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Our genes and environment together make us who we are. However, monozygotic twins, 

genetically identical and raised together, can develop different diseases, suggesting that 

there might be other factors that can influence behavior and health.

Epigenetics

After many years of genetic research, it has become clear that there are multiple layers 

of genomic information and that our genes (together with environmental influences) do 

not determine everything. In the past decade, the field of epigenetics has seen enormous 

growth and progress. Epigenetics means “on top of” or “surrounding” genetics and it 

defines changes in gene function that can be transmitted through cell division but are not 

due to alterations in the underlying DNA sequence10, see also box 1. Rakyan et al. described 

the epigenome as “a complete collection of epigenetic marks, such as DNA methylation and 

histone modifications, and other molecules that can transmit epigenetic information, such 

as non-coding RNAs, that exist in a cell at any given point in time”11. The epigenome of a cell 

is highly dynamic and genetic and environmental factors can influence the epigenomic state. 

Epigenetics is crucial in the development of different tissues and organs. The DNA sequence 

Box 1: Example of epigenetics

During the Dutch famine (known as the “Hongerwinter”) of 1944/45 during World 

War II, food supply was reduced due to food transport blockades by the Germans. 

Additionally, the cold winter prohibited food delivery by boat because canals froze 

over. Food rations were dramatically reduced and peoples’ diets lacked sufficient 

vitamins and proteins. Pregnant women were especially affected. Individuals conceived 

during this famine and born after the war were prenatally exposed to this condition, 

which led to enhance disease susceptibility for a subset of diseases. Exposure to 

famine during early gestation has been shown to be associated with for example, 

schizophrenia3; 4 and glucose intolerance, the latter leading to adverse outcomes such 

as stress sensitivity and obesity6. 

Besides a mother’s diet, also other prenatal conditions have been associated with 

disease susceptibility of offspring and future generations7. For example, maternal stress 

during gestation has been associated with neurodevelopmental7; 8 and psychiatric 

disorders. One study found an increase in the glucocorticoid receptor promoter of 

these children, which can lead to psychiatric disorders later in life12. 

These examples indicate a heritable component, which can be transferred to the next 

generation13; 14.
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in all cells within an individual is 

identical, but genes are switched 

on or off to control various cellular 

mechanisms, such as differentiating 

cells into different tissue types14. 

Interestingly, recent discoveries have 

revealed that such epigenetic changes 

are reversible and thus add flexibility 

to the genome15; 16. This allows 

genomic adaptation to a changing 

environment, and possibly leads to 

phenotypic variation as well.

As described in the definition of the 

epigenome, there are several types 

of epigenetic modifications14; 17. The 

main factors are histone modification 

and DNA methylation (Figure 1). 

Histones are proteins that enable 

the DNA strand to fold into compact 

structures18. The binding of molecules 

to the histone tails can affect their ability to open or close the chromatin, which is necessary 

to facilitate or prevent gene expression, respectively. DNA methylation is the most studied 

and best characterized epigenetic mark, and also the easiest to study in large sample sizes. 

DNA methylation is the focus of this thesis and will be described below.

DNA methylation 

DNA methylation involves the covalent binding of a methyl group to a Cytosine-5 at a 

C-phosphate-G (CpG) site in DNA by a methyltransferase. CpG sites are relatively rare in the 

genome but more common at promoter regions of genes, where they cluster in CpG islands 

(CGIs). CGIs are defined as regions of 200-500 base pairs with a rich CG content (>50-55%) 

and a CpG observed/expected ratio of 0.6/0.6519; 20, although these definitions are open to 

interpretation21. Most CGIs are unmethylated but when they are methylated at promoter 

regions, they are in general associated with transcriptional repression of the corresponding 

gene22. More than half of the genes in the human genome contain CGIs, mostly at promoter 

and transcription start sites (TSS), though they also exist within gene bodies. The rest of the 

genome is depleted for CpGs, and methylation of CpGs in gene bodies does not necessarily 

lead to blocking transcription elongation22. Gene body methylation has even been associated 

Figure 1: DNA methylation and histone modification 

(used with permission from Qiu 20069)
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with transcriptional activation16. In addition, non-CGI methylation is more dynamic and 

tissue-specific than CGI methylation. Mainly long-term silenced genes exhibit promoter CGI 

methylation, such as imprinted genes or X chromosomal genes, as will be described in the 

next section22. In addition to alterations at CGIs, the regions around these islands, so-called 

shores, spanning up to 2 kilobases (kb), are more variable and more frequently involved 

in differential methylation23; 24. The Human Epigenome project showed that there is inter-

individual variation in DNA methylation, with approximately 50% of the CpG sites having 

more than 50% variation across all samples. Furthermore, DNA methylation is familial, tissue-

specific and can change over time, suggesting it may be partially under genetic control25. 

For example, single nucleotide polymorphisms (SNPs) can regulate CpG methylation. 

Association studies have been conducted in several (disease) populations, leading to 

identification of SNPs that cause an increase or decrease of methylation. The findings of 

these so-called methylation quantitative trait loci (mQTLs) support the role for an underlying 

genetic mechanism to DNA methylation changes. These mQTLs can also affect allele-specific 

methylation (ASM), meaning only one allele of the chromosome in the cell is methylated. In 

addition, it has been hypothesized recently that SNPs not only affect the mean methylation 

level but also the variability of methylation levels26.

Other factors that have an effect on DNA methylation include age27-30; DNA methylation 

shows larger differences between twins with increasing age13; 31, sex 28; 32, medication33-35 

and environment34; 36-38. 

Twin studies are useful for studying epigenetics since monozygotic twins have nearly identical 

genomes and usually have a shared environment. Despite having identical genotypes, 

monozygotic twin pairs can be discordant for disease, meaning that one individual of the 

twin pair may develop a disease while the other remains healthy. Differing phenotypes 

between monozygotic twin pairs suggests epigenetic mechanisms could underlie disease. 

A study of methylation patterns involving monozygotic twins uncovered a significant 

amount of methylation variation between twins, suggesting that molecular mechanisms of 

heritability are also due to epigenetics39. 

Recent advances in next-generation sequencing and micro-array technology (Box 2) provide 

techniques to measure DNA methylation levels genome-wide and in a large number of 

individuals40; 41. These epigenome-wide association studies (EWAS), similar in approach to 

genome-wide association studies (GWAS), enable identification of differentially methylated 

regions (DMRs) between individuals (i.e. cases and controls) or cell lines. Bioinformatics tools 

are necessary for handling these large amounts of data and for conducting extensive data 

normalization and quality control to reduce technical noise and artifacts40. 
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The role of DNA methylation

DNA methylation is involved in several processes, such as X chromosome inactivation, 

parental imprinting, (embryonic) development, cell specialization, and gene expression.

X chromosome inactivation is a process that allows for only one of the two copies of the 

X chromosome in females to be expressed. This mechanism prevents females from having 

twice as much gene expression of genes on the X chromosome than their male counterparts, 

who only have one copy of the X chromosome16; 22. Parental imprinting is the expression of 

genes in a parent-of-origin manner. Imprinted alleles are silenced and only the non-silenced 

allele from either the father or the mother is expressed16; 22. Furthermore, DNA methylation 

contributes to cell specialization, tissue differentiation and development by switching genes 

on or off in certain cells14. 

Gene expression is often interpreted as the intermediate between genotype and phenotype. 

Only a small proportion of the human genome is transcribed42. The role of DNA methylation 

in gene expression is thought to include interference with transcription factor binding 

and recruitment of repressors such as histone deacetylases13; 43. Although promoter CGI 

methylation is associated with reduced expression of the corresponding gene, the association 

between methylation and expression is far more complex22; 44. For example, the direction of 

effect between changes in methylation and in gene expression is not always clear22; it can 

Box 2: Detection methods:

Several methods have been developed to detect DNA methylation but the focus 

of this thesis involves unbiased whole genome approaches using Illumina Infinium 

technology. 

Illumina’s Infinium Methylation Assay interrogates the methylation status of thousands 

of CpG’s using a microarray-like technology2. For the human genome Illumina has 

developed two BeadChips: the HumanMethylation27 BeadChip2, covering 27,000 

CpG sites, and the more recently released HumanMethylation450 BeadChip3; 5 

covering 450,000 CpG sites. DNA samples are bisulfite treated, turning unmethylated 

cytosines into uracils, while methylated cytosines remain unchanged. Subsequently, 

DNA is amplified on a whole-genome level, and is hybridized onto the BeadChips, 

which are then scanned. 

The methylation status is given as a β value, which is a continuous variable between 0 

(absent methylation) and 1 (fully methylated), representing the ratio of the intensity of 

the methylated bead type to the sum of the methylated and unmethylated bead type.
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be difficult to determine if methylation alterations are the cause or the consequence of 

altered expression, that might in turn lead to phenotypic differences between individuals11; 

34; 40. In addition, environmental factors (such as smoking) and genetic variation can affect 

both methylation status and disease, leading to a methylation-disease association due to 

confounding11. 

DNA methylation and implications in disease

In this thesis, we focus on complex neuropsychiatric disorders, specifically schizophrenia. 

Schizophrenia is a common mental disorder affecting approximately 1% of the population. It 

is characterized by two kinds of symptoms: “positive symptoms” consisting of hallucinations, 

delusions, and paranoia, and “negative symptoms” consisting of loss of interest, and lack 

of energy. Many different factors including genes and environment jointly contribute to an 

individual’s susceptibility to the disorder. Genetic variation plays a role and the heritability 

has been estimated to be as high as 80%45-49. Extensive research on the genetic background 

of schizophrenia has proven its highly polygenic nature in which hundreds of genes are likely 

to play a role50. Recent GWAS have identified a number of susceptibility loci but the vast 

majority of the estimated heritability remains unexplained. The International Schizophrenia 

Consortium showed that the polygenic basis of schizophrenia involves thousands of common 

alleles with very small effect that could explain at least 30% of the heritability50. Recently, 

this percentage has been increased to 50%, when it has been estimated that over 8,000 

independent common variants contribute to the genetic basis of schizophrenia51. Both 

common genetic variants with small effects as well as rare variants with large effects may 

contribute to the liability of developing schizophrenia52 (Figure 2). To date, no common 

genetic variant confers in itself more than a small increase in risk to this disorder53, implying 

that epigenetics could explain a part of this “missing heritability”.

Epigenetic alterations provide 

a new and important tool 

to study disease etiology for 

psychiatric disorders in general 

and schizophrenia in particular. 

The field of cancer research 

has already made great 

progress with the study of 

epigenetics. In cancer etiology 

and progression, the role of 

epigenetic modifications is 

well established54-56 and DNA 
Figure 2: Common versus rare variants 

(used with permission from Manolio et al. 20091)



14 | Chapter 1

methylation appears to be an important mechanism. For example, repression of tumor-

suppressor genes by gain in methylation (hypermethylation) can cause unlimited tumor-

growth. In addition, hypomethylation (loss of methylation) can cause increased expression 

of growth-promoting genes. The complexity of these processes is demonstrated by the fact 

that both hypomethylation and hypermethylation can lead to both gene activation and gene 

silencing in cancer34. In addition to genetic variation, epigenetics provides an extra layer of 

variation and might mediate the relationship between genotype and environment34. 

Although we understand some of the mechanisms behind DNA methylation, the proportion 

of inter-individual variation in DNA methylation that contributes to disease is largely 

unknown. The field of epigenomics in complex common diseases is expanding, and several 

observations support the role for epigenetics in disease etiology11. These observations include 

identification of epigenetic differences in monozygotic twins discordant for disease, and the 

increase of complex diseases in the population. The examples in Box 1 also suggest a non-

genetic form of inheritance of epigenetic factors. Combining different forms of genomic 

information is essential to unravel the etiology of many complex diseases.

The aim of this thesis is to explore the relationships and processes between these different 

types of genomic information (i.e. genotype, DNA methylation, and gene expression), and 

layer them together to gain more insight into the mechanisms underlying the neuropsychiatric 

disorder schizophrenia.
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Outline of this thesis

In this thesis we aim to gain more insight into the mechanisms underlying DNA methylation 

and gene expression, and into how these processes may play a role in susceptibility to 

schizophrenia. 

In Chapter 2, we study the association between gene expression and DNA methylation in 

whole blood using healthy controls. Next, we integrate genotypes to investigate genetic 

regulation of methylation and expression levels and determine causal relationships between 

these three-way associations. In Chapter 3, we use the results of a large meta-analysis to 

investigate whether the most-associated SNPs with schizophrenia regulate gene expression. 

Subsequently, we test the transcripts associated with these SNPs for differential expression 

in schizophrenia patients compared to healthy subjects. The results from this large meta-

analysis are also used in Chapter 4, in which we examine whether biologically relevant 

SNPs (according to DNA methylation and gene expression associations) are enriched for 

schizophrenia susceptibility loci (results from the same meta-analysis as Chapter 3). In 

Chapter 5, we investigate associations between DNA methylation and genotypes using three 

different approaches and explore the genetic contribution to variability in DNA methylation 

using 22 nuclear families each containing one child diagnosed with schizophrenia. In 

Chapter 6, we explore the association of microRNA 137, which has been previously linked 

to schizophrenia, with DNA methylation in brain tissue of schizophrenia and bipolar patients, 

and healthy controls. Finally, in Chapter 7 we present a discussion of our findings.
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Abstract

Background

The predominant model for regulation of gene expression through DNA methylation is an 

inverse association in which increased methylation results in decreased gene expression 

levels. However, recent studies suggest that the relationship between genetic variation, DNA 

methylation and expression is more complex.

Results

Systems genetic approaches for examining relationships between gene expression and 

methylation array data were used to find both negative and positive associations between 

these levels. A weighted correlation network analysis reveals that i) both transcriptome and 

methylome are organized in modules, ii) co-expression modules are generally not preserved 

in the methylation data and vice-versa, and iii) highly significant correlations exist between 

co-expression and co-methylation modules, suggesting the existence of factors that affect 

expression and methylation of different modules (i.e., trans effects at the level of modules). 

We observed that methylation probes associated with expression in cis were more likely 

to be located outside CpG islands, whereas specificity for CpG island shores was present 

when methylation, associated with expression, was under local genetic control. A structural 

equation model based analysis found strong support in particular for a traditional causal 

model in which gene expression is regulated by genetic variation via DNA methylation 

instead of gene expression affecting DNA methylation levels.

Conclusions

Our results provide new insights into the complex mechanisms between genetic markers, 

epigenetic mechanisms and gene expression. We find strong support for the classical 

model of genetic variants regulating methylation, which in turn regulates gene expression. 

Moreover we show that, although the methylation and expression modules differ, they are 

highly correlated.
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Background

Epigenetics has been described as the structural adaptation of chromosomal regions so as 

to register, signal or perpetuate altered activity states1. DNA methylation is one of several 

forms of epigenetic modifications and involves the covalent binding of a methyl group to 

a Cytosine-5 at a C-phosphate-G (CpG) site. These sites are relatively rare in the genome 

but more common at promoter regions of genes, also called CpG islands (CGIs). CpGs in 

these islands are less likely to be methylated than CpGs outside these islands. Recent studies 

have shown that specifically the CpGs in the shore of CGIs are most frequently involved in 

differential methylation between tissues or experimental groups2,3. Increased methylation of 

CpG islands at 5’ end of a gene is associated with gene repression. Possible mechanisms for 

repression include interference with transcription factor binding or through the recruitment 

of repressors such as histone deacetylases4.

Although one would expect DNA methylation at CGIs and expression of the nearby gene to 

be inversely correlated, this is not necessarily the case. Recent reports also identified positive 

associations between expression and methylation levels5-7. However, negative associations 

between methylation and expression were found to be enriched particularly in CGIs6 and 

promoter regions5.

Around 30% of gene expression levels in cell lines8 and 23% of DNA methylation levels in 

blood are heritable9 and genetic variation associated with expression and methylation levels 

has been identified in several organisms6,10-12, tissues13 and populations14. Local (cis) and 

distal (trans) associations of genetic variation with gene expression levels have been observed. 

With the arrival of high-throughput DNA methylation assays, methylation quantitative trait 

loci (mQTLs) can now be studied genome-wide in any tissue or cell type of interest. Similar 

to expression QTLs (eQTLs), more cis than trans regulation has been identified5-7 but peak 

enrichment for mQTLs is located in much closer proximity to transcription start sites than 

that of eQTLs6.

Attempts to identify three-way associations between genetic variants, expression and 

methylation on a genome-wide scale in four different brain regions did not identify co-

regulation of methylation and expression by the same genetic variants6, while a study 

of cerebellar samples did identify three-way associations for a number of genes7. In 

lymphoblastoid cell lines of 77 individuals of the Yoruba Hapmap population, co-regulation 

of expression and methylation levels by the same genetic variants was also found, suggesting 

a shared mechanism, whereby a genetic variant influences methylation, which in turn 

influences expression levels5. Strong evidence exists that both patterns of CpG methylation15,16 

and gene expression13,17,18 differ between tissues.

The aims of the current study are i) to relate expression levels to methylation levels, ii) to 

relate co-expression modules (clusters of expression probes) to co-methylation modules, iii) 
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and to study the relationship between genetic markers, methylation and expression in whole 

blood of a relatively large (n=148) set of healthy human subjects. For the genetic analysis, 

we examined the associations of methylation and expression levels and identified genetic 

markers associated with these levels. To infer directionality in the relationships between 

genetic variants, methylation and expression, we calculated local edge orienting (LEO) scores 

based on structural equation models19. This method has been applied successfully before 

and will aid in elucidating the nature of relationship between genetic variation, methylation 

and expression20-23.

Results

Associations between methylation and expression levels

A multivariate linear model analysis for regressing a gene expression level on a methylation 

level and age and gender resulted in the identification of 522 negative and 276 positive 

cis associations between methylation and expression levels (False Discovery Rate (FDR) 5% 

corrected). A negative association between methylation and transcript level means that 

increased methylation levels correlate with decreased expression levels, whereas a positive 

correlation includes levels that both increase or decrease. These associations involved 517 

different cis-acting CpG loci (from 461 unique genes) and 495 corresponding expression 

probes (representing 452 unique genes). For trans effects, we found evidence for 844 

negative and 1,806 positive associations between methylation and expression levels involving 

705 different methylation probes (from 630 distinct genes), and 170 different expression 

probes (representing 157 unique genes). Full results are given in Table 1 and Additional file 

1: Table S1. Because of the stringent Bonferroni corrections for multiple testing with the 

number of methylation probes multiplied by the number of expression probes, the effect 

sizes of surviving trans effects were significantly larger than for cis effects with adjusted 

explained variance (R2) ranging from 23 to 60 percent for trans effects and 0.8 to 50 percent 

Table 1 Number of probes constituting significant methylation and expression combinations and their 

association with SNPs

unique + - overlap SNP cis

Cis associations

Methylation 517 224 354 61 69 probes (13.3%), 86 independent loci

Expression 495 214 336 55 62 probes (12.5%), 73 independent loci

Trans associations

Methylation 705 585 230 110 1 probe (<1%)

Expression 170 101 117 48 0 probes
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for cis regulation (Additional file 2: Figure S1a). Another trend that we observed was that 

cis effects are enriched for negative correlations (65.4% overall) while positive correlations 

between DNA methylation and gene expression are more frequently observed with trans 

associations (68.2%; Fisher’s Exact test for count data p<2.2e-16), (Additional file 2: Figure 

S1b).

This table shows the significant methylation and expression combinations, subdivided 

into cis and trans associations. The first column shows the counts of unique probes (for 

methylation and expression). The second and third columns indicate the number of probes 

positively (+) or negatively (−) associated. The fourth column indicates the overlapping 

probes: methylation or expression probes that are associated with expression or methylation 

levels in both directions. The last column indicates the number (and %) of unique probes 

associated with SNPs and the number of independent (pruned r2 of 0.2) loci in cis.

DNA methylation and gene expression are regulated by genetic variants

Expression levels and methylation levels that were significantly associated with each other 

were separately tested for regulation by genetic variants. The methylation and expression 

levels were taken as phenotypes and a linear model of allele dosage, with age and gender 

as covariates, was tested using PLINK24. We focused on local (cis) effects only and observed 

that approximately 13.7% of methylation signals and 12.5% of gene expression levels are 

associated with single nucleotide polymorphisms (SNPs). Results are given in Table 1, where 

the number of independent loci, associated with probes, is reported. These were retrieved 

by pruning the SNPs with an R2 of >0.2 to prevent reporting many SNP associations of the 

same signal due to linkage disequilibrium (LD). Full results are in Additional file 3: Table S2.

Cis-acting methylation sites under genetic control are over-represented in CpG 

island shores

We examined the regional distribution of methylation sites (n=517) that are associated with 

nearby gene expression levels and observed a significant overrepresentation of these loci 

outside CpG islands and shores compared to all probes present on the Illumina array (50.9% 

vs 26%; Fisher’s Exact p<2.2e-16). This coincided with a significant underrepresentation of 

DNA methylation signal at CpG islands (13.5% vs. 42%, Fisher’s Exact p<2.2e-16) and a 

modest increase at the shores flanking CpG islands (35.6% vs. 32%, Fisher’s Exact p=0.056). 

The regional distribution of DNA methylation associated with gene expression is somewhat 

different when DNA methylation is under genetic control. In case of cis genetic regulation 

we observed a further enrichment of DNA methylation at shores of CpG islands (53.4%, 

Fisher’s Exact p=1.3e-4), whereas trans genetic regulation shows the opposite effect and 



26 | Chapter 2

is less frequently observed for DNA methylation at shores (24.4%, Fisher’s Exact p=3.9e-5). 

The overall results are presented in Table 2.

Table 2: Distribution of results over CpG islands and shores. Methylation probes were classified 

into three categories according to UCSC browser (http://genome.ucsc.edu/); CpG islands, CGI 

shores (up to 2kb around an island) and outside islands or shores. Differences compared to Illumina 

Human Methylation27K array were tested using Fisher’s Exact for count data (Bonferroni threshold 

p:0.05/9=0.006). A downward arrow indicates significantly lower percentage of probes while an 

upward arrow indicates significantly higher percentage of observations compared to the overall probe 

distribution on the Illumina array. 

Location Illumina  
Human 

Methylation 
27

Methylation &  
expression cis

Methylation &  
expression trans

Methylation &  
expression & SNP cis

Island 11,582 42% 70 13.5%, p<2.2e-16 269 38.2%, p=0.04 11 15.1%, p=1.1e-06

Island shore 
(2kb)

8,718 32% 184 35.6%, p=0.056 172 24.4%, p=3.9e-05 39 53.4%, p=1.3e-04

Outside 
island/shore

7,278 26% 263 50.9%, p<2.2e-16 264 37.4%, p=2.5e-10 23 31.5%, ns

Total 27,578 517 705 73

Methylation probes were classified into three categories according to UCSC browser (http://

genome.ucsc.edu/); CpG islands, CGI shores (up to 2kb around an island) and outside islands 

or shores. Differences compared to Illumina Human Methylation27K array were tested 

using Fisher’s Exact for count data (Bonferroni threshold p:0.05/9=0.006). A downward 

arrow indicates significantly lower percentage of probes while an upward arrow indicates 

significantly higher percentage of observations compared to the overall probe distribution 

on the Illumina array.

Causal relationships between cis-acting methylation and expression probes

To study the causal relationship between methylation and expression levels that were 

significantly associated, we focused the analysis on pairs of methylation and expression levels 

with a common cis-acting SNP. We selected the top 20 methylation probes, associated with 

19 expression probes that were significantly associated with 147 single common SNPs. Since 

alleles can be considered fixed features of a genome, we selected SNPs as causal anchors 

and used a model with residuals of the 20 methylation and 19 expression probes corrected 

for age and gender. For the causal scenario SNP → Methylation → Expression, we found 

44 combinations (29.9%) with a LEO score above 0.8, involving seven unique genes (Table 

3). Of these, 20 combinations have a strikingly high LEO score of 3 or higher; for most of 

these 20 combinations, the model fitting p-value of the causal model SNP → Methylation → 

Expression is above 0.01, indicating a good fit and lending further credence to these results 
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(Additional file 4: Table S3). For the model SNP → Expression → Methylation, we found 

10 combinations (6.8%) with a LEO score above 0.8, involving again seven unique genes 

(Table 3). The model fitting p-values of these combinations are generally worse (below 

0.01), indicating that the linear structural equations models do not fit the data as well and 

suggesting caution in interpreting the results. A full list of combinations is given in Additional 

file 4: Table S3. Some SNPs were found to be in high linkage disequilibrium (LD), especially 

in the Major Histocompatibility Complex (MHC) region on chromosome 6. Therefore only 

the top SNPs are listed in Table 3. We choose to investigate these two models since we 

were interested in the causal direction between DNA methylation and gene expression, after 

regulation by genetic variation, excluding models 4 and 5. Model 3, was not informative 

since we already selected SNPs for association with both methylation and expression.

Table 3 Top results LEO analysis, Results for top SNPs

Gene 
Symbol

M&E CGI LEO 
model

LEO 
score

P-
value

Top SNP Chr Bp Full name

BTN3A2 – Outside S→M→E 6.90 0.15 rs2093169 6 26,603,078 butyrophilin, subfamily 3, 
member A2

HP – Outside S→M→E 4.24 0.82 rs8044555 16 70,710,256 haptoglobin

CTSW – Outside S→M→E 2.73 0.13 rs11227306 11 65,335,248 cathepsin W

NAPRT1 – Shore S→M→E 2.69 0.11 rs4874159 8 144,742,093 nicotinate phosphoribosyltrans-
ferase domain containing 1

PHACS – Shore S→M→E 1.50 2.9e-03 rs4755227 11 44,078,659 1-aminocyclopropane-1-carbox-
ylate synthase homolog

PNMA3 + Shore S→M→E 1.36 0.16 rs6627737 X 151,971,610 nicotinate phosphoribosyltrans-
ferase domain containing 1

CDC16 – Island S→M→E 1.09 0.01 rs11147317 13 113,957,498 cell division cycle 16 homolog 
(S. cerevisiae)

HRASLS3 – Shore S→E→M 2.42 7.2e-04 rs2030731 11 63,130,224 phospholipase A2, group XVI

TACSTD2 – Island S→E→M 2.08 9.5e-03 rs11207272 1 58,846,018 tumor-associated calcium signal 
transducer 2

SRXN1 – Shore S→E→M 1.87 5.4e-03 rs6076864 20 569,825 sulfiredoxin 1 homolog (S. 
cerevisiae)

C21orf56 – Outside S→E→M 1.30 2.8e-03 rs8133866 21 46,423,604 chromosome 21 open reading 
frame 56

BTN3A2 – Outside S→E→M 1.14 6.4e-05 rs12199613 6 26,475,197 butyrophilin, subfamily 3, 
member A2

WBSCR27 – Shore S→E→M 0.95 8.6e-04 rs11763011 7 72,922,084 Williams Beuren syndrome 
chromosome region 27

GSTM3 – Island S→E→M 0.88 1.4e-03 rs11807 1 110,062,265 glutathione S-transferase mu 
3 (brain)
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This table contains top probes resulting from causality analysis (LEO scores >0.8). The 

top seven genes fit the causal scenario SNP → Methylation → Expression (S→M→E), while 

the bottom seven genes fit the reverse model in which DNA methylation is regulated by 

gene expression that is under genetic control (S→E→M). The Gene Symbol is given in 

the first column. The second column indicates whether the methylation and expression 

levels are associated negatively (−) or positively (+). The third column indicates whether 

the methylation probe is located in a CpG island (CGI), in the shore, or outside both. The 

columns “LEO model”, “LEO score” and “P-value” indicate which causal model fits best with 

the corresponding LEO score and P-value. This model fitting p-value is calculated using the 

model chi-square statistic statistic. The chi-square statistic tests the null hypothesis that the 

model is correct, thus a p-value > 0.01 indicates good fit. The next column indicates the SNP 

most significantly associated. The last three columns contain chromosome number and base 

pair location (NCBI build 36) of the SNP and full name of the gene.

