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The Art of Science

Science and arts are two very alike disciplines, both driven by ambition, creativity 

and passion, and both pushing the limits of what is technically possible. Centuries 

ago, science and arts were routinely exercised by the same individual, for example 

Leonardo da Vinci. However, over time the two disciplines gradually separated, 

despite their still existing similarities. 

With the establishment of the Society of Arts by the Royal Netherlands Academy 

of Arts and Sciences this year (2014), artists and scientist are again brought closer 

together, reestablishing the long-standing ties between the two disciplines. 

A mutual interest in arts and genetics also brought me closer to Dutch modern artist 

and family friend Reinoud van Vught. Reinoud’s interest in genetics was initially 

triggered when his son Max and nephew Stijn were diagnosed with Duchenne 

muscular dystrophy (DMD). DMD is a severe genetic disorder caused by mutations 

in the dystrophin gene that lead to muscle degeneration. Logically, the illness of Max 

has had great influence on Reinoud’s work. 

During my studies and PhD, Reinoud and I frequently discussed newly developed 

techniques that may one day provide a cure for DMD, such as exon skipping and 

stem cell replacement. In one of our conversations, the idea rose to join forces and 

combine Reinoud’s art with my scientific work for the realization of this thesis. I 

explained Reinoud the contents of each chapter, after which he selected details from 

his paintings that he could associate best with my work. Each selected detail is only 

a fraction of the complete picture, which helps to put each chapter into perspective 

and illustrate that much is yet to be discovered. Nine of these details are featured on 

the first pages of each chapter and a complete work is depicted on the cover.
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Genome function 
The human body consists of approximately 3.72 x 1013 cells [1]. The majority of cells within 
the body are diploid; that is, they contain two sets of unique DNA sequence, with each set 
totaling ~3.2 billion bases of DNA. This DNA is further divided over 23 chromosomes of 
varying size. Chromosomes are large complexes consisting of DNA and protein, modeled and 
compacted in such a way that it all is able to fit into a single cell’s nucleus (Figure 1A). Taken 
together, these 46 chromosomes contain the genetic information of ~20,000 protein coding 
genes [2], providing the “genetic blueprint” of life. Although all cells in our body contain 
the exact same genetic information, each tissue and organ consists of different cell types 
exhibiting unique functions. Cell-type specificity and function are established and maintained 
using highly regulated gene expression programs. Gene expression regulation is a delicate 
process and the activation and repression of transcriptional programs depends on multiple 
aspects including genome structure and the presence of transcription factors or functional 
DNA elements. As the majority of our genome consists mostly of noncoding DNA, with less 
than 2% actually encoding protein [3, 4], the noncoding genome is crucial in providing the 
correct context for gene expression.
Nevertheless, it is technically challenging to determine which parts of the genome are 
functional and under what particular circumstances. Genome sequencing techniques now 
allow us to detect every base in the genome and its transcribed repertoire, but correct 
interpretation of all this information is still a major challenge. Furthermore, the mechanisms 
by which noncoding genomic variants contribute to disease remain largely unclear. Here, I 
will highlight the advances that have been made towards understanding genome function 
and the challenges that remain in the correct detection of genomic variation. Also, I will focus 
on the integration and interpretation of multiple layers of genomic information.

The noncoding genome
A comparison of the genome sequences of humans and closely related species such as the 
chimpanzee [6], mouse [7] and rat [8] have revealed a high proportion of DNA sequence 
conservation in coding genes (~98%), but much lower conservation outside of the annotated 
gene regions [8, 9]. Initially, these large regions were categorized simply as “junk DNA” because 
of the low conservation of noncoding DNA in combination with a lack of clear function for 
these regions [10]. Nevertheless, over the past decades it became clear that noncoding DNA 
is crucial for genome function, and is required for the maintenance of genome structure 
[11] and gene expression regulation [12]. For example, noncoding chromatin (DNA wrapped 
around nucleosomes) is continuously remodeled [13, 14] and histone tails continuously 
covalently modified [15-18] in order to dynamically regulate the state of chromatin and its 
susceptibility to being transcribed [19, 20]. Combinations of the active parts of chromatin, 
such as gene promoters or expression silencers and enhancers, can precisely determine 
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which genes are expressed and to what extent [21, 22]. Specific interactions between distal 
and proximal regulatory regions are enabled by dynamic chromatin properties such as 
looping [23], illustrating the importance of genome structure and composition [24] (Figure 
1B). However, these continuously changing dynamics make it difficult to determine the 
particular circumstances, such as tissue type [25, 26] or developmental stage [16, 27], as well 
as the particular part(s) of the noncoding genome that are important for a functional genome 
[19]. Furthermore, the majority of genomic differences that exist between individuals reside 
in the noncoding genome [28-30], frequently resulting in associations with disease [31]. Even 
though these variants do not directly target protein-coding genes, they may very well affect 
chromatin state or dynamics and thereby modulate expression regulation of many genes, 
leading to both phenotypic divergence and disease [32]. 

DNA and RNA sequencing
The introduction of Next-Generation Sequencing (NGS), a technological revolution introduced 
in the mid 2000’s [33, 34] that followed after the lower throughput Sanger sequencing 
method, has become a great help in elucidating the complexity of the coding and noncoding 
genome. Whole genome sequencing (WGS) [35] was developed for the sequencing of 
complete genomes and exome sequencing [36] was developed for the coding regions, with all 
of the data being produced within a single sequencing run. Specific applications utilizing DNA-
sequencing were developed for the high-throughput assessment of epigenetic modifications 
and chromatin interactions. For example, by using chromatin immunoprecipitation in 
combination with DNA sequencing (ChIP-seq) [37], a wide variety of histone tail modifications 
and transcription factor binding sites could be identified. Epigenetic analyses quickly started to 
provide evidence that large parts of the noncoding genome were indeed much more complex 
than previously estimated [15, 38, 39]. This created a boost in the field of epigenomics: the 
study towards the effects of reversible epigenetic modifications on the complete genome 
and regulation thereof [40]. Together with whole genome sequencing, these techniques now 
make the thorough evaluation and integration of genomic, transcriptomic and epigenomic 
landscapes available for routine molecular biology labs. 

Chromatin structure and gene expression regulation
Over the last several years, individual and consortium efforts aiming at decoding all functional 
DNA elements in the human genome have shed more light on the complexity of chromatin 
organization and modification [12, 41]. Regulatory functions for regions marked by specific 
chromatin states could be partially deciphered by determining the combination of post-
translational histone modifications present at a genomic locus [16, 19, 42], as was initially 
suggested nearly a decade earlier in the “histone code hypothesis” [17, 18]. The ENCODE 
project provides the most comprehensive and high-resolution epigenomics data to date, 
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yielding insight in functionality of DNA elements covering ~80% of the human genome [12]. 
For a large number of human cell lines, different states of chromatin marking regulatory 
regions were identified using ChIP-seq. These include, for example, active or poised 
promoters, enhancers and insulators. Together, this led to a genome-wide, cell type specific 
map of in vitro chromatin states and DNA elements [12]. 
Chromosome conformation capture (3C) is a different technique developed to provide 
more insight into the physical interactions between physically proximal DNA elements in the 
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Figure 1 - DNA organization 
in the nucleus. (A) Graphical 
display of compaction of the 
two meters of DNA that fit into 
a single cell’s nucleus. DNA is 
wrapped around nucleosomes 
consisting of eight histone proteins. 
Next, the nucleosome-DNA 
complex (“chromatin”) is further 
organized to reduce the amount 
of utilized space. In a condensed 
chromosome state, such as 
during mitosis, chromosomes 
display the typical paired sister-
chromatid shape connected at 
the centromeres. Adapted from 
Tonna et al. Nat. Rev. Nephr. 2010 
[5] (B) Simplified display of DNA 
looping between an enhancer and 
promoter. Noncoding DNA (dark 
blue) 5’ of a gene (light blue) is 
looped, which allows the physical 
interaction between transcription 
(co-) factors at an enhancer and 
the gene promoter (pink). And 
example of an insulator element 
is given as well, which when 
bound by a repressor transcription 
factor can inhibit the interaction 
between the enhancer and 
the promoter, thereby inhibiting 
enhanced gene expression. The 
direction of gene expression via 
RNA polymerase is indicated with 
an arrow. Adapted from Kelvinsong 
(own work), Wikimedia commons 
(http://commons.wikimedia.org/
wiki/File:Transcription_Factors.svg), 
under a CC-BY-3.0 license).
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nucleus [43-45]. 3C-based methods use proximity-based ligation of crosslinked and digested 
chromatin followed by PCR amplification to study viewpoint-specific reciprocal interactions 
of DNA elements. Over the last decade, many variations on the 3C technique have been 
developed to increase resolution via combinations of 3C with DNA arrays or sequencing (4C 
and 5C) [46-48]. Genome-wide derivations of the 3C method, such as Hi-C [24, 49, 50] and 
the immunoprecipitation-based ChIA-PET [51-53] can provide interaction information for 
every locus in the genome, albeit providing lower resolution than targeted methods [50], 
and requiring higher sequencing depth [44]. 
Thus far, 3C-based techniques have provided insight on locus-specific enhancer-promoter 
dynamics, identifying interactions critical for development [54-58] and stem cell pluripotency 
[59]. Higher throughput methods such as Hi-C and ChIA-PET focused more on the higher 
architecture organization of the genome, leading to genome-wide chromatin interaction 
maps [50, 52, 53] and the identification of topologically associating domains (TADs) [11, 60]. 
TADs contain frequently interacting intra-chromosomal regions limited by strict boundaries 
(including insulator elements) that constrain the spread of heterochromatin [11]. Disruption 
of these boundaries results in long-range misregulation of transcription [60]. Topological 
domains align with coordinately regulated gene clusters and nuclear lamina associated 
domains (LADs) [60], which in turn can be determined via a different technique termed 
Dam-ID [61]. Chromatin architecture at such large scale appears fundamental for nuclear 
chromatin organization [62], with high similarity in these large domains between different cell 
types and remarkable inter-species conservation [11]. Intra-topological domain interactions, 
such as enhancer-promoter interactions, are more dynamic and characteristic for the 
transcriptional program belonging to a specific cell type or state. These intra-topological 
domain dynamics recently appeared more restricted in dynamics than expected. Jin et al 
showed that interactions within topological domains are relatively stable once established in 
a specific cell type, and functionality of such interactions between DNA regulatory elements 
depend on the availability of cell-type specific transcription factors [50]. During mitosis, 
however, the 3D architecture of each genomic region on every chromosome is remodeled to 
a temporary uniform “linear” landscape with consecutive loops during metaphase, losing the 
locus-specific composition acquired prior to entering and immediately after cell division [63]. 
In summary, chromatin modification, dynamics, structure and organization are all associated 
with the complete genome and not just for the coding DNA, illustrating that the noncoding 
genome is absolutely vital in genome functioning. However, despite all efforts in determining 
the role of higher order chromatin dynamics and the function of each unique DNA element, 
the precise function of the majority of the noncoding regulatory genome remains unknown. 

The noncoding genome encodes RNA
As a successor to mRNA expression microarrays, RNA sequencing (RNA-seq) [64] and small 
RNA-seq [65] were developed for analysis of the total transcriptional landscape of a cell. RNA-
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seq not only defines cell-type specific genome-wide transcriptional activity by measuring 
RNA expression levels, but also distinguishes qualitative RNA differences such as individual 
transcript isoforms produced via alternative exon usage (alternative splicing) or modifications 
at the base level (RNA editing) [66]. The introduction of whole transcriptome profiling via 
RNA-seq for the first time allowed complete analysis of all transcribed regions of the genome, 
including all the noncoding regions. This is in contrast with microarray analyses that mostly 
require a priori knowledge of transcript annotation for RNA array capturing designs. Contrary 
to the conventional view of the genome, with transcription only taking place at protein-
coding regions, many noncoding regions also showed signs of transcription. Estimates on 
the proportion of the genome that was actually being transcribed began to grow so high 
that many scientists began to use the term “pervasive” [38, 39, 67, 68], with others claiming 
that the majority of the transcribed noncoding DNA is only due to transcriptional noise [69, 
70]. Of course, some of these noncoding transcribed regions harbored known functional 
noncoding RNA molecules, such as ribosomal RNAs (ribosome component), snoRNAs 
(ribosome biogenesis), transfer RNAs (amino acid transport) and small regulatory RNAs 
(RNA interference). Other RNA molecules were discovered in large intra- and intergenic 
noncoding regions that had no known function but contained gene-like structures, with signs 
of transcription and chromatin modification indicating importance [71-74]. Transcripts with 
a size ≥ 200 nucleotides but lacking a functional open reading frame (ORF) were termed long 
noncoding RNAs (lncRNAs) [75, 76]. LncRNAs can originate as (intronic) sense transcripts, 
antisense transcripts on the opposite strand of a protein-coding gene or from intergenic 
regions with none of the above characteristics [75]. Recent estimates on the number of 
lncRNAs in the human genome show that there are ~15,000 lncRNAs, expressed in various 
cell types [75]. For the majority of lncRNAs, their function is still unclear [77]. Some lncRNAs 
have been implicated to function in nuclear processes such as X-chromosome silencing 
[78], transcription regulation [79, 80] and telomere maintenance [81]. However, detailed 
mechanisms of action are often uncertain [75]. The fact that some lncRNAs are critical is 
illustrated by the fact that aberrant expression of (mutated) lncRNAs can result in (neuro) 
developmental phenotypes and somatic disease [82-84], including cancer [85-88]. 
Recently, many lncRNAs were found to localize to the cytosol and associate with ribosomes [89], 
indicating that lncRNAs might fulfill extra nuclear functions as well. Possibly, lncRNAs contain 
short ORFs that are translated into short ORF-encoded polypeptides (SEPs) [90]. Otherwise, 
they might be involved in the regulation of extra-nuclear processes such as translation [91]. 
It is quite surprising that lncRNAs localize to ribosomes in the cytosol, because according to 
our current understanding lncRNAs lack the capacity to serve as a template for producing 
protein. Their role remains unclear, but recent evidence re-establishes that although lncRNAs 
associate with ribosomes, they do indeed lack protein-coding capacity [92]. 
These studies show that lncRNA biology adds another layer of complexity to genome 
regulation and function. Many lncRNAs are indicated to have critical roles in development 



19

1
and in protecting the cell from a diseased state, but mostly only nuclear roles have been 
assigned. The association of lncRNAs with ribosomes shows that the role of the noncoding 
genome likely surpasses that of nuclear functions alone. More research is necessary to get 
better insight in the diversity of lncRNA localization and all the cellular processes that make 
use of noncoding RNAs [93]. Questions such as to what extent lncRNAs bind ribosomes, what 
their cytosolic function is, and if the mechanisms of ribosome binding are identical to those 
of protein-coding mRNAs need more research. 

Accurate detection and interpretation of the functional 
consequences of genomic variation
Inter-individual genomic variation facilitates phenotypic (population) diversity and evolution 
[94-96]. The downside, however, is that de novo (germline or somatic) and inherited variants 
can also be the cause of disease [97, 98]. A broad range of variation types exist in human 
genomes, including small variants such as single nucleotide variants (SNVs) and small 
insertions/deletions (indels), but also larger structural variation (SV) [99, 100]. SVs include 
balanced events including chromosomal translocations and inversions, but also unbalanced 
insertions, deletions and (tandem) duplications (copy number changes, or CNVs) [101] (Figure 
2). Generally, the contribution of SV to disease is expected to be much greater than that of 
SNVs [101, 102]. This is exemplified by the fact that the genome-wide number of basepairs 
affected by SVs is significantly larger than for SNVs, and SVs account for 0.5-1% of all heritable 
sequence variation between individuals, while SNVs only take up 0.1% [101, 103, 104]. 
Over recent years, various sequencing and array applications have improved SV detection 
[101, 102], for which previously low-resolution techniques as karyotyping and fluorescent 
in situ hybridization (FISH) were the standard. Since then, several catalogues have been 
generated to give insight into the diversity and abundance of inherited and somatic SV 
in the human genome [102-107]. However, the detection of SV is still challenging due to 
technical limitations and the broad variety of different SV types and sizes [108]. Whereas SNV 
positions are fairly easily determined by deep sequencing of complete genomes [109], SV 
detection is less straightforward and challenged by the complexity of genomes, driven by the 
presence of many repetitive elements such as microsatellite repeats and retrotransposable 
elements [101, 104]. For unbalanced rearrangements, such as CNVs, detection occurs 
mostly via quantitative DNA measurements, using either whole genome tiling arrays (e.g. 
array-comparative genomic hybridization (aCGH)) [110, 111] or sequencing read depth of 
coverage (DOC) approaches [112]. aCGH in particular is widely used in clinical settings to 
study rearrangements in congenital disease patients or cancer genomes [113, 114]. Although 
both aCGH and DOC are widely applied techniques, the actual calling of CNVs from the data 
is complicated by biases that are likely induced by intrinsic DNA characteristics. The resulting 
“wave pattern” drives fluctuations in coverage that can lead to false positive CNV calls [115-
117]. 
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For balanced rearrangements like inversions or translocations, the detection cannot be 
based on the quantity of DNA. Paired-read sequencing approaches such as the paired-end 
(PE) [118] or mate-pair (MP) [119] techniques provide a solution for this problem, making 
use of read mapping characteristics (e.g. the read location, read orientation and distance 
between two reads) of pairs of sequencing reads, as compared to a reference genome (Figure 
2). PE and MP can also detect CNVs using the distance and orientation of reads, providing 
an alternative for aCGH and DOC. The main limitation of paired-read approaches is the 
maximum library insert size, further complicated by differently sized SVs that require different 
insert size sequencing libraries for optimal detection rates. Small SVs (e.g. 100 bps) cannot 
be detected with large (2-3 kbs) insert size libraries due to broad insert-size distributions, 
but are easily detected with insert sizes of 200 bps. Larger SVs driven by, for example, mobile 
element insertions (LINEs), require inserts of > 8kb to be bridged, which is not easily possible 
with current sequencing platforms. These examples illustrate that providing an accurate map 
using individual techniques is almost impossible, which definitely affects the success rate 
of SV detection in a clinical setting. Eventually, long-read single-molecule sequencing will 
likely overcome these problems, but until that time technical and analytical optimization is 
required for accurate detection of SVs. 

Mechanisms of DNA repair and SV formation
Mechanisms driving single nucleotide mutations (“point mutations”) have been studied 
extensively, showing that SNVs and indels usually arise during DNA replication, stimulated by 
mutagens such as radiation and specific chemical compounds [120, 121]. The mechanisms of 
SV formation are less understood, and require the induction and repair of double-stranded 
DNA breaks. The current known types of mechanisms that lead to SV formation involve 
homology- and non-homology (or micro-homology)-based DNA-repair [101, 122-124]. 
Recurrent SVs in humans are mostly associated with homology-
based mechanisms such as non-allelic homologous DNA recombination (NAHR) [125-127]. 
SVs are termed recurrent when they are found in multiple non-related individuals and are very 
similar in location and size of the SV. On the other hand, non-recurrent rearrangements are 
sporadic and assumed to be more randomly distributed throughout the genome. DNA repair 
mechanisms associated with this latter type of SV do not make use of sequence homology, 
but instead make use of other methods, for example non-homologous end joining (NHEJ) to 
re-anneal broken DNA ends [124, 126-128] (Figure 2). Both simple and more complex types 
of non-recurrent SV (involving multiple breakpoints) are associated with DNA replication 
stress leading to genomic breaks. Examples of such break and repair models include fork 
stalling and template switching (FoSTeS) [122] and the more or less similar microhomology-
mediated break-induced repair (MMBIR) [123] (Figure 2). FoSTeS and MMBIR involve the 
local restoration of damaged DNA after recurrent collapses of replication forks, predicted to 
occur during initiating mitotic divisions [122]. 
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Figure 2 - Classes and mechanisms of structural variation. (A) Schematic representation of different types of 
structural variants and how paired-read sequencing can be used to detect each type. Sample genomes (e.g. 
patient genome) and reference genome structure are shown for deletions (a), insertions (b), duplications (c), 
inversions (d) and translocations (e). (B) Molecular mechanisms facilitating structural variant formation. Schematic 
representation of mechanisms driving SV formation: non-allelic homologous recombination (a), mobile element 
insertions (b), replication-based template switching mechanisms (c), non-homologous end joining (d) and 
chromothripsis (e). Figure adapted from: Weischenfeldt et al. Nat. Rev. Genet. 2013 [101].
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A different class of localized, complex and non-recurrent massive rearrangements can 

result from random chromosome shattering and re-annealing of DNA fragments, termed 
“chromothripsis”. Chromothripsis was first described in cancer [129] and later shown to drive 
congenital disease as well [130], reviewed in [131]. In general, chromothripsis is a single 
catastrophic event, resulting in copy-neutral SVs accompanied by the occasional loss of genomic 
fragments (Figure 2). The derivative chromosomes that result from chromothripsis can be 
precisely reconstructed using paired-read sequencing techniques and breakpoint validation 
by Sanger sequencing. The pattern in which the DNA ends are randomly re-annealed can be 
precisely followed across all breakpoint junctions, which is characteristic of a one-off event 
(described as “chromosome walks” in [132]). The listed characteristics of chromothripsis 
indicate that DNA repair occurs via NHEJ and is not facilitated by mechanisms such as FoSTeS 
and MMBIR, which have gradual modes of acquiring rearrangements involving multiple copy 
number states [132, 133]. It is still uncertain what type of stress drives chromothripsis, but due 
to its highly clustered lesions it is assumed that condensed chromosomes are targeted during 
mitotic divisions [129, 134]. A different type of localized lesions that have acquired multiple 
copy number strains has been observed but in other aspects seems to be highly similar to 
chromothripsis [133]. These events, termed “chromoanasynthesis”, may be characteristic 
of localized, single-event rearrangements that result from MMBIR or FoSTeS, and therefore 
display multiple copy-number states [133]. However, they may also represent genomically 
unstable regions initially targeted by chromothripsis, with additional copy number gains 
occurring during subsequent replication stress. 
The increase in resolution of SV detection has resulted in the identification of multiple 
mechanisms capable of generating highly localized DNA lesions, which could never have 
been detected by karyotyping or FISH. Nevertheless, sequencing techniques may have 
allowed double stranded DNA break repair mechanisms to be studied in more detail, but the 
mechanistic link between the obtained variants and disease (i.e. the phenotypic consequence 
of the SV) remains largely unclear. 

Interpreting variants and defining their causality for 
disease
Variants determined to be causal for disease can follow Mendelian inheritance patterns 
[135], originate as de novo germline variants or can be somatically acquired. For example, 
developmental syndromes and abnormalities can be caused by inherited and de novo single 
point mutations and structural variants [136-142]. Somatic disease such as cancer can 
originate via point mutations or structural genome changes as well, resulting in malfunctioning 
tumor suppressor genes or aberrantly activated oncogenes [143, 144]. Of course, not all 
variation leads to disease and much of the variation in the human genome is described as  
“common” (e.g. single nucleotide polymorphisms (SNPs)), meaning that the variant is present 
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in ≥1% of the human population. A major boost in the identification and classification of 
common and rare variants came from studies using large cohorts of human individuals (e.g. 
the HapMap project [145] and the 1000 genomes project [9, 35, 104, 146]). Large catalogues 
of common variation now exist (e.g. dbSNP [147], dbVAR and DGVa [148]) and have been 
extensively expanded since the introduction of whole-genome DNA sequencing. Filtering 
against common variation from such databases is useful for finding rare, case-specific disease 
variants in the haystack of common variants that is generally obtained from sequencing data 
[149]. 
Although some rare variants might be directly causal for disease, such as for Mendelian 
disease [135], defining the exact contribution for the majority of variants associated with 
disease is difficult [150]. Most common traits are multifactorial and the level of susceptibility 
to a trait is likely to result from combinations of common variants associated with disease, 
according to the “common disease / common variant” hypothesis [150-152]. Examples of 
common complex diseases that have no clear or uniform cause are high blood pressure, 
obesity, heart failure, and type 2 diabetes. 
Using genome-wide association studies (GWAS), each of these diseases has been regularly 
associated with common SNPs and nearby genes, but showing mechanistic involvement 
of the proposed candidate genes is still a huge challenge and unmet need [153, 154]. To 
find significant associations, GWAS often requires large patient cohorts of up to tens of 
thousands individuals and equal numbers of controls [155]. However, proving causality of 
an association needs functional follow-up, a necessity that is rarely provided [154, 156, 
157]. Rapidly maturing techniques such as (quantitative) mass-spectrometry analyses of 
proteomes and metabolomes provide novel means in exploring GWAS hits and elucidating 
mechanisms leading to disease. Complementary to proteome analyses, techniques such as 
RNA sequencing, ChIP sequencing and whole genome sequencing provide qualitative and 
quantitative tools for dissecting the molecular basis of disease on multiple mechanistic levels 
[158]. Integrating genomics and proteomics, so-called proteogenomics [159, 160], allows for 
systems-level analysis of the previously mentioned multi-factorial traits [161]. For example, 
RNA editing variants, RNA splice isoforms, rare genomic variants and quantitative RNA levels 
can all be investigated. Although challenging, integration of multiple data modalities will be 
necessary to improve our understanding on the effects of disease-associated variation [162]. 

Genomic variation in the noncoding genome 
The effects of genomic variants in genes are relatively easy to predict. These include gene 
deletions or duplications, nonsynonymous amino acid changes that lead to a malfunctioning 
protein, or reading frame-shifts that produce premature translational stops. However, the 
majority of all variants reside in the noncoding genome [28-30]. To date, the potential 
effects of noncoding variation have remained largely unexplored. The fact that sequence 
conservation is much lower in regulatory regions than in coding regions implies that this 
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variation has much less clinical relevance. However, many large complex disease GWAS have 
pointed to SNP associations in noncoding DNA [29, 32, 163]. Notably, only 7% of the GWAS 
hits identified over the last decade reside in protein-coding regions [164, 165] and the other 
93% map to the noncoding genome [31]. 
The abundance of noncoding disease-linked variants makes it much more complicated to 
find mechanistic links to complex disease [30, 32]. Therefore, the mechanisms that couple 
noncoding variation to disease need further efforts. What (common) noncoding variants 
affect phenotypes, and which ones do not? Do common noncoding variants contribute to 
common traits by affecting DNA accessibility, such as through chromatin states or dynamics 
and thus the nuclear organization of DNA? How easily do our genomes adapt to circumvent de 
novo undesired variants? Except for some thorough in vitro efforts showing that noncoding 
genomic variation can affect DNA regulatory elements and transcription factor binding 
sites, the in vivo effects of de novo and natural occurring variation and the (combinatorial) 
contribution of this variation to disease are unclear [166-169]. Several studies, however, 
have already shown that noncoding variation can have serious consequences, such as 
contributing to cancer [170]. Genomic variation in lncRNAs has also been implicated in 
driving neurodevelopmental disability and cancer [83, 171, 172], and comparisons of lncRNA 
expression levels with noncoding SNPs derived from GWAS studies revealed a number of 
cis-regulated genotype-lncRNA loci linking noncoding RNAs to disease [173, 174]. These 
incidental examples only provide a tip of the iceberg, as lncRNAs are present in numbers more 
or less equal to protein-coding genes [75], thus physically taking up only a small percentage 
of the noncoding genome. This leaves a large part of all noncoding variation and its functional 
consequences unstudied. 

Noncoding structural variation adds another layer of 
complexity
Most of the above discussed work towards noncoding variation focuses on single nucleotide 
variation and not on structural variation. De novo SVs frequently target noncoding DNA, but 
defining the contribution of noncoding SVs to disease is difficult. Whereas SNVs may affect 
transcription factor binding to DNA, SVs are likely to have more profound effects on the 
regulatory landscape, such as completely abolishing existing enhancer-promoter interactions 
via deletions or translocations or creating novel interactions via repositioning of regulatory 
elements [175-178]. Also, they may affect transcription regulation by altering the spatial 
genome organization, for instance by changing the way the SV-targeted region is associated 
with the nuclear lamina. The derivative chromosomes, the chromosomes constructed of 
the chromosomes targeted by an inter-chromosomal translocation, are very likely to be 
differentially organized in the nucleus as compared to the two original chromosomes. For 
more complex SVs that involve many more breakpoints, hypothetical combinatorial molecular 
consequences are numerous and the causal variants are hard if not impossible to pinpoint.
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Experimental testing of the consequences of SVs, particularly non-recurrent SVs, is extremely 
difficult and not only requires insight in changes at the DNA level, but also at the epigenomic, 
transcriptomic and nuclear organization level. This information is necessary from both the 
patient carrying the SV and healthy controls that are genetically comparable (e.g. family 
members). In the clinic, correct implementation of such integrative analyses is difficult, 
requiring not only knowledge of data integration and interpretation, but also an abundance 
of patient material and correctly chosen healthy controls. If all are present, the chance of 
successfully identifying the pathological contribution of a detected genomic alteration is 
still relatively small. Thus far, most patients with non-recurrent SVs (i.e. not targeting known 
disease genes) have been left undiagnosed, which is extremely unsatisfying for the patient 
and family. Better understanding of the mechanisms by which non-recurrent SVs or complex 
structural rearrangements (e.g. chromothripsis) drive disease will eventually result in 
improved patient diagnosis. 

Summary of thesis
In this thesis, I will discuss technological and conceptual advances in the detection and 
interpretation of structural variation (Chapter 2, 3, 6 and 7) and single nucleotide variation 
(Chapter 4,7), both in a controlled system using the rat as a model organism (Chapter 2,3,4 
and 7) as well as in large cohorts with patients carrying (complex) SVs (Chapter 6). The work 
presented in chapter 6 provides the first in vivo molecular analysis of congenital disease 
patients with chromosomes shattered by germline chromothripsis. I will also explain the use 
of integrated multi-level “omics” approaches in defining mechanistic links between variation 
and disease (Chapter 4,6 and 7). By applying combinations of multiple sequencing techniques, 
noncoding genome features such as DNA regulatory elements and genome structure are 
analyzed (Chapter 6 and 7), providing insight into their roles and the need for their integrity 
in genome functioning. Also, the localization of long noncoding RNAs to ribosomes is further 
studied using subcellular RNA sequencing, shedding light on the complexity of lncRNA 
biology, both within and outside the nucleus (Chapter 5). 
Combined, these chapters provide insight in the complexity of the noncoding genome and 
all of its facets, including noncoding RNAs and regulatory elements. The chapters show how 
multiple techniques can be combined efficiently to obtain more insight in biological and 
disease processes and in predicting the effects of genomic variation. 
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Abstract
The ability to accurately detect DNA copy number variation in both a sensitive and quantitative 
manner is important in many research areas. However, genome-wide DNA copy number 
analyses are complicated by variations in detection signal. While GC content has been used 
to correct for this, here we show that coverage biases are tissue-specific and independent 
of the detection method as demonstrated by next-generation sequencing and array CGH. 
Moreover, we show that DNA isolation stringency affects the degree of equimolar coverage 
and that the observed biases coincide with chromatin characteristics like gene expression, 
genomic isochores, and replication timing. These results indicate that chromatin organization 
is a main determinant for differential DNA retrieval. These findings are highly relevant for 
germline and somatic DNA copy number variation analyses. 

Introduction
The ability to accurately detect DNA copy number variation (CNV) in both a sensitive and 
quantitative manner is important in many research areas. While the detection of CNVs 
previously relied on low resolution techniques like quantitative PCR or MLPA, high-resolution 
array-based comparative genomic hybridization (aCGH) and next-generation sequencing 
(NGS)-based depth of read coverage (DOC) approaches [1] now allow for detailed genome-
wide analyses. However, both aCGH and DOC are complicated by the presence of ‘wave 
patterns’ in the raw data where the measurement deviates systematically from equimolar 
representation. These regions span up to tens of megabases and pose challenges on CNV 
calling. To reduce the number of false-positive calls introduced, algorithms were designed 
to suppress wave effects [2-6]. In these studies, quantity of DNA during hybridization, dye-
biases, enzymatic effects, and correlations with GC content were proposed as the main 
contributors to the wave patterns. However, understanding the source of the observed 
patterns is important for reliable genome-wide analyses based on aCGH and NGS techniques.

Results and discussion
To discover the source of unequal DNA representation in genomic data we performed 
pairwise aCGH analyses comparing all possible combinations of DNA samples isolated from 
blood, brain, liver, and testis from two rats from different inbred strains. We observed large-
scale tissue-specific variation in hybridization intensities that were reproducible between 
strains and consistent in dye-swap experiments (Figure 1A). Fold-changes for this variation 
could computationally be defined as tissue-specific CNVs (within the same strain) and were 
typically much lower than for germline CNVs (between strains). Even though the amplitude 
of variation did not exceed 30%, the reproducibility of tissue-specific differences between 
multiple rat strains was very high, both in terms of pattern and magnitude (Figure 1A). 
Theoretically, these patterns could reflect somatic copy 
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Figure 1 - Reproducible patterns in genome-wide aCGH and NGS data. (A) Pairwise aCGH analysis results of 
blood, liver, brain, and testis samples for rat chromosome 16. For all panels, the variability in log2 ratios is displayed 
(each dot represents the median value over 100 consecutive probes). The top two panels show dye swap aCGH 
(Nimblegen) results using blood and liver samples from a single animal (Brown Norway strain). The third panel 
shows the comparison of blood and liver from an animal from a different inbred strain (ACI). The bottom panel 
shows the aCGH analysis results between brain and testis of that same ACI animal. (B) Comparison of aCGH 
hybridization signal with NGS depth of coverage analysis results. DNA isolated from the testis and from blood of the 
same animal was analyzed by aCGH (Nimblegen) and by low-pass next-generation sequencing (6.3-7.2 M reads; 
0.075× - 0.086× genome coverage).
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Figure 2 - Correlation of DNA content variability with genome characteristics. The middle panel shows aCGH results 
comparing BN blood versus BN liver DNA and is aligned with replication timing (early replication is represented by 
high values, data obtained from Ryba et al. [11]), SINE distribution, GC content (100 kb windows), and gene density. 
Pearson correlation scores (r) are given per comparison. For each, P values are < 0.001. For this visualization, 
genomic positions of rat aCGH data were translated to positions on the first 50 Mb of human chromosome 2 (HSA2) 
to be able to compare rat data with human data on replication timing.
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number changes, in line with recently observed somatic heterogeneity [7-9]. Nevertheless, 
systematic artifacts of the methods used might also underlie such observations. In support 
of a potential systematic artifact we noted that the genomic regions involved are often 
megabases in size, while regular CNVs are typically much shorter. Although aCGH analyses 
using different platforms (Nimblegen and Agilent) and labeling techniques revealed highly 
similar patterns (not shown), shared artifacts associated with aCGH such as dye or sequence-
dependent hybridization effects cannot be excluded. Therefore, we performed a depth of 
coverage analysis on four tissues from a single animal using NGS-based low-pass whole 
genome sequencing (5-10 M reads per sample) (Figure 1B). Interestingly, both aCGH and NGS 
show highly similar DNA content patterns (r2 = 0.71, P <0.001, Additional file 1), excluding 
previously proposed array-specific artifacts [2-5,10] as the sole basis for the observed patterns 
and suggesting a common source for the observed variation. 

Systematic analysis of genomic regions with tissue-specific differences in aCGH hybridization 
and DOC signal revealed several interesting characteristics. A very clear correlation was 
found with replication timing [11], gene density, presence of SINE elements, and the relative 
GC content, which is strongly related to isochores [12, 13] (Figure 2, Additional file 2). GC 
content has been documented to affect a wide range of molecular biological techniques, 
including PCR and next-generation sequencing [6] and may thus explain part of the observed 
patterns. Regional high GC content was recently described to affect the thermostability 
of DNA, resulting in ultra-fastened regions that affect amplification [14]. However, as DNA 
content is assumed to be largely the same in every cell, the GC content alone cannot 

Figure 3 - GC correction reduces, but does not diminish tissue-specificity in aCGH signal intensity. The red line 
depicts the GC content in percentage (secondary y-axis) across rat chromosome 16. The dashed black line shows 
the log2 aCGH signal intensity of brain versus testis (ACI rat strain). The black line shows the signal intensity after 
GC correction. Specific peaks at high GC regions are visibly removed (for example, at 18 Mb), while others are not 
(for example, at 28 Mb).
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explain the observed tissue-specific patterns or differences in signal magnitude (Figure 1). 
When we perform a GC correction on the aCGH data, this flattens out large parts of the 
pattern, as expected based on the high correlation with GC. However, the GC correction 
alone is insufficient to flatten the profile between different tissues from the same animal 
(Figure 3). As we used asynchronous whole tissue samples with only a very small amount 
of actively proliferating cells, early replicating genomic regions are also unlikely the cause 
of apparent copy number gains. Intriguingly, replication timing has been shown to correlate 
with retrotransposon content, genome isochores, and gene expression activity [15], and all of 
these factors are known to be highly related to chromatin status. Therefore, we hypothesized 
that tissue-specific chromatin organization may explain the observed correlations and that 
non-equimolar representation might be due to DNA retrieval artifacts that result in differential 
representation of euchromatin compared to more densely packed heterochromatin. In 
support of this, we do observe prominent tissue-specific gene expression in regions with 
higher apparent tissue-specific copy number status (Additional file 3). 

