
Effect Modification of Interventions 

Bridging the Gap Between Clinical Studies and 
the Individual Patient

A. F. Schmidt



Effect Modification of Interventions: Bridging the Gap Between Clinical Studies and the 

Individual Patient

ISBN 9789039361535

Cover: A.F.Schmidt (design), Rob de Voogd ZZAPBACK (foto).

Lay-out: A.F.Schmidt.

Printed by: Ipskamp Drukkers.

Copyright: A.F. Schmidt.

The studies in this thesis were funded by Research Focus Areas funding of the Utrecht Uni-

versity and was a collaboration between the faculties of medicine (Julius Center for Health 

Sciences and Primary Care), science (Utrecht Institute for Pharmaceutical Sciences), and ve-

terinary medicine (Department of Farm Animal Health). Financial support by the Julius Center 

for Health Sciences and Primary Care and by the Dutch Heart Foundation for the publication 

of this thesis is gratefully acknowledged. Additional financial support for the printing of this 

thesis was provided by Koninklijke Nederlandse Maatschappij ter bevordering der Pharmacie 

(KNMP), ChipSoft, Boehringer Ingelheim and GlaxoSmithKline.



Effect Modification of Interventions 

Bridging the Gap Between Clinical Studies and 
the Individual Patient

Modificatie van effecten van interventies en het toepassen van onderzoeksresultaten

bij de behandeling van individuele patiënten

(met een samenvatting in het Nederlands)

Proefschrift 

ter verkrijging van de graad van doctor

 aan de Universiteit van Utrecht

 op gezag van de rector magnificus

 prof. dr. G.J. van der Zwaan,

 ingevolge het besluit van

 het college voor promoties

 in het openbaar te verdedigen op

23 juni 2014 des middags 

te 2.30 uur

door

Amand Floriaan Schmidt

geboren 22 oktober 1986

te Amsterdam



Promotoren:		  Prof. dr. A.W. Hoes

			   Prof. dr. M. Nielen

Co-promotoren	 Dr. R.H.H. Groenwold

			   Dr. O.H. Klungel



Voor Elke 





Contents

Part I General introduction	 9

Part II Detecting effect modification of interventions	 17

Chapter 1 Exploring interaction effects in small samples increases rates of false-positive and 

false-negative findings: results from a systematic review and simulation study	 19

Chapter 2 Similarity of interaction and subgroup-specific effects in randomized and non-randomized studies:

three empirical examples	 49

Chapter 3 Increasing efficiency of post-launch RCTs to detect treatment effect modification	 73

Part III Bridging the gap between clinical studies and individual patient care	 99

Chapter 4 Prognostic factors of early metastasis and mortality in dogs with appendicular osteosarcoma 

after receiving surgery an individual patient data meta-analysis 	 101

Chapter 5 Which dogs with appendicular osteosarcoma benefit most from chemotherapy after surgery? 

results from an individual patient data meta-analysis 	 123

Part IV Generalizability of the effects of interventions	 147

Chapter 6 The generalizability of randomized controlled trial results of the effects of beta-blockers 

compared to diuretics on the risk of non-fatal myocardial infarction	 149

Chapter 7 Justification of exclusion criteria was underreported in a review of cardiovascular trials	 169

Chapter 8 Approaches to determine generalizability of treatment effects	 203

Part V General discussion	 211

Summary	 227

Samenvatting	 233

Acknowledgement/Dankwoord	 239

Curriculum Vitae	 245





Part I 

General introduction



10



11

General introduction

The safety and efficacy of medical interventions can be explored in various types of clinical 

studies. Randomized clinical trials (RCTs) are commonly used to determine intended tre-

atment effects and can sometimes provide information on frequently occurring unintended 

effects (notably Type A adverse events). Nonrandomized studies (e.g., cohort or case-control 

studies) can provide information on the occurrence of unintended effects (i.e., type B adverse 

events), but also on intended effects(1;2). Clinical studies (randomized or nonrandomized) 

are typically designed to provide estimates of the average (intended or unintended) treatment 

effect. However, patients, health care professionals, regulators, and researchers recognize 

that treatment effects may not be constant across a wide range of potential users (3-7).

When treatment effects differ between subgroups of patients, this is often referred to as effect 

modification, interaction, or heterogeneity of treatment effects. For example, a recent RCT 

comparing 6 months to 12 months anti-platelet therapy on preventing cardiovascular end-

points (8), showed that in patients with diabetes the 6 months regime increased the risk of a 

cardiovascular event by 216%. However, in patients without diabetes the 6 months regime 

reduced the risk by 56%. Of the patients included in the trial 38% had diabetes, on average 

therefore, the 6 months regimen increased the risk by 49%. In this example, the effect of 

anti-platelet therapy differs between subgroups based on diabetes status, i.e., there is effect 

modification by diabetes. 

Whether effect modification is present depends on the effect measure that is considered. For 

example, if the treatment effect expressed as a risk ratio is constant across subgroups, the 

risk differences will possibly differ between subgroups (9-12). Such “effect modification” is 

therefore also referred to as effect measure modification (9). Here, we consider mainly situa-

tions in which researchers choose a specific effect measure (e.g. odds ratio, risk ratio or risk 

difference) prior to analysing the study and thus consider relevant any effect modification of 

that particular effect measure.

In the presence of effect modification, treatment effects differ between subgroups of sub-

jects, in which case average treatment effects are non-informative and cannot be generalized 

to populations of future users. For example, the average treatment effect observed in the 

aforementioned study of anti-platelet therapy neither applies to patients with diabetes nor to 

patients without. In this case, only estimates of treatment effects that are stratified for those 
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subgroups are relevant for future users. 

When study results do not suggest any effect modification, the main treatment effect found 

in a study can more likely be generalized beyond the population included in the study (be-

cause there is no direct reason to believe the treatment may act differently in other subjects). 

However, generalizability of treatment effects also depends on similarities between the study 

population and future users with respect to e.g. availability of treatments, adherence, and 

possible unidentified effect modification. A detailed understanding of the biological effects by 

which the treatment acts can be of help when considering the latter. 

Previous research focussed either on generalizability (3;13-15) or on effect modification 

(5;6;16-20). However, as was just discussed, these topics are very closely interlinked; trea-

ting these topics separately is at its best inefficient and at its worst prevents estimation of the 

true treatment effect in terms of actual patient benefit (or harm). As the example of antipla-

telet therapy shows, ignoring effect modification may result in treating subjects in whom the 

treatment is ineffective (but may have adverse effects and puts a financial burden on health-

care) or not treating subjects in whom the treatment is effective. Thus, patients are subopti-

mally treated when effect modification is not recognized and appropriately taken into account. 

This thesis will address the issue of effect modification of treatment effects with the ultimate 

goal to identify subgroups of patients who should ideally be treated (because the treatment 

is effective) and those patients for whom it would be better to refrain from treatment. First, 

methods to detect treatment effect modification will be evaluated. Second, we apply a me-

thod to optimize targeting of treatment based on multiple patient characteristics. Third, we will 

address the question of how to assess generalizability of study results. Finally, a framework 

to assess effect modification as well as generalizability is provided. 

Thesis outline

The thesis outline is as follows. Methods to detect treatment effect modification are presen-

ted in part II. In chapter 1, a simulation study is used to evaluate frequently used interaction 

tests. In chapter 2, reported interaction effects from randomized studies are compared to in-

teraction effects from nonrandomized studies. Subsequently, in chapter 3, a simulation study 

is presented evaluating a Bayesian approach to combine nonrandomized information and 
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randomized studies in an effort to increase the power of interaction tests. In part III, a method 

to identify multivariable subgroups is applied to an empirical example of canine osteosarco-

ma patients. In chapter 4 we describe a study to predict the probability of cancer recurrence 

or death in dogs with osteosarcoma. In chapter 5 this predicted individual probability is used 

to determine in which patients chemotherapy treatment is beneficial. In part IV of this thesis, 

generalizability is addressed. In chapter 6 a systematic review on justification of exclusion 

criteria is presented. This review explores how generalizability is affected by heterogeneity 

of patient populations. In chapter 7, we show that explicitly modelling treatment effect modi-

fication might increase comparability between results from randomized and nonrandomized 

studies. An approach to explore generalizability of treatment effect estimates within and 

between studies is described in chapter 8. In part V of the thesis a framework is presented to 

assess effect modification and generalizability. 
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Interaction effects in small samples

Abstract

Objective To give a comprehensive comparison of the performance of commonly applied 

interaction tests. 

