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Introduction

The main theme of this thesis is explicitly solving Diophantine equations. We are
especially interested in the generalized Fermat equation and (other) Diophantine
equations that can be approached via the modular method.

The modular method

The proof of Fermat’s last theorem is based on deep results about Galois repre-
sentations associated to elliptic curves and modular forms. The method of using
such results to tackle Diophantine problems, called the modular method, goes back,
at least, to [Fre]. Many other (famous) Diophantine problems have been solved,
using, amongst other things, the modular method. Certain families of generalized
Fermat equations form one example, amongst the earliest contributions are [DM]
and [Kra4]. The modular method can often benefit from information obtained by
other, classical, methods from number theory, and vice versa. For example, in
[BMS1], the modular method is combined with methods from the theory of linear
forms in logarithms to show that, amongst other things, the only perfect powers in
the Fibonacci sequence are 0, 1, 8 and 144. See also [BMS2], where a combination
of modular and classical methods is used to solve the equation

x2 + D = yn x, y ∈ Z n ∈ Z≥3

for every D ∈ Z with 1 ≤ D ≤ 100.
Broadly speaking, the modular method is as follows. Consider an exponential

Diophantine equation with one unknown odd prime exponent l. Associate to a
(hypothetical) solution a certain elliptic curve E, or Frey curve, with discriminant
an explicitly known constant times an l-th power. Show (using e.g. [Maz2])
that the mod l Galois representation ρE

l associated to the l-torsion points of E is
irreducible. By modularity ([BCDT]) and level lowering ([Rib1], [Rib2]), we obtain
that ρE

l is modular of some explicitly known level (weight 2 and trivial character).
Finally, the modular forms of this level are used, possibly in a non trivial way,
to obtain information about the original Diophantine equation. However, for any
particular Diophantine equation a Frey curve need not be available, but even if one
makes it to the last step, the information obtained (if any) might not be enough
to solve the original problem in general.
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2 Introduction

The generalized Fermat equation

Let a, b, c ∈ Z − {0} and p, q, r ∈ Z≥2, then the generalized Fermat equation is
given by

axp + byq = czr x, y, z ∈ Z.

The exponent triple (p, q, r) is called the signature of the equation. A solution to
this equation is called nontrivial if xyz 6= 0 and it is called proper if gcd(x, y, z) = 1.
If all the exponents are equal, then there exist nontrivial solutions if and only if
there exist nontrivial proper solutions, if the exponents are not all equal then this
need not be the case. For example if the exponents are pairwise coprime, then
by using the Chinese remainder theorem, one easily constructs infinite families of
nontrivial non proper solutions. Therefore, most of the time we are interested in
nontrivial proper solutions.

As will be explained in chapter 1, it is natural to distinguish between three
classes of generalized Fermat equations. The class depends on whether the signa-
ture (p, q, r) satisfies 1/p+1/q+1/r > 1, 1/p+1/q+1/r = 1 or 1/p+1/q+1/r < 1.

• If 1/p+1/q+1/r > 1, then according to [Beu1] there are either 0 or infinitely
many nontrivial proper solutions, and if there are solutions they are given by
a finite set of parameterizations (just like (r2−s2, 2rs, r2 +s2) parameterizes
solutions for the generalized Fermat equation with coefficients a = b = c = 1
and signature (2, 2, 2), i.e. Pythagorean triples). The possibilities for the
signatures are, up to permutation, given by (with n ∈ Z≥2)

(2, 2, n), (2, 3, 3), (2, 3, 4), (2, 3, 5).

• If 1/p + 1/q + 1/r = 1, then finding the nontrivial proper solutions comes
down to finding rational points on elliptic curves. For example, a solution to
ay2 = bx3 + cz6 with z 6= 0 gives rise to a rational point on the elliptic curve
aY 2 = bX3 + c. The possibilities for the signatures are, up to permutation,
given by

(2, 3, 6), (2, 4, 4), (3, 3, 3).

• If 1/p + 1/q + 1/r < 1, then according to [DG] there are only finitely many
nontrivial proper solutions.

The case that the coefficients satisfy a = b = c = 1 is of special interest.

• If 1/p + 1/q + 1/r > 1, then there are always infinitely many nontrivial
proper solutions. As said before, they are given by finitely many polynomial
parameterizations. If (p, q, r) = (2, 2, n) (up to permutation), then they can
be found using elementary number theory. The cases (up to permutation)

(p, q, r) = (2, 3, 3), (2, 3, 4), (2, 3, 5)

are due to Mordell, Zagier, Edwards respectively.

• If 1/p+1/q +1/r = 1, then the elliptic curves in question all have rank zero
and the only nontrivial proper solution, up to sign and permutation, is given
by 16 + 23 = 32.
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• If 1/p + 1/q + 1/r < 1, then all known nontrivial solutions (up to sign and
permutation again) are given by 1n + 23 = 32(n ∈ Z>6) and

173 + 27 = 712, 762713 + 177 = 210639282,

22134592 + 14143 = 657, 153122832 + 92623 = 1137;

15490342 + 338 = 156133, 962223 + 438 = 300429072;

132 + 73 = 29;

72 + 25 = 34, 114 + 35 = 1222.

Note that all known nontrivial proper solutions have p, q or r equal to 2. This has
led to a conjectural generalization of Fermat’s last theorem.

Conjecture (Beal Prize Conjecture). Let p, q, r ∈ Z≥3, then the equation

xp + yq = zr x, y, z ∈ Z gcd(x, y, z) = 1 xyz 6= 0 (1)

has no solutions.

Apart from computer searches and heuristics, evidence for this conjecture is
given by the solution of (1) in a number of cases. The signatures (p, q, r) with 1/p+
1/q+1/r < 1 for which (1) has been solved before (mainly by the modular method
or Chabauty method) are given in [PSS, Table 1] together with the signatures
(p, q, r) = (2, 2l, 5) for primes l > 17 with l ≡ 1 (mod 4) due to Imin Chen, and
signatures (p, r, q) = (4, 2n, 3), (2, 4n, 3) with n ≥ 2 due to Mike Bennett and
Imin Chen. A couple of new isolated cases solved in this thesis are described in a
moment.

Returning to the case of general coefficients, we especially want to mention
that for signatures (p, p, 2), (p, p, 3) and (p, p, p) the generalized Fermat equation
has been solved for many families of coefficients (and infinitely many primes p),
see [BS], [BVY] and [Kra3] respectively.

Thesis outline and results

In chapter 1 we describe how the generalized Fermat equation can be analyzed by
coverings of the projective line unramified outside three points. The main results
are due to [DG]. We give some examples of so-called geometrically-Galois coverings
that can be defined over Q and describe a partial approach to the generalized
Fermat equation x3 + y5 = 156z7. This chapter, however, is mainly motivational
and with one small exception, the results are not used in the later chapters.

Chapter 2 is an introduction into the modular method for Diophantine equa-
tions. The content of this chapter is well known in the literature.

In chapter 3 we produce some new results relevant for the modular method and
apply these results (amongst other things) to explicitly solve certain Diophantine
equations. We start by constructing some Frey curves, in particular we show how
to attach a Frey curve to an equation of the form

F (x, y) = zl x, y, z ∈ Z gcd(x, y) = 1 z 6= 0,
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where F (x, y) ∈ Z[x, y] is a nondegenerate binary cubic form and l denotes an
odd prime. Next, we study irreducibility results for the Galois representations
associated to the p-torsion points for small primes p (i.e. p = 5, 7, 13) of the Frey
curves above and another family of Frey curves related to binary quartic forms. We
prove irreducibility in some cases and show in some other cases that irreducibility
could be proved by finding rational points on genus 2 curves. Finally, we solve
certain Diophantine equations. In [Che] it is proven, using the modular method,
that the generalized Fermat equation

x2 + y2l = z3 x, y, z ∈ Z gcd(x, y, z) = 1 xyz 6= 0, (2)

has no solutions for primes l with 7 < l < 107, l 6= 31. By applying our irre-
ducibility results we show that (2) has no solutions for l = 5. By combining the
modular method with classical arguments from algebraic number theory we are
able to show that (2) also has no solutions for l = 31. In [Kra4] the modular
method is used to show that the generalized Fermat equation

x3 + y3 = zl x, y, z ∈ Z gcd(x, y, z) = 1 xyz 6= 0, (3)

has no solutions for primes l with 13 < l < 10000. The method in loc. cit. can
easily be extended to show that for l = 7, 11, 13 (3) has no solutions. Using our
irreducibility results, we show that the modular method can also be used to prove
that (3) has no solutions for l = 5 (in [Bru] it was already shown, using Chabauty
methods, that the equation has no solutions for l = 4, 5). We also use our Frey
curves and irreducibility results to study equations of the form

f(x) = yl x, y ∈ Z y 6= 0,

where f(x) ∈ Z[x], e.g. f(x) = x3 − x− 2 or f(x) = x4 + x3 − 3x2 + 11x + 2.
In chapter 4 we return to purely classical methods in order to find an algorithm

to solve the spherical generalized Fermat equation

ax2 + by3 = cz5 x, y, z ∈ Z gcd(x, y, z) = 1 xyz 6= 0, (4)

for given a, b, c ∈ Z−{0}. In [Edw] already an elegant algorithm (based on classi-
cal invariant theory) that solves (4) is obtained, however for increasing |a|, |b|, |c|
it becomes quickly infeasible in practice. Our algorithm is quite different and also
allows help from the modular method. We implemented it in Magma. As input,
however, it needs a certain (finite) list of étale algebras of degree 5 over Q, unram-
ified outside the primes dividing 2 ·3 ·5abc. This list could in principle be found in
finite time, but in practice can take very long. If no prime bigger than 5 divides
abc, then luckily such a list is readily available. This enabled us to prove that (4)
has no solutions for certain pairwise coprime a, b, c ∈ Z− {0}, thereby solving an
open problem due to [DG].

In chapter 5 we use the modular method to study (4). We show that in certain
cases the list of étale algebras, needed as input in our algorithm to solve (4), can
be obtained from (available) data about elliptic curves and modular forms. In
particular, we show how to obtain this list of étale algebras using the modular
method in case a = b = c = 1. In some sense this completes the work in [Tib],
where (4) with a = b = c = 1 was already studied using the modular method and
some partial results were obtained.
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Notation

Most notation is quite standard and will not be repeated here. We want to mention
the following.

For n ∈ Z− {0} we denote by rad(n) the product of the primes dividing n, if
S is some set of primes (of Z), then radS(n) denotes the products of the primes
dividing n that are not in S.

For a field K, an element [u : v] ∈ P1
K with v 6= 0 will be identified with

u/v ∈ K, the element [1 : 0] ∈ P1
K will be denoted by ∞.

A univariate polynomial (over some domain) is called separable if its discrimi-
nant is nonzero.

For an elliptic curve E/Q, the conductor will be denoted by N(E), the minimal
discriminant by ∆min(E) and the j-invariant by j(E) or jE , if E is given by a
specific Weierstrass equation, then (by slightly abusing notation), the discriminant
of this Weierstrass equation is denoted by ∆(E). If no confusion should arise, we
sometimes simply just use N,∆min, j and ∆. For a prime p, the reduction of E
modulo p is denoted by Ẽ(Fp) and we define ap(E) := p + 1 − #Ẽ(Fp) (as a
consequence ap(E) = −1, 1, 0 if the reduction of E at p is non-split multiplicative,
split multiplicative, additive respectively).

By a newform of level N we will mean a newform of weight 2 w.r.t Γ0(N) (so
the character is trivial), unless specifically stated otherwise. For a newform f (of
some level N) and n ∈ Z>0, we denote by an(f) the n-th Fourier coefficient of the
expansion of f at the cusp i∞, Kf denotes the number field Q({an(f)}∞n=1) and
Of denotes the ring of integers of Kf .

Finally, GQ will denote the absolute Galois group Gal(Q/Q).





Chapter 1

Coverings and the
generalized Fermat equation

In the study of the generalized Fermat equation coverings of the projective line
unramified outside 3 points play an important role. Arithmetic properties of these
coverings and their relations to the generalized Fermat equation will be the main
theme of this chapter.

1.1 Coverings and the generalized Fermat equa-
tion

Recall the generalized Fermat equation

axp + byq = czr x, y, z ∈ Z gcd(x, y, z) = 1 xyz 6= 0, (1.1)

for given a, b, c ∈ Z−{0} and p, q, r ∈ Z≥2. It is called spherical if 1/p+1/q+1/r >
1, euclidean if 1/p+1/q+1/r = 1, and hyperbolic if 1/p+1/q+1/r < 1. The reason
for distinguishing between these cases (and the terminology) will become clear in
a moment. The method of analyzing (1.1) described in this section comes from
[DG]. Nice surveys can be found in [Beu2] and [Kra5], so we will limit ourselves
to the essential points.

Let K be a number field and let C be a complete nonsingular and geometri-
cally irreducible curve over K. Let φ : C → P1 be a covering (i.e. nonconstant
morphism) defined over K. This corresponds to a field extension K(C)/K(φ).
The covering is called Galois if K(C)/K(φ) is a Galois extension, we call it
geometrically-Galois if K(C)/K(φ) is a Galois extension.

Suppose from now on that the covering φ is geometrically-Galois. The group
of covering transformations of the covering associated to K(C)/K(φ) is isomor-
phic to Gal(K(C)/K(φ)), these covering transformations are already defined over
some finite extension L of K, so that L(C)/L(φ) is Galois and Gal(L(C)/L(φ)) '
Gal(K(C)/K(φ)). Furthermore, the ramification indices of the points in a fiber

7



8 Chapter 1. Coverings and the generalized Fermat equation

φ−1(α) (α ∈ P1) only depend on α. If φ : C → P1 is unramified outside {0, 1,∞}
with ramification indices above 0, 1,∞ equal to p, q, r respectively, then we say
that φ has signature (p, q, r) and we define χ(p, q, r) := 1/p + 1/q + 1/r − 1. Let
gC be the genus of C and χC = 2 − 2gC the Euler characteristics of C. It turns
out that χC and χ(p, q, r) have the same sign.

Lemma 1. Let φ : C → P1 be a geometrically-Galois covering of degree d and
signature (p, q, r). Then χC = dχ(p, q, r). In particular

• gC = 0 ⇔ χ(p, q, r) > 0,

• gC = 1 ⇔ χ(p, q, r) = 0,

• gC ≥ 2 ⇔ χ(p, q, r) < 0.

Proof. Above 0, 1,∞ there are d/p, d/q, d/r points respectively, with ramification
index p, q, r respectively (and no other ramification points). The Riemann-Hurwitz
formula now gives us

χC = 2d−
(

d

p
(p− 1) +

d

q
(q − 1) +

d

r
(r − 1)

)
= dχ(p, q, r).

The last statement follows now immediately from χC = 2− 2gC .

We also have an existence result for such coverings. A proof is given in section
1.3.

Theorem 2. Let (p, q, r) ∈ Z3
≥2. Then there exists a curve C and a geometrically-

Galois covering φ : C → P1 of signature (p, q, r), defined over a number field K.

These coverings are used to lift a point axp/(czr), where x, y, z is a solution to
(1.1), to φ−1(axp/(czr)). In order to bound the ramification of the number field
generated by such a lift, the following theorem is of fundamental importance. For
α ∈ K∗ and π a finite prime of K we define

ν(0)
π (α) := max(νπ(α), 0).

Theorem 3 (Beckmann). Let φ : C → P1 be a covering unramified outside
{0, 1,∞}, defined over a number field K. Then there exists a finite set of primes
Sbad of K with the following property. Let α ∈ K−{0, 1}(= P1(K)−{0, 1,∞}) and
let π 6∈ Sbad. If ν

(0)
π (α), ν(0)

π (α − 1), ν(0)
π (1/α) is a multiple of all the ramification

indices above 0, 1,∞ respectively, then π is unramified in the field K(φ−1(α)).

Proof. See [Bec, Theorem 5.1] (if the model is not good, finitely many bad primes
must be added).

Solutions to (1.1) can now be described in term of L-rational points on C for
some number field L.
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Lemma 4. Let φ : C → P1 be a geometrically-Galois covering of signature (p, q, r),
defined over a number field K. Then there exists a finite extension L/K such that
for all solutions x, y, z to (1.1) we have axp/(czr) ∈ φ(C(L)).

Proof. Let Sbad be the finite set of primes of K associated to φ from Theorem 3.
Define S′bad to be the union of Sbad and the primes of K dividing abc, so S′bad

is still finite. Now suppose x, y, z is a solution to (1.1). Let α := axp/(czr), so
α − 1 = −byq/(czr) and 1/α = czr/(axp). Let Lα := K(φ−1(α)), this is a finite
extension of K with degree ≤ (deg φ)!.

Since xyz 6= 0, we have α 6= 0, 1,∞. Furthermore, since (x, y, z) = 1, we have
for any prime π of K with π 6 |abc that

ν(0)
π (α) = νπ(xp) = pνπ(x),

ν(0)
π (α− 1) = νπ(yq) = qνπ(y),
ν(0)

π (1/α) = νπ(zr) = rνπ(z).

So by Theorem 3, Lα is unramified outside S′bad. By Hermite’s theorem there are
only finitely many field extensions of K with degree ≤ (deg φ)! and unramified
outside S′bad. So there are only finitely many possibilities for Lα. We can take L
to be the compositum of those fields, which gives us the finite extension L/K of
the theorem.

Remark 5. From a computational point of view, we want the degrees to be as
small as possible (without losing too much information). Instead of a covering
φ : C → P1 which is geometrically-Galois, the lemma above already holds for
a covering φ : C → P1 unramified outside {0, 1,∞} and such that p, q, r is a
multiple of all the ramification indices above 0, 1,∞ respectively. Also, instead
of considering the Galois extension Lα = K(φ−1(α)), we could consider the K-
algebra K[C]/(φ − α) (of degree deg φ), where K[C] denotes the integral closure
of K[φ] in K(C). Examples of such approaches to the equations x3 + y5 = 156z7

and ax2 + by3 = cz5 can be found in section 1.3.2 and chapter 4 respectively.

Reduction of the finiteness of the number of solutions of (1.1) in the hyperbolic
case to Faltings’ theorem (i.e. Mordell’s conjecture) is now easily established. The
following theorem first appeared as [DG, Theorem 2].

Theorem 6. For any a, b, c ∈ Z−{0} and p, q, r ∈ Z>0 with 1/p+1/q +1/r < 1,
the generalized Fermat equation (1.1) has only finitely many solutions.

Proof. By Theorem 2, there exists a geometrically-Galois covering φ : C → P1 of
signature (p, q, r) defined over a number field K. By Lemma 4, all solutions to
(1.1) satisfy axp/(czr) ∈ φ(C(L)) for some number field L. Since C has genus
≥ 2 by Lemma 1, Faltings’ theorem gives that C(L) is finite and the theorem
follows.

Instead of considering the L-rational points on C for a big number field L (or
the Lα-rational points for finitely many number fields Lα) it is possible to consider
the K-rational points on finitely many twists of C. By a twist of C we mean a
curve C ′ defined over K (which is our groundfield) together with a morphism
θ : C ′ → C defined over K which is an isomorphism between C/K and C ′/K.
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Theorem 7. Let C be a curve and let φ : C → P1 be a geometrically-Galois
covering of signature (p, q, r) ∈ Z3

≥2, defined over a number field K. Then there
exist finitely many twists C1, . . . Cn of C, with morphisms θi : Ci → C (defined over
K) such that φi := φ◦θi : Ci → P1 is defined over K for all i and for any solution
x, y, z to (1.1) we have byp/(czq) ∈ φi(Ci(K)) for exactly one i ∈ {1, . . . , n}.

Proof. This follows by a straightforward descent via Galois cohomology. For a
detailed and self contained proof, see [Beu2, pp. 11-13].

Although currently there is no effective algorithm known to determine all ra-
tional points on a curve of genus ≥ 2, in light of the theorem above, it is still
interesting to know for which (p, q, r) ∈ Z3

>0 there exists a geometrically-Galois
covering with signature (p, q, r) defined over Q (and have explicit descriptions of
these coverings). Some examples are given in section 1.3.2.

1.2 Ramification and specialization

1.2.1 Index calculation

Consider Theorem 3. For computational purposes, we want to have an explicit set
Sbad for the covering φ : C → P1. Actually, in [Bec] it is shown that if the covering
φ : C → P1 is Galois and the Galois group G has trivial center, then Sbad can be
taken to be the primes dividing the order of G. We will encounter situations where
Sbad can actually be taken strictly smaller than this set. We will first introduce
classical techniques for ramification computations and then apply this to obtain
an Sbad in a special case.

The index

Let K be a p-adic field (i.e. K is a finite extension of Qp) with ring of integers OK ,
prime π and residue field κ = OK/(π). Let f ∈ OK [t] be monic and irreducible.
We define the index of f , denoted I(f), as follows. Let θ be a root of f and let
A := K(θ), then

νπ ([OA : OK [θ]]) = I(f)[K : Qp]

for some I(f) ∈ Z≥0. With this definition we have

νπ(Disct(f(t))) = νπ(Disc(OA/OK)) + 2I(f). (1.2)

From now on suppose that f ∈ OK [t] is monic and separable (and not necessar-
ily irreducible) and let f =

∏r
i=1 gi be the factorization into monic irreducible

polynomials gi ∈ OK [t]. Consider the fields Li := K[t]/(gi(t)) and the K-algebra
A := K[t]/(f(t)) '

∏r
i=1 Li. We let OA :=

∏r
i=1OLi . Since

Disct(f(t)) =
r∏

i=1

Disct(gi(t))
∏

1≤i<j≤r

Rest(gi(t), gj(t))2,
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we have

νπ(Disct(f(t))) =
r∑

i=1

(νπ(Disc(OLi/OK)) + 2I(gi))

+2
∑

1≤i<j≤r

νπ(Rest(gi(t), gj(t)))

= νπ(Disc(OA/OK)) + 2
r∑

i=1

I(gi)

+2
∑

1≤i<j≤r

νπ(Rest(gi(t), gj(t))).

This motivates the definition for the index of the (not necessarily irreducible)
polynomial f as

I(f) :=
r∑

i=1

I(gi) +
∑

1≤i<j≤n

νπ(Rest(gi(t), gj(t))).

So in this more general case we also have that (1.2) holds.

Newton polygons

Let f ∈ OK [t] be a monic separable polynomial of degree n ≥ 1. Denote by f
the reduction of f modulo π and let φ ∈ κ[x] be a monic irreducible factor of f
of degree m ≥ 1. Let φ ∈ OK [t] denote a monic lift of φ. By repeatedly applying
the Euclidean algorithm we obtain that

f(t) =
[n/m]∑
i=0

ai(t)φ(t)i

for unique polynomials ai ∈ OK [t] of degree < m (where we use the convention
that deg(0) < m). For a nonzero ai we define νπ(ai) to be the highest exponent e
such that πe divides all its coefficients. Define the φ-polygon of f to be the lower
convex hull of the set {(i, νπ(ai)) ∈ R2|ai 6= 0, i = 0, 1, . . . , [n/m]}. By Iφ(f) we
denote deg(φ) times the number of points below or belonging to the φ-polygon of
f with strict positive integer coordinates. Note that both the φ-polygon of f and
Iφ(f) might change if we choose another monic lift φ. The following theorem is
extremely useful in calculating (an upper bound for) the discriminant of a product
of rings of integers explicitly given by a defining polynomial.

Theorem 8. With notation as above

I(f) ≥
∑
φ|f

Iφ(f).

(So φ runs over all monic irreducible factors of f .)
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Proof. See [MN, Theorem of the index, p. 325] (which is essentially obtained from
[Ore, Satz 8]).

Lemma 9. Let K be a p-adic field and let f ∈ OK [t] be monic and separable.
Suppose that

f(t) ≡
r∏

i=1

gi(t)ei (mod πk), (1.3)

for certain gi ∈ OK [t] and r, k, ei ∈ Z>0, that
∏r

i=1 gi(t) has no double roots mod
π and that k is a multiple of every ei. Then

I(f) ≥ k

2

r∑
i=1

(ei − 1) deg gi.

Proof. Without loss of generality we can assume that all the gi are monic and
irreducible over K. Since gi has no double roots and gi is irreducible over K, by
Hensel’s lemma gi is irreducible (over κ) and since

∏r
i=1 gi has no double roots,

gi 6= gj for i 6= j. Now by Theorem 8

I(f) ≥
r∑

i=1

Igi(f).

By (1.3), the line connecting (0, k) and (ei, 0) lies on or below the gi-polygon of
f (we can assume that a0 6= 0). Since k is by assumption a multiple of ei, the
line has integral slope and the number of points below or belonging to this line
with strict positive integer coordinates is easily seen to be equal to k(ei−1)/2. So
Igi

(f) ≥ (k/2)(ei − 1) deg(gi) and the lemma follows.

1.2.2 Specialization

In many cases an explicit set Sbad for Theorem 3 can be obtained with the tech-
niques above. For simplicity, and because it is the most relevant case for us, we
will simply consider coverings, unramified outside {0, 1,∞} given by a polynomial
f ∈ Q[t]. Note that we can find γ, δ ∈ Z such that γf(t/δ) ∈ Z[t] is monic (and
unramified outside {0, γ,∞}).

First let us do a simple discriminant computation. Let K be any field and let
φ ∈ K[t] be of degree d > 0 with leading coefficient c and suppose it is unramified
outside {0, γ,∞} with γ ∈ K∗. Say that above 0 we have the different points
P1, . . . , Pn ∈ K with ramification indices a1, . . . , an respectively and above γ ∈ K
we have the different points Q1, . . . , Qm ∈ K with ramification indices b1, . . . , bm.
We also suppose that if K has characteristic p > 0, then p does not divide any of
ai, bi or d. Now

φ′(t) = cdtd−1 + . . . = cd

n∏
i=1

(t− Pi)ai−1
m∏

i=1

(t−Qi)bi−1.
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We compute

Rest(φ′(t), φ(t)− x) = (cd)d
n∏

i=1

(φ(Pi)− x)ai−1
m∏

i=1

(φ(Qi)− x)bi−1

= (cd)d
n∏

i=1

(0− x)ai−1
m∏

i=1

(γ − x)bi−1

= (−1)d−1(cd)dxs0(x− γ)sγ ,

where s0 :=
∑n

i=1(ai−1) and sγ :=
∑m

i=1(bi−1) (so s0+sγ = d−1). Furthermore,

Rest(φ′(t), φ(t)− x) = (−1)d(d−1)/2cDisct(φ(t)− x).

We conclude

Disct(φ(t)− x) = (−1)d(d+1)/2−1ddcd−1xs0(x− γ)sγ . (1.4)

We now come to a simple computation of an Sbad that works. But first some
terminology, an étale algebra over a number field K is a finite dimensional com-
mutative K-algebra, without nonzero nilpotent elements, or equivalently, a finite
product of number fields over K.

Proposition 10. Let φ ∈ Z[t] be monic of degree d > 0 and suppose that φ is
unramified outside {0, γ ∈ Z−{0},∞}. Let α ∈ Q−{0, γ} and let p be a prime not
dividing γ or any of the ramification indices. If ν

(0)
p (α), ν(0)

p (α− γ), ν(0)
p (1/α) is a

multiple of all ramification indices above 0, γ,∞ respectively, then p is unramified
in the étale algebra Aα := Q[t]/(φ(t)− α) (or equivalently, unramified in the field
Q(φ−1(α)).

Proof. Let us first consider the case ν
(0)
p (1/α) = 0 (i.e. νp(α) ≥ 0). We have

Disct(φ(t)− x) = ±ddxs0(x− γ)sγ . (1.5)

Suppose νp(α) = 0 and k := νp(α − γ) ≥ 0, the other case is completely similar
(νp(α), νp(α− γ) > 0 is not possible, because p - γ). Write

φ(t)− γ =
r∏

i=1

gei
i

with gi ∈ Z[t] and where ei ∈ Z>0 denotes the ramification index for the roots of
gi. From νp(α− γ) = k we get (in Zp)

φ(t)− α ≡
r∏

i=1

gei
i (mod pk).

Furthermore, by the restrictions on p, no two different ramification points are
equal modulo p (consider e.g. the exponent of x−γ in (1.4) when working modulo
p). So

∏r
i=1 gi has no double roots mod p. Lemma 9 now gives us

I(φ(t)− α) ≥ k

2

r∑
i=1

(ei − 1) deg gi =
k

2
sγ .
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Form (1.5) we get
νp(Disct(φ(t)− α)) = ksγ .

We arrive at

νp(Disc(Aα)) = νp(Disct(φ(t)− α))− 2I(φ(t)− α) ≤ 0,

so νp(Disc(Aα)) = 0, i.e. Aα is unramified at p.
Now consider the case −k := νp(α) < 0. By assumption we have d|k, let

z := pk/d, β := pkα = zdα.

Then νp(β) = 0. Define

f(t) := zd(φ(t/z)− α) = zdφ(t/z)− β.

Then f(t) ∈ Zp[t] is monic and for the discriminant we have

Disct(f(t)) = ±ddβs0(β − zdγ)s1 .

We see that νp(Disct(f(t))) = 0 and we conclude that Aα is unramified at p.

The main application (analogous to Lemma 4) is when α is related to a solution
to the generalized Fermat equation.

Corollary 11. Let a, b, c ∈ Z − {0}, p, q, r ∈ Z≥2 and suppose that x, y, z is a
solution to (1.1). Let φ ∈ Z[t] be monic, unramified outside {0, γ ∈ Z − {0},∞}
and suppose that p, q, r is a multiple of all ramification indices above 0, γ,∞ re-
spectively. Then

Q[t]/
(

φ(t)− γ
axp

czr

)
is unramified outside the primes dividing abcpqrγ.

1.3 Existence and examples of Galois coverings

1.3.1 hypergeometric functions

Consider the hypergeometric differential equation

t(t− 1)
d2F (t)

dt2
+ ((a + b + 1)t− c)

dF (t)
dt

+ abF (t) = 0, (1.6)

with parameters a, b, c ∈ C. This equation is satisfied by Gauss’ hypergeometric
function

F (a, b, c|t) :=
∞∑

n=0

(a)n(b)n

(c)nn!
tn,

where (x)n :=
∏n

k=1(x+k−1) is the so called Pochhammer symbol. Here c 6∈ Z≤0,
unless a ∈ Z≤0 and c ≤ a, or b ∈ Z≤0 and c ≤ b (for the coefficients we then take
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of course the appropriate limit). For the basics, we refer to the very accessible
lecture notes [Beu3].

The hypergeometric differential equation (1.6) has regular singularities at t =
0, 1,∞ and is regular at all other t ∈ P1(C). The local exponents (ρz,1, ρz,2) at
z = 0, 1,∞ are given by (0, 1 − c), (0, c − a − b), (a, b) respectively. Denote by
M0,M1,M∞ the corresponding monodromy matrices (with respect to some basis)
such that M0M1M∞ = 1 and the eigenvalues of Mz are given by exp(2πiρz,1) and
exp(2πiρz,2). For the local exponent differences ez := ρz,2 − ρz,1 we thus have

e0 = 1− c

e1 = c− a− b

e∞ = a− b.

Inverting this we get

a =
1
2
(1− e0 − e1 + e∞)

b =
1
2
(1− e0 − e1 − e∞)

c = 1− e0.

First we will prove an existence theorem about coverings of P1
Q. The proof

actually gives a nice geometric construction. See also [DG, Section 3] and [Beu2,
Proposition 4.4].

Theorem 12. Let p, q, r ∈ Z≥2 with ω := −χ(p, q, r) = 1− (1/p+1/q +1/r) > 0.
Then there exists a finite Galois covering of P1

Q which is unramified outside 0, 1,∞
and with ramification indices above 0, 1,∞ equal to p, q, r respectively.

Proof. Setting (e0, e1, e∞) = (1/p, 1/q, 1/r) in (1.7), (1.7), (1.7), we get

(a, b, c) = (ω/2 + 1/r, ω/2, ω + 1/q + 1/r).

The (full) monodromy group is generated by, say, A := M∞ and B := M−1
0 . And

the projective monodromy group G (i.e. the monodromy group modulo scalars)
is, according to [Beu3, p.38], a so called triangle group, which we shall briefly
describe now. Consider a hyperbolic triangle in the upper half plane H (with
a hyperbolic metric) with angles π/p, π/q and π/r and call the corresponding
vertices P,Q and R. The images m0,m1,m∞ of M0,M1,M∞ in G correspond
to rotation around P,Q,R with an angle of 2π/p, 2π/q, 2π/r respectively. The
triangle group G is generated by m0,m1,m∞ and the only elliptic elements of G are
given by the conjugates of the powers of m0,m1 and m∞ other than the identity.
Furthermore, G acts discretely on H, the quotient map gives us an infinite Galois
cover φ : H → P1

C unramified outside, say, 0, 1,∞ and with ramification indices
above 0, 1,∞ equal to p, q, r respectively. Suppose we have a normal subgroup H
of G without elliptic elements and such that G/H is finite. Then C := H/H is
an algebraic curve and φ factors as φ = g ◦ f , where f : H → C is unramified
(since H contains no elliptic elements) and g : C → P1

C is a Galois cover (with
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Galois group G/H). Since f is unramified, the ramification indices of g above
0, 1,∞ equal p, q, r respectively (and g is of course unramified outside 0, 1,∞).
The branch points of g are defined over Q, so by standard descent, g and C can
be defined over Q and granted the existence of H, our theorem follows. We are
going to explicitly write down the monodromy group, in order to construct H.

Since A := M∞ and B := M−1
0 have disjoint sets of eigenvalues and AB−1 =

M−1
1 has eigenvalue 1, we have (see e.g. [Beu3, lemma 3.13]) that up to common

conjugation

A =
(

0 −DetA
1 TrA

)
, B =

(
0 −DetB
1 TrB

)
.

We calculate (w.r.t. the appropriate basis)

A =
(

0 −e2πiρ∞,1e2πiρ∞,2

1 e2πiρ∞,1 + e2πiρ∞,2

)
=

(
0 −e2πi(a+b)

1 e2πia + e2πib

)
=

(
0 −e2πi(ω+ 1

r )

1 eπiω
(
(1 + e

2πi
r

) ) ,

B =
(

0 −e−2πiρ0,1e−2πiρ0,2

1 e−2πiρ0,1 + e−2πiρ0,2

)
=

(
0 −e2πi(c−1)

1 1 + e2πi(c−1)

)
=

(
0 −e−

2πi
p

1 1 + e−
2πi

p

)
.

Dividing by a square root of the determinant, and writing ζn := e
2πi
n , n ∈ Z>0,

we obtain that

A′ := e−πi(ω+ 1
r )A

=
(

0 −eπi(ω+ 1
r )

e−πi(ω+ 1
r ) e

πi
r + e−

πi
r

)
=

(
0 ζ−1

2p ζ−1
2q

−ζ2pζ2q ζ2r + ζ−1
2r

)
,

B′ := e
πi
p B

=

(
0 −e−

πi
p

e
πi
p e

πi
p + e−

πi
p

)

=
(

0 −ζ−1
2p

ζ2p ζ2p + ζ−1
2p

)
.
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With C ′ := A′B′−1, we have A′, B′, C ′ ∈ SL2(Z[ζ2pqr]) and A′, B′, C ′ modulo ±I
can be identified with m∞,m−1

0 ,m−1
1 ∈ G ⊂ PSL2(Z[ζ2pqr]) respectively. Now let

π be a prime in Z[ζ2pqr] not dividing 2pqr, then ζ2pqr (mod π) still has order 2pqr
and since A,B, C have eigenvalues (ζ2r, ζ

−1
2r ), (ζ2p, ζ

−1
2p ), (−ζ2q,−ζ−1

2q ) respectively,
we see that

m∞ mod π, m0 mod π, m1 mod π ∈ PSL2(Z[ζ2pqr]/π)

still have orders r, p, q respectively. This shows that no power other than the
identity of m0,m1,m∞ (and hence all their conjugates) lies in the kernel H of the
reduction map G → G mod π. This provides us with a suitable normal subgroup
H of G and the theorem follows.