Figure 4 - The duration of proteinase K exposure affects the evenness of genome-wide read distribution. (A) For 
five different durations of lysis (10, 30, 60, 120 min, and overnight (O/N)), the evenness of coverage is determined 
by calculating the number of 20 kb windows and the number of sequencing reads therein. The y-axis displays the 
genome-wide number of windows (X 1,000) while the x-axis depicts the number of quantile normalized reads. The 
width of the curve shows the genome-wide variation in read-depth between all windows. (B) Zoomed-in region of 
(A) to illustrate the read differences in windows with relatively difficult to cover genomic regions. (C) Genome-wide 
tissue-specific differences in read-depth per window are displayed for brain and liver at four different durations of 
lysis (30, 60, 120 min, and overnight). (D) Comparison of the genome-wide read distribution for a sample treated 
10 min with proteinase K (blue line), and the exact same DNA sample after 120 min of extra proteinase K treatment 
(black line).
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To study a potential bias resulting from differential chromatin status and introduced during 
the DNA isolation procedure, we first isolated DNA using standard phenol/chloroform 
extraction procedures and a commercial DNA isolation kit. aCGH was used to measure 
potential differences in relative DNA content between the two extraction methods but no 
significant differences were observed (Additional file 4). Next, we modulated the stringency 
of extraction by varying proteinase K treatment conditions prior to phenol/chloroform 
extraction, and used NGS fragment sequencing to determine the DNA recovery patterns 
across the whole genome. We compared five different lysis durations in the presence of 
proteinase K and observed that increased duration of treatment improved the evenness of 
read distribution across the whole genome (thus lowering the wave-amplitude; Figure 4A). 
Especially in the more difficult to cover regions the increased treatment duration improved 
coverage (Figure 4B). Next, we determined if the increased duration of the treatment also 
reduced the tissue-specific differences as depicted in Figure 1. By comparing sequenced 
DNA from homogenized brain and liver samples of the same animal at four time points, we 
indeed find that an increased lysis time results in smaller tissue-specific differences (Figure 
4C), although it should be noted that biases are not removed. In agreement with our previous 
observations, the results of copy number profiling of brain and liver samples are affected by 
proteinase K treatment duration, even after GC correction. While segments totaling to 45 Mb 
show copy number differences of at least 10% after a 30-min proteinase K treatment, only 1.3 
Mb exhibit changes of this scale when treatment is done overnight (Additional file 5). 
These results demonstrate that the observed wave patterns are the result of combined tissue-
specific DNA isolation biases. As the magnitude, but not the pattern, of the biases decreases 
with longer proteinase K treatment (Additional file 6), we postulate that DNA retrieval effects 
are due to differences in degradation of DNA/protein complexes, which subsequently results 
in depletion of stable aggregates by early precipitation or separation into the phenol phase. 
Densely packed heterochromatic regions, but also nuclear lamina attached chromatin, are 
likely to be most affected by such process. 

To test whether the DNA in the under-represented genomic regions was simply absent from 
the sample, or just inaccessible for subsequent applications like sequencing or aCGH, we 
modulated the DNA isolation experiments even further. First, DNA was extracted after only 
10 min of lysis in the presence of proteinase K. After one initial round of phenol/chloroform 
extraction and precipitation, the sample was divided in half. One part was treated with 
proteinase K for 2 additional hours, while the other was used as a control and left untreated. 
We subsequently extracted the DNA from both samples using a second round of phenol/
chloroform extraction. Surprisingly, the NGS data show that an additional 2 h of treatment 
dramatically improves the evenness of the genome-wide coverage as compared to the control 
sample (Figure 4D), now resembling the read distribution of samples that were treated for 
a minimum of 2 h. This suggests either that inaccessible DNA was present after the first 
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phenol/chloroform extraction and made accessible by the additional proteinase K treatment, 
or that the second phenol/chloroform purification step removed additional protein-bound 
DNA from the control sample. In any case, these experiments further demonstrate that 
equimolar DNA representation is affected by differences in DNA isolation conditions.

Conclusions
We demonstrate that DNA isolation procedures can introduce a systematic bias that contributes 
to the wave effects in aCGH data and the variation in coverage depth in NGS data. We show 
that extended lysis with proteinase K treatment results in: (1) more even representation of 
NGS reads across the genome; (2) more similar representation of DNA derived from different 
tissue sources; and (3) improved DNA content uniformity for a previously undertreated DNA 
sample. Our data show that the basis for the observed bias is tissue-specific and related 
to specific chromatin characteristics. Interestingly, from the four tissues that we sampled 
in this study, brain showed the lowest variation in NGS read coverage. This could reflect the 
diversity of cell types within this tissue and the associated increased variety of chromatin 
conformations. More homogeneous tissues like blood and liver exhibited the largest bias in 
read coverage (Additional file 7), again supporting a cell type-specific origin of the effects 
rather than primary DNA characteristics. Tissue-specific chromatin characteristics could 
originate from protein-DNA interactions, 3D organization, and epigenetic modifications. 

The observations presented in this study are relevant for a wide range of genomics techniques. 
Obviously, the described artifacts affect the accuracy of CNV detection [16,17], in particular 
somatic CNV analyses such as in cancer where sample heterogeneity requires accurate 
detection of relatively small changes. Furthermore, genome-wide nucleotide variation 
analyses using next-generation sequencing may also be affected, as depleted regions will 
have lower sequencing coverage, which results in lower reliability of variant calling. Accurate 
experimental reflection of the original amounts of DNA is also important for other genomics 
techniques, as was recently demonstrated for ChIP-seq experiments [18]. As none of the 
methods or conditions tested could completely remove the signal bias, special care should 
be taken to control for potential DNA isolation and tissue-specific effects in experiments 
involving quantitative DNA interpretation. Furthermore, detection of somatic copy number 
variation will require independent measurements, for example, using allele imbalances [7,8].

Materials and methods
Isolation of genomic DNA. Tissues were collected from BN (BN/Crl, Charles River), WU 
(HsdCpb:WU), and ACI rats (ACI/Seg/Hsd, Harlan Laboratories B.V., The Netherlands) 6 weeks 
of age, snap frozen and powdered. A total of 30 mg input material was used for strain and 
tissue comparisons, 100 mg input material was used for DNA isolation methods comparisons. 
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DNA was isolated using standard phenol/chloroform extraction (1:1, pH 7.9) or Qiagen 
DNeasy Blood & Tissue kit (cat.no. 69506). Tissues were lysed in lysis buffer (100 mM Tris-HCI 
pH 8.0 200 mM NaCl, 0.2% SDS, 5 mM EDTA) using a Kontes Dounce tissue grinder (Kimble 
and Chase, 885300-0002) and incubated for 2 h at 50°C in the presence of RNase A (50 
μg/mL) and proteinase K (100 μg/mL). For WU rat brain and liver, additional proteinase K 
conditions were tested (10 min, 30 min, 60 min, 120 min, and overnight in lysis buffer). These 
time series were followed by two rounds of standard phenol/chloroform extraction with in-
between precipitation of the DNA (1x phenol, 1x phenol/chloroform, and 1x chloroform). 
DNA precipitation was done with 3 volumes of pure ethanol in the presence of 1/10 volume 
sodium acetate (3M). Pelleted DNA was washed with 70% ethanol and dissolved in 10 mM 
Tris pH 8.0. For the additional proteinase K treatment experiment, 50% of the DNA that 
was extracted after a 10-min lysis was treated for an additional 120 min of proteinase K 
(100 μg/mL) in the lysis buffer described above. Next, both samples were cleaned during a 
second round of phenol/chloroform and ethanol precipitation, similar to the other samples 
in the time series. For isolation of blood DNA with the Qiagen kit, all steps were performed 
exactly according to manufacturer’s instructions (Qiagen DNeasy Blood & Tissue handbook, 
07/2006). DNA quality and quantity of all isolations were measured using NanoDrop ND-1000 
(Thermo scientific) and a Qubit Quant-iTTM dsDNA broad range assay (Invitrogen). 

Array comparative genomic hybridization (aCGH). NimbleGen whole genome tiling path 
arrays covering the complete, non-repetitive part of the rat genome were used. The 2.1 M 
probe arrays had an average probe spacing of 1 probe per 1.3 kb and a GC-content close to 
50%. For strain and tissue comparisons, DNA derived from tissues of BN and ACI rats was 
used for hybridization. The exact quantity of DNA recommended by NimbleGen was used 
(2 μg input for sonication, 1 μg input for exo- klenow mediated Cy3 and Cy5 labeling, 13 μg 
for hybridization). DNA labeling (NimbleGen dual-color DNA labeling kit), array hybridization 
(HX1 mixers, NimbleGen hybridization system 4), washing (NimbleGen wash buffer kit), and 
scanning were performed exactly according to manufacturer’s instructions (NimbleGen Arrays 
User’s Guide - CGH analysis Version 6.0). Image analysis, data normalization, and plotting were 
performed using NimbleScan 2.4 software using parameters preset by the manufacturer. 
For platform and extraction method comparisons, Agilent custom designed tiling path 
arrays (4x44 k, ± 1.5 kb probe spacing) were designed for the complete rat chromosome 14 
(RNO14). aCGH DNA preparation steps and array hybridization were performed according 
to manufacturer’s instructions (Agilent Oligonucleotide Array-Based CGH for Genomic DNA 
Analysis V4.0). 

SOLiD mate-pair sequencing and depth of coverage analysis for the sequencing aCGH 
comparison. For the mate-pair sequencing data presented in Figure 1, 118 microgram of 
genomic DNA was fragmented by incomplete digestion during a time series of 15 s to 25 
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min with the Alu I restriction enzyme (Promega, R6281). Time points were pooled and the 
fragmented DNA was loaded on a 1% agarose gel for gel excision of 1-3 kb fragments. Mate-
pair libraries were prepared according to the Applied Biosystems User’s Guide (12/2007 
4391587 Rev. B) and sequenced on SOLiD V2. Sequencing data were mapped against Rat 
genome assembly RGSC3.4 by BWA 0.5.9 software [19] (parameters -c -l 25 -n 2 -k 6). We 
calculated the number of reads using genomic windows containing 100 kb of genome 
sequence (excluding sequence gaps). The number of reads in each sample was normalized 
as reads per million sequenced reads. These normalized values were used for the calculation 
of log ratios and plotting. In total, 6,325,428 reads were used for blood, 6,600,672 for brain, 
6,764,588 for liver, and 7,183,059 for testis. These numbers equal a low-pass genome 
coverage ranging between 0.075x and 0.086x. 

SOLiD fragment sequencing and depth of coverage analysis for the time series. For the time 
series experiments presented in Figure 5, barcoded fragment libraries were produced on an 
automated system (BioMek), introducing no variation in the library preparation procedure. 
One microgram of DNA was used as input and libraries were prepared exactly according 
to manufacturer’s instructions for SOLiD 5500XL library preparation.  SOLiD libraries were 
pooled equimolary, quality assessed, and size selected on the Caliper XT system. Sequencing 
reads were aligned to the Rat reference genome RGSC3.4 using BWA 0.5.9 [19] (parameters 
-c -k 2 -l 25 -n 10). PCR duplicates were marked in the alignments and were not used in the 
analysis, resulting in 10 to 35 M unique and unambiguously mapped reads per time point. 
For tissue comparisons, the coverage of each library was normalized by random removal of 
reads to 10 M of unambiguously mapped tags (0.2x genome coverage), which corresponds 
to the liver library with the least amount of mapped reads. For the additional proteinase K 
treatment comparisons, only brain samples were used and these could thus be normalized 
to 14.8 M reads (0.3x genome coverage; limited by the brain library with the least number of 
reads). The genome was partitioned into windows each containing 20 kb of NGS-accessible 
sequence (excluding repeats and gaps). The read count and GC content were determined 
for each window and library. GC-correction: read counts were adjusted for each library by 
normalization against the median read count in 100 genomic windows with most similar GC 
content using the following formula: Ncorr=Nmed*Nobs/NmedGC where: Ncorr, GC-corrected number 
of reads; Nobs, observed number of reads; Nmed, median reads per window for this library; 
and NmedGC, median number of reads in 100 windows with the most similar GC content. After 
GC correction, potential somatic copy number changes were determined using a dynamic 
window approach (DWAC-seq). 

Correlation of DNA content variability with various genome characteristics and gene 
expression. GC content, repeat, and gene annotation were extracted from the Ensembl 
database [20] (v.69). Gene expression data were exported from the UCSC genome browser 
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[21].
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Abstract
Paired-tag sequencing approaches are commonly used for the analysis of genome structure. 
However, mammalian genomes have a complex organization with a variety of repetitive 
elements that complicate comprehensive genome-wide analyses. Here, we systematically 
assessed the utility of paired-end and mate-pair (MP) next-generation sequencing libraries 
with insert sizes ranging from 170 bp to 25 kb, for genome coverage and for improving 
scaffolding of a mammalian genome (Rattus norvegicus). Despite a lower library complexity, 
large insert MP libraries (20 or 25 kb) provided very high physical genome coverage and were 
found to efficiently span repeat elements in the genome. Medium-sized (5, 8 or 15 kb) MP 
libraries were much more efficient for genome structure analysis than the more commonly 
used shorter insert paired-end and 3 kb MP libraries. Furthermore, the combination 
of medium- and large insert libraries resulted in a 3-fold increase in N50 in scaffolding 
processes. Finally, we show that our data can be used to evaluate and improve contig order 
and orientation in the current rat reference genome assembly. We conclude that applying 
combinations of mate-pair libraries with insert sizes that match the distributions of repetitive 
elements improves contig scaffolding and can contribute to the finishing of draft genomes.

Introduction
Genome assemblies consist of kilobase- to megabase-sized contiguous sequences of DNA 
(contigs) that need to be positioned in a correct order and orientation. This ordering of 
contigs (scaffolding) requires long-range structural information that reaches beyond the 
boundaries of contigs. Commonly used reference genome assemblies, like those of human 
[1,2], rat [3], and mouse [4], were all constructed using long-range structural information 
obtained by Sanger sequencing based applications. For example, mapped large insert clones 
(e.g., cosmid, fosmid and bacterial artificial chromosomes) and paired-end whole genome 
shotgun sequencing of plasmids with variable insert sizes contributed to elucidating the 
complexity of genomes at the structural level. Despite the high quality of these assemblies, 
tens to thousands of intercontig gaps still persist [3,5,6].

Currently, genomes are frequently sequenced by cost-effective next-generation sequencing 
(NGS) technologies. However, long-range structural information is often not available from 
such efforts and would require more costly and toilsome techniques than routine fragment or 
paired-end sequencing. The absence of long-range information poses significant challenges 
for dealing with repetitive sequences that often represent 50% of mammalian genomes [1,7]. 
Emerging technologies like long-read single-molecule sequencing [8] or single-molecule 
mapping systems like optical mapping [9-11], may eventually help to overcome many of 
the challenges put forward here. However, application of methods solely based on current 
NGS technology would be most optimal because such platforms are maturing fast and are 
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very broadly available. Current NGS platforms are already capable of producing positional 
information using paired-end (PE) and mate-pair (MP) templates. PE sequencing involves 
the generation of pairs of sequencing reads derived from both ends of a contiguous DNA 
fragment. This sequencing modus is currently standard on most platforms but is limited by 
technology features (e.g. PCR constraints) that typically only allow for insert sizes of less than 
500 bp [12]. MP sequencing, however, can provide much longer distance information [13], 
but requires several molecular sample processing steps to clone DNA fragment ends through 
a circularization step, making it a relatively laborious approach. Most commonly used MP 
approaches span 1 to 3 kilobase pairs (kb) and are therefore capable of spanning many 
repetitive or low complexity sequence elements. However, common repetitive elements 
[like LINE (L1) elements] in vertebrate genomes can span as much as 8 kb in size (Additional 
file 1) [7,14], illustrating the need for longer range information for comprehensive analysis 
of genome structures. To this end, various bioinformatic algorithms like CREST [15] and 
ALLPATHS-LG [16] have been developed to increase effective PE read span by systematically 
merging overlapping sequences. Experimentally, novel methods producing larger insert sizes 
have also been reported [17,18]. While these techniques clearly demonstrate the power of 
larger distance information, most do have limitations that could interfere with comprehensive 
analysis (e.g., maximum insert sizes of ~10 kb [17,19], potential biases introduced by 
enzymatic digestions [18], and relatively laborious or costly approaches that can only produce 
single fixed insert size libraries [20,21]). Furthermore, a systematic assessment of the utility 
and combination of different library insert sizes for resolving existing assembly difficulties in 
complex regions of genomes is currently lacking. 

Here, we modified existing MP library construction protocols to allow for the generation of 
a wide range of small, medium and large insert size mate-pair libraries (3 kb up to 25 kb) 
and present a systematic comparison of their individual and combined utility for exploring 
mammalian genome structure. Our results show that two of the medium-sized MP libraries 
(8 kb and 15 kb) are most efficient for bridging repeats in the rat genome as well as for contig 
scaffolding. Furthermore, combining the medium-sized MPs with large insert (20-kb and 25-
kb) libraries reduces the number of scaffolds by another 25% and results in a 3-fold increase 
in N50. Our results are useful to define the most optimal experimental paired-read approach 
to support the de novo assembly of mammalian genomes. 

Results 
Large insert mate-pair library generation

We constructed MP libraries through modification of the standard SOLiD protocol for mate-
pair library construction (Additional file 2), to allow construction of MPs with insert sizes up 
to 25 kb. We used ~100 μg high-molecular-weight genomic DNA isolated from tissue of a 
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single Brown Norway rat as starting material for all libraries. Sheared DNA was size-separated 
by pulsed-field gel electrophoresis [22,23] followed by excision of various fragment sizes from 
a single lane and conversion into mate-pair libraries. In total, we generated seven different 
library insert sizes, including six libraries produced with this adapted MP protocol and one PE 
fragment library that was prepared in a separate experiment (Table 1). Based on paired read 
mapping, the libraries showed median insert sizes of 170 bp (PE), 3 kb, 5 kb, 8 kb, 15 kb, 20 
kb, and 25 kb. 

To assess library complexity by determining the maximum number of unique reads obtainable 
from a MP library, two of the large-insert libraries (20-kb and 25-kb) were sequenced to a higher 
depth in an additional sequencing run. To assess reproducibility of the adapted MP protocol, 
three libraries (5-kb, 8-kb, and 15-kb) were generated in duplicate from independently 
isolated, sheared, and separated genomic DNA samples. Insert size distributions of the 
individually produced replicates were highly consistent (Figure 1A and Table 1). In total, 192.4 
million pairs of MP reads and 160 million pairs of PE reads were generated. A total of 62.3 
million non-duplicate MP read pairs and 131 million non-duplicate PE reads were consistently 
mapped against the rat reference genome, resulting in a genome-wide physical coverage of 
228.5× (220× for MP libraries and 8.5× for 170-bp PE). Less than 1% of the paired reads were 
inverted (one of the reads in other orientation than expected) or everted (both reads in other 
orientation resulting in wrong order of tags) and approximately 10% were mapped remotely 
(i.e., to a distant genomic position, significantly deviating from what is expected based on 
the insert-size distribution). Remote, inverted, or everted events represent a mixture of 1) 
library construction artifacts due to chimeric molecules, 2) errors in the reference genome 
assembly (misassemblies) and 3) real structural differences between the reference strain 

Figure 1 - MP insert size distribution and library complexity. (A) Insert size distribution of all mate-paired libraries and 
biological duplicates. Data have been filtered for non-clonal pairs. (B) Complexity of each library is depicted by the number 
of unique read-pairs versus the number of properly mapped read-pairs. On the x-axis, increasing sequencing depth is 
represented based on actual sequencing data versus the amount of unique information obtained on the y-axis. A plateau 
indicates that a library has been sequenced to saturation.
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and the substrain tested here. The first category typically involves stochastic events that are 
supported by a single read pair and that are filtered out by requiring multiple independent 
supporting read pairs for calling. 

Library sequencing and quality assessment
Sequencing libraries may suffer from low complexity due to library amplification steps in the 
protocol. When the proportion of unique library molecules is low due to inefficient molecular 
reactions or low amounts of input material, sequencing more reads of that same library would 
not yield any additional information, but only extra copies of previously sequenced molecules 
(duplicate reads). We assessed the complexity of each library by plotting the number of 
read-pairs with unique genome coordinates against the total number of all mapped pairs 
(Figure 1B). In general, the complexity of the small-insert libraries is higher than that of the 
large-insert libraries, which more quickly saturate to the level where deeper sequencing 
delivers predominantly non-informative duplicate reads. Duplicate reads do not necessarily 
affect the utility of the libraries, because these reads are filtered out as a first step in the 
analysis procedure; however, low complexity does decrease the capacity to obtain sufficient 
physical genome coverage. Three sample groups can be distinguished in Figure 1B: (1) high-
complexity libraries that deliver approximately 100 million unique pairs (PE, 3kb, 5kb_b and 
8kb_b), (2) medium-complexity libraries that result in about 10 million unique pairs (5kb_a, 
8kb_a and 20kb), and (3) low-complexity libraries resulting in approximately 1 million unique 
pairs (15kb_a, 15kb_b, 25kb). Several of the low-complexity libraries show a plateau in the 
curve, indicating that these have been sequenced to saturation (25kb, 15kb_a). For others 
(5kb_b, 8kb_b), deeper sequencing would be informative. 

Library complexity may be influenced by several experimental conditions. When starting 
with an equal quantity of genomic DNA, fragmentation for a standard PE library provides 
approximately 140-fold more unique molecules than for a 25-kb library. Furthermore, MP 
library preparation involves a circularization step (Additional file 2) that becomes less efficient 
as the size of the molecule increases. Quantification of DNA before and after circularization 
(and removal of non-circularized molecules) showed a circularization efficiency of up to 
37% for libraries below 10 kb and 5–10% for libraries above 10 kb (Additional file 3). Each 
of these library generation steps has a negative impact on the recovery of material; for 
example, an input of 10 μg 25-kb size-selected DNA would result in approximately 6 ng 
(>4,000-fold reduction) of DNA for adapter ligation and subsequent adapter-mediated PCR. 
As a consequence, more PCR cycles are required for larger insert libraries to obtain sufficient 
amounts of library DNA for NGS (Table 1). Although the 3- and 5-kb insert libraries could 
routinely be generated at high complexity, we observed more technical variation for the 
large insert libraries. For example, the 20-kb library required only 14 PCR cycles during the 
library preparation procedure and performed well in the complexity analysis (comparable to 
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5- and 8-kb libraries). The 15- and 25-kb libraries required 21 and 17 cycles, respectively, and 
resulted in libraries of lower complexity (Figure 1B). These results indicate that the number of 
required PCR cycles is a very good predictive parameter for library complexity. 

The 5-, 8-, and 15-kb libraries were generated in duplicate using DNA isolated from two 
different tissues of the same animal. The insert size distribution was found to be highly 
reproducible (Figure 1A), but the library complexity was much more variable between 
duplicates (Figure 1B). These differences might have been due to differences in DNA quality 
(e.g. amount of single strand breaks) or purity (e.g. associated protein or small molecule 
contaminants) of the DNA and subsequent differences in shearing efficiency. Indeed, DNA 
yields after size fragmentation were as much as 2.5-fold lower for the duplicate DNA sample 
(data not shown), which systematically resulted in less complex libraries. Most importantly, 
however, statistics for the amount of consistently mapped read pairs were comparable for all 
replicates (Table 1), indicating that the mapped unique read pairs were similar in quality (e.g., 
low chimerism) and insert size. Low complexity in libraries could be circumvented by using 
larger amounts of input DNA and/or by optimization of shearing conditions to concentrate 
DNA in the desired size range. In our experiments we aimed for a broad size distribution 
to be able to simultaneously extract DNA for a range of different sizes. Although the larger 
insert libraries come with more duplicate reads, far fewer sequencing pairs are required 
to physically cover the complete genome. It should be noted, that for all MP libraries in 
the experiments described here more than 10x physical coverage was obtained, including 
48x coverage for 20 kb inserts. To assess the value of the various insert size libraries for 
genome structure analysis, we determined the ability of each library to (1) physically cover 
the reference genome and overlap various repeat elements, (2) drive contig scaffolding, and 
(3) fix contig assembly issues in the current genome assembly (errors in contig order and 
orientation).

Spanning repeats and physical genome coverage

The ability to physically cover a complete genome by sequencing is not only determined 
by the length of the read, the insert size of the library, and the number of paired reads, but 
also depends on genome-specific characteristics, like the composition and distribution of 
repetitive elements. The rat genome is representative for other mammalian genomes and 
contains 1.24 Gb of repetitive sequences, which is over 49% of the 2.51 Gb in the current 
reference genome assembly (RGSC 3.4, v.66 [24]). Retrotransposable LINE (L1) elements are 
the largest class of repeats with a total length of 474.6 Mb (18.9% of the genome), followed 
by retrotransposons that are flanked by long terminal repeats (LTRs; 220.9 Mb; Figure 2A and 
B). To evaluate the effect of library insert size on the degree of physical genome coverage, we 
merged data from duplicate libraries with the same insert size. Although the MP libraries had 
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far more physical genome coverage, all datasets were normalized to an equal physical genome 
coverage based on properly mapped and oriented read pairs, which was limited to 8.5x by 
the available amount of data for the PE library. Next, we determined per library the fraction of 
bases per contig of the rat reference genome that is physically covered, specifically focusing 
on repetitive elements. Despite the same physical genome coverage and much higher base 
coverage, short-insert libraries (PE and 3 kb MP) were much less efficient in spanning long 
repetitive elements, such as LINEs or LTRs, than larger insert MP libraries (≥ 15 kb) (Figure 
2C and D respectively). As expected, PE pairs overlapped hardly any of these elements but 
also the most widely used 3-kb MP libraries were found to only span approximately half of 
the 3-kb repeat elements, and only a few elements with sizes above 4 kb. Slightly improved 
results were observed for the 5-kb and 8-kb MP libraries, where approximately half of the 
repeats with a matched size could be spanned by at least one mate-pair. The 15-, 20-, and 
25-kb libraries spanned over 90% of the repeat elements across the whole size spectrum and 
all displayed a very similar performance, indicating that there is limited added value for even 
larger insert sizes. 

Contig scaffolding

To evaluate the utility of the various libraries for guiding genome assembly, we simulated the 
scaffolding step of such process by using the 137,257 contigs from the current rat genome 
build and the different MP data sets as input for the SSPACE 2.0 [25] software. To allow 
for library insert-size comparison, we again used the normalized datasets at 8.5x physical 

Figure 2 - Bridging of repeat elements by paired read libraries. (A) The percentage of each repeat type per window of 1000 
repeats (y-axis) is shown, relative to the size of each repeat on the x-axis. A higher density of dots indicates the presence of 
more repeats in the indicated size bin. (B) Pie chart of the largest classes of repetitive elements based on their total length 
(Mb) in the rat genome. Satellite repeats, RNA repeats, and low-complexity repeats are listed as “Other”. (C + D) Bridging by 
paired-tag libraries of all annotated LINEs (C) and LTRs (D) within contigs of RGSC 3.4. The size of LINE elements or LTRs 
(x-axis) is plotted against the percentage of elements of that specific size that were bridged by one or more read-pairs from 
each of the libraries. All single library datasets were normalized to 8.5x physical genome coverage.
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Figure 3 - Combinations of libraries with different insert sizes improve contig scaffolding. (A) All library data sets were 
normalized to 8.5x non-clonal physical genome coverage resulting in the use of approximately 130 million pairs for the PE 
library to several million pairs for the MPs. The scaffold N50 (y-axis) as determined by SSPACE is plotted against the total 
number of scaffolds (x-axis) for each individual library and for all combinations of libraries. Scaffolding results for the current 
genome reference (RGSC 3.4) are displayed as well. (B) Representative examples of the genomic loci on rat chromosome 18 
that show major discordance between optical map and the RGSC 3.4 reference genome. MP-assisted scaffolding restored 
concordance between sequence scaffolds and optical maps. The top panel (black) represents the reference genome 
assembly with the vertical lines indicating predicted SwaI sites; the middle panel (red) represents optical map data obtained 
using SwaI digests; the lower panel represents the rescaffolded genome using the MP data. The indicated positions on 
chromosome 18 are according to the current RGSC 3.4 assembly. A large region of approximately 75 kb (top panel) that shows 
low concordance with the predicted path of the optical map (0.065 Mb–0.14 Mb), increased significantly after MP-scaffolding. 
The bottom panel shows another example of increased resemblance to optical mapping data (3.85 Mb–3.90 Mb). Order and 
placement of contigs was shifted in the new scaffold resulting in SwaI sites identical to the optical map.
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coverage and determined the N50 (at least half of the genome bases are in scaffolds that are 
equal or exceeding the N50 value) and the number of scaffolds (segments of the genome 
reference consisting of contigs in known order, separated by gaps) for each individual library 
and combinations thereof, using the output of the SSPACE software (Figure 3A, Table 2 and 
Additional file 4). When we consider only the utility of single libraries, the N50 increases from 
~38 kb for the PE data to 140–163 kb for the MP libraries of 5 kb and up. PE libraries are 
not effective in reducing the number of scaffolds as compared to the capillary sequencing-
based contigs: a reduction of only 15 scaffolds is obtained (from 137,256 scaffolds in RGSC3.4 
to 137,241 scaffolds using the PE data). In contrast, individual MP libraries decreased the 
number of scaffolds by up to more than 50% (~67,000 for the 5 kb library, which performs 
best of all individual MP libraries). When considering two insert size libraries, combination 
of 5 or 8 kb and 20 or 25 kb are most optimal with N50’s of ~0.5 Mb. Intriguingly, 3 kb mate-
pair libraries, which are most commonly used, showed the worst performance from all MP 
libraries, also when combined with other libraries. Including all libraries in the scaffolding 
process results in a further decrease of scaffolds (36,348) with an N50 increase up to 1.3 
Mb. Increasing the physical coverage for a single insert library shows to be far less effective 
than combining libraries with different insert size (Additional file 5 and Additional file 6). For 
example, when we increase the coverage of the 5-kb insert library to 34x physical coverage, 
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the N50 increases from 141 kb to 262 kb. However, combining 8.5x coverage data for the 5 kb 
insert library with similar coverage of any other MP library (up to 34x) results in much higher 
N50 values ranging from ~431 kb up to ~1 Mb. 

Reference genome improvement

Finally, we evaluated the value of various MP insert sizes for improving the existing rat 
genome assembly. To this end, we compared de novo scaffolds constructed using MP data 
with independently obtained genome-wide optical mapping data. Optical mapping is an 
integrated system that provides long-range genome structural information by the construction 
and analysis of genome-wide, ordered restriction maps [9,10,26,27]. We limited the analysis 
of concordance between sequence scaffolds and optical maps to one of the small rat 
chromosomes (RNO18), because the fine level optical structural alterations (OSAs) that were 
automatically called by the optical mapping pipeline [10] were manually curated between 
sequence scaffolds and optical maps, which required exploration on a case-by-case basis for 
mediation at the nucleotide-level. We divided the chromosome into 872 100-kb windows 
and found that 96 out of 872 of such bins harbored structural changes within scaffolds of 
RNO18 when comparing the MP-updated genome structure with the original genome. The 
96 bins contained a total of 199 unique inconsistent connections between contigs within 
scaffolds. Next, we looked at structural differences between scaffolds of RNO18, based on 
the comparison of the MP-based scaffolding and the reference genome and observed many 
more bins to be affected (166/ 872 bins containing a total of 1374 inconsistent links between 
scaffolds). In total, 236 bins showed one or both types of inconsistent connections. Of these 
236 bins, only 106 showed concordance with the reference genome. 130 bins were found 
to contain OSAs including absence or discordance of alignment between the optical maps 
and RGSC 3.4 genome assembly (detailed description in Additional file 7 and Additional file 
8). Because the optical mapping system constructs ordered restriction maps and does not 
evaluate genome structure at the nucleotide level, not all discordances detected by the 
mate-pair analysis are revealed through optical mapping data. For example, small contigs or 
changes that do not overlap with a SwaI restriction site will not be identified. We explored two 
of the largest segments with long-range disagreement between optical maps and RGSC3.4 
assembly and conclude that MP-assisted re-scaffolding can recover concordance with the 
independently generated optical maps (Figure 3B). The complete MP data described here 
has therefore also been used for building the new genome reference of the rat (Rnor5.0, 
GenBank ID GCA_000001895.3, unpublished results). 

Discussion
Here, we show that large insert MP sequencing is a versatile tool for analyzing genomes at 
the structural level and providing long-range information for genome scaffolding. Our results 
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Table 2: Scaffolding value of different paired-read library combinations

No. of 

libraries*
Most efficient Scaffold N50 Least efficient Scaffold N50

1 15 kb 163,475 PE 37,694

2 5 kb + 25 kb 522,027 PE + 3 kb 46,699

2 5 kb + 20 kb 474,308 PE + 5 kb 141,403

2 8 kb + 25 kb 470,890 PE + 25 kb 142,007

3 5 kb + 20 kb + 25 kb 834,964 PE + 3 kb + 5 kb 158,525

3 5 kb + 15 kb + 25 kb 789,954 PE + 3 kb + 8 kb 171,253

3 8 kb + 20 kb + 25 kb 726,289 PE + 3 kb + 25 kb 198,696

7 ALL 1,287,609 N/A N/A

*All libraries were normalized to 8.5x physical genome coverage, limited by the amount of available data 

for the paired-end (PE) library.

show that the addition of MP sequencing can dramatically increase contingency of mammalian 
genome references. In all analyses, insert sizes of >8 kb were shown to be essential because 
of their ability to bridge the longer and more abundant LINE and LTR elements. The analysis 
where the fraction of long repeats that is spanned by each MP library is determined shows 
that large insert MPs are capable of spanning ~90% of the annotated long repeats. The 
remaining approximately 10% of elements that could not be bridged by any of the MP reads 
can likely be explained by a highly repetitive nucleotide context around the repeat elements 
themselves. When a repeat element is surrounded by other repeats (mostly at centromeric 
or telomeric regions) one or both reads of the pair that would span such region can not be 
mapped uniquely to the genome and can thus not be included in the analysis. In agreement 
with this, our data show that even a combination of all libraries in this study fails to span 
4–5% of repetitive elements larger than 3 kb in size (Figure 2C and D). Because rat and other 
vertebrate genomes contain tens of thousands of repeat elements that exceed the routinely 
used paired-end insert sizes (up to 500 bp), but include the very common LINE elements, 
we conclude that the inclusion of mate-pair libraries with insert sizes of 8 kb and above are 
instrumental for comprehensive reconstruction of genome structures. 

The largest insert libraries (20–25 kb) were instrumental for increasing the N50 of scaffolds 
to megabase levels. Because the draft rat genome is already of relatively high quality, the 
improvements presented here have only mild effects. However, we anticipate that large 
insert MP sequencing will be very useful for finalizing low-pass capillary sequenced or NGS-
based genomes like those of most primates as well as many of the vertebrate genomes. 
Genomes with large fractions or large segments of repeats, like that of the zebrafish or certain 
plants, might benefit even more from large insert mate-pair data as their genomes have a 
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very high repeat content in combination with recently duplicated sequences. Furthermore, 
most ongoing genome sequencing projects employ next-generation sequencing techniques, 
and because de novo genome assembly based on short-reads is still in its infancy, contig 
sizes for vertebrate genomes are typically in the kilobase range [19,28,29]. Although paired-
end data with insert sizes up to 500 bp are now commonly included in these processes, 
our results demonstrate that longer-range information as provided by the large insert MPs 
described here is essential for comprehensive genome assembly. It should be stressed that 
the structure of every genome of interest is unique and variable in complexity. Therefore, the 
optimal combination of MP insert sizes will vary as well. A quick examination of the repeat 
size and distribution could aid in determining which MP insert size combination is expected 
to be optimal, but experimental optimization or a broad range of libraries such as used here 
might be required. 

In the analyses presented here, we focused on the application of large insert MPs for genome 
sequencing efforts, but the findings could be extrapolated to the detection of structural 
variation. Previous analyses of whole human genomes have shown that SVs affect more base 
pairs than single point mutations, yet the field has struggled to find a suitable approach for 
comprehensive detection of such events [30]. Hillmer et al. concluded that the most optimal 
insert size for SV detection is approximately 10 kb, although a thorough examination of 
the value of insert sizes above 10 kb was not described [17]. In unraveling the structure 
and organization of ultra-complex clustered mutation events, like the recently described 
chromothripsis, larger insert sizes (20–25 kb) may extend the detection limit and help to 
complete the overall picture [31-34]. It should be noted, however, that a “mate-pair only” 
approach also comes with disadvantages: small insertions, inversions, duplications, and 
deletions may be missed due to the broad size distribution and relatively low coverage at the 
base level. 