A locus in the BTN3A2 gene passed the LEO threshold of 0.8 for both models SNP → 

Methylation → Expression (LEO score 6.2 based on causal anchor rs9467632) and SNP → 

Expression → Methylation (LEO score 1.14 based on causal anchor rs12199613). The two 

SNPs that were used as causal anchors are in moderate LD (R2=0.092, D’=0.68 based on 

1000 Genomes Pilot 1 CEU population25. The significant results in both directions could 

indicate a bi-directional causal interaction between expression and methylation. However, 

while the model SNP → Methylation → Expression fits the data well (model fitting p-value 

p=0.10), the model SNP → Expression → Methylation does fits the data poorly (model 

fitting p-value p=6.4e-5). Thus, while the evidence for the SNP → Methylation → Expression 

model for BTN3A2 is strong, the evidence for the SNP → Expression → Methylation model 

is weak.

Weighted correlation network analysis of expression and methylation data

We separately constructed co-expression and co-methylation networks from the expression 

and methylation data, respectively (Additional file 5- Supplementary Methods), using the 

Weighted Correlation Network Analysis framework WGCNA26,27. In expression data (13,843 

genes) we identified 23 co-expression modules (labeled 1–23) with sizes ranging from 32 to 

1,520 genes. Additional file 6; Table 1 provides a brief overview of the expression modules 

along with 10 top hub genes (genes with highest module membership) in each module. 

A total of 7,743 (56% of total) genes were assigned to a module while 6,091 background 

genes were not assigned to a module. Background genes are labeled 0 and colour-coded 

in grey. Gene ontology (GO) enrichment analysis revealed significant enrichment of multiple 

modules in various GO terms (Table 4), which provides evidence that these modules are 

biologically meaningful. A table listing module membership of all genes in expression 

modules is provided in Additional file 7.



Genetic analysis of DNA methylation and gene expression | 29

Table 4 Top GO enrichment terms for expression modules

For each module we list the top enriched GO terms. Columns list the module label, module 

size, rank of the enrichment p-value for that particular module, the Bonferroni-corrected 

enrichment p-value (the correction is performed with respect to the number of GO terms), 

fraction of the module genes also in the GO term, GO ontology, and GO term name. Multiple 

expression modules exhibit significant enrichment. Row shading separates modules for easier 

reading. The enrichment provides evidence that the modules are biologically meaningful.

In methylation data (13,569 genes) we identified 9 modules of sizes ranging from 37 

to 1,067 genes. Additional file 6; Table 2 provides a brief overview of the methylation 
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modules along with 10 top hub genes (genes with highest module membership) in each 

module. For reader-friendliness, methylation module labels were chosen such that modules 

with significant overlap with expression modules carry the same label (Methods). A total of 

4,088 (30% of total) genes were assigned to a module, while 9,481 were not assigned. We 

observed that strong co-expression relationships tend to be more frequent than strong co-

methylation. GO enrichment analysis of methylation modules revealed multiple significantly 

enriched categories (Table 5). A table listing module membership of all genes is provided 

in Additional file 8.

Table 5 Top GO enrichment terms for methylation modules

For each module we list the top enriched GO terms. Columns list the module label, module 

size, rank of the enrichment p-value for that particular module, the Bonferroni-corrected 

enrichment p-value (the correction is performed with respect to the number of GO terms), 

fraction of the module genes also in the GO term, GO ontology, and GO term name. Multiple 

methylation modules exhibit significant enrichment. Row shading separates modules for 

easier reading. Again, the enrichment provides evidence that the modules are biologically 

meaningful.

Preservation of co-expression modules in methylation data and vice versa

A natural question is whether the expression and methylation modules are related. At 

the most basic level one can ask whether the expression and methylation modules can 

be matched based on significant overlap of the genes in each module. We found that 

expression and methylation modules in general exhibit relatively few overlapping genes 

(Additional file 9), although some of the overlaps are statistically significant. The most 

significant overlap (p=6e-12) is observed between the largest co-expression module and the 
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largest co-methylation module. While the cross-tabulation based module overlap analysis 

is a simple and intuitive way of assessing module preservation, it has several limitations. 

In particular, it cannot be used to make strong statements about the lack of module 

preservation since alternative module detection methods applied to the test data may 

lead to different results. A rigorous module preservation analysis is based on the network 

module preservation statistic Zsummary (Methods) since it is independent of the vagaries of 

detecting modules in test data28. We found that the largest expression module 1 (enriched 

in intracellular-related terms) exhibits moderate preservation, Zsummary≈5. Modules 9 

(enriched in intracellular-related terms), 12 (ribosome), 16 (translation), 17 (mitochondrion), 

and 19 (ribosome) show weak evidence of preservation, while all other expression modules 

show no evidence of preservation in methylation data (Zsummary ≤ 2, Figure 1A). For the 

methylation modules we found that modules 1 (intracellular) and 2 (lymphocyte activation) 

show weak to moderate evidence for preservation, while all other modules show no evidence 

of preservation (Zsummary < 2, Figure 1B). It is known that the Zsummary statistic tends 

to increase with module size, reflecting the intuition that a preservation signal observed 

among many genes is more significant than a similar preservation signal observed among 

only a few genes. To measure relative preservation irrespective of module size, the authors 

of28 proposed the use of a rank-based statistic medianRank. Additional file 10 shows the 

medianRank statistics in this study. The modules with high Zsummary have low (i.e., near 

top) ranks. Hence, the two preservation statistics offer a largely consistent picture of module 

preservation, even though they measure very different quantities.

The weak preservation of co-expression modules in methylation data and vice-versa shows 

that in general modules (clusters) of expression probes do not correspond to modules of 

methylation probes. However, we found strong correlations between co-expression modules 

and co-methylation modules as described in the following.

Associations of expression and methylation eigengenes

Although the composition of co-expression modules is different from that of co-methylation 

modules, we observed strong correlations of expression and methylation module eigengenes 

(Figure 1C). A module eigengene is a mathematically optimal way of summarizing the 

levels of a module (Methods). For example, eigengenes of methylation modules 2 and 7 

(both enriched in immune system/response terms) are strongly correlated with multiple 

expression eigengenes such as ME 7 (enriched in immune system process), 12 (ribosome), 

15 (intracellular signal transduction), 19 (ribosome), and 22 (no significant enrichment). 

Methylation module eigengenes 3 (extracellular region) and 30 (anatomical structure 

morphogenesis, nervous system development) also relate to several expression module 
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eigengenes but the associations are weaker. In summary, we observed multiple strong 

correlations between expression and methylation module eigengenes.
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Figure 1 Preservation and association of co-expression and co-methylation modules. A. 

Module preservation statistic Zsummary that summarizes evidence of preservation of expression modules 

in methylation data. Each module is labelled by a numeric label and the corresponding colour. Values 

of Zsummary below 2 indicate no evidence of preservation; values between 2 and 5 indicate weak to 

moderate evidence for preservation. Only the largest module, labelled 1 (turquoise), exhibits Zsummary 

above 5 that can be considered moderate-strong evidence of preservation. B. Analogous plot of the 

Zsummary statistic for preservation of methylation modules in expression data. As in expression data, 

only the largest module (also labelled 1, turquoise) exhibits moderate-strong evidence of preservation. 

C. Robust correlations and the corresponding p-values of expression (y-axis) and methylation (x-axis) 

eigengenes. Each row corresponds to an expression eigengene (E.ME) labelled by numeric module 

label and colour. Each column corresponds to a methylation eigengene (M.ME) labelled by numeric 

module label and colour. Numbers in the table report the robust correlation and the corresponding 

p-value of the respective expression and methylation eigengenes. Only correlations whose p-value is 

below 0.05 are displayed. The table is colour-coded according to correlation such that (strong) green 

colour corresponds to (strong) negative correlations, and (strong) red colour corresponds to (strong) 

positive correlations.
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Module membership of individual genes in expression and methylation modules

Weighted correlation network methods allow one to define a continuous measure of 

module membership for each variable in each module as the correlation of the variable 

profile with the module eigengene (Methods). Additional files 7 and 8 report the module 

membership (based on expression and methylation profiles) of all genes in all modules. Since 

the expression and methylation data were measured for the same set of samples, we are 

able to also provide the module membership of expression profiles in methylation modules 

and vice-versa. These Supplementary Files serve as a resource for relating expression and 

methylation probes to the modules.

Discussion

We investigated the relationship between genetic variation, DNA methylation and gene 

expression in a sample of 148 healthy subjects using array-based data derived from whole 

blood. We found both negative (levels in opposite direction) and positive (levels in same 

direction) associations between cis-acting DNA methylation probes and corresponding gene 

expression levels, confirming previous reports that DNA methylation and gene expression 

located within a cis-region can be both positively and negatively associated, but are 

predominantly negative5-7.

In this study we applied FDR correction for multiple testing for cis associations between 

methylation and expression, but imposed a more stringent genome-wide significance 

threshold for trans effects since there is a considerable debate in the literature whether such 

relationships are reproducible29,30. This resulted in a limited number of trans associations 

that do survive this threshold but with relatively strong effect sizes. It is of note that such 

trans associations are enriched for positive correlations, whereas traditionally it is expected 

that methylation and expression are inversely correlated. We hypothesised that these involve 

genes involved in general methylation pathways, such as genes that induce the attachment 

of a methyl group. However, a gene ontology analysis did not show any overrepresented 

pathways (data not shown).

Furthermore, we observed that methylation probes with cis-acting effects on gene expression 

levels are less likely to be located in CpG islands and more likely to be present outside CGIs 

and shores insofar they were not regulated by genetic variation. Tissue- and cell type-specific 

methylation occurs much more often in gene bodies (outside island and shores) than in CpG 

island promoters31, indicating that methylation at CpG sites in CpG islands is much more 

static, which could explain the underrepresentation of CpG sites associated with expression 

(and SNPs) in CpG islands. Only for those CpGs that were associated with SNPs, we did 

concur with previous studies showing more frequent associations with expression in island 

shores2,3. CpG sites located in shores tend to be more variable among individuals and this 
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might lead to an increased number of association findings. In addition, trans associations 

are less likely to be located in island shores and more likely to be positioned outside CGIs and 

shores. Also, trans associations are more likely to be positive (67%).

Identification of genetic variants (SNPs) influencing the methylation and expression levels 

showed that in more than 12% of methylation-expression cis-pairs, the methylation and/

or the expression level was associated with a SNP in cis, suggesting genetic control of these 

levels.

Further analysis of genetic regulators (SNPs) of methylation and expression levels investigating 

the causality revealed three-way causal relationships. Previous studies have attempted 

to identify three-way associations in various tissues, with mixed results6,7. We used local 

structural equation models to calculate local edge orienting (LEO) scores based on using a 

cis-acting SNP as causal anchor19,32. We find that the traditional model of genetic variants 

regulating methylation, which in turn regulates gene expression to be most common in 

most of the three-way associations that showed significant evidence for causality (as was 

hypothesized in literature5). The set of genes for which the S→M→E model fits best does 

not exhibit significant enrichment for specific functions or pathways. Since the S→M→E 

model is expected to be ubiquitous, the lack of enrichment is not surprising. However, one 

of the genes that fit this model, PNMA3, is located on the X chromosome. Since inactivation 

in females may be a confounding factor when analyzing X chromosomes, we repeated 

the association analysis for all significant X chromosomes in males only. We observed no 

significant differences when using males-only, which confirms that the PNMA3 finding is 

likely to be true. Strikingly, the reverse model, in which a genetic variant primarily regulates 

gene expression, which in turn regulates DNA methylation, was the best causal model for 

a number of genes (including C21ORF56, HRASLS3, TACSTD2, WBSCR27, SRXN1, GSTM3, 

BTN3A2), although the model p-values of these LEO scores were small, indicating poor fit. 

For example, one of these genes, C21ORF56, was highlighted in a previous genome-wide 

study where a three-way association for this gene was identified. Additional experiments 

indicated that genetic variation in this gene affects chromatin structure in this region5. The 

gene itself may be involved in inter-individual differences in response to DNA damaging 

agents33. These mechanisms and our data suggest that loci whereby genetic variation 

influences expression and in turn methylation may exist and warrants further study. The 

methylation and expression probes that showed a causal direction in the LEO analysis were 

all present within the same gene. However, we observed that of all the 798 significant 

cis associations, only 155 (19%) involved probes that represent the same gene. This may 

suggest that the strongest (detectable) causal correlations between DNA methylation and 

gene expression are likely to be local events.

The systems level analysis afforded by WGCNA reveals that both transcriptome and 

methylome can usefully be organized into modules. Many co-methylation and co-expression 
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modules are highly significantly enriched with gene ontology categories, which provides 

indirect evidence that these modules are biologically meaningful. Our module preservation 

analysis between expression and methylation data reveals that most co-expression modules 

are comprised of genes that do not form a module in the methylation data and vice versa. 

Only the largest co-expression module shows moderate to strong preservation and overlap 

with the largest co-methylation module. In other words, co-expression modules and co-

methylation modules are largely composed of different genes. On the other hand, several 

pairs of expression and methylation eigengenes show highly significant positive and negative 

correlations. This suggests the existence of factors that affect expression and methylation of 

different sets of genes, i.e., trans effects at the module level.

A limiting factor of our study may be the fact that the Illumina 27k array covers only a 

selection of CpG sites and is enriched for promoter regions and CpG islands near genes. 

Another increasingly important issue is the potential difference between hydroxymethylation 

and DNA methylation that cannot be distinguished with current methylation arrays34,35. 

To date, the role of 5-hydroxymethylation is not fully understood but it is likely that 

5-hydroxymethylation plays a role in demethylation34-38. Although there is no reason to 

assume a systematic influence of 5-hydroxymethylation on our results, we cannot rule this 

out and further refinement of methylation levels is warranted. A third possible limitation 

is the use of whole blood comprised of different cell types for our analysis. Yet, although 

whole blood does not provide the optimal resolution, these cell types can be used to study 

general genetic mechanisms. Given the sample size we suspect that effects of blood cell 

composition are limited and do not play a major role in the outcome. We measured gene 

expression and DNA methylation from the same blood sample so that the composition of 

different cell types should not substantially affect the overall outcome and conclusions. 

Moreover, studies have shown that a majority of the strongest eQTLs overlaps between 

different tissues and cell types6,39.

Conclusions

Overall, this study contributes to our understanding about the relationship between genetic 

markers, methylation and expression levels in whole blood of healthy subjects. We observed 

cis-associations between methylation and expression levels to be both positive and negative, 

and most likely to be located outside CGIs and shores. Overrepresentation in shores, as 

previously found, was only present when selecting methylation/expression combinations 

regulated by genetic variation in cis. Methylation/expression combinations in trans are 

enriched for positive correlations and also located mostly outside CGI’s and shores. Results 

from causality analyses indicate that the conventional model of genetic variants regulating 

methylation, which in turn regulates gene expression, is most common. This is widely 
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supported in literature32. In addition, this indicates that the causal direction analysis is a useful 

tool for investigating relationships between genotype, methylation and expression. Finally, 

we showed that methylome and transcriptome are organized into modules. Although the 

co-expression en co-methylation modules are generally not preserved in one another, we do 

find highly significant correlations between the modules. These findings suggest that there 

may be other (trans) factors affecting both methylation and expression, although in different 

modules. This study encompasses lookup tables for associations between methylation, gene 

expression, and genotype, as well as methylome and transcriptome modules, for further 

research.

Methods

Ethics statement

All participants gave written informed consent. This study was approved by Medical Research 

Ethics Committee (MREC) of the University Medical Center Utrecht, The Netherlands.

Pre-processing of genotype, methylation and expression data

Genotype, methylation and expression data were collected for different numbers of samples. 

For the 148 healthy subjects eventually analyzed in this paper, data was available for all three 

layers of genetic information after quality control, as described below. Our final data set 

consisted of 72 males and 76 females with a mean age of 52 (range: 19–88); all subjects 

were of Dutch ancestry with at least three of the four grandparents born in The Netherlands.

Genotype SNP data

Genotype data for subjects was generated on two different array platforms, 105 individuals 

on Illumina CytoSNP (299,173 SNPs) and 96 on Illumina 300k chips (300,299 SNPs). For each 

SNP platform, quality control procedures were initially performed separately using PLINK24. 

Subjects were excluded based on >5% missing genotypes and gender errors (Additional file 

11). We used linkage disequilibrium (LD) based SNP pruning to select the most informative 

SNPs (R2<0.2), only for subsequent quality control steps. This resulted in ~60k SNPs for 

both sets to assess heterozygosity (F<3 Standard Deviation (SD)), homozygosity (F>3SD) 

and relatedness by pairwise identity by descent (IBD) values (pihat >0.1). Datasets were 

merged with Hapmap Phase 3 individuals to check ethnicity (Additional file 12) (ethnic 

outliers detected by visual inspection). After these QC procedures on subjects (excluding in 

total 8 individuals) quality control on SNPs was performed as follows. All SNPs were filtered 

on missingness (>2%) and Hardy Weinberg (p>1e-6) before merging the two datasets. 

84,367 SNPs were shared between the two datasets. No related samples were detected 

in the merged datasets (according to criteria described above). We imputed the merged 
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dataset with Hapmap2, release 24 using Beagle40. SNPs with an imputation score > 0.8 and 

present originally in one or both datasets were extracted and 417,708 SNPs remained for 

all further analyses.

DNA methylation data

Methylation data was obtained using Illumina HumanMethylation27 beadchips for two 

batches of 105 and 96 healthy subjects. The assay detects methylation status at CpG 

sites after bisulfate conversion, by means of probes designed for either methylated or 

unmethylated sequence. Methylation probes were classified into 3 different categories 

depending on the location of the probe with respect to a CpG island. Based on the UCSC 

Table browser (http://genome.ucsc.edu/;41), NCBIbuild36, categories were defined as CpG 

island, CpG island shore (sequences up to 2kb from an island), or outside CpG islands/shores. 

Ethnical outliers and samples with gender errors in genotype data were removed from the 

methylation data. Gender was checked by hierarchical clustering of X-chromosomal probes, 

excluding four individuals. Another three individuals were removed based on detection 

p-values (>0.01 for >1% of probes) and 3,027 of 27,578 probes were excluded based 

on detection values (p>0.01 for >1% of the samples). Both channels of the methylation 

array were quantile normalized independently. Beta values of a probe were calculated by 

dividing the methylated signal by the sum of the methylated and unmethylated signal. Next, 

five potential array outliers were removed in an unbiased fashion. Specifically, we used the 

SampleNetwork R function package42 to calculate the Interarray based sample connectivity 

score Z.k. We removed samples with a Z.k value less than −3 since their connectivity is 3 

standard deviations below the mean value. Batch effects of dataset, plate, array and position 

were removed using ComBat43. After these procedures, 24,561 probes remained and were 

mapped to the human genome using the UCSC Human BLAT Search function. In total, 25 

probes did not map to the human genome, whereas 338 probes did not map uniquely 

(mapped more than once), and both these probes have been removed. Moreover, 904 

probes that contained a SNP, based on Hapmap release 27, with a minor allele frequency 

(MAF) > 1% have been removed as well, leaving a total of 23,294 probes for analyses.

Gene expression data

Gene expression data was generated in two batches, one on Illumina H8 beadchip (26 

healthy subjects) and one on Illumina H12 beadchip (147 healthy subjects). BeadStudio© 

software version 3.2.3 was used to generate background-corrected gene expression data. 

Data was normalized, transformed and filtered separately before merging and batch effect 

removal. Specifically, the datasets were separately quantile normalized and log2 transformed 

using the Lumi package for R44. Probes were filtered based on detection values generated 

by BeadStudio©. The detection p-value threshold was set at 0.01. This resulted in 17,433 
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expression probes overlapping between both batches. Batch effects resulting from the use 

of different arrays at different time points were removed using ComBat43. An unbiased 

analysis based on interarray correlations identified 16 samples from batch 2 as potential 

outliers, which were subsequently removed from the analysis. Of 17,433 probes, 15,983 

mapped to a single genomic location, based on a previous study45. In addition, 465 probes 

contained a SNP, based on Hapmap release 27, with a MAF > 1% and have been removed, 

leaving 15,983 probes for analyses.

DNA methylation and gene expression data have been processed using the same blood 

sample, excluding possible batch effects, such as the effect of different time points.

Identifying cis and trans effects between DNA methylation and gene expression

We called a methylation probe cis acting with respect to a given gene expression probe if 

there was a significant association (as defined below) within a 500kb interval between the 

probes. A methylation probe was called trans acting if it was significantly associated with 

the expression probe (as defined below) outside the 500kb interval.

To determine whether a significant association exists between expression and methylation 

levels we used a multivariate linear regression model for regressing the gene expression 

level (dependent variable) on the methylation level (independent variable) with age and 

gender as covariates. We took methylation levels as independent variable since we are 

interested in the epigenetic control of gene expression levels. Associations can be positive 

(DNA methylation levels and gene expression levels both increase or decrease) or negative 

(increased methylation level corresponds with a decrease in gene expression level and vice 

versa). The Wald test p-value for the association between methylation and expression 

was used as significance level. Correction of the significance level for multiple testing was 

performed separately for identifying cis acting methylation probes (FDR correction) and trans 

acting methylation probes (Bonferroni correction).

Identification of cis-and trans-acting SNPs

Expression levels and methylation levels that were significantly associated with each other 

were tested for association with SNPs to identify cis-and trans-acting genetic variations. For 

this analysis, the real and imputed (imputation score > 0.8) genotypes were used, and a 

MAF threshold of 5% for these SNPs was set.

Analogous to our previous definition, a SNP significantly associated with a given gene 

expression or DNA methylation probe was called cis-acting with respect to the probe if the 

SNP and the probe were within 500kb of each other, and trans-acting if they were more 

than 500kb apart.

To determine whether a significant relationship exists between a SNP and a methylation 

or expression level we again used a multivariate linear regression model for regressing the 
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methylation or expression level (dependent variable) on the SNP (independent variable) with 

age and gender as covariates. The regressions were performed using the PLINK software24. 

Correction for multiple testing was performed separately for cis-acting SNPs (0.05 divided 

by the number of probes) and trans-acting SNPs (0.05 divided by the number of possible 

combinations (p<0.05/(#probes*417,708).

Evaluating causal relationships using local edge orienting scores of observed cis 

effects

To evaluate the fit of different causal models involving 3 variables (i.e., a cis-acting SNP, a 

cis-acting methylation probe, and a corresponding expression probe), we calculated the 

single marker local edge orienting score (LEO.NB.SingleMarker) as described elsewhere19,32. 

In short, a SNP can be used as causal anchor for evaluating the causal relationships 

between methylation and expression levels if the SNP is associated with at least one of 

them. We use the SNP as causal anchor for calculating the LEO score since genotypes are 

fixed at each locus as opposed to variable methylation and expression levels19. In this case, 

one can evaluate the fit of the following five models describing the causal relationships 

between a SNP (denoted S), a methylation probe (M) and an expression probe (E): model 

1: S→M→E; model 2: S→E→M; model 3: M←S→E; model 4: S→E←M; model 5: S→M←E. 

For each causal model a chi-square test based model fitting p-value was calculated with 

the structural equation modelling (SEM) R package46. The relative fit of causal model 1 

(SNP→Methylation→Expression) was assessed using the single anchor local edge orienting 

score (LEO.SingleMarker), which is the logarithm (base 10) of the ratio of the model fitting 

p-value divided by that of the next best fitting alternative model19. Thus a positive LEO.

SingleMarker score indicates that the causal model S→M→E fits the data better than all 

other competing models. As significance threshold we used the LEO threshold of 0.8, as 

recommended in19 based on extensive simulations as well as empirical studies. We decided 

to focus on local cis effects since there is considerable debate in the literature whether 

trans relationships are reproducible29,30. Since we were interested in causal direction for 

predetermined three-way associations, we only selected SNPs associated with both the 

methylation and expression levels in cis. To protect the causal analysis from biases due to 

age and gender, we utilized residuals of methylation and expression levels corrected for age 

and gender in the causal analysis using a linear regression by Limma in R47.

Weighted correlation network analysis of gene expression and methylation data

A detailed description of our correlation module based analyses can be found in Additional 

file 5. Here we provide a terse summary. Weighted correlation network analysis implemented 

in the WGCNA R package26,27 was first applied to the expression data to identify co-expression 

modules. Co-expresssion modules correspond to clusters of interconnected genes defined as 
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branches of a hierarchical cluster tree. Since modules are defined without respect to gene 

ontology information they are initially labelled by arbitrary integers and coded by colours. 

Next WGCNA was applied to the methylation data to find co-methylation modules. For 

easier interpretation of the relationships between expression and methylation modules, we 

use the same module labels for modules that show significant overlap. The matching of 

module labels was performed using the function matchLabels from the WGCNA R package; 

it is based on significance of module overlaps quantified using Fisher’s exact test. Weighted 

networks have the advantage of preserving the continuous nature of co-expression and co-

methylation information, which is particularly useful when studying module preservation. 

To assess the preservation of expression and methylation modules in the corresponding 

complementary data set, we use the network module preservation statistics described in28 

and implemented in the function modulePreservation in the WGCNA R package. Network 

module preservation statistics assess whether the density and connectivity patterns 

of modules defined in a reference data set are preserved in a test data set. Network 

preservation statistics do not require that modules be identified in the test data set and 

hence independent of the ambiguities associated with module identification in the test data 

set. The permutation test of the modulePreservation function leads to a composite module 

preservation statistic referred to as Zsummary. The Zsummary statistic of a given module 

summarizes the evidence that the network connections of the module are more significantly 

preserved than those of random set of genes of equal size. We adopted the following 

recommended significance thresholds for Zsummary26-28: Zsummary<2 implies no evidence 

that the module is preserved, 2<Zsummary<10 implies weak to moderate evidence, and 

Zsummary>10 implies strong evidence for module preservation. Thus, we report Zsummary 

for each expression and methylation module in the methylation and expression test data 

sets, respectively.

Since modules group together highly correlated variables, it is advantageous to summarize 

the variable profiles using a single representative. We use the module eigengene E, defined 

as the first principal component of the standardized matrix containing the variables in the 

module. The module eigengene can be intuitively understood as a weighted average of the 

variable profiles in the module.
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Additional data files

The following additional data are available with the online version of this paper.

Additional_file_1 as PDF

Additional file 1: Table S1 Comprises two tables that list all significant methylation and 

expression associations in cis (S1a), and trans (S1b).

Additional_file_2 as PDF

Additional file 2: Figure S1 Are two figures that show the coefficient and explained 

variance of associations between methylation and expression.

Additional_file_3 as XLS

Additional file 3: Table S2 Contains tables with all significant cis mQTLs (S2a) and eQTLs 

(S2b).

Additional_file_4 as XLS

Additional file 4: Table S3 Is a table with all LEO results. Combinations that have a LEO 

score above 0.8 for the model S>M>E are shown in light yellow of which LEO scores above 

3 are shown in dark yellow. For the reverse model (S>E>M) combinations with a LEO score 

above 0.8 are shown in orange. Significant p-values (above 0.01) are coloured in green.