Methods A literature review and simulation study was performed evaluating interaction tests 

on the odds ratio (OR) or the risk difference (RD) scales: Cochran’s Q, Breslow-Day (BD), 

Tarone, unconditional Score, Likelihood Ratio, Wald, and RERI based tests. 

Results Review results agreed with results from our simulation study. Which showed that on 

the OR scale, in small sample sizes (e.g. number of subjects ≤ 250) the type 1 error rates 

of the LR test was 0.10, the BD and Tarone tests showed results around 0.05. On the RD 

scale, the LR and RERI tests had error rates around 0.05. On both scales tests did not differ 

regarding power. When exposure prevented the outcome RERI based tests were relatively 

underpowered (e.g., N = 100, RERI power = 5% vs. Wald power =18%).With increasing 

sample size difference decreased. 

Conclusions In small samples interaction tests differed. On the OR scale the Tarone and 

Breslow-Day tests are recommend. On the RD scale, the LR and RERI based tests per-

formed best. However, RERI based tests are underpowered compared to other tests when 

exposure prevent the outcome and sample size is limited. 
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Background

When studying the effect of medical treatments physicians may wonder whether the effect 

differs between groups of patients. For example, the effects of aspirin in preventing myocar-

dial infarctions may be different in men compared to women (1). To explore whether treat-

ment effects indeed differ between subgroups of patients, one can stratify the study popula-

tion according to the subgroup of interest. An interaction test can then be performed, which 

tests whether treatment interacts with certain patient characteristics (e.g. gender) and thus 

whether treatment effects indeed differs between subgroups (2;3). 

Presence of interaction depends on the type of effect measure that quantifies the relation 

between treatment and outcome (4;5). For example, in case of a binary outcome (e.g., myo-

cardial infarction) an interaction can be present on the odds ratio (multiplicative) scale but 

absent on the risk difference (additive) scale, or vice versa. 

Previously, the performance of interaction tests was assessed using simulation studies (6-

11). Most studies focused on interaction tests using odds ratios (ORs) and no single study 

compared all the commonly used interaction tests together in one scenario. We aimed to 

provide a comprehensive comparison of commonly applied test on the OR scale and the 

RD scale (specifically the Cochran’s Q, Breslow-Day, Tarone, unconditional Score, Likeli-

hood Ratio, and Wald test and tests based on the Relative Excess Risk due to Interaction or 

RERI). First, a systematic review was conducted providing an overview of previous simulati-

ons studies. Obviously, each simulation study used different simulation scenarios which could 

potentially explain any dissimilarity in performance between interaction tests. Therefore, in 

a second part we conducted a simulation study to compare all of the previously mentioned 

interaction tests under equal simulation conditions.

Methods

The review and subsequent simulation study evaluated the following asymptotic interac-

tion tests: on the OR scale the Cochran’s Q (Q), Breslow-Day (BD), Tarone, unconditional 

Score (Score), Likelihood Ratio (LR) and the Wald test were compared. For the RD scale we 

compared the Q, LR, and the Wald test and tests based on the RERI. To our knowledge no 

variance estimator is available for the BD, Tarone and Score tests using the RD scale, there-

fore these tests were not assed for the RD scale. Similarly, the RERI is specifically proposed 
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for estimating interaction on a RD scale using risk ratios (RR) and, therefore, was only eva-

luated on the RD scale. For the formulae of these interaction tests we refer to Appendix I. In 

both the review and the subsequent simulation study we focused on sparse data scenarios 

because asymptotic tests differ in such settings. In small sample sizes power is often limited 

therefore, while exploring both power and type 1 error rates we focus on the latter. 

Systematic review 

Using the following search terms in title or abstract, Medline was searched (date: 24-05-

2013): 

(homogeneity OR modification OR interaction OR synergism OR antagonism) AND (simula-

tion OR “monte carlo”) AND (effect OR test OR statistic OR power OR significance)

Papers were screened and included when they [1] presented results from a simulation study, 

[2] assessed the performance of the previously mentioned interaction tests for dichotomous 

outcomes, and [3] were published in English. This was supplemented with a Scopus (12) 

based cross-reference search.

Simulation study

A simulation study was performed to assess the statistical performance of the previously 

mentioned interaction tests. Most evaluated tests are only applicable to categorical data and 

therefore all simulations were based on scenarios with two dichotomous exposure (i.e., X 

and S)  and a dichotomous outcome. In such settings subjects can be in one of four pos-

sible exposure categories, indicated by i = 0 or 1 if exposure to X is absent or present and j 

= 0 or 1 depending on the absence or presence of exposure S. The corresponding outcome 

probabilities are indicated by Pij. Initially, six scenarios (A-F, see Table 1) were created and 

each scenario was studied using different sample sizes (i.e., the number of observations (N) 

was set to 50, 100, 250, 500, 1,000 or 2000 in different simulations). The number of obser-

vations was equally distributed over the 4 exposure categories by setting the prevalence (Fij) 

of every exposure type to 0.25 (i.e., Fij represent the fraction that every exposure type (ij = 

00, 11, 10 or 01) contributes to N; hence Fij sums to 1). The expected number of events and 

non-events can then be calculated: number of event * *ij ijP N F= ; number of non-events 

(1 )* *ij ijP N F= − . In Table 2 a numerical example of scenarios B is given. This example 
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shows how the different parameters impact expected cell counts and expected interaction 

effects. In order to assess the impact of the fraction Fij on interaction test performance the 

prevalence of the combined exposure group (F11) was varied from 0.05 to 0.25, where the 

complement (i.e., 0.25 - F11) was equally divided over the remaining Fij. 

Table 1 Six simulations scenarios used to evaluated interaction test on the Risk Difference and Odds Ratios scale*.  
Scenario (tests used) P00 P01 P10 P11 RD interaction OR interaction 

A (RD.tests) 0.30 0.30 0.30 0.50 0.20 2.33 
B (RD.tests) 0.30 0.30 0.30 0.10 -0.20 0.26 
C (OR tests) 0.25 0.25 0.25 0.40 0.15 2.00 
D (OR tests) 0.25 0.25 0.25 0.14 -0.11 0.49 
E (OR and RD tests) 0.20 0.20 0.20 0.20 0.00 1.00 
F (OR and RD tests) 0.80 0.80 0.80 0.80 0.00 1.00 

* P00 = Risk in unexposed, P10 = Risk among subjects exposed to factor X, P01 = Risk among subjects expose to factor S,  
P11 = Risk in subjects exposed to both factors, RD interaction= interaction magnitude on the risk difference scale  
(0 = no interaction), OR interaction = interaction magnitude on the odds ratio scale (1 = no interaction). Note that  
Risk Difference (RD) interaction tests were only applied to A, B , E and F, similarly Odds Ratio (OR) interaction tests were  
applied to the C, D, E and F scenarios.  

  

The above scenarios were based on the Pij probabilities and interaction effects given in Table 

1. To further explore empirical power under different interaction effects, Pij was set to 0.5 

except for the event probability of the combined exposure group (P11) which varied between 

0.05 to 0.95. This was done for the setting in which Fij = 0.25 and N equalled 100, 250, 500 

or 1,000. In two final simulations (where Fij = 0.25 and N equalled 100, 250, 500 or 1,000) P11 

was set to 0.05 or 0.95, in each case  P00 ranged from 0.05 to 0.95. These two scenarios can 

be viewed as more extreme versions of the previous scenarios where the interaction effects 

are allowed to be larger and data more sparse.