Large insert MP sequencing represents a good alternative for the more traditional bacterial 
artificial chromosome-end sequencing because the sequencing libraries can be produced by 
relatively simple and scalable procedures without the need for laborious cloning and colony 
picking. Furthermore, the protocol can be fitted to all existing NGS platforms by changing 
the oligonucleotide adapters that are used. The mate-pair library construction protocol is 
relatively laborious compared to standard fragment library construction protocols, but with 
the latest improvements of the mate-pair protocol (SOLiD 5500 version), the procedure takes 
~14 hours of hands-on work. More importantly, robustness of the protocol has been increased 
and the required input genomic DNA was reduced to only 1–5 μg for a standard≤ 3-kb library, 
compared to 5–20 μg for the SOLiD V4 protocol (Additional file 9). The removal of column-
based cleanup steps and the increased circularization efficiency (via the implementation of 
intra-molecular hybridization instead of circularization to an internal adaptor) are the main 
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factors that allow for a reduced amount of input DNA. Nevertheless, our results show that 
limiting the amount of input DNA can strongly affect the complexity of the resulting library. 
For larger insert libraries it is therefore recommended to start with maximized amounts of 
DNA (>20 μg). 

Although large insert MP libraries must be sufficiently complex, high physical genome-
wide coverage is readily obtained at relatively low sequencing depth of tens of million read 
pairs. Alternative large insert approaches, like fosmid di-tag sequencing [20], have been 
documented to suffer from low library complexity, which may be overcome by using larger 
amounts of input material, but they have an additional disadvantage as they are restricted 
to a fixed insert size of approximately 40 kb [16,20,35,36]. Our data clearly demonstrate the 
added value of medium-sized insert libraries for genome structure analysis, a conclusion that 
was supported by Hampton et al. [20], who had to use supporting 4–6 kb mate-pair data to 
obtain essential long-range information that could not be obtained by fosmid di-tags alone. 
Using the MP protocol presented here, small, medium and large insert MP libraries can be 
generated in one go. Nevertheless, we did not generate libraries of equal size to 40-kb fosmid 
clones, so we could not determine if inserts of 25 kb are sufficient to fully replace 40 kb 
fosmid clones or if 40 kb pairs would span the last 4-5% of repeats that could not be covered 
by any of the MPs used here. 

Materials and methods
Generation of MP libraries and mapping. To allow for the construction of large insert MP 
libraries, we modified the standard SOLiD 4 mate-pair library preparation protocol (Additional 
file 2). In short, genomic DNA was isolated from Brown Norway (BN/RijHsd) rat brain and testis 
tissue. DNA (100 μg) was sheared under mild conditions using HydroShear (JHSH204007, 20 
cycles, SC15) and subsequently end-repaired (Epicentre
End-ItTM DNA-end repair kit) in 1 mL End-It mix per 100 μg input DNA. CAP adapters were 
ligated in 500-μL reaction volumes of New England Biolabs Quick Ligase reaction mix. The 
amount of ligated adapter was determined based on the DNA content (100 pmol CAP 
adapter/pmol DNA). Following CAP-adapter ligation, DNA fragments were purified with phe
nol:chloroform:isoamylalcohol (PCI, pH7.9) by gentle mixing and centrifugation in MaXtract 
high-density tubes (QIAgen, 1.5mL, #129046). The fragmented DNA was separated via 
pulsed-field gel electrophoresis (PFGE; Bio-Rad CHEF Mapper XA system). PFGE conditions 
and settings were: 1% low melt agarose gel (Invitrogen, #16520100), 0.5x TBE, 14°C, 19 
hours, forward current: 9.0 V/cm, switch time 0.08 s–0.46 s, reverse current 6.0 V/cm, switch 
time 0.08 s–0.46 s. Multiple size ranges (<7 kb, 7–10 kb, 10–14 kb, 14–18 kb, 18–24 kb, 
24–33 kb, and >33 kb) were selected from the gel using a 1 kb extension ladder (Invitrogen, 
#10511-012). For unknown reasons, actual library insert sizes after library construction and 
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mapping tend to be lower than their initial appearance on gel. A probable explanation for 
this is that most library construction steps may show a small bias towards smaller molecules 
(e.g. during circularization). Further on in the manuscript, each library will be referred 
to as the actual insert size as determined after data analysis. Following gel excision, DNA 
was carefully recovered using GELaseTM (Epicentre, #G09200). DNA fragments were 
circularized with a biotinylated internal adapter at a final DNA concentration of 1 nanogram 
per microliter (ng/μl). For every 40-μl reaction volume, 1 μl T4 DNA ligase was used. The 
reaction mixture was purified, and non-circularized fragments were removed by a plasmid-
safe DNase treatment (Epicentre, #E3101K). Following linear DNA removal, DNA polymerase 
I-directed nick translation “pushed” the nick from the adapters into the circularized target 
DNA to generate sufficient tag length for sequencing (~100 bp for each tag, 13 minutes on 
ice water [0°C], inactivated with PCI). T7 exonuclease and S1 nuclease treatment were used 
to digest the circles at the position of the nick. The digested fragments of approximately 300 
bp in size were end-repaired and bound to MyOne C1 streptavidin beads via the biotinylated 
internal adapter. Standard SOLiD P1 and P2 adapters were ligated to the blunt ends of the 
library molecules (a-tailing and alternative adapters should be used at this step to make the 
library compatible with the other sequencing platforms like Illumina, see Additional file 10), 
followed by another round of nick translation to remove the nick introduced by adapter 
ligation. Mate-pair libraries were amplified by PCR for 13–21 cycles, depending on the library. 
Amplification of the 14–18-kb size range samples (with an estimated final insert size of 10–12 
kb) did not result in sufficient material (most likely because of unsuccessful adaptor ligation) 
and were not further included in the process. For all other insert size libraries we continued 
with templated bead preparation and libraries were successively sequenced on the SOLiD 4 
system. For all libraries together, 192.4 million pairs of MP reads (AB/SOLiD V4, two slides) 
were sequenced. Paired reads were mapped against rat reference genome RGSC 3.4 using 
BWA v0.5.9 [37], and non-unique (based on identical read start sites for the forward and 
reverse read) and ambiguously mapped read pairs were removed from the data set. 

Generation of the paired-end library (170-bp) and mapping. For construction of the paired-
end library (PE; 170-bp insert), the SOLiD 3 protocol for fragment library preparation was 
used (SOLiD™ 3 System Library Preparation Guide; Section 2.1). DNA (3 μg) derived from 
the Brown Norway rat was used for shearing using Covaris S2 (10 cycles of 60 s, intensity 
5, 100 cycles/burst, 4°C). Sheared DNA was end-repaired using the Epicentre End-ItTM 
DNA-end repair kit. P1 and P2 adapters were ligated to the DNA fragments, and the library 
molecules were selected based on size (220–300 bp, including 90 bp for both adapters). PCR 
amplification was done for 5 cycles with primers specific to the adapters to obtain sufficient 
library molecules for ePCR and sequencing. Sequencing was done in paired-end mode 
(forward and reverse tag; 50 bp and 35 bp, respectively) on the SOLiD 3 system (1 slide AB/
SOLiD V3). Approximately 1.6 x 108 paired-end reads were sequenced (95% non-clonal) and 



63

3

mapped with BWA, resulting in a data set with a median insert size of 170 bp. 

Calculation of library insert size and contig scaffolding. Forward and reverse reads were 
mapped independently against contigs of rat RGSC3.4 genome assembly using BWA 0.5.9. 
Only read pairs with a single best hit for each tag (X0 flag equal to 1) were taken into 
consideration for estimate of insert size distribution. Analysis of library complexity was done 
by randomly sampling of reads from a library and determining the number of non-clonal 
pairs. Next, read pairs with exactly the same mapping coordinates of forward and reverse 
tags were marked as clonal and excluded from further analysis. Distribution of insert sizes was 
estimated from read pairs with proper orientation and distance between tags (below 100 kb). 
To allow comparison of different library insert sizes for contig scaffolding, we created a subset 
of data for each library that corresponds to 8.5x non-clonal physical coverage of rat genome. 
We randomly sampled read pairs from each library, computing physical coverage represented 
by non-clonal pairs with expected orientation and distance between tags on chromosomal 
level (skipping pairs corresponding to first and last percentiles of insert size distribution). 
Read pairs from the normalized datasets with forward and reverse tags mapped to different 
contigs were selected for scaffolding analysis. Scaffolding was performed using SSPACE v2.0 
software [25] with default parameters. The order in which the libraries were used by SSPACE 
was as recommended by the SSPACE manual - always from the smallest to largest insert size. 

Repeat analysis. Repeat annotation of the rat genome reference was obtained from Ensembl 
database [24] (v.66) and was used for calculation of size distribution and abundance of 
different repeat types. This annotation was used to determine the percentage of repeat 
elements spanned by mapped fragments from each mate-paired library. We used the 
normalized dataset where every library had 8.5x physical coverage (as described above). We 
considered only unambiguously mapped read pairs that had a proper orientation of tags 
and did not exceed 99th percentile of fragment size distribution. Since individual copies of 
a mobile element or repeat class differ in size, we used 500 bp windows for calculation of 
percentage of mobile elements overlapped by fragments from each library.

Comparison to optical maps. Original RGSC3.4 scaffolds and those obtained after NGS-
assisted re-scaffolding were compared to each other by nucleotide BLAST search. Nearly 
identical (>99%) super-kb segments were plotted as Harr-plot visualization graphs. Most 
evident discordant regions were manually selected and the corresponding genomic segments 
were compared to optical maps [10] of Brown Norway rats. Optical maps are generated from 
large, randomly sheared high-molecular weight genomic DNA molecules that are stretched 
on a microscope slide. After stretching, the DNA molecule is digested with a SwaI restriction 
enzyme. While the DNA remains attached to the slide, the cuts become visible under the 
microscope as small gaps and the sizes of the stained DNA fragments can be measured. 
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Multiple optical maps are then combined to form a comprehensive reference optical map for 
the Brown Norway rat genome. The optical maps used in this study are produced in the lab 
of David C. Schwartz and are available upon request. To compare our assembly with existing 
Brown Norway rat optical maps, nucleotide sequences of MP-enhanced scaffolds were 
digested in silico with a SwaI restriction enzyme. The in silico digested fragments were plotted 
next to optical maps, originally aligned to the RGSC 3.4 assembly and visually inspected for 
concordance. 
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Abstract
Quantitative and qualitative protein characteristics are regulated at genomic, transcriptomic, 
and posttranscriptional levels. Here, we integrated in-depth transcriptome and proteome 
analyses of liver tissues from two rat strains to unravel the interactions within and between 
these layers. We obtained peptide evidence for 26,463 rat liver proteins. We validated 1,195 
gene predictions, 83 splice events, 126 proteins with nonsynonymous variants, and 20 
isoforms with nonsynonymous RNA editing. Quantitative RNA sequencing and proteomics 
data correlate highly between strains but poorly among each other, indicating extensive 
nongenetic regulation. Our multilevel analysis identified a genomic variant in the promoter of 
the most differentially expressed gene Cyp17a1, a previously reported top hit in genome-wide 
association studies for human hypertension, as a potential contributor to the hypertension 
phenotype in SHR rats. These results demonstrate the power of and need for integrative 
analysis for understanding genetic control of molecular dynamics and phenotypic diversity in 
a system-wide manner.

Introduction
Mass spectrometry (MS)-based proteomics and next-generation sequencing (NGS) are rapidly 
maturing techniques, each enabling comprehensive measurements of gene products at a 
system level [1-3]. Although MS and NGS are highly complementary, they are still rarely applied 
integrated in large-scale studies [4]. State-of-the-art MS approaches can currently identify 
over 10,000 proteins in a single experiment [5, 6], which brings the analysis of complete 
proteomes within reach [2, 7]. However, as long as noncustomary protein databases that are 
derived from (typically incomplete) reference genome assemblies and annotations remain 
the sole source used for MS spectra matching, true completeness will not be reached. For 
example, protein isoforms arising from genetic polymorphisms, posttranscriptional events 
such as RNA-editing and posttranslational modifications are largely missed [8, 9].

Recent advances in NGS techniques, including whole genome sequencing (WGS) and total 
RNA sequencing (RNA-seq) allow for the generation of near-complete inventories of genetic 
variation in a system and its transcribed repertoire [10]. However, from such analyses, 
the effects on the proteins cannot be predicted with high confidence. For example, the 
consequence of a single nucleotide variant (SNV) on the coding capacity of a transcript can 
be predicted accurately, but not the potential effect on the stability of the corresponding 
protein. Systematic comparison of RNA-seq data with genomic data reveals another layer of 
complexity. It has now been convincingly demonstrated that certain transcripts are modified 
by posttranscriptional editing, primarily by targeted A to I deamination [11-14]. Most likely, 
all these types of variation will not only affect the composition and function of a protein, 
but also influence expression levels. However, additional layers of translation control may 
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dampen or completely abolish such effects.

An integrative analysis of different data modalities, ideally derived from samples of a single 
source, is required for correctly deciphering the effects of genomic and transcriptomic 
variation on molecular processes and cellular functioning. An example of such data integration 
is the use of proteomic data derived from MS in combination with complete genome data 
to improve gene annotation [15, 16]. This approach has so far been sparsely performed 
and mainly in organisms with smaller genomes [17, 18]. On the other hand, integrative 
investigations of messenger RNA levels and the proteins they encode reveal only modest 
correlations, implying an unresolved level of complexity in regulation of expression [4, 19-22].

For this study, we selected two rat inbred strains BN-Lx/Cub (BN-Lx) and SHR/OlaIpcv (SHR) 
[23], representing widely studied, renewable, and genetically homogeneous resources. 
Both strains have previously been extensively characterized at the genomic [24, 25] and 
phenotypic level [26-28]. The BN-Lx strain is derived from, and thus very closely related 
to, the Brown Norway (BN) strain. The latter strain was used for creating the rat reference 
genome assembly [29] and is commonly used as the protein reference data set in rat 
proteomics studies. The spontaneously hypertensive rat (SHR) is more diverged from BN and 
is a widely used disease model for hypertension studies. Whereas several blood pressure 
quantitative trait loci (QTLs) have been mapped to the SHR genome, no functional variants 
driving elevated blood pressure have been validated to date. Here, we combine in-depth 
genomic, transcriptomic, and proteomic analyses from inbred rats of two different genetic 
backgrounds using the same sets of rat liver tissues (Figure  1A). The liver is a large and 
relatively homogeneous tissue source that is well known to be involved in both hypertension 
and metabolic syndrome - the phenotypes associated with the SHR strain. We determine 
quantitative and qualitative molecular dynamics at different functional levels and achieve 
a level of proteome completeness by adding variation information derived from WGS and 
RNA-seq data. These data allow us to apply a genome-wide genetic-genomics approach [30] 
to start understanding multilevel systems regulation and to identify candidate genes that are 
potentially involved in the hypertension phenotype of the SHR rat.

Results
Extension of the rat protein database

In proteomics, tandem mass spectra are typically annotated by searching against in silico-
generated spectra based on a publicly available protein database. For rat, such a database is 
derived from the reference genome assembly of the BN rat [29]. To create a sample-specific 
database for MS peptide searching, we extended the existing RefSeq-based peptide database 
by incorporating strain-specific peptides and predicted peptides. We first obtained all strain-
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Figure 1 - Integrated Proteomics, Genomics, and Transcriptomics to Improve Sample-Specific Protein Identification. 
(A) Schematic representation of the integrated genome and proteome analysis of BN-Lx and SHR rat liver using 
NGS and deep-proteome profiling. (B) Bar plot showing the percentage of the current reference database that is 
covered by the experimentally derived proteomes, with respect to recent other proteomics efforts [31]. For BN-Lx 
and SHR, 39.7% of the Ensembl database is represented (13,088 out of 32,971 entries; release 3.4.63). The human 
liver proteome generated by the Chinese Human Liver Proteome Profiling Consortium cover 13.5% of the IPI human 
database (version 3.07; 7,050 out of 50,225 entries). (C) Diagram displaying identified proteins specific to BN-Lx 
(blue), SHR-specific proteins (red), and proteins shared between both strains (green). (D) Relative contribution 
(%) to the BN-Lx and SHR rat proteomes (containing unique peptides) of each additional layer of genomics- and 
transcriptomics-derived protein variants.
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specific genetic variation of the BN-Lx and SHR strains including single nucleotide variants 
(SNVs) and in-frame indels. Most genomic SNVs are located in the noncoding sequences, 
and only the less frequent nonsynonymous variants in coding regions give rise to altered 
amino acid sequences [32-34]. We collected 10,493 nonsynonymous variants from recently 
generated high-coverage WGS data of the BN-Lx and SHR genomes [24, 25], which are 
predicted to affect 6,187 protein isoforms derived from 4,566 genes. Furthermore, to be 
able to detect in silico gene predictions using the proteomics data as evidence [35], we added 
44,993 GENSCAN gene predictions to our rat database [36].

Next, we performed RNA-seq (Table S1) on RNA extracted from liver tissue of both rat 
strains (two males and two females per strain). To this end, paired-end sequencing data 
were generated to construct de novo transcriptome assemblies for each strain, In total, we 
found expression evidence for 18,116 known genes (12,052 with fragments per kilobase 
of exon per million fragments mapped [FPKM] >1), of which 2,612 (1,820 with FPKM >1) 
overlap the nonsynonymous variants previously detected by genome resequencing. Also, 
we identified 2,545 transcript splicing events affecting 1,015 genes. Although the majority 
of the identified splice events (1,687) were detected in both strains, 220 and 638 events 
were specific to BN-Lx and SHR rats, respectively (Table S2). Independent RT-PCR-based 
Sanger sequencing confirmed 74.1% (43 out of the 58 successful PCR assays) of a randomly 
sampled subset as true transcript isoforms (Table S3A). In addition, the same transcriptome 
assembly data provided expression evidence for 2,903 GENSCAN predictions (Table S4). The 
de novo assembled transcriptome data also allow for characterization of transcriptomes at 
nucleotide resolution. Because both BN-Lx and SHR strains are fully inbred, observed changes 
at the transcript level are unlikely to be allele-specific variation and can thus be attributed to 
technical artifacts (introduced during sequencing or mapping) or to RNA editing [37]. We find 
a total of 799 canonical (A to I or C to T) RNA-editing variants (Table S5) of which 176 and 354 
are specifically observed in BN-Lx and SHR, respectively. As expected, a large proportion of 
edits resides in the noncoding UTR parts of transcripts or do not change the coding capacity 
of a transcript. Yet, they might be affecting RNA secondary structure, stability, or miRNA 
binding. Only 196 edits were nonsynonymous and therefore included in our protein database 
as potentially detectable by MS. Of a subset of 169 candidate editing events tested by 
independent RT-PCR-based amplicon resequencing, most (104) showed reads corresponding 
to expected edited transcripts, and another 12 likely represent germline variants that missed 
detection during genome resequencing (Table S3B).
All peptide variants and isoforms derived from genome and transcriptome variation and all 
newly predicted peptides based on GENSCAN and de novo transcriptome assembly data were 
appended to the Ensembl rat database (3.4.63) to create our customized RAT_COMBINED 
database, which was used for all subsequent proteomic analyses.
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Proteomics analysis

We generated proteomics data with the same liver tissues used for RNA-seq. Each lysate was 
proteolyzed with five orthogonal proteases, and the resulting 36 SCX fractions per digest 
were analyzed with LC-MS/MS, cumulating in 180 runs per strain, yielding ~12 million tandem 
MS spectra. By using multiple proteases, not only the identification and sequence coverage 
of each protein increase, but also the chance of capturing evidence for predicted peptides/
proteins and consequences of RNA editing [38-40]. To ensure comprehensive coverage, two 
different but complementary algorithms for spectra-to-peptide assignment were applied. 
First, Mascot search engine was used for database searching. Next, the remaining unassigned 
spectra were processed with PEAKS Studio 6.0, which incorporates a proprietary de novo 
sequencing algorithm. The large amount of data allowed us to apply a false discovery rate 
(FDR) filter of 0% (q = 0) and still  identify over 2 million peptide-spectral matches (PSMs), 
corresponding to ~175,000 nonredundant peptides (Tables S6A and S6B). By performing a 
merged BN-Lx and SHR data set search against our custom RAT_COMBINED database, we 
obtained peptide evidence for 26,463 database entries. Of these, 18,322 are shared between 
BN-Lx and SHR (Figure 1C; Table S7) whereas 3,009 and 5,132 appear strain specific for SHR 
and BN-Lx, respectively. For comparison, we counted the number of identifications matching 
entries in the Ensembl database (3.4.63), disregarding the variants. Out of the 32,971 
original database entries, 13,088 were matched, representing 39.7% of database entries. In 
contrast, the most extensive liver proteome so far (the human liver proteome generated by 
the Chinese Human Liver Proteome Profiling Consortium) covers only 13.5% of the human 
IPI database (version 3.07; 50,225 entries), illustrating the depth of our data (Figure  1B; 
Table S6D). Over 86.5% of all proteins could be supported by evidence of gene expression 
in the RNA-seq data. As expected, identified peptides are evenly distributed over the rat 
chromosomes, concordant with the distribution of genes and transcripts (Figure S1A). The 
median coverage of all proteins is 15.6% with roughly equal contributions from each protease 
data set (Figure S1B).

Identification of predicted proteins and protein isoforms

Approximately 5,700 unique peptides (Table S8A) provide experimental evidence for 1,195 
in silico predicted GENSCAN proteins (Tables S7 and S8B). For 1,187 (99%) of those, RNA-seq 
data support the observed expression. Fifty of them show best reciprocal hits with known 
mouse proteins, and another 32 with known human proteins (Table S8C). Furthermore, we 
detect N-terminally acetylated peptides for 69 of these 1,187 proteins, with A, M, S, and T 
as their N-terminal residues (Table S8D) [41, 42]. N-terminal peptides validate these putative 
genes by confirming their translational start sites. A different class of proteins with largely 
uncertain existence is the short expressed proteins (SEPs) encoded by short open reading 
frames [43]. Of all peptides in our data set, 0.25% could be assigned to 86 known SEPs and 37 
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identified SEPs (Figure S2; Tables S7and S8B).
The proteomics data also provide support for 83 transcript splicing events (0% FDR) that were 
previously not annotated (Figure 1D; Tables S6C, S7, S10A, and S10D). From all predicted 
proteins and splice isoform identifications, 309 and 15 respectively were unique for BN-Lx, 
and 193 and 13 were specific to SHR (Table S6C).

Detection of nonsynonymous protein variants

Next, we explored to what extent the addition of strain-specific variants affected protein 
detectability and stability. Of the uniquely assigned spectra, 3.5% did discriminate between 
allele-specific protein isoforms. We detected 126 nonsynonymous variants in our proteomic 
data, 38 for BN-Lx, and 88 for SHR (Table S10A and S10B). By applying a 0% FDR cutoff, we 
reassuringly did not find any BN-Lx variants in the SHR samples, and vice versa (Table S6C). 
The fact that only a portion of nonsynonymous variants was confirmed by peptide-based 
evidence can be explained by our experimental design in which only genes expressed in the 
liver could be detected. Clearly, the inclusion of allele-specific variants has a measurable 
impact on protein discovery and results in more balanced peptide count per strain. The latter 
is most notable for the SHR rat because its genome is more diverged from the reference strain 
(BN). We used SIFT and Polyphen2 to predict if nonsynonymous SNVs could affect protein 
stability (Tables S9 and S11). Potentially damaging mutations were clearly overrepresented 
in differentially expressed proteins with nondifferential transcript levels (p < 0.002) (Table 
S11). This illustrates that nonconservative and structural missense variants may have limited 
influence on the abundance of a transcript yet can show a pronounced effect on protein 
stability.

Peptide-based evidence for RNA editing

To identify functional RNA-editing events, we mapped our peptide spectra to the set of 
potential RNA-editing events. In total, 20  out of the 196 nonsynonymous editing events 
could be confirmed by unique peptide-based evidence (Tables S6C, S9, S10A, and S10C). 
Because unique peptide evidence needs to overlap with the predicted editing site, 
many of the remaining 176 edits are likely missed because of incomplete coverage or 
redundancy in peptide data. Whereas limitations in the MS technology obviously result in 
an underrepresentation of identified RNA edits, MS still provides the best means to confirm 
the presence of such posttranscriptional modifications in the expressed proteins. On the 
other hand, we cannot rule out a possibility that the relatively low percentage of confirmed 
events is a true representation of the actual level of posttranscriptional modifications that 
make it to mature proteins. This may be due to negative selection against modified mRNA 
molecules. The high level of RNA sequencing coverage and the strict calling settings used to 
define editing events make it unlikely that an overestimation of editing events is introduced 
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during the RNA sequencing procedure and analysis.
It is worth noting that our comparison of de novo assembled and the annotated 
transcriptomes may not only reveal genetic differences, transcript isoforms, and common 
edited sites. Sequence and annotation imperfections within the current assembly and gene 
build can also be detected because the proteogenomics approach used in this study accounts 
for differences between observed and annotated transcriptome that originate from both 
biological and technical sources. Also, we emphasize that the de novo transcriptome assembly 
approach should be supplemented by regular transcriptome profiling if one aims to discover 
transcript variants that correspond to low-abundance transcripts and low-frequency events. 
To this end, we performed direct alignment of RNA-seq data to the rat transcriptome (known 
proteins and GENSCAN predictions) and predicted additional modifications of annotated 
transcripts (Table S5).

Relation between transcriptome and proteome levels

Next, we studied quantitative aspects by investigating the abundance of mRNA and protein 
levels. Although being derived from two different strains of rats, we observed a very high 
correlation of liver mRNA between BN-Lx and SHR (r  = 0.98). Similarly, the correlation 
coefficient for protein expression between BN-Lx and SHR is also remarkably high (r = 0.94) 

Figure 2 - Global Correlation Plots Displaying the Complexity of mRNA and Protein Abundance. (A) The top two 
panels display the high correlations between BN-Lx and SHR mRNA (left, r = 0.98) and protein levels (right, r = 0.94), 
estimated using log10 normalized spectral counts (Log10SAF) and normalized RNA seq counts (Log10FPKM). The 
bottom two panels show the poor correlations between mRNA and protein abundance for BN-Lx (r = 0.43) and 
SHR (r = 0.42), respectively. (B) Scatterplot depicting the correlation between experimentally determined gene-
specific mRNA to protein abundance conversion factors as calculated for both BN-Lx and SHR (r = 0.88).
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(Figure 2), providing confidence in our quantification strategy based on spectral counts.

Next, we sought to define a correlation between mRNA and protein expression levels in our 
data. Making a direct correlation between mRNA and protein levels is hampered by the fact 
that in  peptide-based proteomics many proteins contain similar peptide sequences. It is 
therefore hard to assign any of the shared peptides unambiguously to a protein, the so-called 
protein-inference problem [44, 45]. Consequently, it is hard to integrate the quantitative 
measurements, which are necessarily restricted to peptides, to a protein measurement. Still, 
numerous studies conclude that the global correlation between mRNA and protein is certainly 
not linear and often an r of 0.4–0.5 is reported [4, 19, 22]. Such findings are corroborated by 
results that show that indeed only part of the variation in the protein levels can be explained 
by mRNA levels [21]. Here, we use a spectra-count method for quantification of protein 
levels. We use data derived from five different proteolytic enzymes, which is sufficient to 
exclude a proteolytic digest-specific bias [39]. Although we did identify unique peptides per 
protein (Table S12), we chose to take the total number of PSMs for every peptide matching 
a protein as a measurement of its abundance to increase the quantitative resolution per 
protein. Subsequently, we determined the proteome-transcriptome correlation for BN-Lx 
and SHR to be r = 0.43 and 0.42, respectively (Figure 2A). This correlation is thus weak, albeit 
in line with the previous studies in other systems. Based on these quantitative comparisons, 
we also found that 3’ UTR expression levels correlate increasingly better with protein levels 
(r = 0.54) than do 5’ UTR levels (r = 0.43) or reads derived from the coding sequence (r = 
0.47) (Figures S3C–S3E). We speculate that the abundance of 3’ UTR reads depends on 
transcript integrity and reflects both transcript count and stability. Transcript levels could also 
be reproducibly converted to predicted protein levels using a gene-specific conversion factor, 
which showed high correlation between the two strains (r  = 0.88) (Figure  2B; Table S15). 
The high correlation between strains for this gene-specific factor illustrates the conservation 
of quantitative mRNA levels in relation to protein levels, independent of intermediate (less 
understood) levels of expression regulation. Although the conversion factor cannot be 
analyzed in-depth within the scope of this article, we postulate that translation efficiency, 
RNA, and protein degradation (and thus stability) are likely to play an important role. The 
top 100 proteins with the lowest and highest conversion factors were subjected to gene 
ontology (GO) overrepresentation analysis. We observed a trend in cellular localization 
toward cytoskeleton (highest 100) or the membrane (lowest 100), although the observations 
were not significant (Figure S3B; Table S15). We can only speculate that the conversion factor 
appears to be protein specific and conserved between strains. This factor combines the 
aforementioned levels of gene expression regulation in one value. One particular group of 
proteins appears to behave differently, representing the family of α2u-globulins (known as rat 
major urinary proteins; Figures S3A and S3B). Unfortunately, none of these proteins could 
be identified by unique peptides due to high protein sequence homology within this class of 
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Figure 3 - Gene-Centric Strain-to-Strain Comparison of Significantly Differentially Expressed Genes. (A) Genes in 
BN-Lx and SHR with significantly deviating mRNA levels (blue dots; n = 59) or mRNA and protein levels (red dots; n = 
54) are highlighted. Gene names marked by an asterisk are based on GENSCAN blast predictions derived from the 
closest predicted homology to human and mouse genes. Genes belonging to the CYP450 superfamily of catalytic 
enzymes are in bold and genes associated with hypertension in human or rat literature (Hao2, Serpina3m, Cyp8b1, 
and Cyp17a1) are underscored. (B) Western blot performed with liver tissues from five animals each for BN-Lx and 
SHR. Both Cyp17a1 and Hao2 are downregulated in all the biological replicates in the SHR strain compared to BN-
Lx, consistent with the proteomics data. Actin was used as a loading control.
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genes. Therefore, although this class stands out in the quantitative comparisons, absolute 
differences between BN-Lx and SHR cannot be determined with high confidence at this point.

Genetic control of quantitative proteome characteristics

To determine the effects of genetic variation on quantitative transcriptome and proteome 
characteristics, we compared the difference of mRNA and protein expression between the 
two rat strains. First, we filtered our quantitative data with more stringent criteria retaining 
only genes quantifiable at both the protein and the RNA level (reliable expression level 
estimates by Cuffdiff and nonzero SAF counts). This allowed us to compare 6,743 genes 
(Figure  3A; Table S13), 113 of which were differentially expressed at the RNA level (at 
least 2-fold change in expression; and q < 0.01) and 205 at the protein level (at least 2-fold 
change and q = 0). The majority of the differentially expressed transcripts (59/113) do not 
show comparable changes at proteomics level. This group of proteins likely acquires stable 
expression through regulation of at the level of translation or through proteostasis. A small 
proportion of the genes (13/113) shows discordant behavior with opposite expression 
patterns for transcripts and proteins. Both groups do not show any overrepresentation in 
GO terms or pathways. The limited number of genes with significantly altered expression 
indicates the high global genome and proteome similarity between the two inbred rat strains. 
However, it also illustrates that interindividual differences may be in the details, such as 
represented by changes in posttranslational protein modifications and protein networks [1, 
46]. Finally, 41 out of the 113 differential genes show strain-specific expression changes that 
are consistent between transcriptome and proteome (Figure 3A; Table S13). The products of 
these 41 genes relate to catalytic activity (28 genes, GO-term enrichment p value 1.4e-5) and 
metabolic pathways (13 genes, p = 2.6e-4).

A germline promoter variant deregulates Cyp17a1 expression in 
Spontaneously Hypertensive Rats

This set of 41 genes likely underlies some of the phenotypic differences known to exist 
between BN-Lx and SHR rats, like spontaneous hypertension [48] and metabolic syndrome 
[49, 50]. We therefore investigated which genes were previously reported to be associated 
with hypertension in human or rat. First, three out of the 41 genes that are differential at both 
the mRNA and protein level were found to be associated with hypertension in the rat. Those 
three genes, Hao2 [51], Serpina3m and Cyp8b1 [52], came out as top hits when studying 
SHR (-related) strains or a panel of congenic rat strains to define candidates for hypertension. 
All three genes also overlap known blood pressure QTLs in the rat [53], and two of them 
(Serpina3m and Hao2) show a very strong connection to the SHR genotype based on eQTL 
data derived from the BXH/HXB recombinant inbred panel (founded by the BN-Lx and SHR 
strains) (Figure S4A–S4C). This implies that the gene expression regulation of Serpina3m and 
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Hao2 is regulated in cis and thus strongly related to the genotype of the SHR strain. A fourth 
gene, Cyp17a1, was identified as a top hit in relation to blood pressure and hypertension in 
human genome-wide association studies on European, Japanese, and Chinese individuals 
[54-57] (Table S14A). Cyp17a1 also overlaps a blood pressure QTL in the rat and shows the 
most extreme downregulation in SHR compared to BN-Lx in our analysis (Figure  3A). The 
differential expression of Hao2 and Cyp17a1 was verified independently by western blot, 
using liver samples of five animals from each strain (Figure  3B). Like Cyp8b1, Cyp17a1 is 
a member of the cytochrome P450 (CYP450) superfamily [58] of catalytic enzymes that 
mediate monooxygenase reactions and regulate drug metabolism. Interestingly, mutations 
in human CYP17A1 are known to lead to congenital adrenal hyperplasia due to 17 alpha-
hydroxylase deficiency, which results in hypogonadism, pseudohermaphroditism, and severe 
hypertension [59-62]. To determine the genetic basis of the Cyp17a1 expression differences 

Figure 4 - A Germline Promoter Variant Deregulates Cyp17a1 Expression in Spontaneously Hypertensive Rats. (A) 
Experimental evidence covering this part of the genome from RNA sequencing and the proteomics data (spectral 
counts) are plotted along the gene body of Cyp17a1 for BN-Lx (blue) and SHR (red). The transcript is positioned on 
the reverse strand. Both the annotated transcription start site (TSS, black arrow) and the actual TSS (gray arrow) 
are shown. (B) Expression QTL analysis of Cyp17a1 expression in the HXB/BXH recombinant inbred panel. Gene 
expression is plotted based on RNA-seq for the ancestral strains (n = 5) and the RI strains split by ancestral haplotype 
at the Cyp17a1 locus (n = 16 for BN-Lx and n = 14 for SHR). (C) Zoomed-in view of the actual TSS, with the position of 
the germline T/C SNV shown. The dashed box (gray) shows the core part of the forkhead box DNA binding motif. 
(D) Consensus forkhead box DNA binding motif, obtained from the JASPAR database FOXA1 motif [47].
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between BN-Lx and SHR, we sought for genetic variants in the annotated exons and flanking 
regulatory sequences, but none were present. Exploration of eQTL data, however, revealed 
a very strong cis-effect (Figure  4B;Table S14B), indicating that the measured expression 
difference is due to genetic variants in the gene itself or in neighboring regulatory elements. 
Upon closer inspection of the RNA-seq data, we found that the transcriptional start site (TSS) 
of the Cyp17a1 gene was incorrectly annotated and resides approximately 2 kb upstream of 
the currently annotated most 5′ exon (Figure 4A). The true location of the promoter could 
be confirmed by H3K4me3 ChIP data that show specific enrichment of this active promoter 
mark surrounding the nucleosome-free region of the unannotated TSS (Figure  S4D). 
Interestingly, this promoter does harbor a germline variant in SHR that disrupts the core 
part of an evolutionary conserved forkhead-box DNA binding domain (Figures 4C and 4D) 
[47], specifically deregulating transcription in SHR (Figure 4A). Because this expression trait 
is regulated in cis and this SNV is the only germline variant in the vicinity of the gene, our 
integrated genomics, transcriptomics, and proteomics approach has most likely identified 
the source of expression variation. The overlap with the RGD blood pressure QTL (http://rgd.
mcw.edu/), top GWAS loci in humans, and known link to hypertension as a result of renal 
hyperplasia in patients carrying CYP17A1 mutations are good indications that this promoter 
mutation in the SHR Cyp17a1 gene contributes to the observed hypertensive phenotype of 
SHR rats.

Conclusions
Technological advances in both the proteomics and the sequencing community now provide 
the ability to discriminate genetic and posttranscriptional polymorphisms at the proteome 
level. These advances also allow improved quantitation of gene expression, which is generally 
restricted by the imprecise proxy of transcriptome data alone. We here show that the 
synergistic use of genomic, transcriptomic, and proteomic technologies significantly improves 
the information load that can be gained from proteomics as well as genomics efforts. By 
matching deep MS-based proteomics to a personalized database built from a sample-specific 
genome and transcriptome, we identify thousands of peptides that would otherwise escape 
identification. We believe that future efforts on both platforms benefit largely from our proof-
of-concept approach, which brings integrated proteogenomics to a higher level. To highlight 
the strength of this approach, we present a link of a genomic variant in the Cyp17a1 gene 
promoter and associate it with the hypertension phenotype of the extensively studied SHR 
rats.