Additional_file_5 as PDF

Additional file 5 Contains supplementary methods, namely, a more detailed description of 

Weighted Correlation Network Analysis (WGCNA).

Additional_file_6 as PDF

Additional file 6 Is an overview of the modules identified in the expression (Table 1) and 

methylation (Table 2) data.

Additional_file_7 as CSV

Additional file 7 Includes a table of continuous module membership kMEi of all 

expression profiles in all expression modules. Each row in the table corresponds to one gene 

expression profile. Columns give the gene Entrez idenitifier, module label, and kME and the 

corresponding (uncorrected) p-values for each module. Expression modules are labelled by 

E.0, E.1, etc.

Additional_file_8 as CSV

Additional file 8 Includes a table of continuous module membership kMEi of all 

methylation profiles in all methylation modules. Each row in the table corresponds to 

one methylation profile. Columns give the gene Entrez idenitifier, module label, and kME 

and the corresponding (uncorrected) p-values for each module. Methylation modules are 

analogously labeled by M.0, M.1, etc.

Additional_file_9 as PDF
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Additional file 9 Shows the overlap of expression and methylation modules. Each row 

corresponds to an expression module (labelled by the numeric labels, colours and total 

number of genes in the module, on the left), and each column corresponds to a methylation 

module (labelled the numeric labels, colours, and total number of genes in the module, at 

the bottom). Numbers in the table indicate number of genes in the overlap, and the Fisher 

exact test p-value for the overlap. Only overlaps whose p-value is below 0.05 are shown. 

The table is coloured such that significant overlaps are coloured in strong red colour. Most 

overlaps are quite small but some are nevertheless statistically highly significant.

Additional_file_10 as PDF

Additional file 10 Shows the medianRank statistics for the Module preservation with 

in (A) preservation of expression modules in methylation data, and in (B) preservation of 

methylation modules in expression data.

Additional_file_11 as XLS

Additional file 11 Is a table with the number of excluded samples per step.

Additional_file_12 as PDF

Additional file 12 Is a clusterplot of all samples together with Hapmap phase 3 populations.
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Abstract

There is genetic evidence that schizophrenia is a polygenic disorder with a large number 

of loci of small effect on disease susceptibility. Genome-wide association studies (GWASs) 

of schizophrenia have had limited success, with the best finding at the MHC locus at 

chromosome 6p. A recent effort of the Psychiatric GWAS consortium (PGC) yielded 5 

novel loci for schizophrenia. In this study we aim to highlight additional schizophrenia 

susceptibility loci from the PGC study by combining the top association findings from the 

discovery stage (9,394 schizophrenia cases and 12,462 controls) with expression QTLs 

(eQTLs) and differential gene expression in whole blood of schizophrenia patients and 

controls. We examined the 6,192 single nucleotide polymorphisms (SNPs) with significance 

threshold at p<0.001. Expression QTLs were calculated for these SNPs in a sample of healthy 

controls (n=437). The transcripts significantly regulated by the top SNPs from the GWAS 

meta-analysis were subsequently tested for differential expression in an independent set 

of schizophrenia cases and controls (n=202). After correction for multiple testing, the 

expression QTL analysis yielded 40 significant cis-acting effects of the SNPs. Seven of these 

transcripts show differential expression between cases and controls. Of these, the effect 

of three genes (RNF5, TRIM26 and HLA-DRB3) coincided with the direction expected from 

meta-analysis findings and were all located within the MHC region. Our results identify new 

genes of interest and highlight again the involvement of the MHC region in schizophrenia 

susceptibility. 
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Introduction

Schizophrenia is a severe mental disorder, affecting about 1% of the population worldwide. 

Heritability is estimated to be around 80%, but the underlying genes are largely unknown1. 

Large-scale, genome-wide studies have identified rare genomic microdeletions as well as 

common variants associated with the disease2-6. 

In a recent study, Purcell and colleagues demonstrated that data from genome-wide 

association studies (GWAS) for schizophrenia are compatible with a very large number of loci 

with common alleles (N>3,000), each with a very small contribution to disease susceptibility 

(odds ratios <1.05)1. Alternative approaches may be necessary to decipher the genetic basis 

of schizophrenia and related disorders7. We therefore aim to combine different layers of 

genomic information to uncover genetic signal from common variants that would not be 

identified by current GWAS approaches. 

A recent meta-analysis comparing 9,394 cases to 12,462 controls resulted in identification 

of numerous common variants8 with sub threshold association with schizophrenia (6,192 

SNPs with p<0.001). However, as Purcell et al. showed, variants associated with the disease 

may not reach genome-wide significance1. Therefore, it is likely that there are more true 

positives in the top 6,192 SNPs than were identified by performing a standard case-control 

association analysis. Subtle effects of these SNPs on gene expression could be a functional 

mechanism by which they confer risk for development of schizophrenia9,10. Recently, it has 

been shown that true GWAS hits are enriched for expression QTLs10-13. Therefore, variations 

influencing gene expression are more likely to be contributing to the phenotype. To this end, 

we generated eQTLs for the top 6,192 SNPs (p<0.001 in meta-analysis). Next, we tested 

whether the identified transcripts are differentially expressed between patients and healthy 

controls. These analyses have the potential to provide further support of the involvement 

of these SNPs in schizophrenia and may highlight additional schizophrenia candidate genes 

that have not been identified using genome-wide significance thresholds. 

Although gene expression in whole blood is only moderately correlated with gene expression 

in brain tissue1,14-16 several studies suggest that gene expression in blood could serve as 

a marker of brain-related disease states, including schizophrenia15-21. Therefore, gene 

expression profiling in blood may provide additional insight into the etiology of the disease. 

We performed the gene expression analyses using whole blood samples of relatively large 

sample of schizophrenia patients and controls. 
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Materials and methods

Expression QTL analysis in controls

We calculated the expression QTLs for the top SNPs8 in a sample of 437 healthy controls for 

which genotypes (Illumina 370k array) and whole blood gene expression data (Illumina H-12 

beadchip) was available as described before10,22. In short, this data set consists of 244 males 

and 193 females with a mean age of 62 years, who where recruited as controls in a study of 

gene expression in ALS (Amyotrophic Lateral Sclerosis). These control subjects were selected 

for being in good general health and unaffected for neurological and neurodegenerative 

diseases; no separate screen for psychiatric disorders was performed for these subjects.

Of the 6,192 SNPs, 1,336 were already available on the array. Imputation was performed 

by BEAGLE version 3.0.423 using the Hapmap phased founder set, release 2, phase 3 (The 

International HapMap Project, http://www.hapmap.org) A R2 cut-off of 0.90 resulted in 

4,073 successfully imputed SNPs yielding a total of 5,409 SNPs for analysis. The gene 

expression data of these controls were quantile normalized and log2 transformed using 

the PreprocessCore package in R24. Expression probes were then filtered for detection value 

smaller than 0.90 as by manufacturer protocol, leaving 12,990 high quality probes for 

analysis.

The 12,990 expression probes were taken as quantitative traits and tested for association 

with the 5,409 available SNPs using a linear association of allele dosage with age and gender 

as covariates in PLINK25. To adjust for significant differences in mean age of this control 

sample and the schizophrenia sample described below, we included age (and gender) as 

covariates. Since trans-effects are difficult to identify in a study of this size due to limited 

power, we focused on cis-effects only, i.e. 1MB around the probe center position on either 

side. We used Bonferroni correction for multiple testing, setting the significance thresholds 

for cis-effects 0.05/5,409 = 9.24E-6. 

Differential expression schizophrenia versus controls

We examined whether the probes associated with the top SNPs are also related to 

schizophrenia disease status. This set consists of 106 schizophrenia cases and 96 healthy 

controls including 118 male and 84 female subjects, with an average age of 39 years. 

Diagnoses were determined by Standardized Psychiatric interviews either The Comprehensive 

Assessment of Symptoms and History (CASH) or the Composite international diagnostic 

interview (CIDI) by trained clinicians. Schizophrenia was defined by a DSM-IV-TR diagnosis 

of #295.0-295.89, and #298.9. . This study was approved by Medical Research Ethics 

Committee (METC) of the University Medical Center Utrecht, The Netherlands. The data 
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was normalized (robust spline normalization, RSN), transformed (variance stabilizing 

transformation, VST) and filtered according to the Lumi procedure as described previously26.

We used the Limma package27 in R to generate a regression model with selected expression 

values as dependent and status as independent values. We included age and gender as 

covariates. We took FDR corrected p-value of 0.05 as significance threshold.

Results

Expression QTL analysis in controls

We identified 40 unique transcripts from MHC and non-MHC regions regulated by the top 

5,409 SNPs. The distribution of expression QTL results within the cis-region is displayed 

in Figure 1. Since we found the signal from the MHC region in the eQTL results to be 

substantial, these results will be discussed separately. In total, 1,664 significant cis-effects on 

23 unique expression probes from 578 unique SNPs in the MHC region were found. Outside 

the MHC, 166 cis-effects, were identified, representing 249 unique SNPs and 17 unique 

expression probes. In this instance we define unique to indicate different SNPs, without 

considering linkage disequilibrium (LD) between them. The eQTL effects are plotted against 

the rank of the SNPs in the top list in Figure 2. This shows the effects of the MHC region to be 

stronger (p-values ranging from 4.6E-145 to 9.1E-6) than the rest of the genome (p-values 

Figure 1: Distribution of eQTL effects. A region of 1MB 

around the center of the expression probe was taken as a 

threshold for cis-effects. The plot shows a histogram of frequency 

of eQTL effects (SNP-probe combinations) in this region. Effects 

in the MHC region are displayed in blue, effects elsewhere on 

the genome in green.

Figure 2: eQTL effects versus SNP rank. The –log10(p) value 

of eQTL effects (SNP-probe combinations) are plotted against 

the original rank of the SNP in the schizophrenia meta-analysis 

top 6,192. Effects in the MH	 C region are displayed in blue, 

effects elsewhere on the genome in green.
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ranging from 4.3E-24 to 9.1E-6). In addition, the highest ranking genes are dominated by 

effects from this region. All significant eQTL effects are given in Supplementary Table 2.

To formally test whether the MHC is overrepresented in the eQTL results, we performed a 

Fishers’ exact test for count data. Of the 5,409 SNPs tested, 1,071 are located within or 

are associated with a probe in the extended MHC region (chromosome 6, 26MB – 34MB). 

Even though that already represents a large part of the input, the overrepresentation in the 

eQTL results (unique SNPs influencing one or more expression probes) is significant when 

compared to SNPs located elsewhere on the genome (Fishers’ p<2.2E-16). The fact that this 

region is known to have complicated and extended LD structures28 may in part explain the 

fact that more SNPs are related to the same gene expression probes. 

Differential expression schizophrenia versus controls

The levels of 40 unique transcripts from MHC and non-MHC regions that we identified 

were tested for association with schizophrenia in an independent gene expression dataset 

of schizophrenia cases and controls. Seven of the transcripts were differentially expressed 

in cases. Table 1 presents the results together with the corresponding eQTL results. Five of 

the seven transcripts are from genes located in the MHC (TRIM26, RNF5, TUBB, HLA-DRB3, 

HIST1H2BD). Two differentially expressed probes are located elsewhere on the genome, 

C16ORF61 on chromosome 16 and CRELD2 on chromosome 22. All but two probes are 

down regulated in schizophrenia patients compared to healthy controls (C16ORF61 and 

HIST1H2BD). Although 18 of the 106 schizophrenia patients in this dataset are antipsychotic-

free (e.g. have not been treated with antipsychotic drugs during the six-month-period prior 

to blood sampling), the effects of medication on gene expression in blood in the overall 

sample might have contributed to our results.

Next, we examined whether the direction of differential expression coincided with the 

original meta-analysis results. When the risk allele is associated with up or down regulation 

of expression, this should be mirrored in the differential expression results. We therefore 

assume that the eQTL itself is not different between cases and controls, but the frequency 

of the allele associated with expression levels is. This was the case for three out of the 

seven genes; TRIM26, RNF5 and HLA-DRB3, all of which are located within the MHC region. 

TRIM26 is one of the genes identified as susceptibility locus in the original meta-analysis 

after the replication stage8. 

For our top genes (TRIM26, RNF5 and HLA-DRB3) we examined whether the same eQTLs 

are also present in brain, using a publically available human brain expression dataset of 

144 individuals (Gibbs et al.40 GEO; GSE15745). Data are available for four different brain 
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regions: cerebellum (CRBLM), frontal cortex (FCTX), temporal cortex (TCTX) and pons. eQTL 

analysis was performed as described in blood, with the addition of covariates post-mortem 

interval, batch, and source of collection. RNF5 is not expressed at detectable levels in any 

of these four regions, HLA-DRB3 is expressed in frontal cortex and cerebellum, and TRIM26 

is expressed in all four brain regions. The top SNP regulating HLA-DRB3 (rs9268858) was 

not available for the brain dataset. However, rs2395185 is in strong LD (R2 = 0.98, based 

on HapMap3) and shows significant eQTL results for HLA-DRB3 in frontal cortex (p=9.0E-4, 

beta =-0.19, t=-3.40) and cerebellum (p=3.0E-3, beta=-0.17, t=-3.08). Similarly, the top 

SNP regulating TRIM26 (rs2844766) in blood was not available for the brain samples but 

rs1264616, with moderate LD (R2 = 0.45, based on HapMap3) shows evidence of an eQTL 

in cerebellum (p=9.0E-3, beta=0.09, t=2.64) and pons (p-=1.0E-2, beta=0.03, t=0.91). 

These eQTLs show the same directionality in both blood and brain.

Discussion

Our results are noteworthy in two respects: First, we show that by combining different 

layers of genetic information we can successfully identify potential candidate genes for 

schizophrenia. By using eQTL analysis we have identified SNPs that actually have an effect 

on expression of transcripts that differ between patients and controls. Second, we found 

that the top list that we took as a starting point harbored significantly more eQTLs in the 

MHC region compared to elsewhere in the genome. Strong eQTLs in this region have been 

observed in a previous study in lymphoblastoid cell lines, derived from peripheral blood 

lymphocytes29. Specifically, cis eQTLS have been found for TUBB30 and HLA-DRB331,32, while 

RNF5 has been found to be one of the most variable genes between individuals33. The fact 

that eQTLs in the MHC region are overrepresented in our study could be due to the type 

of tissue studied. Blood has an important function in the (primary) immune response and 

eQTLs can be tissue-specific34. However, it is also possible that genetic control of this region 

is stronger than elsewhere on the genome, perhaps related to the extended LD patterns.

The MHC harbors relatively many genes and is highly polymorphic. It regulates the immune 

response and has been associated with a large number of immune phenotypes and diseases35. 

The association of SNPs in these MHC genes can result from mere physical closeness to 

the schizophrenia variant within the MHC region. However, that would not explain the 

difference in gene expression of MHC genes presented here, since expression transcripts are 

not in LD. We find that the eQTL SNPs are often related to multiple probes of different genes 

within the cis-region (up to 6 per SNP). This could point to important regulatory regions in 

the MHC. We therefore propose that eQTL analysis could aid in the refinement of the MHC 

region.
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Although association of schizophrenia with this area has been consistent, the functional 

explanation is still ambiguous. Inflammation is suggested to be an inherent part of 

schizophrenia. Reports show that schizophrenia patients have either higher or lower 

prevalence of some autoimmune disorders than expected36 and that the efficacy of anti-

inflammatory drugs differs in patients37. The latter observations could support the viral 

hypothesis of schizophrenia38. However, of the three identified candidate genes in the MHC 

region, only one has a known immune function. This is HLA-DRB3 (major histocompatibility 

complex, class II, DR beta 3). Class II molecules are expressed in antigen presenting cells. They 

play a central role in the immune system by presenting peptides derived from extracellular 

proteins. The function of TRIM26 (tripartite motif-containing 26) in the classical class I 

subregion is unknown; however, it is thought to have DNA-binding activity28. RNF5 (Ring 

finger protein 5) in the classical class III subregion is involved in cell motility. It has been 

shown to be a regulator of breast cancer progression through its effect on actin cytoskeletal 

alterations39. This suggests that the MHC signals associated with schizophrenia are not 

necessarily immune-related, but could also stem from genes in the region that are involved 

in non-immune related pathways. 

Since schizophrenia is a brain-related disease, it was useful to replicate our findings in brain 

tissue. Publically available brain expression data indicated that eQTLs for TRIM26 and HLA-

DRB3 are also present in specific brain regions. Although these results fit well with a possible 

involvement of these loci in schizophrenia, the lack of sufficient number of available brain 

tissue from patients has prevented us to examine brain-specific differential gene expression 

related to disease. 

In summary, we have identified three genes, TRIM26, RNF5 and HLA-DRB3 that are regulated 

by the most significant SNPs in a recent meta-analysis and of which expression is associated 

with schizophrenia disease status. These effects are small but significant, indicating that 

the current approach allows to detect the small functional effects that may play a role in 

schizophrenia susceptibility1. The results of this study indicate that signal not only stems 

from the SNPs with the most significant p-values in the top 6,192 list, but can be linked 

to less significant SNPs as well. In addition to confirming one of the top findings in the 

meta-analysis, TRIM26, we also identify RNF5 and HLA-DRB3 as potential candidate genes 

for schizophrenia. The results of this study gives further insight into the relationship of 

SNPs with gene expression, highlight the importance of the MHC region for schizophrenia 

susceptibility and indicate that genetic causal variants for schizophrenia might act through 

regulation of expression. This approach can be fruitful in identifying phenotypic effects of 

SNPs highlighted by GWAS. 
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Abstract 

Emerging evidence suggests that schizophrenia susceptibility involves variation at genetic, 

epigenetic, and transcriptome levels. We describe an integrated approach that leverages 

DNA methylation and gene expression data to prioritize genetic variation involved in disease. 

DNA methylation levels were obtained from whole blood of 260 schizophrenia patients and 

250 unaffected controls of which a subset with gene expression data available. By assessing 

DNA methylation and gene expression in cases and controls we identified 432 CpG sites 

with differential methylation levels that are associated with differential gene expression. We 

hypothesized that genetic factors involved in these methylation levels may be associated with 

the genetic risk of schizophrenia susceptibility. To test this hypothesis, we used results from 

the Psychiatric Genomics Consortium (PGC) schizophrenia genome-wide association study 

(GWAS). We observe an enrichment of schizophrenia-associated SNPs in the mQTLs of which 

the associated CpG site is also correlated with differential gene expression in schizophrenia. 

While this enrichment was already apparent when using nominal significant thresholds, 

enrichment was even more pronounced when applying more stringent significance levels. 

One locus, previously identified as susceptibility locus in a schizophrenia GWAS, involves 

SNP rs11191514, which regulates DNA methylation of CALHM1 that is also associated with 

differential gene expression in patients, Overall, our results suggest that epigenetic variation 

plays an important role in schizophrenia susceptibility and that the integration of analyses of 

genetic, epigenetic and gene expression profiles may be a biologically meaningful approach 

for identifying disease susceptibility loci, even when using whole blood data in studies of 

brain-related disorders.

Keywords: DNA methylation, mQTLs, gene expression, enrichment, schizophrenia
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Introduction

Although a number of susceptibility loci for psychiatric disorders have been identified 

through genome-wide association studies, the vast majority of the estimated heritability of 

these traits remains unexplained. Schizophrenia (SZ), for example, is a common polygenic 

mental disorder affecting about 1% of the population and has an estimated heritability 

of 70-80%1-3, but only a small fraction of the heritability can be attributed to known 

susceptibility loci4,5. Very large numbers of samples are needed to comprehensively identify 

the hundreds or possibly thousands of genetic loci involved in SZ susceptibility6. It has been 

suggested that epigenetic variation might be partly responsible for the missing heritability7,8 

and be involved in phenotypic variation9-11. Recent evidence shows that schizophrenia 

susceptibility loci are enriched for gene expression QTLs12, and a similar enrichment exists 

for QTLs affecting DNA methylation and expression in bipolar disorder13. Given these results 

we hypothesized that intersecting disease-related gene expression data with disease-related 

methylation data might lead to identification of genetic susceptibility loci. To test this 

hypothesis, we combined available whole blood DNA methylation and gene expression data 

of schizophrenia patients and healthy controls. Using the results of the Psychiatric Genomics 

Consortium (PGC) schizophrenia mega GWAS14, we examined whether methylation QTLs 

(mQTLs) are enriched for disease susceptibility loci. While previous studies examined gene 

expression and DNA methylation separately and in different ways12,13, we consider both DNA 

methylation and gene expression data simultaneously in the same SZ cases and controls. 

Previous studies investigating enrichment of QTL signals (involving either gene expression 

or DNA methylation) focused on SZ-related SNPs with genome-wide significant evidence of 

association. We combined epigenome and transcriptome levels of information and did not 

restrict ourselves to only those loci with prior evidence of genome-wide association. Our 

results show that the combined use of gene expression and methylation data outperforms 

either data modality when it comes to identifying disease susceptibility loci, even in a 

relatively small sample size compared to GWAS. 

Method

An outline of the approach is provided in Figure 1. Genome-wide genotype data and 

DNA methylation data were obtained from whole blood of 260 schizophrenia patients 

and 250 control subjects; for a subset of 120 cases and 120 controls, whole blood gene 

expression data were available as well. A detailed description of the samples, procedures 

and quality control steps is provided in the supplementary material. First, we examined 

differential methylation levels (after quantile normalization) between cases and controls. 

DNA methylation levels with low variability (a Beta range below 0.1) were excluded to focus 

on CpGs with reasonably large biological variation. We used a linear model (limma package 
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in R15) to regress methylation values on disease status, gender, and age16. FDR correction at 

the 5% level was applied to correct for multiple testing.

Next, for methylation levels that differed between cases and controls (referred to as 

differentially methylated loci, or abbreviated DMs), association with gene expression was 

investigated using a genome-wide DNA methylation-gene expression association study as 

described previously17. We focused on CpG sites with cis effects on expression within 500 

kb interval. Locus-specific correction for multiple testing was applied for the number of 

expression probes within each cis region of that methylation probe (i.e. 0.05 divided by 

the number of expression probes per cis area). This relatively lenient significance threshold 

was chosen to ensure a sufficient number of probes for subsequent filtering steps and 

analysis. The subset of DMs associated with gene expression is referred to as DMEs, as 

determined in control samples. A subset of the DMEs is not only associated with gene 

expression levels in general but is associated with transcript levels of differentially expressed 

genes when comparing schizophrenia patients and controls as described previously18. In 

short, we conducted linear regression to detect differences in expression levels between 

cases and controls after FDR correction at the 5% level, with age and gender as covariates18. 

Figure 1: Outline of study with different filtering steps (see main text for details).
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The DMEs associated with differential gene expression in schizophrenia are referred to as 

DMDEs (Differential Methylation regions with Differential gene Expression).

To identify methylation QTLs (mQTLs), we used a multivariate linear regression model for 

regressing all methylation values (dependent variable) on the SNPs (independent variable) 

with disease status, age, and gender as covariates using PLINK19. We defined a SNP as 

cis-acting if significantly associated (P < 5.0e-08) within 500kb between the SNP and the 

methylation probe. Next, four groups of SNPs with a minimum minor allele frequency of 

0.05 were generated with increasing functional relevance with regard to DNA methylation 

and gene expression: (i) SNPs representing all mQTLs regardless of differential methylation 

between patients and controls; (ii) SNPs from the previous step that represent mQTLs with 

differential methylation between cases and controls (DMs); (iii) SNPs from the previous step for 

which the associated methylation level is associated with gene expression (DMEs); and finally 

(iv) SNPs selected from the previous step that are associated with differential methylation 

that is associated with differential gene expression between patients and controls (DMDEs). 

After linkage disequilibrium (LD)-pruning the SNPs with an R2 of 0.2 using PLINK, to exclude 

possible signal bias and enrich for independent genetic signal, we extracted the SNPs from 

the Psychiatric Genomics Consortium (PGC) mega GWAS results with their association signal 

with schizophrenia.

Based on the significance values observed in the PGC schizophrenia GWAS, we categorized 

the four different SNP lists and examined the observed/expected ratios for different thresholds 

ranging from P < 0.5 to P < 1.0e-04. 

Results

We examined whether genetic factors involved in differential methylation and gene 

expression in schizophrenia are enriched for schizophrenia susceptibility alleles. The results 

of the steps are shown in Figure 1. In total, 11320 CpGs were differentially methylated in 

SZ cases versus controls (5% FDR correction). Of these, 1095 CpGs are associated with 1226 

transcripts in cis (after locus-specific correction). The 1226 transcripts were examined for 

differential expression levels between patients and controls based on data from a previous 

study of our group18. This step resulted in the identification of 391 transcripts (after 5% FDR 

correction); these 391 transcripts are associated with 432 CpG sites. Information about the 

differentially methylated probes is shown in Supplementary Table 1.

We subsequently calculated the mQTLs and SNPs associated with CpGs in cis with a P-value 

< 5.0e-08 and these were grouped by the biological relevance of the associated CpG site 



70 | Chapter 4

(see methods). Figure 1 shows the number of associated CpGs and SNPs, and the statistics 

of the associations are in Supplementary Table 2. 

After calculating the observed/expected ratio of the mQTLs per PGC GWAS p-value threshold, 

our results show a significant pattern of enrichment of PGC schizophrenia association signal 

by adding DNA methylation and gene expression data (Figure 2). The strongest enrichment 

was observed for SNPs associated with DMDEs (P = 0.0041 with OR = 22 and 95%CI 2.60-

83.7; Fisher’s exact test). 

We identified one DMDE locus on chromosome 10 with genome-wide significant evidence 

of association with schizophrenia. SNP rs11191514 at this locus represents an mQTL 

associated with differential DNA methylation between cases and controls that is correlated 

with expression of a gene that is also differentially expressed between cases and controls 

(Figure 3a-c). Additionally, this SNP is in perfect LD with rs11191580, a SNP with significant 

evidence of association with schizophrenia according to the PGC study (PGC P = 2.2e-08). 

SNP rs11191514 is also strongly associated with schizophrenia (PGC P = 8.7e-08) and likely 

Figure 2: Enrichment of genetic association with Schizophrenia 

For each of the four categories of mQTLs in the whole blood case/control data set we observed 

enrichment of genetic association signal based on PGC Schizophrenia genome-wide association 

study findings14. The four categories are (i) all mQTLs without prior selection, (ii) DMs representing 

mQTLs with differential methylation between cases and controls, (iii) DMEs representing mQTLs with 

differential DNA methylation between cases and controls associated with gene expression, and (iv) 

DMDEs, representing mQTLs with differential DNA methylation that is associated with differential 

gene expression between cases and controls. Detailed values of Odds Ratios, significance levels and 

confidence intervals are provided in Supplementary Table 1.
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regulates DNA methylation in our data set (P = 1.4e-14, Figure 3d). SNP rs11191514 is 

located in CNNM2, while the methylation probe, associated with this SNP, is located at 

CALHM1, some 630KB apart (Supplementary Figure 1). CALHM1, calcium homeostasis 

modulator 1, regulates Ca2+ concentrations20 and is highly expressed in the hippocampus20, 
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Figure 3: Correlations between rs11191514, methylation/gene expression and disease 

of locus with previously reported genome-wide significant evidence of association with 

schizophrenia. 