In scenarios E and F (Table 1) type 1 error rates (i.e., the probability to incorrectly reject 

the null hypothesis), using an alpha of 0.05, were determined. Power (i.e., the probability to 

detect an effect when it is present) was evaluated for the RD scale in scenarios A and B and 

in scenarios C and D for the OR scale. To more closely compare the RERI to the other RD 

interact tests the root mean squared error (RMSE) was calculated for the RERI and the Wald 

tests. RMSE is the squared root of the sum of the squared bias and the variance, measuring 

both bias and variance on the original scale of the measurements. Bias is defined as the 

difference between the estimated interaction effect and the true interaction effect. Variance 

is the variance of the estimated interaction effect over all simulation replications. Customa-

rily, these measures of the performance are combined in the mean squared error (MSE) as 

the squared bias plus the variance. The squared root of the MSE (the RMSE) is on same 
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scale as the interaction effect and therefore easier to interpret. Each scenario was based on 

four draws (one for every type of exposure) from a binomial distribution with Pij as the event 

probabilities and N* Fij as the number of subjects per exposure type. All simulations were 

replicated 10,000 resulting in a 95 percent confidence interval (95%CI) width of approxima-

tely 0.009 (i.e., lower and upper bounds: 0.046; 0.054) around a type 1 error rate of 0.05. The 

standard error of the empirical power was at most (0.5 * 0.5 / 10,000)1/2 = 0.005, resulting in a 

maximum 95% CI width of 0.020.

In the generated scenarios the previously mentioned interaction test were compared. The LR 

test was applied as a model comparison test: comparing a model with a product term to 

a model without a product term. On the OR scale, logistic models were compared. On the 

RD scale, the LR test was based on Poisson models with an identity link and robust variance 

estimators, specifically the Heteroscedasticity-Consistent covariance estimator 0, i.e., HC0 

(13). Two RERI based tests were evaluated, the first using the delta (RERIdelta) estimator (14) 

Table 2 The expected cell counts and interaction effects for scenario B with exposure prevalence set to 0.25 for each  
exposure type and a sample size of 1,000.  

Simulation parameters Total sample size 
 

Event probabilities 
 

Exposure prevalence 
 

 N = 1000 Pij = 0.30, 0.30, 0.30, 0.10 Fij = 0.25, 0.25, 0.25, 0.25 

    

X exposure status S exposure status Events Non-events 

1 1    


      


 

1 0    


      


 

0 1    


      


 

0 0    


      


 

    

 

  


  


  


   


  

 

 


   


    


   


    


   


   




   


           
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and the second the bootstrap percentile (15) variance estimator (RERIbs). For the RERIdelta 

test a Poisson model with log link and robust variance estimators was used, the RERIbs test 

was estimated from the crude 2 by 2 by 2 table and used 1,000 bootstraps.

Computations were performed using the R statistical software package version 3.0.0 (16); R 

code is available upon request.

Results

Systematic review 

We identified 15 studies that evaluated the performance of interaction tests (Figure 1). Of 

these, 6 focused on interaction tests on the RD scale (14;16-20), 7 focused on interaction 

tests on the OR scale (6;7;9-11;21;22) and 2 addressed both (8;23). The results of these 

studies are summarized in Appendix Table 1.

Figure 1 Flow of studies in the Medline search for simulation studies on the performance of interaction test.

The 9 studies that studied the OR scale, explored a large number of scenarios, ranging from 

scenarios with expected cell counts of 1 to scenarios with expected cell counts of 55 or more 

(9;10). Studies that explored the LR tests showed that in most scenarios its type 1 error rate 

was larger than 0.05. In the same scenarios the Tarone, BD and score tests showed error 

rates closer to 0.05 (6;7;9;10). In extreme settings with expected cell counts of 1-5 the LR 
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type 1 error rate could be as high as 0.97 while in the same settings the BD and Tarone tests 

had error rates of 0.44. In three other studies (21-23) the LR had type 1 error rates < 0.05, 

however these only explored large sample situations. The Wald and Q statistics also showed 

type 1 error rates close to 0.05 in relatively non-sparse data settings (e.g.,75 cases and 150 

controls) (8;21). Generally, power did not differ much between the tests studied, differing 

usually not more than 5%, except in very small sample sizes.

The 8 studies that evaluated RD interaction tests performance used a great number of 

scenarios, similar to the OR scenarios, including scenarios with expected cell counts of 1 to 

simulations with 1,000 cases and controls (18;23). Two studies explored the LR tests perfor-

mance for the RD scale and showed type 1 error rates close to 0.05 (16) or lower (23), the 

first study used a small amount of replications (maximum 600) (16) the latter used 5000 repe-

titions with at least 500 subjects (23). The Q tests on the RD scale was evaluated by three 

studies (18-20). All three studies showed that in sparse data the type 1 error rate was often 

higher than 0.05, however generally not larger than 0.06. In scenarios with expected cell 

counts of 1 and a large number of subgroups the type 1 error rate was seriously inflated: 0.60 

(19). A single study explored the Wald test for the RD scale and showed type 1 error rates 

below 0.05 (8). RERI based interaction tests were evaluated by three studies which showed 

that the type 1 error rate (or the 95% confidence interval coverage) was below 0.05 (or the 

coverage rate was above the 95%), for example a type 1 error rate of 0.025 or a coverage 

rate of 97% (14;16;17). All of the simulations studies that evaluated the RERI based tests 

used the OR as an approximation of the RR. (14;17). Power did not differ much between RD 

interaction tests and was mostly driven by sparseness of the data and interaction magnitude. 

Simulation study

Simulations on the OR scale showed that in small sample sizes (N ≤ 250 or when one of the 

exposure groups contributed ≤ 0.10 to the overall N) the Score and LR test had error rates 

above 0.05, sometimes as high as 0.10 (Figure 2). The Q and Wald tests displayed type 1 

error rates below 0.05, while the BD and Tarone tests had type 1 error rates closest to 0.05. 

Power did not markedly differ between tests (Appendix III, Figure a), for example the maxi-

mum difference in power for scenario C using 50 subjects was 0.07. Figure 3 shows that in 

samples of 100 subjects a high power, for example 80%, was only reached when the interac-

tion effects were very large; interaction OR of 0.05 or 19. Note that the symmetry around the 



29

Interaction effects in small samples

Figure 2 Type 1 error rates of odds ratio (OR) interaction tests evaluated in simulation scenarios E en F 

N.B. in the upper parts of scenarios E and F the sample size was increased from 50 observations to 2,000. In the bottom part 
sample size was fixed at 250 observations and the fraction of F11 was increased from 0.05 to 0.25. Thus the relative number of 
subjects that were exposed to both factors increased from 5 percent to 25 percent of the total sample size of 250. All simulations 
were repeated 10,000 times.
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Figure 3 Power of odd ratio (OR) and risk difference (RD) based interaction tests under different interaction effect sizes

N.B. the upper panel depicts power of the interaction tests evaluated using different interaction effect sizes, the bottom panel 
shows RD interaction tests performance. All simulations were carried out using a sample size of 100 subjects which was equally 
divided over the exposure categories (i.e., F11 = 0.25) and repeated 10,000 times. 
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Figure 4 Type 1 error rates of risk difference (RD) interaction tests evaluated in simulation scenarios E en F 

N.B. in the upper parts of scenarios E and F the sample size was increased from 50 observations to 2,000. In the bottom part 
sample size was fixed at 250 observations and the fraction of F11 was increased from 0.05 to 0.25. Thus the relative number of 
subjects that were exposed to both factors increased from 5 percent to 25 percent of the total sample size of 250. All simulations 
were repeated 10,000 times.
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1 is expected because the interaction effects in positive and negative settings only differ re-

garding their sign, e.g., 1/19 = 0.0526. Due to empty cells counts in scenarios of 50 subjects 

the Q tests did not converge in 25% of the cases and the BD, Tarone and Score tests failed 

up to 10% of the replications. In these settings the Wald and LR tests did converge because 

these were implemented using generalized linear models.