We note (with notation as in the proof) that A′, B′, C ′ are actually already
defined over Z[ζ2p, ζ2q, ζ2r + ζ−1

2r ] and it is not always necessary to have π not
dividing 2pqr (especially if one wants to obtain minimal groups G/H). Take
(p, q, r) = (3, 7, 2) for example, then Z[ζ2p, ζ2q, ζ2r + ζ−1

2r ] = Z[ζ21] and 7 factors as
π6

1π6
2 in this ring of integers. Taking π equal to one of these primes lying above 7,

one easily computes that A′, B′, C ′ modulo π still have orders 2, 3, 7 respectively
and in fact generate the Hurwitz group PSL2(F7).

In the case χ ≥ 0, coverings can be constructed analogously, or directly written
down explicitly.

1.3.2 Examples over Q
Consider a short exact sequence of groups

0 −→ A
f−→ B

g−→ C −→ 0.

We call a homomorphism s : C → B such that g ◦ s : C → C is the identity a
right-splitting.

Now let L/K be an extension of number fields, C a curve and x : C → P1

a covering, both defined over L and suppose that the field extensions L/K and
L(C)/K(x) are both Galois. This induces the short exact sequence

0 −→ Gal(L(C)/L(x))
f−→ Gal(L(C)/K(x))

g−→ Gal(L/K) −→ 0. (1.7)

Suppose that it has a right-splitting s. Then the subfield of L(C) fixed by
s(Gal(L/K)) ⊂ Gal(L(C)/K(x) is the function field K(C ′) of a curve C ′ de-
fined over K, see the figure below. Of course, K(C ′)/K(x) need not be Ga-
lois, if however the image of s is normal, then K(C ′)/K(x) is Galois and we
have Gal(K(C ′)/K(x)) ' Gal(L(C)/L(x)). Further, L(C ′)/L(x) is isomorphic to
L(C)/L(x) (and we could say that x : C → P1 can be defined over K).

L(C)

K(C ′)
kkkk

L(x)

K(x)
kkkk
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Example 13 (Signature (3, 2, p) coverings). Let p be a prime which is ±1
(mod 4), and let L := Q(ζp). As is well known, the j map from the modular curve
X(p) to X(1), provides us with a Galois covering φ : C → P1 defined over L with
signature (3, 2, p). Let K := Q, then (1.7) is given by

0 → SL2(Fp)/± I → GL2(Fp)/± I → F∗p → 0.

It has a right-splitting, so we see that φ can actually be defined over Q. Now let
K := Q(

√
±p) be the unique quadratic subfield of L. Then (1.7) is given by

0 → SL2(Fp)/± I → {M ∈ GL2(Fp) | det M ∈ (F∗p)2}/± I → (F∗p)2 → 0.

It has a right-splitting with normal image, so φ becomes already Galois over
Q(
√
±p).

The strategy of the following two examples is as follows (where we have K =
Q). Construct a rational map x ∈ K(t), say of degree n, unramified outside
0, 1,∞ and such that there is at least one ramification index above 0, 1,∞ of
order p, q, r respectively and all other ramification indices are equal to 1. Let F
denote the Galois closure of K(t)/K(x) and let L := Q ∩ F denote the field of
constants of F . Then L/K is Galois and F is the function field of a curve C
defined over L and the covering corresponding to L(C)/L(x) is a Galois covering
of signature (p, q, r). We regard Gal(L(C)/K(x)) embedded in Sn. Now suppose
that Gal(L(C))/L(x)) contains the alternating group An. Then obviously (1.7) has
a right-splitting and the covering corresponding to K(C ′)/K(x) (with C ′ defined
as before) is a geometrically-Galois covering of signature (p, q, r) defined over K.
If L = K, then trivially this covering is already Galois over K. If L 6= K, then
Gal(L(C))/L(x)) = An, and writing x = u/v with u, v ∈ K[t] relatively prime,
we have Disct(u(t) − v(t)a) = dae0(a − 1)e1 for certain even e0, e1 ∈ Z>0 and
d ∈ K∗ − (K∗)2. We have L = K(

√
d) and an explicit birational model for C ′

(corresponding to the choice that the section s maps the nontrivial element to the
transposition (1, 2)) is given as follows.

Write u(t) − av(t) =
∑n

i=0 cn−i(a)ti, where the ck(a) ∈ K[a] (of degree ≤ 1)
and assume for simplicity that u(t) − av(t) is monic in t, i.e. c0(a) = 1. Let
σk(t1, . . . , tn) denote the standard elementary symmetric polynomial of degree k
in the n variables t1, . . . , tn. Now consider the following n equations in the n + 1
variables t1, . . . , tn, a

σk(t1, . . . , tn) = (−1)kck(a), k = 1, . . . , n. (1.8)

These equations define a curve which is irreducible over K, but over L it has two
components, each birational (over L) to C. We also have

D(t1, . . . , tn) :=
∏

1≤i<j≤n

(ti − tj) = ±
√

dae0/2(a− 1)e1/2 (1.9)

and the choice of a sign determines one of the two components. Now introduce
two variables T1, T2 and eliminate t1, t2 by the variable substitution

t1 := T1 +
√

dT2, t2 := T1 −
√

dT2.
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Since
σk(T1 +

√
dT2, T1 −

√
dT2, t3, . . . , tn)

is invariant under the action of Gal(L/K) it has still coefficients in K. The same
holds for

D(T1 +
√

dT2, T1 −
√

dT2, t3, . . . , tn)/
√

d.

So the equations

σk(T1 +
√

dT2, T1 −
√

dT2, t3, . . . , tn) = (−1)kck(a), k = 1, . . . , n

D(T1 +
√

dT2, T1 −
√

dT2, t3, . . . , tn)/
√

d = ±ae0/2(a− 1)e1/2

actually have their coefficients in K and together with a choice of the sign they
give a birational model for C ′.

Coverings from hypergeometric polynomials

Let p, q, r ∈ Z≥1, say with p ≤ q ≤ r. We impose two extra conditions, namely

p + q + r ≡ 1 (mod 2), r ≤ p + q − 1.

For the local exponent differences we take (e0, e1, e∞) = (p, q, r). The values of
a, b, c are given by (1.7, 1.7, 1.7). Let d := (p+q +r−1)/2 ∈ Z>0. We are going to
consider hypergeometric polynomials, basic calculations can be found in [BT, pp.
197-198] (with substitutions k := q, m := d− r, n := d− q, l so k−m− 1 = d− p).
Solutions to the hypergeometric differential equation (1.6) are given by

t1−cF (a− c + 1, b− c + 1, 2− c|t) = tpF (p + r − d, p− d, 1 + p|t)
(1− t)c−a−bF (c− b, c− a, c|t) = (1− t)qF (q + r − d, q − d, 1− p|t)

F (a, b, c|t) = F (r − d,−d, 1− p|t).

Recall that a necessary condition for F (a′, b′, c′|t) to be a (well defined) polynomial
is, that a′ ∈ Z≤0 or b′ ∈ Z≤0. If c′ 6∈ Z≤0 this is also sufficient. Otherwise we also
need a′ ∈ Z≤0 and c′ ≤ a′, or b′ ∈ Z≤0 and c′ ≤ b′. So the conditions imposed on
p, q, r give that these solutions are actually polynomials. Up to a constant they
are given by

A(t) := (−1)d−rtp
∫ 1

0

(1− x)d−rxd−q(1− tx)d−pdx

B(t) := (1− t)q

∫ 1

0

(1− x)d−rxd−p(1− x + tx)d−qdx

C(t) :=
∫ 1

0

(1− x)d−qxd−p(1− x− t)d−rdx.

Since A(t), B(t), C(t) all satisfy the (second order) hypergeometric differential
equation

t(t− 1)
d2F (t)

dt2
+ ((2− p− q)t + p− 1)

dF (t)
dt

+ (d− r)dF (t) = 0,
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they are linearly dependent and in fact satisfy

A(t) + B(t) = C(t).

In particular, the map φ(t) := A(t)/C(t) is unramified outside {0, 1,∞}, of degree
d and the ramification data is as follows. Above 0, 1,∞ there lies one ramified
point with ramification p, q, r respectively, all other points are unramified. To
compute the Galois group of the covering, we are going to use dessins d’enfant for
which we refer to [LZ, Chapter 2]. It is easy to see that there is only one dessin
d’enfant (on the Riemann sphere) with this ramification, so the dessin d’enfant of
φ(t) is given in Figure 1.1, where i := d− q, j := d− r + 1 and k := d− p.
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Figure 1.1: dessin d’enfant associated to φ(t) = A(t)/C(t)

From this we calculate the Galois group Gp,q,r := Gal(Q(t)/Q(φ(t))) ⊂ Sd.

Proposition 14. Suppose p, q, r ≥ 2. If p, q, r are all odd, then Gp,q,r = Ad,
otherwise Gp,q,r = Sd.

Proof. The permutation pairs associated with the ramification above 0, 1 are re-
spectively σ := (1, 2, . . . i+j), τ := (i+1, i+2, . . . , i+j+k). So Gp,q,r is the group
generated by σ, τ and we are left with an elementary, though tedious exercise in
permutation group theory. We will show that Gp,q,r contains a 3-cycle. By con-
jugating this 3-cycle with σ, τ, σ−1, τ−1 and the 3-cycles found along the way, one
can show that Gp,q,r in fact contains every 3-cycle and hence contains Ad, from
which the proposition follows. For simplicity we will assume that c > b > 0 and
a > 1, other cases are similar or can be reduced to this one. We will now show
that Gp,q,r contains a 3-cycle. We compute

X := τ−1στσ−1

= (i + 1, i + j + k)(1, i + j).

If j = 1 then X = (1, i + 1 + k, i + 1) (by assumption 1 < i + 1 < i + 1 + k) and
we are done in this case, so assume j > 1. Conjugating j + 1 times with τ gives

τ j+1Xτ−j−1 = (i + j + 2, i + j + 1)(1, i + 2j + 1).

Note that i + 2j + 1 ≤ i + j + k, since by assumption j < k. Conjugating with σ
gives

σ(i + j + 2, i + j + 1)(1, i + 2j + 1)σ−1 = (i + j + 2, i + j + 1)(2, i + 2j + 1).
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Conjugating j + 1 times with τ−1 gives

Y := τ−j−1(i + j + 2, i + j + 1)(2, i + 2j + 1)τ j+1

= (i + 1, i + j + k)(2, i + j)
= (2, i + j)(i + 1, i + j + k).

Finally
Y X = (2, i + j)(1, i + j) = (1, 2, i + j).

We conclude that by taking Galois closure, φ induces a geometrically-Galois
covering φ′ : C ′ → P1 of signature (p, q, r) defined over Q. To see over which field
the covering φ′ is Galois, we will now do some explicit calculations. These are also
useful for applying the method of proof of Proposition 10 to obtain Sbad explicitly.

Suppose p + q 6= r + 1. Write

A = A(t) = αtd + . . . , C = C(t) = γtd−r + . . .

and denote by ′ differentiation with respect to t. Then

A′C −AC ′ = rαγtp−1(t− 1)q−1.

We compute

(rαγ)d−rC(0)p−1C(1)q−1 = Rest(rαγtp−1(t− 1)q−1, C)
= Rest(A′C −AC ′, C)
= Rest(−AC ′, C)
= (−1)d−rRest(A,C)Rest(C ′, C)
= (−1)(d−r)(d−r+1)/2γRest(A,C)Disct(C),

where in the third equality we used that p + q 6= r + 1 (which implies that C(t) is
not constant, so that A′C−AC ′ and AC ′ have the same degree). Let f = fx(t) :=
A(t)− C(t)x (where x does not depend on t), then f ′C − fC ′ = A′C −AC ′ and

Rest(A′C −AC ′, f) = Rest(rαγxp−1(x− 1)q−1, f)
= (rαγ)d(A(0)− C(0)x)p−1(A(1)− C(1)x)q−1

= (rαγ)dC(0)p−1C(1)q−1(0− x)p−1(1− x)q−1

= (rαγ)r(−1)s′γRest(A,C)Disct(C)xp−1(x− 1)q−1,

where s′ := (d− r)(d− r + 1)/2 + p + q. Further,

Rest(f,A′C −AC ′) = Rest(f, f ′C − fC ′)
= Rest(f, f ′C)
= Rest(f, f ′)Rest(A− Cx,C)
= (−1)d(d−1)/2αDisct(f)Rest(A,C).
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We conclude

Disct(fx(t)) = (−1)s(rαγ)r γ

α
Disct(C(t))xp−1(x− 1)q−1,

where s := s′ + d(d− 1)/2 + d(p + q). If p, q, r are all odd, we have

Disct(fx(t)) ≡ (−1)srDisct(C(t)) (mod (Q(t)∗)2),

so in that case φ′ is Galois over Q(
√

(−1)srDisct(C(t))) (which might be equal to
Q). It would of course be nice to have a simple expression of Disct(C(t)) in terms
of p, q, r, but we will leave it at this.

Note that in the case that r is maximal, i.e. r = p+ q− 1, the map A(x)/C(x)
simply becomes a polynomial. Without using hypergeometric polynomials it is
immediately obvious that a formula for the dessin d’enfant in Figure 1.1 with
j = 1 is given by

φp,q(t) :=

∫ t

0
xp−1(x− 1)q−1dx∫ 1

0
xp−1(x− 1)q−1dx

.

According to (1.4) we have

Disct(φp,q(t)− x) = (−1)r(r+1)/2−1rrσr−1xp−1(x− 1)q−1,

where now

σ =
1

(p + q − 1)
∫ 1

0
xp−1(x− 1)q−1dx

= (−1)q−1

(
p + q − 2

p− 1

)
.

In the most interesting case that p, q, r are all odd, we see that the geometrically-
Galois covering φ′ of signature (p, q, p + q − 1) is Galois over Q(

√
±(p + q − 1)).

Furthermore, we actually have φp,q ∈ Z[t] (so σp+q−2φp,q(t/σ) ∈ Z[t] is monic and
unramified outside {0, σp+q−2,∞}) using Corollary 11 we get that for a solution
x, y, z to (1.1) with r = p+ q−1 we have Q(φ−1

p,q(axp/(czr))) is unramified outside
the primes dividing pq(p + q − 1)

(
p+q−2

p−1

)
abc.

The equation x5 + y3 = 156z7

As an example, we will now study the equation

x5 + y3 = 156z7 x, y, z ∈ Z gcd(x, y, 15z) = 1 xyz 6= 0. (1.10)

Note that the gcd-condition means that x, y, z are pairwise coprime. Consider the
covering P1 → P1, given by

φ5,3(t) = t5(15t2 − 35t + 21)
= (t− 1)3(15t4 + 10t3 + 6t2 + 3t + 1) + 1.

To a hypothetical solution x, y, z of (1.10) we can associate the (Frey) polynomial
φ5,3(t)− x5/(156z7), or better, scale a bit and define

Fx,y,z(t) := z7156φ5,3(t/(15z))− x5

= t5(t2 − 35zt + 315z2)− x5

= (t− 15z)3(t4 + 10zt3 + 90z2t2 + 675z3t + 3375z4) + y3.
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We have
Disct(Fx,y,z(t)) = −77x20(156z7 − x5)2 = −77x20 · y6

Let A := Q[t]/(Fx,y,z(t)). By Corollary 11 we get that A is unramified outside
{3, 5, 7}. From (1.10) we get directly 3, 5 - xy, so by the discriminant computation
we get that A is unramified at 3 and 5. We conclude that the étale algebra A
is unramified outside 7. Furthermore, if 7 - xy, then of course ν7(Disc(OA)) ≤
ν7(Disct(Fx,y,z(t))) = 7. If 7|xy, say 7|x (the other case is again completely
similar), then 7 - y and ν7(Disct(Fx,y,z(t))) = 7 + 20ν7(x). The t-polygon of
Fx,y,z(t) contains the line connecting (0, 5ν7(x)) and (5, 1), so (working in Z7)
It(Fx,y,z(t)) = 10ν7(x) + 1. We conclude by Theorem 8 that ν7(Disc(OA)) ≤
νp(Disct(Fx,y,z(t)))− 2It(Fx,y,z(t)) = 5.

We summarize what we obtained so far. If x, y, z is a solution to (1.10),
then Fx,y,z defines a product of rings of integers OA, unramified outside 7, with
ν7(Disc(OA)) ≤ 7.

It is known (see e.g. [JR]) that if K is a number field unramified outside 7
and with [K : Q] ≤ 7, then K equals one of the 4 subfields of the cyclotomic field
Q(ζ7), or [K : Q] = 7 and ν7(Disc(OK)) > 7. So we only have to deal with the
subfields of Q(ζ7). Since 5 - x, we obtain that

Fx,y,z(t) ≡ t7 − x5 (mod 5)

has an irreducible factor of degree 6. So Q(ζ7) must occur as a factor of A, and the
only case left to deal with is A = Q[t]/(Fx,y,z(t)) ' Q[t]/(t7 − 1). Unfortunately
we are at this time unable to eliminate this case, but we can reduce it to finding
certain cubic points on a hyperelliptic curve as follows.

First of all, 156φ5,3(t/15)− x5/z7 must have a rational root s. So

x5/z7 = 156φ5,3(s/15)

and we get

G(t, s) := 156 φ5,3(t/15)− φ5,3(s/15)
t− s

= 315t4 − 35t5 + t6 + 315t3s− 35t4s + t5s

+315t2s2 − 35t3s2 + t4s2 + 315ts3 − 35t2s3 + t3s3

+315s4 − 35ts4 + t2s4 − 35s5 + ts5 + s6

= 0

for certain t ∈ Q(ζ7) and s ∈ Q (in fact t must generate Q(ζ7)). To make this a
little more symmetric, write t = a + b

√
−7, with a, b ∈ Q(ζ7 + 1/ζ7), then we have

G(a + b
√
−7, y) = F1(a, b, y) + bF2(a, b, y)

√
−7

with F1(a, b, y), F2(a, b, y) ∈ Q[a, b, y]. Since b = 0 is already ruled out, we get the
equation Resy(F1(a, b, y), F2(a, b, y)) = 0, which is equivalent to

225a4−30a5+a6−3150a2b2+700a3b2−35a4b2+2205b4−1470ab4+147a2b4−49b6
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equals 0. One can check, e.g. with Magma, that the curve defined by this equation
is isomorphic over Q to the hyperelliptic of genus 3, given by

y2 + (x4 + x2 + 1)y = 131x8 − 525x7 + 857x6 − 735x5 + 918x4

−1225x3 + 1102x2 − 525x + 201.

And so we have reduced solving (1.10) to finding the cubic points in Q(ζ7 + 1/ζ7)
of the hyperelliptic curve of genus 3 above.

(Of course, we could have written t out with respect to a Q-basis, getting 6
equations in 7 unknowns, defining a curve. So that we really had to find the points
over Q, but the equations are more messy.)

Signature (p, 3, 2p + 1) coverings

There are many other easy to compute coverings, we briefly describe one more
example. Let p ∈ Z≥2. Consider the covering ramified above ∞ with index 2p+1,
above 1 with index 3 and 2(p− 1) times index 1, and ramified above 0 with twice
index p and one time 1. We claim that the following polynomial gives such a map,

φp(t) :=
(

p + 1
2

t2 + t + 1
)p

(1− pt).

This follows almost immediately from

dφp(t)
dt

= −p(2p + 1)
p + 1

2

(
p + 1

2
t2 + t + 1

)p−1

t2.

Again, it is easy to see that there is only one dessin d’enfant (on the Riemann
sphere) with the desired ramification data, it is given in Figure 1.2.
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Figure 1.2: dessin d’enfant associated to φp(t)

The Galois group Gp of the dessin d’enfant already contains a three cycle, and
by suitably conjugating, we again obtain that Gp contains all three cycles of S2p+1,
hence Gp contains A2p+1. We conclude that the geometrically-Galois covering of
signature (3, p, 2p + 1) can be defined over Q.



Chapter 2

Modular methods for
Diophantine equations

We turn to Galois representations attached to elliptic curves and modular forms
to study Diophantine equations.

2.1 Galois representations

In this section we shall describe basic definitions and theorems about 2-dimensional
Galois representations associated to elliptic curves and modular forms that will be
needed for our applications to Diophantine equations. We will only be concerned
with mod l representations. For the modular forms to be considered, we will limit
ourselves to cuspforms of weight 2 w.r.t. Γ0(N) (so the character is trivial).

2.1.1 Elliptic curves, modular forms and Galois representa-
tions

We start with the definition of one of our basic objects.

Definition 15. Let GQ := Gal(Q/Q) be the absolute Galois group (endowed with
the Krull topology), let F be a finite field of characteristic l (endowed with the
discrete topology) and let d ∈ Z>0. A Galois representation is a continuous group
homomorphism

ρ : GQ → GLd(F),

where d is called the dimension of ρ. If ρ′ is another d-dimensional Galois repre-
sentation, then ρ and ρ′ are considered isomorphic if there exists an M ∈ GLd(F̄)
such that ρ′(σ) = Mρ(σ)M−1 for all σ ∈ GQ.

These Galois representations are sometimes called mod l Galois representations,
but since we will not consider other (e.g. l-adic) Galois representations, we will not

25
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use this terminology. Most of the time we will be concerned with 2-dimensional Ga-
lois representations, and occasionally we will encounter 1-dimensional ones (char-
acters). We say that a Galois representation ρ is unramified at a prime p if Ip is
contained in the kernel of ρ for some inertia group Ip ⊂ GQ of p. By the continuity
of ρ, the kernel of ρ is an open subgroup of GQ, so it corresponds to a finite Galois
extension K of Q. So ρ factors through Gal(K/Q) and ρ is ramified at a prime p
if and only if p is ramified in K. The following lemma gives us a useful criterium
to determine when 2-dimensional Galois representations are isomorphic.

Lemma 16. Let F be a finite field and let

ρ1, ρ2 : GQ → GL2(F)

be two semisimple Galois representations. If for all but finitely many primes p,
where ρ1, ρ2 are unramified, we have Trace(ρ1(Frobp)) = Trace(ρ2(Frobp)) and
Det(ρ1(Frobp)) = Det(ρ2(Frobp)), then ρ1 and ρ2 are isomorphic.

Proof. Since ρ1, ρ2 are continuous it suffices to prove the statement of the lemma
with GQ replaced by G := Gal(K/Q) where K is some finite Galois extension of Q
(which can be taken equal to the compositum of two finite Galois extensions where
ρ1 and ρ2 factor through). Let σ ∈ G. By the Chebotarev density theorem we
get σ = Frobp (modulo conjugation) for infinitely many primes p, so in particular
for a prime p with Trace(ρ1(Frobp)) = Trace(ρ2(Frobp)) and Det(ρ1(Frobp)) =
Det(ρ2(Frobp)). So ρ1(σ) and ρ2(σ) have the same characteristic equation. Now
by the Brauer-Nesbitt theorem [CR, Theorem 30.16], ρ1 and ρ2 are isomorphic.

For the lemma above, note, that if the characteristic of F is not 2, then the
equality between the determinants is already implied by the equality between the
traces.

Galois representations attached to elliptic curves

Let E/Q be an elliptic curve and n ∈ Z>0. The absolute Galois group GQ acts in
a natural way on E[n] (the Z/nZ module consisting of the n-torsion points of E),
inducing a homomorphism GQ → Aut(E[n]). By choosing a basis for E[n], we can
identify Aut(E[n]) with GL2(Z/nZ). In this way we get a Galois representation

ρE
n : GQ → GL2(Z/nZ),

which is unique up to conjugation (i.e. depends on the chosen basis above). Let
K := Q(E[n]), then ρE

n factors through Gal(K/Q) and ρE
n is ramified at a prime

p if and only if p is ramified in K. The case n = l a prime is of most interest to
us. The following theorem gives us very useful arithmetic information about ρE

l .

Theorem 17. Let E/Q be an elliptic curve with conductor N and let l, p be
primes. If p - lN , then the Galois representation ρE

l : GQ → GL2(Fl) is unramified
at p and

Trace(ρE
l (Frobp)) ≡ ap(E) (mod l), (2.1)

Det(ρE
l (Frobp)) ≡ p (mod l). (2.2)
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Furthermore, if ρ′ : GQ → GL2(Fl) is another Galois representation satisfying
(2.1) and (2.2), then the semisimplifications of ρ′ and ρE

l are isomorphic.

Proof. The last statement follows immediately from Lemma 16. For the rest,
see the proof of [DS, Theorem 9.4.1] (where we only need to consider E[ln] for
n = 1).

If p|N , then it may still happen that ρE
l is unramified at p. We will give some

criteria for this to happen and give the trace (and determinant) of Frobenius in
that case. Before we go into this, we need to say a bit more about Det(ρE

l ). For
this we consider the cyclotomic character of order l, χl : GQ → F∗l , determined by
σ(ζl) = ζ

χl(σ)
l , σ ∈ GQ and where ζl denotes a primitive l-th root of unity.

Lemma 18. Let E/Q be an elliptic curve and let l, p be primes. If p 6= l, then χl

is unramified at p and

χl(Frobp) ≡ p (mod l). (2.3)

Furthermore,

Det ◦ ρE
l = χl. (2.4)

Proof. Note that χl factors through Gal(Q(ζl)/Q). Since p 6= l, the Galois exten-
sion Q(ζl)/Q is unramified at p, hence χl is unramified at p. Also, ζl (mod P)
remains a primitive l-th root of unity in Z[ζl]/P for a prime P ⊂ Z[ζl] lying above
p. So from Frobp(ζl) ≡ ζp

l (mod P), we get χl(Frobp) ≡ p (mod l).
Together with (2.2) we see that (at least) for all primes p - lN (with N the

conductor of E), the one dimensional Galois representations Det ◦ ρE
l and χl take

the same values at Frobp. It follows, as in the proof of Lemma 16, that Det◦ρE
l =

χl. (Alternatively, one can first use basic properties of the Weil pairing to show
that Det ◦ ρE

l = χl and then deduce (2.3) from this and (2.2).)

Proposition 19. Let E/Q be an elliptic curve with conductor N and minimal
discriminant ∆ and let l, p be primes. Suppose that p 6= l and p||N . Then ρE

l is
unramified at p if and only if νp(∆) ≡ 0 (mod l). Moreover, if ρE

l is unramified
at p, then

Trace(ρE
l (Frobp)) ≡ ap(E)(1 + p) ≡ ±(1 + p) (mod l),

Det(ρE
l (Frobp)) ≡ p (mod l).

Proof. That ρE
l is unramified at p if and only if νp(∆) ≡ 0 (mod l) follows from the

theory of Tate curves (see [Sil2, Chapter V]). That Det(ρE
l (Frobp)) ≡ p (mod l)

follows immediately form Lemma 18. From [KO, Lemme 1] we have that ap is a
characteristic root of ρE

l (Frobp). Since p||N we have ap = ±1 and together with
the value of Det(ρE

l (Frobp)) we get Trace(ρE
l (Frobp)) ≡ ap(E)(1+p) (mod l).
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Galois representations attached to modular forms

Attaching Galois representations to modular forms instead of elliptic curves is
somewhat more involved and we will not give the construction here. The existence,
uniqueness and useful arithmetic properties are given in the following theorem.

Theorem 20. Let f be a newform of level N , let l be a prime, L ⊂ Of a prime
lying above l and denote by F the finite residue field Of/L. Then there exists a
semisimple Galois representation

ρ : GQ → GL2(F)

such that for all primes p with p - Nl the Galois representation ρ is unramified at
p and

Trace(ρ(Frobp)) ≡ ap(f) (mod L), (2.5)
Det(ρ(Frobp)) ≡ p (mod L). (2.6)

Furthermore, if ρ′ : GQ → GL2(F) is another semisimple Galois representation
satisfying (2.5) and(2.6), then ρ′ is isomorphic to ρ.

Proof. In paragraph 9.5 of [DS] it is shown how to construct a so called l-adic
Galois representation ρ̂ : GQ → GL2(Kf,L), where Kf,L denotes the local field
obtained by completing Kf at L. By Proposition 9.3.5 of loc. cit. we may assume
that the image of ρ̂ lands in GL2(Of,L), where Of,L denotes the local ring obtained
by completing Of at L. The reduction Of,L → Of,L/L ' Of/L = F induces a
Galois representation GQ → GL2(F) and the semisimplification of this Galois
representation gives us the ρ from the theorem. The desired properties of ρ follow
immediately from the properties of ρ̂ given in Theorem 9.5.4 and the construction
of ρ from it. The last statement follows immediately from Lemma 16.

The Galois representation ρ from the theorem above will from now on be
denoted by ρf

L. Note that if E/Q is an elliptic curve such that ρE
l is not semisimple

for a certain prime l and f is a newform such that ap(E) = ap(f) for all primes p,
then ρf

l is not isomorphic to ρE
l (since by construction ρf

l is semisimple), but ρf
l

is isomorphic to the semisimplification of ρE
l .

Remark 21. The newform in the theorem above has (by convention) weight 2
and trivial character. If f is a newforms w.r.t. Γ1(N), say with character χ, and
weight k ∈ Z≥2, the theorem still holds with (2.6) replaced by

Det(ρ(Frobp)) ≡ χ(p)pk−1 (mod L).

For weight k = 2, this also follows from [DS, paragraph 9.5]. For weight k > 2 see
[Del], again, an l-adic representation is constructed and the mod l representation
is obtained by reduction (due to Deligne and Serre there is also a construction of
certain Galois representations attached to weight one forms).
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2.1.2 Irreducibility

In theorems about so called level lowering of modular Galois representations ρ,
one of the conditions that must be satisfied is that ρ is irreducible. The following
theorems give some sufficient conditions for Galois representations attached to
elliptic curves to be irreducible.

Theorem 22. Let E/Q be an elliptic curve with j-invariant j and let l be a prime.
Then the Galois representation ρE

l is irreducible if (at least) one of the following
conditions holds

i. l = 11 or l ≥ 17 (i.e. the genus of X0(l) is nonzero) and the pair (l, j) has
no corresponding entry in Table 2.1,

ii. E has a rational 2-torsion point, l ≥ 7 and

(l, j) 6= (7,−33 · 53), (7, 33 · 53 · 173),

iii. l ≥ 5, E is semistable and all 2-torsion points are rational,

iv. l ≥ 11 and E is semistable.

Proof. i. If ρE
l is reducible, this would give rise to a noncuspidal rational

point on X0(l). If l = 11 or l ≥ 17, then according to [Maz2, Theorem
7.1] there are no noncuspidal rational points on X0(l), except when l =
11, 17, 19, 37, 43, 67, 163 respectively in which case there are 3, 2, 1, 2, 1, 1, 1
such points respectively. Using [BK, pp. 79,80] and [Cre2] a representing
elliptic curve corresponding to these points is easily found. In the notation
of loc. cit. we can take for example the elliptic curves 121b1, 121c1, 121c2,
14450bk1, 14450bk2, 361a1, 1225h1, 1225h2, 1849a1, 4489a1 and 26569a1.
The j-invariants of these elliptic curves are given in Table 2.1 (note that
in [BK] the j-invariant of a curve with a rational 19-isogeny is not given
correctly).

ii. One checks that if l = 11 or l ≥ 17, then the elliptic curves with a rational
l-isogeny mentioned above, have no rational 2-isogeny. So if ρE

l is reducible
for l ≥ 7 and E has a rational 2-torsion point, this would give rise to a non-
cuspidal rational point on X0(2l) for l = 7, 13. Now [MV] tells us that there
are no such point on X0(26). According to [Lig, Chapter 5] X0(14) has 6
rational points, 4 of these are cusps. As before, 2 elliptic curves correspond-
ing to the 2 noncuspidal rational points on X0(14) are easily found. We can
take the elliptic curves 49a1 and 49a2 respectively, which have j-invariant
−33 · 53 and 33 · 53 · 173 respectively.

iii. This is essentially [Ser2, Proposition 6], but for the convenience of the reader
we give a proof here. Suppose that ρE

l is reducible for l ≥ 5, then E has a
rational l-isogeny, say with kernel X. Since E is semistable [Ser1, p. 307] tells
us that E or E/X has a rational l-torsion point. But E and E/X also have
full rational 2-torsion. So the rational torsion group of E or E/X contains
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a group isomorphic to Z/2Z × Z/2lZ. But by the classification of torsion
groups of elliptic curves over Q, [Maz1, Theorem 8] or [Maz2, Theorem 2],
this is impossible for l ≥ 5.

iv. This is essentially the same argument as before, but now we use that the
rational torsion group of an elliptic curve over Q cannot contain a cyclic
subgroup of prime order ≥ 11.

l j

11 −215,−112,−11 · 1313

17 −17 · 3733/217,−172 · 1013/2
19 −215 · 33

37 −7 · 113,−7 · 1373 · 20833

43 −218 · 33 · 53

67 −215 · 33 · 53 · 113

163 −218 · 33 · 53 · 233 · 293

Table 2.1: Pairs (l, j) corresponding to rational isogenies

The theorem above was mainly obtained from knowledge of rational points
on modular curves. The following theorem follows from representation theoretic
considerations. We note that for p = 2 it was already stated as [Sik, Theorem 5].

Theorem 23. Let E/Q be an elliptic curve with conductor N and let p = 2, 3. If
νp(N) ≥ 3 and odd, then ρE

l is irreducible for all primes l 6= p.

Proof. Since νp(N) ≥ 3 and odd, the wild conductor exponent at p is odd. By the
proof of [DK, Lemma 3] it follows that for l 6= p the restriction of ρE

l to an inertia
subgroup Ip of p is irreducible and hence ρE

l itself is irreducible.

In section 3.2 we describe some more situations in which ρE
l is irreducible.

Finally, we want to say something about the absolute irreducibility of ρE
l .

Lemma 24. Let E/Q be an elliptic curve and let l be an odd prime. Then ρE
l is

absolutely irreducible if and only if ρE
l is irreducible.

Proof. If ρE
l is absolutely irreducible, then ρE

l is of course irreducible. So suppose
that ρE

l is not absolutely irreducible. Let c ∈ GQ denote complex conjugation.
From the definition of the cyclotomic character it follows immediately that χl(c) =
−1, together with (2.4) we obtain that Det(ρE

l (c)) = −1 (i.e. ρE
l is odd). Since

c has order 2 we now obtain that ρE
l (c) has eigenvalues +1,−1. Furthermore,

−1 6= 1 (since l is odd), so we get that ρE
l (c) has two 1-dimensional eigenspaces,

generated by, say, v+, v− ∈ F2
l . From the absolute reducibility of ρE

l we get that
ρE

l leaves invariant a one dimensional subspace of Fl
2
, generated by, say, w ∈ Fl

2
.

In particular w is an eigenvector of ρE
l (c), hence v+ or v− is a scalar multiple of w

and we obtain a 1-dimensional subspace of F2
l left invariant by ρE

l , i.e. ρE
l is not

irreducible.
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We want to mention that there exist elliptic curves E/Q such that ρE
2 : GQ →

GL2(F2) is irreducible, but over F4 it becomes reducible. In fact, E has this
property, exactly when the image of ρE

2 is GL2(F2) has order 3. In that case,

the image is generated by
(

1 1
1 0

)
, which is diagonalizable over F4. An explicit

example is given by E : y2 = x3 − x2 − 2x + 1.