(a) CpG site cg00453258 (representing gene CALHM1) is increased in schizophrenia cases versus 

controls; (b) this CpG site is negatively associated with gene expression, transcript probe xp5340520; 

(c) expression of this transcript is reduced in schizophrenia cases; (d) the mean methylation level per 

genotype. In the PGC schizophrenia GWAS result, the T allele is a protective allele with an OR of 0.82 

(see Supplementary Table 1) with increased allele frequency in controls, and in our dataset associated 

with a decreased methylation level. This fits with the increased methylation levels in schizophrenia. *To 

generate these plots the residuals of the methylation values were taken after correction for age and 

gender in (a) and (b), and for expression in (c). 
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which is implicated in schizophrenia21. Recently, a GWAS identified this whole locus as 

susceptibility locus for schizophrenia, including the genes CALHM1 and CNNM2, P = 3.7e-

1322.

In addition to rs11191514, we identified four additional independent DMDE SNPs associated 

with schizophrenia with significance level of p < 0.01 (Supplementary Table 2), i.e. these 

SNPs are at best suggestive of a susceptibility locus for schizophrenia. 

These additional loci highlighted in our study include PRRT1, HLA-C, and MRPL41. The 

CpG sites of these genes are all differentially methylated in patients, are associated with 

genotype as well as with transcripts that are differentially expressed in patients. PRRT1, 

proline-rich transmembrane protein 1, and HLA-C are both located within the MHC region 

on the short arm of chromosome 6; a region with the most significant association with 

schizophrenia14,23. Firstly, little is known about the function of PRRT1 and this finding 

suggests that further study of its involvement in schizophrenia is warranted. HLA-C belongs 

to the HLA class 1 molecules that play a central role in the immune system and is located 

within the chromosomal region first implicated in SZ11. Lastly, MRPL41 is a mitochondrial 

ribosomal protein and plays an important role in cell growth suppression in association 

with p53 and p27Kip124. It is not clear how this ribosomal protein may be involved in the 

etiology of schizophrenia. As the MHC region is overrepresented in the PGC schizophrenia 

GWAS findings, we were concerned about a possible bias in our analysis. However, when 

we performed the same analyses without chromosome 6, we still observed an enrichment 

of genetic signal associated with schizophrenia (P = 0.0037 with OR=23 and 95%CI 2.8-

89.2; Fisher’s exact test). This suggests that functional enrichment analysis by using gene 

expression and DNA methylation from whole blood is not dependent on the MHC region.

 

Discussion 

We investigated the enrichment of mQTLs for schizophrenia susceptibility alleles using 

genotype and DNA methylation data obtained from whole blood of more than 500 

schizophrenia cases and controls, and of which gene expression data was available from a 

subset. We detected over 10,000 CpG sites that are differentially methylated in schizophrenia 

patients. A subset of these sites (n=1,095) was associated with gene expression with 50% of 

these transcripts also showing differentially gene expression in schizophrenia. Additionally, 

SNPs associated with differential methylation levels are enriched for schizophrenia 

susceptibility alleles. This enrichment was even stronger if the differential methylation level 

associated with these SNPs were also associated with differential expression levels. While this 

enrichment was already apparent when using nominal significant thresholds, enrichment was 

even more pronounced when applying more stringent significance levels. Previous studies 

have shown that top GWAS findings are enriched for mQTLs and eQTLs in bipolar disorder13, 
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and for eQTLs in schizophrenia12. In accordance, here we show that mQTLs are enriched for 

schizophrenia SNPs. In addition, we used different layers of genomic information to identify 

mQTLs associated with CpGs with functional relevance, and find increasing enrichment. Our 

findings show that genetic variation affecting DNA methylation that is associated with gene 

expression plays an important role in schizophrenia susceptibility.

As schizophrenia is primarily a brain-related disease, a limiting factor of our study may 

be the use of whole blood. However, our findings show that even when using blood, we 

observe enrichment of schizophrenia-associated alleles, indicating that blood might be a 

reasonable surrogate for our approach. Replication of these analyses in brain tissue would 

be useful to understand the extent of enrichment of disease-specific signal when combining 

different genomic layers for prioritizing genomic loci. Another potential expansion of this 

study includes the obtaining of allele-specific methylation and gene expression information, 

which could provide more insight into the precise mechanism of cis-acting regulating SNPs 

and their effects on methylation and gene expression. Finally, the relationship between 

genetic variation, DNA methylation, gene expression and disease susceptibility is complex 

and warrants further study.

In summary, we identified biologically plausible schizophrenia susceptibility loci in whole 

blood in a relative small sample of <600 subjects. We demonstrate that enrichment of 

genetic data using different layers of genomic information may be an efficient approach to 

identify disease susceptibility loci for neuropsychiatric traits. While our results are supportive 

of an important role of epigenetic regulation in schizophrenia, we expect that this integrated 

approach based on blood DNA methylation and gene expression data from the same subjects 

may help prioritize SNPs from other GWAS studies as well. 
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Supplementary files are available upon request.

Supplementary Figure 1; The CNNM2-CALHM1 locus

The most significant finding from the PGC results, SNP rs11191514, (P = 8.71e-08 with 

schizophrenia) is located in the CNNM2 gene. This SNP is in perfect LD (R2=1) with SNP 

rs11191580 (located in the NT5C2 gene), which was one of the loci with genome-wide 

significance for involvement in schizophrenia in the PGC study (PGC P=2.2e-08). The 

methylation probe associated with rs11191514 is located at CALHM1, some 630KB apart 

(indicated in yellow). 

Supplementary Table 1; differentially methylated probes

This table contains the differentially methylated probes between schizophrenia cases and 

controls. 

Supplementary Table 2:

This file consists of the four lists with mQTLs and their associated CpG sites. 

Supplementary Table 3:

The four loci described in the results are presented in this table. Results from all analyses and 

information about the methylation and expression probes are included.
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Abstract

Background: Genetic polymorphisms can shape the DNA methylome by either changing 

the substrate of DNA methyltransferases or alternating the affinity of cis-regulatory DNA 

binding proteins. The interactions between CpG methylation and genetic polymorphisms 

have been investigated by methylation quantitative trait loci (mQTL) analysis and allele-

specific methylation (ASM) analysis. However, it remains unclear whether these approaches 

can effectively and comprehensively identify the genetic variants that contribute to inter-

individual variation of DNA methylation. 

Results: Here we took advantage of the family structure in 22 nuclear pedigrees, and used 

three independent approaches to systematically investigate the genetic influence on DNA 

methylation in whole blood. We applied targeted bisulfite sequencing with bisulfite padlock 

probes to quantify the absolute DNA methylation levels at a pre-selected set of 411,800 CpG 

sites in the human genome. With mid-parent offspring analysis (MPO), we identified 10,619 

CpG sites that exhibit heritable methylation patterns, among which 70.1% are SNPs directly 

disrupting CpG dinucleotides. For the remaining 3,179 heritable CpG sites, only 45.2% were 

associated with cis-regulatory SNPs identified by mQTL analysis, and 3.1% exhibit allele-

specific methylation in one of more individuals. Finally, we identified hundreds of clusters 

in the human genome in which the degree of variation (as opposed to the mean) of CpG 

methylation is associated with genetic polymorphisms, supporting a recently proposed 

hypothesis on the genetic influence of phenotypic plasticity. 

Conclusions: This study showed that cis-regulatory SNPs identified by mQTL analysis 

account for only roughly half of the heritable CpG methylation, whereas the majority of ASM 

cannot be explained by consistent genetic regulatory effects among multiple individuals. 

Overall the extent of genome-methylome interactions is well beyond what is detectible with 

the commonly used mQTL and ASM analysis. 

Keywords: DNA methylation, epigenetics, targeted bisulfite sequencing, bisulfite padlock 

probes, mid-parent offspring analysis, heritability of DNA methylation, methylation QTL, 

allele-specific methylation, variably methylated regions, variation-SNPs
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Background

DNA methylation represents an important layer of epigenetic regulation on the activity 

of the human genome. Accumulating evidence suggests that the epigenome, including 

the methylome, varies from one individual to another1-3. Such variations are believed to 

play functional roles in the individual variations of a variety of phenotypes, including many 

human diseases4; 5. The inter-individual variation of the DNA methylomes is contributed by 

both genetic and environmental factors6; 7. With the advances in DNA methylation assays, 

a growing number of studies on the genetic contributions to the DNA methylomes have 

been reported. One type of studies relies on mQTL analysis to identify cis-regulatory variants 

associated with inter-individual variation of CpG methylation8-11. An alternative approach 

involved characterizing allele-specific methylation2; 3; 12-15. While an increasingly large number 

of SNP and CpG associations have been reported in these recent efforts, it remains unclear to 

what extent SNPs contribute to the inter-individual variation of DNA methylome globally, and 

how effective mQTL and ASM analyses are in uncovering genome-methylome interactions. In 

this study, we performed targeted bisulfite sequencing on human whole blood samples from 

96 individuals representing 22 nuclear pedigrees, and used three independent approaches 

(MPO, mQTL and ASM) to characterize the associations between CpG methylation and 

genetic factors. In addition, we also investigated the genetic contribution to the variance of 

DNA methylation. We discussed the limits of mQTL and ASM analyses in characterizing the 

full extent of genome-methylome interactions.

Results

We characterized DNA methylation levels on genomic DNA of peripheral blood from 96 

individuals in 22 nuclear pedigrees of European ancestry. Each pedigree included two 

unaffected parents, one proband with schizophrenia and one or two unaffected siblings. 

With this family structure, there are a total of 52 trios with two parents and one child. We 

measured CpG methylation at single base resolution by targeted bisulfite sequencing with 

~330,000 bisulfite padlock probes capturing a pre-selected subset of genomic regions, 

including promoters, enhancers, DNase I hypersensitive sites and other regions known 

to be variable among different cell types16. Note that, like other bisulfite based methods, 

5-methylcytosines and 5-hydroxymethylacytosines are indistinguishable with this assay. The 

quality of the data was assessed by comparing DNA methylation levels of the same CpG sites 

captured and measured independently on the two DNA strands, which can be treated as 

internal technical replicates. All samples have high correlation in methylation levels between 

the two strands (Pearson’s correlation coefficient R > 0.95), indicating low technical noise. 

On average, we obtained methylation measurements on ~500,000 CpG sites per sample. 

A total of 411,800 autosomal CpG sites (416,933 CpG sites including sex chromosomes) 
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had valid methylation measurements in at least 80% of the samples. We filtered out the 

CpG sites showing low variability among the samples (“static CpG sites”), and focused on 

a subset of 79,604 (76,408 autosomal CpGs) variable CpG sites (with standard deviation 

among all samples ≥ 0.1). To verify the sample identity, genotypes called from bisulfite 

sequencing reads (bisREAD SNPs) were used for calculating genetic distance, and all samples 

were found to cluster in the correct families (data not shown). Hierarchical clustering based 

on the methylation levels of highly variable autosomal CpG sites (standard deviation ≥ 

0.3) also showed a clustering pattern consistent with the family structure (Figure S1 in 

Additional file 1). 

As the sample size is too small for performing epigenome-wide association tests between 

CpG methylation and schizophrenia status, we examined a subset of 70 CpG sites within 

100kb of six genes (ANK3, CACNA1C, FKBP5, ITIH3, ITIH4 and MIR137) identified in recent 

schizophrenia GWAS studies17. No significant association was identified after correcting for 

multiple tests. Therefore, in the following analyses we focused on treating CpG methylation 

as a quantitative trait and investigated the contributions by genetic variants.

Heritability of DNA methylation

The family-based samples in this study allowed us to examine the genetic contribution on 

variation of DNA methylation irrespective of the type and frequency of genetic variants 

(i.e. SNPs, indels, structural genomic variation). We estimated the narrow-sense heritability 

of DNA methylation for all variable CpG sites based on the mid-parent offspring analysis, 

which measures the correlation between the mean methylation levels of the parents and 

the methylation levels of their offspring (Figure 1a). To be considered as a heritable CpG 

site, we required h2>0.2 in a minimum of ten trios with a FDR cutoff of 0.05 (Benjamini-

Hochberg correction). We identified a total of 10,619 heritable CpGs (Table S1 in Additional 

file 2), which accounts for ~13.3% of all variable CpG sites tested. This suggests that genetic 

factors account for over ten percent of variability in human blood DNA methylome among 

the samples used in this study. Further analysis revealed, however, that 70% (7,440) of 

heritable CpG sites overlapped with SNPs directly disrupting the CpG dinucleotides. This result 

indicates that the majority of heritable CpG methylation is due to genetic polymorphisms 

directly altering the substrates of DNA methyltransferases (“SNP-CpGs”), whereas other cis- 

or trans- regulatory effects account for a smaller fraction of ~30% (3,179) of heritable 

CpG methylation (“non-SNP CpGs”) (Figure 2a). For these heritable non-SNP CpGs, 48.1% 

of the sites are in introns, 23.6% are in intergenic regions (not in 2.5kb of TSS and TES), 

14.3% are within 2.5kb upstream of TSS, 11.3% are in exons, and a small fraction are in 

2.5kb downstream of TES. Note that this distribution is similar to all the variable CpGs 

characterized in this analysis (15.6% in 2.5kb upstream of TSS, 12.6% in exons, 47.8% 
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in introns, 2.8% in 2.5kb downstream of TES, and 21.2 in intergenic regions), and hence 

simply reflected the genomic targets covered by our probe set instead of indicating any 

enrichment to certain genomic features. The heritable non-SNP CpGs can be grouped into 

92 clusters (Table S2 in Additional file 3) each having at least five CpGs with a maximal 

spacing of 100,00bp within 100kb. Multiple CpG sites in a cluster exhibit highly correlated 

methylation among different individuals of the same family (Figure 1b-c), suggesting the 

effects of a single genetic variant or haplotype on multiple CpG sites within a cluster.

Association between genetic variation and DNA methylation

Next we treated each CpG site as a methylation quantitative trait locus (mQTL), and 

investigated the contribution of SNPs to the variability of DNA methylome. Note that the 

MPO analysis performed above covers all forms of genetic variants, whereas mQTL analysis 

focuses specifically on the effects of common SNPs or other genetic variants in linkage 

disequilibrium (LD) with the index SNPs. Here we sought to perform mQTL analysis on 

a)

b) c)

Fig.1

Figure 1: Identification of heritable CpG methylation by mid-parent offspring (MPO) 

analysis. (a) An example of mid-parent offspring regression of DNA methylation at the CpG site 

chr1:146549909. (b,c) DNA methylation level of heritable CpG at chr1:146549909 and the adjacent 

heritable CpGs on the same cluster exhibiting consistent pattern of DNA methylation between parents 

and their offspring on the two trios from the same family. 
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SNP genotypes available from multiple platforms, and to identify the optimal strategy 

through a comparison with the heritable SNPs found in the MPO analysis. From the bisulfite 

sequencing data, we called ~87,600 SNPs in the captured regions for each subject. After 

filtering out SNPs with too many missing genotypes not called in at least 75% of subjects, 

we obtained genotypes on 15,450 SNPs for mQTL analysis. Because these SNPs were called 

only in the captured regions, SNP density was low. To obtain genotypes on more SNPs for 

a more comprehensive mQTL mapping, we included additional genotypes on 57 of the 

96 subjects generated by Affymetrix and Illumina SNP arrays. To avoid platform-specific 

technical differences, we performed imputation using the 1000 genomes SNP data, and 

obtained genotypes on approximately 5 million SNPs after quality filtering. At this density 

there were multiple SNPs in the same LD blocks, so we also performed association tests on 

a subset of 618,580 SNPs present on Illumina 1M SNP array to avoid the excessive penalty 

of correcting too many statistical tests. Regression analysis was performed using PLINK18 

between DNA methylation levels and genotypes of SNPs located within 1Mb upstream and 

downstream to the CpG sites. To account for the dependence between related individuals, 

QFAM analysis using PLINK were also performed. The empirical p-value (EMP) from 10,000 

permutations was used to identify the significant signals along with asymptotical p-value 

from non-permuted data by linear regression analysis. With genotypes on the 15,450 SNPs 

called from bisulfite sequencing data (bisREAD SNPs), we identified 7,593 associated CpG-

SNP pairs at <5% FDR (Benjamini-Hochberg, p-value < 2.74E-05, EMP <0.0005), consisting 

Figure 2: Fraction of non-SNP CpGs and SNP-CpG identified in MPO, mQTL, and ASM analysis. 

(a) Pie chart showing the number of heritable non-SNP CpGs and heritable SNP-CpGs. (b, c) Pie charts 

showing the fraction of mQTL associated non-SNP CpG and SNP-CpGs from mQTL analysis using 

bisREAD SNP data and 5M imputed SNP array data, respectively. (d) Pie chart showing the fraction of 

non-SNP CpG ASM and SNP-CpG ASM exist in at least one subject.



Characterization of genome-methylome interactions | 85

of 4,253 CpG sites associated with 3,842 SNPs. After eliminating SNPs overlapping with 

CpGs (SNP-CpGs), we observed 2,248 association signals (representing 1,417 non-SNP CpG 

sites associated with 966 SNPs, Figure 2b). With the genotypes of 5,257,772 genome-wide 

SNPs, we identified a total of 644,773 CpG and SNP cis-associations within 1Mb distance at 

<5% FDR (Benjamini-Hochberg, p-value < 5.98E-06), consisting of 9,783 CpGs associated 

with 412,382 SNPs, with the majority of associations involving SNP-CpGs. For non-SNP 

CpGs, there were 144,780 associated CpG SNP pairs (2,881 CpGs associated with 63,594 

SNPs) (Figure 2c). We next repeated the mQTL and QFAM analyses on a subset of 618,580 

SNPs that were present on the Illumina 1M array. As expected, the number of associations 

decreased to 67,781 associations (at FDR <5%), including 2,189 non-SNP CpGs associated 

with 7,004 SNPs. To maximize the sensitivity, it is important to balance the penalty of 

including too many SNPs for the association tests with the genome coverage of the SNPs.

The majority of cis-regulatory SNPs locate very closely to their associated CpG sites. For 

the bisREAD SNPs called from the bisulfite sequencing reads, 47.6% of the SNP and CpG 

associations are within 2kb, including 861 CpGs associated with 507 SNPs (Table S3, Figure 

S2a in Additional file 1). Only 15.2% of the associations are over 100kb (Table S3, Figure 

S2b, S2e in Additional file 1). The enrichment of SNP and CpG associations in short distance 

identified here could be due to the sampling bias, because the SNPs were called only in the 

captured regions and tend to locate very close to CpG sites. However, with the 5,257,772 

genome-wide SNPs that more uniformly capture the LD blocks in the human genome, we 

found that over 64% of SNP and CpG associations were within 100kb (Table S4, Figure S2f 

in Additional file 1), with the strongest associations mostly within 2kb (Table S4, Figure 

S2c in Additional file 1), including 1,640 CpGs associated with 4,706 SNPs. On the other 

hand, we did observe slightly more associations over larger distances (Figure S2d, S2f in 

Additional file 1). In the mQTL analysis using ~5 millions SNPs and ~600 thousands SNPs, 

we identified slightly different numbers of non-SNP CpGs (2,881 versus 2,189), indicating 

a limited gain of sensitivity in identifying mQTLs by a >8-fold increase in SNP density. 

However, we did observe more significant associations for many CpG-SNP pairs when 

using ~5 million SNPs, presumably because the chance of capturing the functional SNPs 

or tagging SNPs very close to the functional variants is higher with a denser set of markers. 

Note that bisREAD SNPs were called from our methylation sequencing data, whereas SNP 

genotyping experiments involved extra experimental cost. Even the number of bisREAD SNPs 

used in our analysis is ~340 fold less than the imputed SNPs, we managed to identify half 

of associations involving non-SNP CpG sites compared to 5,257,772 genome-wide SNPs. 

Therefore, in the situation when SNP genotyping experiments are difficult to perform due to 

either limited biological materials or budget, SNPs called from bisulfite sequencing data can 
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be used to capture a reasonable fraction of cis-regulatory interactions, with the caveat that 

long distance interactions would be under-represented. 

Mapping allele-specific methylation

Taking advantage of the methylation levels and SNP genotypes called on individual bisulfite 

sequencing reads, we next used a third strategy to examine the influence of genetic variations 

on DNA methylation by allele-specific methylation (ASM) analysis. Using a recently developed 

computational procedure13, we identified an average of 2,266 CpG sites per individual that 

exhibit a significant difference in allelic methylation (allelic methylation difference >0.2). 

Note that, in contrast to MPO and mQTL analysis, ASM events were called on individual 

subjects. Biological, genetic and technical factors can contribute to the differences of ASM 

events called among different samples. Consistent with previous observations by us and 

others12; 13; 19, SNP-CpGs account for the majority of ASM events (69.7%-92.5%, average 

86.4%). ASM events involving non-SNP CpG sites represent a minority (7.5%-30.3%, average 

13.6%). Examples of ASM events are shown in Figure S3a-3b in Additional file 1. While we 

observed an average of 313 ASM events on non-SNP CpGs per subject, the majority of these 

ASM events were present in only a small fraction of subjects (Table S5 in Additional file 1). 

After combining all overlapping ASM events, we obtained 10,927 and 14,809 ASM events 

on non-SNP CpGs and SNP-CpGs respectively (Figure 2d). For the non-SNP CpGs, 47.1% 

of CpGs are in introns, 26.7% are in intergenic regions, ~13.5% are in 2.5kb upstream of 

TSS, ~8.4% are in exons and small numbers of ASM were in 2.5 kb downstream of TES 

(Figure S3c in Additional file 1). The distribution of SNP-CpG ASM was shown in Figure 

S3d in additional file 1. Comparing to the distribution of all CpGs characterized in ASM 

analysis (16.0% in 2.5kb upstream of TSS, 11.9% in exons, 48.6 in introns, 2.9% in 2.5 kb 

downstream of TES, and 20.5% in intergenic regions), we observed a modest enrichment of 

ASM on non-SNP CpGs in intergenic regions. 

Intersecting three different approaches in dissecting DNA methylome and 

genome interaction

As the three analyses were implicitly or explicitly based on different assumptions and the 

sensitivity/specificity was limited by various technical factors, we next compared the hits 

identified by the three analyses. We expect significant overlaps among the three methods 

unless the false positive rates are high for one or more approaches. Indeed, 49.9% of non-

SNP CpGs identified in the mQTL analysis were also found heritable in the MPO analysis 

(Figure 3a), indicating that at least half of the CpG sites by mQTL mapping were the true 

positive signals. Even this number is lower than expected, as high as 73.3% of associations 

involved heritable CpGs. On the other hand, close to 54.8% of the heritable non-SNP CpGs 

did not overlap with mQTL hits (Figure 3a), indicating that the extent of genome-methylome 
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interactions is more than what was identified with mQTL analysis alone. This could be due 

to a number of reasons, including lack of statistical power due to limited sample size, and 

presence of longer-range cis-interactions over 1 megabases and/or trans-interactions20, and 

the effects of other common or rare alleles not in LD with the SNP tested. In addition, some 

marginally significant sites might be included or excluded due to the choices of p-value cut-

offs by the two methods. In fact, when we plotted the mQTL association signals for heritable 

and non-heritable CpG sites separately, the majority of CpGs most strongly associated with 

SNPs (low p-value) were heritable CpGs (Figure 3b). Non-heritable CpGs in general showed 

weaker association signals, especially for longer-range cis-interactions (Figure 3c). A similar 

pattern was observed for SNP-CpG sites (Figure S4a-c in Additional file 1). Therefore, the 

heritable CpG sites not overlapping with mQTL hits are likely to be regulated by other genetic 

mechanisms. 

In contrast to the mQTL analysis, only very small fractions of CpG sites that exhibit ASM in 

at least one sample were found heritable (5.6% for non-SNP CpGs, 32.6% for SNP-CpGs), 

and even smaller fractions overlapped with CpG sites significant in mQTL (2.8% for non-SNP 

a)

b)

c)

Fig.3

Figure 3: Mapping of CpG sites identified in MPO and mQTL analyses. (a) Venn diagrams 

showing overlap between non-SNP CpG sites significant in mQTL on 5,257,772 imputed SNPs and 

heritable CpGs. (b, c) Distribution of heritable CpGs and non-heritable CpGs and associated SNP pair 

distance within 500kb and their corresponding p-values from mQTL analysis on imputed SNPs.
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CpGs, 21.9% for SNP-CpGs). One possibility is that our ASM calls contain too many false 

positives. However, when we restricted our analysis to the CpG sites that exhibit consistent 

ASM patterns in two or more individuals, the fractions of sites overlapping with heritable 

CpGs increased only moderately, far from the 49.9% overlap observed between mQTL and 

heritable CpGs (Table S5 in Additional file 1). This leaves a number of other possibilities, 

including non-genetic parent-of-origin effects (including but not limited to imprinting), 

random allelic drift21, environmental factors, potentially higher false positive rates or higher 

sensitivity in detecting the allelic differences with the ASM analysis. Overall, ASM appears to 

have very low specificity in identifying CpG sites regulated by genetic variants.

Variation-SNP affecting DNA methylation variance

Finally, we performed a search for variation-SNPs that were recently proposed to control 

the highly variable methylation regions recently observed in the human genome22; 23. Under 

this hypothesis, a particular allele of a SNP is associated with the gain or loss of methylation 

variability, as opposed to the mean methylation level, among multiple individuals. The search 

of such variation-SNPs involved a regression between the variance of methylation level and 

the genotypes. We performed a regression analysis on variance of DNA methylation at each 

CpG site and the genotypes of adjacent SNPs (within 1Mb). A major technical challenge 

is that there are only three genotypes for each SNP, and hence the sample size for each 

regression is limited to three, which results in a very high false positive rate. To improve 

the confidence for detecting true variation-SNPs, we required that a candidate SNP has 

consistent effects on at least five adjacent CpG sites. The false positive rate was estimated 

to be ~10%, by applying the same procedure on the randomly permuted methylation data. 

Similar to SNPs that are associated with the mean methylation level of multiple adjacent 

CpG sites (Figure 4a), we also observed SNPs associated with the variance of multiple CpGs 

(Figure 4b). A total of 1,058 variably methylated regions (VMRs) were identified (Table 

S6 in Additional file 4), which were further grouped into 383 VMR clusters (Table S7 in 

Additional file 5) when combining multiple VMRs that are within proximity of 100kb. 

The majority of VMR clusters (316 clusters, 82.5%) locate adjacent to genes (438 genes). 

The largest VMR cluster involves 53 variable CpG sites in a 38kb region covering GNAS, 

which is a well documented imprinted gene that has a highly complex expression pattern 

from both strands24; 25. Two other large VMR clusters overlap with the HoxA gene cluster 

and protocadherin gamma gene cluster, both contain multiple functionally related and co-

regulated genes and pseudogenes. Additional genes associated with the top ten VMR clusters 

are listed in Table 1. While the full functional consequences of such variable methylation 

remain largely unknown, we note that very recently four SNPs were found to be associated 

with rheumatoid arthritis and the variance of methylation26. In order to test whether the 
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Figure 4: Genotype effects on the mean and variance of DNA methylation (a) Heatmap and 

line plot showing the association between rs4950357 SNP and the mean methylation of heritable CpGs 

cluster on chromosome 1 (chr1: 146548425-146555855). (b) The association of rs2833839 vSNP and 

the variance of methylation on VMR (chr21:34405506-34405661).

Table 1: The top 10 VMR clusters and their associated genes. The genes in blue expressed at 

detectible level in whole blood and were selected for association testing. 