Materials and methods
Custom rat protein database construction. We modified and appended the Ensembl [63-
65] rat protein FASTA (build 3.4.63), which was derived from the reference (BN) genome 
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assembly, with DNA resequencing and RNA-seq data of the BN-Lx and SHR strains. Single 
nucleotide variants and indels were obtained from previous genome sequencing efforts 
[24, 25]. RNA was isolated from liver tissues of 6-week-old inbred BN-Lx/Cub and SHR/
OlaIpcv rats. SOLiD RNA-seq libraries were prepared with ribosomal RNA depleted RNA and 
sequenced on the SOLiD V4 system. Next, we used CLC assembly cell version 4 (CLC Bio) 
to de novo assemble each rat liver transcriptome. Merged BN-Lx and SHR transcriptomes 
were mapped against the reference genome assembly using BLAT software [66]. Splicing and 
RNA-editing events were detected using alignments between the assembled transcriptome 
and genome and compared to their corresponding proteins. For all nonsynonymous genomic 
and transcriptome variants, individual entries were added to the extended protein search 
database. Also, we included 44,993 GENSCAN gene predictions of which 17,100 (FPKM >0.1) 
or 4,998 (FPKM >1.0) show evidence of expression.

Quantification of transcriptome data and identification of eQTLs. To quantify expression 
differences, RNA-seq data for each sample were aligned to reference genome using 
TopHat2. Expressed and differentially expressed genes were defined by Cuffdiff using all four 
transcriptomes per strain [67]. Determination of eQTLs in the HXB/BXH recombinant inbred 
panel consisting of 30 rat strains was performed exactly as previously described [68].

Strong cation exchange chromatography. After sonication and centrifugation, liver tissue 
lysates (300 μg each) were proteolyzed using trypsin, LysC, GluC, AspN, and chymotrypsin. 
After desalting, peptides were fractionated using a strong cation exchange (SCX) column 
(Zorbax BioSCX-Series II; 0.8 mm inner diameter × 50 mm length, 3.5 μm), and 36 fractions 
were collected per digest.

Mass spectrometry analysis. The first 26 fractions were analyzed with an Agilent 1290 
Infinity (Agilent Technologies) LC, operating in reverse-phase (C18) mode, coupled to a 
TripleTOF 5600 (AB Sciex). MS spectra (350–1,250 m/z) were acquired in high-resolution 
mode (R > 30,000), whereas MS2 in high-sensitivity mode (R > 15 000). The next ten fractions 
were analyzed with a Proxeon EASY-nLC 1000 (Thermo Scientific) operating in reverse phase 
(C18) and connected to an LTQ-Orbitrap Velos (Thermo Fisher Scientific). For MS analysis, 
MS spectra (350–1,500 m/z) were acquired at a resolution of 30,000 and for MS2, R = 7,500.

Protein database searching. Peak lists (MGFs) were submitted to the Mascot (version 2.3) 
via Proteome Discoverer version 1.3 (Thermo Fisher Scientific) and searched against RAT_
COMBINED with the respective proteases chosen. Peptide tolerance was 50 ppm, and MS/
MS tolerance was 0.1  Da (TOF), 0.02  Da (Orbitrap), and 0.5  Da (ion trap). All PSMs were 
validated with Percolator [69] based on q = 0 (0% FDR). Only PSMs ranked first by the search 
engine with at least six amino acids were kept. Unmatched spectra were exported for 
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analysis with PEAKS Studio (version 6.0). Peak lists were filtered with a quality value of 0.65, 
followed by a tag database search. The maximum allowed variable PTM per peptide was set 
to 3. De novo interpreted PSMs were submitted to PEAKS DB database matching, allowing 
semienzymatic specificity and a maximum cleavage per peptide of 2. The FDR was estimated 
using a concatenated decoy database and according to a threshold of 0.0%.

Quantitative comparison of proteome and transcriptome data. To combine quantitative 
data from all methods, we developed a relational database schema (Figure  S8) for data 
storage. The database schema was converted to Java (Java SE 7, Oracle) entities, using Java 
Persistence API (JPA version 2) implemented in EclipseLink version 2.3.2 (http://www.eclipse.
org/eclipselink), with the tools provided in Netbeans IDE 7.3 (http://www.netbeans.org). The 
database used was MySQL version 5.5 (Oracle). 

An extended version of the experimental procedures can be found in the Supplemental 
Information at the online version of this article (http://www.cell.com/cell-reports/fulltext/
S2211-1247(13)00640-2 (doi: 10.1016/j.celrep.2013.10.041)). 
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Abstract
Long noncoding RNAs (lncRNAs) form an abundant class of transcripts, but the function of 
the majority of them remains elusive. While it has been shown that some lncRNAs are bound 
by ribosomes, it has also been convincingly demonstrated that these transcripts do not code 
for proteins. To obtain a comprehensive understanding of the extent to which lncRNAs bind 
ribosomes, we performed systematic RNA sequencing on ribosome-associated RNA pools 
obtained through ribosomal fractionation and compared the RNA content with nuclear and 
(non-ribosome bound) cytosolic RNA pools. The RNA composition of the subcellular fractions 
differs significantly from each other, but lncRNAs are found in all locations. A subset of 
specific lncRNAs is enriched in the nucleus but surprisingly the majority is enriched in the 
cytosol and in ribosomal fractions. The ribosomal enriched lncRNAs include H19 and TUG1. 
Most studies on lncRNAs have focused on the regulatory function of these transcripts in 
the nucleus. We demonstrate that only a minority of all lncRNAs are nuclear enriched. Our 
findings suggest that many lncRNAs may have a function in cytoplasmic processes, and in 
particular in ribosome complexes.

Introduction
The importance of noncoding RNA transcripts for key cellular functions has been well 
established by studies on for example XIST [1], which acts in X-chromosome silencing, and 
TERC [2], which functions in telomeric maintenance. Genomic studies performed in the 
last decade have shown that these are likely not isolated examples as many more long non 
protein-coding transcripts were identified [3-5]. Although it remains to be demonstrated that 
all of these transcripts have specific functions [6], functional studies showing the importance 
of long noncoding RNAs (lncRNAs) as regulators in cellular pathways are accumulating rapidly 
(for example, [7-12]). However, the function and the mechanisms of action of the majority of 
lncRNAs are still unexplored [13].
Cellular location is an important determinant in understanding the functional roles of lncRNAs. 
Subcellular RNA sequencing (RNA-seq) has been performed to explore the differences 
between nuclear, chromatin-associated and cytoplasmic transcript content in several cell lines 
[14] and macrophages [15]. Derrien et al. [3] specifically estimated the relative abundance 
of lncRNAs in the nucleus versus the cytosol and concluded that 17% of the tested lncRNAs 
were enriched in the nucleus and 4% in the cytoplasm. This is in line with the function of 
some individual lncRNAs, such as NEAT1 and MALAT1, which were shown to be involved 
in nuclear structure formation and gene expression regulation [7,8]. However, it has been 
argued that relative enrichment does not mean that the absolute number of transcripts for 
each lncRNA is also higher in the nucleus [13]. Some lncRNAs were enriched in the cytoplasm 
and ribosome profiling demonstrated that part of the cytoplasmic lncRNAs is bound by 
ribosomes [16]. More detailed characterization of the ribosome profiling data showed that 
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ribosomal occupation of lncRNAs does not match with specific marks of translation [17].
While these results suggest diverse roles of lncRNAs in different cellular compartments and 
biological processes, comprehensive knowledge on the relative abundances of lncRNAs in 
ribosomes, the cytosol and the nucleus is currently still lacking. Moreover, as ribosomal 
profiling measures single sites in RNA molecules that are occupied by ribosomes, this 
technique does not yield information on the number of ribosomes that are present per single 
(physical) lncRNA transcript [18]. In a different method, named ribosomal fractionation, a 
cytosolic size separation is performed that results in the isolation of translation complexes 
based on the number of ribosomes associated per transcript [19]. This method has been used 
in combination with microarrays to analyze ribosomal density on protein-coding transcripts 
[20-22] but not on lncRNAs.
Here we perform subcellular RNA-seq on nuclei, cytosol and mono- and polyribosomes 
separated by ribosomal fractionation. Our data show relative enrichment of specific lncRNAs 
in the nucleus, but also demonstrate that most lncRNAs are strongly enriched in the cytosol 
and in ribosomal fractions.

Results
Nuclear, cytosolic and ribosomal fractions differ in transcript content

Different subcellular RNA fractions were isolated from the human cell line LS-174T-pTER-β-
catenin [23] (Figure 1). The cells were first subjected to a mild lysis after which the nuclei were 
separated from the cytosol and other organelles by centrifugation. Microscopic inspection 
and nuclear staining confirmed the presence of clean nuclei in the pellet and thus the co-
sedimentation of the rough endoplasmic reticulum-derived ribosomes with the cytosolic 
supernatant (Additional file 1). The cytosolic sample was fractionated further using a sucrose 
gradient and ultracentrifugation, which sediments the sample components based on size 
and molecular weight. UV was used to measure the RNA content of the fractions and the 
number of ribosomes in each of the fractions was established based on the resulting distinct 
peak pattern. We isolated each of the fractions containing one, two, three, four, five and six 
ribosomes and the fraction containing seven or more ribosomes. In addition, we isolated the 
fraction that contained the cytosolic part without ribosomes, which we will refer to as the 
‘free cytosolic’ sample. RNA molecules in the free cytosolic fraction are, however, associated 
with various other types of smaller protein complexes that reside in the cytosol. The fractions 
containing 40S and 60S ribosomal subunits were also extracted and these two samples were 
pooled for further analysis. The RNA of three ribosomal fractionation experiments was pooled 
to level out single experimental outliers. Through this experimental setup we obtained a 
complete set of subcellular samples from which RNA was extracted.
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Figure 1 - Experimental workflow and quality control. (A) Cells were lysed and the complete cytosolic fraction was 
used for ribosomal fractionation. Pelleted nuclei and nine fractions (indicated A to I) derived from the ribosomal 
fractionation were subsequently used for RNA isolation and strand-specific RNA-seq. Fractions A1 and A2 as well 
as B1 and B2 were merged prior to the RNA-seq. (B) 2100 Bioanalyzer RNA 6000 Pico results showing the integrity 
of the collected RNA samples obtained by ribosomal fractionation. Each ribosomal fraction has an RNA integrity 
(RIN) value of 10. These results also show the sample-specific content of tRNAs, 5S, 5.8S, 18S and 28S rRNA, which 
nicely indicate the purity of the fractionation.
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Strand-specific RNA-seq was performed after rRNA depletion on all the subcellular samples 
and for each we obtained at least six million aligned reads. The GENCODE annotation [24] of 
coding and noncoding transcripts was used to establish the read counts per gene (Additional 
file 2). In our data analyses, we considered three types of transcripts: protein-coding 
transcripts; small noncoding RNAs (sncRNAs), which included small nuclear RNAs (snRNAs) 
and small nucleolar RNAs (snoRNAs); and lncRNAs, which included antisense transcripts, long 
intergenic noncoding RNAs and processed transcripts (these were transcripts that did not 
contain an open reading frame (ORF) and could not be placed in any of the other categories) 
[3]. We left out some small RNAs such as miRNAs, because these were not captured in our 
experimental setup. Also, to prevent false assignments of sequencing reads to noncoding 
transcripts, we did not consider lncRNAs in which the annotation partially overlapped with 
protein-coding transcripts on the same strand. We selected expressed transcripts using a 
stringent threshold to allow us to reliably detect quantitative differences. Our expressed 
transcript set contained 7,734 genes including 7,206 protein-coding genes, 152 lncRNAs (46 
antisense transcripts, 71 long intergenic noncoding transcripts and 35 processed transcripts) 
and 376 sncRNAs (134 snoRNAs and 242 snRNAs).

To determine the similarity of the RNA content of the different subcellular samples we 
analyzed the correlations between each sample pair (Figure 2A). The highest correlations were 
seen between ribosomal fractions, ranging from 0.60 to 0.97. By contrast, the correlations 
between the different ribosomal fractions and the nuclear sample ranged from 0.35 to 0.53. 
We investigated the source of the variable correlation between subcellular RNA samples by 
comparing the origin of the RNA reads from each fraction (Figure 2B). This analysis showed 
that more than half of the reads in the nuclear sample aligned to sncRNAs and this group 
of small RNAs was visible as a distinct cloud in the comparative scatter plots (Figure 2A and 
Additional file 3). The ribosomal fractions primarily consisted of protein-coding genes as 
expected, but highly expressed lncRNAs were also clearly present. Because these read count 
distributions did not directly translate into transcript composition of the different samples, 
we also analyzed the sample composition based on reads per kilobase per million. This 
resulted in essentially the same distribution among the samples, but the relative contribution 
of sncRNAs was larger (Additional file 4).
Combined, these analyses show that subcellular RNA samples have very different compositions 
and that lncRNAs are found in each of the subcellular RNA samples.

Long noncoding RNAs are primarily enriched in the cytosol and in 
the ribosomal fractions

The clear difference in composition of the subcellular RNA samples raises the question how 
individual transcripts are distributed among the samples and in particular how lncRNAs 
behave compared to protein-coding transcripts. Therefore we investigated the distribution 
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Figure 2 - Subcellular RNA fractions have a different transcript composition. (A) Scatter plot and correlation matrix 
of all sequenced samples. The color intensity of the correlation boxes (r values) depicts the relative strength of the 
correlation, ranging between 0.39 and 0.97. (B) RNA species content of each sequenced fraction in counts per 
million (CPM).
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of each lncRNA across the cellular fractions versus the distribution of each protein-coding 
transcript (Figure 3). The correlation between each protein-coding transcript-lncRNA pair 
was calculated and the obtained scores depicted in a clustered heatmap (Figure 3). A high 
correlation between two transcripts in this heatmap meant that the two showed a very 
similar distribution across all different subcellular samples. This analysis showed that there 
are several different groups of lncRNAs that can be distinguished based on their correlation 
with protein-coding transcripts. Each group of lncRNAs had specific sets of positively 
correlated and negatively correlated protein-coding transcripts. Examples of such groups are 
the noncoding snoRNA host genes, that all showed very similar correlation profiles (Figure 3). 
A few lncRNAs, including TUG1 and CASC7, had a more specific correlation profile. 

Figure 3 - Long noncoding RNAs show a subcellular distribution similar to specific groups of protein-coding 
transcripts. Heatmap of the Spearman-Rank correlation between the each of the 152 expressed lncRNAs and 
7,206 expressed protein-coding transcripts across the subcellular RNA samples. Strong correlations are shown in 
blue, anti-correlations are shown in red. Six frequently studied lncRNAs with varying correlations to protein-coding 
transcripts are highlighted at the bottom together with a large cluster that harbors the majority of expressed 
snoRNA host genes.
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Figure 4 - RNA species show specific distributions across the subcellular RNA samples. (A) Heatmap display of 
the 11 clusters and the number of protein-coding, lncRNA and sncRNA transcripts present in each cluster. (B) 
Summarizing plot showing the distribution of the three types of transcripts over the four major types of clusters that 
could be derived from the analysis in (A). (C) Boxplots of the total transcript length and the maximum (potential) 
open reading frame of protein-coding transcripts and lncRNAs in clusters VI to X.
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These results show that there is no general negative correlation between cellular localization 
of lncRNAs and protein-coding transcripts, but that the relationships are complex.

To reduce this complexity and to focus on the distribution of protein-coding transcripts and 
non-protein-coding RNAs across the subcellular fractions we applied model-based clustering 
on the normalized read counts per transcript [25]. We applied the clustering algorithm using 
variable amounts of clusters and found that a separation in 11 clusters best describes the 
data (Figure 4A and Additional files 5 and 6). All RNA-seq transcript levels were normalized to 
the total number of sequencing reads produced per sample. Therefore, the normalized value 
of a transcript depended on the complexity of the sample (number of different transcripts) 
and the expression level of all other transcripts. Because of the large fraction of reads that 
arose from sncRNAs, we tested the effect of omitting these RNAs from the dataset and found 
that this did not affect the clustering results (Additional file 7). The final set of 11 clusters 
included one cluster (XI) containing transcripts that did not show an obvious enrichment 
in any of the samples, and 10 clusters (I to X) containing genes that did show a specific 
cellular localization. Clusters I, II and III all contained transcripts enriched in the nucleus and 
depleted from the ribosomal fractions, but the clusters differed from each other based on 
the relative transcript levels in the free cytosolic and the 40S/60S sample. Cluster IV and V 
contained transcripts enriched in the free cytosolic sample and transcripts enriched in the 
40S/60S sample, respectively. Clusters VI through X contained transcripts enriched in specific 
ribosomal fractions. Each of these ribosomal-enriched clusters also showed mild enrichment 
in the free cytosolic sample, except for cluster X, which was higher in the nucleus than in the 
free cytosol.

Overall, we consider clusters I, II and III as enriched in the nucleus; IV and V as enriched in the 
ribosome-free cytosol; and VI, VII, VIII, IX and X as enriched in the ribosomes. The distribution 
of protein-coding genes and sncRNAs among the clusters was largely as expected (Figure 
4B). Protein-coding transcripts were present in all of the clusters, but the majority (60%) was 
found in the ribosomal-enriched clusters. Nonetheless, 14% of the protein-coding transcripts 
were found in the nuclear clusters and depleted from ribosomes, suggesting that this large 
part of the protein-coding transcripts is not actively translated or has a rapid turn-over rate 
in the cytosol. sncRNAs were found only in the nuclear and ribosome-free cytosolic clusters 
and not in the ribosomal clusters, which matched expectations and thus demonstrated the 
effectiveness of the fractionation. The majority of the sncRNAs could be found in cluster III, 
showing high levels both in the nucleus and free in the cytosol, suggesting that many of these 
small RNAs shuttle between nucleus and cytoplasm.

The most notable result was the distribution of the lncRNAs among the different clusters. In 
line with previous analyses [3], 17% of the lncRNAs were found in one of the nuclear clusters 
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(Figure 4B). However, in contrast to previous studies, a relatively large part of the lncRNAs 
(30%) was located in clusters enriched in the ribosome-free cytosol and a striking 38% was 
present in ribosome-enriched clusters. As noted above, the transcript levels determined by 
RNA-seq represent which part of the total RNA samples can be assigned to each specific 
transcript. These results thus show that many individual lncRNAs (38% of the expressed 
lncRNAs) make up a larger part of specific ribosomal fractions than of the nuclear sample.
Although the correlations between ribosomal fractions were high (Figure 2A), these clustering 
results highlight the transcripts that are differential across the ribosomal samples. Previous 
studies have shown that many protein-coding transcripts are not evenly distributed among 
the ribosomal fractions, but rather show enrichment for a specific number of ribosomes 
[20,21]. The coding sequence length was shown to be a major determinant of the modular 
number of ribosomes per transcript. In our data, the total transcript length of protein-
coding transcripts in the five ribosomal clusters also increased with increasing numbers of 
ribosomes present (Figure 4C). For lncRNAs, we could determine such a relationship only 
between cluster VI (80S and two ribosomes) and VII (three and four ribosomes), because the 
number of lncRNAs in the clusters with a higher number of ribosomes was too low (Figure 
4A). lncRNAs in cluster VII (three and four ribosomes) had a longer transcript length, longer 
maximum putative ORF length and more start codons than the lncRNAs in cluster VI (80S and 
two ribosomes) (Figure 4C and Additional file 8). However, the maximum ORF lengths of the 
lncRNAs were much shorter than the coding sequence length of the protein-coding genes 
in the same cluster, so these ORF lengths likely do not determine the number of ribosomes 
associated with a lncRNA.
Combined, these analyses showed that many lncRNAs were enriched in specific subcellular 
fractions. Although some lncRNAs were enriched in the nucleus, many more were enriched 
in the cytosolic and ribosomal fractions.

Known long noncoding RNAs are enriched in different ribosomal 
fractions

The cellular localization of some lncRNAs was established previously and our results were 
largely in agreement with earlier findings. For example, MALAT1 and NEAT1, which are 
known to regulate nuclear processes such as gene expression [8] and the formation and 
maintenance of nuclear speckles and paraspeckles [7,26] respectively, were located in 
nuclear cluster I (Figure 5). Another lncRNA with a known nuclear function is TUG1 (Figure 
5), which is involved in the upregulation of growth-control genes [27]. We indeed found 
high levels of TUG1 in the nucleus, but the transcript also showed a clear enrichment in the 
fractions containing five or six ribosomes. The association of TUG1 with polysomes has not 
been described previously and suggests mechanisms of action in regulation of translation at 
the ribosome in addition to the previously described function in the nucleus.
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In the ribosome-free cytosolic sample we found enrichment of lncRNAs that are known 
components of cytosolic complexes, for example RPPH1 and RN7SL1. RPPH1 is part of 
ribonuclease P [28] and RN7SL1 is part of the signal recognition particle that mediates co-
translational insertion of secretory proteins into the lumen of the endoplasmic reticulum 
[29,30]. In addition, we also found many unstudied lncRNAs in the free cytosolic fraction. In 
cluster V, which showed enrichment in the 40S/60S sample, we found the lncRNA DANCR 
(Figure 5). DANCR was recently shown to be involved in retaining an undifferentiated 
progenitor state in somatic tissue cells [10] and osteoblast differentiation [31]. The exact 
mechanisms through which DANCR acts are unknown, but our data suggest a role for DANCR 
predominantly outside of the nucleus. One of the most abundant lncRNAs in our data was 
the evolutionary conserved and imprinted H19. This transcript is a strong regulator of cellular 
growth and overexpression of H19 contributes to tumor initiation as well as progression, 
making it a frequently studied noncoding RNA in cancer [9,32]. An enrichment of H19 in the 
cytoplasm over the nucleus has previously been observed [3]. Here, we found only moderate 

Figure 5 - Individual long noncoding RNAs are differentially distributed across subcellular samples. The normalized 
read counts of seven lncRNAs that are found in different clusters in Figure 4.
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levels of H19 RNA in the nucleus and ribosome-free cytosol, but very high levels of H19 RNA 
associated with ribosomes (Figure 5). This predominant association with ribosomes suggests 
a possible role for H19 in the regulation of the translation machinery and, more specifically, 
in polysomal complexes.
CASC7 was the only lncRNA that was enriched in the sample with seven or more ribosomes. 
Even though CASC7 has been identified as a cancer susceptibility candidate, not much is 
known about this transcript. Our data indicate that it is sequestered to large polysomal 
complexes and it may thus function in regulation of translation.
Using quantitative PCR, we confirmed the enrichment of NEAT1 and MALAT1 in the nucleus 
and the enrichment of TUG1 and H19 in ribosomes (Additional file 9).
These results reveal the subcellular enrichment of known and unknown lncRNAs and suggest 
that many lncRNAs function primarily outside the nucleus.

Discussion
We performed transcriptome analyses on subcellular samples of the human cell line LS-174T-
pTER-β-catenin and found that the lncRNAs that were expressed in these cells were present 
in all subcellular fractions, but the majority of the expressed lncRNAs were enriched in the 
cytosol and in ribosomes. Our data partially contradict an earlier study in which most lncRNAs 
were found enriched in the nucleus, compared to the cytoplasm [3]. This discrepancy could 
have resulted from the use of different cell types, but may also have partially resulted from 
measuring and comparing relative enrichments between multiple samples. Measuring the 
whole cytoplasm would thus result in different enrichment values compared to analysis of a 
specific subset of the cytoplasm, such as the ribosomes.
We are not the first to find lncRNAs associated with ribosomes. Ribosome profiling in mouse 
embryonic stem cells also showed examples of these interactions and our results overlap 
with the results from that study [16]. For example, both our work and work from Ingolia 
et al. pinpoint the lncRNA NEAT1 as not highly associated with ribosomes. The results for 
MALAT1 are more intricate, as we found that MALAT1 was strongly enriched in the nucleus, 
but previous work showed binding of ribosomes to the 5’-part of this lncRNA [16,33]. It is 
possible that a small proportion of the MALAT1 transcripts is bound by ribosomes. It is also 
likely hat ribosomal association with lncRNAs is specific to cell type, growth condition and 
organism.
Our data add significant insight into ribosomal association of lncRNAs, because ribosomal 
profiling and ribosomal fractionation provide different, yet complementary, information. 
In ribosome profiling, specific binding sites of ribosomes are measured and the amount of 
binding is estimated based on the total number of reads in the ribosome-bound versus the 
total RNA sample. By applying ribosomal fractionation we can directly measure the number 
of ribosomes associated per lncRNA. Moreover, we measured the full range of subcellular 
samples including free cytosolic and nuclear RNA in one analysis. From our data we can 
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conclude that many lncRNAs are found in complexes that contain multiple ribosomes. In 
addition, the enrichment of lncRNAs in ribosomal fractions shows that many lncRNAs make 
up a relatively larger part of the ribosomal samples than of the nuclear sample. This did 
not change when sncRNAs were excluded from the analyses. It should be noted that the 
identification of the ribosomes was based on size fractionation and RNA content. We can 
therefore not fully exclude that the lncRNAs are associating with protein complexes of sizes 
similar to the specific number of ribosomes [34]. However, these thus far unknown complexes 
would have to be present in such high quantities that the result is an enrichment of the 
associated transcripts equal to the enrichment of protein-coding transcripts. Moreover, we 
found lncRNAs in different ribosomal fractions, so the alternative explanation would require 
the involvement of multiple different protein complexes.

So why do lncRNAs associate with ribosomes? The possibility that these lncRNAs all code 
for proteins was recently eliminated by in-depth comparison of ribosome occupancy around 
translation termination codons [17]. lncRNAs did not show a steep drop in ribosomal binding 
after the translation termination codons (determined by the ribosome release score), as was 
seen for protein-coding genes. However, that does not exclude the possibility that ribosomes 
spuriously bind initiation codons in lncRNAs. In our data, the number of ribosomes per 
lncRNA correlates with lncRNA length, maximum ORF length and the number of ORFs present 
per lncRNA, but those three factors are not independent of each other.
It is possible that one of the processes that keep lncRNAs at ribosomes is nonsense-mediated 
decay (NMD). NMD functions via ribosomal binding and has previously been described as a 
possible breakdown route of the noncoding RNA GAS5 [35]. However, if NMD of a transcript 
results in such strong enrichment in the ribosomal fractions as observed in our experiments, it 
would mean that under standard culturing conditions a very significant portion of transcripts 
at ribosomes are engaged in NMD and not in active translation.
Arguably the most attractive hypothesis is that lncRNAs have functional roles in regulating 
translation. This could be a general phenomenon in which the lncRNAs occupy the ribosomes 
to keep them in a poised state and inhibit the energetically expensive process of translation 
until specific stimulatory cues are received. Alternatively, lncRNAs could regulate translation of 
specific protein-coding transcripts, for example by sequence-specific pairing. Indeed, recent 
data show that at least some lncRNAs associate with ribosomes to exert such a function [36]. 
For another class of noncoding RNAs, the microRNAs, similar roles have also been described 
[34]. One specific lncRNA, the antisense lncRNA of Uchl1, has been shown to regulate the 
association of sense Uchl1 with active polysomes in mice [36]. This regulatory function was 
partially established via the sequence homology between the lncRNA and the target mRNA. 
Translation regulatory mechanisms based on sequence homology have also been found for 
noncoding transcripts in bacteria [37]. Of the 25 antisense lncRNAs expressed in our data, 
only three pairs had both partners expressed and showed subcellular co-localization: DYNLL1 



102

5

and DYNLL1-AS1, PCBP1 and PCBP1-AS1, and WAC and WAC-AS1 (Additional file 10). The 
fact that we found so few co-localizing sense-antisense pairs makes it unlikely that a similar 
mechanism is abundant in the human system studied here.

Conclusions
Our data show that different subcellular compartments differ significantly in RNA content, 
especially when the nucleus is compared to the ribosomal fractions. The lncRNAs expressed 
in this cell line are found in all subcellular samples and show an intricate correlation profile to 
protein-coding transcripts. Most lncRNAs are enriched in the cytosolic (free and the 40S/60S) 
samples and in the subcellular samples containing one, two or three ribosomes. The fact 
that lncRNAs show enrichment in diverse subcellular fractions and not only the nucleus 
suggests that lncRNAs may have a wider range of functions than currently anticipated. Our 
study provides insight into this diversity and our data can serve as a valuable resource for the 
functional characterization of individual lncRNAs.

Materials and methods
Cell culture and media. Human colon cancer cells carrying a doxycycline-inducible short 
hairpin RNA against B-catenin (LS-174T-pTER-β-catenin [23]) were cultured in 1X DMEM 
+ GIBCO GlutaMAXTM (Life Technologies, Carlsbad, CA, USA) supplemented with 10% fetal 
calf serum and penicillin streptomycin. Cells were harvested during the exponential growth 
phase.

Ribosome fractionation. All steps of the mono- and polyribosome profiling protocol were 
performed at 4°C or on ice. Gradients of 17% to 50% sucrose (11 mL) in gradient buffer (110 
mM KAc, 20 mM MgAc and 10 mM HEPES pH 7.6) were poured the evening before use. Three 
replicates of 15 cm dishes with LS-174T-pTER-β-catenin cells were lysed in polyribosome lysis 
buffer (110 mM KAc, 20 mM MgAc, 10 mM HEPES, pH 7.6, 100 mM KCl, 10 mM MgCl, 0.1% 
NP-40, freshly added 2 mM DTT and 40 U/mL RNasin (Promega, Madison, WI, USA)) with help 
of a Dounce tissue grinder (Wheaton Science Products, Millville, NJ, USA). Lysed samples were 
centrifuged at 1200 g for 10 min to remove debris and loaded onto the sucrose gradients. 
The gradients were ultra-centrifuged for 2 h at 120,565 g in an SW41 Ti rotor (Beckman 
Coulter, Indianapolis, IN, USA). The gradients were displaced into a UA6 absorbance reader 
(Teledyne ISCO, Lincoln, NE, USA) using a syringe pump (Brandel, Gaithersburg, MD, USA) 
containing 60% sucrose. Absorbance was recorded at an optical density of 254 nm. Fractions 
were collected using a Foxy Jr Fraction Collector (Teledyne ISCO). Corresponding fractions 
from each of the three replicates were merged prior to RNA isolation.

Nuclei isolation. Pelleted nuclei of LS-174T-pTER-β-catenin cells were obtained by 
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centrifugation at 1200 g after whole-cell lysis prior to ribosome fractionation (see previous 
section). To exclude the presence of rough endoplasmic reticulum and thus validate the 
purity of the isolated nuclei, nuclear staining and imaging were performed (Additional file 1).

RNA sequencing library preparation. Total RNA was isolated from purified nuclei using the 
TRIzol® reagent (#15596-026, Invitrogen, Life Technologies). RNA derived from triplicate 
mono- and polyribosome fractionation experiments was purified using TRIzol® LS reagent 
(#10296-028, Invitrogen, Life Technologies). Isolated RNA from the pooled triplicate fractions 
corresponded to the (A1 + 2) non-ribosome bound RNA, (B1) 40S subunit, (B2) 60S subunit, 
(C) 80S ribosome, (D) 2 ribosomes, (E) 3 ribosomes, (F) 4 ribosomes, (G) 5 ribosomes and (H) 
6 ribosomes and (I) more than 6 ribosomes (Figure 1). For RNA-seq, RNA derived from A1 + 2 
(non-ribosome bound RNA) and B1 + B2 (individual ribosomal subunits) was pooled prior to 
library preparation. RNA-seq libraries were prepared from rRNA-depleted RNA (Ribo-ZeroTM 
Magnetic Gold Kit for Human/Mouse/Rat (MRZG12324, Epicentre®, Madison, WI, USA) using 
the SOLiDTM Total RNA-seq kit (#4445374, Life Technologies). All libraries were sequenced on 
the SOLiDTM 5500 Wildfire system (40 bp fragment reads).

Data analysis. RNA-seq reads were mapped using Burrows-Wheeler Aligner [38] (BWA-
0.5.9) (settings: -c -l 25 -k 2 -n 10) onto the human reference genome hg19. Only uniquely 
mapped, non-duplicate reads were considered for further analyses. Reads that mapped to 
exons were used to determine the total read counts per gene. Exon positions were based on 
the GENCODE v18 annotation [24]. The polyribosomal samples (from two to seven or more 
associated ribosomes) yielded 13 to 32 million reads. For the non-polyribosomal samples 
(nuclear, free cytosolic, combined 40S and 60S, and 80S (monosomes)), data from three 
sequencing lanes (technical replicates) were merged yielding 6 to 64 million reads. Data 
analysis was performed on the genes with GENCODE gene_type: protein coding, antisense, 
processed transcript, long intergenic noncoding RNA and snRNA/snoRNAs. Filtering was 
performed on the read count per gene over all samples combined. The per transcript sum 
of the sequencing reads in all samples showed a bimodal distribution (Additional file 11). 
Based on these data we used a total read count threshold of 2,500 per transcript to select the 
expressed genes. Genes with total read count below 2,500 were filtered out, leaving 7,734 
genes for further analysis. Subsequently, normalization was performed using the DEseq [39] 
to correct for library size and technical biases. Gene clustering was performed using a model-
based clustering approach with the R package HTSCluster [25]. The protein coding-lncRNA 
correlation matrix (Figure 3) was calculated using Spearman rank correlation. The matrix 
was visualized after hierarchical clustering using Euclidean distance with complete linkage. 
Median transcript length and coding sequence length were calculated for the protein-coding 
genes using annotation from Ensembl. The maximum lncRNA ORFs were predicted using a 
custom Perl script aimed at finding reading frames with in-frame START and STOP codons, 
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without intervening in-frame STOP codons.

Quantitative PCR analysis. Quantitative PCR analysis was performed on cDNA derived 
from total RNA of cytosolic, nuclear and pooled polyribosomal RNA. The RT reaction was 
performed on 1 μg of total RNA using oligo d(T) primers and the high capacity cDNA reverse 
transcription kit (Life Technologies, #4368814). Three primer sets were designed per lncRNA. 
Quantitative PCR reactions were performed in 20 μl reactions using 2 ng of cDNA and iQ™ 
SYBR® Green Supermix (Bio-Rad, Hercules, CA, USA, #170-8880) on a MyIQ2 Real-time PCR 
detection system (Bio-Rad).

Abbreviations
bp, base pairs; CPM, counts per million; lncRNA, long noncoding RNA; NMD, nonsense 
mediated decay; ORF, open reading frame; PCR, polymerase chain reaction; RNA-seq, RNA-
sequencing; rRNA, ribosomal RNA; RT, reverse transcription; sncRNA, small noncoding RNA; 
snoRNA, small nucleolar RNA; snRNA, small nuclear RNA.
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Abstract
Genomic rearrangements are a common cause of human congenital abnormalities. However, 
in the majority of cases a mechanism linking rearranged chromosomes to disease phenotype 
is lacking. Here, we studied the molecular effects of de novo structural variations in patients 
with congenital disorders. In one patient, a complex chromothripsis rearrangement resulted 
in gene fusions involving ETV1 and FOXP1, which are both involved in recurrent gene fusions 
caused by somatic breakpoints in cancer. In a second patient, a tandem duplication caused 
activation of the miRNA cluster C19MC, which is highly upregulated as a consequence of 
genomic rearrangements in thyroid adenomas and hepatocellular carcinoma. We show 
that expression of C19MC miRNAs results in severe defects in brain morphogenesis 
during embryonic development. Driven by this striking resemblance between cancer and 
constitutional genomic rearrangements, we analyzed a large set of 550 high-resolution 
genomic breakpoints involved in congenital disorders, which are mainly (73%) derived from 
complex genomic rearrangements. We observed that constitutional breakpoints can target 
cancer genes and overlap with breakpoints from cancer rearrangements. The overlapping 
breakpoints do not associate with common fragile sites, but coincide with late-replicating 
regions, which are prone to replication stress. These findings indicate the presence of 
recurrent genomic breakpoints involved in cancer and congenital disease, which may result 
in comparable effects on gene function.

Introduction
Constitutional genomic rearrangements are a common cause of congenital disease, including 
mental retardation, neurodevelopmental delay and a broad spectrum of morphological 
malformations [1, 2]. Constitutional rearrangements can be classified in two major categories. 
One category arises through non-allelic homologous recombination via genomic repeats 
[1-4] primarily resulting in copy number changes (CNVs). Most of these CNVs are recurrent 
and give rise to recognizable phenotypes known as microdeletion and microduplication 
syndromes, which can result from dosage effects of one or more genes within the CNV 
interval [5]. The second category contains sporadic (non-recurrent) genomic rearrangements 
and comprises more diverse rearrangement types including CNVs, translocations, inversions 
and complex events. These rearrangements are primarily caused by non-homologous modes 
of DNA repair, such as direct end-joining of free DNA ends [6] or template-switching following 
replication fork stalling [7]. Also, ultra-complex rearrangements resulting from the shattering 
of chromosomes in a single event, termed chromothripsis, arise through non-homologous 
DNA repair [8-10].
For the majority of patients with non-recurrent (sporadic) rearrangements the actual cause 
of disease remains unclear. The uniqueness of the breakpoints of such rearrangements and 
the multiple possible effects on gene function make it difficult to establish a direct causal 
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relationship with a congenital phenotype [11]. This is even more difficult for complex genomic 
rearrangements, such as those caused by chromothripsis or chromoanasynthesis, where one 
or several breakpoints could cause disease [8, 9, 12]. A first step towards understanding disease 
mechanisms resulting from chromosome rearrangements is the detection of breakpoints at 
nucleotide resolution, including information on orientation of breakpoint junctions. We and 
others have used genome-wide paired-end sequencing to pinpoint genomic rearrangements 
in patients with congenital disease, revealing insight into underlying gene defects [8, 9, 13-
15]. 