2.1.3 Modularity

Definition 25. Let E/Q be an elliptic curve of conductor N . Then E is said to
be modular if there exists a newform f of level N such that ap(E) = ap(f) for all
primes p.

Theorem 26. Every elliptic curve over Q is modular.

Proof. See [BCDT].

Remark 27. For semistable elliptic curves the theorem was of course proved in
the celebrated papers [Wil] and [TW]. Furthermore, there are various equivalent
ways to define the notion of modular (for an elliptic curve over Q), see for example
[DI, Theorem 13.0.5].

The modularity of elliptic curves over Q can be seen as a converse to a theorem
due to Eichler and Shimura.

Theorem 28 (Eichler-Shimura). Let f be a newform of level N . If f is rational,
then there exists an elliptic curve E/Q of conductor N , such that ap(E) = ap(f)
for all primes p.

Proof. See [DS, Chapter 8].

(In general, the Eichler-Shimura correspondence associates to a newform f a
certain abelian variety over Q of dimension [Kf : Q].) The elliptic curve in the
theorem is determined uniquely up to isogeny over Q. In this way we get for all
N ∈ Z>0 an injective function from the set of rational newforms of level N to the
set of isogeny classes of elliptic curves over Q of conductor N . From Theorem 26
we obtain that this function is actually bijective. Given a newform f , any elliptic
curve E/Q such that ap(E) = ap(f) for all primes p will simply be called an elliptic
curve associated to f .

Definition 29. Let ρ : GQ → GL2(F) be an absolutely irreducible Galois repre-
sentation, where F is a finite field of characteristic l and let N ∈ Z>0. Then ρ
is called modular of level N , if there exists a newform f of level N and a prime
L ⊂ Of lying above l such that ρ ' ρf

L.

Following e.g. [Rib1] and [DS], we have chosen to consider really a newform
(of weight 2 and trivial character, by convention) instead of just an eigenform in
the definition above.
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Corollary 30. Let E/Q be an elliptic curve with conductor N , let l be a prime
and suppose that ρE

l is absolutely irreducible. Then ρE
l is modular of level N .

Proof. By Theorem 26 there exists a newform f of level N with ap(E) = ap(f)
for all primes p, in particular Of = Z. So according to Theorems 17 and 20, we
get semisimple (because ρE

l is irreducible) Galois representations ρE
l , ρf

l : GQ →
GL2(Fl), satisfying Trace(ρE

l (Frobp)) = Trace(ρf
l (Frobp)) and Det(ρE

l (Frobp)) =
Det(ρE

l (Frobp)) for all primes p - Nl. Now Lemma 16 gives us that ρE
l ' ρf

l , hence
ρE

l is modular.

2.1.4 Level lowering

Let ρ be a 2-dimensional Galois representation and let p be a prime. There exists
a notion of ρ being finite at p. For a Galois theoretic description of finiteness, see
pages 185,186 of [Ser2] (where it is called peu ramifiée). A characterization in terms
of group schemes is given in loc. cit. on page 189. See also [Edi, Propostion 8.2] for
some equivalent characterizations and proofs of these. We will only need finiteness
in one particular situation, which is described in the following proposition.

Proposition 31. Let E/Q be an elliptic curve with minimal discriminant ∆min.
Suppose E has multiplicative reduction at a prime p. If for a prime l we have
l|νp(∆min), then ρE

l is finite at p.

Proof. This follows from the theory of Tate curves, see [Ser2, Propositions 4,5].

The main theorem we need on level lowering of modular Galois representations
is the following.

Theorem 32 (Ribet). Let F be a finite field of characteristic l ≥ 3 and let
ρ : GQ → GL2(F) be an irreducible Galois representation. Suppose that ρ is
modular of level N . If p is a prime with p||N and such that ρ is finite at p, then
ρ is modular of level N/p.

Proof. In [Rib1, Thm. 1.1] the theorem is proved in case that p 6≡ 1 (mod l) (or
l 6 |N), so in particular it holds for p = l. In [Rib2, Thm. 1.5] the theorem is
proved for p 6= l.

Remark 33. The case p 6≡ 1 (mod l) is actually due to Barry Mazur. Further-
more, for most of our applications we have that ρf

l is finite at l and then [Rib1,
Thm. 1.1] suffices for our application. For some generalizations, see e.g. [Dia].

Definition 34. Let E/Q be an elliptic curve and l an odd prime. Define

N0(E, l) := N/
∏
p‖N

l|νp(∆min)

p, (2.7)

where N and ∆min denote the conductor and minimal discriminant respectively
of E. Furthermore, for a newform f we write

E ∼l f, (2.8)
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if there exists a prime L ⊂ Of lying above l such that ρE
l ' ρf

L. For an elliptic
curve E′/Q we write

E ∼l E′

if ρE
l ' ρE′

l .

By combining modularity and level lowering in the case of elliptic curves, we
obtain the following very useful theorem.

Theorem 35. Let E/Q be an elliptic curve and let l be an odd prime. Suppose
that ρE

l is irreducible. Then there exists a newform f of level N0(E, l) such that
E ∼l f .

Proof. From Lemma 24 we obtain that ρE
l is absolutely irreducible. By Corollary

30 we get that ρE
l is modular of level N (with N the conductor of E). For all

primes p with p||N and l|νp(∆min), where ∆min denotes the minimal discriminant
of E, Proposition 31 tells us that ρE

l is finite at p. By repeatedly using Theorem
32, we get that ρE

l is modular of level N0(E, l).

If E ∼l f as in the theorem above, then we obtain valuable congruence relations
between ap(E) and ap(f) as follows.

Theorem 36. Let E/Q be an elliptic curve with conductor N , let l be an odd
prime and write N0 := N0(E, l). Suppose that ρE

l ' ρf
L for a newform f of level

N0 and a prime L ⊂ Of lying above l. Then

• for all primes p with p - Nl

ap(f) ≡ ap(E) (mod L),

• for all primes p with p - N0l and p|N

ap(f) ≡ ap(E)(1 + p) ≡ ±(1 + p) (mod L).

If furthermore Of = Z, then

• for all primes p with p - N

ap(f) ≡ ap(E) (mod l),

• for all primes p with p - N0 and p|N

ap(f) ≡ ap(E)(1 + p) ≡ ±(1 + p) (mod l).

Proof. The first part of the theorem (for general Of ) follows by comparing traces
of Frobenius using Theorems 17 and 20 and Proposition 19. If Of = Z, then
ρf

L ' ρE′

l for some elliptic curve E′ of conductor N0 and the theorem follows from
[KO, Proposition 3].
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For computational purposes we want to rephrase the theorem above slightly and
also note some inequalities. Let p be a prime and denote by Fp(x) the characteristic
polynomial of ap(f) w.r.t. the extension Kf/Q. So if we denote by σ1, . . . , σd the
embeddings of Kf in R, then Fp(x) =

∏d
i=1(x − σi(ap(f))). If Of = Z, then of

course simply Fp(x) = x− ap(f).

Theorem 37. Let E/Q be an elliptic curve with conductor N , let l be an odd
prime and write N0 := N0(E, l). Suppose E ∼l f for a newform of level N0. Let
p - N0 be a prime and also suppose p 6= l if f is not rational. Denote by Fp(x) the
characteristic polynomial of ap(f) w.r.t. the extension Kf/Q.

• If p - N , then l|Fp(ap(E)).

• If p|N , then l|Fp(±(1 + p)).

Furthermore, if p|N or ap(E) 6= ap(f), then

l < (1 +
√

p)2[Kf :Q].

Proof. Note that if a ≡ ap(f) (mod L) for some a ∈ Z, then

l | NormKf /Q(a− ap(f)) =
d∏

i=1

σi(a− ap(f))

=
d∏

i=1

(a− σi(ap(f)))

= Fp(a).

Consider the case p - N . Theorem 36 gives us that ap(E) ≡ ap(f) (mod L), so we
get l|Fp(ap(E)). If ap(E) 6= ap(f) we have Fp(ap(E)) = Norm(ap(E)−ap(F )) 6= 0.
Also |ap(E)|, |σi(ap(f))| < 2

√
p, so

l ≤ |Fp(ap(E))| =
d∏

i=1

|ap(E)− σi(ap(f))|

< (4
√

p)d

< (1 + p + 2
√

p)d = (1 +
√

p)2d.

Now consider the case p|N . Theorem 36 gives us that ap(E) ≡ ±(1 + p)
(mod L), so we get l|Fp(±(1+p)). For all primes p we have |ap(f)| < 2

√
p < 1+p,

so ap(f) 6= ±(1 + p) and hence Fp(±(1 + p)) = Norm(±(1 + p)− ap(f)) 6= 0. So

l ≤ |Fp(±(1 + p))| =
d∏

i=1

| ± (1 + p)− σi(ap(f))|

< (1 + p + 2
√

p)d = (1 +
√

p)2d.
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2.2 Applying the modular method

Let f ∈ Z[x1, . . . , xn, y1, . . . , ym], let l denote an odd prime and define

Pl(x1, . . . , xn, y1, . . . , ym) := f(x1, . . . , xn, yl
1, . . . , y

l
m).

We are interested in solving

Pl(x1, . . . , xn, y1, . . . , ym) = 0 xi, yi ∈ Z (2.9)

for infinitely many l (an exponential Diophantine equation) or sometimes in solv-
ing it for one particular l. Possibly some extra conditions (like yi 6= 0 or gcd-
conditions) are imposed. A typical example is

f(x, y) = czl x, y, z ∈ Z gcd(x, y, z) = 1, z 6= 0, (2.10)

where f ∈ Z[x, y] is homogeneous and c ∈ Z − {0}. However, only very specific
equations from the example above can be handled by the modular (or any other)
method.

The starting point of using the machinery of elliptic curves and modular forms
to study (2.9) is the construction of an elliptic curve associated to a hypothetical
solution satisfying certain properties (to be described in a moment). Such elliptic
curves are often called Hellegouarch-Frey curves (or Frey-Hellegouarch curves) or
simply Frey curves. For brevity we shall use the latter terminology. One can
consider a Frey curve as an elliptic curve Ex1,...,xn,y1,...,ym

, or simply E{xi,yi},
given by an equation Y 2 + a1XY + a3Y = X3 + a2X

2 + a4X + a6 where the
coefficients ai = ai(x1, . . . , xn, y1, . . . , ym) are functions of the xi, yi from Zn+m

to Z (in practice the ai are given by finitely many polynomials in xi, y
l
i over Q).

Furthermore, there must exist a finite set S of primes, not depending on the xi, yi,
and not depending on l if we consider an exponential Diophantine equation, such
that when we now specialize to a hypothetical solution x1, . . . , xn, y1, . . . , ym ∈ Z,
we have that E := Ex1,...,xn,y1,...,ym

is nonsingular and if it has bad reduction at a
prime p 6∈ S, then the reduction at p is multiplicative and l|νp(∆min), where ∆min

denotes the minimal discriminant of E. In this situation, the conductor N of E
is of the form N0

∏m
i=1 pi where the primes dividing N0 are elements of S and the

pi are primes for which pi 6∈ S and l|νpi
(∆min). Suppose we can prove that ρE

l is
irreducible, then by Theorem 35 we now see that E ∼l f for some newform f of
level N0. There are only finitely many possibilities for N0 and only finitely many
newforms per level, this gives us only finitely many possibilities for our newforms
f . Thus in order to prove that (2.9) (possibly with some extra conditions) has no
solutions, it suffices to show that for these finitely many f we cannot have E ∼l f .
Instead of proving directly that there are no solutions, this method might also
provide valuable information about possible solutions. Many concrete examples
will appear in the rest of this chapter and the next chapter.

We will restrict our attention to Frey curves defined over Q. For the first
application of Frey curves with only the isogeny class defined over Q (so called
Q-curves) to solve generalized Fermat equations we refer to [Ell]. For ideas about
Frey hyperelliptic curves (and much more) we refer to [Dar].
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2.2.1 No newforms

If after level lowering one ends up at a level at which there are no newforms,
then a contradiction is immediately obtained. These levels are known explicitly as
follows.

Proposition 38. Let N ∈ Z>0. Then there are no newforms of level N if and
only if N ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, 22, 25, 28, 60}.

Proof. The dimension of Snew
2 (Γ0(N)) is given by an explicit recursive formula

from which the result follows in a straightforward matter. See e.g. [Mar].

Example 39 (Fermat’s last theorem). This is the ‘canonical example’, so let
us quickly describe it here. Suppose there exist x, y, z, n ∈ Z with xyz 6= 0, n ≥ 4
and xn + yn = zn. We can assume that (x, y, z) = 1 and that l := n ≥ 5 is
prime (for n = 3, 4 the equation already is known to have no solutions). We can
also assume that y is even and x ≡ −1 (mod 4). To our hypothetical solution we
associate the Frey curve

E : Y 2 = X(X − xl)(X + yl).

The discriminant of E equals 24(xyz)2l, which is nonzero, so E is indeed an elliptic
curve. As shown in appendix A, the model is minimal at all primes, except at 2
and for the minimal discriminant of E and the conductor we have

∆min =
(xyz)2l

28
, N = rad(xyz). (2.11)

We see that E is semistable and that all 2-torsion points are rational, so ρE
l is

irreducible by Theorem 22. From (2.11) we obtain that N0(E, l) = 2. So Theorem
35 tells us that ρE

l is modular of level 2. But according to Proposition 38 there
are no newforms of level 2, a contradiction which proves Fermat’s last theorem.

2.2.2 Different ap’s

Suppose we are in the situation of Theorem 37 with E = E{xi,yi} some Frey curve
associated to a hypothetical solution (2.9) (possibly with some extra conditions).
A first approach to restrict the possibilities of l is as follows. For simplicity we shall
assume that for a prime p - N0 the reduction of E{xi,yi} modulo p only depends
on the xi, yi modulo p. In this case ap(E{xi,yi}) also only depends on the xi, yi

modulo p. We shall also assume that for the xi, yi under consideration E{xi,yi} is
indeed an elliptic curve (i.e. it is nonsingular), possible xi, yi which do not meet
this criterion have to be considered separately (if possible). Now for the finitely
many xi, yi modulo p under consideration such that E{xi,yi} has good reduction
at p, we calculate the possible ap(E{xi,yi}). If all these values differ from ap(f), we
are left by Theorem 37 with only finitely many possibilities for l for which E ∼l f .
We can of course try different primes p and combine the information. In general
there might a priori be multiple possibilities for the newform f and the level N0.
For all these possibilities the above approach can of course be repeated.
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We remark that if Of 6= Z, then ap(E) 6= ap(f) for infinitely many p, since
then ap(f) 6∈ Z for infinitely many p (and ap(E) ∈ Z for all p). In fact, a bound
on the smallest prime p - N0 such that ap(f) 6∈ Z for a nonrational f is easily
obtained by considering f − f̄ for some conjugate f̄ of f (see [Kra3, Lemme 1]),
we have

p ≤ N0

6

∏
primes q|N0

(
1 +

1
q

)
.

We also note that [Kf : Q] can be bounded above in terms of N0, namely

[Kf : Q] ≤ dim Snew(N0) ≤
N0 + 1

12
,

where the last inequality comes from [Mar, Theorem 2]. Together with the bound
on l from Theorem 37 we get a bound on l in terms of only N0. Knowing the
actual q-expansion of f may lead in practice to a much better bound.

Example 40 (The equation x2 − 11 = yl). Consider the equation

x2 − 11 = yl x, y ∈ Z

where l denotes an odd prime. For a hypothetical solution (x, y) we consider the
Frey curve

Ex : Y 2 = X3 − 4xX2 + 4(x2 − 11)X (2.12)

(it is a twist over Q(
√

2) of the Frey curve (3.24)). According to appendix A we
get for the minimal discriminant and conductor of Ex that

∆min(Ex) = 212 · 11(x2 − 11)2 = 212 · 11y2l,

N(Ex) = 25 · 11 rad{2,11}(x2 − 11) = 25 · 11 rad{2,11}(y).

So N0(Ex, l) = 25 ·11. Now assume l ≥ 7. Using Theorem 22, we easily obtain that
ρEx

l is irreducible. So we have E ∼l f for some newform f of level 352. At level
352 there are 6 rational newforms and 2 conjugacy classes of nonrational ones.
For a rational newform f we get a3(f) ∈ {±1,±3}. For a nonrational newform
f , the characteristic equation for a = a3(f) reads a2 ± a− 4 = 0. Since 11 is not
a square mod 3, Ex must have good reduction modulo 3 and by plugging in the
values x′ = 0, 1, 2 into Ex′ , we obtain a3(Ex) ∈ {−2, 0, 2}. Theorem 37 and an
elementary computation now gives us that l < 7. We have proved the following.

Proposition 41. The equation x2 − 11 = yl has no solutions for x, y ∈ Z and
l ≥ 7 prime.

Note that we do have a solution with l = 5, namely 562 − 11 = 55.

A typical problem that may arise in this method, is that for certain x′i, y
′
i

(not necessarily related to some solution of (2.9)) we have that E′ := E{x′i,y′i} has
conductor equal to some a priori possible level N0. In that case the method can
not eliminate the possibility that E{xi,yi} ∼l E′ for any l.
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If f is not rational (i.e. Of 6= Z), then as remarked above, we are guaranteed to
find infinitely many primes p - N0 such that ap(E{xi,yi}) 6= ap(f). If f is rational,
with associated elliptic curve E′, then in general there is no a priori reason why
we should find any such prime p. However, if the torsion structure of the isogeny
classes of E{xi,yi} and E′ are sufficiently different, then we are guaranteed to find
infinitely many primes p - N0 such that ap(E{xi,yi}) 6= ap(E′) = ap(f). To make
this more precise we have the following.

Proposition 42. Let E/Q be an elliptic curve and let m ∈ Z>0. Then the fol-
lowing statements are equivalent.

i. For all primes p where E has good reduction we have m|p + 1− ap(E).

ii. For a set of primes p with (Dirichlet) density 1 we have m|p + 1− ap(E).

iii. There exists an elliptic curve F/Q isogenous over Q to E with m|#F (Q)tors.

Proof. See Theorem 2 and the appendix of [Kat]. (In fact, an appropriate gener-
alization to number fields is proven there.)

If now m|#E(Q)tors for some m ∈ Z≥2, but m - #E′′(Q)tors for all ellip-
tic curves E′′/Q isogenous to E′, then according to the theorem above we have
ap(E) ≡ p + 1 (mod m) for all but finitely many primes p and ap(E′) 6≡ p + 1
(mod m) for infinitely many primes p. So ap(E) 6= ap(E′) for infinitely many
primes p. In case E is a Frey curve and E′ a curve at level N0 (so E′ and N0 are
known explicitly), arbitrarily many primes p - N0 with ap(E′) 6≡ p + 1 (mod m)
can be found explicitly, giving explicit restrictions on l for which E ∼l E′. In fact,
an upper bound for the smallest prime p - N0 such that ap(E′) 6≡ p + 1 (mod m)
can easily be given in terms of N0. In the situation where the roles of E and E′

are reversed, much less is known explicitly, since the conductor of a Frey curve
depends on some hypothetical solution.

Example 43. Recall the previous example. The Frey curve Ex from (2.12) ob-
viously has a rational 2-torsion point. But the 6 elliptic curves of conductor 352
associated to the 6 rational newforms of level 352 all have no rational 2-torsion.
So a priori we are guaranteed to find for every elliptic curve E′ of conductor 352
a prime p 6= 2, 11 such that ap(E′) 6= ap(Ex′) for all x′ ∈ Z with p - x′2 − 11.
In practice, we see that a3(E′) is odd for all the 6 elliptic curves E′ and without
plugging in values of x′ into Ex′ we can conclude by the rational 2-torsion of Ex

that a3(Ex) is even, and the Weil bounds then give a3(Ex) ∈ {−2, 0, 2}.

For an interesting example where the Frey curve has a rational 3-torsion point,
but the non CM elliptic curves at the levels N0 do not, we refer to [BVY] (we
will deal with CM curves in a moment). In this paper, certain infinite families of
generalized Fermat equations (1.1) with p = q and r = 3 are solved.

We also mention that if more than one Frey curve is available, the information
given by these Frey curves can be combined. In [BMS3] this (amongst other things)
was used to solve certain infinite families of binary Thue equations.
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The method of Kraus

To illustrate the method of Kraus, we will first restrict to an equation of the form

f(x) = cyl x, y ∈ Z y 6= 0, (2.13)

where f ∈ Z[x], c ∈ Z − {0} and l denotes an odd prime. For simplicity we
will assume that we have a Frey curve Ex for this equation with coefficients
a1, a2, a3, a4, a6 ∈ Z[x], ∆(Ex) = Cf(x)e, for certain C ∈ Z − {0}, e ∈ Z>0 and
R := Resx(f(x), c4(Ex)) 6= 0. For a given l, suppose that (x, y) is a hypothetical
solution to (2.13) and suppose that ρEx

l is irreducible. Then Ex ∼l f for a certain
newform f of level N0 := N0(Ex, l). The (finitely many) possibilities of N0 are
known explicitly, they depend on the explicitly known Frey curve. Take a newform
f at an appropriate level N0 and assume for simplicity that it is rational with an
associates elliptic curve E′ (the nonrational case is not harder to handle). We
want to show that it is impossible that Ex ∼l E′. Instead of simply plugging in
all possible x modulo p for a certain prime p and compute the possible ap(Ex), a
natural thing to do is use local information to restrict the possibilities of x modulo
p by reducing (2.13) modulo p.

Suppose that p - c (which is the case most interesting to us). Recall that F∗p
is cyclic of order p − 1. So if l - p − 1, then {al | a ∈ Fp} = Fp and we get no
restriction at all for x (mod p) from f(x) ≡ cyl (mod p). If however l|p − 1, say
p = nl + 1, n ∈ Z, then {al | a ∈ Fp} = {b ∈ Fp | bn = 1} ∪ {0} and we may
get a lot of information on x (mod p) from f(x) ≡ cyl (mod p). So suppose that
p = nl + 1 and p - N0. If p|y, then p|N(Ex), so ap(E′) ≡ ±(1 + p) ≡ ±2 (mod l)
and otherwise, ap(E′) ≡ ap(Ex) (mod l).

We conclude that in order to rule out the option that Ex ∼l E′ it suffices to
find a prime p - N0 such that

• p = nl + 1, n ∈ Z,

• ap(E′)2 6≡ 4 (mod l),

• ap(E′) 6≡ ap(Ex′) (mod l) for all x′ ∈ Fp such that

f(x′) ∈ c{b ∈ Fp | bn = 1}.

Note that if f(x) has no roots modulo p, then we do not need ap(E′)2 6≡ 4 (mod l).
If f(x) has a root modulo p and at all the roots x (mod p) the reduction of Ex

at p is split resp. non-split multiplicative, then we only need ap(E′) 6≡ 2 (mod l)
resp. ap(E′) 6≡ −2 (mod l) instead of ap(E′)2 6≡ 4 (mod l).

A typical situation where this method fails, is when there exists an x ∈ Q such
that f(x) = ±c and Ex has conductor equal to some a priori possible level N0. If
this is not the case there is still no a priori guarantee that the method will work,
but heuristically speaking for a fixed prime l, the existence of ”small” n (compared
to l) such that nl + 1 is prime increases the chance of the method to work. For
l = 19, 31 the smallest n such that nl + 1 is prime is n = 10 and in practice we see
that the method fails frequently for l = 19, 31.
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Example 44. For some straightforward examples with c = 1 and f(x) = x3−x−2
or f(x) = x4+x3−3x2+11x+2 we refer to section 3.3.3, except for the irreducibility
of ρEx

l for some small primes l everything necessary to understand these examples
has been treated so far.

Let us treat the special case x3−x−2 = yl with l = 13 here. To a hypothetical
solution x, y the Frey curve

Ex : Y 2 = X3 + X2 − x(6 + x)X − (2x3 + x2 + 4x + 4)

is associated. The minimal discriminant ∆min and conductor N are, according to
appendix A, given by

∆min = −13
25

(x3 − x− 2)2 = −13
25

y2l,

N = 2 · 13 rad{2,13}(x3 − x− 2) = 2 · 13 rad{2,13}(y).

So we have N0 := N0(Ex, l) = 2 · 13 = 26. As shown in section 3.3.3 we can
assume that for l = 13 the representation ρEx

l is irreducible and furthermore that
Ex ∼l E26a, where E26a denotes an elliptic curve from the isogeny class 26a in
the notation from [Cre2]. We note that for x′ = −2, 6, 38/25 the elliptic curve Ex′

is isogenous to E26a. Now let n := 4 and p := nl + 1 = 4 · 13 + 1 = 53 (so p is
prime). First of all ap(E26a) = 0, so ap(E26a) 6≡ ±2 ≡ ±(p + 1) (mod l), hence
p - N . This tells us that y 6≡ 0 (mod l). We compute yl ≡ ±1,±23 (mod p),
together with x3 − x − 2 ≡ yl (mod p) we get x ≡ 19, 37, 38 (mod p). We note
that none of these values are congruent to −2, 6, 38/25(≡ 10 (mod p)) modulo p.
We also compute ap(E19) = 2, ap(E37) = −2, ap(E38) = −12. Finally note that
2,−2,−12 6≡ ap(E26a) (mod l), so we conclude that x3 − x − 2 = y13 has no
solutions with x, y ∈ Z.

Instead of (2.13) consider a Diophantine equation of the form (2.10) (with
f ∈ Z[x, y] homogeneous and c ∈ Z − {0}). In practice, reducing this equation
modulo some prime of the form p = nl + 1, n ∈ Z leaves one with too many
possibilities for x, y modulo p by the homogeneity of f . If however f(x, y) factors
over Z as f(x, y) = g(x, y)h(x, y) with Res(g(x, y), h(x, y)) 6= 0, then up to primes
dividing this resultant, the factors g(x, y) and h(x, y) must both be l-th powers.
This information can of course be used in restricting the possibilities of x, y modulo
p. The first example of this approach is given in [Kra4] to study x3 + y3 = zl. In
[Che] the study of x2 + y2l = z3 is reduced to the study of v(3u2 − v2) = yl and
solved (for primes l with 7 < l < 107, l 6= 31) using a similar approach. This last
example is recalled in section 3.3.1 and (again) except for irreducibility results for
small primes, uses only methods developed so far.

We actually also solve the equation above for l = 31; this was done by using
extra local information coming from classical algebraic number theory. In general,
instead of just factoring f(x, y) over Z, we can factor the equation further over a
number field (assuming f(x) does not already factor as a product of linear factors
over Z). The factors will be l-th powers, up to finitely many primes and up to
units. These units can cause problems, but if we choose our prime p = nl + 1 in
such a way that all units become n-th roots of unity modulo p, these problems
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disappear and we have more local information at our disposal. For a concrete
example we refer to section 3.3.1.

A related approach, where the units are required to be not n-th roots of unity
modulo p to obtain (partial) information about solutions of Diophantine equations,
is given in [Sik, section 9].

Different residue fields

If ρE
l ' ρf

L, then under some mild conditions we must have that Of/L = Fl. We
have the following elementary result from algebraic number theory.

Lemma 45. Let K = Q(α) for some algebraic integer α and let L ⊂ OK be a
prime lying above l ∈ Z. If α ≡ n (mod L) for some n ∈ Z and l - [OK : Z[α]],
then L has inertia degree 1.

Proof. The image of the natural homomorphism φ : Z[α] → OK/L is isomorphic
to Fl because α ≡ n (mod L). Since l - [OK : Z[α]], φ is surjective (see e.g.
the proof the Kummer-Dedekind theorem in [Coh1, pp. 197-198]) and the lemma
follows.

We obtain the following computationally convenient criterion for eliminating
newforms.

Proposition 46. Let f be a newform of level N0 and let l be a prime. Suppose
that for some prime p - N0l the characteristic polynomial of ap(f) w.r.t. Kf/Q,
denoted Fp(x), is irreducible, that l - [Of : Z[ap(f)]] and that Fp(x) does not have
a root modulo l. Then it is impossible that E ∼l f for any elliptic curve E/Q.

Proof. Suppose we do have E ∼l f for some elliptic curve E/Q. Then ap(f) ≡ n
(mod L) for some n ∈ Z and some prime L ⊂ Of lying above l. Since Fp(x)
is irreducible we have Kf = Q(ap(f)). The preceding lemma gives us that L
has inertia degree 1. Since l - [Of : Z[ap(f)]] the Kummer-Dedekind theorem
now gives us that Fp(x) has a root modulo l. A contradiction which proves the
proposition.

Example 47. Consider the generalized Fermat equation

x2 + y3 = zl x, y, z ∈ Z xyz 6= 0, gcd(x, y, z) = 1,

for an odd prime l ≥ 5. To a hypothetical solution we associate the Frey curve

Ex,y : Y 2 = X3 + 3yX + 2x.

It has (not necessarily minimal) discriminant −26 · 33(x2 + y3) = −26 · 33zl, and
from [Pap] one easily obtains that N0 := N0(Ex,y, l)|26 · 33. Suppose that ρ

Ex,y

l is
irreducible, then Ex,y ∼l f for some newform f of level N0. Up to quadratic twist
there is only one nonrational newform of level dividing 26 ·33 and a5(f), a7(f) both
satisfy x2 − 13 = 0. By quadratic reciprocity we have that x2 − 13 is irreducible
modulo a prime l if and only if l ≡ 2, 5, 6, 7, 8, 11 (mod 13). The proposition above
now tells us that for these prime exponents l we only have to consider Ex,y ∼l E′

for elliptic curves E′ with conductor dividing 26 · 33.
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2.2.3 Complex multiplication

Let F/Q be an elliptic curve with complex multiplication. Then for an odd
prime l the possibilities for Gal(Q(F [l])/Q) are quite restrictive, in particular it
is strictly smaller than GL2(Fl). If now ρE

l ' ρF
l , then of course the same holds

for Gal(Q(E[l])/Q). By studying certain modular curves we can get, sometimes
under additional assumptions on E, much information about where E has po-
tentially good reduction, thereby restricting the possibilities of the primes in the
denominator of jE . This provides valuable information, since in applications of
the modular method there is a strong relation between the primes where the Frey
curve associated to a solution xi, yi ∈ Z of (2.9) has multiplicative reduction and
the primes dividing yi.

Definition 48. A Cartan subgroup of GL2(Fl) is a subgroup G of GL2(Fl) such
that G ' R∗ for a subring R of Mat(2 × 2, Fl) with R ' Fl × Fl or R ' Fl2 . If
R ' Fl × Fl, then G is called split, otherwise G is called nonsplit.

Proposition 49. Let E/Q be an elliptic curve with complex multiplication by an
order O in an imaginary quadratic number field K. Let l be a prime which does
not divide the discriminant of O. Then Im ρE

l is contained in the normalizer of a
split (resp. nonsplit) Cartan subgroup of GL2(Fl) if l splits (resp. stays inert) in
K.

Proof. Consider the natural restriction homomorphism

f : O ∼= End(E) → End(E[l])

and denote the image under f by R. The kernel is generated by l, so R ∼= O/(l) ∼=
OK/(l) (since l - ∆(O)), which is isomorphic to Fl × Fl or Fl2 respectively de-
pending on whether l splits or stays inert respectively in K. So R∗ is a split resp.
nonsplit Cartan subgroup of GL2(Fl). Let σ ∈ GQ, and denote by σ′ the image
of σ under ρE

l . The natural action of GQ on End(E) induces an action of GQ on
R and on R∗. One easily checks that for φ ∈ R∗ we have σ′φ = φσσ′ (where φσ

denotes the action of σ on φ). In other words, σ′φσ′−1 = φσ ∈ R∗ and so Im ρE
l

is contained in the normalizer of R∗.

Let Xsplit(l) resp. Xnonsplit(l) denote the (complete) modular curve correspond-
ing to the congruence subgroup {A ∈ SL2(Z) | A mod l ∈ H}, where H ⊂ GL2(Fl)
is the normalizer of a split resp. nonsplit Cartan subgroup of GL2(Fl). The mod-
ular curves Xsplit(l) resp. Xnonsplit(l) admit a natural structure over Q, where the
noncuspidal rational points correspond to elliptic curves E/Q (up to twist) with
Im ρE

l contained in the normalizer of a split resp. nonsplit Cartan subgroup; see
e.g. [Maz1, Introduction].

Much is known about the rational points of Xsplit(l). Already in [Maz1, III,
Theorem 6.1] it is proved that if l ≥ 11, l 6= 13, then Xsplit(l)(Q) is finite. In fact,
since the genus of Xsplit(l) is at least 2 if and only if l ≥ 11, we now know by
Faltings’ theorem that if l ≥ 11, then Xsplit(l)(Q) is finite. In [Par, Theorem 1.1]
it is proved that the set of primes l, such that Xsplit(l) contains a noncuspidal
rational point not corresponding to an elliptic curve with complex multiplication,
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is contained in a set of density at most 7/29, in [Reb, Théorème 0.2] the upper
bound for this density was improved to 9/210. Also, in loc. cit. it is shown that the
only noncuspidal rational points of Xsplit(l) for 11 ≤ l ≤ 1871, l 6= 13 correspond
to elliptic curves with complex multiplication. The most useful property for the
modular method, however, is the following.

Theorem 50. Let E/Q be an elliptic curve, let l ≥ 11, l 6= 13 be prime and
suppose that Im ρE

l is contained in the normalizer of a split Cartan subgroup of
GL2(Fl). Then

i. jE ∈ Z,

ii. If F/Q is an elliptic curve with ρF
l ' ρE

l , then the conductors of E and F
are equal.

Proof. Part one follows form [Mer2, Theorem 5]. For the second part see [HK,
Théorème 1].

Remark 51. From [Mom, Proposition 3.1] it follows that part one of the above
theorem with jE ∈ Z replaced by jE ∈ Z[1/2] holds. This already suffices for most
applications.

About the rational points on the modular curves Xnonsplit(l) much less is
known. We have that the genus of Xnonsplit(l) is at least 2 (in fact at least 3)
if and only if l ≥ 13. And we really need Faltings’ theorem to conclude that if
l ≥ 13, then Xnonsplit(l)(Q) is finite. So for elliptic curves E with Im ρE

l contained
in the normalizer of a nonsplit Cartan subgroup much less is known. If however
E also has a nontrivial Q-rational torsion point (or even just a Q rational isogeny
of the right order), then more is known, also in the split case when l = 5, 7, 13.

Theorem 52. Let E/Q be an elliptic curve and l ≥ 5 prime. Suppose that E has
a Q-rational p-isogeny where p = 2, 3, 5, 7 or 13 and p 6= l.

• If Im ρE
l is contained in the normalizer of a split Cartan subgroup, then

j(E) ∈ Z[ 1
2l ].

• If Im ρE
l is contained in the normalizer of a nonsplit Cartan subgroup, then

j(E) ∈ Z[ 1l ].

Proof. See [Mer1, Theorem 2.15] and the remarks after this (and also note that
‘isomorphic to’ can be replaced by ‘contained in’). (See also [DM, Theorem 8.1].)