Simulations on the RD scale showed that in sample sizes of 250 subjects or less (or when 

the prevalence of combined exposure subjects was ≤ 0.15) the type 1 error rates were 

typically above 0.05 (Figure 4). In such settings the LR and the RERIdelta tests had type 1 

error rates closest to 0.05, but in some scenarios also showed type 1 error rates above 0.05. 

Results of scenarios A and B showed that, excluding the RERI based tests, there was little 

difference in power between the RD tests (Appendix III, Figure b). Figure 2 shows that the 

RERI based tests were relatively) underpowered (compared to the other interaction tests on 

the RD scale) when the interaction effect was negative. For example, when the interaction 

RD = -0.3 the power of the Wald test = 0.36 and the power of the RERI.bs test = 0.11. This 

difference decreased as sample size increased to 1,000 (Appendix III, Figures b and c). 

Due to empty cells counts in scenarios of 50 subjects the LR tests failed up to 15% of the 

times, the other RD tests failed in less than 5% of the replications.

In negative interaction settings, the RERI tests had higher root mean squared error (RMSE) 

values than the Wald test (Figure 5). For example when the interaction effect was 0.00 and 

N = 250 RMSE was considerably higher for the RERI.delta test (0.27) than for the Wald test 

(0.13). Again, asymptotically the difference in RMSE between the RERI and the Wald test 

minimalized (Figure 5). Similar results (regarding RMSE and power in positive and negative 

settings) were observed in simulations where P11 was fixed at 0.05 or 0.95 and instead P00 

was iterated from 0.05 to 0.95 (data available upon request). 

Discussion

Our simulation study showed that in small sample sizes (on the OR scale) the Breslow-Day 

(BD) and Tarone’s test had type 1 error rates closest to 0.05 while the Likelihood Ratio (LR) 

test had type 1 error rates as high as 0.10. On the RD scale simulation results revealed that 

RD interaction tests frequently had type 1 error rates > 0.05. Of all the RD tests evaluated 

the LR  and RERIdelta tests had type 1 error rate closest to 0.05. 
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Figure 5 Root Mean Squared Error of the RERI.delta and Wald.Z tests under different interaction effect sizes.

N.B.  Simulations were repeated with sample sizes of 250, 500 and 1,000 subjects and with different prevalence’s of combined 
exposed subjects. Each simulations was replicated 10,000 times.

Additionally, our simulations showed that the RERI based tests were relatively underpowered 

(as compared to the other RD interaction tests) in the presence of negative interaction ef-

fects, this difference decreased as sample size increased to 1,000. 

Results of our simulation study were generally supported by the review results. For example 
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view and simulations results. The most important difference is that our simulation showed a 

relative lack of power for the RERI based tests, as compared to the other RD tests, in nega-

tive interaction settings with less than 1,000 subjects. Note that the RERI uses relative mea-

sures, such as the RR, to calculate the RD interaction. Studies included in the review did not 

show such results. This difference can be explained by the scenarios that were considered. 
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reference the exposure effects was RR < 1. The studies included in the review never used 

scenarios where (combined) exposure was protective. Instead these studies created nega-

tive interaction scenarios by setting RR11 < RR10 and/or RR01, but at the same time ensuring 

that all RRs > 1. Previously, it has been recognized that the RERI should only be used when 

all types of exposure increase the outcome risk (58). To achieve this it is recommended to 

recode the exposure so that the reference category is always the group with the smallest 

incidence (59). We showed that given sufficient sample size the RERI based tests performed 

similar to the other RD interaction tests even when exposure prevents the outcome. Note, 

that in case-control studies the RERI is often the only test available to explore RD interaction, 

making recoding an important consideration. 

Several limitations and strengths warrant discussion. First, although we searched syste-

matically, we concede that we may have missed studies. Our review and simulation study 

showed comparable results. Therefore, it seems unlikely that the overall conclusions would 

materially change by including additional studies. Second, we recognize that instead of using 

asymptotic tests, exact tests perform better with respect to type I error control. However, 

power of exact tests may be lower – in a situation where by design there usually already is a 

lack of power. Third, we concede that in this study the number of simulations scenarios was 

limited and that it would be interesting to explore scenarios with larger disbalance between 

subgroups and different event probabilities. Furthermore, we simulated scenarios with ex-

pected cell counts as low as 1.25 which might seem unrealistic. However, when adjusting for 

multiple (co)variables these scenarios might occur more often than initially expected, making 

these simulations potentially very relevant. Fourth, some might question the use of Poisson 

or binomial models because these are known to provide impossible estimates (e.g., proba-

bilities outside the range 0-1) or to not converge at all (60). Obviously, as with all models, it 

is advisable to check the plausibility of derived estimates. In settings where estimates are 

(expected to be) implausible, methods based on calculating the “marginal probabilities of 

success” using logistic regression models might be preferable (61-63). Fifth, in spare data 

settings (e.g., N = 50) some tests failed. Often, tests based on generalized linear models 

(glms) did converge and tests based on 2 by 2 by 2 tables failed, due to empty cells. For 

comparison the Wald test was estimated based on glms as well as 2 by 2 by 2 tables, where 

the latter did indeed fail more often. Despite this increase in failed tests, results were equal 

up to two decimals (results not shown). Thus it seems unlikely that differences in failure rate 
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can explain our results. Obviously, performing interaction testing (or any testing at all) is pro-

blematic when empty cells exist and researchers should generally reconsider testing in such 

settings. On the other hand empty or sparse cell counts could also be due to large (interac-

tion) effects which are important to report. Finally, an often heard comment on interaction 

testing in small sample sizes is that “when a significant result is found, despite low power, 

this interaction effect must therefore be present”. However, this study showed that, depen-

ding on the test used and to some extend the scale chosen, the type 1 error rate can be high 

thus invalidating the previous comment. 

Based on our results we recommend the following. First, when sufficient sample size is 

available (e.g., 500-1000 subjects) all interaction test perform similarly, hence the choice of 

interaction tests is irrelevant here. Second, in smaller sample sizes power is limited (unless 

a large interaction effect is present) and type 1 error rates are high, hence exploring interac-

tions in such settings might not be appropriate. Furthermore, when deciding whether sample 

size is sufficient, researchers should also consider the distribution across exposure cate-

gories and across other potentially relevant (confounding) variables. Fourth, in sparse data 

settings the Tarone and Breslow-Day tests on the OR scale and the LR or RERIdelta tests on 

the RD scale should be preferred because these tests have type 1 error rates closest to 0.05. 

Finally, users of the RERI based tests should be aware of its behavior when exposure is pro-

tective and should consider recoding the statistic or use one of the other RD tests. 

Conclusions

 In small sample sizes (e.g., N < 1000) the Tarone and Breslow-Day tests are preferred when 

assessing interaction on the odds ratio scale. On the risk difference scale the Likelihood 

Ratio and RERIdelta are the preferred tests for interaction. However, when exposure is pre-

ventative for the outcome, RERI based tests are relatively underpowered compared to other 

interaction tests unless sample size is large. Recoding the exposure so that the RERI inter-

action effect becomes positive will resolve this problem. 

Abbreviations

Cochrane’Q (Q). 

Likelihood Ratios (LR).

Breslow-Day (BD).
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Relative Excess Risk due to Interaction (RERI).

RERI tests using a variance estimate based on the delta method (RERIdelta). 

RERI tests using a variance estimate based on the bootstrap percentile (RERIbs). 

Odd Ratio (OR).

Risk Difference (RD).

Risk Ratio (RR). 
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Appendix I formulae of interaction statistics. 