Number 
of variable 
CpGs in VMR 
clusters

VMR cluster coordinates Associated genes

53 chr20:57426730-57464571 GNAS, GNAS-AS1

49 chr8:144358566-144371985 GLI4, ZNF696

47 chr7:27143370-27184750 HOXA2, HOXA3, HOXA5, HOXA6, HOXA-AS3

44 chr5:140718989-140863492 PCDHGA1,PCDHGA2,PCDHGA3,PCDHGA4,PCDHGA5, 
PCDHGA6,PCDHGA7,PCDHGA8,PCDHGA11,PCDHGB1, 
PCDHGB2,PCDHGB3,PCDHGB4,PCDHGB7,PCDHGB8P, 
PCDHGC3,PCDHGC4

41 chr20:32255315-32255936 ACTL10,NECAB3

35 chr5:135415001-135416725 VTRNA2-1

28 chr19:57349099-57352134 MIMT1, PEG3, ZIM2

26 chr8:145162974-145164623 KIAA1875, MAF1

26 chr11:7110142-7110456 RBMXL2

24 chr1:205818899-205819600 PM20D1
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observed VMR clusters also translate into genotype-specific variation at gene expression 

level, we examined the top 10 VMR clusters and their respective genes in an array-based 

whole blood gene expression data set of independent 240 subjects27. Nine of the genes 

within the top ten VMR clusters were expressed at detectable levels (Table 1). Each of the 

probes and the variation-SNP was first tested for expression QTLs but none were detected 

(data not shown). Standard deviation for each probe was calculated per genotype group 

of corresponding variation-SNP. Even though the effects sizes are small, we observed three 

genes, GNAS, PEG3, and PCDHGA5, from different VMR clusters with genotype-specific 

differences on variance at gene expression level (Figure 4b). 

Discussion

In the recent years, association mapping of molecular phenotypes, such as gene expression, 

DNA methylation or chromatin accessibility as quantitative traits (eQTL, mQTL, dsQTL), 

have revealed how genetic variants contribute to the inter-individual variability of these 

quantitative traits measured at the molecular level, and provided additional insights on 

how genetic variants modulate disease susceptibility1; 28-32. The recent technical advances in 

low-cost genome-wide DNA methylation assays (such as Illumina 450k methylation array33, 

RRBS34, and BSPP16), has catalyzed a new wave of epigenome-wide association studies 

aiming to characterizing the contribution of both genetic and environmental factors to 

disease susceptibility6; 35, with encouraging progresses already in sight26; 36-38. However, aside 

from connecting genetic variants with CpG methylation, and disease phenotypes, additional 

questions remain to be addressed. To what extent we should expect interaction to occur 

between genetic variation and the variability of DNA methylation, what fraction of these 

interactions are we able to capture with different approaches, and what strategy should we 

use to efficiently capture these interactions?

In this study, we have revealed a much greater extent of genome-methylome interactions 

than previously recognized. By comparing the results from two orthogonal approaches 

(MPO, mQTL) on the DNA methylation profiles obtained from 22 nuclear pedigrees, we 

demonstrated that a large fraction of heritable traits on CpG methylation remain hard to 

detect with widely used mQTL association mapping. We observed that the vast majority of 

CpG sites exhibiting heritable methylation patterns is due to genetic variation at the CpG 

dinucleotide disrupting the methylation target. For the non-SNP CpGs, increasing the sample 

size will definitely improve the sensitivity in detecting weak cis-regulatory signals. However, 

we hypothesize that trans-regulation might account for the majority of heritable CpG sites 

not detectible by conventional mQTL analysis. While the anti-correlation of promoter DNA 

methylation and gene expression has been observed for many years, how DNA methylation 
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regulates gene expression has yet to be firmly established at the mechanistic level. More 

recent observations of positive correlation between gene-body methylation and gene 

expression added additional confusion on the functional roles of DNA methylation39-42. 

Stadler et al. recently demonstrated elegantly that binding of protein factors to DNA can 

lead to the local reduction of DNA methylation43, providing the first direct evidence that 

DNA methylation in general is a passive mark for protein-DNA binding. A corollary of this 

observation is that, a DNA binding protein (such as a transcription factor) of which the 

expression is an eQTL (regulated by a genetic variant) can affect the DNA methylation level 

in hundreds to thousands of its binding regions genome-wide. As such, a single functional 

variant can regulate many mQTLs, mostly in trans, mediated by its primary effect on a 

single transcription factor. Connecting these mQTLs to the functional variants cannot be 

accomplished by simple association tests using adjacent CpG and SNPs. It requires additional 

information on the transcriptional factors and their direct regulating genes, which are 

becoming increasingly available through large-scale ChIP-Seq and DHS mapping efforts like 

the ENCODE project44. This also calls for a coherent statistical framework for association 

testing by incorporating the information of protein-DNA binding from genome-wide assays.

We also provided a practical assessment on the sensitivity of mQTL mapping at various 

SNP densities, showing that using over a million SNPs can improve the level of statistical 

significance with limited gain on detecting additional associated CpG sites. On the other 

hand, for projects based on bisulfite sequencing, the SNP genotypes called from the 

sequencing reads alone can be used to recover a reasonable fraction of associated CpG 

sites. As bisulfite sequencing is being widely adopted and algorithms for SNP calling from 

bisulfite data being optimized45, this could represent an economical option for large-scale 

EWAS studies, with the understanding that a denser SNP map is still necessary to recover the 

majority of long-range regulatory effects. While we found many CpG sites that both exhibit 

allele-specific methylation in different individuals and show heritable methylation patterns 

across all the pedigrees, the majority of CpG sites identified in our ASM analysis cannot 

be explained by consistent effects of cis-regulatory variants across multiple individuals. We 

reason that ASM analysis is more susceptible to many non-genetic factors, including parent-

of-origin effects, random allelic drift, and technical artifacts, and hence might not be that 

appropriate as the primary approach for identifying methylation traits regulated by genetic 

variants. 

Finally, we provided evidence to support a recent hypothesis that genetic variants can regulate 

not only the mean but also the variation of molecular phenotypes, such as CpG methylation 

or gene expression. This is not unexpected, as gene regulatory networks are connected 

through positive and negative feedbacks46; 47. Reduction of negative feedback has been 
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shown to increase the variability in both prokaryotic and eukaryotic organisms48; 49, lending 

mechanistic supports that genetic variants, affecting the strength of negative regulation, can 

result in the difference of variability for the components involved in the molecular network. 

Feinberg and colleagues have proposed that epigenetic variability provided a mechanism for 

selectable phenotypic variation23, and provided examples of variable DNA methylation and 

their roles on cancer22 and rheumatoid arthritis26. Although the full extent of variable DNA 

methylation, as well as their phenotypic consequences, remain to be further characterized 

with larger cohorts of genetically unrelated individuals, the observation of hundreds of 

VMRs in the 22 nuclear pedigrees suggests that the inherent variability of CpG methylation, 

and possibly other molecular phenotypes, is likely to play a broader role in human biology 

and diseases.

Materials and methods

Targeted bisulfite sequencing with padlock probes.

Bisulfite padlock probe design, production and sequencing were previously described16; 

41. Briefly, genomic DNA was extracted from peripheral blood of 22 pedigrees, and 

approximately 1 µg of genomic DNA was bisulfite converted with EZ-96 Zymo DNA 

Methylation-Gold kit (Zymo Research). Approximately 250ng of bisulfite converted genomic 

DNAs were mixed with normalized amount of genome-wide scale padlock probes and 

oligo suppressors. The padlock probes annealing to targets were polymerized and ligated 

resulting in circularized DNA. The bisulfite sequencing libraries were generated by library-free 

BSPP protocol as described16. Two-thirds of the circularized DNA of each captured reaction 

were directly amplified and barcoded. The bisulfite sequencing libraries were purified with 

AMPure magnetic beads (Agencourt), pooled in equimolar ratios, size selected with 6% 

polyacrylamide gel (Invitrogen), and sequenced by Illumina HiSeq2000 sequencer.

DNA methylation data

Bisulfite sequencing data were processed as described13; 16. Briefly, the bisulfite reads 

were mapped to the in silico bisulfite-converted human genome sequences (hg19) by 

bisReadMapper16. DNA methylation level at each CpG site with minimum 10x depth coverage 

was calculated at the level from 0-1. 

Mid-parent offspring analysis

Mid-parent offspring (MPO) analysis was performed by linear regression analysis to estimate 

the heritability of DNA methylation at each CpG site. DNA methylation level of the offspring 

in each trio was compared against the mean DNA methylation level of the parents. In 

total, 79,604 variable CpGs (minimum standard deviation 0.1) shared in at least 80% of 
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subjects were analyzed. The CpG sites with minimum non-negative slope of the fitted line 

representing heritability (h2) of 0.2 and with the minimum sample size (number of trio) of 

10 were defined as heritable CpGs. The Benjamini-Hochberg method was used to correct 

for multiple testing errors.

Methylation quantitative trait loci

Methylation quantitative trait loci (mQTL) analysis was performed by PLINK (Purcell et al, 

2007) to determine the association between DNA methylation frequency of variable CpG 

sites as described above and SNP genotypes called from methylation data (15,450 SNPs) 

of 96 subjects or imputed autosomal SNP genotypes (5,257,772 SNPs) of 57 subjects. 

SNP genotypes with a minor allele frequency (MAF) of at least 0.05 and with a Hardy-

Weinberg Equilibrium (HWE) p-value > 0.001 were included in this analysis. We used least 

square linear regression, and the corresponding p-values were calculated for each CpG-SNP 

association pair within 1Mb. FDR was calculated by Benjamini-Hochberg multiple correction 

method to asses the significance of the CpG-SNP association. To deal with family structure, 

QFAM analysis was performed. 10,000 permutations were performed and p-values were 

empirically calculated as the fraction of permuted data test-statistic was larger than the 

non-permuted data test statistic. Additional analyses were performed on subsets of imputed 

SNPs including 618,580 SNPs present on Illumina 1M SNP array. The SNPs that showed 

strong correlation with DNA methylation were extracted and annotated significant QTL as 

cis if the SNP lay within 1 Mbs of the CpG site.

Allele-specific methylation

Allele-specific methylation (ASM) analysis was performed as described (Shoemaker et al. 

2010). Briefly, we generated the 2 X 2 contingency table where the two columns containing 

the two alleles and the two rows containing the counts of methylated and un-methylated 

cytosines at CpG site(s) on the read containing heterozygous SNP(s). The p-value at each 

CpG site was calculated by Fisher’s exact test. We identified ASM if the p-value was less than 

0.001 and the methylation frequency between the two alleles was greater than 0.2. 

Schizophrenia-associated CpGs

To identify CpG sites associated with schizophrenia, we performed linear regression analysis 

on the selected CpG sites in the regions of known SNPs associated with the disease, 

including ANK3, CACNA1C, FKBP5, ITIH3, ITIH-4, and MIR137. Variable CpG sites (minimum 

STD 0.1) within 100kb upstream of transcription start site (TSS) and 100kb downstream of 

transcription end site (TES) were analyzed. The difference of methylation mean between 

schizophrenia affected and normal controls was tested by t-test. Schizophrenia-associated 

CpG at specific locus were identified if regression and t-test p-value were below 0.05. 
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Variation-SNP and variably methylated regions

We identified vSNPs and VMRs by performing association tests. Linear regression was 

performed on the variance of DNA methylation at each CpG site among individuals and the 

three genotype groups (AA, AB, BB) within 1Mb distance. The t-score of each CpG-SNP pair 

was calculated, and the false discovery rate was calculated by using different cutoff values 

for the test statistic values. To deal with the high rate of false positive signals, we required at 

least five adjacent CpG sites with maximal spacing 200 bp between CpGs showing consistent 

association with VMRs. We then grouped the overlapping or adjacent VMRs into clusters. 

We note that VMRs associated with different vSNPs could be partially overlapping, so they 

could be grouped into the same cluster. 

Additional materials (available upon request)

Additional file 1: Contains all supplementary figures and supplementary tables 3-5 (Table 

S3 – S5)

Additional file 2: The table listing all heritable CpGs (Table S1)

Additional file 3: The table listing heritable non-SNP CpG clusters (Table S2)

Additional file 4: The table listing VMRs and their associated vSNPs (Table S6) 

Additional file 5: The table listing VMR clusters (Table S7)
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Abstract

Schizophrenia (SZ) is a severe brain disorder with a complex polygenetic architecture. A 

large GWAS meta-analysis identified microRNA-137 (miR-137) as a SZ susceptibility locus. 

MicroRNAs (miRNAs) and DNA methylation are both important players in the regulation of 

gene expression. There exists a feedback mechanism between miRNAs and DNA methylation, 

and the interplay between these two factors may provide more insight into gene regulation, 

and possibly into the etiology of schizophrenia. We examined the relationship of miR-137 

expression and genome-wide DNA methylation levels in human post-mortem brain and 

found suggestive associations between miR-137 and promoter methylation of three genes, 

of which two are involved in neurotransmitter-related pathways. These findings might help 

elucidate the biological relevance of miR-137 in schizophrenia susceptibility and provide 

additional insight into the pathophysiology of this disorder. 
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Introduction

Schizophrenia (SZ) is a severe brain disorder with a complex underlying polygenetic 

architecture. Large-scale genome-wide efforts have identified a small number of SZ 

susceptibility loci with one of the strongest findings located at the noncoding gene, 

microRNA-137 (miR-137)1; 2. Further work has shown that individuals homozygous for the 

risk allele (TT) at this locus show reduced expression of miR-137 in human dorsolateral 

prefrontal cortex, a brain region implicated in the pathophysiology of SZ3. In addition, TCF4, 

a target of miR-137 was also associated with SZ and under genetic control of the SZ risk 

allele that is in close genomic proximity of the miR-137 gene. MiR-137 itself is thought to 

play a role in early neurodevelopment and neurogenesis4; 5. Nonetheless, the exact role of 

miR-137 in the etiology of the disorder remains largely unknown. Further investigation of 

the function of miR-137 and its regulation in the human brain might shed light on the 

underlying biological mechanisms of schizophrenia.

MicroRNAs (miRNAs) are endogenous small non-coding RNA molecules crucial for cell 

function. They are implicated in a plethora of physiological and pathophysiological processes, 

including brain development, function and disease6-8. miRNAs regulate the expression of 

mRNA transcripts at the posttranscriptional level through complementary binding of target 

sequences and induce transcript degradation or hinder protein translation. Interestingly, 

a subset of microRNAs has been shown to control the expression of key players of the 

epigenetic machinery9. 

DNA methylation, one of the most studied epigenetic mechanisms is associated with gene 

expression. It is a biochemical process that transfers a methyl group to the 5-position of 

cytosine residues in CpG dinucleotides in DNA, although non-CpG methylation can also 

occur in mammals10. Methylation is catalyzed and maintained by DNA methyltransferases 

(DNMTs). Promoter regions and transcription start sites of genes are often characterized by 

the presence of CpG islands (CGIs) harboring a high frequency of CpG dinucleotides; CpG 

islands are also found elsewhere in the genome including in genic regions. CpG islands 

in promoter regions of actively transcribed genes are mostly unmethylated11; 12. Silencing 

of the promoter can be achieved through CpG methylation, thereby regulating gene 

expression with possible effects on traits and phenotypes. Indeed, DNA methylation has 

been implicated in many biological processes and diseases, including brain development, 

plasticity and psychiatric disorders13. Importantly, a large fraction of miRNAs is postulated to 

be under epigenetic control. That is, about 50% of miRNA gene promoters are predicted to 

contain CpG islands14. 
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Epigenetic regulation and miRNAs control genome-wide gene expression patterns 

transcriptionally and post-transcriptionally9. A subset of miRNAs target important genes of 

the epigenetic pathway, such as DNA methyltransferases, polycomb group (PcG) proteins, 

and histone modifiers. At the same time, the expression of miRNAs can be regulated 

epigenetically as shown in a number of studies5; 9. For example, expression of miR-137 in adult 

neural stem cells (aNSC) is epigenetically regulated through MeCP2, a methyl-CpG-binding 

protein. Furthermore, miR-137 represses the expression of Ezh2, a histone methyltransferase 

and PcG protein. miR-137 is thought to be an important player in neurodevelopment as it 

modulates proliferation, differentiation, and maturation of aNSCs both in vitro and in vivo4; 

5; 15. This interplay between the epigenetic machinery and miRNAs forms an extra dimension 

in the regulation of gene expression and cellular function. Disruption in this mechanism 

might contribute to disease processes. More insights into the cross talk between miRNAs 

and epigenetics will therefore provide key information underlying and helping understand 

this biological phenomenon. 

This study aims to investigate the interplay between miR-137, a gene recently identified to be 

associated with schizophrenia, and DNA methylation at gene promoter regions. Expression 

of microRNAs and DNA methylation of gene promoters have been shown to be dynamically 

regulated temporally and across regions of the mammalian nervous system, which suggests 

a pivotal role in brain functioning16-21. In addition, both have been implicated in brain 

dysfunction and diseases, more specifically schizophrenia2; 22-25. For this reason, we set out 

to investigate the interplay between the established schizophrenia susceptibility locus, miR-

137, and genome-wide DNA methylation at gene promoter regions in human post-mortem 

brain.

 

Material and Methods

Subjects and tissue collection

Post-mortem brain tissue from 61 subjects (44 non-demented controls, 6 schizophrenia 

patients and 11 bipolar disorder patients) was obtained from the Netherlands Brain Bank 

(NBB). The brain tissue used in this study was collected by the NBB between 1989 and 2008. 

The NBB examined medical records from all subjects to confirm psychiatric diagnoses. From 

these individuals, a total of 235 brain samples, spanning multiple regions across the brain, 

were used. Brain tissue was dissected according to a standardized protocol and individual 

samples were subsequently flash frozen in liquid nitrogen and stored at -80°C. Samples were 

transported on dry ice and frozen at -80°C upon arrival. For each sample, technical variables 

such as pH and post mortem interval were recorded. An overview of subject and sample 

characteristics is presented in Table 1.
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Table 1. Individual characteristics 

N Gender (M/F) Age ± SD PMI ± SD (min) pH ± SD

Controls 44 21/23 80 ± 9 597 ± 433 6.6 ± 0.2

SCZ 6 1/5 76 ± 10 460 ± 157 6.8 ± 0.7

BPD 11 8/3 74.8 ± 9 380 ± 82 6.4 ± 0.2

In this table, subject characteristics are presented per disease status (non-demented, 

schizophrenia (SCZ) and bipolar disorder (BPD)). The columns contain information on male/

female ratio, age and the technical variables post-mortem interval (PMI) in minutes, and pH 

(± SD).

Tissue processing – DNA isolation

From all samples, approximately 25 mg of tissue was taken for extraction of DNA using 

Qiagen’s Allprep DNA/RNA/Protein isolation kit. Brain samples were homogenized using 

Covaris S2 system with the following settings; duty cycle = 20%, intensity = 5, burst 

cycle = 100 and time = 10 seconds. From this lysate, DNA was extracted according to 

manufacturer’s instructions. Total DNA concentrations were assessed using the Quant-iT 

PicoGreen RNA Assay Kit.

Tissue processing – total RNA isolation

Tissue fragments of roughly 25 mg were cut using a scalpel on a cooled glass surface. 

Samples were homogenized using the TissueLyser II (Qiagen) at a frequency of 23 Hz for a 

period of 3.5 minutes. Total RNA enriched for miRNA was extracted using Qiagen’s MiRNeasy 

Mini Kit according to the manufacturer’s protocol. 1-Bromo-3-chloropropane was used 

instead of chloroform as a phase separation reagent. The RNase-Free DNase Set was used 

to remove genomic DNA. As a quality control measure, sample RNA Integrity Number (RIN) 

values were determined using the 2100 Bioanalyzer (Agilent RNA 6000 Nano Kit). Total RNA 

concentrations were assessed using the Quant-iT RiboGreen RNA Assay Kit.

Pre-processing methylation data

Methylation data from brain tissue (n = 235) of 63 individuals was obtained with Illumina 

HumanMethylation27 beadchips. The assay detects methylation status at bisulfite converted 

CpG sites, by means of probes designed for either methylated or unmethylated sequence. 

Gender discrepancies were assessed by hierarchical clustering of X-chromosomal probes. 

Samples showing background intensity of >30% for staining, hybridization, and extension, 

or >35% for bisulfite conversion, as opposed to the high intensity values of the Illumina 

control probes were excluded from further analysis. In total, 2,581 probes with low detection 
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p-values (>0.01 for >1% of the samples) were excluded. There were no samples with low 

detection p-values (>0.01 for >1% of probes). Potential array outliers were removed in an 

unbiased fashion. We used the SampleNetwork R function package26 to calculate the Inter-

array-based sample connectivity score (Z.k). We removed samples with a Z.k. value below 

-3 since their connectivity is 3 standard deviations below the mean value27. Batch effects of 

plate, array and position were removed using ComBat27. Both channels of the methylation 

array were quantile normalized independently. Beta values of a probe (ranging from zero to 

one) were calculated by dividing the methylated signal by the sum of the methylated and 

unmethylated signal. Methylation probes were mapped to the human genome using the 

UCSC browser, and probes that lacked a unique mapping were removed. In addition, probes 

that contained a known single nucleotide polymorphism (SNP), based on Hapmap release 

27 and minor allele frequency (MAF) of > 0.01, were excluded. Finally, all probes on the X 

and Y chromosome were also removed. After these procedures, 22,705 probes were left for 

further analysis. To reduce heteroscedasticity for highly methylated or unmethylated CpGs 

and to ensure more normally distributed methylation levels for further analysis M values 

were calculated28. Taking the log2 ratio of the intensities of the methylated probe versus the 

unmethylated probe resulted in M values. 

Expression of microRNA-137 

Complementary DNA (cDNA) was generated from total RNA enriched for miRNA using the 

TaqMan MicroRNA Reverse Transcription Kit and specific stem-loop primers for miR-137 and 

small nuclear RNA 6B (RNU6B). During the reverse transcription reaction, 15 μL of cDNA 

was obtained per sample using 10 ng of total RNA (2 ng/μl), 3.0 μl 5X TaqMan Small RNA 

Assay, 0.15 μl 100mM dNTPs, 1.0 μl MultiScribe Reverse Transcriptase (50 U/μl), 1.5 μl 10X 

RT buffer and 0.19 μl RNase inhibitor (20 U/μl) according to the manufacturer’s protocol. 

Reactions were performed on a Bio-Rad C1000 Thermal Cycler for 40 cycles at 16°C for 30 

minutes, 42°C for 30 minutes and 85°C for 5 minutes. RNU6B was used as an endogenous 

control. Showing comparatively stable expression across tissue types, RNU6B is frequently 

used in miRNA quantitative RT-PCR (qRT-PCR) studies to correct for sample fluctuations29. To 

evaluate background signal, one no template control (NTC) was included per miRNA assay 

during the RT-reaction.

The quantitative PCR (qPCR) reactions were performed in 384-well plates using the Applied 

Biosystems 7900 HT Real-Time PCR System, with a total volume of 10 μL per reaction. Each 

reaction volume contained 0.67 μL of cDNA, 0.50 μl 20X TaqMan Small RNA Assay and 

5.0 μl 2X TaqMan Universal PCR Master Mix II, No UNG consistent with the manufacturer’s 

protocol. Fifty amplification cycles, at 95°C for 15 seconds and 60°C at 60 seconds, were 

used to achieve a plateau phase for every miRNA assay to facilitate Ct measurements. The 
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qRT-PCR data was acquired using Sequence Detection Systems software version 2.4. Samples 

were run in triplicate per gene analyzed. The generated data was subsequently analyzed 

in DataAssist version 3.01. Background signal was evaluated by assessing the expression 

measured in the NTCs. Samples with a cycle threshold (Ct) value exceeding 40 were excluded 

from further analysis. Outliers among the technical replicates were removed using a refined 

Grubbs’ outlier test. Relative miRNA expression was determined by calculating the ΔCt value 

using RNU6B as internal control. Samples with a ΔCt value exceeding ± 2SD per brain region 

were excluded from further analysis. Next, the ddCt method was used to calculate miR-137 

expression relative to the average expression across all samples. Finally, natural log 2^-ddCt 

values were calculated and used for subsequent analyses. 

Neuronal proportion correction

A Cell EpigenoType Specific (CETS) model was used to remove cell type heterogeneity bias 

from DNA methylation data per brain sample30. Briefly, neuronal proportions were estimated 

from neuron and glia reference profiles using 461 disease non-specific (age > 40) cell type 

epigenetic markers that were available on Illumina’s 27K methylation array. Performance of 

these 461 markers was analysed using a dilution series ranging the fractions of neurons per 

sample. These subset of markers yielded accurate predictions of neurons and glia proportions 

in this dilution series. Thus, sample-specific neuronal proportions were used in subsequent 

analyses to account for cell-type derived variation in methylation data. 

Investigating association between miR-137 and DNA methylation 

Regional analysis

Linear regression models (limma package in R31) were used to relate 22,705 methylation 

values on miR-137 expression, disease status, gender, age32, RIN values, braak stage33, and 

neuronal proportion (NP). To study regional effects, analyses were carried out per brain 

region. FDR correction at the 5% level was applied to correct for multiple testing. 

Global analysis

To increase the power of our association analysis, a linear mixed effects (LME) model (nlme 

package in R34) was conducted with methylation as outcome and miR-137 expression as 

predictor. Disease status, gender, age, RIN, braak stage, and NP were taken as fixed effects, 

and brain region and individual ID (because an individual can have several brain regions), as 

random effects. P-values were FDR corrected at 5% level.
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Pathway analysis

Using corresponding genes annotated to the top methylation probes (p-value < 0.01), 

pathway analyses were conducted to investigate overrepresentation of these genes in 

biological processes. Several pathway tools were used including Panther35, Webgestalt36; 37, 

and David38. The genes were tested against the background of the Illumina 27k array, since 

genes can be covered by more than one probe, and Bonferroni correction was applied to 

correct for multiple testing.

Results

Expression of microRNA-137

Figure 1 shows the expression level of miR-137 across regions of the human brain. The 

highest expression was detected in the basal ganglia, cortex, and limbic system. On the 

contrary, cerebellum and choroid plexus exhibit the lowest expression of miR-137. The 

Figure 1: MicroRNA-137 expression across human brain regions

A box-and-whisker plot showing the expression of miR-137 in natural log (2^-ddCt) (see method) 

on the y-axis and brain regions on the x-axis. Expression levels are relative with respect to the mean 

expression value of all brain regions. Brain tissues are color-coded according to their brain system. 

The number of samples per brain region is indicated within brackets. The box represents the 25th-75th 

percentile and the line marks the median of the relative expression levels. The whiskers are drawn from 

the 10th-90th percentile.
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number of samples per region differs substantially, although this does not influence the 

degree of variation.

Linear regression with miRNA as a predictor to determine DNA methylation 

shows no significant association

To account for cell-type heterogeneity in methylation data sample-specific neuronal 

proportions were calculated. Figure 2 shows the NP across regions of the brain. A number 

of brain categories have similar neuron-to-glia ratios across the brain regions. For example, 

the variation of NP in the locus coeruleus and medulla oblongata, both located in the brain 

stem, is small. Cortical regions, on the contrary, exhibit much larger variation, both between 

and within regions. Proportion of neurons affected our methylation data substantially and 

therefore we incorporated NP as covariate in our further analyses. 

We used linear models per brain region to identify associations between miR-137 and DNA 

methylation. Only brain regions with over 15 samples were included: hippocampus, inferior 

Figure 2: Neuron-to-glia ratio across human brain regions

The x-axis in this boxplot represents brain regions, color-coded according to the brain system. The y-axis 

shows neuronal proportions, which represents the neuron-to-glia ratios. The number of samples per 

brain region is indicated within brackets. The box represents the 25-75th percentile and the line marks 

the median of the neuron:glia ratio.
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frontal cortex, cingulate cortex, and amygdala. After FDR correction we find no significant 

association between methylation and miR-137 in any of the four regions (results not shown). 