Here, we gained deep insight into the effects of de novo genomic rearrangements in patients 
with congenital disease by performing integrated transcriptome, small RNA and ChIP profiling 
in patient blood. We observed that de novo constitutional breakpoints occasionally target 
cancer genes. In one patient, a constitutional chromothripsis rearrangement caused the 
formation of novel fusion genes involving the cancer genes ETV1 and FOXP1. In a second 
case, we identified strong upregulation of ~50 oncogenic C19MC microRNAs through a de 
novo tandem duplication. Besides a known role for these microRNAs as drivers of several 
cancers, including embryonal brain tumors [16], we here report that their overexpression 
can drive brain morphogenesis defects in zebrafish as well. Furthermore, a comprehensive 
analysis of 550 constitutional breakpoints identified in patients with congenital disease 
revealed additional breakpoints in cancer genes, significantly more than would be expected 
by chance. Also, we show that ~10% of the constitutional breakpoints resides in close 
vicinity to somatic breakpoints identified in cancer genomes. These overlapping breaks do 
not associate with known common fragile sites (CFSs), but are specifically marked by late 
replication timing, suggesting that replicative mechanisms of genome rearrangement may 
govern their formation in cancer and congenital disease. 

Results
Family-based transcriptome analysis reveals fusion transcripts 
involving the cancer genes ETV1 and FOXP1 as a result of 
constitutional chromothripsis

We employed an in vivo family-based molecular profiling approach to characterize the effects 
of de novo structural genomic rearrangements in two independent patients with multiple 
congenital abnormalities and intellectual disability (MCA/ID), both their parents, and one 
unaffected sibling (Supplementary Table 1). 
In one patient with speech delay, psychomotor retardation, dysmorphic facial appearance 
and doubling of one of the thumbs we identified a de novo chromothripsis rearrangement. 
This constitutional chromothripsis rearrangement involves 17 breakpoints divided over four 
chromosomes (1,3,7 and 12) (Fig. 1A, Supplementary Fig. 1A, Supplementary Table 2) [8]. 
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Figure 1 - A de novo chromothripsis rearrangement results in ETV1 and FOXP1 fusion transcripts. (A) Circos plot of 
the 13 breakpoint junctions forming the chromothripsis rearrangement. The outer circle displays the chromosome 
ideogram. The inner circle represents the copy number profile as based on read-depth measurements relative to 
the parents. The colored lines indicate breakpoint junctions. Blue, tail-to-head; green, head-to-tail; red, head-to-
head inverted; yellow, tail-to-tail inverted. The locations of relevant genes are indicated. Chromosome coordinates 
are in Mb. (B) Visualization of the DPYD-ETV1 fusion gene and the transcriptional consequences thereof. RNA-seq 
reads within the genomic intervals from the start of the genes to the breakpoint and from the breakpoint to the end 
of the gene were normalized for the total amount of reads per sample. The plot visualizes the ratios of normalized 
reads in the patient versus the average of the parents. (C) Diagram showing the full-length ETV1 gene, examples of 
ETV1 fusion genes as observed in cancer [19, 22] and the DPYD-ETV1 fusion in our patient. (D) Raw RNA-Seq reads 
depicting FOXP1 transcription across the chromosome 3 - chromosome 7 breakpoint, resulting in two novel fusion 
transcripts (green). (E) Diagram showing the full-length FOXP1 gene, examples of FOXP1 fusion genes as observed 
in cancer and the FOXP1 breakpoints in two patients in our dataset [9, 22, 23].
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To study the effects of chromothripsis on gene-expression we performed RNA-seq on 
peripheral blood mononuclear cells (PBMCs) of this patient and both parents. First, we 
examined the expression levels of 11 genes that reside within three large de novo genomic 
deletions caused by the chromothripsis. Four of these genes were expressed in PBMCs and 
showed a clear decrease in expression levels relative to the parents (Supplementary Fig. 1B). 
In addition to these deleted genes, six genomic breakpoints were located within a gene, 
thus splitting up the coding sequence (Supplementary Table 2). Of the six genes disrupted 
by breakpoints, three are transcriptionally active in PBMCs. Two of them (DPYD and FOXP1) 
showed a decrease in expression following the breakpoint (Fig. 1B and Supplementary Fig. 
1C). In contrast, for the third gene (ETV1) the C-terminal part showed elevated expression in 
the patient relative to the parents, while the N-terminal part was not expressed. Examination 
of the breakpoint junctions involving ETV1 revealed a genomic fusion between the first 
three exons of the DPYD gene and exons 10-14 of the ETV1 gene (Fig. 1B). DPYD encodes for 
dihydropyrimidine dehydrogenase, an essential factor for uracil and thymidine catabolism 
that is ubiquitously expressed. As a result, the genomic fusion between DPYD and ETV1 leads 
to high expression of the 3’ part of ETV1 in patient blood, while the parents do not express 
ETV1.

ETV1 is a member of the ETS (E-twenty six) family of transcription factors that modulate 
target genes involved in various biological processes, such as cell differentiation, proliferation, 
migration and apoptosis [17]. ETV1 gene fusions are frequently found in Ewing sarcoma 
and prostate cancer, but have not been described as drivers of congenital disease [18-22]. 
Remarkably, the topology of the DPYD-ETV1 fusion in this patient resembles that of the ETV1 
fusion genes found in cancer (Fig. 1C). Both in this patient and in cancer the 3’ part of ETV1, 
containing the ETS transcription activation domain, becomes ectopically expressed by fusion 
to the 5’ part of an actively transcribed gene [20]. We constructed a cDNA gene mimicking 
the DPYD-ETV1 fusion and overexpressed it in HEK293 cells to determine functionality of the 
protein. Although we can detect sporadic protein product in these cells (~1/50, Supplementary 
Fig. 1D), we could not detect a stable DPYD-ETV1 fusion protein on western blot analysis, 
suggesting that this product is only stable and/or translated under specific conditions. 

Next, we studied the transcriptional consequences of the breakpoint in FOXP1, a genomic 
region that is also frequently involved in translocations in cancer [22, 23]. RNA-seq analysis 
showed read-through transcription from exon 11 of the FOXP1 gene to a genomic segment 
on chromosome 7 (Fig. 1D). No annotated coding gene was present as 3’ fusion partner of 
FOXP1, but cDNA analysis of the read-through transcripts showed two differentially spliced 
novel transcripts fused to the 11th exon of FOXP1 (Fig. 1D and Supplementary Fig. 1E). These 
novel fusion transcripts resemble FOXP1 cancer gene fusions (Fig. 1E), with the intron 
targeted for translocation being identical to the breakpoint in many FOXP1 gene fusions in 
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cancer. Furthermore, we identified a second patient with a constitutional breakpoint in the 
same intron in FOXP1, indicating that this is a recurrently rearranged region in both cancer 
and germline [24]. The two transcript isoforms identified in the patient with chromothripsis 
add 24 and 46 amino acids respectively to the FOXP1 open reading frame. Upon expression 
in HEK293 cells both transcripts result in stable protein products (Supplementary Fig. 1F and 
1G). 

The contribution of both the ETV1 and FOXP1 fusions to the patient’s phenotype is difficult 
to assess from the current data. FOXP1 is often hit by breakpoints in cancer and has been 
associated with neurodevelopmental disorders by de novo translocation breakpoints, 
copy number variants, and point mutations [24, 25]. It is very well possible that the loss 
of one functional allele and not to the ubiquitous gain of FOXP1 or ETV1 expression drives 
the patient’s phenotype. Our data demonstrate that (novel) spliced transcripts resulting 
in stable proteins that can be formed through constitutional chromothripsis breakpoints. 
These mechanisms of gene activation are very similar to those of somatic rearrangements 
in cancer genomes. Furthermore, the results provide a first insight into the molecular effects 
of constitutional chromothripsis rearrangements and show that chromosome shattering can 
lead to transcriptional activation in addition to gene disruption.

A de novo congenital duplication activates a cluster of oncogenic 
microRNAs

The second patient with congenital defects analyzed using molecular phenotyping carries 
a de novo 424.5-kb tandem duplication on chromosome 19, resulting in macrocephaly and 
severe psychomotor retardation (Supplementary Fig. 2A, Supplementary Table 1). The most 
predictable effect of a genomic duplication is elevated gene expression due to an increase in 
gene copy number. Indeed, RNA-seq analysis performed on peripheral blood mononuclear 
cells (PBMCs) demonstrates that three duplicated genes are expressed significantly higher 
in the patient compared to both the parents and an unaffected sibling (Supplementary Fig. 
2B). Closer examination of the breakpoints of the duplication revealed unexpected additional 
molecular effects. The 5’ breakpoint of the duplicated region is located within the chromosome 
19 microRNA cluster (C19MC) and the 3’ breakpoint disrupts the NDUFA3 gene. The tandem 
duplication repositioned a major part of the C19MC miRNA cluster immediately downstream 
of the promoter of NDUFA3. This prompted us to investigate the presence of active promoter 
elements in the rearranged locus by H3K4me3 chromatin immunoprecipitation sequencing 
(ChIP-seq). The NDUFA3 promoter was found to have high H3K4me3 levels in all samples 
and this H3K4me3 signal was found to extend into the C19MC cluster downstream of the 
5’ duplication breakpoint in the patient (Fig. 2A). In addition, small RNA-seq revealed that 
the C19MC miRNAs positioned downstream of the NDUFA3 promoter were highly expressed 
(Fig. 2B), whereas they are non-expressed in both parental samples and the unaffected 
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Figure 2 - A de novo 424.5-kb tandem duplication activates C19MC expression. (A) H3K4me3 ChIP-seq results for 
the promoter of the NDUFA3 gene in the father, mother, patient and healthy sibling. The upper panel shows a 
schematic representation of the duplication. The grey arrows show which part of the chromosome is duplicated 
and (parts of) genes within the duplication are depicted in red. The lower left panel shows H3K4me3 signals for a 
region surrounding the 5’ breakpoint of the tandem duplication. The lower right panel shows H3K4me3 signals for the 
NDUFA3 promoter region. The vertical red lines indicate the position of the duplication breakpoints. (B) Normalized 
log2 expression ratios of microRNAs in C19MC for the patient versus healthy sibling (control). The duplicated 
fraction of C19MC is colored red. An arrow depicts the breakpoint junction that fuses exon 2 of NDUFA3 to C19MC. 
(C) Examples of chromosomal rearrangements activating C19MC in cancer. The constitutional rearrangement 
activating C19MC is depicted followed by three previously described rearrangements in embryonal brain tumors 
[16], thyroid adenoma [29] and mesenchymal hamartoma [30]. (D) Whole mount bright-field images of 24 hours 
post fertilization (hpf) zebrafish embryos derived from control injections (single stranded miRNAs) and injections 
with miR-520b and miR-520c duplexes. Zoomed views of the zebrafish are displayed in the lower panel, with 
annotation of the hindbrain (h), hindbrain ventricle (hv), otic vesicle (ov), telencephalon (te), midbrain-hindbrain 
boundary (mhb), and tectum (tc). (E) Sagittal sections of embryos derived from the same experiments as under 
(a-b), with two examples of miR-520c injected embryos. Hindbrain (h), hindbrain ventricle (hv), otic vesicle (ov) 
and spinal cord (sc) are annotated.
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sibling. The part of the C19MC cluster that is not repositioned by the duplication was not 
expressed in the patient (Fig. 2B) and miRNAs elsewhere on the genome were also unaffected 
(Supplementary Fig. 2C). The miRNA encoded by the MIR371 gene, which is also located in 
the duplication but is driven by its own promoter, also shows no upregulation (Supplementary 
Fig. 2C). Endogenous expression of C19MC is exclusive to embryonic stem cells and tumors, 
which suggests that normal differentiation and development could be disturbed upon 
ectopic expression of this cluster [26, 27]. The NDUFA3 gene, which encodes a subunit of a 
mitochondrial protein complex, is broadly expressed and therefore expected to drive C19MC 
miRNA expression in many tissues in the patient. 

Expression of C19MC microRNAs drives cancer and defects in 
embryonic development

Genomic rearrangements in the 150-kb common breakpoint cluster on the long arm of 
chromosome 19 are known to affect C19MC expression in thyroid adenomas, epithelial 
tumors and embryonal brain tumors [16, 28, 29]. Previous reports have shown aberrant 
expression of part of the C19MC cluster in cancer resulting from the repositioning of an 
active promoter [16, 29, 30] (Fig. 2C). Other studies have shown that expression of the 
C19MC cluster in cancer cells is an important driver of tumorigenesis, tumor invasion and 
metastasis [31, 32], with eight C19MC members directly targeting p21 (CDKN1A) and C19MC 
being a transcriptional target of TP53 [26, 33, 34]. 

We selected two of these cancer related miRNAs, miR-520b and miR-520c, to study the 
effects of overexpression of the mature miRNA duplex on zebrafish embryonic development 
(Supplementary Fig. 2D-F) [35]. The miRNAs were selected based on homology with zebrafish 
miRNAs, presence of the same miRNA seed sequence among several other C19MC miRNAs, 
oncogenic potential as shown by previous studies [31, 32] and de novo expression in the 
patient. Injection of single-stranded miRNA controls and miR-520b duplexes in the 1-cell 
stage embryo did not result in a noticeable phenotype at 24 hours post fertilization (the 
miRNA is stable up to ~ 30h after injection). However, for miR-520c, we detected specific 
developmental malformations (Fig. 2D). Particularly the head of miR-520c injected embryos 
is smaller, displays a reduced fore- and hindbrain ventricle and an altered morphology of 
the midbrain-hindbrain boundary (Fig. 2E). These results demonstrate that overexpression 
of specific oncogenic C19MC miRNAs can disturb normal embryonic development, and are 
therefore likely to have contributed to the neurodevelopmental defects in the patient. 

Constitutional structural variation breakpoints from patients with 
congenital disease overlap cancer genes

Triggered by the two cases described above we hypothesized that cancer fusion genes or other 
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oncogenic changes could more often be associated with congenital disease. To pursue this 
concept we systematically analyzed a larger set of chromosomal rearrangements identified 
in 96 sporadic patients with congenital phenotypes, including neurodevelopmental delay, 
mental retardation and morphological abnormalities. Breakpoint positions and junctions 
from these rearrangements were obtained from published and in-house resources [8, 9, 14, 
24, 36-38]. The dataset comprises 550 genomic breakpoints identified using whole-genome 
read pair sequencing and/or breakpoint cloning. Most breakpoints (83%) are defined at the 
individual nucleotide level and therefore this dataset represents the largest collection of 
congenital breakpoints at this resolution published to date. For all breakpoints in this set, 
break-repair occurred through non-homologous mechanisms such as non-homologous end 
joining (NHEJ) or microhomology-mediated mechanisms [4, 6]. Of the 550 breakpoints, 402 
breakpoints in 33 patients arose from complex genome rearrangements, including those 
resulting from chromothripsis or multiple template-switching events [8, 9, 12]. Furthermore, 
the set contains 114 translocation breakpoints, 16 deletion breakpoints, 16 tandem 
duplication breakpoints and 2 inversion breakpoints. 

We performed a systematic survey of the overlap of all 550 constitutional breakpoints with 
genes targeted by translocation breakpoints in cancer as listed in the Cancer Gene Census 
(CGC) database. This revealed 12 overlapping breakpoints (Supplementary Table 3), which 
is a small but significant increase compared to what would be expected based on matched 
randomly simulated breakpoint sets (Fig. 3A, permutation test, p = 0.0114, Methods) [39]. This 
enrichment for cancer genes does not result from a general enrichment for protein-coding 
genes, because in line with the genome-wide gene density, only 43% of the constitutional 
breakpoints overlap a protein-coding gene (Supplementary Fig. 3A). The overlapping CGC 
genes include the FOXP1 and ETV1 breakpoints described above, but for example also 
a reciprocal fusion involving TNS3 and FGFR1. Recently, transforming activity of recurrent 
FGFR1 fusions was reported for glioblastoma, where activity of the FGFR1 kinase domain at 
the mitotic spindle leads to aneuploidy [40]. 

Constitutional breakpoints overlap with somatic breakpoints in 
cancer genomes

Because of the enrichment of cancer genes from the Cancer Gene Census among genes hit 
by constitutional rearrangement breakpoints, we hypothesized that regions in the genome 
prone to constitutional breaks in patients with congenital disease could also be prone to 
somatic breaks in cancer. To test this, we collected a large set of somatic genomic breakpoints 
from cancer genomes based on published resources. The dataset contains 68,018 genomic 
breakpoints derived from 19 cancer types, including breast (46%), prostate (18%), lung 
(8%), ovarian (5%) and colorectal cancer (3%). The breakpoints in this set are all defined at 
nucleotide-resolution. 
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Figure 3 - Cancer and congenital breakpoints overlap and associate with late replication timing. (A) Overlap 
of congenital breakpoints with recurrently translocated genes from the Cancer Gene Census (CGC) database. 
The overlap was compared with 10,000 random control sets equal in size to the congenital breakpoint set. (B) 
Positions of cancer (white triangles) and constitutional breakpoints (red triangles) in the ETV1 and FOXP1 genes, 
respectively. (C) Permutation testing to determine the number of breakpoints that overlap between the cancer 
and constitutional breakpoint set. The empirical p-value was calculated using a maximum distance between 
overlapping breakpoints of 2,000 bp. (D) Replication timing analysis of all recurrent breakpoints (within 2kb) as 
compared to random sets of simulated breakpoints. The area between de dotted red lines represents the mean 
replication timing +/- 1 SD computed over 1000 simulation sets. (E) Replication timing analysis of all overlapping 
breakpoints with 2 kb (red) and 10 kb (green) inter-breakpoint distances. The black line shows the replication 
distribution of all constitutional breakpoints. For each breakpoint, 100-bp flanks were analyzed for replication 
timing scores. If no score within this window was available, the score closest to the breakpoint was used. (F) Similar 
to (E), but depicting all cancer (blue) and constitutional (red) breakpoints.  
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We next calculated the overlap between the 550 constitutional breakpoints and the 68,018 
cancer breakpoints and found that a total of 61 (out of 550) congenital breaks in 34 patients 
overlapped a cancer break within a window of 2 kb. These 61 constitutional breakpoints 
include 43 breakpoints from complex rearrangements, such as the breakpoints in ETV1 and 
FOXP1 (Fig. 3B). However, they also include 15 translocation and 3 deletion breakpoints, 
resulting in a rearrangement type distribution that matches that of the complete dataset. 
This suggests that there is no specific type of rearrangement that preferentially contributes 
to the overlap with cancer breakpoints. Hypothetically, the highly localized clustering of 
chromothripsis breakpoints could contribute to the high degree of overlapping breakpoints 
we observe between both disease types. However, for only two out of 61 pairs of overlapping 
constitutional and cancer breakpoints a second pair was found within the same cancer and 
congenital patient samples. This indicates that clustering of chromothripsis breaks is likely not 
a cause of the overlapping breakpoint pairs. The overlap between the cancer and congenital 
breakpoint sets is higher than expected by chance as determined based on matched randomly 
simulated datasets using a maximum inter-breakpoint distance of 2 kb (permutation testing, 
p = 0.0448) (Fig. 3C). Also, the distribution of constitutional breakpoints positioned within 
10 kb of a cancer breakpoints shows that in general these breakpoints are located closer to 
cancer breakpoints than simulated breakpoints (Supplementary Fig. 3B).
Altogether, these data provide evidence for mild though significant recurrence in genomic 
breakpoint positions between constitutional and somatic rearrangements.

Overlapping breakpoints are a specific subset of breakpoints 
enriched in late replicating regions

Sites of genome rearrangements in cancer are known to be associated with specific DNA 
sequence characteristics, including GC content and DNA secondary structure [41]. In 
addition, late-replicating common fragile sites (CFSs) were identified in cancer [42], and early 
replicating fragile sites (ERFSs) have been shown to underlie local genome fragility in B-cell 
lymphoma [43].
We determined what genomic features are associated with the overlapping breakpoints, 
as compared to genomic background sites and relative to the complete set of cancer and 
constitutional breakpoints. To do so, we used the above-described set of 61 breakpoints that 
show overlap with cancer breakpoints (i.e. with a maximum distance of 2 kb). This revealed 
that recurrent breakpoint locations are not significantly associated with the presence of 
retrotransposons (LINEs, SINEs, LTRs), G-quadruplexes (G4s), CpG islands, common fragile 
sites ((aphidicolin-induced) CFSs), segmental duplications and early-replicating fragile sites 
(ERFSs) [43] (Supplementary Fig. 3C). However, we did find that the recurrent breakpoints 
are specifically enriched in late-replicating genomic regions (Kruskal-Wallis test, p = 0.02721) 
(Fig. 3D). The late replication nature of the recurrent breakpoints decreases for pairs of 
breakpoints that have a larger inter-breakpoint distance (Fig. 3E). Also, the replication timing 
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distribution of the recurrent breakpoints strongly deviates from the distributions observed 
for the complete sets of constitutional and cancer breakpoints (Fig. 3F). Late replication 
timing is characteristic of common fragile sites, but we find no significant overlap with CFSs. 
Also, as expected based on the late-replicating nature of the overlapping rearrangements, no 
significant association was observed with ERFSs (Supplementary Fig. 3C). 

Discussion
In this study, we describe two patients with congenital disease caused by de novo 
constitutional breakpoints. Molecular analysis of these patients revealed breakpoints in 
cancer genes and the formation of fusion genes similar to those described in cancer. Extension 
of this observation to a large set of 550 constitutional breakpoints identified additional 
breakpoints that overlap with cancer genes. This overlap cannot be fully explained by chance 
alone, suggesting a propensity of cancer genes to breakage in the germline. For example, 
FOXP1 and RUNX1 harbored breaks in two independent congenital patients. Intersection 
of the 550 constitutional breakpoints with a large set of 68,018 somatic breakpoints from 
cancer genomes further substantiated the overlap in breakpoint positions. Our findings 
imply a mechanistic link between both disease types, which is reflected in the two patients 
phenotyped at the molecular level. We propose a model whereby endogenous or exogenous 
stimuli may cause breakage at the same genomic positions in the germline and in cancer 
cells. The timing (germline or soma) and context (additional mutations) of the breakage 
determines whether the breaks promote developmental defects or cancer (Figure 4). 

Recurrence driven by sensitivity to genomic breakage

The existence of sites in the genome that are prone to rearrangements has long been 
recognized, especially in cancer genomes. Common fragile sites (CFSs) are replication 
stress-induced and associated with genomic properties such as large genes [42, 44], late-
replicating regions [45], AT-rich segments and condensed chromatin [45, 46]. In contrast to 
CFSs, early replication fragile sites (ERFSs) are gene-rich, GC-rich and euchromatic [43]. We 
find that recurrent breakpoints are specifically associated with late replication timing, but do 
not coincide with known CFSs or any of the other tested genomic features. We also did not 
observe an association of the recurrent breakpoints with the recently described ERFSs [43], 
as identified in B-cell lymphomas in mouse. In general, constitutional breakpoints that reside 
in early-replicating regions appear limited in number compared to the complete cancer 
dataset (Fig. 3F). This suggests that ERFSs are not likely to contribute to genome instability in 
congenital disease.
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Figure 4 - Schematic overview of the origin and consequences of recurrent breakpoints between the germline and 
cancer. The breakpoint datasets collected and analyzed in this study originate in either the germline (or very early 
development), resulting in congenital disease, or in somatic tissue cells, leading to cancer. The data presented 
here demonstrate the presence of overlapping breakpoints, which might underlie both types of disease. These 
recurrent breakpoints originate specifically in late replicating regions. The consequences of these breakpoints 
can be highly similar in cancer and congenital disease, such as aberrant transcriptional activation of disease-
promoting genes, for example via formation of gene fusions, of which a few examples are depicted as described 
in this paper. Depending on cellular context, timing and presence of mutations, the breakpoints result in either 
congenital disease or cancer. 
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Recurrence driven by function

Apart from local sensitivity to chromosome breakage and rearrangement formation, 
the biological function of affected genes may also explain the observed overlap between 
breakpoints in cancer and congenital disease. Deregulated oncogenes can perturb 
developmental programs, thereby leading to congenital disease. For example, Noonan 
syndrome is caused by deregulated RAS/MAPK signaling due to germline mutations in several 
pathway members [47]. Also, germline and postzygotic mutations of the PI3K pathway have 
been associated with megalencephaly syndromes [48]. 

Here, we highlight the activation of known oncogenic miRNAs in a patient with congenital 
disease and we show that overexpression of the miRNAs results in brain morphogenesis 
defects in zebrafish, pinpointing a phenotypic effect of this de novo genomic rearrangement. 
Thus, it is possible that gene function contributes to the recurrent breakpoints at these 
locations. However, only 24/61 recurrent breakpoints with an inter-breakpoint distance of less 
than 2kb overlap genes, so functional selection does not appear to be the only determinant 
and, even more, the occurrence of recurrent breaks due to genomic features or functional 
selection are not mutually exclusive.

Pediatric cancer and congenital disease

The observation of a genomic parallel between cancer and constitutional rearrangements 
raises the question of cancer predisposition among individuals carrying constitutional 
chromosome rearrangements. Although the two patients described here (chromothripsis 
case aged 25 and tandem duplication case aged 8) do not suffer from cancer at this point, we 
cannot rule out a predisposition for developing cancer later in life. The fusion partner that 
activates the expression of the oncogene in specific cells may be an important determinant for 
cancer susceptibility. In the case of the C19MC activation, of which somatic rearrangements 
were recently shown to drive embryonal tumors with multilayered rosettes (ETMR) [16], 
the fusion partner is different from the one that drives ETMR formation (TTYH1). Also, 5 
microRNAs in the beginning of the C19MC cluster are not activated in the patient described 
here, but are activated in ETMRs. Likely, the identified oncogenic rearrangements may 
require additional driver mutations for cancer development (Figure 4), which are not known 
to be present in these patients described. In contrast, constitutional rearrangements that 
do directly result in cancer formation have been described. For example, rearrangements 
of the MYCN locus have been found to underlie childhood neuroblastoma [49], germline 
rearrangement of RUNX1 caused acute myeloid leukemia [50] and 7q22 rearrangements are 
associated with myeloproliferative disorder [51]. This is further illustrated by two patients 
within our dataset who contain rearrangements of the RUNX1 gene. Both suffered from 
AML possibly as a result of the constitutional RUNX1 rearrangement. The high incidence of 
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morphological abnormalities among patients with childhood cancer further underscores a 
potential genetic and mechanistic link between cancer and congenital disease, which could 
partly be driven by recurrent genomic breakage as outlined here [52].

In summary, through a combination of genomic, transcriptomic, epigenomic and 
functional studies, we find a genomic and functional overlap between somatic genome 
rearrangements underlying cancer and constitutional rearrangements driving congenital 
disease. The recurrent breaks show a strong association with late replicating regions and 
we demonstrate that these breaks can induce similar molecular and functional effects. We 
show that a molecular approach to phenotype patients can be valuable for diagnostics and 
for predicting the molecular causes of congenital disease. For example, the existence of two 
novel FOXP1 products in the chromothripsis patient and the enormous increase in C19MC 
miRNA expression in the patient with a tandem duplication could not have been predicted 
accurately based on genomic information alone. Our results set the stage for further efforts 
to characterize genome rearrangement mechanisms in human development and disease and 
show that applying multiple sequencing approaches (including (small) RNA-seq and ChIP-seq) 
to analyze the in vivo molecular phenotypes provides novel insights in congenital disease 
etiology 

Materials and methods
Patient Material and informed consent. We obtained informed consent for the analysis 
of DNA and RNA from each patient and their parents. The genetic analysis was performed 
according to the guidelines of the Medical Ethics Committee of the University Medical Center 
Utrecht. 

Isolation of PBMCs from fresh blood. Approximately 30 mL of fresh blood was obtained from 
each individual of the two families of the patients (family 1: chromothripsis rearrangement, 
family 2: chr.19 duplication) (Supplementary Table 1). The blood was diluted 4x with PBS. 
PBMCs were isolated using 13 mL Histopaque®-1077 (family 1; Sigma-Aldrich 10771-500ML) 
or Ficoll-PaqueTM PLUS (family 2; GE Healthcare, 17-1440-02) per 35 mL of diluted blood. 
After centrifugation at RT (20°C), for 20 minutes at 2,000 rpm (no brake), blood plasma was 
discarded and the PBMC layer recovered. PBMCs were washed twice using 12 mL of PBS, 
centrifuged at 1800 rpm for 5 minutes and collected in 1 mL PBS. 

RNA sequencing and analysis. Total RNA was isolated from ±5M PBMCs using TRIzol 
(Life Technologies, 15596-018) and subsequent isopropanol precipitation (1:1). RNA 
concentrations were measured using a Qubit RNA assay (InvitrogenTM, Q32852) and RNA was 
checked for quality using a Bioanalyzer 2100 RNA 6000 nano assay (Agilent Technologies, 
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5067-1511). For family 1, RNA was purified prior to library preparation using the RiboMinusTM 
Eukaryote Kit for RNA-Seq (Life Technologies, A10837-08). For family 2, RNA was purified 
using the Ambion® Poly(A)Purist™ (Life Technologies, AM1916) and mRNA onlyTM Eukaryote 
mRNA Isolation Kit (Epicentre®). Whole transcriptome library preparation was done for both 
families using the SOLiD® Total RNA-Seq Kit (Life Technologies, 4445374), exactly according to 
manufacturers instructions (Life Technologies protocol, 4452437 Rev. B). Following templated 
bead preparation, paired-end libraries of family 1 were sequenced in a multiplexed manner 
on the SOLiD V4 platform. Fragment libraries of family 2 were sequenced in a multiplexed 
manner on SOLiD 5500xl. RNA sequencing reads from SOLiD were mapped using BWA 
(settings: -c -l 25 -k 2 -n 10). The number of reads mapping to the total gene sequence 
(family 1) or the coding gene sequence (family 2) was used as a measure for expression 
(gene annotation Ensembl 67). The difference in the analyses of the families was chosen 
because of the different RNA purification procedures that were used. Per gene the number of 
reads was normalized to the total number of reads mapping within coding sequences. Gene 
expression changes were identified using DEGSeq v1.10.0 [53]. Construction of the schematic 
representation of fusion genes is based on the gene annotation in Ensembl 67. Transcripts 
with name 001 were selected for the genes that have multiple known transcripts. 

Small RNA library preparation and sequencing. Small RNA libraries were prepared from the 
same RNA isolates of family 2 (described above). Small RNA Library preparation was done 
using the SOLiD® Total RNA-Seq Kit, exactly according to manufacturer’s instructions (Life 
Technologies protocol, 4452437 Rev. B). Following templated bead preparation small RNA 
libraries were sequenced in a multiplexed manner on SOLiD 5500xl. Reads were trimmed to 
23 bp and mapped using BWA (settings: -c -l 18 -k 1 -n 5). The number of reads mapping to 
each miRNA was used as a measure of expression. Significant changes of miRNA expression 
were identified using DEGSeq v1.10.0 [53].

Chromatin immunoprecipitations, library preparation and sequencing. ±20M cells were 
cross-linked with 2% formaldehyde in 10 mL PBS/10%FCS for 10 minutes rotating at RT 
(20°C). 0.125 M glycine was added to quench the reaction and cells were stored on ice. 
Following the cross-linking procedure, samples were centrifuged for 8 minutes at 1300 rpm 
(4°C). Pelleted cells were washed with 1 mL cold PBS and centrifuged at 1300 rpm, 4°C for 5 
minutes again. After removal of the supernatant, the cell pellet was dissolved in 1mL freshly 
prepared lysis buffer to recover cross-linked nuclei (50 mM Tris pH 7.5, 150 mM NaCl, 5 mM 
EDTA, 0.5% NP-40, 1% Triton X-100 and 1x Complete protease inhibitors (Roche)). Cells were 
lysed for an initial 10 minutes on ice and cell lysis was determined to be complete using 
Methyl Green - Pyronin staining. After completion of lysis, nuclei were washed twice in cold 
PBS. After the final wash, ±5M nuclei were dissolved in 100μL lysis buffer (MAGnify system, 
InvitrogenTM) and 1x protease inhibitors (MAGnify system, InvitrogenTM) and sheared in 
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microtubes (AFA Fiber Pre-Slit Snap-Cap 6x16mm, 520045) using the Covaris S2 sonicator (6 
cycles of 60 seconds; duty cycle: 20%, intensity: 3, cycles per burst: 200, frequency sweeping). 
The remaining cross-linked nuclei were stored at -80°C for later use. Soluble chromatin in a 
size range of 150 - 400 bp was stored at -80°C and the equivalent of 1M nuclei was used 
per immunoprecipitation (IP). H3K4me3 IPs were carried out using the MAGnify system 
(InvitrogenTM, 49-2024) following manufacturers instructions (Invitrogen manual A11261). 
Per IP, 1 μg of antibody was used (Millipore, 07-473 LOT# JBC1863338). 
For library preparation, chromatin immunoprecipitated DNA was sheared to ± 100 bp in size 
using Covaris S2 (microtubes, 6 cycles of 60 seconds with duty cycle: 10%, intensity: 5, cycles/
burst: 100, frequency sweeping). Following fragmentation, the End-ItTM DNA end-repair kit 
(Epicentre, ER81050) was used to make the fragments blunt-ended and phosphorylate the 
5’ end of each molecule. Ligation of double stranded P1 and barcoded P2 adapters was 
done using the Quick Ligation kit (New England Biolabs, M2200). Samples were purified 
using Agencourt AMPure XP beads (A63882), and PCR amplified for 11 cycles using Platinum 
PCR SuperMix (InvitrogenTM, 11306-016) and primers matching the P1 and P2 adapters. The 
PCR amplification included an initial 20 minutes nick translation step at 72 °C to remove 
the nick introduced at the 3’ end of each molecule during adapter ligation. Samples were 
purified using AMPure XP beads and quality checked using an Agilent Technologies 2100 
Bioanalyzer high-sensitivity DNA assay. DNA concentration for each sample was determined 
using a Qubit® Fluorometer high sensitivity DNA assay (InvitrogenTM), to allow equimolar 
pooling of the barcoded libraries and subsequent templated bead preparation. Libraries were 
sequenced on one lane of SOLiD 5500 and reads were mapped using BWA.

Zebrafish injections. RNA oligonucleotides matching hsa-miR-520c-5p and hsa-miR-520b 
were ordered from IDT integrated DNA Technologies. Complementary strands (miRNA star 
sequence) contained two mismatches opposing the two 5’ terminal bases of the miRNA 
strands. This improves miRNA effectiveness by facilitating loading in the RNA-induced 
silencing complex [35]. Single-stranded miRNA injection controls and mature miRNA duplexes 
were injected in the zebrafish zygote at a concentration of 5 μM (1 nL per zygote). 

Overexpression of DPYD-ETV1 and FOXP1 fusions in HEK293 cells. Synthetically produced 
FOXP1 transcript variants were obtained from IDT (Leuven, Belgium). FOXP1 inserts were 
amplified using a forward primer (containing an NheI restriction site and the HA-tag-sequence; 
5’- GCTAGCCCACCATGTACCCATACGATGTTCCAGATTACGCTATGCAAGAATCTGGGACTG-3’) 
and reverse primers containing a BamHI restriction site (FOXP1_1: 
5’-AATGGATCCTTAAAAAGTTAATTTTGAGGCCTTAGAGGG-3’; FOXP1_2: 
5’-AATGGATCCTTAATTTTGAGGCCTTAGAGGGCTCATGTCC-3’). PCR products were subcloned 
into the mammalian expression vector Phage2-EF1alpha-IRES-Puro (Westburg, Leusden, 
The Netherlands) using the NheI and BamHI restriction sites. The resultant plasmids were 
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transfected into HEK293FT cells using calcium phosphate precipitation and 1µg plasmid DNA 
per 100-mm dish. 
For immunofluorescence, cells were cultured on glass coverslips and fixed with 4% 
paraformaldehyde two days after transfection. Fixed cells were permeabilized in 0.5% Triton 
X-100 in PBS with 10% Fetal Calf Serum followed by blocking in 0.1% Triton X-100 in PBS with 
10% Fetal Calf Serum (blocking buffer). The cells were then incubated with a rabbit polyclonal 
anti-HA tag antibody (Abcam, Cambridge, UK) diluted in blocking solution to a concentration 
of 2 µg/mL. After three washes in blocking solution, the cells were incubated with goat anti 
rabbit secondary antibody conjugated with Alexa Fluor 488 (Life Technologies, Bleiswijk, 
The Netherlands), followed by three additional washes in blocking solution. Coverslips with 
stained cells were mounted in Vectashield with DAPI (Brunschwig Chemie, Amsterdam, The 
Netherlands) and imaged using a Leica SPE confocal microscope. Acquired images were 
merged using ImageJ software.
For immunoblot analysis HEK293FT cells were lysed in NP-40 buffer (150 mM sodium chloride, 
1.0% Triton X-100, and 50 mM Tris, pH 8.0) 2 days post-transfection. Protein lysates were 
diluted in 2X Laemmli buffer, boiled for 5 minutes and subjected to electrophoresis in 10% 
poly acrylamide gels followed by transfer to a PVDF-membrane. The resulting blot was blocked 
in PBS with 0.2% Tween and 5% milk powder (blocking buffer), followed by incubation with 
a rabbit polyclonal anti-HA tag antibody (Abcam), washing, and incubation in a Horseradish 
Peroxidase-conjugated secondary antibody (VWR, Amsterdam, The Netherlands). Blots were 
extensively washed in PBS with 0.2% Tween and antibody binding to the membrane was 
visualized using ECL (GE Healthcare, Diegem, Belgium) after which the signals were captured 
on light sensitive film. 

