused oocytes) *</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>Normal</td>
</tr>
<tr>
<td>Parthenogenetic control **</td>
<td>24</td>
<td>19 (79<sup>a</sup>)</td>
<td>13 (54)</td>
</tr>
<tr>
<td>FFC 3-5</td>
<td>31</td>
<td>10 (32<sup>b</sup>)</td>
<td>7</td>
</tr>
<tr>
<td>6-10</td>
<td>42</td>
<td>11 (26<sup>b</sup>)</td>
<td>8</td>
</tr>
<tr>
<td>11-15</td>
<td>30</td>
<td>7 (23<sup>b</sup>)</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>103</td>
<td>28 (27)</td>
<td>20 (19)</td>
</tr>
<tr>
<td>AFC 3-5</td>
<td>36</td>
<td>10 (27<sup>b</sup>)</td>
<td>7</td>
</tr>
<tr>
<td>6-10</td>
<td>30</td>
<td>7 (23<sup>b</sup>)</td>
<td>4</td>
</tr>
<tr>
<td>11-15</td>
<td>29</td>
<td>7 (24<sup>b</sup>)</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>95</td>
<td>24 (25)</td>
<td>16 (17)</td>
</tr>
</tbody>
</table>

FFC = fetal fibroblast cells.
AFC = adult fibroblast cells.
* 2-cell embryos were evaluated morphologically as normal or abnormal.
** Metaphase II oocytes were induced to develop parthenogenetically using the same culture conditions employed when attempting to activate the reconstructed oocytes.
a,b Values with different superscripts are significantly different (P<0.05).
Chapter 7

Analysis of the organization of the first embryonic division in the developmental block oocytes

The organization of chromatin, microtubules and microfilaments in the reconstructed oocytes blocked in the first embryonic division is illustrated (Fig. 2) and summarized (Table 3). Overall, the microtubules in 56% of the FFC and 50% of the AFC reconstructed oocytes were associated with the chromatin of the donor cell. However, most of these (including all those at interphase and prometaphase) could not form the whole mitotic spindle necessary to proceed to the next metaphase stage (FFC: 78%; AFC: 92%;). Thus, 39% in the FFC group and 42% in the AFC group showed the prometaphase of the first embryonic division in which chromatin had condensed as a start to the formation of chromosomes with associated concentrated microtubules. In 22% of the FFC-constructed oocytes and 8% of the AFC-constructed oocytes, the chromosomes were at metaphase or were beginning to separate, but could not complete the first embryonic division. Microfilaments had concentrated to form a rich domain surrounding the area of chromatin-microtubules complexes in the prometaphase-stage oocytes whereas they formed a network throughout the ooplasm in the oocytes blocked at other stages.

DISCUSSION

The present study compared the competence of two types of cells (FFC and AFC) to undergo nuclear remodelling and the first embryonic division after nuclear transfer. Results showed average rates of cell fusion and nuclear remodelling of about 70 - 78% when using both fetal and adult fibroblast, with no significant differences between the two cell types in their ability to act as a donor nuclei to reconstruct enucleated oocytes. This finding is similar to those in other domestic species used for nuclear transfer experiments, and it establishes that the nuclei of both fetal and adult horse fibroblasts have similar potential to induce remodelling in oocytes matured in vitro. Furthermore, after 28-30h of culture after cell fusion, the average rates of embryonic cleavage to the two-cell stage in the reconstructed oocytes were again not different between those made with fetal versus adult fibroblasts (27% and 25%).

However, when comparing these rates of first embryonic division in the reconstructed horse oocytes with those in other domestic species, large differences are evident, as 25-27% is only about half the rate achieved routinely in cattle (Kato
Effect of number of passages of fetal and adult fibroblasts

et al., 2000), sheep (Campbell et al., 1996a; Wilmut et al., 1997), goats (Baguisi et al., 1999; Keefer et al., 2001) and pigs (Lai et al., 2001; Park et al., 2001). The remodelling of the donor cell nucleus and the first embryonic division in the reconstructed oocytes has been characterized in mice, rabbits and cattle, and this has indicated that the state of the cytoplasm in the recipient oocyte is a key-factor in the production of cloned embryos and normal offspring (Campbell et al., 1993 and 1996b; Cibell et al., 1998; Kono, 1998; Robl, 1999; Shin et al., 2002). Co-culture of horse COCs with oviduct epithelial cells has improved cytoplasmic maturation to support fertilization and embryonic development better after intracytoplasmic sperm injection (Li et al., 2001b). Therefore, this study used the same in vitro culture system to provide the metaphase II oocytes used as recipient cytoplasts. In addition, induction of parthenogenesis showed that 79% of metaphase II oocytes that had matured under the same conditions used in nuclear transfer progressed to two-cell stage embryos. This result indicates the presence of different requirements for horse cytoplasmic competence in fertilization, parthenogenesis and nuclear remodelling. The molecular mechanisms involved in reprogramming donor nuclei after somatic cell nuclear transfer have not been fully elucidated. Thus, the question remains as to how best to provide more physiologically mature metaphase II oocytes from abattoir ovaries for horse nuclear transfer studies.