Linear mixed effects model to study association between miR-137 and DNA 

methylation 

To increase power for finding associations between miR-137 and DNA methylation, we 

utilized a linear mixed effects model, with brain region and individual ID as random effect. 

After 5% FDR correction for 22,705 tests, we find no significant associations between miR-

137 and CpG methylation. However, as shown in the QQ plot in Figure 3, there are seven 

CpG sites that deviate from the normal distribution, of which three have an FDR q-value 

of 0.16. The CpG sites are located in regulatory regions of the genes HTR2A, OGDHL, and 

GSPT1; results are shown in Table 1 and Figure 4. Methylation of HTR2A, a serotonin 

receptor is negatively correlated with expression levels of miR-137. Increased levels of miR-

137 correspond to decreased methylation of HTR2A or vice versa with a beta coefficient of 

-0.09 (p-value=1.09e-05, FDR = 0.16). CpG DNA methylation levels flanking the promoter 

region of OGDHL, the Oxoglutarate Dehydrogenase-Like gene that is involved in glutamate 

synthesis, is positively associated with miR-137 transcription levels with a beta coefficient 

of 0.15 (p-value=1.9e-05, FDR=0.16). Increased expression of miR-137 correlates with 

increased methylation of OGDHL. The third CpG site that is most strongly associated with 

miR-137 levels is found within the promoter region of GSPT1, the human homolog of a 

gene that is essential in the G1- to S-phase transition in yeast but with unknown function in 

humans (p-value=2.2e-05, FDR=0.16).
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Figure 3: QQ-plot of the LME 

model results. 

The observed versus expected p-values 

of LME result are shown. Methylation 

levels were regressed against miR-137 

expression. Disease status, gender, 

age, RIN, braak stage, and NP were 

taken as fixed effects, and brain region 

and individual ID as random effects.
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Table 1: Results from LME model analysis

CpG Chr Locus Gene
Dist. 
to TSS

CPG 
ISLAND

Gene 
Strand Coef p-value q-value

cg02250787 13 46368990 HTR2A 814 False - -0.09 1.09E-05 0.16

cg24356544 10 50640869 OGDHL 494 Shore - 0.15 1.90E-05 0.16

cg21875234 16 11916906 GSPT1 403 True - -0.05 2.21E-05 0.16

The strongest associations between DNA methylation and miR-137 are shown. Columns 

represent name, chromosome and locus of the CpG site; Gene symbol, distance of the 

methylation probe to transcription start site, location of CpG site with respect to CGIs, Gene 

strand, beta coefficient, p-value, and FDR corrected p-value (q-value).

Figure 4: Correlations between miR-

137 and HTR2A methylation. 

Expression levels of miR-137, denoted 

as the natural log of 2^-ddCt, are 

shown on the y-axis and methylation of 

the CpG site on the x-axis. Data points 

are distinguished between brain region 

(shape) and neuronal proportion (color). 

a, shows the negative association of miR-

137 with methylation of HTR2A, and b) 

presents the positive association between 

miR-137 and methylation of OGDHL.

(a)

(b)
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Pathway analysis

The genes corresponding to CpG sites with DNA methylation levels associated with miRNA 

at (uncorrected) p<0.01, were not overrepresented in a pathway after adjustment for 

multiple testing.

Discussion

The aim of our study was to examine the relationship between expression levels of a microRNA 

that has been implicated in schizophrenia (miR-137) and genome-wide DNA methylation 

levels in adult human post-mortem brain. We examined expression levels of miR-137 across 

24 different brain regions and observed a wide spectrum of differential expression between 

different brain structures. We further applied linear regression and mixed effects models to 

investigate the association between miR-137 and DNA methylation levels genome-wide. The 

most significant findings of this analysis suggest a connection between miR-137 and genes 

involved in serotonin and glutamate pathways. 

The expression of miR-137 was examined across 24 different brain regions derived from 

61 individuals. As shown in Figure 1, brain structures from similar regions mostly show 

similar expression levels of miR-137. Our results show that the largest variation of miR-137 

expression exists between brain regions (intra-individually) and not within brain systems 

across different individuals, which suggests possible shared miR-137 functionality within 

regions of a brain system.

We observe high expression levels of miR-137 limbic system and cortical regions. This 

finding coincides with previous studies that found similar high expression of miR-137 in 

these regions of the human brain3; 4; 39. The highest expression levels of this microRNA in our 

study are observed in the basal ganglia. This in contrast with a previous study by Guella and 

colleagues who report relatively low expression of miR-137 in caudate nucleus and putamen 

of the basal ganglia3. In our study, expression of miR-137 in substantia nigra is slightly 

reduced compared to caudate nucleaus and putamen although in the same system. This 

could be explained by anatomical differences. Both putamen and caudate nucleus are part 

of the corpus striatum, while substantia nigra is part of the Mensencephalon40. Although 

part of the same dopaminergic system, these subregions are structurally and functionally 

different, which coincides with the different expression levels observed for miR-137. In the 

endocrine system and brain stem, miR-137 shows relatively low expression. This lack of 

miR-137 expression in brain stem has been reported recently39, although there is not much 

known of expression of miR-137 in the endocrine system. We observe very low to absent 

expression of miR-137 in the cerebellum, similar to what has been reported before3; 39. We 

also observe very low expression levels of miR-137 in choroid plexus. Differences in expression 
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of miR-137 across different adult brain regions suggest miR-137 operates in a region-specific 

manner. Interestingly, the regions with the highest miR-137 expression levels are also the 

ones that show abnormalities in schizophrenia patients41. Especially cortical aberrations have 

been associated with schizophrenia, showing decreased volumes in patients. In addition, 

the cortical information processing is functionally abnormal in first-episode and chronic 

schizophrenia41. The basal ganglia, the region with the highest miR-137 expression in our 

study, is involved in learning and reward system and has been implicated in schizophrenia42. 

Furthermore, hippocampus and amygdala volumes are decreased in the onset of disease. 

It is possible that miR-137, which is involved in proliferation and maturation of neurons, 

is malfunctioning in these regions, prohibiting development of neurons. On the other 

hand, regions with low miR-137 expression, such as cerebellum, have been associated with 

schizophrenia as well, although these findings are sometimes less pronounced43; 44. Based on 

our findings, a possible role of miR-137 in cerebellum seems less likely, although we cannot 

exclude involvement of this microRNA in developmental stages of this brain region.

Using a linear regression model to investigate the relationship between miR-137 and DNA 

methylation per brain region revealed no genome-wide significant associations. QQ plots 

are deflated, suggesting over-correction and/or lack of power. Moreover, pathway analyses 

using the top 1% results (genes corresponding to methylation probes associated with miR-

137 with a p-value < 0.01) yielded no further insight of enrichment of specific molecular 

mechanisms controlled by miR-137. The relatively low number of samples per brain region 

may be a critical issue if the effects sizes are small; this may have resulted in lack of power. 

To increase statistical power, we also applied a linear mixed effects model with brain region 

and individual ID as random effect. Although the QQ plot shows no signs of inflation of 

deflation (lambda = 1.03), no genome-wide significant associations were found between 

miR-137 transcript levels and DNA methylation after correction for multiple testing. We 

observed three loci with relatively strong association (q-values of 0.16) with miR-137. 

Our strongest observation is the correlation between miR-137 expression levels and DNA 

methylation at HTR2A, a serotonin receptor important in neuronal processes with known 

genetic and epigenetic regulation of its promoter45-50. Epigenetic down-regulation by DNA 

hypermethylation of this gene has previously been implicated in age of onset of schizophrenia 

and bipolar in brain50 and saliva46. This gene has also been proposed as candidate for obsessive 

compulsory disorder, another psychiatric disorder51. Moreover, HTR2A is the main target 

for antipsychotic drugs that could cause promoter hypomethylation of this gene, enabling 

expression recovery50. Based on these previous and our current findings, it is tempting to 

suggest that in schizophrenia patients decreased miR-137 levels induces methylation of this 

serotonin transporter, which in turn might lead to gene repression thereby contributing 

to disease. An important question that remains is whether this correlation arises through 
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direct miR-137 targeting of players of the epigenetic machinery. Our findings suggest a link 

between a well-established schizophrenia susceptibility locus, miR-137, to the serotonin 

pathway, which may provide additional insight into the pathophysiology of this disorder. 

Further studies are needed to confirm this finding and to decipher the underlying mechanism 

through which miR-137 and DNA methylation of HTR2A are associated.

 

The second-best finding is the association between miR-137 expression level and DNA 

methylation at the gene 2-oxoglutarate dehydrogenase-like (OGDHL). This gene is expressed 

in the brain where it is involved in glutamate synthesis, an important neurotransmitter52. 

Specifically, glutamate is the major excitatory neurotransmitter in the central nervous system 

(CNS), and directly and indirectly involved in most aspects of normal brain functioning53; 

54. It is thought that glutamate neurotransmission is involved in the pathogenesis of many 

CNS diseases54, including neuropsychiatric disorders such as schizophrenia55-57. Even though 

the evidence of these as well as our finding is suggestive, these results may highlight the 

biological relevance of miR-137 in schizophrenia susceptibility. Methylation of this gene 

increases with higher expression levels of miR-137. The exact function of OGDHL and its 

potential role in schizophrenia is not known. Our findings need further validation before 

in-depth molecular studies should ensue. The third finding highlights a gene, GSPT1, the 

human homolog of a gene essential for the G1- to S-phase transition in the yeast cell cycle 

but with unknown function in neuronal cells58. 

Even though the findings linking miR-137 with neurotransmitter pathways in adult human 

brain are very appealing, we acknowledge that the modest sample size has affected the 

power of our study. Availability of brain tissue is limited since post-mortem tissue is harder 

to obtain in large numbers compared to whole blood samples. Moreover, the quality of 

post-mortem brain tissue can be negatively affected by a number of factors such as post-

mortem delay, storage temperature, and pH (among others). Although there is not much 

known of these effects on DNA methylation, pre- and post-mortem circumstances may 

impact molecular mechanisms59. In our study, we examined the effects of a number of 

known parameters such as age, gender, Braak stage, and included these in the model when 

confounding. The brain samples were obtained from elderly people ranging from age 62 to 

93. It is a well-established fact that there is a significant age effect on DNA methylation19; 

20; 32; 60; 61, therefore we corrected for age in our analyses. More importantly, however, is the 

question whether study of post-mortem brain tissues will be informative for a brain disorder 

such as schizophrenia, which is thought to be neurodevelopmental in origin. If miR-137 

plays an important role in neurodevelopment and schizophrenia susceptibility, what would 

we expect from studying adult post-mortem human brain? To date, the role of miRNA-137 in 

brain is not fully understood. Therefore, using adult brain serves as a good starting point to 
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examine miR-137 expression in brain and its association with DNA methylation. The dataset 

used in this study consists of many brain regions, which facilitates our knowledge of miR-137 

expression across different regions and structures in the brain. In post-mortem brain tissue 

of patients there is also the concern that (long-term) use of psychoactive medication may 

have influenced methylation levels, which is very difficult to control for62-64. For obtaining 

DNA methylation levels, we used the Illumina HumanMethylation27 Beadchip65. This chip 

interrogates 27,000 CpG sites corresponding to roughly 14,000 genes and includes mainly 

CpGs located in CGIs. Therefore we lack information about CpGs in a large part of the 

genome resulting in a biased view of the methylome. Technological advances have been 

made to increase the number of CpGs simultaneously tested in a single assay, either by 

array-based methods (e.g. the Illumina 450K arrays66) or by high-throughput sequencing 

technology67. Another important issue is that methylation arrays, or any method using bisulfite 

conversion, cannot distinguish between DNA methylation and 5’ hydroxymethylation68. 5’ 

hydroxymethylation is thought to be an intermediate form between methylation and de-

methylation, and almost half of the methylated cytosine in the brain is in this form5. It 

is thought to play a role in epigenetic reprogramming, demethylation, and regulation of 

gene expression69; 70. We recommend that future studies should include a larger number of 

samples to improve power and that next-generation array- or sequencing-based tools to be 

used to obtain a higher resolution genomic view of the methylome profiles. 

Our most significant finding implicates a known antipsychotic drug target, HTR2A50. Since 

gene expression and epigenetic marks are cell-type specific71-73, we corrected the methylation 

data for neuronal proportion using the CETS method30 thereby decreasing the inflated 

uncorrected results. Although this NP correction proved to be relevant, to date, there is no 

method available for implementation in microRNA data. 

In summary, we performed the first integrated analysis of miR-137 levels and genome-wide 

DNA methylation levels in human brain tissues. Our findings, suggesting a link between 

a known schizophrenia risk factor, miR-137, and DNA methylation at HTR2A and OGDHL 

need further validation. Study of the exact mechanism underlying the cross talk between 

miR-137 and the epigenetic control of these promoter regions might provide new insights 

into brain function and, possibly, schizophrenia pathophysiology. 
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The aim of this thesis was to explore the relationships and processes between different layers 

of genomic information (i.e. genotypes, DNA methylation, and gene expression) and to use 

this knowledge to gain more insight into the mechanisms underlying the neuropsychiatric 

disorder schizophrenia. We employed a number of approaches in a large sample of 

schizophrenia patients and healthy controls of Dutch descent. This sample constitutes a 

genetically homogenous population, which has an advantage over genetically admixed and 

more heterogeneous populations, which require correction for population stratification.

Our main findings are:

1.	 DNA methylation at many different CpG loci in the human genome is significantly 

correlated with gene expression, both negatively and positively (Chapter 2).

2.	 A subset of these methylation and expression levels is under genetic control, a small 

proportion of which is regulated by a shared (common) SNP (Chapter 2).

3.	 Using three-way associations (testing genotypes, DNA methylation and gene expression 

data), we identified causal relationships between methylation and expression and 

found the traditional model (where a SNP affects methylation that causes a change in 

expression) to be the most likely model in most cases (Chapter 2).

4.	 Methylation and expression levels can be organized into modules. Genes in the 

methylation and expression models generally do not overlap, however, highly significant 

correlations exist between co-methylation and co-expression modules (Chapter 2).

5.	 Expression QTL (eQTL) analysis highlights three additional schizophrenia candidate 

genes. These genes are regulated by SNPs associated with schizophrenia and are 

differentially expressed in schizophrenia patients compared to controls. (Chapter 3).

6.	 Genetic variations (SNPs), which regulate differential methylation that is associated with 

differential expression in schizophrenia, are significantly enriched for schizophrenia 

susceptibility loci, and provide insights into molecular mechanisms involved in disease 

etiology (Chapter 4).

7.	 Genome-methylome interactions extend well beyond what is detectible with the 

commonly used methylation quantitative trait loci (mQTL) and allele-specific methylation 

(ASM) approaches since only half of the heritable CpG methylation is regulated by cis- 

SNPs identified by mQTL analysis, and the majority of ASM cannot be explained by 

consistent genetic regulatory effects (Chapter 5). 

8.	 Identification of variable methylated regions (VMRs) clusters associated with so-called 

“variation SNPs” supports the hypothesis that genetic variation can affect not only the 

mean but also the variability of methylation levels (Chapter 5).

9.	 MicroRNA-137 (miR-137) is highly expressed in human brain regions implicated in 

schizophrenia (Chapter 6).
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10.	 Interplay between miR-137 and DNA methylation highlights neurotransmitter-related 

pathways, related to neuropsychiatric disorders (Chapter 6).

We will briefly summarize and discuss these findings below.

1.1 Methylation levels are associated with gene expression in cis, of which a 

subset is under genetic control by SNPs

To better understand the regulation of gene expression in relation to DNA methylation, 

the relationship between DNA methylation, gene expression and genotypes was examined 

in Chapter 2. We were the first to test thousands of transcripts with thousands of CpG 

sites genome-wide for association in a relatively large set of healthy controls (N=148). 

Many methylation-expression relations were identified revealing not only expected 

negative associations, but also positive associations, as has been found before1; 2. Although 

traditionally it has been thought that CpG methylation mostly inhibits or represses gene 

expression, for example by blocking transcription factor/RNA polymerase binding sites, these 

results show that these relationships are more complex. There are a number of possible 

explanations for this complexity. 

Methylation may induce gene expression by preventing the binding of a protein to an 

insulator in the DNA, allowing for enhancers to bind to the promoter and initiate gene 

expression3; 4. However, the role of methylation in enhancer and insulator functions have yet 

to be further established5. Another possible explanation for positive associations between 

methylation and gene expression is the involvement of a third “unmeasured” factor, i.e. a 

gene coding for a transcription factor (TF) not present on the methylation array. Methylation 

of a gene could have a negative association with a transcription factor, which in turn down-

regulates gene expression of a certain gene. Increased methylation causes repression of 

this TF (by methylating the promoter of the TF, or by blocking its binding site), prohibiting 

down-regulation of gene expression of that gene, possibly leading to increased expression. 

In addition, a recent review made the distinction between transcription start site (TSS) 

or promoter methylation and gene body methylation. The latter was found to be more 

ambiguous and context specific, and interestingly, could lead to both repression and 

activation5. 

Next, we found that in more than 12% of the methylation-expression cis pairs, methylation 

and/or expression was associated with a SNP in cis, suggesting genetic control of these 

levels. A subset of these SNPs regulates gene expression and the associated DNA methylation 

levels. These “three-way associations” are very interesting since they are likely to represent 

an underlying genetic mechanism for epigenetic changes. Furthermore, we introduced 
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directionality analysis for these three-way associations involving methylation, expression, 

and SNPs. We were the first to determine directionality of the association between DNA 

methylation and gene expression induced by genotype, using Local Edge Orienting 

modeling. Taking the SNP as a causal anchor, we demonstrated that in most instances, it 

is DNA methylation that causes a change in gene expression. This finding is in accord with 

the prevailing classical model of regulation of gene expression. However, we also observed 

a (small) number of instances in which the strongest evidence points to gene expression 

regulating DNA methylation levels. Further studies are needed to confirm these findings 

and decipher the underlying mechanisms, both for the loci supporting the classical model 

as well as those favoring the reversed model. Our results suggest that the causal direction 

analysis is a useful approach for determining directionality. Furthermore, methylation levels 

that are associated with SNPs and expression levels are more frequent in CpG island shores, 

regions spanning up to 2kb around a CpG island (CGI). Shores are more variable than CGIs 

or regions outside CGIs, and are found to be more frequently involved in tissue-specific 

differential methylation6. We observed that methylation changes in these shores are strongly 

related to transcription of associated genes, consistent with others’ findings and supporting 

a functional role in gene expression6. These results indicate that our findings are biologically 

relevant. Finally, after organizing methylation and expression levels into modules, significant 

enrichment of genome ontologies was found, suggesting that these modules are biologically 

meaningful. Genes in the methylation and expression models generally do not overlap, 

however, highly significant correlations exist between co-methylation and co-expression 

modules, suggesting the existence of trans effects influencing methylation and expression 

in different modules.

1.2. Three candidate genes for schizophrenia identified using eQTL analysis

After investigating the association between DNA methylation and gene expression in healthy 

individuals, we further explored the associations with genotypes in schizophrenia in Chapter 

3.

Large-scale genome-wide association studies (GWAS), conducted by the Schizophrenia 

Psychiatric GWAS Consortium (PGC), have led to the identification of many SNPs associated 

with schizophrenia7; 8. These analyses were conducted in thousands of samples, but the 

effect sizes of individual associated SNPs are very small with odds ratios (OR) below 1.3. 

To date, it has been estimated that >8,000 common variants contribute to schizophrenia 

susceptibility7, explaining approximately 30% of the heritability7; 9. However, GWAS has only 

22 SNPs associated with schizophrenia thus far.
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We speculated that, when combining these top SNPs (associated with disease but with 

small effect size) with gene expression data, this extra layer of information could highlight 

additional candidate genes for schizophrenia that could not be detected by GWAS alone. 

The top SNPs from the first PGC meta-analysis8 with a p-value < 0.001, were investigated 

for their association with gene expression. These transcripts were subsequently used in a 

schizophrenia case/control dataset to identify differentially expressed transcripts. Seven 

genes were differentially expressed, of which three coincided with the expected direction 

of the SNP found in the original meta-analysis. These three genes are all located on 

chromosome six, in the major histocompatibility complex (MHC) region, a region previously 

linked to schizophrenia in several studies7; 9; 10. The MHC is a difficult region to analyze and 

interpret due in part to its highly divers DNA sequence and linkage disequilibrium patterns11; 

12. This diversity may hinder oligonucleotide probes from binding properly. Although, this 

study indicates that variants in the MHC have an effect on differential gene expression in 

schizophrenia cases compared to controls and may contribute to schizophrenia susceptibility, 

these results should be interpreted with caution due to the genomic location of these 

variants.

1.3. SNPs regulating differential methylation that is associated with differential 

gene expression are enriched for schizophrenia signal

Since GWAS hits are enriched for eQTLs9, and because findings in Chapter 3 show that 

top GWAS findings represent eQTLs that are regulating differential gene expression in 

schizophrenia compared to controls, we hypothesized that methylation Quantitative Trait 

Loci (mQTLs) are enriched for SNPs previously associated with schizophrenia. Therefore 

we again used the results of the previously mentioned PGC meta-analysis8. We were the 

first to perform this analysis in schizophrenia patients incorporating DNA methylation 

and gene expression data (Chapter 4). In our study, we were interested in whether more 

biologically relevant mQTLs show stronger enrichment for schizophrenia loci compared to 

less biologically relevant mQTLs. Biologically relevant mQTLs are defined as SNPs associated 

with differential methylation between cases and controls and for which the CpG site is 

associated with differential expression. Therefore, we generated four lists of SNPs (mQTLs) 

with increasing biological relevance and tested to see if they were enriched in schizophrenia 

loci. Our analysis revealed that SNPs with high biological relevance are indeed enriched 

in schizophrenia susceptibility loci. The top SNP that we identified in this analysis, SNP 

rs11191514, is associated with methylation of CALHM1 (calcium homeostasis modulator 

1) and is located in the gene CNNM2. Another SNP in this gene, in complete LD with 

rs11191514, is one of the top ten SNPs reaching genome-wide significance in the PGC 

GWAS8. Interestingly, after we conducted this research, a paper was published where 13 

more risk loci for schizophrenia were found, including a region covering the gene CALHM1 
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(for which we identified differential methylation and expression)7. The importance of 

calcium regulation in schizophrenia has been emphasized before7; 13. Our approach is the 

reverse of two recently published studies investigating whether SNPs associated with disease 

were enriched for mQTLs and eQTLs14; 15. We examined whether mQTLs are enriched for 

disease SNPs without restricting ourselves to those loci with prior evidence of association 

with schizophrenia. In summary, we demonstrated that incorporating methylation and gene 

expression data from whole blood of patients and controls leads to enrichment of disease-

associated alleles in a much smaller sample size than is required for GWAS studies.

1.4. Characterization of genome-methylome interactions in families

For the vast majority of CpG sites, methylation is complementary at both DNA strands. 

However, methylation can also be allele-specific, as is the case in X-chromosome inactivation 

and parental imprinting. Some studies showed that methylation can also be allele-specific 

on autosomal chromosomes16. 

Allele specific methylation (ASM) is strongly associated with genotypes in cis (close to the 

CpG site). Studies investigating the association between genotypes and CpG methylation 

have been conducted using mQTL and ASM analyses. However, it is not clear to what 

extent these identified SNPs contribute to the variability in DNA methylation. Therefore we 

investigated the associations between CpGs and SNPs using three different approaches in 

Chapter 5. Moreover, we examined the genetic contribution to variance in DNA methylation 

using 22 nuclear families; each family contained one child who had been diagnosed with 

schizophrenia. We used targeted bisulfite sequencing with padlock probes to quantify 

absolute DNA methylation levels from over 400,000 CpG sites, and extracted genotypes 

from these reads as well. We found that there were substantial differences in the overlap 

of identified CpG-SNP associations between the three approaches. First of all, of the 

heritable CpGs established by mid-parent-offspring (MPO) analysis, 70% contains a SNP 

directly disrupting the CpG site. For the remaining non-SNP CpG sites, approximately half 

of the sites were regulated by cis SNPs, as identified by mQTL analysis. In addition, heritable 

CpGs accounted for the CpGs most strongly associated with SNPs. After examining allele-

specific differences of DNA methylation within individuals, we found that SNPs at CpG sites 

were responsible for most ASM events. Only a small overlap between ASM CpG sites and 

heritable and SNP-associated CpGs was detected. We hypothesized that ASM analysis is 

more susceptible to non-genetic factors. Finally, we found hundreds of variable methylated 

regions (VMRs), covering at least five CpG sites associated with a variation SNP, supporting 

the hypothesis that a SNP can affect not only the mean methylation level, but also the 

variability of the methylation level17.
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1.5. Association of miRNA137 with methylation from brain tissue

It is increasingly clear that gene expression and methylation are in part tissue dependent18-20. 

The aforementioned studies were all conducted with DNA and RNA derived from whole blood 

in order to study a neuropsychiatric disease (schizophrenia). The reason for this is obvious: it 

is difficult to obtain brain samples from patients. Studying brain tissue from schizophrenia 

patients is extremely valuable. The last Chapter (6) in this thesis involves post-mortem brain 

tissue from which DNA methylation and expression levels were measured to create a very 

unique brain dataset. After using the results from the PGC meta-analysis in Chapters 3 

and 4, we were interested in the strongest schizophrenia susceptibility locus, a transcript 

for the gene microRNA-137 (miR-137)8. MicroRNAs (miRNAs) are small non-coding RNA 

molecules that can regulate expression of mRNA transcripts. A subset of miRNAs controls the 

expression of key players of the epigenetic machinery, and in turn, epigenetic mechanisms, 

including DNA methylation can regulate the expression of miRNAs21. This interplay between 

miRNAs and DNA methylation may provide more insight into gene regulation, and possibly 

into disease processes when there is a disruption in this machinery. Therefore, we examined 

the relationship of miR-137 expression and genome-wide DNA methylation levels in human 

post-mortem brain. First, we studied miR-137 expression in different brain regions. We 

found that the regions with the highest miR-137 expression levels are also the ones that 

show abnormalities in schizophrenia patients22. These include the cortical regions, limbic 

system and basal ganglia. Next, we investigated interactions between miR-137 and DNA 

methylation levels both locally (region-specific) and globally (incorporating all regions). We 

found suggestive associations between miR-137 and promoter methylation of three genes. 

The strongest observation involves HTR2A, serotonin receptor type 2, of which the promoter 

is known to be under epigenetic control23-28. Moreover, this gene is important in neuronal 

processes, and has been recently implicated in schizophrenia23; 27. The second-best hit involves 

the gene 2-oxoglutarate dehydrogenase-like (OGDHL). This gene is expressed in the brain 

where it is involved in glutamate synthesis29. Glutamate is an important neurotransmitter 

and glutamate neurotransmission has been suggested to be involved in neuropsychiatric 

disorders including schizophrenia30-32.

Our findings link a well-established schizophrenia susceptibility locus, miR-137, to the 

serotonin and glutamate pathway. Although the evidence is suggestive, it might highlight 

biological relevance of miR-137 in schizophrenia susceptibility and provide additional insight 

into the pathophysiology of this disorder. 
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2. Challenges

When large-scale genome-wide DNA methylation assays became available a few years 

ago, expectations were very high. Study of DNA methylation in cancer research resulted in 

remarkable discoveries6; 33-35. For example, hypomethylation can induce growth-promoting 

gene expression in tumors, and promoter hypermethylation has been associated with 

repression of tumor suppressor genes33-35. The first results of DNA methylation research 

in psychiatric disorders were also promising36; 37. However, interpretation of results from 

DNA methylation studies has been more challenging than expected. Some challenges and 

limitations should be considered in interpreting results, as we will discuss in this section. 