Breakpoint data from cancer and patients with congenital disease. We obtained breakpoint 
data for genomic rearrangements in 96 patients with congenital disorders from published 
studies and from our own genome sequencing efforts. Cancer breakpoints were derived from 
published studies. If coordinates were in hg18, we used the UCSC lift over tool to convert the 
coordinates to hg19. We only included cancer breakpoints that were defined at nucleotide 
resolution. Per sample, the breakpoints were ordered by genomic position and breaks from 
the same sample occurring within a genomic interval of 2 kb were merged, because these 
may represent the same double-stranded DNA break [8]. In those cases the average of the 
two break-junction coordinates was used as the breakpoint coordinate. 

Analysis of the overlap between cancer and constitutional breakpoint sets. To test the 
overlap between cancer and constitutional breakpoint sets, we generated random breakpoint 
sets equal in size to the constitutional breakpoint set. The random breakpoints in these sets 
were only taken from positions in the genome that could be covered by next-generation 
mate-pair sequencing datasets [8]. Therefore, we compiled a BAM file from six high-quality 
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datasets and required at least 300 uniquely, unambiguously and perfectly mapped (no 
mismatches) sequence reads with high mapping quality in the region of 1 kb flanking each 
side of each breakpoint in the random control set. This eliminated more than 5% of the 
random breakpoints that mostly covered repetitive regions such as the centromeres. Next, 
we matched the sample and chromosomal distribution and the size of the constitutional 
breakpoint set. We used 10,000 permutated constitutional breakpoint datasets and 
calculated the overlap with cancer breakpoints based on an inter-breakpoint distance of 
2,000 bp. The empirical p-value was derived based on a comparison of the 10,000 random 
sets and the true constitutional breakpoint set. We chose 2,000 bp as the maximum distance 
between breakpoints because it provided us with sufficient breakpoints for subsequent 
feature overlaps while maintaining significance in overlap between cancer and constitutional 
breakpoints. To test the overlap with the cancer gene census (CGC) database genes we used 
the same 10,000 random breakpoint sets.

Determining the association of recurrent breakpoints with genomic features. We retrieved 
sets of genomic features from a variety of resources to determine overlap with recurrent 
breakpoints using permutation testing: CFS [54], aCFS [55], ERFS [43], DNase hypersensitive 
sites (UCSC), CpG islands (UCSC), G4 structures [56], SINE (UCSC), LINE (UCSC), LTR (UCSC), 
recombination hotspots [57], replication timing [58] and segmental duplications (UCSC). For 
ERFSs we used the UCSC LiftOver tool to convert mouse ERFS coordinates to hg19. Random 
control breakpoints were selected as described under the section “Analysis of the overlap 
between cancer and constitutional breakpoint sets”. Permutation testing was performed 
for the 61 recurrent breakpoints using 10,000 sets of matched random control breakpoints. 
Overlaps were determined using the intersect function of BEDTools [59] and counting 
the unique number of breakpoints overlapping a feature. P-values were determined and 
corrected for multiple testing using Bonferroni correction. The window sizes used for the 
feature overlap were determined based on the distribution of the control sets. For calculation 
of replication timing, we took the score closest to the breakpoint based on recently published 
replication timing data [58]. The significance of the enrichment of late replication timing for 
recurrent breakpoints was determined using a Kruskal-Wallis test and 1000 sets of matched 
control breakpoints. 
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Supplementary Information

Supplementary Table 1. Karyotype and phenotypic description of patients 
with chromosomal aberrations used for molecular phenotyping.

Patient Karyotype Phenotypic description

Patient 1 (chromothripsis 

signature)

46,XX,t(1;12;7)(p21;q14;p21).arr 

7p21.3p21.1(12,725,574- 15,056,327)x1 dn

Psychomotor retardation, facial 

dysmorphisms, doubling of thumb

Patient 1 mother 46,XX

Patient 1 father 46,XY

Patient 2 (tandem 

duplication)

46,XX.arr 19q13.4

1q13.42(58,878,634-59,294,958)x3 dn

Severe macrocephaly and 

psychomotor retardation

Patient 2 mother 46,XX

Patient 2 father 46,XY

Patient 2 sibling 46,XY
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Supplementary figure 1 - Result of molecular phenotyping of a patient with constitutional chromothripsis. (A) 
Schematic representation of breakpoints and derivative (der) chromosomes resulting from chromothripsis. The 
lines connecting the individual fragments indicate the junctions. The derivative chromosomes frequently involve 
inverted fragments (shown upside down). Four deleted fragments on chromosomes 3 and 7 are depicted below 
the derivative chromosomes. The black arrow at the breakpoint junction between chromosome 1 and 7 indicates 
the DPYD (chr1) - ETV1 (chr7) gene fusion. To allow comprehensive visualization, the fragments are not displayed to 
scale. (B) Bar plots showing the normalized gene expression levels for 4 genes that were located in deleted genome 
regions. Significant expression level changes (p < 0.0001) between the chromothripsis patient, the father and the 
mother are marked with an asterisk. (C) Ratio of the FOXP1 gene expression level difference between patient and 
both parents, across the breakpoint on chromosome 3. (D) Expression of the DPYD-ETV1 fusion in HEK293 cells. 
Immunostainings showing the expression and cellular localization of the DPYD-ETV1 fusion. Nuclear DNA (middle 
panel) is stained using DAPI. Both N- and C-terminal HA-tagged products show expression in a minority of the cells 
suggesting that only under specific conditions DPYD-ETV1 expression results in protein. (E) Formation of novel FOXP1 
fusion transcripts resulting from chromothripsis. RNA-seq and RT-PCR revealed the formation of two novel FOXP1 
fusion transcripts. The fusion transcripts were formed because of read-through transcription across a de novo 
breakpoint junction into a fragment of chromosome 7. (F) Western blot analysis showing bands corresponding to 
both FOXP1 products using antibodies against a N-terminal HA-tag. (G) Immunostainings showing the expression 
and cellular localization of both FOXP1 products. Nuclear DNA (middle panel) is stained using DAPI. Both N- and 
C-terminal HA-tagged products show identical localization and expression, indicative of a stable protein.
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Supplementary figure 2 - Expression of genes and microRNAs in a 424.5 kb de novo genomic duplication in the 
second patient used for molecular phenotyping. (A) Overview of duplication region. (B) Normalized expression 
levels for six genes positioned within the duplication (NLRP12, MYADM, VSTM1, TARM1, OSCAR and MIR371), one 
gene overlapping the 3’ breakpoint (NDUFA3) and three genes outside the duplication (TFPT, PRPF31 and CNOT3). 
Significant changes in gene expression are indicated by an asterisk (p < 0.0001). The x-axis shows normalized 
exonic read counts. (C) Genome-wide miRNA expression analysis in the patient with a chromosome 19 tandem 
duplication. miRNA expression is based on miRNA-Seq. Expression levels are normalized for the total amount of 
reads in microRNAs and represent log2 ratios of expression in the patient versus the average of the father, mother 
and healthy sibling. miRNAs (dark grey) are ordered by their genomic location. miRNAs residing in the C19MC 
cluster are indicated in red; miRNAs from the MIR371 gene that is expressed via its own promoter are shown in 
light blue. (D) Structure of miRNA duplexes injected in zebrafish embryos. The asterisk indicates as mismatch in the 
duplex. (E) Homology of miR-520b and miR-520c among C19MC miRNAs. (F) Similarity of miR-520b and miR-520c 
miRNA seed sequences with zebrafish miRNAs. Identical sequences are indicated with red square boxes.

Supplementary figure 2
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Supplementary figure 3 - Genomic feature overlap of recurrent breakpoints. (A) Histogram depicting the overlap 
of all 550 constitutional breakpoints with protein-coding genes. The red line shows the number of overlapping 
breakpoints, the bars show permutation testing results of 10,000 matched random control breakpoints. (B) Density 
plot showing the absolute distance between constitutional breakpoints and cancer breakpoints within 10 kb 
(black line). The area between de dotted red lines represents the mean distance between breakpoints +/- 1 
SD computed over 1000 simulation sets. This plot highlights a skewed distribution for constitutional breakpoints 
towards short inter-breakpoint distances (< 2 kb) as compared to the random breakpoint sets. (C) Histograms 
showing genomic feature overlaps of 10 features with the set of breakpoints recurrent within 2 kb (n = 61). The x-axis 
shows the number of breakpoints overlapping features and the y-axis shows the frequency of random breakpoint 
sets with X number of overlaps. Flanks were determined based on the minimum flank to create sufficient overlap 
for a normal distribution. The red arrow shows the actual number of recurrent breakpoints overlapping the 
genomic features. After Bonferroni correction, none of these features are significantly associated (p < 0.05) with 
the recurrent breakpoints.
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Abstract
The importance of the noncoding genome in gene expression regulation and disease has 
become pivotal over recent years, yet the mechanisms via which noncoding genomic 
variants contribute to phenotypic differences are poorly understood. Here, we systematically 
investigate the functional consequences of natural occurring noncoding variation on 
regulatory elements and chromatin organization in liver samples from ten inbred rat strains. 
We combine data on genome-wide nucleotide and structural variation (WGS), epigenetic 
marks for promoters and enhancers (ChIP-seq), transcription (RNA-seq) and genome-wide 
chromatin conformation (Hi-C) to dissect multiple levels of genome function and variation 
therein. 
We find that both single nucleotide variants and structural variants directly modulate the 
activity of regulatory elements such as enhancers, primarily by impairing transcription factor 
binding. Also, we find that structural variants that do not directly overlap regulatory elements 
or genes drive long-range gene expression and epigenetic changes by affecting the higher-
order chromatin organization. For example, deletions that target boundaries separating 
active from inactive chromatin domains drive the extension of these domains, which results 
in the activation or repression of enhancers and subsequent changes in gene expression. 
This study is the first showing the diversity and relevance of mechanisms by which noncoding 
genomic variants modulate genome function in vivo. While these finding re-emphasize 
the extraordinary complexity of genomic regulation, the identified principles are valuable 
for interpretation of whole genome sequencing data and the identification of pathogenic 
variation and molecular mechanisms driving disease. 

Introduction
Genetic studies aiming for the identification of causal disease variants typically prioritize 
single nucleotide variants (SNVs) in protein-coding genes, with high potential to affect gene 
function [1, 2]. However, of all disease-associated variants detected by human genome-wide 
association studies (GWAS), the vast majority (93%) resides in the noncoding genome [3-5]. 
This is not unexpected, because only ~2-3% of the human genome encodes protein [6, 7] 
and for an estimated 80% of the genome a regulatory function has been proposed [8, 9], 
suggesting a mechanistic link between the noncoding genome and disease risk [10]. 
Variants in noncoding genomic regions can contribute to disease formation by affecting 
regulatory elements. These regulatory elements, such as enhancers and promoters, are crucial 
for gene expression regulation and marked by epigenetic modifications. Trimethylation of 
the lysine 4 residue of histone H3 (H3K4me3) is generally associated with active promoters, 
indicative of start sites of actively transcribed genes [11]. Acetylation of the lysine 27 
residue of histone H3 (H3K27Ac) is associated with both distal and proximal active enhancer 
elements as well as active promoters, thus co-localizing with H3K4me3 at gene promoters 
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but not enhancers [12]. Regulatory element activity depends on the binding of transcription 
factors (TFs) [13], resulting in precise regulation of cell-type specific transcriptional networks. 
TFs bind both promoters and enhancers at proximal and distal sites and are involved in the 
physical interactions between these regulatory regions [14]. TFs can play general roles in 
transcription regulation of every gene, or be dedicated to tissue-specific genes. Examples of 
the latter are FOXA1, HNF4A and CEBPA, three factors that regulate the transcription of liver-
specific genes, but also depend on each other for chromatin binding [15]. 
In addition to these local modes of gene expression regulation, the genome is also organized 
in nuclear space. The nuclear 3D organization divides chromosomes into large independent 
units of transcriptional activity or inactivity and interactions between regulatory elements 
occur largely within these domains [16]. These so-called topological domains are separated 
by boundaries and disruption of these boundaries can result in long-range epigenetic 
misregulation [17]. Genome-wide adaptations of 3C-based chromatin conformation capture 
techniques (e.g. Hi-C [18] or ChIA-PET [19]) provide the means to study chromatin organization 
in great detail and determine the location of topological domains. However, these techniques 
have not been applied yet to catalogue the effects of natural genetic variation on chromatin 
organization in vivo.

Recently, a series of in vitro studies [20-23] revealed a direct effect of noncoding SNVs on 
histone modification and TF binding; two successive key events in the regulation of gene 
expression. These studies, as well as all genome-wide association studies, primarily focus on 
the effects of single nucleotide changes. SNVs are the most studied type of genomic variation 
because of their high detection efficiency and their mostly predictable effects, for example on 
coding genes [24, 25]. However, another category of genomic variation is structural genome 
variation. Even though structural variants are less frequent than SNVs, they affect many 
more bases per genome, for example via large genomic deletions or duplications [26]. A 
thorough evaluation of the effects of structural changes in the noncoding genome is required 
to improve our understanding of the functional consequences of all types of noncoding 
variation on genome function. 

Here, we study the effects of genomic variants on the chromatin state and nuclear organization 
of rat liver tissue from ten inbred strains, making use of their homozygous genomes to 
avoid allele-specific effects. Integration of structural and single nucleotide genomic variant 
information from whole genome sequencing, regulatory element profiling obtained by ChIP-
seq (enhancers, promoters) and genome-wide chromatin organization maps obtained by 
Hi-C allows us to dissect the effects of naturally occurring single nucleotide and structural 
variation on genome function in vivo. 
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Results 
In vivo characterization of the epigenetic regulatory landscape in 
ten rats

We used chromatin immunoprecipitation (ChIP) targeting the trimethylated lysine 4 residue 
of histone H3 (H3K4me3) and the acetylated lysine 27 residue of histone H3 (H3K27Ac) in 
liver tissue from ten rat strains (ACI/N, BN/SsN, BUF/N, F344/N, M520/N, MR/N, WN/N, 
WKY/N, BN-Lx/Cub and SHR/OlaIpcv) to gain insight in the in vivo distribution of regulatory 
elements (Fig. 1A). This resulted in the identification of 52,240 active enhancers and 14,511 
active promoters in all ten rats combined (Table 1). Publicly available rat liver ChIP data of 
liver-specific TFs (HNF4A, CEBPA and FOXA1) [15] were used to get a general impression of 
the binding of TFs to the identified enhancers and promoters. We determined the overlap of 
TF binding profiles with regulatory elements and find that the three liver-specific TFs show 
very frequent co-localization with active regulatory elements, with over 80% of all TF peaks 
overlapping an enhancer or promoter (Fig. 1B and 1C). These data indicate that the genome-
wide binding profiles of tissue-specific TFs are highly restricted to active regulatory elements. 
Also, approximately half of the liver TF-bound enhancers (n = 9,356) bind all three liver-
specific TFs, indicative of high co-localization between tissue-specific TFs (Supplementary fig. 
1). In total, the TFs bind 35.9% of all active enhancers and 47.9% of all active promoters. KEGG 
pathway analyses of genes associated with regulatory elements bound by the liver-specific 
TFs are enriched for pathways involving liver-specific processes such as drug metabolism (p = 
1.86*10-7), retinol metabolism (p = 3.42*10-6) and metabolism of xenobiotics by cytochrome 
P450 (p = 5.18*10-9). Genes associated with regulatory elements not bound by any of the 
liver-specific TFs showed enrichment for more general KEGG pathways such as WNT signaling 
(p = 1.75*10-4), cell cycle (p = 1.92*10-4) and ubiquitin mediated proteolysis (p = 5.93*10-4). 

Table 1. Epigenetic and genomic variation in ten rat strains

Strains Enhancers Promoters SNVs Deletions Duplications

ACI/N 15,926 10,024 2,514,743 569 115

BN/SsN 24,667 12,773 52,147 21 1

BN-Lx/Cub 22,989 10,981 91,139 9 24

BUF/N 23,270 12,001 2,312,032 485 113

F344/N 26,907 12,323 2,370,007 610 180

M520/N 19,065 11,779 2,365,896 521 187

MR/N 27,611 12,898 2,353,340 600 317

SHR/OlaIpcv 22,124 11,122 3,628,566 461 384

WKY/N 23,380 12,108 2,582,142 557 291

WN/N 21,616 12,477 2,367,931 551 108

Total unique 52,240 14,511 6,642,812 1,780 1,176
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This confirms that liver-specific TFs regulate gene expression of liver-specific genes. 
Taken together, we have identified ~15,000 promoters and ~52,000 enhancers that collectively 
hold the binding sites of 80% of three liver-specific TFs. Binding of these liver-specific TFs is 
correlated with liver gene function.

Figure 1 - Epigenetic characterization of liver tissue from ten rat strains. (A) Identification of active enhancers and 
promoters. Promoters show enrichment for H3K4me3 (grey) and H3K27Ac (blue) modifications, as defined by peak 
calling. Enhancers are solely marked by H3K27Ac and lack H3K4me3 enrichment. (B) Venn diagrams displaying the 
overlap of liver-specific transcription factor binding positions of FOXA1, HNF4A and CEBPA with active enhancers 
and promoters. (C) Examples of liver-specific TF binding localized to gene promoters and enhancers. (D) Bar plot 
showing the distribution of enhancers and promoters among the ten rat strains. (E) Boxplot showing the relative 
variance in H3K27Ac level in promoters and enhancers.
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Enhancers are highly diverse between strains

Next, we studied the amount of variation that is found between strains at the epigenetic 
level by determining the presence or absence of regulatory elements. We first examined 
in how many strains each regulatory element could be identified. The vast majority (~60%) 
of all promoters is present in all ten rat livers, ~35% is shared between 2-9 strains and only 
5% is strain specific. Enhancer elements appear more variable in presence between the 10 
strains. Only 16% is present in all 10 strains, 53% in 2-9 strains and 31% is strain specific 
(Fig. 1D). To substantiate this finding, we determined the relative variance in H3K27Ac level 
for both types of elements, between all ten strains. In agreement with the previous results 
(Fig. 1D) enhancers show significantly higher relative variance in H3K27Ac signal strength 
than promoters (p < 2.2e-16, Fig. 1E). Although methodological factors may influence our 
observations, these results undoubtedly show that promoters appear much less variable 
between the ten strains than enhancers. 

Genomic variation contributes directly to epigenetic diversity in vivo

We next asked what the contribution of genetic variability was on epigenetic diversity between 
the ten strains. Recently, we have sequenced the genomes of the 10 rat strains studied here, 
providing detailed information on all the detected strain-specific genetic variants and all the 
variation shared between multiple strains [27, 28]. To determine the genetic component 
underlying enhancer conservation and TF binding, we first determined the distribution of 
SNVs over the coding and noncoding genome regions of the ten rats (Table 1). For the SNVs 
of all ten genomes combined, we find densities of 2.8 SNVs/kb genome wide, 1.7 SNVs/kb in 
coding regions, 2.2 SNVs/kb in promoters and 2.6 SNVs/kb in active enhancers. Thus, active 
enhancers show a level of genetic variation that is intermediate between that found genome 
wide and in coding regions.

Next, we determined the segregation of SNVs with quantitative H3K27Ac level differences 
throughout the ten rat genomes to investigate a causal link between specific variants and 
the activity of the element. We defined the strain distribution pattern for each SNV that is 
located in an enhancer (n = 97,030) and selected the SNVs that were found in at least 3 strains 
(and no more than 7 strains) to allow statistical analyses. We then for each SNV compared 
the H3K27Ac levels of the enhancer in strains with the SNVs to the levels in strains without 
the variant using student’s t-test. We calculated the number of positive SNV-H3K27Ac level 
correlations with different p-value thresholds (Fig. 2A). To value each individual association, 
multiple testing would be required, but here we investigated the associations as a whole. 
To assess the significance of associations with small p-values, we repeated the analysis for a 
dataset in which we randomized the SNV distribution over the strains, for each SNV. We find 
a clear enrichment for the actual significant SNV distribution compared to random in silico 
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Figure 2 - Direct effects of genomic variation on epigenetic diversity. (A) Schematic representation of the analysis 
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and without the SNV were correlated and compared with a random strain distribution using Student’s t-test. (B) 
Bar plot showing the number of SNVs positively correlating with H3K27Ac levels at p-value cut-offs of 0.05, 0.01 
and 0.001, for both the in vivo and in silico results of the Student’s t-test. (C) Example of an SNV perturbing the 
HNF4A consensus DNA binding motif, likely driving the loss of H3K27Ac enrichment (blue) for 7 strains carrying the 
mutation. (D) Three examples of SNVs that co-segregate with H3K27Ac levels of enhancers without overlapping 
a liver-specific TF peak. (E+F) Density plots depicting the variance in H3K27Ac level across the ten strains for 
enhancers targeted by deletions (E) or duplications (F) (red lines). The green line shows the H3K27Ac level variance 
for deletions or duplications targeting a TF binding site within the enhancer.
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sampling, which increases with decreasing p-values (8,993 versus 4,566 with p < 0.05; 644 
versus 138 with p < 0.001) (Fig. 2B). The co-segregation of SNVs with enhancer levels can 
involve SNVs that overlap (and potentially disrupt or initiate) binding sites of the liver-specific 
TFs (n = 8,796), or not overlap with TF binding positions at all (n = 88,234). We find that SNVs 
that overlap one of the three tested TF binding sites show a slightly increased correlation 
with H3K27Ac levels compared to random sets, than enhancers that do not possess an SNV 
in a TF peak (Table 2). For example, we find examples of SNVs that change the consensus 
binding motif a TF, resulting in decreased H3K27Ac levels in the strains that carry the variant 
(Fig. 2C and Supplementary fig. 2). However, we also find many examples of SNVs that do not 
directly overlap with the binding sites of the three liver-specific TFs, but that do co-segregate 
with a change in H3K27Ac level of the enhancer (Fig. 2D). Possibly, these SNVs do affect TF 
binding of other factors that were not measured in this study, but do define the activity of the 
element. These results reconfirm the previous in vitro finding that SNVs can directly influence 
enhancer activity [20-23]. 

Next to the effects of single nucleotide changes, the much larger structural genomic variants 
are also likely to affect enhancer function. We previously determined CNVs for all ten strains 
investigated here using whole genome sequencing (WGS) read depth of coverage analysis 
(DOC) [27, 28]. With DOC, structural copy number changes (deletions and duplications) 

Table 2. SNV - H3K27Ac level correlation analysis with multiple p-value 

thresholds

p-value threshold Actual data
Randomized 
distribution

Fold-change (actual 
vs random)

  SNVs in enhancers

p < 0.05 8993 4566 1.97

p < 0.01 2809 929 3.02

p < 0.001 644 138 4.67

  SNVs in enhancers in a TF peak

p < 0.05 1067 437 2.44

p < 0.01 342 100 3.42

p < 0.001 77 12 6.42

  SNVs in enhancers not in a TF peak

p < 0.05 7926 4129 1.92

p < 0.01 2467 829 2.98

p < 0.001 567 126 4.50
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are detected based on quantitative differences in the number of WGS reads. In total, 1,780 
deletions and 1,176 duplications are present in one or more of the ten strains (Table 1). 
Because the identification of CNVs is less sensitive than the identification of SNVs, the 
false negative rate does not allow a similar association analysis as was performed for SNVs. 
Therefore, we took another approach to define the direct effects of CNVs on enhancer 
functionality. We analyzed the level of variation in H3K27Ac level among the strains for each 
enhancer, independent of the strain distribution. We find that 827 enhancers overlap 398 
CNVs (266 enhancers overlap 156 deletions and 561 enhancers overlap 242 duplications). 
The CNVs that overlap enhancers result in an increased variance in H3K27Ac level across the 
ten strains, and this effect is more profound for deletions than for duplications (mean of all 
is -1.38, of deletions -8.83 (t-test; p-value 2.2*10-16) and duplications -1.17 (t-test; p-value 
1.8*10-14)) (Fig. 2E and 2F). Similar to the analysis performed for single nucleotide variants, 
we also compared variance in H3K27Ac level for enhancers with CNVs that overlap TF binding 
sites, to enhancers with CNVs that do not target a TF binding site. For deletions that overlap 
enhancers and also TF sites, the change in H3K27Ac level is even more profound (mean -0.66, 
t-test; p-value 2.2*10-16)  (Fig. 2E and 2F). This shows that changes in TF binding due to CNVs 
affect the H3K27Ac state of the designated regulatory region more than for enhancers where 
TF binding is not affected. 

Combined, we provide insight in the contribution of natural occurring genomic variation to 
epigenetic diversity between ten rat strains in vivo. We find that not only SNVs, but also 
CNVs have a clear effect on the epigenetic differences between the strains, especially when 
they target TF binding sites. These data indicate that DNA sequence variants in regulatory 
elements are at least partially responsible for the observed epigenetic variation between 
inbred rat strains. However, it is difficult to assess the exact contribution of these genomic 
variants to the observed epigenetic variation and to determine what number of variable 
regulatory elements is not driven by a direct overlap with genomic variants. 

Hi-C reveals a high degree of 3D chromatin organization 
conservation in different genetic backgrounds

We next investigated how genetic and epigenetic variation is reflected in the higher order 
3D chromatin structure. To determine the contribution of chromatin organization to the 
differential distribution of regulatory elements between the studied rat strains, we performed 
Hi-C on liver tissue of two of the genetically most distinct rat strains, BN-Lx and SHR. BN-Lx 
and SHR are the founders of the HXB/BXH recombinant inbred panel and have been used 
for many genetic and eQTL studies [28-30]. The Hi-C experiments resulted in genome-wide 
information on chromatin conformation and interaction, showing many intra-chromosomal 
and few inter-chromosomal interactions (Fig. 3A). 
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Figure 3 - Hi-C results showing the similarities in higher order chromatin structure between BN-Lx and SHR. (A) 
An example of active and inactive transcriptional domains determined by principal component analysis of 
chromosome 9 (right; blue) and 10 (left; purple) in the BN-Lx rat. Below the domains, inter- and intra-chromosomal 
interactions are displayed as occurring more (red) or less frequent (blue) than expected using a 100kb background 
model. The zoomed panel displays active and inactive chromatin domains (purple track), H3K27Ac levels (blue 
track) and RNA-seq expression data (orange track) for a 30 Mb region of chromosome 10. (B) Density plot showing 
the size distribution of active chromatin domains in BN-Lx (blue line) and SHR (red line). (C) Plot showing ranked 
correlation scores for 52,000 50-kb bins derived from the two-sample Hi-C comparison between BN-Lx and SHR.
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Previous 4C and Hi-C studies have shown that the genome is spatially organized in active and 
inactive domains, and that these can be detected using principle component (PCA) analyses. 
We could identify 940 (BN-Lx) and 991 (SHR) active domains at a 50-kb resolution (Materials 
and methods). In total, the active domains make up 1,280 Mb of the BN-Lx genome and 
1,282 Mb of the SHR genome, both equaling approximately half of the rat genome. As 
expected the active domains contain the majority of active genes and enhancers (83% and 
80% respectively). Between both strains, we not only observe high overlap in the number of 
active domains (940 vs. 991) and the total genome that they cover (~50%), but also in the 
size distribution of the domains (median = 350 kb for both strains) (Fig. 3B). Nonetheless we 
do find differences between the strains. We find 93 active domains larger than 100kb that 
are unique to BN-Lx and 90 that are unique to SHR. Also, domains that are present in both 
strains can still be different in size. In total, we find 704 regions that are shared between BN-
Lx and SHR. When we analyze the 1,408 edges of these overlapping regions (start and end 
sites combined), we find that 44 and 39 edges have shifted in SHR and BN-Lx respectively, 
requiring a domain increase of at least 100 kb. 

In addition to separating the genome in domains, Hi-C profiles between two strains can be 
compared directly for local interactions per window of 50 kb. This results in correlation scores 
independent of the previous principle component analysis that separates active from inactive 
domains. Based on these correlations, we again find a high degree of similarity between both 
strains; 95% correlates with over 0.84, and only 3% drops below 0.80 (totaling 71.4 Mb with 
r ≤ 0.8 or 2.55 Mb with r ≤ 0.5) (Fig. 3C).
The high resemblance in 3D chromatin organization between the two strains is in line with 
high domain conservation found in other organisms and between species [31]. Nevertheless, 
not all regions correlate well and the genomic regions that do deviate could be related to 
epigenetic differences between BN-Lx and SHR. 

3D chromatin changes correspond with epigenetically differential 
regions

To investigate to what extent differences at the epigenetic level correlate with the 3D 
chromatin level, we first selected the most differential enhancers between BN-Lx and SHR 
and then investigated how these corresponded with differences at the 3D level. An enhancer 
was termed differential based on the H3K27Ac level variation between all ten rat strains (FDR 
< 0.05; log(average CPM) > 2), resulting in 208 enhancers that are differential between BN-Lx 
and SHR. 
For these 208 differential enhancers, we first determined how many can be directly connected 
to genomic variants. In total, the genomes of BN-Lx and SHR possess 116,996 SNVs and 130 
CNVs that overlap with an enhancer. Only 13 differential enhancers show direct overlap with 
deletions and 2 overlap with duplications. The effects of these CNVs on H3K27Ac levels are 
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Figure 4 - Differential chromatin domain organization results in differential enhancers between BN-Lx and SHR. (A) 
Bar plot showing the distance of all enhancers (blue bars) and the 208 differential enhancers (grey bars) to the 
nearest active TSS as determined by RNA-seq. (B) Example of differential enhancers that co-cluster in a chromatin 
domain that is differentially active between BN-Lx and SHR. The zoomed region shows 4 enhancers that are called 
differential between the two strains. Also, enhancers are visible that show quantitative differences but are not 
significantly differential between the two rats. (C) Bar plot with correlation scores between BN-Lx and SHR for the 
50 kb bins that contain differential (grey bars) or all enhancers (blue bars).
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clear, with decreasing H3K27Ac levels for deletions and increasing levels for duplications 
(Supplementary fig. 3). Furthermore, we find that 164 differential enhancers possess one or 
more SNVs. However, only 47 show a significant correlation between the SNV and H3K27Ac 
variation (p < 0.05), as tested in the SNV-H3K27Ac analysis performed on all ten rats (Fig. 2A 
and B). In total, we can thus associate 62 out of the 208 differential enhancers with genomic 
variants.

Strikingly, of all 208 differential enhancers, we find almost half (n = 97) back in inactive 
chromatin domains, whereas we find only one-fifth of the complete set of enhancers back in 
inactive domains. This suggests that differential enhancers are more often located in inactive 
domains. In line with this, we mostly find differential enhancers at sites distal from the 
nearest active gene promoter, residing in relatively gene-poor regions (Fig. 4A). The depletion 
of differential enhancers from gene-dense regions could reflect different selection pressure 
on regulatory elements in gene poor regions, resulting in an enrichment of differential 
enhancers. Interestingly, differential enhancers also frequently co-cluster in domains (Fig. 
4B). 42 out of the 111 differential enhancers in active domains (38%) map to only 18 out of 
the 941 active BN-Lx domains (2%). 

We next studied if the differential chromatin folding as determined by Hi-C could be connected 
to the presence of differential enhancers. By first focusing on the strain-specific domains, we 
find that four of the BN-Lx specific domains and three of the SHR-specific domains contain a 
differential enhancer. Next, we sought for differential enhancers at the previously determined 
shifted domain edges and find two examples (e.g. Supplementary fig. 4A), plus many more 
enhancers with quantitative differences that do not meet the threshold for being termed 
differential. 
Finally, we inspected the genomic regions that correlate the least between BN-Lx and SHR for 
differential enhancers. In general, we find that the genomic regions that possess differential 
enhancers have much lower correlation scores compared to the genome-wide distribution 
of all bins that possess enhancers (Fig. 4C). Many of those regions display a reversed domain 
activity (i.e. from active to inactive or vice versa) (Supplementary fig. 4B). In total, 24 out 
of the 208 differential enhancers are located in chromatin regions with correlation scores 
below 0.8, meaning that they are in the top 3% of most differentially interacting regions 
when comparing BN-Lx and SHR. The 2.55 megabases in the rat genome with a correlation 
below 0.5 consist of 35 of such regions, of which 2 contain multiple differential enhancers 
(e.g. Fig. 4B). On top of that, out of the 11 low-correlating regions that contain enhancers, 
4 possess enhancers that are at least two-fold different between BN-Lx and SHR but do not 
meet the threshold for being significantly differential (e.g. Fig. 4B). Low correlations indicate 
that chromatin interactions have changed in regions with differential enhancers, which can 
indeed be observed as differences in interaction profiles (Supplementary fig. 5). 
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Figure 5 - Extended domain activity and increased Pkhd1 expression due to a deletion in SHR. (A) Illustrative 
example of deletion in SHR overlapping what is domain boundary in BN-Lx, resulting in the extension of an active 
domain in SHR. In the differential part of this domain we observe a ~3-fold increase in the H3K27Ac level of three 
enhancers and a corresponding ~3-fold increase in expression of the nearby gene Pkhd1. (B) Zoomed display 
of the three elevated enhancers in SHR (blue) compared to BN-Lx. Fold-change is determined based on the 
normalized H3K27Ac read counts per enhancer. (C) Bar plot showing the gene expression levels of the Pkhd1 gene 
in all ten rat strains that do (n = 3) or do not carry the deletion (n = 7). Error bars represent the standard error of the 
mean.
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Combined, we find a strong correlation between chromatin domain organization and the 
distribution of regulatory elements, providing a connection to the differential enhancers. 
Domains with low correlation between BN-Lx and SHR possess many (frequently co-
localizing) differential enhancers indicating that chromatin organization is of major influence 
to regulatory element activity, as measured by H3K27Ac levels. 

Cause or effect: A genomic basis for differential chromatin 
organization

Finally, we determined the relationship between genomic variation and higher order 
chromatin structure. Effects of genomic variation on 3D folding could be established via 
altered enhancer or transcriptional activity, resulting in a different domain structure. 
However, genomic variants may also influence chromatin folding directly. For example, the 
disruption of domain boundaries can drive ectopic chromosomal contacts resulting in long-
range deregulation of gene expression [17]. The most likely candidate events to disrupt 
domains are genomic deletions of elements that define domain boundaries. 

To test the contribution of genomic variation to the 3D organization, we first determined the 
distribution of genomic variants from BN-Lx and SHR over the identified chromatin domains. 
For both SNVs and CNVs we find a varying distribution over active and inactive domains. In 
active domains, SNVs show densities of 0.88 SNVs/kb whereas this density is 1.20 SNVs/kb in 
inactive domains. We thus observe lower numbers of SNVs in inactive chromatin domains. 
The CNV distribution is even more shifted towards inactive domains. Of all 470 deletions, 
only 128 (27%) map to active domains and 342 (73%) map to inactive domains. For the 408 
duplications, these ratios are identical: only 109 duplications (27%) map to active domains 
and 299 duplications (73%) map to inactive domains. If we focus on the identified strain-
specific domains of at least 100 kb (93 for BN-Lx and 90 for SHR), we see that three of the SHR 
domains contain deletions but none contain genomic duplications. In BN-Lx, 2 strain-specific 
domains contain deletions and 4 possess duplications. Also, in the 35 regions that have low 
interaction correlations (r ≤ 0.5), six contain deletions and 3 contain duplications.

Of the 83 shifted domain ends previously identified between BN-Lx (n = 39) and SHR (n = 44), 
5 overlap a deletion and 3 overlap a duplication. If we zoom into these regions, we find active 
domains that are extended or restricted (Supplementary fig. 6). In one example, we see that 
the range of an active domain in SHR is extended by 450 kb, most likely as a result of a 
deletion (Fig. 5A). This extended active domain in SHR corresponds to an increase in H3K27Ac 
level of three enhancers present in the extended domain (Fig. 5B). Also, we observe higher 
expression of the Pkhd1 gene, which is the only expressed gene in the differential part of this 
domain. To define if this particular deletion, which is at a 155 kb distance of the gene, could 
be causal for the increased expression of Pkhd1 in the SHR strain, we determined the strain 
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distribution of the deletion and the expression of Pkhd1 in all ten rats initially examined in 
this study. This shows that every strain that caries the deletion allele, also displays increased 
expression of Pkhd1 (Fig. 5C). This makes it very likely that the deletion is indirectly causal for 
the increased expression of Pkhd1.
These results suggest that natural occurring structural variations can indeed influence 
higher order chromatin domain organization by disturbing chromatin domain boundaries. In 
addition to previously described effects of CNVs and SNVs on that directly overlap regulatory 
elements, we now also show that CNVs that do not directly overlap regulatory elements can 
modulate gene expression regulation. 