Example 53. In [Kra4] the generalized Fermat equation

x3 + y3 = zl x, y, z ∈ Z xyz 6= 0, gcd(x, y, z) = 1,

for an odd prime l is analyzed. To a hypothetical solution the Frey curve

Ex,y : Y 2 = X3 + 3xyX + y3 − x3
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is associated, with (not necessarily minimal) discriminant −24 · 33(x3 + y3)2 =
−24 · 33z2l. Suppose that l ≥ 5 and that ρ

Ex,y

l is irreducible. A priori we could
have that N0(Ex,y, l) = 36. But we have the elliptic curve E0,1 of conductor 36,
and the relation 03 +13 = 1l shows that there is no way the methods from section
2.2.2 can be used to eliminate the possibility of Ex,y ∼l E0,1 for any l. The elliptic
curve E0,1 has however complex multiplication by Z[ζ3] and we use the theorem
above (following the arguments from loc. cit. closely) to eliminate Ex,y ∼l E0,1.

So suppose N0(Ex,y, l) = 36 and Ex,y ∼l E0,1. Proposition 49 gives us that
Im ρ

E0,1
l and hence Im ρ

Ex,y

l is contained in the normalizer of a Cartan subgroup
of GL2(Fl). Note that Ex,y has a rational 2-torsion point, so from Theorem 52 we
obtain jEx,y ∈ Z[1/(2l)]. We compute

jEx,y
=

28 · 33x3y3

(x3 + y3)2
=

28 · 33x3y3

z2l
,

hence z = ±2alb for a, b ∈ Z≥0. If l|z, then in fact l|N(E) and Theorem 36 give
us that

al(E0,1) ≡ ±(1 + l) ≡ ±1 (mod l).

Together with the Weil bounds we obtain al(E0,1) = ±1, but E0,1 has a rational
2-torsion point and good reduction at l (since l ≥ 5), so al(E0,1) is even. A
contradiction which proves that l - N(E). We are left with z = ±2a for some
a ∈ Z≥0. The equation

(x + y)(x2 − xy + y2) = ±2al x, y ∈ Z gcd(x, y, 2) = 1

leads to x2−xy+y2 = ±1, with solutions (x, y) = (±1, 0), (0,±1), (±1,±1). None
of these solutions give rise to solutions of our original equation and the possibility
Ex,y ∼l E0,1 is ruled out.

2.2.4 Different images of inertia

Let E,E′/Q be elliptic curves and let l be a prime. If ρE
l ' ρE′

l , then of course
ρE

l (G) ' ρE′

l (G) for all subgroups G ⊂ GQ. Taking G = Ip for some inertia
subgroup Ip ⊂ GQ of a prime p 6= l, we will use this to show that, under some
mild conditions, if ρE

l ' ρE′

l , then it is impossible that the reduction at p of E is
potentially good when that of E′ is not. In the proofs of [Kra4, Théorème 6.1.c]
and [BS, Proposition 4.4] this was used to show that ρE

l 6' ρE′

l (for appropriate l),
where E is a certain Frey curve with potentially good reduction at some prime p
and E′ is some elliptic curve obtained by level lowering (à la Theorem 35) where
the reduction at p is not potentially good. The purpose of [Kra4] is to obtain
information about j(E) and the purpose of [BS] is to eliminate E′. Recall that E
has potentially good reduction at p if and only if νp(jE) ≥ 0; see [Sil1, Chapter
VII, Proposition 5.5].

Now suppose that l ≥ 3 and that E has potentially good reduction at p 6= l.
Consider E/Qnr

p , where Qnr
p denotes the maximal unramified extension of Qp.

There exists a minimal extension K/Qnr
p such that E has good reduction over K,
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in fact we have K = Qnr
p (E[n]) for any integer n ≥ 3 with p - n; see [ST, 2.

Corollary 3 (p. 498)]. Define Φp := Gal(K/Qnr
p ) as in [Ser1, 5.6 pp. 311-312].

Since we can write K = Qnr
p (E[l]), we see that ρE

l (Ip) ' Φp. In loc. cit. all the
possibilities for the group structure of Φp are given. In particular we have that
#Φp is not divisible by primes ≥ 5. An explicit characterization of Φp is terms
of basic quantities of E is given in [Kra1]. From our discussion we obtain the
following.

Proposition 54. Let E/Q be an elliptic curve and let l ≥ 5 be a prime. Suppose
that E has potentially good reduction at some prime p 6= l. Then l - #ρE

l (Ip).

We also have some useful information about ρE
l (Ip) in the case that E does

not have potentially good reduction at p.

Proposition 55. Let E/Q be an elliptic curve and let l ≥ 3 be a prime. Suppose
that the reduction of E at some prime p is not potentially good and that l - νp(jE).
Then l|#ρE

l (Ip).

Proof. See [Sil2, Chapter V, Proposition 6.1] (it follows from the theory of Tate
curves).

By combining the 2 propositions (and the characterization of potentially good
reduction) above, we immediately obtain the following consequence, which will be
useful in practice.

Corollary 56. Let E,E′/Q be elliptic curves and let l ≥ 5 be a prime. Suppose
that for some prime p 6= l we have νp(jE) ≥ 0, νp(jE′) < 0 and l - νp(jE′). Then
ρE

l and ρE′

l are not isomorphic.

In practice, the conclusion of the corollary above can sometimes also been
shown to hold for l = 3 by examining ρE

l (Ip) (for l = 3) a little bit more, see for
example [BS, Proposition 4.4].

Example 57. Consider the equation

x3 + 17y3 = zl x, y, z ∈ Z xyz 6= 0, gcd(x, y, z) = 1,

where l denotes an odd prime. To a hypothetical solution we associate the Frey
curve

Ex,y : Y 2 = X3 + 33 · 17xyX + 33 · 17(x3 − 17y3).

Suppose that l ≥ 5 and that ρ
Ex,y

l is irreducible. It turns out that N0(Ex,y, l) =
2a · 3b · 172, where a ∈ {1, 2, 3} and b = 2 if 3 - z and b = 1 if 3|z. The elliptic
curve

E′ : Y 2 = X3 − 102X + 425

has conductor 23 · 32 · 172 and a priori we may have Ex,y ∼l E′. We will use the
corollary above to discard this possibility. So suppose that Ex,y ∼l E′. In this
case we must have for our hypothetical solution that 3 - z. We compute

jEx,y
=

28 · 33 · 17x3y3

(x3 + 17y3)2
=

28 · 33 · 17x3y3

z2l
,
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hence ν3(jEx,y ) ≥ 3. However, ν3(jE′) = −1 and by the corollary above we
conclude that Ex,y ∼l E′ is impossible.



Chapter 3

Frey curves, irreducibility
and applications

In this chapter we will first construct some Frey curves for certain Diophantine
equations. Next we will prove for some of these Frey curves irreducibility results for
ρE

p when p is small. Finally we will apply some of the Frey curve constructions and
irreducibility results to solve some Diophantine equations. We will also solve for
the first time the generalized Fermat equation x2+y2l = z3 for l = 31 by combining
modular methods with arguments from classical algebraic number theory.

3.1 Some Frey curves

In this section we want to give some constructions of Frey curves associated to
equations of the form

f(x1, . . . , xn) = Cyl x1, . . . , xn, y ∈ Z and l an odd prime, (3.1)

where f ∈ Z[x1, . . . , xn] (for some n ∈ Z>0) and C ∈ Z− {0}. Let f1, . . . , fm be
the irreducible factors over Q of f . Suppose we can solve g2 + h3 =

∏m
i=1 fai

i for
g, h ∈ Z[x1, . . . , xn] with no common factors of positive degree and ai ∈ Z≥0 not
all zero. Then

E : Y 2 = X3 + 3hX + 2g (3.2)

is a Frey curve with basic quantities

∆ = −26 · 33(g2 + h3)

= −26 · 33
m∏

i=1

fai
i

c4 = −24 · 32h

c6 = −26 · 33g.

47
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We will concentrate on some special cases. Amongst other things, we will obtain
Frey curves for the generalized Fermat equation (1.1) with signature (p, q, r) of the
form (3, 3, l), (5, 5, l) and (7, 7, l). These were all known before (see [Kra5]) but the
Frey curves for the last two signatures are obtained via a new route. For some
other signatures there are also Frey curves. We especially want to mention that a
detailed description of the Frey curves for quite general coefficients for signature
(l, l, 2), (l, l, 3), (l, l, l) is given in [BS], [BVY], [Kra3] respectively.

Binary cubic forms

Consider the binary cubic form

F (x, y) := ax3 + bx2y + cxy2 + dy3 ∈ Z[x, y]. (3.3)

Frey curves for F (x, y) = Czl are given in the literature for some special cases of
F , we construct a Frey curve for every nondegenerate F . Define the corresponding
invariant and covariants as follows

∆F := Discriminant(F ) (3.4)

H(x, y) := −1
4

∣∣∣∣ Fxx Fxy

Fxy Fyy

∣∣∣∣ (3.5)

G(x, y) :=
∣∣∣∣ Fx Fy

Hx Hy

∣∣∣∣ . (3.6)

Then one has the classical syzygy

4H(x, y)3 = G(x, y)2 + 27∆F F (x, y)2. (3.7)

Now consider the Frey curve given by

E : Y 2 = X3 − 3H(x, y)X + G(x, y). (3.8)

The fundamental quantities associated to E are

∆ = 24 · 36∆F F (x, y)2 (3.9)
c4 = 24 · 32H(x, y) (3.10)
c6 = −25 · 33G(x, y) (3.11)

j =
28H(x, y)3

∆F F (x, y)2
(3.12)

=
26G(x, y)2

∆F F (x, y)2
+ 1728. (3.13)

One easily checks that if F has a linear factor over Q, then E has a rational
2-torsion point.



3.1. Some Frey curves 49

Binary quartic forms

Consider the binary quartic form

F (x, y) = ax4 + bx3y + cx2y2 + dxy3 + ey4 ∈ Z[x, y]. (3.14)

If 12ae− 3bd + c2 = 0 and F is nondegenerate, we can construct a Frey curve for
F (x, y) = Czl. Following [Cre1], define the invariants and covariants as follows

I := 12ae− 3bd + c2 (3.15)
J := 72ace + 9bcd− 27ad2 − 27eb2 − 2c3

g4(x, y) := (3b2 − 8ac)x4 + 4(bc− 6ad)x3y + 2(2c2 − 24ae− 3bd)x2y2

+4(cd− 6be)xy3 + (3d2 − 8ce)y4

g6(x, y) := (b3 + 8a2d− 4abc)x6 + 2(16a2e + 2abd− 4ac2 + b2c)x5y

+5(8abe + b2d− 4acd)x4y2 + 20(b2e− ad2)x3y3

−5(ade + bd2 − 4bce)x2y4 − 2(16ae2 + 2bde− 4c2e + cd2)xy5

−(d3 + 8be2 − 4cde)y6.

Then one has the classical syzygy

g3
4 − 48IF 2g4 − 64JF 3 = 27g2

6 . (3.16)

If now I = 0, then this reduces to

g3
4 − 27g2

6 = 64JF 3, (3.17)

where J2 = −27∆F . Now consider the Frey curve given by

E : Y 2 = X3 − g4X + 2g6. (3.18)

The fundamental quantities associated to E are

∆ = 212JF 3 (3.19)
c4 = 24 · 3g4 (3.20)
c6 = −26 · 33g6 (3.21)

j =
33g3

4

JF 3
(3.22)

=
36g2

6

JF 3
+ 1728. (3.23)

One easily checks that if F has a linear factor over Q, then E has a rational
3-isogeny.

Klein forms

Let F ∈ Q[x, y] be a binary form and M =
(

a b
c d

)
∈ GL2(Q), then by letting

(F ◦M)(x, y) = F (ax + by, cx + dy),
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we obtain a right action of GL2(Q) on the set of nondegenerate binary forms over
Q of given degree k. Define binary forms Fr for r = 2, 3, 4, 5 as follows,

F2(x, y) = xy(x + y)
F3(x, y) = y(x3 + y3)
F4(x, y) = xy(x4 + y4)
F5(x, y) = xy(x10 − 11x5y5 − y10).

Let r ∈ {2, 3, 4, 5} and let M ∈ GL2(Q) such that F := Fr ◦M ∈ Q[x, y], then in
fact there exist binary forms gr(x, y), hr(x, y) ∈ Q[x, y] with no common factors
of positive degree and a d ∈ Q∗, such that

g2 + h3 = dF r.

So (3.2) gives us a Frey curve for the equation F (x, y) = Czl. Call any binary
form F such that F = Fr ◦M a Klein form. If F is a nondegenerate binary form
of degree 3, then it turns out that it is always a Klein form and the associated
Frey curve is simply the one given by (3.8). If F is nondegenerate and of degree 4,
then it turns out that F is a Klein form if and only if I = 0 (with notation as in
(3.14), (3.15)) and the associated Frey curve is given by (3.18). For nondegenerate
binary forms of degree 6 and 12 the Klein forms are given by 5 and 10 (dependent)
conditions on the coefficients respectively (it amounts to the vanishing of the so-
called 4-th transvectant of F ). For more details, especially for explicit formulas
for g, h, d and the vanishing conditions, we refer to [Edw].

It turns out that the Frey curves associated to the Klein forms actually describe
families of elliptic curves with constant 2, 3, 4, and 5 torsion, see [RS1], [RS2],
[Sil]. An example of how constant 2-torsion of Frey curves attached to certain
binary cubic forms can be used in the modular method is described in [BD], where
amongst other things the following result is obtained.

Theorem 58. Let D be a cube free integer 6= ±1 with gcd(D, 6) = 1. Suppose
that the equation

x3 + Dy3 = 2a3b
∏
p|D

pcp x, y ∈ Z, xy 6= 0, gcd(x, y) = 1 a, b, cp ∈ Z≥0 (∀p|D)

has no solutions. Then the equation

x3 + Dy3 = zl x, y, z ∈ Z, xyz 6= 0, gcd(x, y, z) = 1

has no solutions for primes l ≡ 1 (mod 3) with

l >

23 · 33
∏
p|D

p(p + 1)

2·33 Q
p|D p2

.

The problems for odd primes l ≡ −1 (mod 3) are caused by the fact that for
the Frey curve Ex,y attached to F = x3+Dy3 given by (3.8) we have that Im ρ

Ex,y

l
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is contained in the normalizer of a nonsplit Cartan subgroup when (x, y) = (1, 0)
or (x, y) = (0, 1). If the cubic form F also does not represent ±1, the methods in
loc. cit. can be used to prove similar results but without the restriction that l ≡ 1
(mod 3).

Theorem 59. Let F ∈ Z[x, y] be a binary cubic form and assume that F is
irreducible over Q. Denote by ∆ ∈ Z − {0} the discriminant of F . Suppose that
the equation

F (x, y) =
∏
p|2∆

pap x, y, ap ∈ Z (∀p|2∆) gcd(x, y) = 1

has no solutions. Then the equation

F (x, y) = zl x, y, z ∈ Z, xyz 6= 0, gcd(x, y, z) = 1

has no solutions for primes l with

l >

28 · 34
∏

p|∆,p 6=2,3

p(p + 1)

26·34 Q
p|∆,p 6=2,3 p2

.

Univariate polynomials of degree 2

If we take the coefficient of x3 in (3.3) equal to 0 and dehomogenize, we obtain
a Frey curve for the equation f(x) = ax2 + bx + c = Cyl. This Frey curve has a
rational 2-torsion point (the right hand side of (3.8) contains a factor X +2ax+b).
After a translation of X and a twist over Q(

√
3), we obtain the following Frey curve

E : Y 2 = X3 − (2ax + b)X2 + a(ax2 + bx + c)X (3.24)

Basic quantities are given by

∆(E) = 24a2∆ff(x)2, (3.25)
c4 = 24(b2 − 3ac + abx + a2x2), (3.26)
c6 = 25(b + 2ax)(2b2 − 9ac− abx− a2x2). (3.27)

Other Frey curves can be obtained by solving g2 + h3 = C(ax2 + bx + c) for
some g, h ∈ Z[x] and C ∈ Z. Taking deg(g) = 3 and deg(h) = 2 we obtain the
identity

((b + 2ax)(−b2 + 36ac + 32abx + 32a2x2))2

+(−b2 − 12ac− 16abx− 16a2x2)3 = −108a(b2 − 4ac)2(c + bx + ax2).

The Frey curve obtained from this has a rational 2-torsion point. By a linear
transformation and a twist over Q(

√
3) we end up with the Frey curve

E : Y 2 = X3 + 2(2ax + b)X2 + (b2 − 4ac)X.
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This Frey curve, however, is simply 2-isogenous to (3.24).
Taking deg(g) = deg(h) = 1, we obtain the identity

((−b2 + 4ac)(b + 2ax))2 + (−b2 + 4ac)3 = 4a(b2 − 4ac)2(ax2 + bx + c).

The Frey curve obtained from this is

E : Y 2 = X3 − 3(b2 − 4ac)X − 2(b2 − 4ac)(2ax + b)

with discriminant

∆ = −28 · 33a(b2 − 4ac)2(ax2 + bx + c).

Univariate polynomials of degree 3

First of all we can of course take the dehomogenized version of (3.8).
Next, if we take the coefficient of x4 in (3.14) equal to zero and dehomogenize,

we obtain a Frey curve for the equation f(x) = ax3+bx2+cx+d = Cyl if b2 = 3ac.
Recall that the Frey curve has a rational 3-isogeny. We must have a 6= 0 (in order
to have nonzero discriminant), if b = 0, then we need c = 0 and we arrive at the
following Frey curve

E : Y 2 = X3 − 3ax(ax3 − 8d)X + 2a(a2x6 + 20adx3 − 8d2)

with discriminant
∆ = −212 · 33a2d(ax3 + d)3.

It turns out that up to quadratic twist, this Frey curve is 3-isogenous to a certain
specialization of the Frey curve in [BVY, Section 2].

Other Frey curves are obtained by solving deg(g2+h3) = 3 for some g, h ∈ Z[x].
Taking deg(g) = 3 and deg(h) = 2, leads to the Frey curve

E : Y 2 = X3 − 3(x2 + 2c1x + 2c2 − c2
1)X + 2(x3 + 3c1x

2 + 3c2x + c3).

For the discriminant we have

− ∆
1728

= c6
1 − 6c4

1c2 + 12c2
1c

2
2 − 8c3

2 + c2
3 − 6(c5

1 − 4c− 13c2 + 4c1c
2
2 − c2c3)x

+3(3c4
1 − 4c2

1c2 − c2
2 + 2c1c3)x2 + 2(2c3

1 − 3c1c2c3)x3.

As a special case we want to mention the following. Take c1 = c2 = 0 and
c3 = 2d/a and twist over Q(

√
a) to obtain

E : Y 2 = X3 − 3a2x2X + 2a2(2d + ax3)

with
∆ = −28 · 33a4d(ax3 + d).

Taking deg(g) = deg(h) = 1 leads to the Frey curve

E : Y 2 = X3 + (b1x + b2)X + a2x + a3



3.1. Some Frey curves 53

with

∆ = 24(−27a2
3 − 4b3

2 − 6(9a2a3 + 2b1b
2
2)x− 3(9a2

2 + 4b2
1b2)x2 − 4b3

1x
3).

Taking a2 = b2 = 0, b1 = 3ad and a3 = 2ad2 we obtain

E : Y 2 = X3 + 3adxX + 2ad2

with
∆ = −26 · 33a2d3(ax3 + d).

Along these lines we can of course also obtain Frey curves for some families of
higher degree equations.

Coverings

Via coverings one can obtain new Frey curves from old ones. We want to mention
one special case. Let F (a, b) be a symmetric binary form of degree 6. Then
F (a, b) = f(a2 + b2, ab) for a binary cubic form f(a, b). In [Kra5] Frey curves for
the equations a5 + b5 = cl and a7 + b7 = cl were obtained via factorization over
appropriate number fields. Here we want to obtain Frey curves via coverings.

First consider a5 + b5 = cl. Then F (a, b) := (a + b)(a5 + b5) is a symmetric
binary form of degree 6 and one easily finds that F (a, b) = f(a2 + b2, ab) when
f(x, y) = (x + 2y)(x2 − xy − y2). Using (3.8), we obtain the Frey curve

E : Y 2 = X3 − 15(2a4 + 3a3b + 7a2b2 + 3ab3 + 2b4)X
−25(a2 + b2)(a4 + 9a3b + 11a2b2 + 9ab3 + b4)

with discriminant
∆ = 24 · 36 · 53(a + b)2(a5 + b5)2.

Since f(x, y) has a linear factor, E has a rational 2-torsion point and in fact after
a linear change of variable and a twist over Q(

√
−3) we obtain the Frey curve

Y 2 = X3 + 5(a2 + b2)X2 + 5
(

a5 + b5

a + b

)
X

with discriminant
∆ = 24 · 53(a + b)2(a5 + b5)2.

Now consider a7 + b7 = cl. Then F (a, b) := (a7 + b7)/(a + b) is a symmetric
binary form of degree 6 and one easily finds that F (a, b) = f(a2 + b2, ab) when
f(x, y) = x3 − x2y − 2xy2 + y3. Using (3.8), we obtain the Frey curve

E : Y 2 = X3 − 21(a4 − a3b + 3a2b2 − ab3 + b4)X
+7(a6 − 15a5b + 15a4b2 − 29a3b3 + 15a2b4 − 15ab5 + b6)

with discriminant

∆ = 24 · 36 · 72

(
a7 + b7

a + b

)2

.
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3.2 Irreducibility in some special cases

Let p be a prime for which the modular curve X0(p) has genus 0, i.e. p =
2, 3, 5, 7, 13. Proving irreducibility for ρE

p , where E is some Frey curve, might
be problematic in this case. In this section we study for p = 5, 7, 13 the irre-
ducibility of ρE

p in the case that E is a Frey curve associated to a binary cubic or
binary quartic form, i.e. the Frey curves given by (3.8), (3.18). This is done by
finding nice quotients of certain fiber products. In the next section we shall apply
some of the results to solve certain Diophantine equations.

Denote by jp the j map X0(p) → X(1). For p = 5, 7, 13 the maps jp are
explicitly given by

j5(t) =
(t2 + 10t + 5)3

t
(3.28)

=
(t2 + 4t− 1)2(t2 + 22t + 125)

t
+ 1728 (3.29)

j7(t) =
(t2 + 5t + 1)3(t2 + 13t + 49)

t
(3.30)

=
(t4 + 14t3 + 63t2 + 70t− 7)2

t
+ 1728 (3.31)

j13(t) =
(t4 + 7t3 + 20t2 + 19t + 1)3(t2 + 5t + 13)

t
(3.32)

=
f6(t)2(t2 + 6t + 13)

t
+ 1728 (3.33)

where f6(t) := t6 + 10t5 + 46t4 + 108t3 + 122t2 + 38t− 1. (3.34)

Binary cubic forms

Let j(x, y) denote the j-invariant given by (3.12), (3.13) of the Frey curve (3.8)
associated to a binary cubic form. If this Frey curve has a rational p-isogeny, this
would give rise to a rational point on the curve Xp determined by

{([x : y], t) ∈ P1 ×X0(p) | j(x, y) = jp(t)}.

Up to twisting, the map j(x, y) is the j-map X(2) → X(1). Furthermore, for

A :=
(

2
1
2 0
0 2−

1
2

)
we have AΓ(2)A−1 = Γ0(4). We obtain that for p 6= 2, Xp is

birational (over Q) to X0(4p).
For p = 5, Xp has genus 1 and is explicitly given by

26G(x, y)2

∆F F (x, y)2
=

(t2 + 4t− 1)2(t2 + 22t + 125)
t

. (3.35)

(The notation is not very canonical, x, y are homogeneous coordinates and t is not,
but for our explicit computations the notation is convenient.) From this equation
we see that X5 maps (over Q) to the elliptic curve given by

∆F s2 = t(t2 + 22t + 125).



3.2. Irreducibility in some special cases 55

We note that for ∆F = 1 this elliptic curve is isogenous to X0(20).
For p = 7, Xp has genus 2.
For p = 13, Xp has genus 5 and is explicitly given by

26G(x, y)2

∆F F (x, y)2
=

(t6 + 10t5 + 46t4 + 108t3 + 122t2 + 38t− 1)2(t2 + 6t + 13)
t

.

(3.36)
We see that X13 maps (over Q) to the elliptic curve given by

∆F s2 = t(t2 + 6t + 13).

We note that for ∆F = 1 this elliptic curve has conductor 52.

Theorem 60. Let F be a binary cubic form with discriminant ∆F 6= 0 and let
E be the Frey curve (3.8) associated to it. Write ∆F = dx2, with d, x ∈ Z and d
square free. Let

Ed,5 : dy2 = x(x2 + 22x + 125).

If d 6= −3 and Ed,5 has rank 0, then ρE
5 is irreducible. If d = −3 and jE 6=

212 · 5/35,−212 · 52/3, then ρE
5 is irreducible. Let

Ed,13 : dy2 = x(x2 + 6x + 13).

If Ed,13 has rank 0, then ρE
13 is irreducible.

Proof. The 2 rational 2-torsion points on Ed,p for p = 5 and p = 13 respectively
correspond to t = 0,∞ (and infinite j-invariant) in (3.35) and (3.36) respectively.
If Ed,p has no further rational points, then Xp has no rational points corresponding
to finite j-invariant and hence E has no rational p-isogeny. Ed,13 has no rational
isogenies other then a 2-isogeny. So if Rank(Ed,13) = 0, then #Ed,13(Q) = 2. The
only rational isogenies (of prime power degree) of Ed,5 are a 2- and 3-isogeny. One
easily checks that Ed,5 has a rational 3-torsion point if and only of d = −3. So if
Rank(Ed,5) = 0 and d 6= −3, then #Ed,5(Q) = 2. If Rank(Ed,5) = 0 and d = −3,
then #Ed,5(Q) = 6 and the 4 extra rational points correspond (2 to 1) to the
values of jE as stated in the theorem.

Binary quartic forms

We proceed analogously as in the case of binary cubic forms. Let j(x, y) denote the
j-invariant given by (3.22), (3.23) of the Frey curve (3.18) associated to a binary
quartic form. If this Frey curve has a rational p-isogeny, this would give rise to a
rational point on the curve Yp determined by

{([x : y], t) ∈ P1 ×X0(p) | j(x, y) = jp(t)}.

Up to twisting, the map j(x, y) is the j-map X(3) → X(1). Furthermore, for

A :=
(

3
1
2 0
0 3−

1
2

)
we have that modulo ±I, AΓ(3)A−1 = Γ0(9). We obtain

that for p 6= 3, Yp is birational (over Q) to X0(9p).
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d Rank(Ed,5) Rank(E−d,5) Rank(Ed,13) Rank(E−d,13)
1 0 0 0 0
2 0 1 0 1
3 0 0 1 1
5 0 0 1 1
6 1 0 0 1
7 1 0 0 0
10 1 0 1 2
11 1 1 0 0
13 1 1 0 0
14 1 0 1 0
15 1 1 0 0
17 1 1 0 0
19 1 1 0 0
21 0 0 1 1
22 0 1 1 0
23 0 0 1 1

Table 3.1: Ranks of elliptic curves

For p = 5, Yp has genus 3.
For p = 7, Yp has genus 5 and is explicitly given by

33g3
4

JF 3
=

(t2 + 5t + 1)3(t2 + 13t + 49)
t

. (3.37)

We see that Y7 maps (over Q) to the curve

C ′
7 : s3 = Jt2(t2 + 13t + 49).

One easily check that C ′
7 has genus 2 and that the map given by

(s, t) 7→ (x, y) :=
(

s

t
, J

(
t− 49

t

))
defines a birational morphism from C ′

7 to

C7 : y2 = (x3 − 13J)2 − (14J)2

with inverse

(x, y) 7→ (s, t) =
(

x(x3 + y − 13J)
2J

,
x3 + y − 13J

2J

)
.

We note that for J = 1 the jacobian of C7 is isogenous to the abelian variety
associated to the pair of conjugate newforms of level 63.

For p = 13, Yp has genus 11 and is explicitly given by

33g3
4

JF 3
=

(t4 + 7t3 + 20t2 + 19t + 1)3(t2 + 5t + 13)
t

. (3.38)
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We see that Y13 maps (over Q) to the curve

C ′
13 : s3 = Jt2(t2 + 5t + 13).

One easily checks that C ′
13 has genus 2 and that the map given by

(s, t) 7→ (x, y) :=
(

s

t
, J

(
t− 13

t

))
defines a birational morphism from C ′

13 to

C13 : y2 = (x3 − 5J)2 − 13(2J)2

with inverse

(x, y) 7→ (s, t) =
(

x(x3 + y − 5J)
2J

,
x3 + y − 5J

2J

)
.

We note that for J = 1 the jacobian of C13 is isogenous to the abelian variety
associated to a certain pair of conjugate newforms of level 117.

We conclude that for p = 7, 13, proving irreducibility of the Galois represen-
tation associated to the p-torsion of the Frey curve (3.18) is reduced to finding
rational points on a genus 2 curve.

3.3 Applications to some Diophantine equations

The Frey curve constructions and irreducibility results we have obtained will be
applied to some Diophantine equations. We will also solve the generalized Fermat
equation x2 + y2l = z3 for l = 31 by combining modular and classical methods.

3.3.1 The equation x2 + y2l = z3

In [Che], the equation

x2 + y2l = z3 x, y, z ∈ Z (x, y, z) = 1 xyz 6= 0 (3.39)

with l a prime is studied. In particular an explicit criterion is given to check that
for a given prime l > 7 (3.39) has no solution. This criterion is verified for all
primes 7 < l < 107 except l = 31. We will describe how extra local information
obtained from classical algebraic number theory solves the equation for l = 31.
We will also apply our irreducibility results to solve the equation for l = 5. Note
that the case l = 7 follows from [PSS] (there are no solutions). Before we solve
(3.39) for l = 5, 31, we briefly describe the method of [Che].

It is easily shown that a solution to a2 + b2 = c3 where a, b, c ∈ Z, (a, b, c) = 1
and abc 6= 0 satisfies (a, b, c) = (u(u2−3v2), v(3u2−v2), u2 +v2) for some u, v ∈ Z
with (u, v) = 1 and uv 6= 0. So a solution x, y, z to (3.39) would give rise to a
solution of

v(3u2 − v2) = yl u, v, y ∈ Z (u, v) = 1 uvy 6= 0. (3.40)
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Now suppose that u, v, y is a solution to this equation. Then up to primes dividing
(v, 3u2 − v2), both v and 3u2 − v2 must be l-th powers. It is easily checked that
(v, 3u2 − v2) equals either 1 or 3. These two cases are going to be considered
separately.

First suppose (v, 3u2 − v2) = 1. Then v = rl and 3u2 − v2 = sl for some
r, s ∈ Z. Furthermore (r, s, u) = 1, rsu 6= 0 and (r2)l + sl = 3u2. However, [BS,
Theorem 1.1] tells us that xl + yl = 3z2 has no nontrivial proper solutions for
l ≥ 5.

Now suppose (v, 3u2 − v2) = 3. Then 3|v and of course 3 - u, so 3||3u2 − v2.
We get that 3v = rl and 3u2 − v2 = 3sl for some r, s ∈ Z. Furthermore, 3 - s and
r, s, u are nonzero pairwise coprime. To a solution, we associate the Frey curve

Eu,v : Y 2 =

{
X3 + 2uX2 + v2

3 X if u is even;
X3 ± uX2 + v2

12X, ±u ≡ 1 (mod 4) if u is odd.
(3.41)

Note that if u is even, then v is odd (since (u, v) = 1). Also, if u is odd, then v is
even. This is because if both u, v are odd, then v(3u2− v2) ≡ 2 (mod 4), but this
contradicts that v(3u2− v2) is an l-th power (with l > 1). It can readily be shown
(using irreducibility, modularity and level lowering theorems) that if u is odd for
l > 7 Eu,v would give rise to a newform of level 6. This is impossible by Proposition
38, so from now on we assume that u is even. Since E = Eu,v has a rational 2-
torsion point, Theorem 22 tells us that ρE

l is irreducible for primes l > 7. For the
(not necessary minimal) discriminant ∆ of E we have ∆ = 64/27(3u2 − v2)v4 =
64slr4l and for primes p ≥ 5 it is minimal. The conductor N of E is given by
N = 96 rad{2,3}(rs). Now from (2.7) we compute N0(N, l) = 96 and from Theorem
35 we get that E ∼l f for some newform f of level 96. In fact there are two such
newforms, both rational and quadratic twists of each other (to each of them we
can associate a corresponding elliptic curve from the isogeny class, say number
96a1 and 96b1 from [Cre2], they are given by the equation Y 2 = X3 ±X2 − 2X).
Let E0 denote an elliptic curve such that E ∼l E0. Note that since E0 is uniquely
determined up to isogeny and quadratic twist, we have that aq(E0)2 is uniquely
determined for all primes q. For an odd prime l, let n ∈ Z>0 such that q := nl+1 is
prime. Now if v or 3u2−v2 is divisible by q, then E has multiplicative reduction at
q and so aq(E0)2 ≡ (q +1)2 ≡ 4 (mod l). Suppose that q is such that aq(E0)2 6≡ 4
(mod l), then E has good reduction at q and in particular q - v. Define U := u/(3v)
and consider the elliptic curve

EU : Y 2 = X3 + 2UX2 +
1
27

X,

which is a quadratic twist of Eu,v. From 3v = rl and 3u2 − v2 = 3sl, we get
U2 = 1/(27) + (s/r2)l. Since q - sr, we have that U2 ≡ 1/27 + ζ (mod q), for
some ζ ∈ µn := {x ∈ Fq | xn = 1}. If for all such U , aq(EU )2 6≡ aq(E0)2 (mod l),
then ρE

l 6' ρE0
l and hence (3.39) has no solutions for this l. According to [Che], it

can be checked with this method that (3.39) has no solutions for all primes l 6= 31
with 7 < l < 107.

Now we are going to use more local information, to solve (3.39) for l = 31.
Consider the ring of integers R := Z[

√
3], it has class number one and in it we
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have the factorization 3u2−v2 = (
√

3u−v)(
√

3u+v). From the restrictions on u, v
we see that (

√
3u−v,

√
3u+v) =

√
3 and

√
3||
√

3u−v,
√

3u+v. From 3u2−v2 = 3sl,
we now obtain

√
3u− v =

√
3xl

1ε1,
√

3u + v =
√

3xl
2ε2, for certain x1, x2 ∈ R and

ε1, ε2 ∈ R∗. By Dirichlet’s unit theorem R∗ = 〈−1, εf 〉 for some fundamental
unit εf ∈ R (we can take for example εf = 2 +

√
3). Let l := 31, n := 718 and

q := nl + 1 = 22259. Then q is prime and it splits in R. Denote by q any of
the 2 primes of R lying above q and for x ∈ R denote by x the canonical image
of x in R/q ' Fq. One can check that εf

n = 1, and hence that for any unit
ε ∈ R∗ we have ε ∈ µn. We calculate aq(E0) = ±140, so aq(E0)2 ≡ 8 6≡ 4
(mod l). So q - v, 3u2 − v2 and E has good reduction at q. Set r3 :=

√
3. We

have 3v = ζ0, r3u− v = r3ζ1, r3u + v = r3ζ2 for ζ0, ζ1, ζ2 ∈ µn. Let U = u/(3v) as
before, set ζ ′1 := ζ1/ζ0, ζ

′
2 := ζ2/ζ0 and divide by 3r3v = r3ζ0 to obtain

U − 1
3r3

= ζ ′1, U +
1

3r3
= ζ ′2.

We conclude that U ∈ (µn+1/(3r3))∩(µn−1/(3r3)). This set is easily determined
explicitly, the possible values of U are given in the first column of Table 3.2.