Primarily, the challenges of studying DNA methylation are technical and biological in nature.

 

2.1. Technical challenges:

2.1.1. The 27K Beadchip

The methylation data we used in the projects described in this thesis were obtained using 

the Illumina HumanMethylation27 Beadchip38. This beadchip (the “27K” chip) interrogates 

27,000 methylation sites corresponding to roughly 14,000 protein-encoding genes. 

Although it covers more than half of all human genes, it is a small fraction of the CpG sites 

located in the genome (0.1%). In addition, the 27K chip was designed to include many 

known cancer candidate loci and focused on inclusion of CpGs located in CpG islands. In 

other words, the 27K array provides an informative but skewed view of DNA methylation 

in the human genome, largely ignoring regions outside CpG islands. However, since CpG 

islands are mostly present in promoter regions, covering an important regulatory region 

of many genes, these arrays are useful in analyzing methylation sites that are expected to 

regulate biological function. Following the 27K array, the next-generation (current) design 

of the Illumina methylation array contains over 450,000 loci39, an almost 20-fold increase 

of genomic coverage. Still, this newer 450K DNA methylation array represents only 1.5% 

of CpGs in the genome. While this development shows the technical limitation of array-

based screening of DNA methylation profiles, it also shows the advancements in the field 

of epigenetics and the rapidly developing genomic tools that are available for probing DNA 

methylation. In recent years, next-generation sequence-based analysis of DNA methylation 

has also become available40-42. One of these methods, bisulfite padlock sequencing, is 

described in Chapter 5. This method makes use of bisulfite sequencing reads with padlock 

probes to quantify absolute DNA methylation levels from over 400,000 CpG sites genome-

wide. Sequence-based methods do not suffer from hybridization artifacts and make it 

possible to study allele-specific effects.
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2.1.2. Batch effects

Another problem we faced when performing quality control was the enormous effects 

of technical variation, also known as batch effects. Most likely, batch effects in DNA 

methylation research is due to differences in conversion rate of unmethylated CpGs when 

genomic DNA is treated with bisulfate. Another technical bias may occur due to incomplete 

bisulphite conversion or amplification inefficiency43. These technical batch effects are known 

to exist when using array-based approaches such as Illumina Infinium chips44. It is critically 

important to handle these possible biases thoroughly since batch effects can introduce 

many type 1 and type 2 errors, especially when there is a relationship between batch effects 

and phenotype (i.e. cases/control status)44; 45. In our experiments, it was a real challenge 

to remove technical variation as much as possible, while retaining the biologically relevant 

variation. The largest effects were detected between the arrays (reflecting different bisulfite 

treatment experiments). In addition, we observed strong plate (8 arrays) and position 

(12 positions per array) effects on the methylation data. While avoiding batch effects is 

impossible, the best way to have these effects not interfere with data analysis and results is 

to thoroughly randomize samples (in terms of disease status and sex over the different arrays 

and plates. Another limitation of the array-based technology for studying DNA methylation 

is the presence of genetic variation at probe regions, as it affects optimal hybridization and 

thereby generates allele-specific methylation profiles that are not related to the phenotype 

of interest. CpG probes with known SNPs and those that hybridize to multiple locations 

in the human genome need to be removed prior to data analysis to reduce false-positive 

findings44.

2.1.3. 5’ hydroxymethylation 

Another limitation of the Illumina arrays is that it is impossible to distinguish between DNA 

methylation and 5’ hydroxymethylation18; 46. The latter is thought to be an intermediate form 

between methylation and de-methylation. Almost half of the methylated cytosine in the 

brain is in this form47. It is not clear what the consequences of 5’ hydroxymethylation are, 

but it is likely to play a role in gene regulation and differentiation48-50. 

2.2. Biological challenges

2.2.1. Cell heterogeneity

Biological challenges should also be considered. An important challenge to address is cell 

composition heterogeneity. For most of our studies, DNA and RNA derived from whole blood 

was used. Whole blood mainly consists of red blood cells and plasma, and a small proportion 

of white blood cells and platelets. Since DNA methylation is involved in the regulation of cell 

differentiation, the methylation and expression marks in these cell types can be different. 
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The cell type composition of blood varies between individuals, and if the composition 

differs between cases and controls, it may lead to false positive findings. Recently, several 

methods have been published that take this problem into account by correcting for cell-type 

composition even if this composition is unknown51-53. It is recommended that we apply these 

methods and re-analyze available data sets including our own. 

Since each cell type is characterized by its own epigenetic profile, we need to consider 

another issue when studying schizophrenia and related phenotypes. Our studies have been 

based (primarily) on whole blood of patients and controls. However, the target cell type 

of neuropsychiatric disorders is likely to be neuronal and different from cell types found in 

peripheral blood. This means that blood-based findings are likely to provide a limited view 

of epigenetic events occurring in brain-specific cells. Nevertheless, our reported findings 

were informative for disease (in different experiments), which suggests that some aspects 

of epigenetic control are preserved between different cell types and across tissues. We 

acknowledge, however, that it would be very valuable to replicate these findings in brain 

cells. The main reason to perform blood-based DNA methylation and gene expression studies 

of schizophrenia is based on the fact that large numbers of patients and controls can be 

collected. This is in sharp contrast with the available brain tissues of schizophrenia patients, 

which is extremely limited in sample size. Moreover, it is also very challenging to positively 

select one disease-specific region within the brain because of the extensive heterogeneity of 

cell types across different brain regions. Although we had the availability of a unique dataset 

consisting of many brain regions from schizophrenia and bipolar patients (n=17) and healthy 

subjects (n=44), the sample size resulted in our study being significantly underpowered. 

For the work presented in this thesis, it proved to be simply impossible to reach the same 

sample size for brain tissues that is widely available for whole blood. Another potential 

disadvantage of using brain tissue of patients is that these samples are usually obtained 

from elderly patients post-mortem while the disease is considered a neurodevelopment 

disorder. Moreover, the quality of post-mortem brain tissue can be negatively affected by 

a number of factors such as post-mortem delay, storage temperature, and pH. Although 

there is not much known about these effects on methylation, pre-mortem and post-mortem 

factors may intrude molecular mechanisms54. Also obscure is whether post-mortem adult 

brain tissue (obtained from mostly elderly people) is informative for neurodevelopmental 

disorders. These challenges have to be further explored in the future.

2.2.2. Methylation: cause or consequence?

DNA methylation is heritable and reversible, and despite many (significant) associations 

with disease, these associations can be either causal or consequential with respect to 

the phenotype18; 33; 44. Generally, a causal role (when methylation affects gene expression 
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and subsequently disorders develop) has been traditionally thought to explain these 

associations33. There are several factors leading to variation in methylation18. First, if this 

variation is inherited, it can be present in all tissues, including the germ line. There is not 

much known about this process55, but several studies on this were published in mouse56, 

rat57, and human58; 59. One of the most striking examples involves the Agouti mice56. 

Difference in a mother’s diet led to different coat color due to epigenetic modifications 

at a single gene. When the mother received a diet full of supplements including folic acid 

during pregnancy, the offspring had brown fur. However, when these supplements were 

restricted in the mother’s diet, the offspring were born with yellow fur and were also obese 

and developed diabetes and tumors. This phenomenon was caused by the methylation of 

the agouti gene, which repressed the gene. In this case, folic acid had served as a methyl 

donor. Second, if variation occurred randomly, it can be present in specific tissue types or 

in all tissues depending on time of occurrence during the developmental stage. Third, there 

are multiple factors that influence DNA methylation, such as medication and environment 

(i.e. smoking, alcohol, diet, and stress)60; 61. Several studies show the effect of medication 

on methylation33; 62; 63. Considering that most schizophrenia patients use medication, as 

described in the next section, the confounding effects of medication make it difficult to 

distinguish the origin of the methylation differences between patients and healthy controls. 

Lastly, methylation can be under genetic control. We have examined this feature using linear 

models to investigate associations between genotypes (SNPs) and methylation levels. 

Genotype arrays used in these studies include over 300,000 SNPs. These so-called tagging 

SNPs represent a number of SNPs, not necessarily present on the array, that are in linkage 

disequilibrium (LD) with the tag SNP. If an association is identified between a SNP and a 

methylation level, this SNP is not necessarily the causal variant, but may reflect signal from 

adjacent SNPs due to LD. Therefore it is not always clear whether the identified SNP is 

driving the signal. On the other hand, it demonstrates that a subset of SNPs can be used for 

association testing, reducing costs. 

In addition to this, there is also a question about the extent to which DNA methylation 

really contributes to disease? Overall, variations in methylation levels between individuals 

are relatively small. The significant differentially methylated CpG sites we found between 

schizophrenia patients and controls express a maximum fold change of approximately 3%. 

The question remains, what does such a small change in methylation level mean biologically? 

To what extent does it contribute to gene expression and protein regulation? In the cell, 

gene expression (or “dosage”) changes all the time, and may depend on a variety of factors, 

such as the time of the day. It is thought that a small change in DNA methylation can have 

major effects in expression if transcription factor binding domains or regions involved in 
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recruitment of repressors are implicated64. In this way, DNA methylation may serve as a 

“switch”, which may act given a certain threshold level, and that threshold may vary by 

gene.

In this regard, methylation analysis may be very similar, but not inferior, to GWAS. GWAS, 

specifically meta- or mega-analyses, encompass thousands of individuals and uncover 

associated SNPs with small effect sizes (in complex traits). As mentioned before, ORs are often 

small due to very small differences in allele frequencies (~3%) between cases and controls. 

Therefore it is not surprising that we also find minimal effects in methylation, especially when 

considering our relatively small sample size compared to GWAS. Perhaps, the “common 

variants with small effect and rare variants with large effect” hypothesis in GWAS is also 

applicable to EWAS. It has also been hypothesized that the explained heritability in complex 

diseases is overestimated, due to epistasis (gene-gene interactions) for example65. However, 

it is not clear whether the remaining variance of disease can be attributed to epigenetics 

(when its not considered part of heritability) or if most of the variance is explained by SNPs 

already and methylation will not explain a significant proportion of this missing heritability.

In general, we are far from fully understanding the causes and consequences of the observed 

differences in DNA methylation44, and the current findings do not distinguish between causal 

and consequential DNA methylation variation. Further longitudinal studies will be necessary 

to aid in our understanding of this epigenetic process. Furthermore, statistical significance 

does not by definition mean biological significance, stressing the importance of validation 

by “wet-lab” experiments.

2.2.3. The challenges of schizophrenia as a phenotype

Schizophrenia is a complex disease with large heritability (~80%), and a polygenic 

background. To date, common variants have been estimated to explain approximately 30-

50% of the heritability7; 9. The effect sizes of the polymorphisms are small, with odds ratios 

not exceeding 1.5. Furthermore, schizophrenia is a very broad phenotype. Diagnosis is fully 

dependent on classification by a psychiatrist, as there are no biological markers available. 

Even though the Diagnostic and Statistical Manual of Mental Disorders (DSM) has been 

created to ensure comparability in phenotype across different psychiatrists in different 

countries, it still remains a subjective diagnosis. 

An issue that is inherent to the study of schizophrenia and related psychiatric disorders is 

the confounding effect of medication use. Almost all patients are using prescription drugs 

or resort to self-medication that is likely to affect DNA methylation profiles in blood cells 

and elsewhere in the human body62. For this reason, results of epigenetic studies of human 
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neuropsychiatric traits (including those reported in this thesis) should be interpreted with 

some caution. 

3. Future perspectives 

3.1. Other techniques

Techniques and methods to investigate human genetics and diseases are growing rapidly. 

Genotype, methylation and expression arrays interrogate increasing numbers of SNPs or 

probes and high-throughput sequencing has become readily accessible. With the decreasing 

cost per array, sample size per study is increasing. In most of the chapters of this thesis, 

methylation data was collected from arrays, and in Chapter 5, bisulfite sequencing with 

padlock probes was used to detect methylation at CpG sites. As techniques to measure 

quantitative trait data like DNA methylation and gene expression develop and advance, 

coverage and confidence will increase. Along with array-based technologies, there are 

sequence-based technologies in addition to bisulfate sequencing padlock probes (BPSPP) 

(described in Chapter 5), such as whole-genome bisulfite sequencing (WGBS)42 and reduced 

representation bisulfite sequencing (RRBS)40; 41. Sequencing provides higher coverage and 

resolution but is more expensive, although costs are likely to decrease over time18. Also, 

exome-sequencing studies involving schizophrenia patients are advancing, with a large study 

published recently examining rare mutations66. This is relevant because, due to the polygenic 

architecture of schizophrenia, the estimated explained variance from common alleles warrants 

the search for rare variants which may have much larger effect on disease susceptibility. 

To gain more insight into the functional relevance of (altered) DNA methylation and gene 

expression relations, animal models are currently being used to test the functional effects 

of gene mutations (i.e. using knock-out or knock-down mice) in several diseases, including 

schizophrenia67. However, schizophrenia characteristics such as delusions and hallucinations 

are difficult to define in a mouse, although some phenotypes such as social impairment can 

be observed. Also, for studying gene expression patterns and the effect of DNA methylation 

on expression, animal models are valuable. This approach succeeded in RETT syndrome, an 

autism spectrum disorder. Deletion of the gene MeCP2, which encodes for a protein that 

inhibits gene expression, caused RETT-like symptoms in mice. Strikingly, restoring this genes 

expression led to reversal of the symptoms in mice68. Ideally, a combination of methods, 

especially when validating results, is required. This will also contribute to generating new 

methylome maps. Furthermore, detailed knowledge of methylome structure, including 

correlated tissue-specific blocks will aid in improved selection of CpG sites for Epigenome-

wide Association Studies (EWAS)18. Attempts of several consortia resulted in public resources 

containing epigenomic data available for research. For example, the Encyclopedia of DNA 

Elements (ENCODE) Consortium generated a freely available resource containing functional 

elements present in the human genome69. ENCODE also develops methods and conducts 
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genome-wide sequence-based studies to map functional elements, which will provide new 

insights into the organization and regulation of our genome. The NIH Roadmap Epigenomics 

Mapping Consortium launched a public resource containing human epigenome data, and 

aims to provide a reference epigenome map70; 71. This consortium also generated tools, 

pipelines and protocols for data generation and data analyzing, aiding in expanding our 

knowledge of epigenetics in normal development and disease.

3.2. Extending sample size and refining patient selection

After many attempts to discover the variants contributing to schizophrenia, the majority 

of the estimated heritability still cannot not be explained. It is likely that larger studies with 

increasing sample size will uncover more common variants associated with schizophrenia7; 

72. This will be similar for epigenetic studies. With expanding sample sizes, power to detect 

differential methylation in schizophrenia patients is likely to increase. The challenge is to 

carefully select samples. In our studies, we examined all schizophrenia cases as one group. 

It is possible that in EWAS (and GWAS), we need to abandon the approach of considering 

schizophrenia as one disorder and rather focus on symptoms (such as psychosis) as opposed 

to the diagnosis. This would allow for interrogating larger datasets (as other psychiatric 

disorders share symptoms), and improve power to find (disease-causing) associations. On 

the other hand, it might be worthwhile to narrow the phenotype and assign schizophrenia 

patients into different subgroups according to clinical features, and analyze them separately. 

However, sample sizes would need to increase drastically to overcome power limitations. The 

sample sizes achieved in GWAS studies of height and BMI, for example, will probably never 

be reached for psychiatric patients, even if groups are working together, because the low 

prevalence of psychiatric disorders is quite low (as opposed to general features present in all 

humans, such as height). Recruitment of schizophrenia patients is very time-consuming, as 

they need to be seen by clinicians, be diagnosed, and be willing to participate. 

In addition, it would be very valuable to include medication-naïve patients, to exclude the 

medication effect; this will remain a challenge since almost all patients are on medication. 

Perhaps this limitation could be overcome by sampling individuals before they have the first 

symptoms to developing schizophrenia, and select them from a group of controls. But this 

requires thousands of people being collected. Besides, methylation changes contributing to 

the susceptibility of the disorder might not be relevant before disease onset. However, there 

is a pre-phase in which individuals show some first signs73. This might be a good moment to 

collect their blood. In addition, ascertainment of more families is preferable since multiplex 

pedigrees are enriched for causal genetic variation with higher penetrance72, providing more 

information about the underlying genetics. 
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Foremost and key in all fields of research is collaborating with other research groups to 

increase sample size and knowledge. This is why large consortia were initiated, like the 

Psychiatric Genetics Consortium for GWAS, and ENIGMA (Enhancing Neuro Imaging 

Genetics through Meta-Analysis) network for imaging analyses. Epigenetics and DNA 

methylation consortia, such as International Human Epigenome Consortium, are essential. 

As the equivalent of the 1,000 genomes map, this consortium is generating 1,000 reference 

epigenomes, including methylomes, for many human tissues and cell types, improving our 

ability to conduct EWAS for many common diseases in the coming years18. This will shed 

light on the organization and regulation of the human epigenome, and the way methylation 

profiles differ across individuals and tissue types, and disease.

3.3. Other (epi)genetic marks

DNA methylation is not the only type of epigenetic modification and thus provides a very 

limited view of epigenetics. Other well-studied regulatory marks in the human genome 

involve histone modification, which can influence chromatin state, as well as non-coding 

RNAs such as microRNAs (Chapter 6). To fully understand the (epi)genetic mechanisms of 

disease, it is imperative to obtain these measures and combine them with other layers of 

(epi)genetic information and subsequently conduct case/control studies. Although DNA 

methylation is the most suitable for EWAS, since it is detectable at large scale, it is vital to 

conduct large-scale analyses for other epigenetic marks as well. Recent studies show that 

DNA methylation and histone modification can be associated with each other and that both 

histone- and DNA methyltransferases can mediate this interplay. This is extensively discussed 

in this review74. Investigating the correlations between different epigenetic variations will 

shed light on the epigenetic regulation of chromatin modification and subsequently gene 

expression. Examining chromatin structure will point to regions of interest by selecting 

regions that exhibit open chromatin structure and in general active transcription. In addition, 

extending and combining epigenetic research with gene-gene and gene-environment 

interactions research will facilitate our understanding of complex biological mechanisms. 

3.4. Implications for disease 

The time of onset for schizophrenia is typically adolescence. During this period, the brain 

is reorganized, and major changes in the neural systems emerge75; 76. The cortical regions 

in particular show changes. This is also observed in schizophrenia patients22; 76. In addition, 

gray matter loss has been revealed in schizophrenia patients77. These observations lead to 

the questions: are genes methylated as a consequence of these brain changes? Or were 

these different methylation patterns there before? And if so, what causes these patterns to 

change? 
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One hypothesis is a “two-hit” model whereby an early developmental or genetic anomaly 

preceding a (psychological) traumatic experience or other trigger such as stress, later in 

life, result in developing the disorder78. This fits with a model whereby methylation profiles 

change due to environment. Such a model is consistent with the hypothesis that psychosis 

does not arise in a healthy brain73, and that genetic mutations are associated with the 

disorder. Many of the SNPs found so far implicate genes involved in neuronal development, 

and some of these variants are associated with multiple neurodevelopmental disorders 

like schizophrenia, autism, and bipolar disorder. Since autism is revealed in young children 

compared to a higher age of onset in schizophrenia, it is thought that environmental and/

or epigenetic influences are contributing as well73.

As described above, there are probably thousands of variants contributing to schizophrenia 

etiology. What if we eventually find all the genes and variants involved in schizophrenia? 

It is very likely that each individual patient has a different (epi)genetic make-up that leads 

to disease onset. Perhaps, a (polygenic) risk or “burden” score could be calculated that 

assembles information from all variants79, representing the likelihood that a person will 

develop schizophrenia. This “early diagnosis”, and in turn, early treatment, might help in 

improved outcomes. 

Moreover, instead of investigating every single gene (for possible drug targets), perhaps we 

should move a level up and analyze the bigger picture. Combining all genes to find common 

pathways will lead to biological processes and molecular functions that can be studied for 

potential drug targets. This is very important since there is a need for more personalized 

medicine with fewer side effects. Although there are publications discussing the relevance 

of epigenetic drugs62; 80; 81, these drugs are far from implementation in the clinic. Epigenetics 

will hopefully further aid in elucidating underlying biological mechanisms. Although studying 

DNA methylation did not reveal a major impact on a single gene, increasing sample sizes, 

combining data, and refining methods and techniques will make this a more promising 

approach for further study.

 

4. Conclusion 

Before embarking on the projects described in this thesis, our aim was to gain more 

insight into molecular genetic aspects of schizophrenia by studying genetic variation, gene 

expression and DNA methylation jointly. With the genome-wide study in healthy controls in 

which we investigated the relationship of DNA methylation with gene expression in Chapter 

2, we found that these relationships were far more complex than originally thought. Using 

Local Edge Orienting modeling we showed that in three-way associations, methylation 
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under genetic control is affecting gene expression, indicating the relevance of this approach 

in defining the causal relationships between these genomic layers. We also demonstrated 

the importance of using gene expression (Chapter 3) and DNA methylation (Chapter 4) data 

in combination with previously conducted GWAS results. This led to identification of three 

additional genes for schizophrenia resulting from the eQTL study, and one gene from the 

methylation enrichment study. Since the latter gene is a calcium ion channel, which has been 

associated with schizophrenia before, this might be a potential drug target and is therefore 

relevant for further research. Using targeted bisulfite sequencing in Chapter 5, we found 

that the extent of genome-methylome interactions is well beyond what is detectible with the 

commonly used mQTL and ASM approaches because our results showed that approximately 

half of the heritable CpG methylation is regulated by cis- SNPs as identified by mQTL analysis. 

However, the majority of ASM cannot be explained by consistent genetic regulatory effects 

and might therefore be more susceptible to non-genetic factors. Our results also support the 

hypothesis that genetic variation can affect the variability of the methylation level. Finally, in 

Chapter 6, we found that a significant schizophrenia susceptibility locus, miR-137, is highly 

expressed in brain regions implicated in schizophrenia, and associations of miR-137 with 

DNA methylation levels highlighted neurotransmitter-related pathways.

To conclude, this thesis describes systematic genome-wide approaches to relate different 

layers of genomic information using bioinformatics. We show that DNA methylation 

is a useful and relevant piece of the puzzle. In addition, we demonstrate that although 

DNA methylation adds to the complexity of the genomic underpinning of schizophrenia, 

incorporating these measures is a promising and necessary tool to unravel the complex and 

disabling neuropsychiatric disorder schizophrenia. 
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Na jaren van genetisch onderzoek is het duidelijk geworden dat er naast genen en 

omgevingsfactoren nog andere factoren een rol moeten spelen bij de ontwikkeling van 

eigenschappen en ziekten, namelijk epigenetica (uit het Grieks (epi -bovenop-) genetica). 

Epigenetische veranderingen hebben geen effect op de specifieke volgorde van het DNA 

(desoxyribonucleïnezuur) -ze veranderen dus niet de onderliggende genetische code- maar 

ze hebben wel invloed op de structuur van het DNA en daarbij effect op genfunctie, wat weer 

kan resulteren in verschillen in eigenschappen van de cel en het organisme. Bijvoorbeeld: 

de volgorde van DNA in alle cellen van het lichaam is hetzelfde, maar het aan- of uitzetten 

van verschillende genen maakt dat cellen differentiëren naar verschillende soorten cellen. 

Spiercellen hebben bijvoorbeeld dezelfde DNA volgorde als hartcellen, maar in spiercellen 

staan andere genen ‘aan’ dan in hartcellen. Dit proces wordt gereguleerd door epigenetica.

Epigenetica is een verzamelnaam voor verschillende processen en ‘markers’, en in dit 

proefschrift zal het voornamelijk gaan over DNA methylatie. DNA methylatie is een chemische 

modificatie van het DNA. Zogenaamde cytosines (1 van de 4 basen of bouwstenen van het 

DNA; cytosine, guanine, adenine en thymine) kunnen worden ‘gemethyleerd’ door middel 

van de toevoeging van een methylgroep. Dit proces vindt vooral plaats wanneer een cytosine 

naast een ‘guanine’ ligt. Vaak zien we dat deze CpG plaatsen (ook wel loci genoemd) 

clusteren in grote groepen, de zogenaamde CpG eilanden, die vaak in een promotor gebied 

liggen. Promotors liggen meestal aan het begin van een gen en reguleren expressie van dat 

gen. Genexpressie is de mate waarin een gen vertaald wordt naar RNA (ribonucleïnezuur) 

en daarna naar eiwit. Het algemene idee is dat DNA methylatie van promotors de expressie 

van genen kan remmen, waardoor er minder eiwit wordt gemaakt. Echter, langzaam wordt 

duidelijk dat dit proces complexer is dan eerder gedacht. 

DNA methylatie kan variëren tussen personen en veranderen met de tijd. Er is gesuggereerd 

dat methylatie deels gereguleerd wordt door de onderliggende genetische code, 

bijvoorbeeld door varianten in het DNA genaamd SNPs (‘Single Nucleotide Polymorphisms’, 

een verandering van een enkel basenpaar). Als SNPs geassocieerd zijn met methylatie op 

CpG loci worden ze ‘methylation quantitative trait loci’ (mQTLs) genoemd. Mensen met een 

bepaalde variant, of allel, in het DNA hebben dan een verhoogde of verlaagde methylatie 

van een gen). Recente technieken maken het mogelijk methylatie op grote schaal te meten 

waardoor verschillen in methylatielevels geïdentificeerd kunnen worden, bijvoorbeeld tussen 

patiënten en gezonde mensen. 

In dit proefschrift ligt de focus op studie van DNA methylatie betrokken bij neuropsychiatrische 

stoornissen, met name schizofrenie. Schizofrenie is een psychiatrische aandoening, die bij 

ongeveer 1% van de bevolking voorkomt. Het wordt gekenmerkt door een complex van 
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symptomen, zoals hallucinaties, wanen, onsamenhangende spraak, ernstig chaotisch gedrag 

en negatieve symptomen (zoals lusteloosheid, sociale terugtrekking en minder plezier vinden 

in activiteiten). Voor het stellen van de diagnose is het van belang dat deze symptomen 

langer dan een half jaar aanwezig zijn en de patiënt beperken in het dagelijks leven. Het 

is een van de meest invaliderende psychiatrische stoornissen. De precieze ontstaanswijze 

van schizofrenie is (nog) niet geheel duidelijk en waarschijnlijk een samenspel van erfelijke- 

en omgevingsfactoren. De erfelijke component van de variatie van de aandoening in de 

populatie wordt geschat op ongeveer 80%, maar ook omgevingsfactoren zoals stress, 

trauma en cannabis gebruik spelen waarschijnlijk een belangrijke rol. 

Er is uitgebreid genetisch onderzoek gedaan naar de onderliggende factoren van schizofrenie. 

Hierbij wordt gezocht naar verschillen in de DNA volgorde tussen patienten en gezonde 

mensen. Hoogstwaarschijnlijk spelen honderden of zelfs duizenden variaties in het DNA 

(in en om genen) een rol, maar elk met slechts een gering effect op het ontstaan van de 

aandoening. Tot nu toe zijn er enkele tientallen regio’s binnen het DNA ontdekt die samen 

ongeveer 5% van het genetische aandeel van schizofrenie verklaren.

Het bestuderen van andere aspecten van het genoom, zoals DNA methylatie, kan bijdragen 

in het verklaren van de nog onbekende, genetische- en omgevingsrisicofactoren. 