Discussion
In this study we analyze the epigenetic diversity between ten rat strains and search for the 
basis of this diversity in the genetic background and the 3D chromatin organization. Using 
ChIP sequencing, we profile enhancer and promoter elements and study the conservation of 
enhancers and promoters across the ten strains. We find that levels of enhancers are more 
variable than promoters and show that the genetic background contributes to differences 
in enhancer activity as determined by quantitative differences in H3K27Ac levels. We find 
enrichment for SNVs that associate with differential H3K27 acetylation, but also clearly 
demonstrate the poorly studied effects of CNVs on enhancers. Transcription factor binding 
of the liver-specific transcription factors FOXA1, CEBPA and HNF4A occurs mainly at the 
identified elements and genomic variants that target these binding positions affect enhancers 
more heavily than variants that do not overlap TF binding sites.

Next, we employed Hi-C on the BN-Lx and SHR strains to define the effect of chromatin 
organization on epigenetic differences such as the presence or absence of enhancers. In 
agreement with previous reports [31], we generally find high conservation in 3D organization. 
We observe only few regional differences in chromatin domains, but these regions do appear 
to be related to the differential enhancers. More often than expected, these enhancers are 
located in single domains that are frequently different in activity between BN-Lx and SHR. 
Interestingly, the Hi-C data also allows us to test the effect of noncoding genomic variation 
on chromatin domain organization. In particular, we observe that CNVs, which are generally 
depleted from active domains, can affect domain boundaries resulting in the extension or 
reduction of domain activity. For example, extended domains can alter enhancer activity 
and gene expression, as is the case for the Pkhd1 gene and three enhancers in an extended 
domain present in SHR but not BN-Lx (Figure 5).

From the many GWAS efforts published to date, we know that the majority of disease-linked 
alleles map to the noncoding genome [3-5], and our data provide insight in the potential 
mechanisms that noncoding variants can use to contribute to common disease. We not only 
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find SNVs and CNVs to directly influence regulatory element activity (e.g. enhancer gains 
or losses), but we also find variants that likely display long-range deregulating effects by 
changing the 3D chromatin morphology. This indicates that genomic variants in the noncoding 
genome can indirectly contribute to molecular phenotypic changes by affecting chromatin 
architecture. Such genomic variants are frequently being overlooked in studies aiming to find 
the basis of disease, because they do not directly overlap protein-coding genes making it 
difficult to assess the consequences.

Conclusions
The findings in this paper highlight the diversity of mechanisms that noncoding single 
nucleotide and structural genomic variants use to affect genome function in vivo. Using 
an integrative approach with information from epigenetic profiling and whole genome 
sequencing, we assess the molecular effects of these variants on multiple levels of regulation 
and illustrate how noncoding variants could contribute to complex disease. Our results 
provide insight in the complexity of the noncoding genome and the widespread phenotypic 
consequences of structural and single nucleotide variation. 

Materials and methods
Liver tissue collection. We obtained snap frozen liver tissues of 6 weeks old animals from 
10 rat strains. Liver tissues from six out of ten strains was kindly provided to us by: dr. James 
D. Shull (University of Wisconsin, Madison): ACI/SegHsd; dr. Myrna Mandel (NIH - Office of 
Research Services): M520/N, MR/N and WN/N and dr. Michal Pravenec (Charles University, 
Prague): BN-Lx/Cub and SHR/OlaIpcv. Tissues from F344/NHsd, WKY/NHsd, BN/SsNOlaHsd 
and BUF/SimRijHsd were purchased from Harlan Laboratories. If tissue material from the 
original founder animals was no longer available, we chose the most closely related substrain 
based on similarity in genome sequence.

Preparation of cross-linked cell nuclei for ChIP and Hi-C. ~40 mg  snap frozen and 
powdered rat liver tissue was resuspended in 2 mL cold PBS-10% FCS and dissociated using 
a 40 µm Nylon Cell Strainer (BD Biosciences). The cell suspension was cross-linked with 2% 
formaldehyde in a total volume 10 mL PBS/10%FCS for 10 minutes rotating at RT (20°C). 
0.125 M glycine was added to quench the reaction and cells were stored on ice. Following 
the cross-linking procedure, samples were centrifuged for 8 minutes at 400 g (4°C). Pelleted 
cells were washed with 1 mL cold PBS and centrifuged at 400 g, 4°C for 5 minutes again. 
After removal of the supernatant, the cell pellet was dissolved in 1mL freshly prepared lysis 
buffer to recover cross-linked nuclei (50 mM Tris pH 7.5, 150 mM NaCl, 5 mM EDTA, 0.5% NP-
40, 1% Triton X-100 and 1x cOmplete, EDTA-free Protease Inhibitor Cocktail (#11873580001, 
Roche Applied Sciences, Indianapolis, IN, USA). Cells were lysed for an initial 10 minutes on 
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ice and cell lysis was determined to be complete using Methyl Green - Pyronin staining. After 
completion of lysis, nuclei were washed twice in cold PBS. 

Chromatin Immunoprecipitation, library preparation and sequencing. Cross-linked 
nuclei were dissolved in 100μL lysis buffer (MAGnify system, InvitrogenTM) with 1x protease 
inhibitors (MAGnify system, InvitrogenTM) and sheared in microtubes (AFA Fiber Pre-Slit Snap-
Cap 6x16mm, 520045) using the Covaris S2 sonicator (6 cycles of 60 seconds; duty cycle: 
20%, intensity: 3, cycles per burst: 200, frequency sweeping). Soluble chromatin equivalent 
to ±20 mg input liver tissue, in a size range of 150 - 300 bp, was used for immunoprecipitation 
(IP). H3K4me3 and H3K27Ac IPs were carried out using the MAGnify system (InvitrogenTM, 
49-2024) following manufacturers instructions (Invitrogen manual A11261). Per IP, 1 μg 
of antibody was used (H3K4me3: Millipore, 07-473 LOT# JBC1863338 - H3K27Ac: Abcam, 
ab4729 LOT# 1415784).
For library preparation, chromatin immunoprecipitated DNA was sheared to ± 100 bp in size 
using Covaris S2 (microtubes, 6 cycles of 60 seconds with duty cycle: 10%, intensity: 5, cycles/
burst: 100, frequency sweeping). SOLiD 5500XL Wildfire fragment library preparation was 
done according to manufacturer’s instructions. Libraries were sequenced on SOLiD 5500XL 
Wildfire resulting in 40-bp reads. 

Calling enhancer and promoter regions. Sequencing reads were mapped using Burrows-
Wheeler Aligner (BWA-0.5.8c) (settings: –c –l 25 –k 2 –n 10) [32]. This resulted in 67-71 
million mapped read per sample for the H3K27Ac ChIP and 14-21 million mapped reads per 
H3K4me3 ChIP. Peak calling was done using MACS [33] (version 1.4, settings: -g 2718897334 
-B -S --to-small -p 1e-10 bandwidth=300 model=TRUE shiftsize=100), using chromatin input 
DNA as control.
Called peaks for H3K4me3 and H3K27Ac were first processed separately. Peak regions of all 
strains were merged using the mergeBed command from the BEDtools suite [34], resulting 
in one peak set per histone mark. Overlap between H3K27Ac and H3K4me3 peaks was 
determined and H3K27Ac peaks that did not overlap an H3K4me3 peak were assigned as 
enhancers, those that did overlap an H3K4me3 peak were assigned as promoters. Strain 
specificity for each enhancer and promoter was determined by checking which strain 
possessed an H3K27Ac or H3K4me3 peak overlapping an element in the final merged set. 
H3K27Ac levels were determined by counting the number of sequencing reads per strain that 
overlapped the enhancers and promoters in the final set, using the coverageBed command 
of the BEDtools suite [34]. Read counts were normalized to the total number of reads that 
mapped to enhancers or promoters (see expression analyses). Enhancer and promoter 
regions were normalized separately.

SNV calling. To make a comprehensive comparison between the rat strains we applied 



159

7

multi-sample SNVs calling using GATK [35]. SNVs were determined using raw data first 
described in [27, 28]. Nine of the ten strains (ACI/N, BN/SsN, BUF/N, F344/N, M520/N, MR/N, 
WN/N, WKY/N and BN-Lx/Cub) were sequenced on SOLiD™ 5500, and they were analyzed 
simultaneously, using multi-sample SNV calling by the haplotype caller in GATK. The LE rat 
strain was included to determine specificity, and SNP array data was used to determine 
sensitivity, as described previously [27]. Based on BAC sequences available for the LE strain, 
SNV calls are 99% specific. Based on SNP-array data, SNVs are 99.5% sensitive. 
SHR/OlaIpcv could not be included in the multi-sample calling, because this is the only 
strain sequenced on the Illumina platform. SNVs in SHR/OlaIpcv were called using GATK 
UnifiedGenotyper. Based on SNP-array data SNVs were filtered for being 99% sensitive. This 
is slightly less than the other nine strains, because we cannot take advantage of multi-sample 
calling here to make the calls more sensitive. SNVs for all ten strains were then merged into 
one VCF file.

Association of H3K27Ac levels with SNVs and CNVs. The association analysis was performed 
using SNVs that had a homozygous SNV or a reference call from the GATK SNV analysis (either 
a ‘0/0’ or ‘1/1’ in the SNV list), for each of the strains. SNVs that were noisy in at least one 
of the strains (a ‘0/1’ or ‘.’ in the SNV list produced with GATK) were removed from the set. 
Only SNVs that were present in at least three and at most seven strains were analyzed, 
because these separate the ten strains in two groups of at least three strains, such that a 
student’s t-test could be performed. The final set used for all SNV-related analyses in this 
study consisted of 2,084,592 SNVs. Student’s t-tests were performed using the t.test function 
in R; two-sided testing.
Intersections between CNVs and enhancers were determined using the intersectBed 
command form the BEDtools suite [34]. 

Hi-C: massive parallel sequencing of proximity-based ligation products. Isolated and 
cross-linked liver nuclei of three BN-Lx and SHR animals were digested with the DpnII 
restriction enzyme (#R0543, NEB, Ipswich, MA, USA). Subsequently, proximity ligation of 
interacting fragments was performed using T4 DNA ligase (#10799009001, Roche Applied 
Sciences) to produce 3C template according to Simonis et al [36]. After reverse cross-linking 
and precipitation, 10 µg template was sheared in microtubes (AFA Fiber Pre-Slit Snap-Cap 
6x16mm, 520045) using the Covaris S2 sonicator (1 cycle of 25 seconds; duty cycle: 5%, 
intensity: 3, cycles per burst: 200, frequency sweeping). Fragments between 500-1500bp 
were selected using a 2% agarose gel. 1.1 µg of size-selected fragments was used as input for 
the TruSeq DNA Low Sample (LS) protocol (Illumina). Constructed libraries were size-selected 
using a LabChip XT DNA 750 Assay Kit (Caliper), resulting in libraries between 800-950 bp. 
These libraries were sequenced in a paired-end manner on the Illumina HiSeq 2500, resulting 
in 2x100-bp reads. Sequenced read pairs were mapped using Burrows-Wheeler Aligner 
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(BWA-0.5.8c) (settings: –c –l 25 –k 2 –n 10) [32], yielding 70 million (M) mapped reads per 
animal (totaling 210 M mapped reads per strain).

Exploring 3D chromatin organization in two rat strains using Hi-C. Hi-C data were analyzed 
using Homer [37]. Sequenced read-paired were filtered to have minimum distance of 1.5 kb 
to omit self-ligated fragments. Full filter settings using Homer makeTagdirectory are: -update 
-removePEbg -fragLength 1500 -removeSpikes 10000 5. This resulted in 60 M usable read 
pairs per strain. PCA analyses and correlation differences between the strains were calculated 
using window-sizes of 100 kb, with a step size of 50 kb (a 100kb super-resolution and a 50 kb 
resolution in Homer). Background models were generated to normalize the data, using the 
same window sizes.  

RNA library preparation, sequencing and analysis. ~40 mg of the same snap frozen and 
powdered liver tissue was used for total RNA isolation from purified nuclei using the TRIzol® 
reagent (#15596-026, Invitrogen, Life Technologies). RNA-seq libraries were prepared from 
rRNA-depleted RNA (Ribo-Zero™ Magnetic Gold Kit for Human/Mouse/Rat (MRZG12324, 
Epicentre®, Madison, WI, USA)) using the SOLiD™ Total RNA-seq kit (#4445374, Life 
Technologies). All libraries were sequenced on the SOLiD™ 5500 Wildfire system (40 bp 
fragment reads). RNA-seq reads were mapped using Burrows-Wheeler Aligner (BWA-0.5.9) 
(settings: -c -l 25 -k 2 -n 10) onto the rat reference genome RGSC3.4. Only uniquely mapped, 
non-duplicate reads were considered for further analyses. Reads that mapped to exons 
were used to determine the total read counts per gene. Exon positions were based on the 
Ensembl 56 annotation. Read counts per gene (K) for each sample (X) were normalized to the 
dataset with the lowest number of reads (sample Y), in the following manner: normalized_
read_counts_geneK_sampleX=int(read_counts_geneK_sampleX*(total_number_of_reads_
mapped_to_exons_in_sampleY/total_number_of_reads_mapped_to_exons_in_sampleX)).
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Supplementary figure 1

Supplementary figure 1 - Three-way Venn diagram showing the overlap of liver TF-bound enhancers. Approximately 
half of the liver TF-bound enhancers (n = 9,356) bind HNF4A (blue), FOXA1 (red) and CEBPA (green).
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Supplementary figure 2 - SNVs affect H3K27Ac levels of enhancers by disrupting TF binding sites. Example of an SNV 
on chromosome 6 which perturbs consensus binding motif for HNF4A, resulting in decreased H3K27Ac levels (blue).
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Supplementary figure 3 - Structural genomic variants modulate enhancers in BN-Lx and SHR rats. (A) Boxplot 
with H3K27Ac levels of enhancers overlapping a deletion or duplication in BN-Lx or SHR. Differential enhancers 
overlapping deletions or duplications are highlighted in dark red (deletions) and dark blue (duplications). The 
mean log2(SHR/BN-Lx) of H3K27Ac is -0.007 when all enhancers are taken into account. This decreases to -2.25 in 
enhancers with a deletion in SHR (t-test, p-value<2.8 *10e-7) and increases to 0.56 in enhancers with a duplication in 
SHR (t-test, p-value < 7.5*10e-5). (B) Example of a duplication in SHR overlapping a differential enhancer containing 
a CEPBA and HNF4A binding site. (C) Two examples of deletions in SHR that overlap a differential enhancer that is 
bound by FOXA1.
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Supplementary figure 4
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Supplementary figure 4 - Differential chromatin organization result in differential enhancers. (A+B) Two examples of 
differential enhancers located in differentially organized chromatin domains between BN-Lx (dark grey) and SHR 
(blue). The zoomed regions highlight the differential enhancer in both strains.
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Supplementary figure 5 - A differential enhancer in an extended SHR domain on chromosome 15 creates novel cis-
interactions captured by Hi-C. Hi-C derived interaction plots for SHR (top) and BN-Lx (bottom) at 20 kb resolution. 
The higher intensity (darker red) in the interaction map represents an increase in interactions, which is most 
apparent within the rectangle near the newly gained enhancer (marked by an asterisk).
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Supplementary figure 6 - Deletions and duplications that overlap domain boundaries appear to affect the 
higher order chromatin organization. (A) Example of a region with multiple deletions that appear to change 
the chromatin domain landscape. The deletion positioned most to the left overlaps a domain boundary in the 
SHR strain and appears to alter it. Two other SHR deletions in the region appear to have less effect, although the 
middle one also resides in a domain that is opposite between the strains. The general correlation between the 
two Hi-C experiments is depicted on top (dark blue bars), showing interaction correlations that decrease to 0.30. 
(B) Identical to (A), but this time showing duplications in SHR (blue), of which one appears to initiate an inactive 
domain in what is active chromatin in BN-Lx. This results in reduced enhancer activity in SHR (lower H3K27Ac levels), 
highlighted in the zoomed panel on the right. Again, the independent correlation scores are displayed on top 
(dark blue bars), showing correlation drops to almost 0 at the position of the duplication.
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Interpreting genomes 
Personalized genomics and medicine, the thousand-dollar genome and population scale 
genomics are all goals introduced nearly a decade ago that now are or will soon become 
reality. Technological improvements in mainly the DNA sequencing industry have resulted 
in a dramatic increase in sequencing throughput and possibilities, together with a steep 
decrease in costs and man-hours required to produce enormous amounts of sequencing 
data. Together with these almost unlimited sequencing possibilities also came along the 
challenges of large-scale data interpretation and integration. With most technological hurdles 
overcome, reliable interpretation of sequencing information remains challenging and one 
can wonder if we are currently sufficiently capable of correctly interpreting genomics data 
and are really ready for responsible use of such information for personalized genomics. Of 
the challenges that remain in the genomics field, most can be placed in one of the following 
categories: (i) high quality data generation / technological issues, (ii) data interpretation (iii) 
(multidisciplinary) data integration and (iv) determining genotype-phenotype relations. In 
this thesis, I have countered several of those challenges and I will further elaborate on them 
in this summarizing discussion. 

Technological challenges in genomics approaches
For whole genome DNA sequencing and interpretation, it is crucial to obtain equal sequencing 
read coverage throughout the genome. Especially for reliable quantitative interpretation of 
DNA to localize genomic variants, a DNA sequencer needs to read a genome equally well 
at every genomic location. In Chapter 2 of this thesis, I describe variation in genome-wide 
coverage between the different tissues of a single individual, which could be interpreted 
as tissue-specific somatic copy number variation (CNV). However, we find that the source 
material for these analyses systematically affects the genome-wide coverage. By varying 
the proteinase treatment conditions prior to DNA extraction, we discovered that genome 
coverage patterns could be tweaked, suggesting that chromatin state influences DNA isolation 
efficiency and thereby contributes to the false discovery of CNVs. 

Technically, there are several possibilities that can explain why reduced protein removal can 
affect the evenness in coverage of DNA sequencing reads. For example, phase-separation 
techniques (e.g. phenol-chloroform extraction) can influence the recovery of DNA because 
they require DNA to move to the aqueous phase while proteins end up in a separate 
fraction. Tightly associated DNA-protein complexes could be depleted from the aqueous 
phase and therefore no longer be available for subsequent DNA extraction. An alternative 
option is that DNA-protein complexes are still present in the isolated DNA sample, but are 
simply not ‘available’ for subsequent applications such as library preparation for sequencing. 
Interestingly, we find that if we re-treat poorly isolated DNA with proteinase K, we achieve 
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much higher evenness of coverage. This indicates that inaccessible DNA can be made 
accessible by additional (more thorough) removal of protein. In unpublished results, we also 
observe that the measured DNA yield varies between poorly isolated and re-isolated DNA 
(after additional proteinase K treatment). By splitting the initially isolated sample exactly in 
two halves, we find that the sample that was treated with proteinase twice showed a two-
fold increase in DNA, measured by multiple independent techniques (Nanodrop and Qubit). 
Hypothetically, the DNA content of a sample containing poorly isolated DNA could thus be 
rescued or at least improved by additional treatment with proteinase K. 

Our findings show that despite the impressive technological progress in DNA sequencing over 
recent years, biases introduced during the initial (basic) steps of each DNA-related experiment 
should not be overlooked. With increased resolution and sensitivity of DNA sequencing, each 
bias that is introduced in early steps of a protocol is amplified. Especially for clinical and 
diagnostic purposes, this could have major implications. Patient material is scarce and DNA is 
mostly obtained from single tissues (e.g. blood). When DNA obtained from different sources 
(biopsies, buccal swabs, etc) needs to be compared, for example in a diseased versus healthy 
tissue comparison, isolation effects need to be taken into account. Especially if the genomics 
analysis focuses on heterogeneous tissue samples such as cancer biopsies, false-positive CNV 
calls can arise and hamper the identification of true driver variants (e.g. if gains or losses of 
oncogenes/tumor suppressors). To date, several studies have described differences in DNA 
content between tissues such as in Chapter 2 as somatic mosaicism and proclaimed the 
extensiveness of this variation [1-5]. However, in line with our work others have shown an 
effect of local protein-DNA interactions on the efficiency of DNA isolation, such as in the 
architecture of promoters [6, 7]. Somatic copy number changes were also described to 
indeed exist in healthy cells, albeit on a much smaller scale [8, 9].

Over recent years, most clinical and research environments have developed, optimized and 
standardized in-house DNA isolation and sequencing protocols. Variation in the efficiency of 
these protocols becomes evident in consortium efforts, where sequencing data from multiple 
centers is combined and compared. For example, when DNA isolations are carried out by 
the individual centers, but library preparation and sequencing are done at one sequencing 
company, variation in the evenness of coverage that can be linked to different DNA-providing 
centers becomes apparent (unpublished data, Figure 1). These results do not imply that data 
with a less than optimal genome-wide coverage cannot be used, but they do nicely illustrate 
how a procedure as straightforward as the isolation of DNA can have serious impact on DNA 
sequencing data. If for example the copy number states in DNA samples from multiple centers 
need to be compared, this bias should be taken into account and corrected for. 
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Genomic variation and predicting phenotypic 
consequences
Chapter 2 provides insight in the interpretation of genomics data and more specifically the 
detection of genomic variation. However, once such variants have been reliably identified, 
determining their phenotypic (molecular) effects and potential link to disease forms a 
whole new challenge. These effects can be diverse, ranging from single nucleotide changes 
that affect the function of protein-coding genes to large structural variants that remodel 
megabases of DNA. In Chapter 6, we study non-recurrent structural genomic rearrangements 
in patients with complex congenital disease. For these patients, it is challenging to provide 
a correct diagnosis, because the effects of non-recurrent genomic variants on genome 
function and development are unclear and differ per patient. We show that, by applying 
multiple molecular (sequencing) analyses on blood of these patients, we can study the 
consequences of these variants. We find that transcription is deregulated across many of 
the genomic breakpoint junctions, resulting in for example fusion genes and deregulated 
expression of genes. Genomic rearrangements thus not only disrupt functional alleles, but 
also drive the ectopic activation of the fusion gene partner, which is often undesired and 
damaging. Interestingly, we find that certain germline rearrangements that drive congenital 
disease show remarkable resemblance to rearrangements that drive cancer. The molecular 
consequences of these rearrangements reflect the cancer situation as well. For example, we 
detect gene fusions in congenital disease patients that involve genes that are also recurrently 
rearranged in multiple tumor types. Also, we find that a miRNA cluster with known oncogenic 
properties becomes ectopically expressed in a second patient, although this cluster is normally 
only active in human trophoblast cells or cancer. Functional follow up studies in zebrafish 

Figure 1 - Evenness of genome-wide coverage differs between bio banks that use different isolation methods. The 
x-axis shows the normalized numbers of reads (RPKM) calculated per 10 kb of sequenceable genome (meaning 
that parts that cannot be covered are filtered out), the y-axis shows the genome-wide number of 10-kb bins with x 
RPKM. The sharper the distribution, the more even the genome-wide coverage is. DNA samples of each bio bank 
were sequenced at the same sequencing center, leaving the isolation of DNA as the only variable responsible for 
the observed differences.
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revealed that overexpression of some of these oncogenic microRNAs can indeed result in 
brain morphogenesis defects in zebrafish. We find a possible explanation for the overlap in 
breakpoints in the fact that the recurrent breaks are specifically localized to late-replicating 
regions. Although late replication is a known characteristic of common fragile sites, we do not 
observe enrichment for known common fragile sites. 

Our findings could imply that congenital disease patients that show genomic rearrangement 
overlap with cancer are more susceptible to develop (pediatric) cancer. However, the two 
patients with germline rearrangements that we analyzed at the molecular level did not 
develop cancer at age 25 (chromothripsis patient with ETV1 fusion) and age 8 (patient 
with tandem duplication that activate C19MC). This could depend on the gene promoters 
that activate these genes (DPYD and NDUFA3) and their tissue and developmental stage-
specific gene expression profiles. Also, cancer development likely relies on other (additional) 
mutations, and the mutations found in these patients would be oncogenic in a different 
genetic context and/or may not be the primary oncogenic driver. 

In Chapter 6, we show that integrating molecular profiling techniques (a so-called “multi-
omics” approach), including RNA-seq, small RNA-seq and ChIP-seq, with genomic information 
obtained by DNA sequencing improves our understanding of the mechanisms by which 
rearrangements drive disease. Nevertheless, for most variants, especially the ones that 
do not directly affect genes, the effects remain mostly unclear. In Chapter 7, we apply a 
systematic integrative approach to evaluate the diversity of phenotypic consequences driven 
by naturally occurring genomic variants. We again use multiple NGS applications such as 
RNA-seq, ChIP-seq and Hi-C (chromatin structure and organization) to study the phenotypic 
consequences of genomic variants on these regulatory layers. We do not only focus on 
single nucleotide variation (SNVs), but also on structural genome variation (SV). The effects 
of structural variants, such as large deletions or duplications, are less well understood than 
those of SNVs. In this chapter we show that especially in noncoding genome regions, effects 
can be diverse and hard to predict. We find that genomic variants not only affect regulatory 
elements via direct overlap, but may also modify the higher order chromatin organization, 
thereby exhibiting a long-range effect on gene expression regulation. For example, we find a 
deletion over 150 kb away from the Pkhd1 gene, that increases the expression of this gene 
by deleting the boundary of a chromatin domain, thereby extending its activity. This chapter 
illustrates that heritable genomic variation, which is present in every genome, affects genome 
function at multiple levels. Many of those levels are currently not being considered while 
studying the genetic basis of disease, where mostly only SNVs that perturb coding regions are 
subjected to follow-up studies. 

Complex diseases are common in the human population, are polygenic and multifactorial. This 
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means that genetic predisposition for these diseases exists, but there is not one genetic factor 
that is fully responsible for disease development. In contrast to most de novo (e.g. germline) 
genomic variants such as discussed in Chapter 6, heritable variants are likely to have more 
subtle effects. Individually, each variant may not be capable of triggering disease, but when 
present in the right combinations they might be causal or predispose to common disease. Our 
work demonstrates that it will be important to take into account the combinatorial effects 
of noncoding SNVs and SVs along with protein-coding DNA polymorphisms for dissection of 
causal variation contributing to complex disease, e.g. as identified in large-cohort genome-
wide association studies (GWAS).

Integrating genomics approaches to study complex 
disease
To better understand the genetic component in complex disease, genetically homozygous 
animal models for disease provide a good alternative to the outbred heterozygous human 
genome. To define the genetic basis of disease, not only the genomes but also the 
transcriptional and translational output of cells should be considered. Although techniques 
that can measure differences in RNA and protein have been around for a while, integration of 
these different layers of data is challenging. In Chapter 4, we describe a proof-of-concept multi-
omics approach for the integration of genomics, transcriptomics and (mass spectrometry-
based) proteomics data. We show that when executed correctly multidisciplinary genomics 
approaches provide better insight in gene expression regulation and disease mechanisms. For 
example, one of the disease models that we study, the SHR rat strain, is a frequently studied 
model for hypertension. We find several genes deregulated in SHR that were previously 
identified as important candidates for human hypertension. Among the deregulated genes 
is Cyp17a1, a top hit from a previous genome-wide association study (GWAS) and a gene 
known to lead to congenital adrenal hyperplasia and early-onset hypertension when mutated 
[10, 11]. Using ChIP sequencing, we find that the promoter of Cyp17a1 is much less active in 
SHR than in BN-Lx due to a noncoding promoter mutation that disrupts a transcription factor 
binding site, likely being responsible for the low mRNA and protein levels that we observe in 
SHR. The functional involvement of Cyp17a1 needs further studying, preferably not only in 
liver but also in rat kidney (and development), because the kidney is the only tissue in human 
that expresses Cyp17a1. Using the recently developed targeted genome editing technologies 
(e.g. CRISPR/Cas9 or TALENs [12, 13]), rescue experiments could be carried out to restore 
the expression levels of Cyp17a1, which might reduce the chance for these rats to develop 
hypertension. 

The results described in Chapter 4 not only provide a proteogenomics proof-of-concept 
approach, revealing the effects of genetic variation at multiple levels, but also reveals that 
damaging mutations are not necessarily located within the coding regions of genes. In the 
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case of Cyp17a1, we find a promoter variant that deregulates the expression of the gene and 
not a nonsynonymous mutation that damages the protein product. Especially in the context 
of common complex diseases, such as heart failure, diabetes or hypertension, combinatorial 
effects of widespread and frequently occurring genomic variants in noncoding regulatory 
elements could predispose to disease. An integrative approach as presented here, including 
molecular techniques like ChIP-seq, whole genome sequencing, RNA sequencing and mass-
spectrometry, can help in pinpointing causal noncoding variants that are now frequently 
being overlooked. 

Transcription in the noncoding genome
As becomes clear from the chapters discussed above, many genomic variants map to the 
noncoding genome, like the promoter variant in Cyp17a1 and the deletion that deregulates 
the expression of Pkhd1. However, the noncoding genome not only has the regulatory function 
discussed above, but also encodes genes that are transcribed but do not code for proteins. 
These noncoding RNAs are an abundant class of RNAs but for most their function remains 
unclear [14]. Because noncoding RNAs do not produce protein, their function is most likely 
linked to the secondary structure of the RNA molecule. For example, noncoding RNAs form 
the RNA component of large RNA-protein complexes (ribonucleoproteins) such as ribosomes 
and the signal recognition particle (SRP). Although the above-mentioned ribonucleoproteins 
function in the cytosol, for long noncoding RNAs (lncRNAs) in particular mostly nuclear roles 
have been described. Precise mechanisms of action are often uncertain, but many have been 
implicated to be vital for nuclear structure and function [14-16]. Recently, lncRNAs were 
surprisingly shown to associate with ribosomes using ribosome profiling [17], an unexpected 
finding since lncRNAs are not translated into peptides [18]. In Chapter 5, we further explore 
the biology behind lncRNA binding to ribosomes. We do that by applying RNA sequencing to 
subcellular fractions including polysomal fractionated RNA and isolated nuclei. The advantage 
of this approach is that we are able to sequence complete RNA transcripts and not only the 
fragments protected by ribosomes, which is the case for the earlier studies that showed 
ribosome association of lncRNAs [17-19]. With polysome fractionation we can thus physically 
distinguish transcripts that are bound by single ribosomes from transcripts that associate 
with 2, 3, 4 or even up to 7 ribosomes. We use this information to study the subcellular 
behavior of noncoding transcripts compared to protein-coding transcripts and show that the 
(size) distribution of lncRNAs across all measured cellular compartments is very diverse and 
highly similar in complexity to that of protein-coding transcripts. This suggests that lncRNAs 
actually behave very similar to mRNAs, which is unexpected when these lncRNAs are mainly 
involved in nuclear functions. Interestingly, we not only confirm ribosomal association and 
show extensive polysomal binding, we actually find preferential localization of the majority 
of highly expressed lncRNAs to ribosomes and the cytosol, and not to the nucleus as was 
previously estimated [20]. 
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So what are lncRNAs doing at (poly-)ribosomes? Theoretically, ribosome association could 
be the result of random background binding that occurs by chance to each RNA molecule 
in the vicinity of a ribosome. Also, the possibility that lncRNAs bind ribosomes as part of 
an mRNA degradation pathway, triggered by the lack of a functional open reading frame 
(e.g. nonsense-mediated decay (NMD)), cannot be excluded. However, the enrichment and 
diversity of lncRNA binding to ribosomes that we describe in Chapter 5 would be unexpected 
in the case of background binding or a decay mechanism. Such mechanisms would imply that 
the majority of ribosomes would be occupied by energy consuming mechanisms that are 
not functional or could have been dealt with otherwise (e.g. reducing transcription). A decay 
mechanism, such as NMD, is also not expected since we find multiple (up to 7) ribosomes 
associated, whereas NMD is believed to be triggered after one initial round of translation. 
Two possible other explanations for the observed association are that (i) lncRNAs are 
translated into small (potentially noncoding) peptides, such as discussed previously [17, 18, 
21] or (ii) lncRNAs have regulatory roles during translation that they exhibit at ribosomal sites. 
For some lncRNAs, functional roles at ribosomal sites have been proposed. For example, high 
levels of the snoRNA host gene transcript GAS5 have been described to trigger degradation 
by ribosome binding after snoRNAs are processed out [22] and in mouse the noncoding 
antisense transcript of Uchl1 binds its sense counterpart to regulate the association with 
polysomes [23]. In our data, we could not find widespread evidence for such functions. For 
example, most sense-antisense pairs did not co-localize in the same ribosomal configurations 
and NMD is unlikely because most lncRNAs are polysomal (3-4 ribosomes). Because polysomal 
fractionation and ribosome profiling are gradient-based approaches, we cannot be absolutely 
certain that the lncRNA are situated in the ribosomal binding pocket. Therefore, it could be 
possible that lncRNAs reside in ribonucleoproteins that stably associate with polysomes 
during gradient centrifugation. This seems unlikely, because no such ribonucleoproteins 
are known and this association has to be extremely stable to achieve such high levels of 
transcripts. Also, ribosomal profiling has previously shown footprints of binding that are highly 
reminiscent of ribosomal sites (protecting 28/29 nucleotides). A ribosome-independent 
complex that binds lncRNAs and moves through the gradient in a similar fashion as mono or 
polyribosomal complexes also seems unlikely, because such large ribonucleoproteins have 
not been discovered and would be hard to miss. Also, for specific enrichment of lncRNAs in 
one of the fractions, this would require a wide variety of these complexes, in different sizes.

Another possibility is that lncRNAs bind ribosomes independent of ribonucleoproteins 
and function as scaffolds that keep ribosomes intact but poised until translation of mRNA 
molecules is needed again, for example in situations when the degradation and re-assembly 
ribosomes would consume too much energy or a quick switch in protein expression is required. 
A function as a ribosome scaffold seems to be a likely possibility and would also explain why 
we observe a similar length-dependency for the number of ribosomes that lncRNAs can bind. 
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Also, the structure of the lncRNA would be the most important property to function as a 
scaffold, which would explain the relatively low sequence conservation of most lncRNAs [14]. 

Hypothetically, individual lncRNAs could be responsible of regulating translation of single 
mRNAs or groups of lncRNAs, for example multiple mRNAs involved in a single biological 
process. The translational regulation of a process could be why many lncRNAs have been 
implicated in contributing to diseases such as cancer, though exact disease-linked mechanisms 
are largely unclear [14, 24-26]. Also, it would be interesting to target lncRNAs via knockouts, 
modify the subcellular localization of lncRNAs or target their secondary structure formation, 
to study effects on the translational landscape, for example via a proteomics approach. 

The findings we describe in Chapter 5 again highlight the complexity of the noncoding 
genome, and show that lncRNAs are likely to possess more widespread roles in biological 
processes than currently anticipated. The extra-nuclear localization suggests that lncRNAs 
primarily function outside the nucleus and the association with ribosomes suggests a role 
in the regulation of translation. Although our work does not elaborate on further cytosolic 
functions of lncRNAs, we do show that most lncRNAs have unique subcellular distributions, 
which makes their functions likely to be diverse. 

Future applications of systematic “omics” approaches
The field of genomics has experienced a major boost over the last decade. New technologies 
have emerged, that have shed light on the complexity and diversity of our genomes and the 
somatic or germline genetic component of many diseases. 
Despite these technological improvements and the knowledge gained, many challenges in 
the generation, interpretation and integration of genomics data have arisen and need to 
be addressed. So could the combinatorial use of omics technologies, such as described in 
this thesis, add to better patient diagnosis and improved personalized genomics in the near 
future? I would argue that assessing multiple levels of data will always provide more detail 
than a single layer of data and that eventually systematic omics analyses will be a quick and 
cost-efficient method for everyday patient diagnosis. More information results in less room 
for interpretation and more accurate diagnosis, something that is almost impossible based 
on a single layer of (genomic) information. Logically, multi-level omics integration needs 
further streamlining at both the experimental and the computational side. This not only 
requires that (clinical) labs should be capable of generating different types of data, but also 
that specific software should be made accessible for correct integration and interpretation 
of the data. Although implementing these techniques will take time, I believe that it will 
only be a matter of years before whole genome, proteome, transcriptome and epigenome 
analyses are carried out side-by-side for detailed patient diagnosis. In the near future, the 
knowledge gained from these integrated personalized approaches might allow more accurate 
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prediction of (late-onset) diseases based on genetic material. Until then, the genome and all 
its regulatory facets need to be explored in more detail and all the various mechanisms via 
which genomic variants can trigger disease should be carefully assessed. 
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Nederlandse samenvatting 

DNA... hoe zat dat ook alweer?