General definitions 
Let there be k = 1,2, …,n subjects. For all n subjects the outcome y is either present yk = 1 
or absent yk =0. These n subjects are exposed i = 1 or unexposed i = 0 to X. Similarly, 
these same n subjects can be exposed j = 1 or unexposed j = 0 to factor S. The number of 
exposure categories does not necessarily have to be the same for X and S, however in the 
following we assume both have two categories (indicated by 0 or 1). The highest exposure 
category is indicated by Li for exposure X and Lj for exposure S. Ignoring the possibility of 
interaction with X the main (or common) exposure effect of S equals , which can be the 
ln(odds ratio) (ln(OR)), ln(risk ratio) (ln(RR)) or risk difference (RD), where  can be the 
maximum likelihood estimator (ML) or the Mantel-Haenszel estimator (MH). Stratifying 
for X results in subgroup-specific effects of exposure S, which are represented by        . 
The difference between these two subgroup effects is measured by the interaction effect    . Estimates of the variation of the above defined effect estimates are 
abbreviated with var e.g., . The estimated standard error of an estimated effects 
is indicated by se. Note that while in this appendix S is treated as the main exposure of 
interest, without any loss of generalizability both X and S can be of equal importance or 
alternatively X could be the exposure of interest with S as subgroup indicator. 

Wald (1)   
Where     . Under the null hypothesis the Wald 

statistic follows a Z-distribution.

Likelihood ratio test (LR) (2)      
Here the LL indicates log-likelihood from a model (m) with (1) or without (0) a product term 
for the S by X interaction. LL is calculated as             with 
yk representing an individuals’ outcome and pk the estimated outcome probability for 
individual k. Under the null hypothesis the LR statistic follows a central   . 

Breslow-Day test (3) 

   





Here ci represents the number of observed subjects exposed to S that experienced an 
event in subgroup i, with i =0 if unexposed to X and i = 1 if exposed to X. The expected 
number of exposed cases under the assumption of no interaction equals . 
Where  represent the OR.  is obtained by solving the quadratic equation           , where  is the expected frequency 
of ci, hi the observed number of total non-cases in subgroup i, ti the number of observed 
exposed subjects in subgroup i, gi the number of observed cases in subgroup i and  is 
the Mantel-Haenszel estimator of the ln OR. The variance estimator  is 

obtained by    
  

  
  




. Under the null 
hypothesis the BD statistic follows a central   . 
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Tarone's test (3) 

        


All notations are the same as the notation described under the BD test. Under the null 
hypothesis the Tarone statistic follows a central   . 

Score statistic (4) 

    





The Score statistic is similar to the BD statistic, but instead of using the Mantel-Haenszel 
estimator of the OR, the maximum likelihood estimator is used. Under the null hypothesis 
the Score statistic follows a central   . 

Cochran's Q (5) 

 



   

Here   and the common effect estimate    
 

. Depending on 

the outcome measure chosen,  represents the ln(OR) or the RD of exposure S. Under 
the null hypothesis the Q statistic follows a central   . 

RERI based test (6;7) 

   
 

The         ,with   corresponding 
to the maximum likelihood estimates of exposure X, exposure S, and their product term, 
respectively. These estimates are derived using a generalized linear model with a Poisson 
distribution and log link resulting in  equaling the ln(RR) and   the RR. However, 
assuming a disease incidence < 10% the ln(OR) approximates the ln(RR) and logistic 
regression models might also be considered. Regardless of the model used standard error 

estimates   can be derived using the delta method (6):    
               where 
     . The   can also be estimated using bootstrapping: If Z 
equals the bootstrap sample distribution, then let Z0.025 and Z0.975 represent the 2.5 
percentile and the 97.5 percentile. The standard error using the bootstrap percentiles (7) 
can be calculated by        . Under the null hypothesis the 
RERI based test statistics follow a Z-distribution.
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Appendix Table 1 Results of the systematic review on simulation studies evaluating asymptotic interaction tests*. 1 
Study Scale Tests Results 

Case-control or Cohort simulations 

Hogan 
1978 (8) 

Risk Difference LR 
S-index 

Scenario’s 
Simulations were replicated 600, 400 or 200 times; NK was set to 20 or 50, K 
= 2 and interaction effects were set to 0. 

Type 1 error rate  
Using these simulations the LR test was compared to the Synergy index, a 
statistic based on the RERI. Overall the nominal type 1 error rate of the S-
index was always lower than 0.05 and the LR test generally showing error 
rate around 0.05.  

Power  
Not studied. 

Greenland 
1983 (9) 

Odds Ratio  
Risk Difference 

Wald 
Scenario’s 
Scenario’s were repeated 1000 times with Ncases= 75, 150 or 300 and 
Ncontrols= 150, 300 or 600. OR interaction effect differed from LN -1.10 to LN 
0.29, RD interaction effect differed from -2 to 10; for each outcome scale 10 
scenarios were created. 

Type 1 error rate 
The multiplicative Wald statistic did not deviate from 0.05. The additive Wald 
tests (assuming an outcome prevalence of < 10% approximately equal to 
the a RD Wald test) showed type 1 error rates below 0.05 in small sample 
settings.  

Power  
The additive Wald test had a maximum power of 98%. The multiplicative 
Wald tests statistic reached 94%.In small samples, when 
Ncases=75,Ncontrols=150, power of both Wald tests never exceeded 60%. 

Paul 1989 
(10)  

Odds Ratio LR 
Tarone 
Score 

Scenario’s 
Simulations were iterated 500 times, the number of strata K were set to 3, 6 
or 12. Event probability in the unexposed was set to 0.3, 0.5 and 0.7 for the 
first 3 K and repeated when K > 3. NK = 120, NK = 60, 120 and 180 or NK = 
20, 120, 220 and repeated depending on the size of K. In within strata 
balanced settings Nexposed = Nunexposed. In within strata unbalanced settings 
Nexposed = 20 and Nunexposed = 100. Stratum specific effect differed from 1 (no 
effect) to 4.0. Depending on the scenarios some strata were set to 1 and 
other strata to > 1.  

Type 1 error rate  
In dependent of scenario chosen the Tarone and Score had lower type 1 
error rates than the LR test which maximized at 0.064. 

Power  
Power hardly differed between tests. Only in settings with 12 strata and a 
large difference between the number of exposed and unexposed subjects 
(20 vs 100) did the difference increase. In such setting the LR tests had a 
power of 45%, the Score 39% and the Tarone 40%.  

Jones 
1989 (3)  

and  

O’Gorman 
1990 (11)  

Odds Ratio LR 
BD  
Tarone 

Scenario’s 
Both studies used the same simulation study using 1000 repetitions, K was 
set to 2, 4, 8, 16, 32 or 64; N=256 was equally divided between cases and 
controls and K (so large K decreased the subjects per stratum); the 
exposure probability for controls was set to 0.05 or 0.30 or generated from a 
uniform distribution using the same values. The common odds ratio was set 
to 1, 4, 16 or randomly drawn from a log-normal (0,1), exponential(1/7), 
uniform(1,4) or (1,16) or from a two-point distribution with OR 1 and as 
second maximum an OR of 4 or 16. 

Type 1 error rate 
In very extreme scenarios of K = 64 and exposure probability of 0.3, the LR 
statistic showed a type I error rate of 0.97, while the Tarone and BD tests 
had error rates of 0.44. In general the LR had larger type 1 error rates 
(above 0.05) than the Tarone or BD which showed error rates closest to 
0.05.  

Power  
Power for the LR was discarded because error rate were >0.07 in al 
scenarios. For the BD and the Tarone tests power almost never exceeded 
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60% and there was hardly any difference between the tests.  

Paul 1992 
(4) 

Odds Ratio LR 
Tarone 
BD 
Score 

Scenario’s 
Simulations were iterated 500 times, the number of strata K were set to 3, 6 
or 12. Event probability in the unexposed was set to 0.3, 0.5 and 0.7 for the 
first 3 K and repeated in K > 3. NK = 120, NK = 60, 120 and 180 or NK = 5, 10 
or 20. In between strata unbalanced settings NK = was set to 5, 10 and 20 
and repeated according to the size of K. 