±U (mod q) aq(EU ) aq(EU )2 (mod l)
127 ± 20 28
1852 ∓ 40 19
2818 ∓ 156 1
3146 ∓ 172 10
3615 ± 152 9
3764 ∓ 120 16
4419 ± 148 18
5889 ± 88 25
7994 ∓ 12 20
8058 ∓ 248 0
8330 ∓ 84 19
10171 ∓ 100 18
10561 ∓ 180 5

Table 3.2: values of U, aq and a2
q

Recall that aq(E0)2 ≡ 8 (mod l). From the last column of Table 3.2 we see that
aq(EU )2 6≡ aq(E0)2 (mod l) for all possible U . We conclude that x2 + y62 = z3

has no nontrivial primitive solutions.
Now let l = 5. If for the Frey curve Eu,v given by (3.41) we would know that

ρ
Eu,v

l is irreducible, then it would readily follow that x2+y10 = z3 has no nontrivial
proper solutions. Namely, if u is odd, then we would get a newform of level 6 as
before, which is impossible. If u is even, then we apply the method of Kraus. Let
n := 2 and q := nl + 1 = 11. Now aq(E0) = ±4, so aq(E0)2 6≡ 4 (mod 5) hence
q - v. So we only have to consider EU with U

2 ≡ 1/27 ± 1 (mod 11). But one
easily checks that 1/27±1 are not squares in F11. So we are left with the question
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of irreducibility. Since ν2(N) = 5 if u is even, Theorem 23 shows irreducibility in
that case. For u odd, we can not apply this theorem. But in any case, we can
use Theorem 60 as follows. The Frey curve (3.41) is a quadratic twist of the curve
given by

Y 2 = X3 + 3uX2 +
3v2

4
X.

This curve is 2-isogenous to the curve given by

Y 2 = X3 − 6uX2 + 3(3u2 − v2)X.

And this is a homogenized version of the Frey curve given by (3.24), which is
a twist over Q(

√
3) of the Frey curve (3.8) associated to the binary cubic form

v(3u2 − v2), call this last curve F . So ρ
Eu,v

l is irreducible if and only if ρF
l is

irreducible. Since the binary quadratic form has discriminant 22 · 33, Theorem
60 and Table 3.1 show that ρF

5 is irreducible. So ρ
Eu,v

5 is also irreducible. We
conclude that x2 + y10 = z3 has no nontrivial proper solutions.

3.3.2 The equation x3 + y3 = zl

In [Kra4, Théorème 3.1] an explicit criterion for primes l ≥ 17 is given, such
that if this criterion holds for a certain l, then the equation x3 + y3 = zl has no
nontrivial proper solutions. According to loc. cit. this criterion holds for all l with
17 ≤ l ≤ 10000. To a hypothetical solution (x, y, z) the Frey curve

Ex,y : Y 2 = X3 + 3xyX + y3 − x3 (3.42)

is associated. If for l = 5, 7, 11, 13 the Galois representation ρ
Ex,y

l is irreducible,
then we would also have this criterium for these l. Since Ex,y has a rational 2-
torsion point, the irreducibility for l = 7, 11, 13 follows from Theorem 22 (the fact
that jEx,y 6= −33 · 53, 33 · 53 · 173 is easily verified). For l = 5 we can use Theorem
60. Indeed, the binary cubic form x3 + y3 has discriminant −27 = −3 · 32 and the
associated Frey curve (3.8) is given by Y 2 = X3 +27xyX +27(x3−y3), which is a
twist over Q(

√
−3) of Ex,y. One easily verifies that jEx,y

6= 212 · 5/35,−212 · 52/3,
so Theorem 60 tells us that ρ

Ex,y

5 is irreducible.
We checked that the criterion in loc. cit. holds for l = 5, 7, 11, 13 and conclude

that x3 + y3 = zl has no nontrivial proper solutions for l = 5, 7, 11, 13. In fact,
the values in Table 3.3 could be added to Tableau 1 of loc. cit. (where p is used
instead of l).

p n
5 2
7 10
11 2
13 10

Table 3.3: Pairs (p, n) satisfying the conditions of [Kra4, Théorème 3.1]
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Remark 61. In [Bru], it is shown that the nontrivial proper solutions to x3 +
y3 = zl for l = 4, 5, 7, 11, 13 can be found by finding rational points on certain
hyperelliptic curves. Chabauty methods are used to show that for l = 4, 5 there
are no nontrivial proper solutions. It is also remarked that the method in [Kra4]
might be extended to l = 5, 7, 11, 13 if one knows the irreducibility of ρ

Ex,y

l (with
Ex,y as above) and arguments for the irreducibility in the cases l = 7, 11, 13 are
mentioned.

3.3.3 The equation f(x) = yl

In this section we study some equations of the form

f(x) = yl x, y ∈ Z y 6= 0, (3.43)

where f(x) ∈ Q[x] and l ∈ Z≥2 (we will focus on the case that l is an odd prime as
usual). Due to [SchTij] we know that if f(x) has at least two different roots, then
there exists an effectively computable constant C ∈ Z>0 (depending on f) such
that (3.43) has no solutions for l > C(f). If f(x) is separable and of degree 3, then
we have at least one Frey curve for (3.43) (namely the dehomogenized version of
(3.8)), and if f(x)± 1 has no rational roots, we suspect (based on heuristics) that
for every prime l, up to finitely many exceptions, the method of Kraus can be used
to prove that (3.43) has no solutions.

The equation x3 − x− 2 = yl

We start with an example where f(x) has degree 3. Furthermore, this example
illustrates how the methods from section 3.2 can be used to obtain irreducibility
results, even if Theorem 60 does not apply. Consider the equation x3 − x −
2 = yl. To a hypothetical solution x, y, l ∈ Z with l ≥ 3, we can associate the
dehomogenized version of the Frey curve given by (3.8). After a twist over Q(

√
3)

and a linear change of the X variable we arrive at the Frey curve

Ex : Y 2 = X3 + X2 − x(6 + x)X − (2x3 + x2 + 4x + 4). (3.44)

The minimal discriminant ∆min and conductor N are, according to appendix A,
given by

∆min = −13
25

(x3 − x− 2)2 = −13
25

y2l,

N = 2 · 13 rad{2,13}(x3 − x− 2) = 2 · 13 rad{2,13}(y).

So we have N0 := N0(Ex, l) = 2 · 13 = 26. There are 2 newforms at level 26, both
rational. Let E26a,E26b be elliptic curves associated to these newforms from the
isogeny classes 26a, 26b respectively, with notation from [Cre2]. Suppose for now
that ρEx

l is irreducible. Then by Theorem 35 we have Ex ∼l E26a or Ex ∼l E26b.
Now suppose that Ex ∼l E26b. Since Ex has good reduction at 3, Theorem 36 tells
us that a3(Ex) ≡ a3(E26b) (mod l). We have a3(E26b) = −3 and by plugging
in the values x′ = 0, 1, 2 in Ex′ , we see that in any case a3(Ex) = 1. So l|4,
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a contradiction. So Ex ∼l E26a. Since for x′ = −2, 6, 38/25 we have that Ex′

is isogenous to E26a we can not obtain a contradiction by the previous method.
The other methods to obtain a contradiction for infinitely many l do also not
apply. So we will use the method of Kraus to eliminate possibilities Ex ∼l E26a
for finitely many l. For this we have to find for a given prime l an n ∈ Z>0

such that q := nl + 1 is prime, aq(E26a) 6≡ ±2 (mod l) and for all x′ ∈ Fq with
x′3 − x′ − 2 ∈ Zn := {z ∈ Fq | zn = 1} we have aq(Ex′) 6≡ aq(E26a) (mod l). A
straightforward check with the help of a computer gives that for l = 5 or primes
l with 13 ≤ l ≤ 107 there exists such n (and presumably there also exists such n
for all primes l > 107). It follows that for such l we can not have Ex ∼l E26a.
It remains to check the irreducibility of ρE

l for these l. Using Theorem 22 we
easily check that we have irreducibility for all primes l ≥ 17 (and for l = 11 but
we cannot rule out Ex ∼11 E26a). Theorem 60 gives us irreducibility for l = 13,
since Rank(E−26,13) = 0 according to Table 3.1. According to this Table we have
Rank(E−26,5) = 2, so for l = 5 we cannot use Theorem 60. But in fact we do have
irreducibility for l = 5. Accepting this last claim for the moment, we arrive at the
following conclusion.

Proposition 62. Let l be a prime with l = 5 or 13 ≤ l < 107. Then the equation
x3 − x− 2 = yl has no solutions with x, y ∈ Z.

Let us now show that ρEx
5 is irreducible by performing an explicit descent. Let

F (x),H(x), G(x) denote the dehomogenized versions of (3.3), (3.5), (3.6) respec-
tively (so F (x) = x3−x−2). Suppose ρEx

5 is not irreducible. Then (by considering
j − 1728) we have,(

G(x)
2

)2

−2 · 13
(

F (x)
23

)2 =
(t2 + 4ts− s2)2((t + 11s)2 + (2s)2)

ts5

for x, s, t ∈ Z with s, t nonzero and coprime. Since F (x) ≡ 0 (mod 2), we have
F (x) ≡ 0 (mod 23) and consequently x ≡ 6 (mod 23). So G(x)/2 = 27x3 + 9x2 +
27x + 53 ≡ 1 (mod 2) and F (x)/23 ∈ Z. Also, Resx(F (x)/23, G(x)/2) = 133,
but 13 - G(x) (if G(x) ≡ 0 (mod 13), then x ≡ 10 (mod 13), but then F (x) ≡
0 (mod 13), so F (x) ≡ 0 (mod 132), but then x ≡ 162 (mod 132), so x ≡ 6
(mod 13), contradiction). So (G(x)/2)2 and −2 · 13(F (x)/23)2 are coprime. From

(t2 + 10ts + 5s2)3

ts5
=

28H(x)2

−2 · 13F (x)2

and the fact that always H(x), F (x) 6≡ 0 (mod 5), we obtain that 5 - t or 53||t.
First suppose that 5 - t. In this case (t2 + 4ts− s2)2((t2 + 11s)2 + (2s)2) and ts5

are coprime. So (
G(x)

2

)2

= (t2 + 4ts− s2)2((t + 11s)2 + (2s)2) (3.45)

(left- and right hand side are both positive, so the sign is right). Now t + 11s and
2s are coprime and (t + 11s)2 + (2s)2 must be a square, hence t + 11s = u2 − v2
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and 2s = 2uv for some coprime u, v ∈ Z. This gives us s = uv, t = u2− 11uv− v2.
Substituting these values in (3.45), we can factor and obtain

27x3 + 9x2 + 27x + 53 = ±(u4 − 18u3v + 74u2v2 + 18uv3 + v4)(u2 + v2). (3.46)

Now these equations have no solutions with x ≡ 6 (mod 8), contradiction. Now
suppose that 53||t. In this case ((t2 + 4ts − s2)2((t2 + 11s)2 + (2s)2), ts5) = 53.
Write t = 53T , then we obtain(

G(x)
2

)2

= (56T 2 + 4 · 53Ts− s2)2((s + 11T )2 + (2T )2). (3.47)

Along the same lines as before we conclude that x 6≡ 6 (mod 8) (in fact, after
performing the transformation (T, s) 7→ (s, t) in (3.47) we obtain mod 8 the same
equation as in (3.45)). We conclude that ρEx

5 is irreducible.
As remarked earlier, one can easily obtain similar results as Proposition 62

with x3−x−2 replaced by another separable cubic f(x) ∈ Z[x] such that f(x)±1
is irreducible. Examples where the levels N0 are relatively low are given e.g. by
f(x) = x3 − 6x− 2, f(x) = x3 + x2 − x− 3.

The equation x3 + 13 = yl

Consider the equation x3 + 13 = yl for x, y ∈ Z and l prime. Although it is nice
to see the modular method in action for small primes, we will assume l > 19 here.
To a hypothetical solution we associate the Frey curve

Ex : Y 2 = X3 − 3x2X ± 2(x3 + 26),

where the + sign is chosen if x is even and the − sign otherwise. According to
appendix A the minimal discriminant and conductor are given by

∆min = −28 · 33 · 13(x3 + 13)/2c = −28−c · 33 · 13yl,

N = 2a3b13 rad{2,3,13}(x3 + 13) = 2a3b13 rad{2,3,13}(y),

where a = 1, c = 12 if x is odd and a ∈ {2, 3}, c = 0 otherwise, in both cases
b ∈ {2, 3}. So N0 := N0(Ex, l) = 2a · 3b · 13. At these level there are a total
of 76 newforms of which 53 are rational. Let f be such a newform, it turns
out that comparing ap(Ex) to ap(f) for p = 5, 7, 31 leads to our desired result.
Irreducibility of ρEx

l follows again from Theorem 22. Let p = 7, then Ex has bad
reduction at p if and only if x ≡ 1, 2, 4 (mod 7). Plugging in the other values
of x modulo 7, we get that if 7 - y, then a7(Ex) = {−5, 3} if x is even and
a7(Ex) = {5,−3} if x is odd. If x is odd, it turns out that no newform at level
N0 has a7(f) ∈ {−3, 5}. If x is even, then the only rational newforms at level N0

with a7(f) ∈ {−5, 3} correspond (with notation from [Cre2]) to the elliptic curves
E2808e and E2808n. But we can take p = 31. We first of all note that 31 - x3+13,
plugging the 31 possible values modulo 31 into Ex we get that a31(Ex) 6= 9, but
a31(E2808e) = a31(E2808n) = 9. At this point we know that the modular method
implies that there exists an L ∈ Z>0 such that for all primes l > L we have that
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x3 + 13 = yl has no solutions in x, y ∈ Z. We can even get an a priori estimate
for L without considering the newforms at level N0 anymore, but since they are
available we can get without too much trouble the nice bound L = 19 as follows.
Fix a newform f at some level N0 not corresponding to E2808e or E2808n and,
with notation as in Theorem 37, calculate the primes dividing F5(a5(Ex)) for all
possible a5(Ex) when Ex has good reduction modulo 5 (for x even and x odd we
both have a5(Ex) ∈ {0,−1, 1, 4}) and calculate the primes dividing F5(±6), call
this set of primes P5. For p = 7 we similarly calculate the set P7. Now it turns
out that the intersection of P5 and P7 contains no primes bigger than 19, so by
Theorem 37 it follows that we cannot have Ex ∼l f for l > 19. Furthermore, no
primes greater than 19 divide a31(Ex) − a31(E2808e) or a31(Ex) − a31(E2808n)
(for the 31 different values of x modulo 31) and we arrive at the following result.

Proposition 63. Let l > 19 be prime. Then the equation x3 + 13 = yl has no
solutions with x, y ∈ Z.

After writing this down we realized that the preceding result is actually a
special case of [BVY, Theorem 1.6], but we think it still provides an instructive
example.

The equation x4 + x3 − 3x2 + 11x + 2 = yl

Let us also consider an example of (3.43) where f(x) has degree 4. Consider the
equation f(x) := x4 + x3 − 3x2 + 11x + 2 = yl for x, y ∈ Z and l > 19 prime. To
a hypothetical solution we can associate the dehomogenized version of the Frey
curve given by (3.18). After a twist over Q(

√
−1) we arrive at the Frey curve

Ex : Y 2 = X3 − 3a(x)X − 2b(x),

where

a(x) := 9x4 − 92x3 − 42x2 − 60x + 137
b(x) := 101x6 + 30x5 + 795x4 − 2380x3 − 1605x2 + 654x− 1627.

From appendix A we have

∆min = −22 · 33 · 37f(x)3 = −22 · 33 · 37y3l,

N = 2 · 32 · 37 rad{2,3,37}(f(x)) = 2 · 32 · 37 rad{2,3,37}(y).

So we have N0 := N0(Ex, l) = 2 ·32 ·37 = 666. At this level there are 11 newforms
of which 7 are rational. Irreducibility of ρEx

l follows again from Theorem 22. We
note that for p = 5, 7 we have p - f(x) and the possible values for ap(Ex) are
given by a5(Ex) ∈ {−2, 1, 4}, a7(Ex) ∈ {−3, 0, 3}. By using a7 we can eliminate
the nonrational newforms and by using a5 we can eliminate 4 of the 7 rational
newforms. Elliptic curves associated to the 3 newforms we are left with are given
by (with notation from [Cre2]) E666d1, E666f1, E666g1 (which are isomorphic
to Ex for x = 0, 2,−22/7 respectively). A straightforward application of Kraus’s
method eliminates these curves for primes l with 19 < l < 107.

Proposition 64. The equation x4 +x3−3x2 +11x+2 = yl has no solutions with
x, y ∈ Z and l prime with 19 < l < 107.



Chapter 4

The quintic and
ax2 + by3 = cz5

In this chapter we will depart form the modular method and use classical methods
to find all parameterized solutions to the Diophantine equation

ax2 + by3 = cz5 x, y, z ∈ Z gcd(x, y, z) = 1 xyz 6= 0, (4.1)

where a, b, c ∈ Z are given nonzero integers. Our approach is inspired by 19-th
century mathematics about quintic (univariate) polynomials as can be found e.g.
in [Kie], [Kle], or the modern text [Kin]. As a starting point we need however a
certain (finite) list of quintic polynomials f ∈ Q[t] such that the algebra Q[t]/(f(t))
is unramified outside {2, 3, 5} and the primes dividing abc. This list can in principle
be found in finite time, but in practice takes very long and it is the computational
bottle neck of our algorithm to obtain the solutions to (4.1). In the case that
all primes dividing abc are contained in {2, 3, 5}, such a list is available, see [JR].
In the next chapter we will show how in some cases the modular method can be
used to obtain this list. In [Edw] an algorithm to obtain parameterized solutions
for (4.1) was given for the first time, and the solutions with a = b = c = 1
were obtained. For slightly larger values of the coefficients it becomes in practice
infeasible to obtain solutions with this algorithm. By using our algorithm we
obtained for the first time an example of the violation of the so called local-to-
global principle for (4.1).

4.1 Strategy and preliminaries

Consider the covering P1 → P1 given by the polynomial

φ(t) := t3(t2 + 5t + 40) = (t2 + 4t + 24)2(t− 3) + 1728, (4.2)

it is unramified outside 0, 1728,∞ with ramification indices multiples of 3, 2, 5
respectively. The dessin d’enfant of φ(t)/1728 is given in Figure 4.1.

65
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Figure 4.1: dessin d’enfant associated to φ(t)/1728

Let
fj(t) := φ(t)− j,

it has discriminant
Disct(fj(t)) = 55j2(j − 1728)2. (4.3)

Let a, b, c ∈ Z−{0}, to a solution x, y, z ∈ Z of (4.1), we associate the polynomial
fj(x,y,z)(t), where

j(x, y, z) := 1728
by3

cz5
. (4.4)

Note that xyz 6= 0 implies that j(x, y, z) ∈ Q− {0, 1728}. Let Sabc denote the set
of primes dividing 2 · 3 · 5abc.

Proposition 65. Let a, b, c ∈ Z− {0} and let x, y, z be a solution to (4.1). Then
A := Q[t]/(fj(x,y,z)(t)) is an étale algebra over Q of degree 5, unramified outside
Sabc, with Disc(A) ≡ 5 (mod (Q∗)2). Furthermore, fj(x, y, z) has exactly one real
root.

Proof. As remarked before, we have j(x, y, z) 6= 0, 1728 and by (4.3) we get that
Disct(fj(t)) 6= 0 and in fact

Disct(fj(t)) ≡ 5 (mod (Q∗)2).

So A is an étale algebra over Q of degree 5, with

Disc(A) ≡ Disct(fj(t)) ≡ 5 (mod (Q∗)2).

For every t ∈ R we have

d

dt
φ(t) = 5t2((t + 2)2 + 20) ≥ 0,

and since φ(t) has odd degree, it is bijective considered as a function from R to
R. This shows that for every j ∈ R fj has exactly one real root (if we take
multiplicities into account we must exclude j = 0, but j(x, y, z) 6= 0 anyway).

That A is unramified outside Sabc follows directly from the ramification prop-
erties of φ and Corollary 11 (or alternatively, from [Bec, Theorem 1.2] since the
icosahedral covering factors through φ).
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The algebras A of the proposition are of course of the following form (i.e.
isomorphic to)

• Q×Q(
√

d′)×Q(
√

5d′)

• Q(
√

d)×K3

• Q×K4

• K5,

where d, d′ are of the form d′ = −
∏

p∈Sabc−{5} pεp , d = −
∏

p∈Sabc
pεp and εp ∈

{0, 1} not all zero, Kn is a number field of degree n, unramified outside Sabc, with
the maximum number of complex embeddings, K4,K5 have their discriminants in
5(Q∗)2 and K3 has its discriminant in 5d(Q∗)2 (the sum of the real embeddings
must be one, since fj has exactly one real root).

The key to obtain the parameterized solutions to (4.1) is as follows. By Her-
mite’s theorem there are only finitely many algebras as above (for fixed a, b, c).
Suppose that we have a list A1, . . . , An of them given by polynomials F1, . . . Fn ∈
Q[t], in the sense that Ai ' Q[t]/(Fi(t)). The first step in solving (4.1) is to find
necessary and sufficient conditions to determine if Q[t]/(Fi(t)) ' Q[t]/(fj(t)) for
some j ∈ Q − {0, 1728}. Next, if Fi is of this form, we want to describe all such
j ∈ Q−{0, 1728} such that Q[t]/(Fi(t)) ' Q[t]/(fj(t)). This leads to a description
of all quotients x3/z5 ∈ Q, and finally we need to determine all solutions x, y, z ∈ Z
from these quotients. This program will be carried out in the next two sections.
But first we will discuss Tschirnhausen transformations, quintic resolvents and
quadratic forms.

4.1.1 Tschirnhausen transformations

Let K be a field and let F ∈ K[t] be monic, separable and of degree n. Any
element s ∈ K[t]/(F (t)) is of the form s =

∑n−1
k=0 cktk, ck ∈ K (where we identify

t with its image in K[t]/(F (t))) and s satisfies G(s) = 0, where

G(s) := Rest

(
F (t), s−

n−1∑
k=0

cktk

)
. (4.5)

If F,G ∈ K[t] are monic, separable and K[t]/(F (t)) ' K[t]/(G(t)), then we call
F and G equivalent, denoted F ∼ G. We obviously have the following.

Lemma 66. Let F,G ∈ K[t] be monic, separable and of degree n. Then F (t) ∼
G(t) if and only if G(s) = Rest(F (t), s−

∑n−1
k=0 cktk) for certain c0, . . . , cn−1 ∈ K.

Again, let F (t) ∈ K[t] be monic separable and of degree n, and consider
c0, . . . , cn−1 now as variables. Let G(s) ∈ K[s, c0, . . . , cn−1] be given by (4.5).
We claim that

Discs(G(s)) = Disct(F (t))I(c0, . . . , cn−1)2, (4.6)
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where I(c0, . . . , cn−1) ∈ K[c0, . . . , cn−1] − {0}. To prove this, let ti, i = 1, . . . , n
denote the roots of F (t) (in some algebraic closure of K), then the roots si of
G(s) are give by si =

∑n−1
k=0 cktki . We obtain (dropping the index of the roots for

a moment)

sj =
n−1∑
i=0

pi,jt
i,

for certain pi,j ∈ K[c0, . . . , cn−1]. So, if we define the n by n matrices, S, T, P

as S := (sj−1
i )n

i,j=1, T := (tj−1
i )n

i,j=1, P := (pi−1,j−1)n
i,j=1, then S = TP and by

evaluating Vandermonde determinants we obtain

Discs(G(s)) = Det(S)2 = Det(T )2Det(P )2 = Disct(F (t))Det(P )2,

where Det(P ) ∈ K[c0, . . . , cn−1], and we see that Det(P ) 6= 0 by evaluating at
(c0, c1, c2, . . . , cn−1) = (0, 1, 0 . . . , 0). This proves our claim.

4.1.2 Quintic resolvents

In this section, let K be a field of characteristic 0. The explicit calculations we
are going to perform with quintics in section 4.2 are related to the geometry and
invariant theory of the icosahedron, for which we refer to [Kle] or [Kin] (especially
pp. 103-106). We actually only need very little of this and most of the facts we
use are readily checked.

We have the following icosahedral invariants

f := uv(u10 + 11u5v5 − v10), (4.7)
H := −u20 + 228u15v5 − 494u10v10 − 228u5v15 − v20, (4.8)
T := u30 + 522u25v5 − 10005u20v10 (4.9)

−10005u10v20 − 522u5v25 + v30,

satisfying T 2 + H3 = 1728f5. And the octahedral invariants

τ := uv(u4 − v4)
W := u8 + 14u4v4 + 8v8

χ := u12 − 33u8v4 − 33u4v8 + v12,

satisfying −χ2 + W 3 = 108τ4. Let ζ = ζ5 be a primitive 5-th root of unity, for
k = 0, . . . , 4 we consider rotated octahedral invariants

tk := ζ3ku6 + 2ζ2ku5v − 5ζku4v2 − 5ζ4ku2v4 − 2ζ3kuv5 + ζ2kv6

Wk := −ζ4ku8 + ζ3ku7v − 7ζ2ku6v2 − 7ζku5v3 +
= 7ζ4ku3v5 − 7ζ3ku2v6 − ζ2kuv7 − ζkv8.

A straightforward calculation gives

4∏
k=0

(t− tk) = t5 − 10ft3 + 45f2t− T
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called the Brioschi quintic. Rescaling the roots by a factor r := T/f2 leads to a
principal quintic only depending on one parameter j (or Z(j))

hj(t) :=
4∏

k=0

(t− tk/r) = t5 − 10Z(j)t3 + 45Z(j)2t− Z(j)2, (4.10)

where Z(j) := 1/(1728 − j) = f5/T 2. This quintic has its coefficient of t4 equal
to zero, a quintic with this property is by definition called depressed, if a quintic
∈ K[t] also has its coefficient of t3 equal to zero, it is called principal. Much more
interesting than the Brioschi quintic for our purposes is a whole family of principal
quintics. For λ, µ ∈ K we let

sk := λTWk + f2µtkWk.

Then
4∏

k=0

(t− sk) = t5 + 5a′t2 + 5b′t + c′,

with

a′ = f2T (8λ3T 2 + λ2µT 2 + 72λµ2f5 + µ3f5)
b′ = fH(−λ4T 4 + 18λ2µ2f5T 2 + λµ3f5T 2 + 27µ4f10)
c′ = H2T (λ5T 4 − 10λ3µ2f5T 2 + 45λµ4f10 + µ5f10).

Rescaling the roots by a factor r := HT/f leads to a principal quintic only de-
pending on one parameter j (for fixed λ, µ)

gλ,µ,j(t) :=
4∏

k=0

(t− sk/r) = t5 + 5at2 + 5bt + c,

with

a =
(
8λ3 + λ2µ + 72λµ2Z(j) + µ3Z(j)

)
/j (4.11)

b =
(
−λ4 + 18λ2µ2Z(j) + λµ3Z(j) + 27µ4Z(j)2

)
/j (4.12)

c =
(
λ5 − 10λ3µ2Z(j) + 45λµ4Z(j)2 + µ5Z(j)2

)
/j (4.13)

and Z(j) = 1/(1728− j) as before. Furthermore, we define

gj(t) := g1,0,j(t) = t5 +
40
j

t2 − 5
j
t +

1
j
.

For z := u/v we consider

J(z) :=
H3

f5
=

(−z20 + 228z15 − 494z10 − 228z5 − 1)3

z5(z10 + 11z5 − 1)5
. (4.14)

Let L := K(ζ5) and write j = J(z). The extension L(z)/L(j) is Galois with
Galois group A5 ' SL2(F5)/{±I}. In fact, L(z)/K(j) is Galois, and if [L : K] =
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4, [L : K] = 2, then the Galois group of L(z)/K(j) is GL2(F5)/{±I}, {M ∈
GL2(F5) | DetM = ±1}/{±I} respectively. From the construction of hj , gλ,µ,j we
obtain that the fields

Kh := K(j)[t]/(hj(t))

and (for λ, µ ∈ K not both zero)

Kg := K(j)[t]/(gλ,µ,j)

are subextensions of degree 5 over K(j). Furthermore let

τ(z) := z−1(z10 + 11z5 − 1)−1(−z12 − z11 + 6z10 + 20z9 − 15z8 (4.15)
+24z7 − 11z6 − 24z5 − 15z4 − 20z3 + 6z2 + z − 1)

and as before
φ(t) := t3(t2 + 5t + 40),

then
J(z) = φ(τ(z)).

So, with fj(t) := φ(t)− j we also have that

Kj := K(j)[t]/(fj(t))

is a subextension of degree 5 over K(j). Moreover, since in all three cases of
[L : K], the Galois group of L(z)/K(j) has up to conjugation only one subgroup
of index 5, we have Kf ' Kg ' Kh. In other words, fj(t) ∼ gλ,µ,j(t) ∼ hj(t) (over
K(j)).

For j ∈ K − {0, 1728}, we can specialize the polynomials fj(t), gλ,µ,j(t), hj(t),
obtaining (monic) polynomials in K[t]. If the discriminant is nonzero we obtain
equivalent polynomials over K. For the discriminants we have

Disct(fj(t)) = 55j2(j − 1728)2,

Disct(gj(t)) = 55 (j − 1728)2

j6
,

Disct(hj(t)) = 55 j2

(j − 1728)10
.

We obtain the following useful fact.

Proposition 67. Let j ∈ K − {0, 1728}. Then fj(t) ∼ gj(t) ∼ hj(t) (over K). If
furthermore λ, µ ∈ K are such that Disct(gλ,µ,j) 6= 0, then gλ,µ,j is also equivalent
to fj(t), gj(t), hj(t).

The relation between fj(t) and gj(t) is actually very direct, we simply have

jt5gj(−1/t) = fj(t). (4.16)
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4.1.3 Quadratic forms

For the convenience of the reader we will recall some basic definitions and prop-
erties of quadratic forms (over fields). We will also state and prove some specific
lemmas needed later. For (most) proofs of the basic results, we refer to the very
nice and accessible [Cas], where most of the time Q, or a completion of it, is taken
as a ground field. Almost everything can be generalized to (at least) arbitrary
number fields, for this we refer to [O’M]. In this section p will always denote a
finite prime of Q or the archimedean prime (denoted, p = ∞).

Quadratic forms over general fields

Let K be a field of characteristic 6= 2. A quadratic form over K of dimension n
is a homogeneous polynomial over K in n variables of degree 2. Call the variables
x1, . . . , xn. Since by assumption 2 is invertible, we can write

f =
n∑

i=1

ci,ix
2
i +

∑
1≤i<j≤n

2ci,jxixj

for certain ci,j ∈ K, 1 ≤ i ≤ j ≤ n. With ci,j := cj,i for n ≥ i > j ≥ 1 this
becomes

f =
∑

1≤i,j≤n

ci,jxixj .

To the quadratic form f we can associate the symmetric matrix

M := (ci,j)1≤i,j≤n.

With x = (x1, . . . , xn)t the column vector of the variables, we have

f = xtMx.

The determinant of f , denoted Det(f), is by definition Det(M). If Det(f) = 0,
then we call f singular, otherwise we call f regular. Let T ∈ GLn(K) and consider
the linear change of variables x = Ty. With the matrix coefficients di,j defined by

(di,j)1≤i,j≤n = T tMT,

we can write
f =

∑
1≤i,j≤n

di,jyiyj = yt(T tMT )y.

Linear change of variables obviously defines an equivalence relation on quadratic
forms and any two quadratic forms in the same equivalence class are simply
called equivalent (over K, if the base field is not obvious). Since Det(T tMT ) =
Det(M)Det(T )2, we see that up to multiplication with an element in (K∗)2 two
equivalent quadratic forms have the same determinant. For a regular quadratic
form f , Det(f) mod (K∗)2 is an element in the group K∗/(K∗)2 and it obvi-
ously is an invariant under the given equivalence relation. By abuse of notation
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this element is sometimes simply denoted by Det(f), no confusion should arise.
A regular quadratic form f is called isotropic if it represents 0 nontrivially, i.e.
f(x1, . . . , xn) = 0 for some x1, . . . , xn ∈ K not all zero. Obviously, being isotropic
is preserved under the equivalence relation. Finally we note that, by essentially
repeatedly completing the square, any quadratic form is equivalent to a diagonal
form, i.e. of the shape

∑n
i=1 cix

2
i .

Remark 68. The different (base free) language of quadratic spaces is some-
times more convenient. A quadratic space over K of dimension n ∈ Z≥0 is an
n-dimensional vector space V over K together with a symmetric bilinear form
φ : V × V → K. For any basis (v1, . . . , vn) of V we define

f(x1, . . . , xn) := φ

(
n∑

i=1

xivi,
n∑

i=1

xivi

)
.

From the bilinearity we get

f(x1, . . . , xn) =
∑

1≤i,j≤n

ci,jxixj , ci,j := φ(vi, vj).

So f is a quadratic form over K of dimension n. Furthermore, any quadratic form
arises this way and notions from quadratic forms (such as regularity and isotropy)
can be translated in a natural and straightforward way to notions for quadratic
spaces and vice versa. For example, two quadratic forms are equivalent if and
only if they arise from isomorphic (straightforwardly defined) quadratic spaces.
For more details (and precise statements) we refer to [Cas].

Lemma 69. Let f be a regular quadratic form of dimension n. If f is isotropic,
then f is equivalent to a quadratic form of the shape x1x2 + g(x3, . . . , xn), where
g is a regular quadratic form of dimension n− 2.

Proof. See [Cas, Chapter 2, Lemma 2.1 and Corollary 1].

Remark 70. A quadratic form f(x1, . . . , xn) is called universal if for all k ∈ K
there exist x1, . . . , xn ∈ K such that f(x1, . . . , xn) = k. From the preceding lemma
it is obvious that an isotropic quadratic form is universal. The converse is not true
in general, for example the quadratic form x2 + y2 over F3 is universal but not
isotropic.

We now come to two particular statements needed later.

Lemma 71. Let f be a regular quadratic form of dimension 4 with Det(f) ∈
(K∗)2. Then f is isotropic if and only if f is equivalent to the quadratic form
XY − ZW .

Proof. Obviously XY −ZW is isotropic, hence a form equivalent to it is isotropic.
Conversely, suppose that f is isotropic. By Lemma 69 and diagonalization, we see
that f is equivalent to g := xy+az2 +bw2. Since Det(g) = −ab/4 ∈ (K∗)2, we see
that b = −ak2 for a certain k ∈ K∗, so g = xy+a(z2−(kw)2) = xy−a(kw+z)(kw−
z) and the regular change of variables, X := x, Y := y, Z := a(kw+z),W := kw−z
leads to the equivalent form XY − ZW .
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Lemma 72. Let a, b, c, d ∈ K such that the quadratic form f := ax2 + by2 + cz2 +
dw2 is equivalent to XY − ZW . Then g := ax2 + by2 + cz2 is isotropic.

Proof. On the 2-dimensional subspace of the vector space K4 given by all the
(X, Y, Z,W ) such that X = Z = 0, the quadratic form XY − ZW vanishes. The
intersection of a 3-dimensional and a 2-dimensional subspace of K4 is at least
1-dimensional. This shows that g must be isotropic.

Quadratic forms over Qp

For every a, b ∈ Q∗
p we define the Hilbert norm residue symbol

(a, b)p :=
{

1 if ax2 + by2 − z2 is isotropic over Qp;
−1 otherwise.

Obviously, (a, b)p only depends on a, b mod (Q∗
p)

2.