Ons lichaam bestaat uit miljarden cellen die vrijwel allemaal twee kopieën DNA in zich 
dragen. Dit DNA is bij elkaar ongeveer twee meter lang en bevat 6.4 miljard individuele 
bouwstenen (nucleotiden), waarvan 50% afkomstig is van je vader en 50% van je moeder. 
Tezamen noemen wij dit DNA het “genoom”, wat alle informatie bevat die nodig is om een 
bevruchte eicel uit te laten groeien tot een volwassen mens. 
Voor alle processen die plaatsvinden in ons lichaam tijdens deze ontwikkeling maar ook 
daarna zijn eiwitten nodig. De informatie om eiwit te kunnen maken zit opgeslagen in het 
DNA in de vorm van genen, waarvan het genoom er in totaal ongeveer 20.000 bevat. Genen 
zijn kleine stukjes van het DNA die kunnen worden afgelezen tot een boodschapper molecuul 
genaamd mRNA, wat op zijn beurt weer vertaald wordt tot eiwit. Eiwitten zorgen ervoor dat 
een grote variëteit aan processen kan plaatsvinden, zoals bijvoorbeeld het aflezen van DNA, 
het delen van cellen, het verteren van voedsel of de afbraak van schadelijke stoffen in de 
lever. Het is van groot belang dat eiwitten hun werk goed kunnen doen, anders kan dit leiden 
tot ziekten. Veranderingen (mutaties) in de DNA volgorde van een gen kunnen zorgen voor 
beschadigde eiwitten die hun werk niet meer kunnen doen, of niet meer op de juiste manier. 
Eiwitten zijn dus ontzettend belangrijk, echter, de totale hoeveelheid DNA die codeert voor 
eiwit beslaat slechts 2% van ons complete genoom (vier centimeter van de twee meter aan 
DNA die in iedere cel aanwezig is). Hoewel men inmiddels weet dat de overige 98% ook van 
belang is voor een goed functionerende cel, is nog veel onduidelijk over de gevolgen van DNA 
mutaties die niet in genen liggen maar in dit zogenaamde “niet-coderende genoom”. 

De laatste jaren zijn verschillende technieken om DNA en RNA af te lezen (“sequencen”) 
sterk verbeterd. Daardoor is het nu mogelijk veranderingen in het DNA op te sporen én te 
onderzoeken wat de effecten van deze veranderingen zijn op RNA en de eiwitten die daarvan 
gemaakt worden. In dit proefschrift staan het niet-coderende genoom en verschillende 
sequencing technieken centraal. Ik beschrijf verbeteringen in deze technieken, maar ook 
manieren waarop meerdere typen informatie met elkaar verweven kunnen worden om beter 
zicht te krijgen op processen die leiden tot ziekten. In hoofdstuk 1 introduceer ik de huidige 
stand van zaken in de genoom biologie. In deze introductie komen verschillende sequencing 
technieken aan de orde, evenals de reeds bekende functies van het niet-coderende genoom 
en andere onderwerpen besproken in hoofdstukken 2-7. 

Het isoleren van DNA kan onverwachte consequenties hebben

Hoofdstuk 2 gaat in op de ongewenste effecten van niet-optimaal geïsoleerd DNA op DNA 
sequencing en de daaropvolgende data-interpretatie. In dit hoofdstuk laten we zien dat een 
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van de meest basale stappen die nodig is voor DNA sequencing, namelijk het isoleren van 
DNA, veel nadelige gevolgen kan hebben in de praktijk. 
Omdat iedere celkern twee meter aan DNA bevat, wordt DNA erg compact opgevouwen aan 
de hand van eiwitcomplexen. Tijdens de isolatie van DNA uit cellen of weefsels wordt dit eiwit 
van het DNA gescheiden zodat je idealiter zuiver DNA overhoudt. Gebeurt dit niet efficiënt 
genoeg, met als gevolg dat bepaalde stukken DNA gebonden blijven door eiwit, dan heeft 
dat als gevolg dat de gedeeltes die gebonden blijven door eiwit niet goed afgelezen kunnen 
worden door een DNA sequencer. Zo ontstaat variatie tussen gebieden in je DNA, waarbij 
bepaalde stukken veel minder goed afgelezen worden dan anderen. Kwantitatieve DNA 
informatie (hoe vaak kan ik een bepaald stuk DNA aflezen?) wordt gebruikt om gedupliceerde 
of verloren gegane stukken DNA op te sporen. Het opsporen van zogenaamde DNA deleties 
of duplicaties is een routine in de diagnostiek, omdat bekend is dat sommigen van dit soort 
deleties en duplicaties kunnen bijdragen aan de ontwikkeling van ziekten. De kwantitatieve 
interpretatie van DNA sequencing data helpt dus bij het stellen van de juist patiënt diagnose. 
We beschrijven dat suboptimale DNA isolatie als gevolg kan hebben dat een geneticus 
denkt dat bepaalde delen DNA gedupliceerd zijn of verloren zijn gegaan, terwijl dit niet het 
geval is. We laten vervolgens zien dat verschillende DNA isolatie condities de kwantitatieve 
interpretatie van het DNA kunnen verslechteren of verbeteren. Hoe beter de isolatie, hoe 
minder valse ontdekkingen van deleties of duplicaties. 

De grote DNA puzzel: hoe lossen we hem op?

In hoofdstuk 3 beschrijven we een verbeterde methode voor het bepalen van langeafstand 
informatie in het DNA, het zogenaamde “mate-pair sequencing”. Standaard DNA sequencing 
technieken bepalen de volgorde van een klein stukje DNA dat maximaal een paar honderd 
bouwstenen groot is. Ons DNA bevat echter veel stukken die we heel moeilijk kunnen aflezen 
omdat ze erg veel op elkaar lijken. Los van elkaar hebben we eigenlijk te maken met een 
ontzettend ingewikkelde puzzel van duizenden stukjes DNA waarvan we niet weten hoe ze 
met elkaar verbonden zijn. Deze stukken moeten in de juiste volgorde komen te liggen, en om 
deze volgorde te bepalen is het erg belangrijk dat we langeafstand informatie verzamelen. 
Deze informatie kan als het ware bruggen slaan tussen de opeenvolgende puzzelstukjes. Op 
die manier koppelen we de juiste stukjes DNA aan elkaar en weten we bijvoorbeeld precies 
welk stuk DNA in welk chromosoom thuis hoort. 
Door middel van mate-pair sequencing kan een DNA sequencing apparaat informatie leveren 
voor dit soort bruggen. Dat doet het door beide uiteindes van een circulair DNA fragment 
lezen, terwijl deze normaal gezien een paar duizend DNA nucleotiden (bouwstenen) uit 
elkaar liggen. Helaas bevat ons genoom veel moeilijk af te lezen gebieden die zo lang zijn dat 
ze met de huidige mate-pair techniek niet aan elkaar gekoppeld kunnen worden.  
De verbetering van de “mate-pair sequencing” techniek die we beschrijven in hoofdstuk 
3 vergroot de grootte van bruggen tussen puzzelstukjes van de huidige standaard (2,000 - 
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3,000 nucleotiden) tot een afstand van wel 25,000 nucleotiden. We laten zien dat we door 
het toevoegen van deze extra lange bruggen het genoom van de rat veel completer kunnen 
maken dan het was. Veel meer puzzelstukjes krijgen we op de juiste plaats, omdat de meeste 
moeilijk af te lezen gebieden kleiner zijn dan 25,000 nucleotiden (meestal ~6,000). Deze 
techniekverbetering heeft bijgedragen aan de opbouw van de meest recente versie van het 
referentie genoom van de rat (RNOR versie 5.0), welke gebruikt wordt als gouden standaard 
voor al het DNA, RNA en eiwit onderzoek dat op dit moment gedaan wordt in de rat. 

Hoe verbinden we DNA, RNA en eiwit informatie met elkaar?

Er bestaan verschillende methodes om de status en activiteit te meten van een bepaalde cel 
of weefsel. Men kan bijvoorbeeld meten welke genen afgelezen worden en hoe frequent ze 
afgelezen worden via het sequencen van RNA. Door middel van eiwit sequencing kan bepaald 
worden welke RNA moleculen vertaald zijn tot eiwit en hoeveel eiwit in totaal aangemaakt is. 
Veranderingen in het DNA die mogelijk leiden tot ziekte kunnen effect hebben op het RNA en 
daarvan gemaakt eiwit. Om te bepalen hoe veranderingen in het DNA of RNA effect hebben 
op de aanwezigheid en kwantiteit van eiwit, is het belangrijk om van ieder niveau (DNA, 
RNA, eiwit) informatie te verzamelen en met elkaar te integreren. In hoofdstuk 4 beschrijven 
we een nieuwe methode om deze verschillende datatypen te integreren. Op die manier 
vergelijken we twee soorten ratten, die model staan voor veel voorkomende menselijke 
aandoeningen zoals stofwisselingsziekten en een (te) hoge bloeddruk. 

We lossen met deze aanpak twee problemen op. Ten eerste gebruiken we de DNA volgorde 
van iedere rat, inclusief alle variatie die daarin zit, om eiwitten beter te kunnen identificeren. 
Hiertoe gebruiken we ook informatie van variatie op het RNA niveau. Het identificeren van 
eiwitten gebeurde altijd met een standaard database, die geen gebruik maakt van dit soort 
sample-specifieke informatie uit zowel DNA als RNA. Ten tweede interpreteren we de RNA 
data ook op een kwantitatieve manier, zodat we een betere schatting kunnen maken van 
de hoeveelheid eiwit die van dit RNA gemaakt wordt. We gebruiken hiervoor data van een 
dusdanig hoge kwaliteit dat we heel precies de vergelijking tussen RNA en eiwit kunnen 
maken. Door beide ratten die we onderzocht hebben op deze manier te vergelijken, vinden 
we opzienbarende verschillen. Eén gen, genaamd Cyp17a1, komt zowel op RNA als eiwit 
niveau veel minder vaak voor in de rat die last heeft van een te hoge bloeddruk. In studies 
in de mens werd dit gen al eerder in verband gebracht met het hebben van een te hoge 
bloeddruk, maar een directe oorzaak werd nooit aangetoond. Door de DNA variatie hier weer 
bij te betrekken konden we bepalen dat een specifieke verandering net buiten het gen, in 
een stukje DNA met een regulerende rol, verantwoordelijk is voor het verschil tussen beide 
ratten. Dit laat zien dat in mensen met een hoge bloeddruk, ook in dit soort regulerende 
stukjes DNA gezocht moet worden naar de genetische basis van een aandoening. 
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RNA moleculen die niet voor eiwit coderen zitten toch in eiwit 
fabriekjes

De hier geïdentificeerde verandering zat dus niet in het gen zelf, maar op een plek die 
gebonden wordt door eiwitten om zo het aflezen van Cyp17a1 te kunnen reguleren. Het 
niet-coderende genoom zit vol met dit soort plekken, die tezamen zorgen voor dynamiek 
in genexpressie per cel en weefseltype. Naast deze regulerende stukjes DNA bevat het ook 
stukken DNA die wel degelijk afgelezen worden en RNA produceren, maar niet coderen voor 
eiwit. Dit zijn dus wel degelijk genen, maar ze verschillen van genen die coderen voor eiwit. 
De RNA moleculen die van deze genen gemaakt worden noemt men niet-coderende RNAs. 
Niet-coderende RNAs bestaan in alle soorten en maten, variërend van microRNAs (miRNAs; 
slechts 22 nucleotiden lang) tot lange niet-coderende RNAs (long noncoding RNAs; lncRNAs 
- tot wel duizenden nucleotiden lang). Van deze laatste soort is niet veel bekend, behalve 
dat ze ontzettend belangrijk voor het functioneren van een cel. Zo bestaan voorbeelden van 
lncRNAs die kanker of aangeboren afwijkingen kunnen veroorzaken. Ondanks het gebrek aan 
een eiwit-coderende functie, werd recent beschreven dat lncRNAs verrassend genoeg binden 
aan ribosomen, de eiwit fabriekjes van iedere cel. Dit is natuurlijk onverwacht, aangezien 
geen eiwit gemaakt kan worden van lncRNAs. In hoofdstuk 5 gaan we verder in op de biologie 
van lncRNA binding aan ribosomen. Zo was nog niet duidelijk hoe frequent lncRNAs aan 
ribosomen binden en hoeveel ribosomen überhaupt per lncRNA kunnen binden. Een normaal 
verschijnsel voor eiwit-coderende RNAs is namelijk dat meerdere ribosomen tegelijkertijd 
aan een RNA molecuul kunnen gaan zitten om zo nog efficiënter eiwitten te kunnen 
produceren. Wij beschrijven in dit hoofdstuk dat de manier waarop lncRNAs aan ribosomen 
binden erg veel lijkt op hoe eiwit-coderende RNAs dit doen. Ook vinden we dat verschillende 
aantallen ribosomen tegelijkertijd gebonden kunnen zijn en dat iedere lncRNA een specifieke 
voorkeur heeft voor een bepaald aantal ribosomen. In tegenstelling tot eerdere bevindingen, 
observeerden we ook dat de meerderheid van de lncRNAs liever aan ribosomen bindt dan vrij 
in de celkern te blijven, wat de plek is waar ze geproduceerd worden. Onze bevindingen laten 
zien dat lncRNAs waarschijnlijk veel meer functies hebben dan tot op heden werd gedacht, 
waaronder wellicht een regulerende rol die zij uitvoeren door te binden aan ribosomen.

Verbeterde patiënt diagnose door gecombineerd gebruik van 
meerdere sequencing technieken

In hoofdstuk 6 brengen we de allernieuwste sequencing technieken wat dichter naar 
de patiënt. Hierbij focussen we specifiek op patiënten met zeer complexe aangeboren 
afwijkingen, vaak in combinatie met een ernstige intellectuele achterstand. Deze patiënten 
zijn niet te plaatsen binnen een bepaald syndroom omdat de genetische veranderingen die 
aan de basis liggen van de afwijkingen uniek zijn en niet vaker voorkomen. Voor artsen is 
het erg moeilijk diagnoses te stellen bij dit soort patiënten. Een ontbrekende diagnose heeft 
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weer tot gevolg dat geen duidelijkheid gecreëerd kan worden richting de (gezonde) ouders 
van de patiënt, wat er in resulteert dat zij nooit precies zullen weten wat hun kind mankeert. 
In dit hoofdstuk laten we zien dat we door een combinatie van (moleculaire) analyses die we 
toepassen op niet alleen de patiënt, maar ook beide gezonde ouders, we veel beter kunnen 
voorspellen welke DNA veranderingen hebben bijgedragen aan de ziekte van de patiënt. Veel 
van deze effecten zijn niet of nauwelijks te voorspellen op basis van DNA informatie alleen 
maar worden pas echt zichtbaar als we naar RNA en eiwit kijken. 
Zo vonden we dat veel structurele DNA veranderingen in patiënten met aangeboren 
afwijkingen overeenkomen met veranderingen die we vinden in kankercellen. Ook de 
effecten van de veranderingen, zoals het ontstaan van nieuwe RNA moleculen of het hoger 
aanzetten van bepaalde genen, kwamen overeen met wat we vaker zien in kankercellen. 
Vervolgens laten we zien dat bepaalde posities in ons DNA inderdaad vaker betrokken zijn 
bij veranderingen in zowel kankercellen als in patiënten met aangeboren afwijkingen. Deze 
resultaten laten zien dat de situatie en omgeving waarin DNA veranderingen plaatsvinden 
bepalend zijn voor het type ziekte dat veroorzaakt wordt. In samenloop met bijvoorbeeld 
andere kankerverwekkende mutaties, zorgen deze veranderingen misschien wel voor kanker, 
terwijl dat in onze bestudeerde patiënten gelukkig (nog) niet het geval is. 

Niet-coderende DNA mutaties beïnvloeden de functie van het 
genoom op meerdere manieren

Het laatst hoofdstuk in dit proefschrift, hoofdstuk 7, beschrijft onderzoek naar DNA 
verschillen in het niet-coderende deel van ons DNA. Ook kijken we naar de uitwerking van 
deze verschillen op de organisatie van DNA in de celkern. Zoals ik hierboven al beschreef, 
wordt DNA erg compact gemaakt om in een celkern te passen. Echter, niet ieder deel is even 
compact en sommige toegankelijke delen DNA komen met elkaar in aanraking om zo de 
efficiëntie waarmee genen worden afgelezen te reguleren. Deze regio’s, die we regulerende 
elementen noemen, binden allerlei eiwitten die betrokken zijn bij het aflezen van genen en de 
productie van RNA. Het DNA wordt gevormd in een specifieke “3D structuur” om interacties 
tussen regulerende stukjes DNA toe te staan of juist te voorkomen. In deze studie gebruiken 
we tien verschillende ratten stammen die allemaal kleine genetische verschillen hebben ten 
opzichte van elkaar. We gebruiken deze DNA verschillen om te kijken hoe ze van invloed zijn 
op regulerende processen en het aflezen van genen. Door met zeer nieuwe technieken te 
kijken naar zowel de positie van regulerende elementen als de 3D organisatie van het DNA, 
zien we precies in welke gebieden DNA verschillen invloed hebben op DNA organisatie of 
interacties van regulerende elementen. 
In dit hoofdstuk geven we een goed overzicht van allerlei mogelijke verschillende effecten 
van DNA veranderingen, zowel direct (bijvoorbeeld het verlies van een DNA regio die een 
gen reguleert) als indirect (bijvoorbeeld verlies van een regio die belangrijk is voor DNA 
organisatie, en daardoor meerdere genen of regulerende elementen beïnvloedt). Het was 
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nog onduidelijk hoe de meeste DNA veranderingen in het niet-coderende genoom van 
invloed kunnen zijn op het aflezen van genen. Wij laten hier zien dat er veel diversiteit bestaat 
in de verschillende manieren waarop veranderingen effect hebben, en dat vooral de indirecte 
effecten op de 3D organisatie van het DNA hierbij niet over het hoofd gezien moeten worden. 

Hoofdstuk 8 vat vervolgens de bevindingen uit dit proefschrift samen in een algemene 
discussie en gaat verder in op de potentiele impact van de gepresenteerde resultaten.
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Dankwoord

U heeft het gehaald -  het dankwoord. 

Na vier jaar promotieonderzoek is dan eindelijk mijn proefschrift af. Misschien is dit het 
eerste proefschrift dat u voor u hebt, misschien het tiende, misschien het honderdste. De 
afgelopen vier jaar heb ik verschillende proefschriften de revue zien passeren, de een nog 
indrukwekkender dan de ander. Regelmatig dacht ik: “Waar begin ik aan?! Hoe krijg ik dat 
boekje vol?!”

Vier jaar werken, boekje. Het lijkt bijna een vanzelfsprekendheid. Dat is het zeker niet!
Maar het is gelukt en het bewijs ligt voor u. 

Ik ben niet alleen blij dat het er op zit, maar ook dankbaar voor iedereen die geholpen heeft 
bij de totstandkoming van dit proefschrift. Dankbaar voor de mensen die er voor gezorgd 
hebben dat de afgelopen vier jaar voorbij schoten; ik heb een geweldige tijd gehad op het 
Hubrecht. Iedere dag ging ik met plezier naar werk, of naar een congres ergens ter wereld, 
een borrel, feest, bbq, labstapdag, concert, (kerst)diner, nieuwjaarsuitje, Cuppen groep 
retraite, CGDB/CSnD retraite, PhD Masterclass, Olympos, floorball toernooi, Kafé Els, etc etc. 

Dit alles was natuurlijk niet mogelijk geweest als ik niet aangenomen was door Edwin. Edwin, 
bedankt voor je begeleiding van de afgelopen jaren (en ook al gedurende mijn stage). Ik ben 
je dankbaar dat je me de kans hebt gegeven promotie onderzoek te doen in de Cuppen groep. 
Ik vond het ontzettend fijn om voor je te mogen werken, je bent altijd bereikbaar en reageert 
meteen wanneer je hulp nodig is. Input en correcties op manuscripten kreeg ik vrijwel altijd 
binnen een paar dagen (soms zelfs dezelfde dag nog!), ik heb inmiddels geleerd dat dat niet 
overal vanzelfsprekend is. Ook tijdens de wat lastigere fases van de projecten wist jij de paper 
de juiste richting te geven en er “doorheen te slepen”. Met twee onderzoeksgroepen op twee 
locaties, plus een hoop nevenfuncties en een gezin, heb ik veel bewondering voor de manier 
waarop je de Cuppen groepen en al je AIOs leiding geeft! 

Verder gaat misschien wel mijn meeste waardering uit naar Marieke, Victor en Wigard. 
Victor, I know your Dutch is fine so here it goes: Met jullie, als senior postdocs/beginnend 
groepsleiders, heb ik op dagelijkse basis het meest samengewerkt. Op vijf van de zes 
wetenschappelijke hoofdstukken in mijn proefschrift staan jullie als senior author genoteerd 
en dat is niet voor niks. Jullie waren er voor de dagelijkse begeleiding en ik vond het erg 
prettig om veel met jullie te kunnen overleggen en samen te werken. Ik weet dat ik soms 
wat ongeduldig kan zijn en echt kan zeuren om dingen gedaan te krijgen (right, Victor?), 



maar ik hoop dat jullie ook trots zijn op het werk dat we samen gepubliceerd hebben of snel 
gaan publiceren! Heel veel succes met jullie toekomstige carrières in de wetenschap en (een 
beetje) daarbuiten. Bedankt voor alles!

Dan de Cuppen groep: legendarisch binnen het Hubrecht en ver buiten de Utrechtse 
stadsgrenzen. Na ieder internationaal congresbezoek ook berucht “op locatie”, dankzij de 
borrels, het nacht/ochtend zwemmen in hotels (of daarbuiten), het whisky drinken, maar 
vooral ook het maken van sfeer waar we/jullie ook komen. De beste borrels organiseren (met 
of zonder steeldrum en cocktailbar) en standaard als eerste aanwezig op borrels van andere 
groepen; klasse! 

En aan wie heeft de Cuppen groep die reputatie te danken? Om te beginnen aan de vaste garde 
aan analisten/labmanagers/bioinformatici; Pim, Ewart de 1e, Sander, Mark V, Nico, Esther, 
recentelijk Lisanne en voorheen Henk, Maarten, Wensi, Frans Paul en Wim. Ontzettend 
bedankt voor de hulp in het lab, met de computer, maar ook daarbuiten. Jullie bijdrage aan 
mijn papers was cruciaal, ik hoop dat jullie dat beseffen! Dank! Ook de legendarische avonden 
bij de Rex (indien open) zal ik nooit vergeten. Vooral de dinsdag middag/avonden aan de bar 
met Ewart waren top!  Wensi, a special thanks to you for directly working for me for about a 
year! I hope you enjoy your new job and still get as wasted as only you can get. 

Ruben, Ewart de 2e en Joep, ook jullie bedankt voor de gezelligheid (ook in Duitsland.. eh. 
Nijmegen) en de interessante discussies en input voor mijn projecten. Alle drie getrouwd, 
kinderen en iedere dag een hele reis maken om op het Hubrecht te komen. Respect! Vooral 
met drie of vier van die bengels (Ruben, Ewart).... maar misschien (waarschijnlijk?) komt het 
voor Joep ook ooit zo ver. Bedankt ook voor jullie enthousiasme over niet-wetenschappelijke 
dingen, en dan met name over boeken, films en vooral muziek! Ewart, de concerten die we 
bezocht hebben waren super en de muzikale tips die je me gegeven hebt goud waard! Vooral 
Chk Chk Chk (!!!) staat iedere zonnige dag met vol volume op! En Hausmagger mogen we ook 
niet vergeten natuurlijk. Ruben, laat je kinderen nog lang dansen op Tool!

Paranimf en collega-AIO Roel Hermsen... Oh nee Schelland. We zijn ongeveer tegelijkertijd 
begonnen en hebben dus een vergelijkbare vier jaar achter de rug. Uitgezonderd van je 
huwelijk met Merel en de geboorte van Tom, en je verhuizing niet te vergeten, dat doe je er 
nog allemaal naast. Onze tripjes naar Tutzing, Stresa, Stockholm, New York en Malaga (die 
laatste komt nog op moment van schrijven) waren allemaal legendarisch, en dan met name 
‘s nachts. We kenden elkaar niet voordat we bij de Cuppen groep gingen werken en zijn qua 
persoonlijkheid misschien verschillend, maar toch klopte het wel tussen ons. We hadden 
ieder onze eigen projecten, en gelukkig nog een mooie samenwerking aan het einde waarvan 
ik hoop dat hij goed gepubliceerd gaat worden! Ik ben je nog eeuwig dankbaar voor het feit 
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dat je onze appartement sleutel in New York op wonderbaarlijke wijze terug gevonden hebt... 
Hoewel, je was hem natuurlijk ook zelf kwijtgeraakt. Heel veel succes met de afronding van 
je PhD en je verdere carrière. Welke keuze je ook gaat maken, het zal vast de juiste blijken te 
zijn!

Huidige AIOs Myrthe en Francis, allebei bezig aan een goede start van je promotie traject. 
Roel en ik kunnen met een gerust gevoel het stokje aan jullie doorgeven. Het percentage 
vrouwen groeit zo langzaam tot ongekende hoogte (althans, voor de Cuppen groep), maar 
dat kan volgens mij geen kwaad. Nu wordt dat alpha-male gedrag van de rest een beetje 
gecompenseerd. Maak je niet druk over alles wat komen gaat, als Roel en ik het kunnen, geldt 
dat zeker voor jullie! 

Mijn dank gaat natuurlijk ook naar de studenten die ik begeleid heb tijdens de afgelopen 
jaren Dennis en Kim. Dennis ik hoop dat je het naar je zin hebt op het NKI, bedankt voor je 
hulp tijdens je stage! Kim, je kwam zelfs twee keer stage lopen bij onze groep, dan moet het 
wel naar je zin geweest zijn! Je was een ontzettend goede student, slim en met veel potentie! 
Tegen de tijd dat je dit proefschrift onder ogen krijgt heb je een AIO plek gekozen. Ik vertrouw 
er in dat je de juiste keuze hebt gemaakt en hoop dat je een succesvolle AIO periode door 
gaat maken! Succes!

Cuppen groep studenten Robin, Rutger en Silvia: Succes met jullie verdere (wetenschappelijke 
carrière), ik denk dat jullie alle drie de potentie hebben om het ver te schoppen! Silvia, dan 
moet je wel even Nederlands onder de knie krijgen om dit te begrijpen, maar daar helpen 
Robin en Rutger je vast wel mee. Rutger, voor mij blijf je altijd Mental Rudy. Die taxi rit vanuit 
Nijmegen was legendarisch, die beelden krijg ik nooit meer uit mijn hoofd (ook al zou ik 
dat willen). Ook voormalig studenten Maryvonne, Martijn, Jetse, Dennis, Peter, Yannick en 
Friso bedankt!! 

De voormalig AIOs Ruben (wederom), Mul, Michal, Sam en Jos. Ik heb ontzettend veel van 
jullie geleerd in mijn eerste jaar als AIO. Bedankt voor de hulp in het lab, de goede discussies 
in de AIO kamer en de adviezen die ik van jullie kreeg. Ik dacht dat vier jaar een eeuwigheid 
was en begreep jullie stress richting het einde van de vier jaar niet altijd. Nu wel! Jos, Yeti 
Sports Flamingo Drive doet het helaas niet meer op mijn Mac, heb jij nog een goede versie? 
Dan kan die mee naar Berlijn! 

Ook de UMC Cuppen groep / afdeling humane genetica bedankt voor alles. Tijdens de 
retraites was het altijd feest en dankzij de combinatie UMC / Hubrecht kregen wij toegang 
tot veel interessant patiënt materiaal waar we veel fundamentele vraagstukken mee konden 
onderzoeken. De werkbesprekingen kregen door jullie kritische blik een heel andere inslag, 
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wat erg verfrissend werkt en veel nieuwe ideeën opgeleverd heeft. Ik kwam altijd graag 
op het UMC, maar volgens mij kwamen jullie ook allemaal wel graag een op zijn tijd een 
biertje drinken op het Hubrecht ;-). Dus Mark, Marlous, Naja, Kirsten, Gijs, Ivo, Ies, Pjotr, 
Martin E, Martin P, Karen, Marco, Nicolle, Mirjam, Petra, Glen, Glenn, Magdalena, Terry 
en Monique en wie ik ook vergeten ben ontzettend bedankt! Special thanks to Monique voor 
de organisatie van alle uitjes en de hulp bij administratieve dingen tijdens mijn promotie. 
Glen thanks for being a native English speaker and being willing to check my introduction for 
errors! Met name Mark en Ivo bedankt voor de hulp bij de totstandkoming van hoofdstuk 6!

Voor de gezelligheid binnen het Hubrecht is de Cuppen groep niet alleen verantwoordelijk. 
Ook de andere groepen zorgen hiervoor, dus dank aan de Creyghton, Geijsen, Berezikov, 
Knipscheer, de Laat, Korswagen, Robin, van Rooij en van Oudenaarden groep. En wat ooit 
de Ketting groep was natuurlijk niet te vergeten. Met name Menno bedankt voor de goede 
gesprekken toen je net op het Hubrecht kwam (en het mij belachelijk maken bij de introductie 
van mijn lunchmeetings:-)). 
Maartje V, Pieterjan, Peter, Charles, Rick, Dan, Axel, Bas, Elke, Lucas, Manda, Oliver, 
Maaike, Nico, Javier, Kay, Mauro, Leon, Lennart, Britta, Eirinn, Maartje L, Teije, Remco, 
Reinoud, Alex, Nune, Els en wie ik nog vergeet, bedankt voor de top tijd! Dankzij jullie 
hebben sfeersponzen nooit de macht over kunnen nemen. 

De meeste hoofdstukken in dit proefschrift zijn tot stand gekomen door middel van 
samenwerkingen, zowel binnen Utrecht als internationaal. Hiervan wil ik in ieder geval de 
groep van Albert Heck (Teck, Henk, Bas, Shabaz) bedanken voor de totstandkoming van 
hoofdstuk 4. Ik vond het prettig en vooral ook erg leerzaam om met jullie samen te mogen 
werken. Proteomics en Genomics liggen nog steeds een beetje uit elkaar, maar dankzij onze 
samenwerking is de integratie van beide onderzoekvelden er heel wat op vooruit gegaan. Ik 
ga ervanuit dat iemand dit stuk wel even vertaald voor Teck en Shabaz!
Dan de MacInnes groep, Alyson en Paul bedankt voor jullie hulp bij hoofdstuk 5. Paul, je hebt 
er even voor in de koude kamer moeten staan maar ik hoop dat je net als ons tevreden bent 
met de paper!

Also a big thanks to all the colleagues from the EURATRANS consortium for all the 
collaborations and inspiring annual meetings, mainly organized by Erik. The EURATRANS 
consortium resulted in collaborations that were crucial for chapters 2,4 and 7. Special thanks 
to Michel Werner and his group (mostly Helen and Camille) for having me over at the CEA 
in Paris, for showing me the beauty of Paris and helping me with the ChIP experiments. I had 
a great time! 
Thanks as well to Norbert Hübner and his group for help with Chapter 4 and of course for 
offering me a postdoc position at the MDC in Berlin. I am really looking forward to continue 
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my scientific career at the MDC!

Ook zeker het vermelden waard zijn de vaste medewerkers van het Hubrecht, waaronder 
de facilitaire dienst, PZ, de IT afdeling, financiën, dames van de Albron en de receptionistes 
waaronder Thea! Altijd een glimlach ‘s ochtends en ‘s middags, top! Ook Richard, Elroy, 
Jules, Romke, Peter-Erik, Jimmy en Arjan bedankt voor alle hulp! Romke, ik zat net mijn 
e-mail nog door te nemen en zag dat vrijwel alle mailtjes van jou aan mij gericht gaan over 
niet opruimen na borrels of bierflesjes en kratten die rondslingeren door het gebouw of op 
de derde. Excuses daarvoor! Goed dat jullie alles zo netjes houden en ik begrijp de frustratie 
:-). 

Voordat het erop gaat lijken dat ik buiten het Hubrecht geen leven had, hierbij een dankwoord 
gericht aan familie en vrienden buiten het werk. 

Om te beginnen met mijn hockeyteam van Goirle Heren 2 (en daarna 3). Mannen, ik moest er 
jaren voor op en neer naar Goirle maar ik heb er geen moment spijt van gehad. Het reizen was 
niet altijd handig, maar de vrijdagavonden, zondagmiddagen, teamuitjes, teamweekenden, 
bbqs, feestjes en vakanties maakten het meer dan waard. Die momenten zorgden voor de 
ontspanning na een drukke werkweek. Scheidsrechters en tegenstanders moesten het soms 
ontgelden, ik hoop dat jullie na het lezen van dit proefschrift begrijpen waar die frustratie 
soms vandaan kwam ;-). Naast teamgenoten zijn jullie ook mijn vrienden, en het feit dat jullie 
me nog regelmatig bellen / sms’en - ondanks dat ik afgelopen jaar gestopt ben met hockeyen 
- benadrukt dat nog maar eens! Zodra ik in Berlijn zit gaan we daar snel een weekend de boel 
onveilig maken! Jullie zijn altijd welkom. Bedankt!

Zeker niet minder belangrijk mijn vrienden en bandgenoten van Seedorf. Het was even 
zoeken naar een goede bandnaam, maar dit is wat mij betreft een voltreffer Koen! Bart, Thijs, 
Koen en Jan Willem ontzettend bedankt voor de tijd die we met Seedorf gehad hebben (en 
nog hebben op moment van schrijven). Niet alleen de muziek was belangrijk voor me, maar 
ook de gesprekken en biertjes/whiskey tijdens de dinsdag avonden in Vuurland. De etentjes, 
concerten, optredens en andere uitjes vond ik stuk voor stuk super, net als het praten over 
en uitwisselen van muziek. Ik ben ook erg blij dat de combinatie van vrienden uit Goirle (Bart 
en ik) en Twente (de rest) zo goed samen ging. Ik weet dat ik het met mijn dronken kop op 
koningsdag al 10 keer gezegd heb, maar ik ga jullie echt ontzettend missen als ik in Berlijn 
zit. Jullie moeten snel een keer op bezoek komen en sowieso doorgaan met muziek maken!

Thijs, paranimf, jij hebt dit hele riedeltje al eens meegemaakt en toen had ik de eer om jouw 
paranimf te mogen zijn. Ik ben blij dat je ook nu achter mij staat; we gaan er een topdag van 
maken! Samen hebben we veel koffie, bier en whisky gedronken en veel besproken tijdens 
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onze studie en PhD. Die gesprekken waren (en zijn!) ontzettend waardevol voor me. Bedankt 
daarvoor!

Dan mijn familie, die altijd veel interesse hebben getoond en met veel bewondering geluisterd 
hebben naar mijn onbegrijpelijke uitleg als antwoord op de vraag “Wat doe je nou precies, 
Sebas?”. In dit proefschrift staat een Nederlandse samenvatting, ik hoop van harte dat jullie 
nu eindelijk een beter beeld krijgen van wat me de afgelopen jaren bezig heeft gehouden! 
Opa Kees, Oma Tiny en Opa Albert, jullie interesse was ontzettend lief en jullie hebben me 
altijd op de voet gevolgd. Opa heeft zelfs via Google Translate al mijn papers vertaald en 
uitgeprint (met extra kopie voor mijzelf) om mijn werk beter te kunnen begrijpen. Daarnaast 
waren er altijd de telefoontjes wanneer er iets over genetica op TV te zien was (“Schat, die 
meneer Clevers is weer op TV! Nederland 3, zet maar snel op!). Ik hoop (en weet) dat jullie 
trots op me zijn, maar dat ben ik ook op jullie. Het is toch 50% van Heesch en 50% van der 
Sanden die ervoor gezorgd hebben dat ik zover gekomen ben.
Mijn ooms, tantes, neefjes en nichtjes, ook jullie bedankt voor de belangstelling en het altijd 
op de hoogte willen blijven van mijn promotie traject. Hans & Seetje, Lauran & Marjolijn, 
Mark & Detje, Daan, Madelon, Tess, Bart, Bo, Anke, Laut, Peggy, Judith, Terni, Foppe, Wybe, 
Melle allemaal bedankt!! Mark en Detje ook bedankt voor de tijd in Oman en New Orleans en 
de manier waarop jullie Jenn en mij ontvangen hebben. We hebben in Oman (in de woestijn 
nota bene) uitvoerig gesproken over het wel of niet starten van een promotietraject en mede 
dankzij die gesprekken heb ik ervoor gekozen toch deze weg in te slaan. Bedankt daarvoor! En 
Wybe, met jouw interesse in de biologie en genetica moet je echt de wetenschap in!

Mijn schoonfamilie Wilma, Bert, Max, Marja, Charlaine, Reza en Melvin, ook jullie bedankt 
voor de interesse in mijn werk de afgelopen jaren, en natuurlijk voor het feit dat jullie zo’n 
fantastische dochter/zus aan mij toevertrouwen. Berlijn is helaas niet naast de deur, maar 
ook niet zo ver als Amerika. Ik beloof jullie goed op haar te passen en over een paar jaartjes 
wonen we vast weer een stuk dichterbij!

Mijn lieve zusje Benthe en vrouw Celine (en Baco), jullie begrepen misschien ook niet altijd 
waar ik in godsnaam mee bezig was, en waarom het nu weer belangrijk kon zijn in wat voor 
tijdschrift iets gepubliceerd werd, maar toch altijd oprecht geïnteresseerd in jullie (schoon)
broer! Ook bedankt voor alle ontspanning tijdens de etentjes, hockey, feestjes en avondjes 
drinken. Ik ben blij dat ons contact zo goed is Bent!  
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