Type 1 error rate  
In dependent of scenario chosen the BD, Tarone and Score had lower type 
1 error rates (< 0.05) than the LR test which almost always showed error 
rates above 0.05 

Power  
Not explored. 

Assman 
1996 (7) 

Risk Difference RERI with delta 
variances estimator 
and bootstrapped 
percentile variance 
estimator. 

Scenario’s 
All scenario’s were replicated 300 times, the number of Ncases= Ncontrols= 250. 
N was disblanced over the exposure categories, with 10% being exposed to 
exposure 1, 20% to exposure 2, 10% to both exposures and the remaining 
to neither factor. RERI interaction effect estimates differed from 12.0 to -4.0 
and also included scenarios with no interaction effect i.e., 0. 

95% Coverage rates  
In scenarios without interaction the coverage rates were > 95% for the delta 
method and ≤95% for the bootstrapped percentile method. Overall when the 
interaction effect was negative coverage rates <95% with the percentile 
method being closer to the 95%. In positive interaction settings. Independent 
of the variance estimator used coverage rates were skewed, when the 
interaction effect were positive the upper tail was generally larger, in 
negative settings the lower tail was biggest.  

Reis 1999 
(12) 

Odds Ratio LR 
BD 
Score 

Scenario’s 
The simulation setups were repeated 1000 times. A large number of 
scenario’s were created (please see Reis 1999 for details) differing in the 
number of K strata set to 4,6,8,1 or 12; the number of exposed subjects per 
strata was set to5, 10, 20 ,30 or 50; the ratio of exposed to unexposed 
subjects differed from 1, 2 to 3; the outcome probability in unexposed 
subjects was set to 0.05, 0.10, 0.15 or 0.20 and the stratum specific odds 
ratio varied from 1 (no interaction effect) to 7. Finally, NK sizes differed for 
example from K=8 setting 2 strata to 80 subjects and the remainder to 10.  

Type 1 error rate  
Independent of sample size, K or effect size, the Score and BD showed type 
1 error rates around 0.05. Conversely to this, the LR test always had error 
rate above 0.05, maximizing at 0.16.  

Power  
When the ratio of exposed to unexposed subjects was 1 power never 
exceeded 40%. When the number of exposed subjects increased to 3 times 
the number of controls empirical power was around 50%, with the LR test 
showing a power of 55%. In scenarios with 2 large strata (K) and different 
number of smaller K (2 to 10), power increased, with a maximum of 75%.  

Starr 2004 
(13) 

Odds Ratio 
Risk Difference 

LR 
Scenario’s 
All simulations were based on 5000 repetitions, N samples size varied from 
500 to 2500 equally divided between cases and controls. N was unbalanced 
between the exposure categories, with 10, 15 or 20 percent being exposed 
to exposure 1 or to exposure 2, 5, 10 or 15 percent to both exposures and 
75, 60 or 45 percent remained free from exposure. In all scenario’s the 
interaction effect was 0, but main effects were set to1, 2, 5, or 10. LR tests 
were based on logistic regression models with and without an interaction 
term. Using the similarity of the OR on the natural logarithm scale (i.e., odds 
difference) to the risk difference when disease incidence is low (e.g., < 10%) 
logistic regression models were also used to test for the presence of 
interaction on the risk difference scale. 

Type 1 error rate. 
Independent off scenarios both the multiplicative LR(β3) and the additive 
LR(α3) tests showed type error rates below or at 0.05, especially when the 
exposure probability was 0.10 and the overall N was set to 500. As N 
increased to 2500 or the exposure probability > 0.10 type 1 error rates 
increased to 0.05. Only in the presence  high outcome prevalence (20% 
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exposed to either factor 1 or 2 and 15% to both) and high main effects did 
the type 1 error rate increase to values above 0.05 with a maximum of 7.3. 

Power  
Not studied. 

Zou 2008 
(14)  

Risk Difference  RERI with  
MOVER variance 
estimator and with the 
Delta variance 
estimator. 

Scenario’s 
All scenario’s were replicated 1000 times, the number of Ncases= Ncontrols= 250 
or 1000. N was disbalanced over the exposure categories, with 10% being 
exposed to exposure 1, 20% to exposure 2, 10% to both exposures and the 
remaining to neither factor. RERI interaction effect estimates differed from 
12.0 to -4.0 and also included scenarios with no interaction effect i.e., 0. 

95% Coverage rates  
In scenarios without interaction the coverage rates were always above the 
95% maximizing in scenario’s at 99% with 250 cases and control for the 
delta method and 95.9% for the MOVER method. Overall the MOVER 
method had coverage closer to the 95% than the delta method and both 
methods came closer to the 95% as the number of cases and controls 
increased to 1000 

In the presence of a negative interaction effects and independent of the 
variance estimator used the coverage rate was > 95%. This was less 
pronounced in the scenario with 1000 cases and controls, and also when 
using the MOVER method. In the presence of large positive interaction 
effects (in the range of 12 to 5.25) the coverage rate dropped below the 95% 
otherwise the coverage rate was > 95%.  

Meta-analysis or multi-centre trial settings 

Lipsitz 
1998 (15) 

Risk Difference Q  
Scenario’s 
Type 1 error simulation were repeated 1825 times, scenario’s that explored 
empirical power were repeated 1000 times. K was set at 8, 16,32 or 48 and 
NK = 4,8,16,32, 64. The interaction effects (between study variance) differed 
either from 0 to 0.2 or in sparse data settings from 0 to 10, K was either set 
to 100 with NK = 100 or to 32 and NK = 16 

Type 1 error rate  
The type 1 error rate was lowest (0.059) when K = 32 and NN = 64. In 
extreme scenarios (K = 48 and NK = 4), the error rate increased to 0.58.  

Power  
With a between study variance of 6 and K=32 and NK=16 the Q statistic 
reached a power of 80%. In scenario of K = 100 and NK= 100, a power of 
80% was reached with a between study variance of 0.06 

Takkouche 
1999 (16) 

Odds Ratio Q 
LR Scenario’s 

K centers was set to 7, 20 or 40, NK = 5000. interaction effect (variance 
between studies) was set at 0.0, 0.1, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.75, 0.8 or 
0.9. Center size was based on published meta-analysis data and greatly 
varied but did not result in small sample sizes.  

Type 1 error rate  
Generally the type I error rate of the Q-statistic was approximately 0.05, with 
a maximum of 0.055 when K=40. In the same scenario the LR had a type 1 
error rate of 0.32. Overall the LR tests had type 1 error rates below that of 
the Q, which decreased with decreasing K. 

Power  
When the between study variance of effect estimate was 0.25 power was 
38%, the LR was 31%. When the between study variance increased to 0.75 
a power of 100% was reached with a K of 40. In same scenario the power of 
the LR test was 99.9%. 

Lui 2000 
(17) 

Risk Difference Q  
Scenario’s 
Simulations were repeated 10000 times, K centers was set to 8, 16 , 32, 96. 
The number of subjects were center NK set to 4,8, 16,32 or 64, ICC was set 
to 2/5, 1/6 or 1/20.  

Type 1 error rate  
Generally the Q statistics error rate was >0.05. In scenarios of K = 48, ICC = 
1/6 and NK = 4 the type 1 error rate maximized at 0.61. Overall the type 1 
error rate decreased to 0.05 as NK= increases to 64.  

Power  
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Not studied. 

Zhang 
2009 (18) 

Risk difference Q  
Scenario’s 
Simulations were replicated 10000 times, the number of strata K was set to 
8, 16,32 or 48 and NK was set to 4,8, 16, 32, 64 or sample from a uniform 
distribution with 4 and 50 as minimum and maximum. Interaction effect were 
randomly sample from a uniform distribution of 0, 1. Scenarios used to 
determine the empirical power set K to 8 or 32 and NK to 10, 15, 20, 25, 30, 
35 or 40. 