Lemma 73. For a, b ∈ Q∗
p we have

i. (a, b)p = (b, a)p

ii. (a1a2, b)p = (a1, b)p(a2, b)p

iii. if p 6= 2,∞ and |a|p = |b|p = 1, then (a, b)p = 1.

Proof. See [Cas, Chapter 3, Lemma 2.1] (i. follows of course directly from the
definition).

The Hilbert norm residue symbol can easily be calculated effectively. In fact
Q∗

p/(Q∗
p)

2 is finite and there are essentially 4 tables (distinguishing between p =
2, p ≡ 1 (mod 4), p ≡ −1 (mod 4) and p = ∞) giving the values of the symbol,
see [Cas, pp. 43-44]. For fixed a, b ∈ Q∗

p and varying p we have a product formula
(or quadratic reciprocity statement).

Lemma 74. Let a, b ∈ Q∗
p. Then (a, b)p = 1 for all but possibly finitely many p

and
∏

p(a, b)p = 1.

Proof. See [Cas, Chapter 3, Lemma 3.4].

Let f be a regular quadratic form of dimension n over Qp, then f is equivalent
to a form of the shape

∑n
i=1 aix

2
i , ai ∈ Q∗

p. Define

cp(f) :=
∏
i<j

(ai, aj)p.

If f is also equivalent to
∑n

i=1 bix
2
i , bi ∈ Q∗

p, then, according to [Cas, Chapter
4, Lemma 2.2],

∏
i<j(ai, aj)p =

∏
i<j(bi, bj)p. So cp(f) indeed only depends on

f , this invariant is called the Hasse-Minkowski invariant. For quadratic forms
over R = Q∞ we mention a stronger invariant, namely the number of negative
coefficients in a diagonal form equivalent to f , denoted s(f). One easily computes
that c∞(f) = (−1)s(f)(s(f)−1)/2. We now have enough invariants to determine
when two quadratic forms are equivalent.
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Theorem 75. Let f, g be regular quadratic forms of dimension n ≥ 1 over Qp. If
p 6= ∞, then f and g are equivalent if and only if Det(f) = Det(g) (in Q∗

p/(Q∗
p)

2)
and cp(f) = cp(g). If p = ∞, then f and g are equivalent if and only if s(f) = s(g).

Proof. See [Cas, Chapter 4, Theorems 1.1-1.2].

Quadratic forms of dimension 4 will be of fundamental importance to us.

Lemma 76. Let f be a regular quadratic form over Qp of dimension 4 with
Det(f) ∈ (Q∗

p)
2. Then the following are equivalent

i. f is isotropic

ii. f is equivalent to the quadratic form XY − ZW

iii. cp(f) = (−1,−1)p.

Proof. i ⇔ ii: This follows immediately from Lemma 71.
ii ⇒ iii: Since XY − ZW is equivalent to x2

1 − x2
2 + x2

3 − x2
4 we see that

cp(XY − ZW ) = (−1,−1)p.
iii ⇒ ii: We have Det(XY − ZW ) ∈ (Q∗

p)
2 and (again) cp(XY − ZW ) =

(−1,−1)p, so by Theorem 75 we have for p 6= ∞ that f is equivalent to XY −ZW .
For p = ∞, cp(f) = (−1,−1)p implies s(f) = 2 or s(f) = 3, together with
Det(f) ∈ (Q∗

∞)2 = R>0 we see that s(f) = 2 = s(XY − ZW ). By Theorem 75
the result follows.

Remark 77. Every regular quadratic form f over Qp with Det(f) 6∈ (Q∗
p)

2 is
isotropic, see [Cas, Chapter 4, Lemma 2.6].

Either by a direct calculation, or using Lemma 73.iii, Lemma 74 and the obvious
(−1,−1)∞ = −1, we get

(−1,−1)p =
{
−1 if p = 2,∞;
1 otherwise. (4.17)

The Hasse principle

Given a quadratic form over Q, we can of course consider it as a quadratic form over
Qp for all p. We have the important local-to-global principle or Hasse principle.

Theorem 78 (Weak Hasse Principle). Let f, g be two regular quadratic forms
over Q. Then f is equivalent to g over Q if and only if f is equivalent to g over
Qp for all p.

Proof. See [Cas, Chapter 6, Theorem 1.2].

Theorem 79 (Strong Hasse Principle). Let f be a regular quadratic form over
Q, then f is isotropic over Q if and only if f is isotropic over Qp for all p.

Proof. See [Cas, Chapter 6, Theorem 1.1].

One of these principles can be used to obtain a global variant of Lemma 76.
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Lemma 80. Let f be a regular quadratic form over Q of dimension 4 with
Det(f) ∈ (Q∗)2. Then the following are equivalent

i. f is isotropic (over Q)

ii. f is equivalent (over Q) to the quadratic form XY − ZW

iii. c2(f) = c∞(f) = −1 and cp(f) = 1 for all odd p.

Proof. The equivalence between i and ii follows immediately from Lemma 71. By
(4.17) iii is equivalent to cp(f) = (−1,−1)p for all p. Lemma 76 together with
the weak Hasse principle now shows the equivalence between ii and iii (or use the
strong instead of the weak Hasse principle to show the equivalence between i and
iii).

Note that by the product formula (Lemma 74) item iii (and hence all items) of
the lemma above is equivalent to cp(f) = (−1,−1)p for all but possibly one prime
p (e.g. p = 2 or p = ∞).

Trace forms

Let K be a field of characteristic 6= 2 again and let F ∈ K[t] be monic, separable
and of degree n. Let L := K[t]/(F (t)) '

∏r
i=1 Li, where the Li are finite separable

field extensions of K. We can consider L as a vector space over K and the map
L × L → K given by (x, y) 7→ TraceL/K(xy) is a bilinear map (making L into a
quadratic space). For any basis (v1, . . . , vn) of L we get a quadratic form

f(x1, . . . , xn) := TraceL/K

( n∑
i=1

xivi

)2
 =

n∑
i,j=1

TraceL/K(vivj)xixj .

Such a quadratic form is called a trace form on L (w.r.t. the basis (v1, . . . , vn)).
Changing the basis will of course yield an equivalent quadratic form.

Lemma 81. Let F ∈ K[t] be monic, separable and of degree n and Let L :=
K[t]/(F (t)). If f is a trace form on L, then Det(f) = Disct(F (t)) mod (K∗)2.
In particular, f is regular.

Proof. Since by assumption Disct(F (t)) 6= 0, the last statement follows from the
first. Let t1, . . . , tn be the n (different) roots of F in K. We will calculate the trace
form f(x1, . . . , xn) w.r.t. the power basis (1, t, . . . , tn−1). Define (s1, . . . , sn)t :=
T (x1, . . . , xn)t, where

T :=


1 t1 t21 t31 t41
1 t2 t22 t32 t42
1 t3 t23 t33 t43
1 t4 t24 t34 t44
1 t5 t25 t35 t45

 .



76 Chapter 4. The quintic and ax2 + by3 = cz5

Then

f(x1, . . . , xn) =
n∑

i=1

s2
i = (x1, . . . , xn)T tT (x1, . . . , xn)t.

So
Det(f) = Det(T )2 =

∏
1≤i<j≤n

(ti − tj)2 = Disc(F (t)),

where we used the well known formula for the Vandermonde determinant.

For a nice survey of trace forms when K is a number field, see [CP]. We will
only need the following.

Lemma 82. Let F ∈ Q[t] be monic, separable of degree n and let

L := Q[t]/(F (t)) '
r∏

i=1

Li,

where the Li are number fields. Let f be a trace form on L and let p be a finite
prime. If p is odd and unramified in all the Li, then cp(f) = 1. Furthermore, s(f)
equals the number of conjugate pairs of nonreal roots of F .

Proof. Choose an integral basis for each of the Li, by taking direct products they
form a basis (v1, . . . , vn) of L. The trace form

f(x1, . . . , xn) := TraceL/Q

( n∑
i=1

xivi

)2


has

Det(f) = Det(TraceL/Q(vivj))1≤i,j≤n =
r∏

i=1

Disc(OLi
/Z).

So p - Det(f) ∈ Z. Reducing f modulo p, gives us a regular quadratic form over
Fp (p 6= 2). This form can of course be diagonalized, showing that the original
form is equivalent to a form of the shape

∑
1≤i,j≤q ci,jxixj , where all ci,j ∈ Z,

p - ci,i and p|ci,j = cj,i for i 6= j. From this form one easily arrives inductively
at an equivalent diagonal form with all coefficients integral and not divisible by p.
Lemma 73.iii now gives us cp(f) = 1. For the last statement, note that

g(x1, x2) := TraceC/R
(
(x1 + x2i)2

)
= TraceC/R(x2

1 − x2
2 + 2x1x2i) = 2x2

1 − 2x2
2

has s(g) = 1 and that L ⊗Q R ' Rr′ × Cs (as R-algebras), where r′ denotes the
number of real roots of F and s the number of conjugate pairs of nonreal roots of
F (the last statement actually was the main theme of [Tau] and this paper was
one of the first calling for an investigation of trace forms).

4.2 Parameterized solutions for y3/z5

Throughout this section 4.2 we let K be a field of characteristic zero.
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4.2.1 Parameterizing principal quintics

Let F =
∑5

k=0 aktk ∈ K[t] be monic, separable and of degree 5. We are interested
in Tschirnhausen transformations that turn F into a principal quintic. For the
variables c0, . . . , c4 (which shall be specialized later to some K-algebra like K, K
or K[u1, v1, u2, v2]), define

Gc0,...,c4(s) := Rest

(
F (t), s−

4∑
k=0

cktk

)
.

In our notation we will frequently drop the index. We have

G(s) =
5∑

k=0

(−1)5−kσ5−ksk,

where σk ∈ K[c0, c1, . . . , c4] is homogeneous of degree k (in particular σ0 = 1). If
t1, . . . , tn denote the roots of F , then the roots s1, . . . , s5 of G(s) are given by

s1

s2

s3

s4

s5

 =


1 t1 t21 t31 t41
1 t2 t22 t32 t42
1 t3 t23 t33 t43
1 t4 t24 t34 t44
1 t5 t25 t35 t45




c0

c1

c2

c3

c4

 .

Consider the quadratic form

Q5(c0, . . . , c4) := σ2
1 − 2σ2.

Writing Trace for TraceL/K from now on, we see that Q5 is simply the trace form
s 7→ Trace(s2) on L := K[t]/(F (t)) w.r.t. the power basis (1, t, t2, t3, t4). The
matrix associated to the quadratic form Q5(c0, . . . , c4) is given by

(Trace(ti+j))0≤i,j≤4.

We have

σ1 = Trace(s) =
4∑

n=0

Trace(tn)cn.

Since Trace(x0) = 5 we can always eliminate c0 as

c0 =
1
5

(
σ1 −

4∑
n=1

Trace(tn)cn

)
(4.18)

=
1
5
(
σ1 + a4c1 + (2a3 − a2

4)c2 + (3a2 − 3a3a4 + a3
4)c3+

(4a1 − 2a2
3 − 4a2a4 + 4a3a

2
4 − a4

4)c4

)
.
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For the terms of Q5 involving c0 we have

Q5(c0, . . . , c4) − Q5(0, c1, . . . , c4)

= c0

(
4∑

n=0

Trace(tn)cn +
4∑

n=1

Trace(tn)cn

)

=
1
5

(
σ1 −

4∑
n=1

Trace(tn)cn

)(
σ1 +

4∑
n=1

Trace(tn)cn

)

=
1
5

σ2
1 −

(
4∑

n=1

Trace(tn)cn

)2
 .

So we see that
Q5 = σ2

1/5 + Q4 (4.19)

for the quadratic form

Q4 =
4
5
σ2

1 − 2σ2 = Q5(0, c1, . . . , c4)−
1
5

(
4∑

n=1

Trace(tn)cn

)2

which only depends on c1, . . . , c4. To denote the dependency of the quadratic form
Q4 on the quintic F we shall sometimes write it as Q4(F ).

Lemma 83. Let F ∈ K[t] be monic, separable and of degree 5. Then

Det(Q4(F )) ≡ 5Disct(F (t)) mod (K∗)2.

In particular, Disc(Q4(F )) ∈ (K∗)2 if and only if Disct(F (t)) ∈ 5(K∗)2.

Proof. By (4.19) we get Det(Q4) = 5Det(Q5). By Lemma 81, the trace form Q5

satisfies Det(Q5) = Disct(F (t)) mod (K∗)2 (actually, Det(Q5) = Disct(F (t)), so
even Det(Q4(F )) = 5Disct(F (t)) holds). The last statement now follows immedi-
ately.

Let F1, F2 ∈ K[t] be monic polynomials of degree n ∈ Z≥1, we call F1 and
F2 scaling equivalent if F1(t) = F2(αt)/αn for some α ∈ K. Clearly this defines
an equivalence relation and the notions of depressed and principal are preserved
under this relation. Define

Γ := {Gc0,...,c4(s) ∈ K[s] | (c0, . . . c4) ∈ K5 − {0, . . . , 0}}
= {Gc0,...,c4(s) ∈ K[s] | (c0, . . . c4) ∈ K5} − {s5}.

Consider [c0 : . . . : c4] ∈ P4(K), then Gc0,...,c4(s) ∈ K[s] is defined up to scaling
equivalence. In this way P4(K) naturally parameterizes Γ modulo scaling equiva-
lence. The K-rational points on the hyperplane in P4 given by σ1(c0, . . . , c4) = 0
parameterizes all depressed quintics in Γ modulo scaling equivalence. The K-
rational points on the surface S in P4 given by σ1 = σ2 = 0 parameterizes all
principal quintics in Γ modulo scaling equivalence. Eliminating c0 using (4.18)
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with σ1 = 0, we see that S is (isomorphic over K to) the quadratic surface in P3

given by Q4(F ) = 0.
Any nondegenerate quadratic form over K in 4 variables is equivalent (over K)

to the quadratic form XY − ZW . The quadratic surface given by XY = ZW is
doubly ruled in the sense that it is isomorphic (over K) to P1×P1. An isomorphism
is given by mapping ([u1 : v1], [u2 : v2]) ∈ P1 × P1 to

[X : Y : Z : W ] = [u1u2 : v1v2 : v1u2 : u1v2]. (4.20)

So S is isomorphic (over K) to P1 × P1. For the quintics F we are interested in,
it turns out that we have the very nice property that the quadratic form Q4(F ) is
already isomorphic over K to XY − ZW and hence our surface S is isomorphic
over K to P1 × P1.

Lemma 84. Let F ∈ K[t] be monic, separable, of degree 5 and suppose that
Disct(F (t)) ∈ 5(K∗)2. If F ∼ G0 for a certain monic separable and principal
G0 ∈ K[s], then Q4(F ) is isomorphic (over K) to the quadratic form XY − ZW .

Proof. From Lemma 83 we obtain that Det(Q4(F )) ∈ (K∗)2, and the existence
of the G0 implies that Q4(F ) is isotropic. By Lemma 71 we obtain the desired
result.

Actually the converse also holds. But note that for certain G(s) ∈ Γ we might
have Discs(G(s)) = 0. This equation actually defines a curve in S and the points
on S away from this discriminant locus correspond to principal and separable
quintics (modulo scaling equivalence).

Conditions for Q4 if K = Q

Suppose for the moment that K = Q, this is the case we are eventually interested
in. Let F ∈ Q[t] be monic, separable, of degree 5 and suppose that Disct(F (t)) ∈
5(Q∗)2. Considering the previous lemma, it would be nice to have a good algorithm
for testing whether Q4(F ) is equivalent (over Q) to XY −ZW or not. By Lemma
83 we have Det(Q4(F )) ∈ (Q∗)2, so by Lemma 80 we have that Q4 is equivalent
to XY − ZW if and only if c2(Q4) = c∞(Q4) = −1 and cp(Q4) = 1 for all odd
primes p. To decide whether or not this last statement holds we need to obtain
an explicit finite set P of odd primes p such that for all odd primes p not in P we
have cp(Q4) = 1 (such a finite set exists by Lemma 74).

A straightforward method to obtain P is as follows. Diagonalize Q4(F ) to, say,
ax2 + by2 + cz2 + dw2, a, b, c, d ∈ Q∗. Let P be the set of odd primes p that do
not satisfy |a|p = |b|p = |c|p = |d|p = 1. By Lemma 73.iii we have c(Q4(F ))p = 1
for all odd p 6∈ P and P is finite since abcd 6= 0. This set P can of course be found
by factoring a, b, c and d. However, there is no a priori bound on the size of this
set P and we can do better.

By Proposition 65 we only need to consider polynomials F such that the étale
algebra Q[t]/(F (t)) is unramified outside an a priori fixed set of primes. We can
in fact bound P in terms of these primes.
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Lemma 85. Let F ∈ Q[t] be monic, separable, of degree 5 and suppose that
Disct(F (t)) ∈ 5(Q∗)2. Let L := Q[t]/(F (t)) '

∏r
i=1 Li, where the Li are number

fields. Let P be the set of odd primes that ramify in some Li. Then Q4(F ) is
equivalent to XY −ZW if and only if c2(Q4(F )) = −1 and cp(Q4(F )) = 1 for all
p ∈ P .

Proof. By Lemma 83 we have Det(Q4(F )) ∈ (Q∗)2. Suppose c2(Q4(F )) = −1 and
cp(Q4(F )) = 1 for all p ∈ P . By Lemma 80 and the product formula (Lemma
74) it suffices to prove that cp(Q4(F )) = 1 for all odd p 6∈ P to conclude that
Q4(F ) is equivalent to XY − ZW . By diagonalizing Q4 in (4.19) it follows for
all p that cp(Q5) = (5,Det(Q4))pcp(Q4). Since Det(Q4(F )) ∈ (Q∗)2, we obtain
cp(Q5(F )) = cp(Q4(F )). Lemma 82 now gives us that cp(Q4(F )) = 1 for all odd
p 6∈ P . The other implication is immediate from 80.

The implementation in Magma of an algorithm to decide whether Q4(F ) is
equivalent (over Q) to XY − ZW or not, based on the lemma above, is given by
function integritycheck in appendix B.

Remark 86. Note that by (4.19) and Lemma 80 we have that s(Q4) = s(Q5) =
sF , where sF denotes the number of conjugate pairs of nonreal roots of F . If
we add to the conditions of the above lemma that furthermore F has only one
real root, then we obtain the slightly nicer statement that Q4(F ) is equivalent to
XY − ZW if and only if cp(Q4(F )) = 1 for all p ∈ P .

4.2.2 From principal quintics to j values

By definition (and since 5 is invertible), any monic principal quintic over K is of
the form

Pa,b,c(t) := t5 + 5at2 + 5bt + c,

for certain a, b, c ∈ K. We want to find µ, ν, j ∈ K, j 6= 0, 1728 (if any) such that
Pa,b,c(t) = gλ,µ,j(t), i.e. (4.11),(4.12),(4.13) hold. Define the quadratic polynomial

La,b,c(λ) := (a4+abc−b3)λ2−(11a3b−ac2+2b2c)λ+(64a2b2−27a3c−bc2). (4.21)

We have the important discriminant relation

Discλ(La,b,c(λ)) = a2Disct(Pa,b,c(t))/55. (4.22)

In particular we shall consider Pa,b,c such that Disct(Pa,b,c(t)) ∈ 5(K∗)2 with
a 6= 0, a, b, c ∈ K, in which case the polynomial La,b,c has a root in K (and exactly
two different roots in K if a4 + abc − b3 6= 0). If a, b, c, λ, µ, j ∈ K ( j 6= 0, 1728)
are such that (4.11),(4.12),(4.13) hold, then the following hold

La,b,c(λ) = 0,

a2((ac− b2)λ− bc)j = (aλ2 − 3bλ− 3c)3,
((ac− b2)λ− bc)µ = a2λ4 − 10abλ3 − 9(2ac− 5b2)λ2 + 18bcλ− 27c2.
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Conversely, for any a, b, c ∈ K such that λ ∈ K satisfies La,b,c(λ) = 0 and

a2((ac− b2)λ− bc) 6= 0,

aλ2 − 3bλ− 3c 6= 0,

(aλ2 − 3bλ− 3c)3 − 1728a2((ac− b2)λ− bc) 6= 0,

we can set

µ :=
a2λ4 − 10abλ3 − 9(2ac− 5b2)λ2 + 18bcλ− 27c2

(ac− b2)λ− bc
∈ K, (4.23)

j :=
(aλ2 − 3bλ− 3c)3

a2((ac− b2)λ− bc)
∈ K − {0, 1728}, (4.24)

and now λ, µ, j satisfy (4.11),(4.12),(4.13). For all this, see [Kin, pp. 106-107](or
use computer algebra). The nonvanishing conditions for some λ ∈ K satisfying
La,b,c(λ) = 0 are of course implied by

Resλ(La,b,c(λ), a2((ac− b2)λ− bc)) 6= 0, (4.25)
Resλ(La,b,c(λ), aλ2 − 3bλ− 3c) 6= 0, (4.26)

Resλ(La,b,c(λ), (aλ2 − 3bλ− 3c)3 − 1728a2((ac− b2)λ− bc)) 6= 0, (4.27)

and one can check that the left hand sides are nonzero polynomials in K[a, b, c].

Remark 87. If λ ∈ K satisfies La,b,c(λ) = 0, but

a2((ac− b2)λ− bc) = aλ2 − 3bλ− 3c = 0, (4.28)

it might still be possible to find j ∈ K − {0, 1728}, µ ∈ K such that λ, µ, j satisfy
(4.11),(4.12),(4.13). For example, suppose that a = 0, bc 6= 0. Then La,b,c(λ) = 0
reduces to −b(bλ + c)2 = 0, so λ = −c/b and (4.28) holds. Now µ, j are given by

b7µ2 − bc(144b5 + c4)µ + 8c2(648b5 + c4) = 0,

j =
(−216b5c + c5 + 3b6µ)3

b5c6(−72b5c− c5 + b6µ)
,

and certainly j 6= 0, 1728 if (144b5 − c4)(648b5 + c4) 6= 0.

Lemma 88. Let F ∈ K[t] be monic, separable, of degree 5 and suppose that Q4(F )
is isomorphic to XY − ZW . Then F ∼ fj for some j ∈ K − {0, 1728}.

Proof. By Proposition 67 it suffices to prove that F ∼ gλ,µ,j for some λ, µ, j ∈ K
with j 6= 0, 1728 and Disct(gλ,µ,j(t)) 6= 0. By using (4.20) we have that with

Gc0,...,c4(s) := Rest

(
F (t), s−

4∑
k=0

cktk

)
=

4∑
k=0

(−1)5−kσ5−ksk

the equations σ1(c0, . . . , c4) = σ2(c0, . . . , c4) = 0 define a surface S in P4, iso-
morphic over K to P1 × P1. Let a := −σ3/5, b := σ4/5 and c := −σ5, so G(s) =
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s5+5as2+5bs+c. None of Discs(G(s)) or the left hand sides of (4.25), (4.26), (4.27)
vanish identically on S(K) since as polynomials in K[a, b, c] they are nonzero. Now
since K is infinite, there are in fact infinitely many points in S(K) were these 4
polynomials in the ci are all nonzero. Take such a point [c0 : . . . : c4] ∈ P4(K),
they determine a, b, c ∈ K. First of all G(s) = Gc0,...,c4(s) = s5 + 5as2 + 5bs + c
has by construction (from F and Lemma 83) Discs(G(s)) ∈ 5(K∗)2, so by (4.22)
(and a 6= 0) we get Discλ(La,b,c) ∈ (K∗)2. Now (4.21), (4.23), (4.24) provide
us with λ, µ, j ∈ K, j 6= 0, 1728, such that Gc0,...,c4 = gλ,µ,j . By construction,
Discs(gλ,µ,j(s)) 6= 0, so Lemma 66 finally gives us F ∼ gλ,µ,j as desired.

We are now in a position to give nice characterizations for when a polynomial
is equivalent to fj (j ∈ K − {0, 1728}).

Proposition 89. Let F ∈ K[t] be monic, separable and of degree 5. Then the
following are equivalent

i. F ∼ fj for a certain j ∈ K − {0, 1728},

ii. Disct(F (t)) ∈ 5(K∗)2 and F ∼ G0 for a certain monic separable and prin-
cipal G0 ∈ K[s],

iii. The quadratic form Q4(F ) is isomorphic (over K) to the quadratic form
XY − ZW .

Proof. Follows from the lemma above, Lemma 84 and (4.16),(4.3).

In the case that K = Q, Lemma 85 supplies us with a very useful algorithm to
decide whether or not F ∼ fj for a certain j ∈ K − {0, 1728}.

Now if F ∼ fj for some j ∈ K − {0, 1728}, then the strategy to obtain all
J ∈ K−{0, 1728} such that F ∼ fJ is as follows. In the following computations we
will consider j transcendental over K, but at every stage j can also be specialized
to some element of K − {0, 1728}. We start from the polynomial

gj = t5 +
40
j

t2 − 5
j
t +

1
j
∼ fj .

Let Gc0,...,c4(s) =
∑5

k=0(−1)5−kσ5−ksk be as usual. Express c0 in terms of
c1, . . . , c4, so that σ1(c1, . . . , c4) = 0, in this case

c0 = (24/j)c3 − (4/j)c4.

The quadratic form σ2 in the variables of the column vector c = (c1, c2, c3, c4)t is
given by ctMc, where

M :=


0 60/j −10/j (5/2)/j

60/j −10/j (5/2)/j −2400/j2

−10/j (5/2)/j −960/j2 460/j2

(5/2)/j −2400/j2 460/j2 −170/j2

 . (4.29)
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A priori we know that this quadratic form is equivalent over K(j) to XY − ZW .
We claim that this is obtained by the change of variables

(c1, c2, c3, c4)t = T (X, Y, Z,W )t, (4.30)

where

T :=


1/2 j/720 (j3/4800− 8j2/5)/(j − 1728) 10/(3j)− 12800/j2

6 0 (j3/400)/(j − 1728) 0
0 0 (j3/200)/(j − 1728) −80/j
0 0 −(j3/25)/(j − 1728) −320/j

 .

A straightforward calculation gives

T tMT =


0 1/2 0 0

1/2 0 0 0
0 0 0 −1/2
0 0 −1/2 0

 .

So indeed T transforms σ2 into XY − ZW . Now we parameterize the surface
XY − ZW = 0 via (4.20) and by using (4.30), we get c1, . . . , c4 as functions of
u1, v1, u2, v2. Explicitly

c1 = (1/2)u1u2 + (((10/3)j − 12800)/j2)u1v2 +
(((1/4800)j3 − (8/5)j2)/(j − 1728))v1u2 + (1/720)jv1v2

c2 = 6u1u2 + ((1/400)j3/(j − 1728))v1u2

c3 = (−80/j)u1v2 + ((1/200)j3/(j − 1728))v1u2

c4 = (−320/j)u1v2 − ((1/25)j3/(j − 1728))v1u2.

This way the σk become homogeneous in ui, vi of degree k for each i = 1, 2 and of
course σ1 = σ2 = 0. Let a := −σ3/5, b := σ4/5 and c := −σ5, so G(s) = s5+5as2+
5bs + c. The discriminant of La,b,c(λ) is a nonzero square in K(j)[u1, v1, u2, v2]
(without a brute force computation, this follows from Disct(gj(t)) ∈ 5(K(j)∗)2,
(4.6) and (4.22)). So the two roots λ1, λ2 can be considered as elements of
K(j, u1, v1, u2, v2). Finally µi, ji, (where the index i = 1, 2 refers to the corre-
sponding root λi,) are obtained from (4.23), (4.24). The quantities a, b, c, λi, µi, ji

can quickly be calculated explicitly using a computer algebra package, e.g. Magma,
but we do not write them down here because of their size. A priori (for fixed j)
we have that j1 and j2 both depend on u1, v1, u2, v2, but something fantastic has
happened, we have (by possibly swapping λ1 and λ2) that ji ∈ K(ui, vi)!

For every j ∈ K − {0, 1728} these j1, j2 define rational maps (over K)

J1, J2 : P1 → P1

and they are of the form

Ji =
b(u, v)3

c(u, v)5

= −a(u, v)2

c(u, v)5
+ 1728,
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for nondegenerate relatively prime binary forms a(u, v), b(u, v), c(u, v) ∈ K[u, v] of
degree 30, 20, 12 respectively.

Let J1, J2 be the two maps induced by a certain j ∈ K − {0, 1728}. We claim
that for all j0 ∈ K − {0, 1728} such that fj ∼ fj0 we have j0 = Ji(P ) for some
i = 1, 2 and P ∈ P1(K). By construction of J1, J2, for every j0 ∈ K − {0, 1728}
such that gλ,µ,j0 ∼ gj for certain λ, µ ∈ K, we have that j0 = Ji(P ) for some
i = 1, 2 and P ∈ P1(K). Now note that if fj ∼ fj0 , then gj ∼ gj0 = g1,0,j0 .

Let a, b, c ∈ Z − {0} and let us go back to the original equation (4.1) (so we
consider K = Q). First some terminology, any rational map P1 → P1 over Q of
the form

b(u, v)3

c(u, v)5
= −a(u, v)2

c(u, v)5
+ 1728

for nondegenerate relatively prime binary forms a(u, v), b(u, v), c(u, v) ∈ Q[u, v] of
degree 30, 20, 12 respectively is called a quotient parameterization. We know that
there exist finitely many F1, . . . Fn ∈ Q[t] of monic separable quintics equivalent
to some fj , j ∈ Q − {0, 1728}, such that for every solution x, y, z to (4.1) we
have fj(x,y,z) ∼ Fk for a unique k ∈ {1, . . . , n} (with j(x, y, z) as in (4.4)). The
algorithm described above gives us for every Fk two quotient parameterizations
J1,k, J2,k and we obtain that for any solution x, y, z to (4.1) we have

y3

z5
=

c

1728b
Ji,k(P ),

for certain i ∈ {1, 2}, k ∈ {1, . . . , n} and P ∈ P1(Q). Certainly k is unique, but it
might happen that i = 1, 2 both are possible. We will show that if i is not unique,
then in fact J1,k(P1(Q)) = J2,k(P1(Q)).

Lemma 90. Let J1, J2 be two quotient parameterizations. If J1(P1) = J2(P2) ∈
P1(Q) − {0, 1728,∞} for certain P1, P2 ∈ P1(Q), then J1 = J2 ◦ θ for a θ ∈
AutQ(P1).

Proof. Any quotient parameterization is unramified outside {0, 1728,∞} and the
ramification indices above 0, 1728,∞ are 3, 2, 5 respectively. It is well known (e.g.
by considering dessins d’enfant) that any rational map of degree 60 with such
ramification is a twist of the icosahedral map (4.14). Since J1, J2 are both twists
of the icosahedral map, we have J1 = J2 ◦ θ for some θ ∈ AutQ(P1). In particular
J2(P2) = J1(P1) = J2(θ(P1)), so by composing θ with a covering transformation
of J2 : P1 → P1 we can assume that

P2 = θ(P1).

Denote the group of covering transformations over Q of J1 : P1 → P1 by G (it is
isomorphic to A5). Let σ ∈ Gal(Q/Q). We have

J1 = J2 ◦ θ,

J1 = J2 ◦ θσ,
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where the first equality was already known and the second follows from the first
since J1, J2 are defined over Q. Let

gσ := θ−1 ◦ θσ.

Then J1 ∈ G since

J1 ◦ gσ = (J1 ◦ θ−1) ◦ θσ = J2 ◦ θσ = J1.

Furthermore, note that Pσ
1 = P1, P

σ
2 = P2, so

gσ(P1) = θ−1(θσ(Pσ
1 )) = θ−1((θ(P1))σ) = θ−1(P2) = P1.

Because P1 is not a ramification point and gσ ∈ G we obtain from this that gσ is
the identity. In other words, θσ = θ for all θ ∈ Gal(Q/Q) and we conclude that θ
is defined over Q.

Given some appropriate F ∈ K[t], then instead of first finding one j ∈ K −
{0, 1728} such that F ∼ fj and then using the above method to obtain two quotient
parameterizations, more elegantly, one can of course combine these two steps and
follow the procedure above starting from F . The only difference is that one needs
to find another transformation T , since the matrix associated to the quadratic
form Q4(F ) need not be of the form (4.29). So let us quickly describe how one can
obtain the necessary transformation. First of all diagonalize Q4(F ) = cMct, i.e.
find a matrix T1 ∈ GL4(K) such that T t

1MT1 is diagonal (this is straightforward).
Say that the diagonal form is given by ax2 + by2 + cz2 + dw2. By Lemma 72, the
quadratic form in 3 variables ax2 + by2 + cz2 is isotropic, let [x0 : y0 : z0] ∈ P2(K)
be a point on the conic ax2 + by2 + cz2 = 0. Suppose x0 6= 0 (otherwise, change
the role of x and y or find another point). Let k ∈ K be a square root of d/(abc).
Consider the matrix

T2 :=


x0/2 y0/2 z0/2 0

1/(2ax0) −y0/(2ax2
0) −z0/(2ax2

0) 0
0 −z0/(4abx0) y0/(4acx0) −1/(4abck)
0 −cz0/x0 by0/x0 1/k


t

.

Then one calculates with T := T1T2 and θ := (ax2
0 + by2

0 + cz2
0)/(4ax2

0) = 0 that

T tMT = T t
2


a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 d

T2

=


ax2

0θ 1/2− θ 0 0
1/2− θ θ/(ax2

0) 0 0
0 0 θ/(4abc) θ − 1/2
0 0 θ − 1/2 4abcθ



=


0 1/2 0 0

1/2 0 0 0
0 0 0 −1/2
0 0 −1/2 0

 .
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So T gives us the desired transformation. The implementation in Magma of an
algorithm to obtain the two quotient parameterizations from an appropriate F ∈
Q[t] based on this method is given by function param in appendix B, testing for
twists over Q using Lemma 90 is implemented as function Twists.

Remark 91. We want to conclude this section by pointing out that there is a
degree 7 map that maps points in J1(P1(K)) to J2(P1(K)) and vice versa, which
leads to a funny recursive relation. Consider again the principal quintic gj(t) =
t5 + (40/j)t2 − (5/j)t + (1/j). We want to find λ, µ, J such that gj = gλ,µ,J (or
actually we are only interested in J). One solution is of course (λ, µ, J) = (1, 0, j),
we want to find the other solution. For this we substitute

a = 8/j, b = −1/j, c = 1/j

into (4.21), this leads to the solutions

λ = 1, λ =
−j + 9728
7j − 4096

.

Substituting the second value of λ in (4.24) leads to

J =
j(j2 − 1456j − 3670016)3

(−7j + 4096)5

= − (−j + 1728)(j3 − 1320j2 + 9043968j + 1073741824)2

(−7j + 4096)5
+ 1728.

Now define

X(x, y, z) := x(y9 − 1320y6z5 + 9043968y3z10 + 1073741824z15),
Y (x, y, z) := y(y6 − 1456y3z5 − 3670016z10),
Z(x, y, z) := z2(−7y3 + 4096z5).

Then

X(x, y, z)2 + Y (x, y, z)3 = 1728Z(x, y, z)5 + E(x, y, z),

where

E(x, y, z) = (x2 + y3 − 1728z5)(y9 − 1320y6z5 + 9043968y3z10 + 1073741824z15).

In particular, if x, y, z ∈ Z are such that x2 + y3 = 1728z5, then E(x, y, z) = 0,
so with X = X(x, y, z), Y = Y (x, y, z), Z = Z(x, y, z) we get X2 + Y 3 = 1728Z5.
If gcd(x, y, z) = 1, then we may have gcd(X, Y, Z) > 1, but we do have that the
primes dividing gcd(X, Y, Z) are contained in {2, 5}.