Ondanks dat we het mechanisme achter DNA methylatie deels begrijpen is er nog 

weinig bekend over de gevolgen van verschillen in methylatie tussen personen en of en 

hoe verschillen in methylatie bijdragen aan het ontstaan van een ziekte. Een ontregeling 

van methylatie, en daarmee ontregeling van genexpressie, zou kunnen leiden tot grotere 

vatbaarheid voor bepaalde aandoeningen.

Met dit proefschrift wilden we dan ook de relatie tussen DNA (genotype), DNA methylatie 

en genexpressie onderzoeken, om meer inzicht te krijgen in het ontstaan van schizofrenie.

In hoofdstuk 2 van dit boekje beschrijven we een onderzoek met als doel de invloed van 

de mate van methylatie op genexpressie te bekijken. Zoals hierboven beschreven, wordt 

over het algemeen aangenomen dat methylatie van (de promotor) van een gen leidt tot 

verminderde expressie van dit gen. Echter, er zijn onderzoeken die een omgekeerd effect 

beschrijven (methylatie leidt tot meer expressie van het betreffende gen). De tegenstrijdigheid 

van deze bevindingen heeft tot gevolg dat men denkt dat het mechanisme complexer is 

dan eerder gedacht. We hebben de relatie tussen methylatielevels en expressielevels van 

genen in kaart gebracht in een groep van bijna 150 gezonde mensen. Ook is de relatie van 

methylatie- en expressielevels met genotype onderzocht. Uit ons onderzoek blijkt nogmaals 

de complexiteit van regulatie van genen. In het hoofdstuk beschrijven we dat een deel van 

de relaties tussen methylatie en genexpressie afhankelijk zijn van bepaalde SNPs. Door deze 
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driehoeksverbanden (SNP, methylatie en genexpressie) nader te bestuderen, observeerden wij 

dat voor de meesten genen SNPs geassocieerd zijn met een verandering in DNA methylatie, 

wat vervolgens een effect heeft op genexpressie. Voor een aantal genen is het echter anders; 

genexpressie lijkt daar een effect te hebben op methylatie, maar verder onderzoek is nodig 

om deze bevindingen te bevestigen. Vervolgens constateerden wij dat de CpG loci -waarvan 

methylatielevels zijn gemeten- die geassocieerd zijn met zowel genexpressie als SNPs, vooral 

net buiten CpG eilanden liggen, in de flankerende gebieden van deze eilanden. Uit onderzoek 

was al gebleken dat methylatielevels in deze gebieden meer variëren dan methylatielevels 

in de eilanden zelf en ons onderzoek heeft laten zien dat deze methylatielevels vaker met 

expressie en genotype geassocieerd zijn. Tenslotte hebben we in dit onderzoek methylatie- 

en expressielevels van genen gegroepeerd in modules, waarbij genen met gelijke patronen 

in dezelfde module terecht kwamen. Deze modules bleken verrijkt te zijn met verschillende 

biologische termen, hetgeen de biologische relevantie van de modules aanduidt. Hoewel 

de methylatie- en expressiemodules over het algemeen slechts weinig overlappende genen 

hadden, was er toch een aantal modules die sterk gecorreleerd was met elkaar. Dit zou 

kunnen duiden op trans effecten op afstand.

Grootschalige genoom-wijde associatie studies (GWAS) uitgevoerd door het Psychiatrisch 

GWAS consortium (PGC) in duizenden patiënten en gezonde mensen hebben geleid tot de 

identificatie van tientallen SNPs geassocieerd met schizofrenie. Echter, deze SNPs dragen maar 

een fractie bij van de totale onderliggende genetische achtergrond van deze aandoening. 

In hoofdstuk 3 hebben we de top 6000 SNPs, waarvan de meeste matig geassocieerd zijn 

met schizofrenie, gecombineerd met genexpressie data voor het bijbehorende gen. Hierdoor 

hoopten we meer signaal te hebben om additionele genen te kunnen identificeren. We 

onderzochten of de circa 6000 SNPs die het sterkst geassocieerd zijn met schizofrenie ook 

daadwerkelijk effect hebben op genexpressie. Vervolgens hebben we gekeken of er verschil 

is in genexpressie van deze genen tussen patiënten en gezonde mensen. Zeven genen 

werden ontdekt waarvan er drie hetzelfde signaal (effect van de SNP gaat dezelfde kant op) 

lieten zien als in de eerder genoemde PGC analyse. Deze drie genen liggen in een gebied op 

chromosoom zes dat al vaker in verband is gebracht met schizofrenie. Door het combineren 

van SNP en genexpressie data hebben we dus extra genen gevonden die niet ontdekt waren 

in de grote GWAS omdat het signaal te zwak was. 

De resultaten van de PGC studie hebben we ook gebruikt in hoofdstuk 4, waar we deze 

informatie gecombineerd hebben met methylatie data. Het doel van deze studie was te 

onderzoeken of SNPs die methylatielevels reguleren vaker geassocieerd zijn met schizofrenie. 

Specifieker nog, waren we geïnteresseerd of SNPs, die methylatielevels reguleren die 

verschillen tussen patiënten en controles, én die geassocieerd zijn met genexpressie, meer 
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verrijkt zijn met schizofrenie-gerelateerde SNPs dan de SNPs die niet-specifieke methylatielevels 

reguleren. Eerst hebben we de methylatielevels geïdentificeerd die verschillend waren tussen 

patiënten en controles. Daarna onderzochten we welke methylatielevels geassocieerd waren 

met expressielevels, en of deze expressielevels ook verschilden tussen patiënten en controles. 

Vervolgens testten we door welke SNPs deze methylatielevels gereguleerd werden. Deze SNPs 

werden uiteindelijk opgezocht in de PGC studie om te bepalen of deze SNPs, die methylatie 

reguleren, sterker met schizofrenie geassocieerd zijn dan SNPs die geen methylatielevels 

beïnvloeden. Uit ons onderzoek is gebleken dat deze met methylatie geassocieerde SNPs 

inderdaad sterker gelinkt zijn aan schizofrenie. De meest significante SNP is gerelateerd aan 

methylatie van het gen CALHM1, een calcium homeostase modulator. Calcium metabolisme 

is al vaker in verband gebracht met schizofrenie en inmiddels is een studie gepubliceerd 

waarin de regio waarin dit gen ligt, geassocieerd wordt met schizofrenie. Onze studie 

onderstreept het belang van het combineren van methylatie en genexpressie data met SNPs, 

wat kan leiden tot verrijking van ziekte-gerelateerde varianten.

In hoofdstuk 5 hebben we allel-specifieke methylatie (ASM) bestudeerd. Voor de meeste 

CpG loci is methylatie op beide DNA strengen hetzelfde. Echter, in sommige gevallen kan 

de methylatiestatus verschillen per DNA streng, zoals bij X-chromosoom inactivatie en bij 

genomische imprinting elders in het genoom. Allel-specifieke methylatie is sterk geassocieerd 

met genotype vlakbij de CpG locus. Er zijn inmiddels verschillende studies uitgevoerd om 

de relatie tussen genotype en CpG methylatie te onderzoeken maar het is niet duidelijk 

hoeveel de met deze methoden geïdentificeerde SNPs bijdragen aan de variabiliteit in DNA 

methylatie. In deze studie hebben wij op drie verschillende manieren de relatie tussen CpG 

methylatie en SNPs onderzocht, waarbij we ook de genetische bijdrage aan de variatie in 

methylatie bepaalden. Dit omvatte de in de vorige hoofdstukken uitgevoerde mQTL analyse, 

ASM analyse en ‘mid-parent-offspring’ (MPO) analyse, waarbij de methylatiepatronen van 

de kinderen vergeleken wordt met de ouders. Voor deze studie gebruikten we de gegevens 

van 22 families, waarvan binnen iedere familie één kind gediagnosticeerd is met schizofrenie. 

In plaats van de in eerdere hoofdstukken gebruikte SNP en methylatie chips (die 27.000 

CpG loci in het genoom meten), is deze data verkregen door meer dan 400.000 CpG loci 

te sequencen (het bepalen van de nucleotide volgorde van het DNA). Ook de genotypes 

konden zo vastgesteld worden in één handeling, wat kosten en tijd bespaarde. Na het 

uitvoeren van deze drie analyses bleek dat de gevonden SNP-CpG associaties niet helemaal 

overlapten tussen de drie analyses. Soms werden bepaalde SNP-CpG combinaties slechts 

door één methode gedetecteerd. Ook ontdekten we dat de meeste allel-specifieke methylatie 

veroorzaakt werd door SNPs op CpG loci. Een voorbeeld hiervan is wanneer de ene DNA 

streng een cytosine bevat die gemethyleerd kan worden, terwijl de andere DNA streng op 

die plaats een andere nucleotide bevat die niet gemethyleerd kan worden. Er ontstaat zo 
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een verschil in methylatie tussen beide strengen. Tenslotte vonden we honderden variabele 

gemethyleerde gebieden die tenminste vijf CpG loci bevatten die geassocieerd zijn met een 

zogenaamde ‘variatie SNP’. Dit betekent dat een bepaald allel van een SNP geassocieerd 

is met een stijging of daling van de methylatie variatie ten opzichte van het gemiddelde 

methylatienniveau, gemeten in meerdere personen. Dit ondersteunt de hypothese dat een 

SNP niet alleen een effect heeft op de gemiddelde methylatie waarde maar ook op de 

variabiliteit van de methylatie waarde. 

Zoals eerder genoemd zijn DNA methylatie en ook genexpressie gedeeltelijk weefselspecifiek. 

Omdat schizofrenie een brein aandoening is, hebben we in hoofdstuk 6 gebruik gemaakt 

van beschikbare hersenweefsels in tegenstelling tot de in de hiervoor genoemde studies 

die uitgevoerd zijn met data uit bloed. De meest significante schizofrenie SNP uit de eerder 

genoemde PGC studie betreft een transcript voor het gen microRNA-137 (miR-137). 

MicroRNA’s (micro ribonucleine zuur - miRNA’s) zijn kleine niet-coderende RNA moleculen 

die de expressie van RNA kunnen reguleren. Naast expressie kunnen miRNA’s methylatie 

reguleren maar DNA methylatie kan ook de expressie van miRNA’s reguleren. Deze interactie 

tussen miRNA’s en DNA methylatie kan meer inzicht verschaffen in de moleculaire regulatie 

en mogelijk in de ontwikkeling van zieke als deze interactie ontregeld is. Daarom hebben wij 

onderzocht of het eerder genoemde miRNA (miR-137) geassocieerd is met methylatielevels. 

Allereerst bestudeerden we de expressie van miR-137 in verschillende brein regio’s. We 

vonden een aantal regio’s waarin miR-137 in grote mate tot expressie komt, namelijk: corticale 

regio’s, het limbisch systeem en de basale ganglia. Eerder onderzoek heeft aangetoond dat 

deze hersengebieden afwijkingen vertonen in schizofrenie patiënten. Naast de bevindingen 

van de PGC (een verschil in genotype tussen patiënten en controles) vinden wij dus ook 

een hoge expressie van dit gen in de gebieden die abnormaliteiten vertonen in patiënten. 

Vervolgens onderzochten we de interacties tussen de expressie van miR-137 en DNA 

methylatie van genen uit het hele genoom. Dit resulteerde in drie suggestieve associaties. De 

sterkste bevinding betreft het gen HTR2A, een serotonine receptor (type-2), waarvan bekend 

is dat de promotor epigenetisch gereguleerd wordt. Dit gen speelt een belangrijke rol in 

neuronale processen en is recentelijk zelfs in verband gebracht met schizofrenie. De tweede 

bevinding betreft het gen 2-oxoglutarate dehydrogenase-like (OGDHL). Dit gen komt tot 

expressie in de hersenen waar het een rol speelt in glutamaat synthese. Glutamaat is een 

belangrijke neurotransmitter en in eerdere studies is gesuggereerd dat dit proces betrokken 

is bij neuropsychiatrische aandoeningen zoals schizofrenie. Onze bevindingen linken een 

eerder gevonden schizofrenie locus, miR-137, aan mogelijk voor schizofrenie belangrijke 

serotonine en glutamaat signaaltransductie routes. 
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Tot slot bevat hoofdstuk 7 een samenvatting met een algemene discussie. Hierin worden 

ook de technische en biologische beperkingen besproken waar we tijdens de beschreven 

onderzoeken op stuitten. Verder worden toekomstplannen aangedragen en eindigt dit 

hoofdstuk met een korte conclusie. 

Samenvattend beschrijft dit proefschrift genoom-wijde methodes om verschillende types 

genomische informatie te combineren en analyseren. Door het integreren van methylatie data 

met genexpressie en genotype data hebben we loci geïdentificeerd die mogelijk bijdragen 

aan de ontwikkeling van schizofrenie en daarom interessant zijn voor vervolgonderzoek. 

Hiermee laten we zien dat DNA methylatie een relevant en veelbelovend hulpmiddel is in het 

ontrafelen van deze neuropsychiatrische aandoening.
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Daarna mijn promotor Roel Ophoff en co-promotor Marco Boks die mij deze kans gegeven 

hebben en vertrouwen in mij hadden ondanks dat ik rechtstreeks van het HBO kwam. Beste 

Roel, heel veel dank gaat uit naar jou. Hoewel je na mijn eerste jaar geëmigreerd bent naar 

Los Angeles, ben je erg betrokken gebleven. Van dagelijks even jouw kantoor binnen lopen 

naar wekelijks geplande Skype calls was wel even wennen maar gelukkig waren we daarin 

allebei flexibel ondanks het tijdsverschil. Bedankt voor je begrip, geduld en positiviteit. Ik heb 

veel van je geleerd! Ook de mogelijkheid om deel te nemen aan congressen in het buitenland 

alsmede een project te doen bij jouw nieuwe ‘thuisbasis’ in LA, heb ik zeer op prijs gesteld. 

Je persoonlijke interesse en gesprekken over niet-werk gerelateerde zaken (zoals geloof en 

wetenschap) heb ik altijd gewaardeerd. Nogmaals bedankt voor alles!

Beste Marco, als ik jou in één woord zou moeten omschrijven is het 

“super-enthousiasmerende-altijd-positief-blijvende-overal-tijd-voor-makende-in-

verschillende-gedaantes-verschijnende-statistiek-goeroe”. Naast je eeuwig enthousiasme en 

optimisme maak jij van problemen (de zoveelste foutmelding in een script, artikelen die 

afgewezen worden) een uitdaging. Na overleg met jou zag ik alles vaak weer helemaal 

zitten. Jouw optimisme werkt aanstekelijk. Wel moest ik af en toe wennen aan je 

gedaanteverwisselingen (baard, kaal, geverfd haar), maar gelukkig bereidde je me later voor 

door me vast te waarschuwen in een mailtje voordat we overleg hadden. Leuk dat we nu bij 

dezelfde divisie werken en we vast nog wel zullen samenwerken/overleggen in de komende 

tijd! En om even in jouw stijl - groeten in talen uit Verweggistan- af te sluiten: Whakawhetai! 

De leden van de leescommissie, Paul de Bakker, Steve Horvath, Hilleke Hulshoff Pol, 

Nine Knoers en Jan Veldink, wil ik graag bedanken voor het kritisch beoordelen van mijn 

manuscript. 

Dan m’n (oud) flexkamergenoten: Albertien, Androniki, Anne-Marije, Annet, Balder, 

Clara, Eric, Esther, Femke, Flip, Karen, Jacobine, Jelena, Jessica, Jytte, Laurent, 

Linda, Maarten, Ruben, Sander, Sara, Sasha, Simone, Vinicius.

Bedankt voor alle gezelligheid, versieringen, etentjes, brainstorms over van alles en nog wat, 

(jellybrain)experimenten, creativiteit, cute-overload mailtjes, slechte en grappige youtube 
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filmpjes, roasts, top-zoveel-lijsten van hilarische, schattige en/of bizarre gebeurtenissen, 

momenten, dieren en mensen! En laten we the Hoff niet vergeten! Zonder jullie had ik heel 

wat muzikaal talent gemist!

Jacobine, wat leuk dat je het laatste jaar nog m’n “pleeg-oma-aio” bent geweest. Bedankt 

voor het beoordelen van mijn artikelen en hoofdstukken en voor de alles-wat-je-moet-

weten-om-te-promoveren-tips! De gezellige koffie/thee/water-drinkmomenten hoeven we 

gelukkig niet te missen aangezien we op een steenworp afstand van elkaar werken. En laat 

ik de handige huis-tuin-en keuken adviezen niet vergeten (en dan vooral in de categorie 

baby’s en kleine kinderen). Dank daarvoor! :-) Flip, buurman, bedankt voor al je hulp al 

dan niet computer gerelateerd. SupertHoff dat je 99% van mijn computerproblemen kon 

oplossen door alleen even naar m’n scherm te kijken! Hopelijk mag ik straks nog gebruik 

maken van die special skills ;-). Wel jammer dat ik niet met je kon twisten over de smaak 

van koffie. Ik heb echt geprobeerd om het te leren drinken in de afgelopen 4 jaar maar ik 

heb het toch maar opgegeven. En natuurlijk hulde aan je photoshoppers! (Wordt het niet 

eens tijd voor een “best-of” boek?) Jessica, ik ben blij dat we tegelijk gaan promoveren (die 

planning maakten we 4 jaar geleden al en ik heb mijn verlofregelingen zo aangepast dat het 

ook precies goed uitkwam ;-)). Bedankt voor je fancy scriptjes en het lezen van mijn teksten. 

Ik heb veel van je geleerd (zowel wat betreft inhoudelijke dingen als daarbuiten, je hebt altijd 

over een antwoord op)! Onze uitjes (van Kerkrade tot Montreal) waren ook heel gezellig! 

Je bent een fijne kamergenoot :-). Simone, bedankt voor de samenwerking waardoor we 2 

artikelen samen hebben! Het heeft mij erg geholpen dat ik voor mijn eerste schrijfervaring 

jou als voorbeeld had. Bedankt ook dat ik je altijd kon en kan mailen als ik vragen heb. Ik ben 

alleen vergeten te vragen hoe je alles toch zo goed kan combineren (hard werken, feesten, 

shoppen en dan ook nog tijd voor series, boeken en de kapper). Wel jammer dat je niet bij 

het tHoffste promotiefilmpje ooit gemaakt kon zijn, namelijk die van jezelf. Gelukkig hebben 

we de beelden nog :P. Jytte, wat ben ik blij dat jij het leuk vindt om in teksten te kliederen 

:-). Jij wist mijn soms verwarde zinnen weer in mooi Engels (of Nederlands) te verwoorden 

en betere uitleg uit me te trekken. Hopelijk is mijn proefschrift nu een beetje begrijpelijk 

geworden! Heel erg bedankt! Ruben, bedankt voor alle gezelligheid! En bedankt dat je 

mijn boekje niet hebt stukgemaakt! Eric, leuk dat jij al in LA zat toen ik daarheen mocht 

en we samen de Mac ontdekt hebben. En laten we onze roadtrips naar Hollywood en de 

Walmart niet vergeten (bijna even gedenkwaardig)! Clara, jij hebt me heel veel jaar geleden 

enthousiast gemaakt voor genetica toen ik stage bij je liep en dankzij jou ben ik ook hier 

terecht gekomen. Dankjewel voor alles wat je me hebt geleerd (inclusief cute-overload)! 

Jelena, wat leuk dat we weer collega’s worden! En bedankt voor de tip ;-). Gezellig, nu 

kunnen we vaker carpoolen naar dat gehucht tussen Everdingen en Leerdam :-). Esther, 

bedankt voor alle gezelligheid en het organiseren van van alles en nog wat. Wel jammer 
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dat de cocktailcommissie is vertrokken.. Sara, thank you so much for critically reading my 

introduction and discussion (amongst others), and checking English. It was nice to have 

some company during the late nights in the lab (although for me it was only temporary ;-)). 

Androniki, thanks for answering my statistical questions! I cannot promise I won’t bother 

you again with that.. Laurent thanks for the advice to counting chairs in an airplane to the 

nearest exit (I won’t mention the exact theory here). 

De rest van de (oud) collega’s van de afdeling Medische Genetica wil ik ook bedanken voor 

de discussies, samenwerkingen en gezelligheid op de afdeling: Annet, Behrooz, Bobby, 

Carla, Carolien, Diane, Dick, Edwin, Gijs (x2), Glen, Glenn, Harry, Ies, Irena, Ivo, 

Jackie, Jacqueline, Kirsten, Magdalena, Marijn, Mark, Marlous, Martin (x2), Mirjam, 

Monique, Nayia, Nine, Paul, Stef, Terry, Wigard. In het bijzonder bedank ik graag 

Bobby voor het onder je hoede nemen van mij sinds Roel naar LA is gegaan en voor het 

nodige papierwerk dat zo her en der ondertekend moest worden; Carolien, bedankt dat ik 

altijd bij je terecht kon voor (met name statistiek) vragen!; en Jacqueline, dank je wel voor 

al je regelwerk en de gezelligheid! 

De studenten Dave, Terry en Djie wil ik ook bedanken voor hun bijdrage aan de projecten. 

Dave (oud studiegenootje), alhoewel je eigenlijk Simone’s student was hebben we toch veel 

samengewerkt, wat heeft geresulteerd in een mooi artikel! Terry, jij hebt veel werk verricht 

voor de grootste studie in dit boekje. Bedankt daarvoor! En Djie, is er ook iets wat jij niet 

kan? Ik heb veel van jou geleerd (misschien wel meer dan andersom ;-)) en gebruik je scripts 

nog steeds :-), thanks!

Van de afdeling Psychiatrie wil ik de volgende mensen bedanken voor samenwerkingen 

en werkoverleggen: Afke, Annabel, Anneloes, Chris, Elemi, Eske, Jeanette, Jurjen, 

Maartje, Marijke, Metten, Mirjam en Steven. 

During my visit to UCLA I have met some great people: Peter, Steve, and Yafeng, thanks 

for all the bioinformatic support and collaborations (resulting in papers)! Eric, Katherine, 

Marisa and Yoon, thanks for the fun! 

Anil, ik wil je enorm bedanken voor je inzet en grote bijdrage aan het laatste hoofdstuk in 

mijn boekje. Ik kreeg mailtjes van jou op tijden die gezien het tijdsverschil niet echt normaal 

waren, naarmate de deadline van mijn boekje naderde. Je zocht dingen tot de bodem uit en 

ik heb veel van je geleerd over hersenen (wat in mijn nieuwe baan weer van pas komt ;-))! 

Ook een belangrijke groep mensen die misschien vaak ondergewaardeerd wordt zijn de 

mensen van de IT: Eric, Dennis, Marc en Wim. Bedankt dat ik altijd even binnen kon lopen 
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voor alles wat met computers te maken heeft! Verder wil ik de medewerkers van Surfsara 

bedanken, en in het bijzonder Willem; bedankt dat je altijd de tijd nam voor uitleg om mijn 

jobs efficiënter te maken!

Alle co-auteurs ben ik erg dankbaar voor hun bijdrage -in welke vorm dan ook- aan artikelen. 

Naast de mensen die ik al eerder genoemd heb zijn dat: Fabrice, Ho-Lim, Jae-Hun, Kun, 

Leonard, Nongluk, René, Tina en Wiepke. Thank you all for your collaborations!

Tot slot wil ik van deze gelegenheid gebruik maken om mijn lieve familie en vrienden te 

bedanken. Allereerst (ome) Guus; bedankt voor het ontwerpen van de kaft van mijn boekje! 

Het is supergaaf geworden! De rest van de familie van Eijk en ten Berge, ook bedankt voor 

de interesse en de gezelligheid in het oosten van het land! M’n volleybalmaatjes: ik ga jullie 

niet allemaal bij naam noemen maar bedankt allemaal voor de afleiding! Hierbij beloof ik 

ook meteen dat ik de komende tijd weer trouw zal komen (na wat maanden van sporadische 

aanwezigheid). De buurtjes van de Prins Bernhardstraat; mijn collega’s begrijpen niet dat je 

kan wonen in een dorp waar niet eens OV is maar dat het zo’n fijne buurt is komt ook door 

jullie! De mommies: bedankt voor alle steun, afleiding en gezelligheid (via verschillende 

kanalen)! 

Verder wil ik al mijn vrienden en vriendinnen bedanken, die ik tijdens school en studie heb 

leren kennen en waarvan ik sommigen zelfs al mijn hele leven ken! In het bijzonder noem ik 

mijn lieve vriendinnen Anemee, Ellen en Jorieke. Bedankt dat jullie er altijd voor me zijn 

en we uren kunnen keuvelen over van alles en nog wat. Ondanks dat we allemaal totaal 

ander werk doen zijn jullie altijd geïnteresseerd in mijn onderzoek. Ellen, bedankt dat je m’n 

paranimf wilt zijn! Jo (en Irma namens Ingrid), alvast bedankt voor de foto’s tijdens mijn 

verdediging (photoshop m’n angstzweet maar weg ;-))! 

Mijn lieve schoonouders, schoonzusjes en zwagers wil ik bedanken voor alles! Ik ben 

heel blij met jullie. Marja, bedankt voor het vele oppassen op Ninthe. Sorry voor de keren 

dat Niels haar onverwachts bij jou bracht als ik ineens weer naar Utrecht ging om mijn 

boekje af te schrijven. 

Mijn lieve zusje, Francis; ik had vroeger nooit gedacht dat ik dit nog eens zou zeggen maar 

je bent mijn grote steun en toeverlaat! Bedankt voor het op sleeptouw nemen van Ninthe, 

voor je hulp in huis, dat ik altijd (boodschappen)lijstjes mag doorgeven, en voor de gezellige 

dingen (vakanties, musicals, etentjes etc.). Kortom: bedankt dat je altijd voor me (ons) klaar 

staat! Ook letterlijk tijdens mijn verdediging als paranimf.
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Lieve pap en mam, bedankt dat jullie er altijd voor me zijn! Bedankt voor jullie steun en 

vertrouwen! Jullie hebben altijd achter me gestaan in de keuzes die ik maakte. Fijn dat ik 

altijd bij jullie terecht kan! Pap, je pensioen was echt goed getimed! Bedankt voor alle 

honderden uren en rondjes die je hebt gewandeld met Ninthe zodat ik nog weer even wat 

kon doen op mijn ‘vrije’ dag (vooral in de laatste fase van dit traject). Lief dat ik Ninthe 

altijd bij je mocht brengen of dat je naar mij toe kwam. Mam, ik vind het heel lief dat je je 

enige vrije dag toegewijd hebt aan je kleindochter. Dat waardeer ik echt! Ik hoop dat ik voor 

Ninthe net zo’n goede moeder word als jij bent. 

Lieve Niels, ondanks dat je zelf altijd superdruk bent met je eigen bedrijf (samen met je 

vader), kwam daar (vooral aan het eind) nog een hoop extra op je af zoals de zorg voor 

Ninthe en huishoudelijke dingen. Bedankt dat je me altijd liet werken als dat nodig was en 

je mij ontlastte (ja ik moet wat makkelijker gaan worden en denken). Maar ik vind het vooral 

schattig dat je, ondanks dat je totaal geen idee hebt waar ik mee bezig was, je toch steeds 

zei dat ik het wel kon en het ging halen. Bedankt voor je vertrouwen in mij en dat ik altijd 

mezelf kan zijn bij je! Sinds we onze lieve, mooie dochter mochten krijgen is het alleen maar 

leuker en fijner geworden! Dank dat je zo’n lieve papa bent voor haar. 

Liefste Ninthe, mijn altijd vrolijke snoetje, mama houdt van jou! 
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