Type 1 error rate  
The Q statistic almost never showed a type 1 error rate <0.05. As the 
number of subjects per strata increased to 32 the type I error rate was 
closest to 0.05. The largest type 1 error rates of 0.09 occurred in scenarios 
with K = 48 and NK = 4, as NK = increased to 64 type 1 error rates decreased 
to 0.05 

Power  
When K was 8 the Q statistic reaches a maximum power of 40% however 
when K = 32, power reached 80% at a NK of 30 and maximized at 85% with 
NK = 40. 

Bagheri 
2011 (19) 

Odds Ratio LR 
BD Scenario’s 

All scenarios were resample 1000 times, the number of subjects per center 
NK was set to 40, 100, 200 and the K centers to 4,6, or 8, center random 
effects was set to 0.1 or 0.5. The treatment by center interaction was set to 
0, 0.2, 0.4, 0.6, and 0.8. Apart from scenarios with equal NK  and balance 
between Nexposed and Nunexposed,, scenarios were created where 
Nexposed:Nunexposed allocated unequally by the ratio 3:1. Finally, among center 
disbalance was created by creating on NK with 5, 7 or 9 times the subjects 
as the other centers.  

Type 1 error rate  
Generally the type 1 error rate of the LR was below 0.05, the lowest error 
rate of 0.29 occurred in scenarios with K = 4 centers, and 0.1 random center 
effect. The type 1 error rate of the LR increased to 0.05 as K increased and 
or the random center effect was set to 0.5. The highest value of 0.59 was 
reached in the scenario where there was within center inequality. The BD 
tests had always had larger type 1 error rates. In scenarios with equal 
sample size or disbalance between treatment arms the BD type 1 error rate 
overshot 0.05 mark as K increased, with a maximum of 0.64 

Power  
The BD test usually had more power than the LR test, this was largest in 
small sample sizes of NK = 40, K = 4 and interaction effect = 0.2. In such 
scenarios power was 13% and 22% for the LR and BD tests. In scenarios of 
NK =200, K = 8 and interaction effect = 0.8 power could be as high as 99% 
and 99,5% for the LR and BD tests. This was not markedly effect by sample 
size balance.  

*We only review the performance of the: Breslow-Day, Tarone, unconditional Score, Cochrane’s Q, log-likelihood ratio, Wald, and 2 
RERI based tests. Strata=K; subjects per stratum=NK; N=total sample size intra class correlation=ICC; Odd Ratio=OR. * All nominal 3 
type 1 error rates were 0.05.   4 

  5 
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Figure a Power of OR based interaction tests based on simulation scenarios C and D. 

N.B. sample size was increased from 50 observations to 2,000. In the bottom part of scenario C and D sample size was fixed 
at 250 observations and the fraction of F11 was increased from 0.05 to 0.25. Thus the relative number of subjects that were 
exposed to both factors increased from 5 present to 25 percent of the total sample size of 250. All simulations were repeated 
10,000 times.
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Figure b Power of RD based interaction tests based on simulation scenarios A and B. 

N.B. sample size was increased from 50 observations to 2,000. In the bottom part of scenario A and B sample size was fixed 
at 250 observations and the fraction of F11 was increased from 0.05 to 0.25. Thus the relative number of subjects that were 
exposed to both factors increased from 5 present to 25 percent of the total sample size of 250. All simulations were repeated 
10,000 times.
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Figure c Power of the RERI based test compared to the Wald test based on simulations using different interaction 
effect sizes.

N.B. In the upper panel sample size was 250, the middle panel shows results based on 500 subjects and the bottom panel 
shows results using 1,000 subjects. All simulations were repeated 10,000 times. 
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Abstract

Objective To determine the comparability of subgroup-specific and interaction effects (differ-

ences between subgroups) between different study designs.  

Study Design and Setting We compared effects of interventions based on observational 

studies, RCTs, and Individual Patient Data Meta-Analyses of RCTs (IPDMAs; reference) on 

three clinical topics: [1] mammography screening and breast cancer mortality; [2] CABG and 

all-cause mortality; [3] statins and incidence of major coronary events. Main, subgroup-spe-

cific, and interaction effects were compared. 

Results Main and subgroup-specific effects were comparable with respect to the direction of 

the effects. Differences in the magnitude of subgroup-specific effects in observational studies 

yielded different interactions compared to IPDMA. In the mammography example the Ratio 

of Risk Ratio’s (RRR) (i.e., interaction effect) among observational studies was 1.46 (95%CI 

1.09;1.96) compared to an IPDMA effect of 1.10 (95%CI 0.89;1.37). For the CABG stud-

ies the observational RRR was 1.03 (95%CI 0.84;1.26), in the IPDMA this was 1.40 (95%CI 

1.08;1.1.81). Finally, in the statin example the RRR was 1.35 (95%CI 1.13;1.61), and 0.90 

(95%CI 0.84;0.97) for observational studies, and IPDMA, respectively.

Conclusion Main and subgroup-specific effects based on observational data were similar to 

main and subgroup-specific effects in IPDMAs based on RCTs, yet interactions differed. 
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Background

Randomized clinical trials (RCTs) are the gold standard to evaluate the effects of medical in-

terventions. Typically, randomized trials provide an estimate of the intervention effect that ap-

plies to the average patient included in the study. However, today’s clinical practice is shifting 

more and more towards individually tailored care. Personalized care requires knowledge on 

the effects of medical interventions at an individual rather than at a patient population level 

(1). Compared to main effect estimates, subgroup analyses move towards a more personal-

ized estimate.

A distinction can be made between subgroup-specific effects (i.e., effects within subgroups 

of patients) and interaction effects (i.e., difference between subgroup-specific effects). When 

exploring subgroups one may stratify the study population, which decreases the sample 

size. Hence, differences in effects between subgroups are more likely to occur simply due to 

chance and therefore it is recommended to perform a formal test of interaction (2;3). Fur-

thermore, if one is interested to test whether effects of medical interventions differ between 

subgroups (i.e., interaction effects) exploring subgroup-specific effects is inappropriate (2;4). 

An individual RCT is often underpowered to detect interaction effects due to sample size con-

straints (4). Alternatively, data from multiple RCTs can be pooled in an Individual Patient Data 

Meta-Analysis (IPDMA) (5;6), in which interaction effects can be evaluated.  Nevertheless, 

conducting an IPDMA, based on RCTs, is not always feasibly. Alternatively, observational 

(i.e., non-randomized) studies, which typically comprise larger sample sizes, can be used 

to explore subgroup effects. Observational data, however, have limitations (7), such as the 

potential for confounding.

Even though numerous techniques and designs have been proposed to control for confound-

ing (8), few can account for unobserved (i.e., unmeasured) confounding. In particular obser-

vational studies of intended effects of interventions are at risk for confounding bias (9-12). 

Moreover, observational studies are also hampered by other problems such as the potential 

for selection and information bias. A related issue is that RCTs tend to include healthier sub-

jects as compared to the general patient population (13). On the other hand, several authors 

showed that high quality observational studies of intended effects often display main effects 

that are comparable with those obtained from RCTs (14-16). 
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Whether observational based (i.e., based on non-randomized data) subgroup-specific and 

interaction effect estimates can also approximate results of RCTs or IPDMA of RCTs remains 

unknown. We therefore conducted a review of three clinical examples, to evaluate the com-

parability of effect estimates obtained from different study designs (e.g., observational, RCT 

and IPDMA). 

Methods 

Search strategy 

IPDMAs were identified using the “IPD Cochrane Methods Group” website (17) and the 

MEDLINE database. IPDMAs were deemed suitable if they: (1) explored subgroups based 

on patient characteristics at baseline; (2) allowed for direct comparison of subgroup-specific 

effects; (3) reported sufficient data to calculate point estimates of the treatment effects with 

confidence intervals (CI); (4) were based on RCTs; and (5) written in English. 