We can of course rescale a bit to obtain recursions for ax2 +by3 = cz5 for every
a, b, c ∈ Z− {0}. For example, for a = b = c = 1 we have the following recursion.
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Define

X ′(x, y, z) := X(23 · 39x, 22 · 36y, 33z)/(218 · 354)
= x(157464y9 − 120285y6z5 + 476928y3z10 + 32768z15),

Y ′(x, y, z) := Y (23 · 39x, 22 · 36y, 33z)/(212 · 336)
= y(2916y6 − 2457y3z5 − 3584z10),

Z ′(x, y, z) := Z(23 · 39x, 22 · 36y, 33z)/(26 · 321)
= z2(−189y3 + 64z5).

Then
X ′(x, y, z)2 + Y ′(x, y, z)3 = Z ′(x, y, z)5 + E′(x, y, z),

where

E′(x, y, z) = (x2 + y3 − z5)(157464y9 − 120285y6z5 + 476928y3z10 + 32768z15)2.

4.3 Parameterized solutions for x, y, z

By an integral parameterization to (4.1) (for given a, b, c ∈ Z − {0}) we mean a
triple (X, Y, Z) of homogeneous polynomials X, Y, Z ∈ Z[u, v] of degree 30, 20, 12
respectively and with no common factor of positive degree such that

aX2 + bY 3 = cZ5.

Given a quotient parameterization J : P1 → P1, the objective of this section is
to find finitely many integral parameterizations (Xi, Yi, Zi), i = 1, . . . , n (some
n ∈ Z≥0) such that for any solution (x, y, z) to (4.1) with 1728by3/(cz5) = J(P )
for some P ∈ P1(Q) we have

(±x, y, z) = (Xi(u, v), Yi(u, v), Zi(u, v))

for some i ∈ {1, . . . , n} and u, v ∈ Z. The methods for obtaining this are elemen-
tary but quite tedious.

4.3.1 Integral parameterizations needing rational special-
izations

First of all, since 2,3,5 are pairwise coprime, we can write any quotient parame-
terization J as

J

1728
=

bY 3

cZ5
= 1− aX2

cZ5

with X, Y, Z ∈ Z[u, v] homogeneous of degree 30, 20, 12 respectively and with no
common factor of positive degree, so (X, Y, Z) gives us an integral parameterization
to (4.1). This is explicitly accomplished by the functions in section B.1.3 (the
appendix).
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Now let (X, Y, Z) be such an integral parameterization obtained from a quo-
tient parameterization J and suppose that (x, y, z) is a solution to (4.1) such that
by3/cz5 = J(P )/1728 for some P ∈ P1(Q), then for certain u, v ∈ Q

x2 = µX2(u, v),
y3 = µY 3(u, v),
z5 = µZ5(u, v),

for some µ ∈ Q. We see that µ = λ30 for some λ ∈ Q. By rescaling u, v we can
assume that λ ∈ Z and that λ is square free. This leads to

±x = λ15X(u, v),
y = λ10Y (u, v),
z = λ6Z(u, v).

Note that (λ15X, λ10Y, λ6Z) is also an integral parameterization. Furthermore,
we claim that if p|λ, then p|Res(Y, Z) (say), so we only have to take finitely many
λ into consideration. Suppose p|λ. Write

X̃ := (λ/p)15X, Ỹ := (λ/p)10Y, Z̃ := (λ/p)6Z.

This gives us

(±x, y, z) = (p15X̃(u, v), p10Ỹ (u, v), p6Z̃(u, v)).

with u, v ∈ Q. Let
m := −min(νp(u), νp(v)).

By the integrality of X̃, Ỹ , Z̃ and since gcd(x, y, z) = 1 we must have m ≥ 1. Let

(u0, v0) := (pmu, pmv),

then u0, v0 ∈ Z(p) and u0, v0 are relatively prime (in Z(p)); here Z(p) denotes of
course the localizations of Z at the prime ideal (p), i.e. the ring of all q ∈ Q with
νp(q) ≥ 0. Furthermore,

(p30m−15x, p20m−10y, p12m−6z) = (X̃(u0, v0), Ỹ (u0, v0), Z̃(u0, v0))

This shows that p|Res(Ỹ , Z̃), hence p|Res(Y, Z), which proves our claim.
We have shown how one quotient parameterization J leads to finitely many

integral parameterizations (Xi, Yi, Zi) such that for any solution x, y, z such that
j(x, y, z) = J(P ) for some P ∈ P1(Q) we have

(±x, y, z) = (Xi(u, v), Yi(u, v), Zi(u, v))

for some i and u, v ∈ Q. So we possibly have to specialize at nonintegral values to
obtain our solutions.
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4.3.2 Integral parameterizations needing integer specializa-
tions

We will now show how to obtain integral parameterizations that only need integer
specializations. First some terminology. Any M ∈ GL2(Q) defines a map from Q2

to Q2, given by (u, v)t 7→ M(u, v)t, in this way we get a right-action of GL2(Q) on
binary forms over Q, simply by composing F ∈ Q[u, v] with M ∈ GL2(Q) on the
right. The arguments of a form F ∈ Q[u, v] will not be written as column vectors,
so we have

(f ◦M)(u, v) := f(u′, v′), (u′, v′)t = M(u, v)t.

Similarly we let GL2(Q) act on n-tuples componentwise, explicitly

(X, Y, Z) ◦M := (X ◦M,Y ◦M,Z ◦M).

Specialization is also defined componentwise

(X, Y, Z)(u, v) := (X(u, v), Y (u, v), Z(u, v)).

We will focus on a special type of matrices, for every [a : b] ∈ P1(Fp) we define a
matrix in GL2(Q) as follows,

M[a:b] :=


(

p 0
0 1

)
if [a : b] = [0 : 1];(

1 0
k p

)
if [a : b] = [1 : k mod p] with k ∈ Z and 0 ≤ k < p.

With this definition we have for relatively prime u, v ∈ Z(p)

(u, v)t = M[u:v](u′, v′)t

where u′, v′ ∈ Z(p) and u′, v′ are relatively prime (as elements of Z(p)), and the
bar above u, v denotes reduction modulo p. We make some other simple but very
useful observations.

Lemma 92. Let F (u, v) be a binary form over Z, p a prime and suppose that
p|F (u, v) for certain relatively prime u, v ∈ Z(p). Then p|content(F ◦M[u:v]).

Proof. Since u, v are relatively prime, by changing basis, we can without loss
of generality assume that (u, v) = (1, 0). Now (F ◦ M[1:0])(u, v) = F (u, pv), so
p|content(F ◦M[u:v]) if and only if p divides the coefficient of udeg F in F . But this
coefficient equals F (1, 0) which, by assumption, is divisible by p.

For an integral parameterization (X, Y, Z) we define

Cp(X, Y, Z) := min(2νp(content(X)), 3νp(content(Y )), 5νp(content(Z))).

Corollary 93. Let (X, Y, Z) be an integral parameterization, p a prime and sup-
pose that

min(2νp(X(u, v)), 3νp(Y (u, v)), 5νp(Z(u, v))) > Cp(X, Y, Z)

for certain relatively prime u, v ∈ Z(p). Then

Cp((X, Y, Z) ◦M[u:v]) > Cp(X, Y, Z).
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Proof. Divide the binary (degree 60) forms X2, Y 3, Z5 by pCp(X,Y,Z) and apply
the previous lemma.

Obtaining an integral parameterization from a solution

Let (X, Y, Z) be an integral parameterization and suppose that specialization to
u, v ∈ Q leads to a solution

(x, y, z) := (X, Y, Z)(u, v)

of (4.1). We focus on one prime p. Let

m := −min(νp(u), νp(v)).

By the integrality of X, Y, Z and since gcd((X, Y, Z)(u, v)) = 1 we have m ≥ 0.
Write

(u0, v0) := pm(u, v).

Then u0, v0 ∈ Z(p) and they are relatively prime. We are going to find an integral
parameterization (X ′, Y ′, Z)′ such that (X, Y, Z)(u, v) is obtained by specialization
of (X ′, Y ′, Z ′) to some u′, v′ ∈ Z(p) and furthermore, (X ′, Y ′, Z ′) = (X, Y, Z) ◦M

for some M ∈ GL2(Q) such that pkM−1 is integral for some k ∈ Z≥0.
For this we define inductively two sequences, one of integral parameterizations

(Xi, Yi, Zi) and one of relatively prime tuples (ui, vi) ∈ Z2
(p). Furthermore, write

Mi := M[ui,vi].

Let (X0, Y0, Z0) := (X, Y, Z) and (u0, v0) := pm(u, v) as above. Define for i ≥ 0

(ui+1, vi+1)t := M−1
i (ui, vi)t

(Xi+1, Yi+1, Zi+1) := (Xi, Yi, Zi) ◦Mi.

It follows immediately that (for i ∈ Z≥0) we have

(Xi, Yi, Zi) = (X, Y, Z) ◦
i−1∏
k=0

Mk

and

(ui, vi)t =

(
i−1∏
k=0

Mk

)−1

pm(u, v)t

(the order of matrix multiplication is of course M0 . . .Mi−1). Note in particular
that

(Xi, Yi, Zi)(ui, vi) = (X, Y, Z)(pmu, pmv) = (p30mx, p20my, p12mz). (4.31)

So if Cp(Xi, Yi, Zi) < 60m, then by Corollary 93

Cp(Xi+1, Yi+1, Zi+1) > Cp(Xi, Yi, Zi).
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Furthermore, from (4.31) and the fact that gcd(x, y, z) = 1, we get

Cp(Xi, Yi, Zi) ≤ 60m + min(νp(x2), νp(y3), νp(z5)) = 60m.

For later reference we note that from (4.31) we get 60m ≤ νp(Res(Y 3, Z5)), so
together with the inequality above we get

Cp(Xi, Yi, Zi) ≤ νp(Res(Y 3, Z5)). (4.32)

Now we conclude that for some n ≤ 60m, we have Cp(Xn, Yn, Zn) = 60m, so with

(u′, v′) := (un, vn), (X ′, Y ′, Z ′) := (Xn/p30m, Yn/p20m, Zn/p12m)

we have that (X ′, Y ′, Z ′) is an integral parameterization, u′, v′ ∈ Z(p) and

(X ′, Y ′, Z ′)(u′, v′) = (X, Y, Z)(u, v) = (x, y, z).

In fact
(X ′, Y ′, Z ′) = (X, Y, Z) ◦M,

where

M := p−m
n−1∏
i=0

Mi.

First of all note that
n−1∏
i=1

Mi 6≡ 0 (mod p).

Next, note that M has only powers of p as denominators in its coefficients and
a power of p as its determinant. This means that M−1 has integral coefficients
away from p (i.e. has only powers of p as denominators in its coefficients) and since
(u′, v′)t = M−1(u, v)t we see that if u, v are integral at some prime p′, then u′, v′ are
integral at p′. So, by repeating the process above for all primes in the denominators
of u, v we obtain an integral parameterization such that specialization to integer
ũ, ṽ gives rise to the solution x, y, z.

Obtaining integral parameterizations in general

We now come to the heart of the matter. Starting with some parameterized solu-
tion (X, Y, Z) we now want to obtain finitely many parameterized solutions such
that every solution to (4.1) obtained from specializing (X, Y, Z) at some rational
values can be obtained by specialization of one of the mentioned finitely many
parameterized solutions at some integer values. The construction is per prime p
(dividing Res(Y,Z)) as follows. We define inductively sets Si, i ∈ Z≥0 consisting
of pairs ((Xi, Yi, Zi),Mi), where (Xi, Yi, Zi) is an integral parameterization and
Mi ∈ GL2(Q) with integer entries and determinant a power of p. From these sets
Si, we construct a set P of integral parameterizations. We take

S0 := {((X0, Y0, Z0), I)}.
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Given Si, we define Si+1 as follows. For all ((Xi, Yi, Zi),Mi) ∈ Si and [a : b] ∈
P1(Fp), we define

(Xi+1, Yi+1, Zi+1) := (Xi, Yi, Zi) ◦M[a:b], Mi+1 := Mi ◦M[a:b].

Now we let the pair ((Xi+1, Yi+1, Zi+1),Mi+1) belong to Si+1 if and only if

Cp(Xi+1, Yi+1, Zi+1) > Cp(Xi, Yi, Zi)

and
Mi+1 6≡ 0 (mod p).

Note that (Xi, Yi, Zi) play the same role as in the previous discussion, but Mi is
defined differently. We claim that for some n > 0 we have that Sn is empty and
consequently by construction, Si is empty for all i ≥ n. Suppose i ≥ 0 is such that
Si is not empty and let ((Xi, Yi, Zi),Mi) ∈ Si. By construction and from (4.32)
we get

i ≤ Cp(Xi, Yi, Zi) ≤ νp(Res(Y 3, Z5)),

which proves our claim (the bound is not very sharp). Note in particular that if
p - Res(Y, Z), then Si = ∅ for all i > 0.

Now for the set P . Let ((Xi, Yi, Zi),Mi) ∈ Si for some i. If

60|Cp(Xi, Yi, Zi) =: e,

then we let
(Xi/pe/2, Yi/pe/3, Zi/pe/5)

belong to P , unless
60|Cp(Xi+1, Yi+1, Zi+1),

where ((Xi+1, Yi+1, Zi+1),Mi+1) ∈ Si+1 with Mi+1 = Mi ◦ M[a:b] for a certain
[a : b] ∈ P1(Fp).

The discussion on obtaining an integral parameterization from a solution,
shows that for every u, v ∈ Q such that (x, y, z) := (X, Y, Z)(u, v) is a solution
to (4.1) one of the parameterizations (Xi/pe/2, Yi/pe/3, Zi/pe/5) in some Si with
60|Cp(Xi, Yi, Zi) = e gives rise to the solution (x, y, z) when specialized to some
u′, v′ ∈ Z(p). Now if ((Xi, Yi, Zi),Mi) ∈ Si and ((Xi+1, Yi+1, Zi+1),Mi+1) ∈ Si+1

both satisfy 60|Cp(Xi, Yi, Zi) =: ei and 60|Cp(Xi+1, Yi+1, Zi+1) =: ei+1, with
Mi+1 = Mi ◦ M[a:b] for a certain [a : b] ∈ P1(Fp), then ei+1 = ei + 60 (using
ei < ei+1 ≤ ei + 60). With

(X ′
1, Y

′
1 , Z ′

1) := (Xi/pei/2, Yi/pei/3, Zi/pei/5)

and
(X ′

2, Y
′
2 , Z ′

2) := (Xi+1/pei+1/2, Yi+1/pei+1/3, Zi+1/pei+1/5)

we obtain
(X ′

2, Y
′
2 , Z ′

2) = (X ′
1, Y

′
1 , Z ′

1) ◦ (M[a:b]/p).
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Now N := (M[a:b]/p)−1 has integer entries and together with

(X ′
1, Y

′
1 , Z ′

1) = (X ′
2, Y

′
2 , Z ′

2) ◦N

we see that solutions obtained by specializing (X ′
1, Y

′
1 , Z ′

1) at values integral at p
are already obtained by specializing (X ′

2, Y
′
2 , Z ′

2) at values integral at p (of course,
(X ′

2, Y
′
2 , Z ′

2) need not belong to P , but then there is some appropriate (X ′
3, Y

′
3 , Z ′

3),
and so on). We conclude that for every solution (x, y, z) to (4.1) that can be written
as

(±x, y, z) = (X, Y, Z)(u, v)

for some u, v ∈ Q, there exists an integral parameterization (X ′, Y ′, Z ′) ∈ P such
that

(±x, y, z) = (X ′, Y ′, Z ′)(u′, v′)

for some (necessarily coprime) u′, v′ ∈ Z(p).
As discussed before, if u, v are integral at some prime p′, then so are u′, v′.

This proves that the following construction finally gives all integral parameteriza-
tions such that specialization at integer values covers all solutions obtained from
specializing (X, Y, Z) at rational values. Let p1, . . . , pn denote the primes dividing
Res(Y,Z). Let P1 be the set of integral parameterizations obtained from (X, Y, Z)
by applying the method above with p = p1 and (for 1 < i ≤ n), let Pi denote
the set of integral parameterizations obtained from all integral parameterizations
in Pi−1 by applying the above method with p = pi, then Pn gives us the desired
set of integral parameterizations obtained from (X, Y, Z). Of course an integral
parameterization in Pn need not give rise to any solutions to (4.1) when specialized
at integer values, this is simply decided by calculation modulo p for p = p1, . . . , pn.
In practice it is best to throw away any integral parameterization as soon as it
is obvious that it will not give rise to solutions. In our algorithm we check for
integral parameterizations in Pi if there are specializations with pi not dividing
the gcd. The implementation in Magma of the algorithm described above, com-
bined with the algorithm from section 4.3.1, to obtain all the relevant integral
parameterizations from one integral parameterization coming from one quotient
parameterization, is given in section B.1.4 (the appendix).

4.4 Some results for Sabc = {2, 3, 5}
In this section we describe some results obtained by using our algorithms for solving
(4.1) in some cases. We are in fact able to solve (4.1) if abc is only composed
of primes in {2, 3, 5}, i.e. if Sabc = {2, 3, 5}. For this, we need a finite list of
polynomials covering all relevant algebras Q[t]/(fj(t)) as explained earlier. It
would suffice to have a list of all number fields up to degree 5 unramified outside
{2, 3, 5}. Such a list can in principle be obtained in finite time, see e.g. [Coh2,
Chapter 9], but in practice can be infeasible. Up to degree 4 is in fact feasible
via (relative) Hunter’s theorem from loc. cit. (degree 2 is of course trivial and
degree 3 can also be dealt with easily). But finding all relevant degree 5 number
fields within a reasonable time is not so easy. Lucky for us J. Jones and D.
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Roberts have already obtained (amongst other things) a list of all number fields
up to degree 5, unramified outside {2, 3, 5} by using clever variations of Hunter’s
theorem. Lists of these (and other) number fields are available on-line, see [JR].
To obtain our list of polynomials we multiplied polynomials defining the number
fields to obtain degree 5 polynomials and then checked, using Lemma 85 (and
Proposition 89) if the polynomials are equivalent to some fj . In practice, we used
function integritycheck from Appendix B. Of course, we used the facts that
the discriminant of the resulting degree 5 polynomial is 5 times a square (in Q∗)
and that the polynomial has exactly one real root. For example, in the case that
our algebra is the direct product of two quadratic number fields and Q, we only
need to consider the 4 polynomials

t(t2 + 5)(t2 + 1), t(t2 + 10)(t2 + 2), t(t2 + 15)(t2 + 3), t(t2 + 30)(t2 + 6).

In fact, only t(t2+10)(t2+2) and t(t2+15)(t2+3) ∼ (t2+15)(t3−1) pass the test.
The number of algebras being a direct product of number fields of degree 3 and 2,
degree 4 and 1, degree 5 we found is given by 19, 12, 300 respectively. In total, we
have 2 + 19 + 12 + 300 = 333 algebras of the form Q[t]/(fj(t)), j ∈ Q− {0, 1728}
unramified outside {2, 3, 5}. The algorithms described in the previous sections, or
in practice, function poltosols from Appendix B can now be used to find all
parameterized solutions to (4.1) whenever Sabc = {2, 3, 5}.

4.4.1 Primitive solutions to x2 + y3 = z5

In [Edw] a complete solution to (4.1) with a = b = c = 1 was given for the first time.
There were 27 parameterizations found such that all solutions can be obtained by
specializing the variables of one of these parameterized solutions to integer values.
Applying our algorithm to the 333 relevant polynomials to find parameterized so-
lutions induced by these polynomials, we also found 27 parameterizations, which
are, up to GL2(Z) equivalence, the same as the 27 parameterizations from [Edw].
In fact, Table 4.1 gives all the polynomials F (t) that give rise to some parameter-
ized solution, together with the numbers from loc. cit. of these parameterizations.

We want to mention that, using Newton polygon techniques, it is possible to
bound the discriminant d of an algebra Q[t]/(fj(t)) corresponding to a solution
in our a = b = c = 1 case, to d0 := 26 · 34 · 55, in the sense that d|d0. We do
not need the full list of 333 polynomials (with discriminant for the corresponding
algebra going up to 28 · 36 · 59), and the computation time of a list with the
extra discriminant condition would probably be significantly less than the time for
computing all 333 polynomials. But since a complete list for Sabc = {2, 3, 5} is
available anyhow, we leave it at this.

4.4.2 No local-to-global principle

Let a, b, c ∈ Z− {0}, r ∈ {2, 3, 4, 5} and consider the spherical generalized Fermat
equation

ax2 + by3 = czr (4.33)
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F (t) parameterization number
(t2 + 15)(t3 − 5) 2,10,26

t(t4 + 180) 3,4,12,17,18,27
t5 − 12 1
t5 − 18 20
t5 − 3 25

t5 − 10t2 − 15t− 6 5,9,13
t5 − 30t2 + 45t− 18 8,14,16
t5 − 20t2 + 30t− 60 15,21,24
t5 − 10t2 + 15t + 48 7
t5 − 10t2 + 15t + 18 19

t5 − 30t− 60 6,23
t5 + 15t− 6 11

t5 − 20t2 + 30t− 6 22

Table 4.1: polynomials with corresponding parameterizations to x2 + y3 = z5

By a global solution to this equation we mean, as always, a solution x, y, z ∈ Z
satisfying gcd(x, y, z) = 1 and xyz 6= 0. A local solution to this equation, is
simply, a solution x, y, z ∈ Zp, satisfying gcd(x, y, z) = 1 and xyz 6= 0. One can
consider a local-to-global principle for the equation. That is, if for all (finite)
primes p there exist a local solution (in Zp), then does this imply that there exists
a global solution? For r = 2, 3, 4 the fact that the exponents in (4.33) are not
pairwise relatively prime, makes that it is possible to find (pairwise relatively
prime) a, b, c ∈ Z − {0} such that (4.33) has everywhere local solutions but no
global solutions, see [DG, Section 8]. For r = 5 it has been an open problem
since the publication of loc. cit. whether or not a local-to-global principle holds
for r = 5. By applying our algorithm we finally obtain examples showing that the
local-to-global principal does also not hold in the case r = 5.

Theorem 94. Let (a, b, c) = (16, 9, 1) or (a, b, c) = (16, 3, 1). Then (4.33) with
r = 5 has local solutions for every prime p, but no global solutions.

Proof. For (a, b, c) = (16, 9, 1) we have (x, y, z) = (59, 56, 54) as local solution
for all p 6= 5 and (x, y, z) = (27,−25,−23) as local solution for all p 6= 2. For
(a, b, c) = (16, 3, 1) we have (x, y, z) = (1912, 198, 195) as local solution for all
p 6= 19 and (x, y, z) = (1312,−138, 135) as local solution for all p 6= 13. Note that
for both choices of (a, b, c) we have Sabc = {2, 3, 5}. We applied our algorithm to
obtain all parameterized solutions from the 333 relevant polynomials. As output
we got zero parameterized solutions in both cases, showing that there are no global
solutions.

We expect to find more examples upon further investigation, also ones with
Sabc strictly larger than {2, 3, 5} using the modular method.

Using the fact that 2, 3, 5 are pairwise coprime, it is not so difficult (though
tedious) to show in general that there are in fact always everywhere local solutions
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to (4.33) for r = 5 if a, b, c are pairwise coprime. Furthermore, one can consider
(local and global) solutions such that x, y, z are pairwise coprime, instead of just
coprime. Taking (a, b, c) = (16, 5, 9) it is easy to find everywhere local pairwise
coprime solutions (e.g. (x, y, z) = (214, 210, 26) or (x, y, z) = (3,−3, 1)), and our
algorithm gives 24 parameterized solutions for the coprime case. But a straight-
forward check showed that none of these 24 parameterized solutions specialize to
global pairwise coprime solutions, showing that there are no global pairwise co-
prime solutions in this case. We want to mention that the three triples (a, b, c)
above where kindly supplied by Nils Bruin as candidates for counterexamples to
the local-to-global principle (in the pairwise coprime case).



Chapter 5

A modular approach to
ax2 + by3 = cz5

We describe how the list of étale algebras, necessary to perform the algorithms
described in the previous chapter, can be obtained in some cases using the modular
method.

5.1 Icosahedron

The icosahedral covering of P1 and the corresponding invariants from the previous
chapter are intimately related to 5-torsion on elliptic curves. We describe here
quickly the basics of this relation and the consequences we need. For an extensive
treatment we refer to [Kle].

Let f,H, T be the icosahedral invariants from (4.7), (4.8), (4.9). Consider the
elliptic curve

Eu,v : Y 2 = X3 + 3H(u, v)X + 2T (u, v).

The discriminant and the j-invariant are given by

∆(Eu,v) = −1728(T 2 + H3)
= −21236f5

jEu,v =
1728H3

T 2 + H3

=
H3

f5
.

In particular, the (dehomogenized) j-invariant is exactly the icosahedral covering
J(z) from (4.14). One can check that

X0(u, v) := u10 + 12u8v2 − 12u7v3 + 24u6v4 + 30u5v5

+60u4v6 + 36u3v7 + 24u2v8 + 12uv9 + v10

97
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is the X-coordinate of a point of order 5 on Eu,v (after twisting over Q(
√

3) the
corresponding Y -coordinates are also homogeneous elements in Q[u, v]), X0(ζ5u, v)
is the X-coordinate of an independent point of order 5 and for the field generated
over Q by the X-coordinates of all points of order 5, we have Q(Eu,v[5]x) =
Q(X0(u, v), X0(ζ5u, v)). Switching to dehomogeneous notation from now on (that
is, let z = u/v), we have in fact

Q(Ez,1[5]x) = Q(ζ5, z),

so the icosahedral extension Q(ζ5, z)/Q(ζ5, J(z)) is given by

Q(Ez,1[5]x)/Q(ζ5, jEz,1).

Now consider an elliptic curve E/Q. Let l0, . . . , l5 denote the 6 lines in E[5],
then the field K := Q({

∑
P∈li−{0} xP }5i=0) is a Galois extension of Q and is

completely determines by L := Q(E[5]x) (if ζ5 6∈ K, then [L : K] = 2, otherwise
L = K). We see that K is the splitting field of the polynomial

IE
5 (x) :=

5∏
i=0

x−
∑

P∈li−{0}

xP /2

 ∈ Q[x].

If the elliptic curve is given by

E : Y 2 = X3 + aX + b,

then we compute that

IE
5 (x) = x6 + 20ax4 + 160bx3 − 80a2x2 − 128abx− 80b2. (5.1)

If E has j-invariant j 6= 0, 1728, then the roots of the Brioschi quintic hj(t) from
(4.10) can be expressed in terms of the roots of I5(x) and vice versa in such a way
that we obtain that the splitting fields of hj(t) and I5(x) are the same (historically,
this was first done through the Jacobi sextic, which in one parameter form reads,
t6 − 10jt3 + j2t + 5j2).

Now consider the representations induced from the 5-torsion points of elliptic
curves E1, E2/Q,

ρEi
5 : GQ → GL2(F5), i = 1, 2

and write ρi := ρEi
5 . Suppose that ρ1 ' ρ2. Then with Hi := ρ−1

i (±I) ⊂ GQ,
we have H1 = H2. The fixed field of Hi is Q(Ei[5]x), so Q(E1[5]x) = Q(E2[5]x).
Consequently the splitting fields of IE1

5 and IE2
5 are equal (with no restriction on

the j values of E1, E2).

Proposition 95. Let E1, E2 be elliptic curves over Q with j-invariants j1, j2
respectively. Suppose that ρE1

5 ' ρE2
5 and ji 6= 0, 1728. Then fj1 ∼ fj2 .

Proof. We obtain from the discussion above (using j 6= 0, 1728) that the splitting
fields of hj1 and hj2 are equal. By Proposition 67 we obtain that the splitting
fields of fj1 and fj2 are equal. In fact, for j 6= 0, 1728, the splitting field of fj

determines Q[t]/(fj(t)) uniquely and the result follows.
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The case that one j-invariant equals 0 or 1728 can be dealt with separably.

Proposition 96. Let E1, E2 be elliptic curves over Q. Suppose that ρE1
5 ' ρE2

5

and j1 6= 0, 1728.

i. If E2 is isomorphic to Y 2 = X3 + b, then fj1 ∼ (t2 + 15)(t3 + 100b).

ii. If E2 is isomorphic to Y 2 = X3 + aX, then fj1 ∼ t(t4 + 20a2).

Proof. We use again the results of the discussion above.
i: Plugging a = 0 into (5.1) gives IE2

5 = x6+160bx3−80b2. The splitting field of
this polynomial equals the splitting field of F (t) := (t2+15)(t3+100b) (this can be
established by writing down radical expressions for the roots of these polynomials).
The criteria from section 4.2 show that F (t) ∼ fj for some j ∈ Q− {0, 1728} and
the splitting field of such an fj determines Q[t]/(fj(t)).

ii: This case is similar. Plugging b = 0 into (5.1) gives IE2
5 = x2(x4 + 20ax2 −

80a2). The splitting field of this polynomial equals the splitting field of t(t4 +
20a2) ∼ fj for some j ∈ Q− {0, 1728}.

5.2 Irreducible 5-torsion

To a solution x, y, z of (4.1) we associate the Frey curve

E : Y 2 = X3 + 3abyX + 2a2bx. (5.2)

Basic quantities associated to E are given by

∆ = −1728a3b2(ax2 + by3)
= −1728a3b2cz5,

c4 = −144aby,

c6 = −1728a2bx.

Note in particular that

jE = 1728
by3

cz5

which equals j(x, y, z) from(4.4). Let p be a prime such that p - 2 · 3abc. Then we
see that E has good or multiplicative reduction at p and νp(∆min(E)) = νp(∆) =
5νp(z). So if ρE

5 is irreducible, then we can use level lowering and by Theorem 35
we get that E ∼5 f for some newform f of level N0(E), where the primes dividing
N0(E) form a subset of the primes dividing 2 · 3abc.

If f is a rational newform, then ρE
5 ' ρF

5 for some elliptic curve F/Q and
Propositions 95 and 96 give us the desired algebra Q[t]/(fj(t)).

If f is not rational, then possibly we can eliminate it using Proposition 46.
If this does not work, we can try to raise to a level where ρf

5 comes from an
elliptic curve, i.e. find an elliptic curve F/Q such that ρF

5 ' ρf
5 (for proving that

a candidate F does the job, one can e.g. use the well known Sturm bound). But
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in general there is no a priori reason that either of these methods will work for a
nonrational newform f .

As our main example, we will now obtain all relevant polynomials fj in the
case that a = b = c = 1. Our Frey curve is given by

E : Y 2 = X3 + 3yX + 2x,

with basic quantities

∆ = −26 · 33z5,

c4 = −24 · 32y,

c6 = −26 · 33x.

From the tables in [Pap] we obtain immediately that N(E) = 2α · 3β rad{2,3}(z)
with α ≤ 6, β ≤ 3 (in fact, there is always a quadratic twist E′ of E with
ν2(N(E′)) ≤ 5, but the tables in [Pap] do not suffice for showing this and we really
have to work through Tate’s algorithm). Furthermore, for all primes p 6= 2, 3 divid-
ing z we have νp(∆min(E)) = νp(∆) = 5νp(z). So under the assumption that ρE

5 is
irreducible, we obtain that E ∼5 f for some newform of level N0(E) = 2α ·3β with
α ≤ 6, β ≤ 3. All newforms at these levels can be calculated quickly (or looked
up at several places). The nonrational newforms at these levels (they are in fact
quadratic twists of each other) all have ap(f)2 − 13 = 0 for p = 7, so Proposition
46 gives us that it is impossible to have E ∼5 f for nonrational f . Consequently
ρE
5 ' ρF

5 for some elliptic curve F of conductor N0(E) (this is actually a special
case of Example 47). All possible elliptic curves up to isogeny and quadratic twist
with irreducible 5-torsion and conductor dividing 26 ·33 are found in a straightfor-
ward manner using [Cre2]. In fact, they can already be found in Table 4 of [BK]
(which has been extracted from the Ph.D. thesis of Francis B. Coghlan). Anyway,
they are given as follows. The CM-curves (up to isogeny and quadratic twist) are
given by

Y 2 = X3 + 1,

Y 2 = X3 + 2,

Y 2 = X3 + 4,

Y 2 = X3 + X,

Y 2 = X3 + 3X.

For the non CM-curves we get the j-invariants (we choose one from each isogeny
class)

−6,−216, 1536,−3072,−13824, 2048/3, 9261/8, 21952/9.

Propositions 95 and 96 now give us explicitly a total of 13 polynomials p(t), which
determine 13 algebras A = Q[t]/(p(t)) for the solutions related to irreducible 5-
torsion. Spelled out, if x, y, z is a solution to (4.1) with a = b = c = 1 and the
Frey curve E given by (5.2) has ρE

5 irreducible, then Q[t]/(fj(x,y,z)(t)) ' A, with
A one of the 13 algebras.
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5.3 Reducible 5-torsion

Consider the two coverings P1 → P1 given by

J0(r) :=
(r2 + 10r + 5)3

r
(5.3)

and
ρ(s) :=

−125s

s2 + 11s− 1
.

Then the icosahedral map J(z) given by (4.14) factors as

J(z) = J0(ρ(z5)).

Note that J0 is the j-map from the modular curve X0(5) to X(1) and J0 ◦ ρ is the
j-map from the modular curve X1(5) to X(1). The dessin d’enfant of J0(r)/1728
is given in Figure 5.1. Now suppose the Frey curve E from (5.2) has reducible

∗ ◦ ∗ ◦
∗

∗

qqqqq
MMMMM

Figure 5.1: dessin d’enfant associated to J0(r)/1728

5 torsion, i.e. ρE
5 is reducible. This is equivalent to saying that jE = J0(r) for

some r ∈ Q, note that in particular we have jE 6= 0, 1728. Let G(z) := ρ(z5), then
G(z) defines in fact a D5 cover of P1. Let S := G−1(r), then the 10 points in S
are mapped 2 to 1 by τ (from (4.15)) onto the 5 roots of fJ0(r). If r′ ∈ Q is such
that Q(G−1(r)) = Q(G−1(r′)), then fJ0(r) ∼ fJ0(r′). Furthermore, Q(G−1(r)) is
unramified outside Sabc. So in order to find all relevant algebras, defined by fJ0(r)

for some r ∈ Q, we must find finitely many r ∈ Q covering all fields of the form
Q(G−1(r)) unramified outside Sabc. The solvable nature of the covering G allows
that this can be done very explicitly.