The number of donor cell passages is another significant factor when attempting to clone by nuclear transfer. Kubota et al. (2000) found no differences in the development of nuclear transfer embryos when using adult fibroblasts that ranged in passage numbers from five to 15. In the present study, the rate of nuclear remodelling decreased significantly when using fetal fibroblasts of increasing passage number. During cell passage, both genetic and epigenetic alterations that might affect nuclear remodelling would be expected to accumulate in the cultured cells, and other possible disruptions to the regulation of imprinted genes could also be induced by repeated culture, thereby leading to perturbations in embryonic and fetal development (Walker et al., 1996; Wakayama et al., 1999). Furthermore, it would be sensible to try other cell types obtained from different somatic tissues for use as cell donors in this species.

Successful cell division requires the formation of the metaphase spindle after DNA replication during the normal mitotic cell cycle. By confocal microscopic analysis of non-cleaved oocytes in the present study, it was possible to demonstrate that the microtubules in 78% of the FFC-constructed oocytes, and in 92% of the AFC-
constructed oocytes, did not form a mitotic spindle-like structure and so were unable to progress to later stages of the first cell cycle. Furthermore, even the 22% of the FFC-constructed oocytes and 8% of the AFC-constructed oocytes in which the chromosomes were at the metaphase stage or were beginning to separate, could not complete the first embryonic division due either to structural defects of the spindle or the distribution of the chromosomes, or both. Tremoleda et al. (2001) reported that changes in the microtubules and the organization of the microfilaments during in vitro maturation of horse oocytes are similar to those seen in other species. Thus, it can be speculated that the underlying cause of the first embryonic division block in the reconstructed horse oocytes created by nuclear transfer may be a deficiency of the cytoplasmic transition factors in the recipient cytoplasm, such as those in the cell cyclin family and other cyclin-dependent factors, that are involved specially in the progression of the introduced donor nucleus from S-G2-prometaphase to metaphase. In addition, in contrast to the situation in mitotic cells, meiotic spindles in mammalian oocytes lack centrioles. Hence, the introduction of a foreign centrosome during somatic cell nuclear transfer, results in the presence of the centrioles which plays an indispensable role in reorganization of first embryonic division in the reconstructed oocytes (Navarra et al., 1994; Shin et al., 2002). Whether these factors are relevant to horse nuclear transfer remains to be clarified.

In summary, the present study investigated the rates of nuclear remodelling and two-cell embryonic development, and examined the reasons for the developmental block in progression to the two-cell stage in horse oocytes reconstructed using both fetal and adult fibroblasts that had undergone different number of passage in vitro. The findings indicate that fetal and adult fibroblasts that have undergone few passages (3-10) are equally suitable for use as nuclear donor cells. However, a marked improvement in the rate at which the reconstructed oocytes progress from the S-G2-prometaphase stage to beyond metaphase is needed before attempts to produce viable cloned embryos in this species are likely to be successful.
ACKNOWLEDGEMENTS

This study was kindly supported by The Moller Charitable Trust, The Japan Racing Association and The Thoroughbred Breeders' Association. We are grateful to Potters Abattoir of Staplegrove, Somerset for supplying the horse ovaries.

REFERENCES

Campbell KHS, McWhir J, Ritchie WA and Wilmut I (1996a) Sheep cloned by nuclear transfer from a cultured cell line *Nature* 380 64-66

166

Li X, Morris LHA and Allen WR (2001 b) The influence of co-culture during maturation on the developmental potential of equine oocytes fertilized by intracytoplasmic sperm injection (ICSI) Reproduction 121 925-932

Li X, Morris LHA and Allen WR (2002) In vitro development of horse oocytes reconstructed with the nuclei of fetal and adult cells Biology of Reproduction 66 1288-192

Navara CS, First NL and Schatten G (1994) Microtubule organization in the cow during fertilization, polyspermy, parthenogenesis, and nuclear transfer: The role of the sperm aster Developmental Biology 162 29-40

Effect of number of passages of fetal and adult fibroblasts

Reggio BC, James AN, Green HL, Gavin WG, Behboodi E, Echelard Y and Godke RA (2001) Cloned transgenic offspring resulting from somatic cell nuclear transfer in the goat: oocytes derived from both follicle-stimulating hormone-stimulated and nonstimulated abattoir-derived ovaries Biology of Reproduction 65 1528-1533

Wells DN, Misica PM and Tervit R (1999) Production of cloned calves following nuclear transfer with cultured adult mural granulosa cells Biology of Reproduction 60 9 6-005