Let r = ρ(s) and define R := −(11 + 125/r)/2, then s satisfies,

s2 − 2Rs− 1 = 0,

with roots given by
s = R±

√
1 + R2. (5.4)

We distinguish two cases, namely that s ∈ Q and s 6∈ Q. We start with the
simplest, namely s ∈ Q (this corresponds to the case that E, or a quadratic twist,
has a rational point of order 5). The possible fields Q(G−1(r)) are simply the
splitting fields of z5 − s. In order to get all fields of this form, unramified outside
Sabc, we simply let s run through all elements of the form∏

p∈Sabc

pep ,
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where ep ∈ {0, . . . , 4}. The defining polynomials for the algebras are then given
by fj , with j = J0(ρ(s)) and in fact, we simply have fj ∼ t5−s. Note that if s1, s2

are of the shape above and s1 = sk
2 , k ∈ Z>0, then the corresponding polynomials

fj are equivalent.
Now suppose we are in the case that s 6∈ Q. Then from (5.4) we obtain

that s ∈ Q(
√

d) for some squarefree d ∈ Z≥2 with no prime which is −1 mod 4
dividing d, furthermore, s must have norm −1. The ramification conditions imply
that d is only divisible by primes in Sabc. Now fix such an appropriate d. If
NormQ(

√
d)/Q(s) = −1, then the fractional ideal (s) of Q(

√
d) is of the form

n∏
i=1

(
Pi

P′
i

)ei

, (5.5)

n, ei ∈ Z≥0 and where Pi,P
′
i denote two prime ideals lying above a prime p ∈ Z

that splits in Q(
√

d). Since in all the cases we are actually going to compute here,
we will have that the class number of Q(

√
d) is 1 or 2, we will assume this from

now on, making things a bit easier to describe. Now every fractional ideal of the
form (5.5) is in fact principal and generated by an element s′ ∈ Q(

√
d) of norm 1.

Let εd denote a fundamental unit of Q(
√

d) (so ε has norm −1). Then s := s′εk has
norm -1 for odd k ∈ Z. Since z5 − s and z5 − sα5, for any α ∈ Q(

√
d)∗ determine

the same field, we can restrict to k ∈ {1, 3, 5, 7, 9}. Together with the ramification
conditions we arrive at a description of all relevant fields Q(G−1(r)) containing
Q(
√

d) (where Q(
√

d) has class number 1 or 2). They are given by the splitting
fields of z5 − s over Q(

√
d), with s = s′εk, k ∈ {1, 3, 5, 7, 9} and where s′ is any

element of norm 1 such that the fractional ideal (s′) = (s) is of the form∏
p∈Sabc
p splits

(
Pp

P′
p

)ep

,

with ep ∈ {0, 1, 2, 3, 4} and Pp,P
′
p are the primes lying above p (in any order). So

letting k and ep run through all finitely many possibilities, we obtain all s, hence
all r, hence all fj (up to equivalence), with j = J0(r) = J0(ρ(s)) (and again we
overcounted by allowing powers of s). In case the class number of Q(

√
d) is greater

than 2, the calculations will be a bit more involved (especially when 5 divides the
class number), but in the same spirit as above, [Coh2, Chapter 5] might be helpful.

As our main example, we will now obtain all relevant polynomials fj in the
case that Sabc = {2, 3, 5}. We will be careful in naming every polynomial (modulo
equivalence) only once. First of all, for s ∈ Q, we get the polynomials t5 − s, with
s of the form

s = 2 · 3j · 5k, 0 ≤ i, j ≤ 4
s = 3 · 5k, 0 ≤ k ≤ 4
s = 5
s = 1.

If s 6∈ Q, then d ∈ {2, 5, 10}. We note that Q(
√

d) has class number 1 if d = 2, 5
and class number 2 if d = 10. If d = 2, 5 no prime in Sabc splits in Q(

√
d), so
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d = 2 and d = 5 each give rise to one polynomial fj with j = J0(ρ(s)), s a
fundamental unit. For d = 2 we can take s = 1 +

√
2, leading to r = −125/13

and j = −26 · 113/135. For d = 5 we can take s = (1 +
√

5)/2, leading to
r = −125/12 and j = −2693/(210 · 35). For d = 10, the only prime in Sabc

that splits in Q(
√

d) is 3. We have (by choosing the right notation) that the
fractional ideal P3/P′

3 is generated by the element s′ := 7/3− (2/3)
√

10 of norm
1. A fundamental unit is given by ε := 3 +

√
10. The case s = ε leads to

r = −125/17 and j = 26 · 113 · 193/175. All other relevant s are given by s = s′εk,
k ∈ {1, 3, 5,−3,−1}. These values of s (or actually 3s) with corresponding values
for r are given in Table 5.1, the values j = J0(r) can be calculated directly from
this data. We conclude that all polynomials fj (modulo equivalence) related to

k 3s = 3s′εk r

1 1 +
√

10 −75/7
3 79 + 25

√
10 −375/191

5 3001 + 949
√

10 −75/1207
−3 −1559 + 493

√
10 75/617

−5 −41 + 13
√

10 375/49

Table 5.1: values of s and r

reducible 5-torsion if Sabc = {2, 3, 5} are given by the 40 polynomials above.
We note that parts of the discussion above might be expressed more elegantly

in terms of Galois representations. But the actual computations still have to be
done one way or the other.

5.4 Solving x2 + y3 = z5 the modular way

In order to find all parameterized solutions to (4.1) with a = b = c = 1 we have
to find all relevant algebras Q[t]/(fj(t)). After that, we can use the algorithms in
sections 4.2 and 4.3. In the previous sections of this chapter we obviously have
already done all the work and found 53 polynomials fj that cover all algebras.
After running our algorithms with these polynomials we found again (up to GL2(Z)
equivalence) the same 27 parameterizations as before.

Remark 97. Let E/Q be an elliptic curve. From [RS1] we can obtain an explicit
formula for the j-map from XE[5] to X(1), where XE[5] denotes the projective
closure of the affine curve over Q whose points classify elliptic curves E′ together
with an isomorphism between the GQ modules E[5] and E′[5] that takes the Weil
pairing on E[5] to that on E′[5]. This j-map provides us with one of the two
quotient parameterizations related to fjE

. The other parameterization can actu-
ally be identified with the j-map from XE[5]′ to X(1), where now the noncuspidal
rational points on XE[5]′ classify elliptic curves E′ together with an isomorphism
of GQ modules φ : E[5] → E′[5] such that, identifying

∧2
E[5] and

∧2
E′[5] with

the GQ module of 5-th roots of unity µ5 via the Weil pairing, the induced map
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∧2
φ :
∧2

E[5] →
∧2

E′[5] is the a-th power map µ5 → µ5 for a fixed nonsquare
a ∈ F5 (a = 2 or a = 3), see [PSS, section 4]. Probably the methods in [RS1] could
be used to find this other j-map explicitly. But since we already have a perfectly
fine algorithm to obtain the two j-maps, we will leave it at this.



Appendix A

Minimal discriminants and
conductors

In principle Tate’s algorithm [Tat] can always be used. In practice [Pap] is very
handy to use. We note however that loc. cit. is not complete in the sense that if
ν2(c4) = 6, ν2(c6) ≥ 9 and ν2(∆) = 12, no criteria are given whether ν2(N) = 6
or ν2(N) = 5 and we must use Tate’s algorithm. There is also a small mistake in
Tableau IV, the ‘12’ in the first column under ‘Equation non minimale’ should be
replaced by ‘≥ 12’.

FLT

We consider the Frey curve

Ea,b : Y 2 = X(X − a)(X + b)

where a, b ∈ Z with a ≡ −1 (mod 4), b ≡ 0 (mod 25), ab(a+b) 6= 0 and gcd(a, b) =
1. Basic invariants are

c4 = 24(a2 + ab + b2),
c6 = 25(a− b)(2a + b)(a + 2b),
∆ = 24a2b2(a + b)2.

We have ν2(c4) = 4, ν2(c6) = 6, ν2(∆) ≥ 14. Using [Pap, Proposition 4] we obtain
that the model E above is not minimal at 2. So for a minimal model we get
ν2(c4) = 0, ν2(c6) = 0, ν2(∆) ≥ 2 and consequently ν2(N) = 1. Furthermore,
Res(∆, c4) = 224, so for an odd prime p the model E above is minimal at p and
νp(N) = 1 if p|∆ and νp(N) = 0 otherwise. We conclude

∆min =
∆
212

,

N = rad(ab(a + b)).

105
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Alternatively, we can write down explicitly a minimal model as follows

Y 2 + XY = X3 +
b− a− 1

4
X2 − ab

4
X.

The equation x2 − 11 = yl

Consider the Frey curve

E : Y 2 = X3 − 4xX2 + 4(x2 − 11)X

and assume that x2 − 11 = yn for x, y, n ∈ Z and n ≥ 3. Basic invariants are

c4 = 26(x2 + 33),
c6 = −29x(x2 − 99),
∆ = 212 · 11(x2 − 11)2.

If x is odd, then x2−11 ≡ 2 (mod 4), so x is even. We obtain ν2(c4) = 6, ν2(c6) ≥
10 and ν2(∆) = 12. According to [Pap] the equation is minimal at 2, but to obtain
ν2(N) we must use Tate’s algorithm. Applying this in a straightforward way, we
get ν2(N) = 5. Furthermore Resx(c4,∆) = 256 · 116. Obviously 11 - x, so 11 - c4.

We conclude that

∆min = 212 · 11(x2 − 11)2,
N = 25 · 11 rad{2,11}(x2 − 11).

The equation x3 − x− 2 = yl

Consider the Frey curve

E : Y 2 = X3 + X2 − x(6 + x)X − (2x3 + x2 + 4x + 4)

and assume that x3 − x− 2 = yn for x, y, n ∈ Z and n ≥ 3. Basic invariants are

c4 = 24(3x2 + 18x + 1),
c6 = 26(27x3 + 9x2 + 27x + 53),
∆ = −27 · 13(x3 − x− 2)2.

We have x3 − x− 2 ≡ 1 (mod 3). So 3 - ∆, hence 3 - N . Since x ≡ 0 (mod 2) we
have 3x2 + 18x + 1, 27x3 + 9x2 + 27x + 53 ≡ 1 (mod 2). So ν2(c4) = 4, ν2(c6) =
6, ν2(∆) ≥ 13. By [Pap, Proposition 4] we have that the model above is not
minimal at 2. So for a minimal model we have ν2(c4) = 0, ν2(c6) = 0, ν2(∆) ≥ 1,
hence ν2(N) = 1 and ν2(∆min) = ν2(∆/212). Furthermore Resx(c4,∆) = 250 · 136.
But 13 - c4, namely if c4 ≡ 0 (mod 13), then x ≡ 10 (mod 13), but then x3 − x−
2 ≡ 0 (mod 13), so x3 − x − 2 ≡ 0 (mod 132), but then x ≡ 162 (mod 132), so
x ≡ 6 (mod 13), contradiction.

We conclude that

∆min = −13
25

(x3 − x− 2),

N = 2 · 13 rad{2,13}(x3 − x− 2).
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The equation x3 + 13 = yl

Consider the Frey curve

E : Y 2 =
{

X3 − 3x2X + 2(x3 + 26) if x is even;
X3 − 3x2X − 2(x3 + 26) if x is odd,

and assume that x3 + 13 = yn for x, y, n ∈ Z and n ≥ 5. Basic invariants are

c4 = 24 · 32x2,

c6 = ∓26 · 33(x3 − 26),
∆ = −28 · 33 · 13(x3 + 13),

where the sign in c6 is taken to be − if x is even and + if x is odd. First consider
the case that x is even. Then ν2(c4) ≥ 6, ν2(c6) = 7, ν2(∆) = 8. Applying [Pap,
Proposition 3] we get that ‘Cas de Tate ≥ 7’ and hence ν2(N) ∈ {2, 3}. Now
suppose x is odd. Then ν2(c4) = 4, ν2(c6) = 6, ν2(∆) ≥ 13. By [Pap, Proposition
4] we have that our model of E is not minimal at 2. So for a minimal model we have
ν2(c4) = 0, ν2(c6) = 0, ν2(∆) ≥ 1, hence ν2(N) = 1 and ν2(∆min) = ν2(∆/212).

Next we calculate ν3(N). If 3|x3 +13, then we get x3 +13 ≡ 3 (mod 9), which
is impossible. So ν3(∆) = 3 and the model is minimal at 3. Together with 3|ν3(c4)
we get 1 < ν3(N) ≤ ν3(∆), i.e. ν3(N) ∈ {2, 3} (and both possibilities actually
occur, depending on x modulo 3).

Furthermore, the primes dividing Resx(c4,∆) are 2, 3, 13. Certainly 13 - x and
we conclude

∆min =
{

∆ if x is even;
2−12∆ if x is odd,

N =
{

2a3b13 rad{2,3,13}(x3 + 13) if x is even;
2 · 3b13 rad{2,3,13}(x3 + 13) if x is odd,

where a, b ∈ {2, 3}.

The equation x4 + x3 − 3x2 + 11x + 2 = yl

Consider the Frey curve

E : Y 2 = X3 − 3a(x)X − 2b(x),

where

a(x) := 9x4 − 92x3 − 42x2 − 60x + 137
b(x) := 101x6 + 30x5 + 795x4 − 2380x3 − 1605x2 + 654x− 1627

and assume that f(x) := x4 + x3 − 3x2 + 11x + 2 = yn for x, y, n ∈ Z and n ≥ 5.
Basic invariants are

c4 = 24 · 32a(x),
c6 = 26 · 33b(x),
∆ = −214 · 33 · 37f(x)3.
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For any x ∈ Z we have 2|f(x), so 8|f(x), which gives us x ≡ 6 (mod 8). Fur-
thermore, 2|a(x) ⇔ 2|b(x) ⇔ x ≡ 1 (mod 2), so in fact a(x) and b(x) are both
odd. We get ν2(c4) = 4, ν2(c6) = 6, ν2(∆) ≥ 13. Using [Pap, Proposition 4] we
get that our model of E is not minimal at 2. So for a minimal model we have
ν2(c4) = 0, ν2(c6) = 0, ν2(∆) ≥ 1, hence ν2(N) = 1 and ν2(∆min) = ν2(∆/212).

We have 3|a(x) ⇔ 3|b(x) ⇔ x ≡ 1 (mod 3), but if x ≡ 1 (mod 3), then
f(x) ≡ 3 (mod 9), which is impossible. We arrive at ν3(c4) = 2, ν3(c6) = 3. If
3|f(x), then ν3(∆) ≥ 7 and we immediately get ν3(N) = 2. If 3 - f(x), then
ν3(∆) = 3 and together with ‘condition P2’ from [Pap, p. 123], we also get
ν3(N) = 2.

Furthermore, the only primes dividing Resx(c4,∆) are 2, 3, 37 and we conclude

∆min = 2−12∆,

N = 2 · 32 · 37 rad{2,3,37}(f(x)).
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Magma programs

In this appendix we give the implementations in Magma of our algorithm to
solve (4.1). Only function integritycheck and function poltosols need to
be called by the user, all other functions (and procedure) are only needed because
they are called (possibly indirectly) by the 2 user functions. Sometimes the sym-
bols used in the programs are different than those used in the main text. We
especially mention that instead of writing ax2 + by3 = cz5 (in the programs and
their descriptions) we will use the notation Aa2 + Bb3 = Cc5. For the rest we will
use in the descriptions mainly the notation from the main text without introducing
the notation again.

B.1 The algorithms

We have the following global objects, needed by several functions.

QQ:=RationalField(); R1<c1,c2,c3,c4>:=PolynomialRing(QQ,4);
R2<x,y>:=PolynomialRing(R1,2); P2<X,Y,Z>:=ProjectiveSpace(QQ,2);
Z2<s,t>:=PolynomialRing(Integers(),2);
Z1<z>:=PolynomialRing(Integers()); M0:=MatrixRing(Integers(),2)!1;

B.1.1 Checking for relevant polynomials

The following function calculates cp(a, b, c, d).

function HasseMinkowski(a,b,c,d,p)
return HilbertSymbol(a,b,p)*HilbertSymbol(a,c,p)*

HilbertSymbol(a,d,p)*HilbertSymbol(b,c,p)*
HilbertSymbol(b,d,p)*HilbertSymbol(c,d,p);

end function;

The following function outputs true if F (t) := t5+a4·t4+a3·t3+a2·t2+a1·t+a0
is equivalent to fj for some j ∈ Q − {0, 1728} and otherwise outputs false.
SbadOdd must consist of the odd primes ramifying in the splitting field of F (t) (no
integrity checking on SbadOdd is done).
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function integritycheck(a0,a1,a2,a3,a4,SbadOdd);
integrity:=true;
PrimeIndex:=1;
di:=Discriminant(z^5+a4*z^4+a3*z^3+a2*z^2+a1*z+a0);
if di eq 0 or not IsSquare(5*di) then
integrity:=false;

end if;
c0:=1/5*(a4*c1+2*a3*c2-a4^2*c2+3*a2*c3-3*a3*a4*c3+a4^3*c3+

4*a1*c4-2*a3^2*c4-4*a2*a4*c4+4*a3*a4^2*c4-a4^4*c4);
Res:=UnivariatePolynomial(

-Resultant(x^5+a4*x^4+a3*x^3+a2*x^2+a1*x+a0,
c0+c1*x+c2*x^2+c3*x^3+c4*x^4-y,x));

QF:=Coefficient(Res,3);
g,T:=DiagonalForm(QF);
a:=QQ!Coefficient(g,c1,2);
b:=QQ!Coefficient(g,c2,2);
c:=QQ!Coefficient(g,c3,2);
d:=QQ!Coefficient(g,c4,2);
if HasseMinkowski(a,b,c,d,2) ne -1 then
integrity:=false;

end if;
while integrity and PrimeIndex le #SbadOdd do
if HasseMinkowski(a,b,c,d,SbadOdd[PrimeIndex]) ne 1 then
integrity:=false;

end if;
PrimeIndex:=PrimeIndex+1;

end while;
return integrity;

end function;

B.1.2 From a polynomial to 2 quotient parameterizations

The following function outputs two quotient parameterizations J1, J2 induced by
the polynomial t5 + a4 · t4 + a3 · t3 + a2 · t2 + a1 · t + a0.

function param(a0,a1,a2,a3,a4)
c0:=1/5*(a4*c1+2*a3*c2-a4^2*c2+3*a2*c3-3*a3*a4*c3+a4^3*c3+

4*a1*c4-2*a3^2*c4-4*a2*a4*c4+4*a3*a4^2*c4-a4^4*c4);
Res:=UnivariatePolynomial(

-Resultant(x^5+a4*x^4+a3*x^3+a2*x^2+a1*x+a0,
c0+c1*x+c2*x^2+c3*x^3+c4*x^4-y,x));

QF:=Coefficient(Res,3);
g,T:=DiagonalForm(QF);
a:=QQ!Coefficient(g,c1,2);
b:=QQ!Coefficient(g,c2,2);
c:=QQ!Coefficient(g,c3,2);
d:=QQ!Coefficient(g,c4,2);
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iss,k:=IsSquare(d/(a*b*c));
C:=Conic(P2,a*X^2+b*Y^2+c*Z^2);
Pt:=RationalPoint(C);
X0:=Pt[1];
Y0:=Pt[2];
Z0:=Pt[3];
if X0 ne 0 then
S:=Matrix(QQ,4,4,

[X0/2,Y0/2,Z0/2,0,
1/(2*a*X0),-Y0/(2*a*X0^2),-Z0/(2*a*X0^2),0,
0,-Z0/(4*a*b*X0),Y0/(4*a*c*X0),-1/(4*a*b*c*k),
0,-c*Z0/X0,b*Y0/X0,1/k]);

else
S:=Matrix(QQ,4,4,

[X0/2,Y0/2,Z0/2,0,
-X0/(2*b*Y0^2),1/(2*b*Y0),-Z0/(2*b*Y0^2),0,
-Z0/(4*a*b*Y0),0,X0/(4*b*c*Y0),-1/(4*a*b*c*k),
-c*Z0/Y0,0,a*X0/Y0,1/k]);

end if;
/* The role of c1,c2,c3,c4 in the definition of v below will be
different than before. Instead of coefficients in a Tschirnhausen
transformation they represent parameters on P^1 X P^1. */
v:=Vector(4,[c1*c3,c2*c4,c2*c3,c1*c4])*(MatrixRing(R1,4)!(S*T));
a:=Evaluate(Coefficient(Res,2),[v[1],v[2],v[3],v[4]])/5;
b:=Evaluate(Coefficient(Res,1),[v[1],v[2],v[3],v[4]])/5;
c:=Evaluate(Coefficient(Res,0),[v[1],v[2],v[3],v[4]]);
f:=x^2*(a^4+a*b*c-b^3)-x*(11*a^3*b-a*c^2+2*b^2*c)+

64*a^2*b^2-27*a^3*c-b*c^2;
Fac:=Factorization(UnivariatePolynomial(f));
lambda1:=-Coefficient(Fac[1,1],0)/Coefficient(Fac[1,1],1);
lambda2:=-Coefficient(Fac[2,1],0)/Coefficient(Fac[2,1],1);
J1:=(a*lambda1^2-3*b*lambda1-3*c)^3/

(a^2*(lambda1*a*c-lambda1*b^2-b*c));
J2:=(a*lambda2^2-3*b*lambda2-3*c)^3/

(a^2*(lambda2*a*c-lambda2*b^2-b*c));
return J1,J2;

end function;

B.1.3 From a quotient parameterization to one integral pa-
rameterization

The 4 functions in this section are really straightforward and only included for the
sake of completeness.

The following function calculates binary forms NJ, DJ ∈ Z[s, t] such that J =
NJ/DJ.

function NDJ(J);
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CfsN:=Coefficients(Numerator(J));
CfsD:=Coefficients(Denominator(J));
DenCfsN:= [ IntegerRing() |

Denominator(CfsN[i]) : i in [ 1..#CfsN ] ];
DenCfsD:= [ IntegerRing() |

Denominator(CfsD[i]) : i in [ 1..#CfsD ] ];
lcm:=LCM(LCM(DenCfsN),LCM(DenCfsD));
NJ:=Evaluate(lcm*Numerator(J),[s,t,s,t]);
DJ:=Evaluate(lcm*Denominator(J),[s,t,s,t]);
return NJ,DJ;

end function;

A Chinese remainder theorem, convenient for us.

function Chinese(i,j,k);
n:=k;
while n mod 3 ne j mod 3 or n mod 2 ne i mod 2 do
n:=n+5;

end while;
while n lt i or n lt j do
n:=n+30;

end while;
return(n);

end function;

If the element fn (in some ring) is of the form ux, where u is a unit and x an
n-th power, the following function returns u times an n-th root of x. (The Magma
function IsPower does not always work properly.)

function nthroot(fn,n);
Fac,f:=Factorization(fn);
for k:= 1 to #Fac do
f:=f*Fac[k,1]^(ExactQuotient(Fac[k,2],n));

end for;
return f;

end function;

Given binary forms b3, c5 ∈ Z[s, t] (such that b3/c5 is a quotient parameter-
ization) and A, B, C ∈ Z − {0}, the function outputs binary forms a, b, c ∈ Z[s, t]
such that A · a2 + B · b3 = C · c5 and b3/c5 = 1728 · B · b3/(C · c5).

function abc(b3,c5,A,B,C);
c5:=1728*c5;
a2:=c5-b3;
Ca2:=Content(a2);
Cb3:=Content(b3);
Cc5:=Content(c5);
F:=Factorization(Ca2*Cb3*Cc5*A*B*C);
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mult:=Sign(LeadingCoefficient(a2));
divi:=Sign(A);
for i:=1 to #F do
p:=F[i,1];
n:=Chinese(Valuation(A,p)-Valuation(Ca2,p),

Valuation(B,p)-Valuation(Cb3,p),
Valuation(C,p)-Valuation(Cc5,p));

if n ge 0 then
mult:=mult*p^n;

else
divi:=divi*p^(-n);

end if;
end for;
a2:=ExactQuotient(mult*a2,divi*A);
b3:=ExactQuotient(mult*b3,divi*B);
c5:=ExactQuotient(mult*c5,divi*C);
a:=nthroot(a2,2);
b:=nthroot(b3,3);
c:=nthroot(c5,5);
return([a,b,c]);

end function;

B.1.4 From one integral parameterization to all relevant in-
tegral parameterizations

A convenient matrix function.

function Mat(k,p);
if k eq p then
return Matrix(Integers(),2,2,[p,0,0,1]);

else
return Matrix(Integers(),2,2,[1,0,k,p]);

end if;
end function;

Given three binary forms a, b, c ∈ Z[s, t] the following function outputs true
if there exists s, t ∈ Z such that p - gcd(a(s, t), b(s, t), c(s, t)), otherwise outputs
false.

function HasCoprimeSpecialization(p,a,b,c);
HasCS:=false;
gcd:=GCD([Evaluate(a,[1,0]),

Evaluate(b,[1,0]),
Evaluate(c,[1,0])]);

if not IsDivisibleBy(gcd,p) then
HasCS:=true;

end if;
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k:=0;
while (not HasCS) and (k lt p) do
gcd:=GCD([Evaluate(a,[k,1]),

Evaluate(b,[k,1]),
Evaluate(c,[k,1])]);

if not IsDivisibleBy(gcd,p) then
HasCS:=true;

end if;
k:=k+1;

end while;
return HasCS;

end function;

Given a prime p, a pair ((a, b, c), M) ∈ Si, e = Cp(a, b, c) and a subset of
P , list. This procedure, working w.r.t. the prime p of course, adds to list
all integral parameterizations in P coming (i.e. by dividing out a power of p)
from ((a′, b′, c′),M ′) ∈ Sj for some j ≥ i and with M ′ = M

∏
j>i M[aj :bj ] for some

[aj : bj ] ∈ P1(Fp), with the exception that a parameterization is not added if all
Z(p) specializations have p dividing the gcd. The procedure works recursively and
the natural start is with M the identity and list empty.

procedure integralparam(p,a,b,c,M,e,~list);
if IsDivisibleBy(e,60) then
potentialparam:=true;

else
potentialparam:=false;

end if;
for k:=0 to p do
M1:=M*Mat(k,p);
m11:=Mat(k,p)[1,1];
m12:=Mat(k,p)[1,2];
m21:=Mat(k,p)[2,1];
m22:=Mat(k,p)[2,2];
if MatrixRing(FiniteField(p),2)!M1 ne 0 then
a1:=Evaluate(a,[m11*s+m12*t,m21*s+m22*t]);
b1:=Evaluate(b,[m11*s+m12*t,m21*s+m22*t]);
c1:=Evaluate(c,[m11*s+m12*t,m21*s+m22*t]);
e1:=Min([2*Valuation(Content(a1),p),

3*Valuation(Content(b1),p),
5*Valuation(Content(c1),p)]);

if e1 gt e then
integralparam(p,a1,b1,c1,M1,e1,~list);
if IsDivisibleBy(e1,60) then
potentialparam:=false;

end if;
end if;

end if;
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end for;
if potentialparam then
a:=ExactQuotient(a,p^(e div 2));
b:=ExactQuotient(b,p^(e div 3));
c:=ExactQuotient(c,p^(e div 5));
if HasCoprimeSpecialization(p,a,b,c) then
list:=Append(list,[a,b,c]);

end if;
end if;

end procedure;

The following function returns a list with integral parameterizations such that
all solutions obtained from the integral parameterizations (p15a, p10b, p6b) and
(a, b, c) by specializing at rational values, can be obtained by specializing at values
integral at p.

function localsols(p,a,b,c);
e:=Min([2*Valuation(Content(a),p),

3*Valuation(Content(b),p),
5*Valuation(Content(c),p)]);

list1:=[];
integralparam(p,a,b,c,M0,e,~list1);
list2:=[];
integralparam(p,p^15*a,p^10*b,p^6*c,M0,e+30,~list2);
return list1 cat list2;

end function;

The simplest explanation of the following short function is probably the code
itself.

function bifurcation(list,i,F);
p:=F[i,1];
listnew:=[];
for j:=1 to #list do
listnew:=listnew cat

localsols(p,list[j,1],list[j,2],list[j,3]);
end for;
if i lt #F then
return bifurcation(listnew,i+1,F);

else
return listnew;

end if;
end function;

B.1.5 From a polynomial to all integral parameterizations

Given binary forms b3_1, c5_1, b3_2, c5_2 ∈ Z[s, t], such that b3_1/c5_1 and
b3_2/c5_2 are quotient parameterizations, the function outputs true if these pa-
rameterizations are Q-twists of each other, otherwise the function outputs false.
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function Twists(b3_1,c5_1,b3_2,c5_2);
twist:=false;
b3:=0;
c5:=0;
k:=0;
while b3 eq 0 or c5 eq 0 or b3 eq 1728*c5 do
b3:=Evaluate(b3_1,[1,k]);
c5:=Evaluate(c5_1,[1,k]);
k:=k+1;

end while;
if
HasRoot(PolynomialRing(Rationals())!

UnivariatePolynomial(Evaluate(b3_2*c5-c5_2*b3,[s,1])))
or
HasRoot(PolynomialRing(Rationals())!

UnivariatePolynomial(Evaluate(b3_2*c5-c5_2*b3,[1,t])))
then
twist:=true;

end if;
return twist;

end function;

Given a polynomial F (t) := t5 +a4 · t4 +a3 · t3 +a2 · t2 +a1 · t+a0 and A, B, C ∈
Z−{0}, the following function returns a finite list of integral parameterizations to
Ax2 + By3 = Cz5 such that all solutions related to F (t) can be obtained by integer
specialization of one of these parameterizations.

function poltosols(a0,a1,a2,a3,a4,A,B,C);
J1,J2:=param(a0,a1,a2,a3,a4);
b3_1,c5_1:=NDJ(J1);
list:=abc(b3_1,c5_1,A,B,C);
a:=list[1]; b:=list[2]; c:=list[3];
F:=Factorization(Content(Resultant(b,c,t)));
list1:=bifurcation([[a,b,c]],1,F);
b3_2,c5_2:=NDJ(J2);
if not Twists(b3_1,c5_1,b3_2,c5_2) then
list:=abc(b3_2,c5_2,A,B,C);
a:=list[1];
b:=list[2];
c:=list[3];
F:=Factorization(Content(Resultant(b,c,t)));
list2:=bifurcation([[a,b,c]],1,F);

else
list2:=[];

end if;
return list1 cat list2;

end function;
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Samenvatting

Een Diophantische vergelijking is een bepaald soort vergelijking (namelijk een
polynoomvergelijking met gehele coëfficiënten) waarin de onbekenden gehele ge-
tallen moeten zijn. Diophantische vergelijkingen zijn vernoemd naar de Griekse
wiskundige Diophantus van Alexandrië, die waarschijnlijk omstreeks de derde eeuw
na Christus leefde. Voor elk geheel getal n ≥ 2, is de vergelijking

xn + yn = zn

waarin de onbekenden x, y en z gehele getallen moeten zijn, een voorbeeld van een
interessante Diophantische vergelijking. Voor elke n kunnen we oplossingen vinden
met xyz = 0. Voor n = 2 zijn er ook oplossingen met xyz 6= 0, zoals (x, y, z) =
(3, 4, 5), (x, y, z) = (5, 12, 13) of (x, y, z) = (1855, 792, 2017). De Franse wiskundige
Pierre de Fermat vermoedde rond 1638 dat voor n ≥ 3 bovenstaande Diophantische
vergelijking geen enkele oplossing heeft met xyz 6= 0, dit vermoeden is later bekend
komen te staan als de laatste stelling van Fermat. In de kantlijn van een vertaling
van het werk van Diophantus schreef Fermat dat hij een wonderbaarlijk bewijs
voor deze stelling gevonden had, maar dat de kantlijn te smal was om het bewijs
te bevatten. Bekend is dat Fermat voor het geval n = 4 een prachtig bewijs
heeft geleverd, maar hoogstwaarschijnlijk heeft hij geen correct bewijs gevonden
voor het algemene geval. Vele wiskundigen hebben nadien getracht een bewijs te
vinden voor de laatste stelling van Fermat. Voortbouwend op het werk van vele
anderen werd uiteindelijk in 1994 een bewijs gevonden door de Britse wiskundige
Andrew Wiles. De methoden die hiervoor ontwikkeld zijn, zogenaamde modulaire
methoden, zijn zeer krachtig en kunnen ook licht werpen op andere wiskundige
vraagstukken.

In dit proefschrift zijn zowel verscheidene klassieke wiskundige methoden als
moderne wiskundige methoden, namelijk modulaire methoden, gebruikt om zoge-
naamde gegeneraliseerde Fermat vergelijkingen op te lossen. Dit zijn Diophanti-
sche vergelijkingen in de onbekenden x, y en z van de vorm

axp + byq = czr,

waarbij de coëfficiënten a, b en c gegeven gehele getallen ongelijk aan 0 zijn en de ex-
ponenten p, q en r gegeven gehele getallen groter dan 1 zijn. Het meest interessant
zijn oplossingen waarvoor xyz 6= 0 en ggd(x, y, z) = 1 (ggd staat voor grootste
gemeenschappelijke deler), zulke oplossingen noemen we primitieve oplossingen.
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In onderstaande tabel zijn de belangrijkste gegeneraliseerde Fermat vergelijkingen
weergegeven waarvoor in dit proefschrift alle primitieve oplossingen bepaald zijn,
samen met een referentie naar waar ze behandeld worden.

vergelijking zie paragraaf

x2 + y10 = z3 3.3.1
x2 + y62 = z3 3.3.1
x3 + y3 = z5, 3.3.2
x2 + y3 = z5 4.4.1 en 5.4

16x2 + 9y3 = z5 4.4.2
16x2 + 3y3 = z5 4.4.2

We zullen nu de vergelijkingen uit de tabel kort bespreken. Voor alle oneven
priemgetallen l < 107, behalve l = 5 en l = 31, was het bekend dat de vergelijking
x2 + y2l = z3 geen primitieve oplossingen heeft. Dat er ook voor l = 5 en l =
31 geen primitieve oplossingen zijn, is in dit proefschrift aangetoond. Voor alle
priemgetallen l met 7 ≤ l < 10000, was het bekend dat met modulaire methoden
aangetoond kan worden dat de vergelijking x3+y3 = zl geen primitieve oplossingen
heeft (eigenlijk waren de gevallen l = 7, l = 11 en l = 13 nog niet eerder uitgewerkt,
maar hier zijn geen nieuwe ideeën voor nodig). Voor l = 5 was het al wel bekend
dat x3 + y3 = zl geen primitieve oplossingen heeft, maar in dit proefschrift is dit
voor het eerst aangetoond door middel van modulaire methoden. De vergelijking
x2+y3 = z5 was ook al eerder opgelost, er zijn oneindig veel primitieve oplossingen
en er zijn formules bekend die deze oplossingen beschrijven. In dit proefschrift is
een nieuwe aanpak ontwikkeld voor deze vergelijking, met deze aanpak konden ook
de laatste twee vergelijkingen uit de tabel worden opgelost. Een lange tijd hebben
wiskundigen zich afgevraagd of er gehele getallen a, b en c bestaan met abc 6= 0
en ggd(a, b) = ggd(b, c) = ggd(c, a) = 1 waarvoor de vergelijking ax2 + by3 = cz5

geen primitieve oplossingen heeft. Dat zulke getallen bestaan is in dit proefschrift
eindelijk aangetoond door te bewijzen dat de vergelijkingen 16x2 + 9y3 = z5 en
16x2 + 3y3 = z5 geen primitieve oplossingen hebben.

Behalve gegeneraliseerde Fermat vergelijkingen zijn er met behulp van mo-
dulaire methoden ook nog enige andere interessante Diophantische vergelijkingen
opgelost in dit proefschrift. Zo is bijvoorbeeld aangetoond dat voor l = 5 en voor
elk priemgetal l met 13 ≤ l < 107 de Diophantische vergelijking

x2 − x− 2 = yl

geen oplossingen heeft.
Er zijn nu veel resultaten genoemd, maar er is nog niet echt diep ingegaan

op de methoden. In deze samenvatting willen we hier enkel nog over melden
dat er prachtige meetkundige structuren, zoals regelmatige betegelingen van het
hyperbolische vlak, achter schuil gaan. De lezer die hier meer over wil weten, is
hierbij uitgenodigd om dit proefschrift en de referenties te bestuderen.
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