Subsequently we searched for (additional) RCTs and observational papers. First, we sear-

ched MEDLINE and the CENTRAL databases with an adapted search strategy, used by the 

original IPDMAs to also include observational studies (Appendix I). This search was sup-

plemented with a Scopus (18) cross-reference search. We performed this strategy on five 

pre-selected domains: mammography screening in breast cancer mortality, antibiotics in 

rhinosinusitis, antibiotics in acute otitis media, phenytoin in epileptics and carboplatin in ova-

rium cancer survival (19-23). This strategy only yielded enough observational studies for the 

mammography (23) example to facilitate a meaningful comparison.

Additionally, we searched MEDLINE for IPDMAs and systematic reviews that included RCTs 

and/or observational studies. The reference lists of these reviews were searched for rele-

vant publications, which we subsequently retrieved and screened for inclusion. We used 

Scopus to search for additional references. This search resulted in two additional, post hoc, 

examples: CABG vs. PCI on all-cause mortality and statin therapy in the prevention of cardio-

vascular events (24;25). 

RCTs and observational studies were included when they: (1) investigated similar patients, 
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interventions and outcomes as the IPDMA; (2) investigated similar subgroup-specifics, that 

allowed for direct comparison of treatment effects; (3) allowed calculation of point estimates 

and CI of the treatment effects; (4) used a RCT, cohort study or case-control design; and (5) 

were written in English. We deemed an example viable if we found 2 or more observational 

studies that were comparable with the IPDMA. Since a meta-analysis based on individual 

patient data from RCTs allows the researcher to uniformly apply subgroup-specific cut-off 

points, choose similar endpoints and adjustment for confounding when necessary, we consi-

dered IPDMAs as the reference standard (6). To check whether pooled estimates of reported 

studies could approximate IPDMA results, pooled RCT estimates were compared to IPDMA 

estimates (26;27).

Statistical analysis

Extracted data were analyzed using R, version 2.10 for windows (28). When available, we 

used effect measures that were adjusted for baseline covariates.

We used reported effect measure and if necessary calculated subgroup-specific effects 

based on reported data. Effects were reported in risk ratios or rate ratios (RR), hazard ratios 

(HR) (29-32) or odds ratios (OR; for case-control studies), with 95% confidence intervals 

(95%CI). In all cases where ORs or HRs were used, the incidence was ≤10% for both main 

and subgroup-specific outcomes, fulfilling the rare disease assumption (33). Prespecified 

subgroups included age groups (in the examples on mammography screening, and statin 

therapy) and diabetes presence or absence (CABG example). For the observational and 

RCT effects, measures of heterogeneity (Q-statistic (Q), I-squared ( 2I ) and tau-squared (
2τ ) (34)) were calculated and pooled effects were estimated using fixed and random effects 

models. In al three design types, an interaction test was performed. This was done by taking 

the ratio of the stratum specific effects (2). This resulted in a Ratio of Risk Ratios (RRR). 

When RRR=1 there is no interaction effect (i.e., no differences of treatment effect between 

subgroup); RRR<1 indicates a smaller effect of treatment in one subgroup compared to the 

reference group; RRR>1 indicates a larger effect of treatment in one subgroup compared to 

the reference group. To obtain a standard error (s.e.) for the RRR, the square root was taking 

from the sum of the stratum specific variances. For the observational and RCT data, the RRR 

was based on a random effect model. In the results section we state which reference groups 

were used. 
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Results 

Effect of mammography screening by age. 

The IPDMA of Nystrom et al.(23), determined the effects of mass mammography screening 

versus no-screening on breast cancer mortality. To study the effectiveness of mammography 

screening in younger women Nystrom stratified the results by age, <50 years and ≥50 years, 

which resulted in a non-significant interaction test. The data of the IPDMA could be compa-

red with 6 trials (of which 4 were included in the IPDMA ) (35-40) and 6 observational studies 

(one cohort study (41) and five case-control studies (42-46)).The IPDMA included 247 010 

women of whom 1642 died of breast cancer, whereas in the RCTs 392 483 women participa-

ted of whom 1645 died of breast cancer. The observational studies included 233 791 women 

of whom 4498 died of breast cancer. Overall, the included studies were similar regarding the 

intervention, control group and outcome parameter (see Appendix II). 

The pooled main effect of mammography screening on breast cancer mortality (Figure 1) in 

RCTs, IPDMA and observational data were RR=0.77 (95%CI 0.69;0.84), RR=0.85 (95%CI 

0.77;0.93), and RR=0.65 (95%CI 0.54;0.78), respectively. 

When data were stratified by age (women younger than 50 years and 50 years or older) a 

similar pattern was observed (Figure 2). In younger women the effects of mammography 

screening were similar, irrespective of type of study design. In older women, however, the ef-

fect in the individual observational studies was larger than the effect observed in the IPDMA, 

but the direction of effect was in agreement. In the IPDMA, RCTs and observational data, 

the interaction effects (RRR) in young women compared to older women were 1.10 (95%CI 

0.89;1.37), 1.17 (95%CI 0.94;1.47), and 1.46 (95%CI 1.09;1.96), respectively. 

 

Effect of CABG (versus PCI) by diabetes status

Hlatky et al. (25), studied the effect CABG versus Percutaneous Coronary Intervention (PCI) 

on all-cause mortality using an IPDMA (including 10 trials). Hlatky stratified the main effects 

for numerous baseline characteristics including presence of diabetes, which produced a sig-

nificant interaction (p=0.014). 
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Figure 1 Effect of mammography screening on breast cancer mortality, stratified by study design. RR< 1 = protective 
effect of screening.

Figure 2 Effects of mammography screening on breast cancer mortality in strata of younger and older subjects. 

N.B. RR< 1 = protective effect of screening. Extreme values were truncated. 
Interaction effects are the ratio of effect in younger ( <50 years) divided by effect in older (≥50 years) subjects.
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The data of the IPDMA could be compared with 5 trials (47-51) (which were all included in 

the IPDMA ), and 3 observational cohort studies (31;32;52). The IPDMA included 7812 sub-

jects who underwent a CABG or PCI procedure, of whom1203 died. The total sample size of 

the RCTs was 6,087 subjects of whom 807 died. The cohort studies included 23 629 subjects 

of whom 866 died. The number of diabetes patients varied according to study design type: 

6561 (27.76%) in the IPDMA, 5197 (21.99%) in the RCTs and 11 720 (49.60%) in the cohort 

studies. 

The pooled main effects were comparable for the different designs: RR=0.86, 95%CI 

0.79;0.94 (observational studies), RR=0.86, 95%CI 0.72;1.00 (RCTs), and RR=0.92, 95%CI 

0.83;1.02 (IPDMA). See Figure 3. 

Figure 3  Effect of CABG versus PCI on all-cause mortality, stratified by study design. RR< 1 = protective effect of 
CABG.

The effect estimates of CABG (versus. PCI) in the group of non-diabetic patients were similar 

in the cohort studies, the RCTs, and the IPDMA, showing no effect (Figure 4). However, in 

the diabetic patient subgroup the RCTs showed a protective effect, whereas the observation-

al studies showed no effects. This remained after pooling the subgroup-specific effects. The 
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ratio of the effects in non-diabetics compared to diabetics (Figure 4) showed that performing 

CABG (vs. PCI) was more effective in preventing all-cause mortality in diabetics compared 

to non-diabetics: RRR=1.40, 95%CI 1.08;1.81 (in IPDMA). The interaction effect based on 

RCTs (RRR=1.34, 95%CI 0.83;2.17) was comparable to the IPDMA effect, albeit non-sig-

nificant,  whereas the interaction effect based on observational studies (RRR=1.03, 95%CI 

0.84;1.26) was smaller. 

Figure 4 Effects of CABG versus PCI on all-cause mortality in strata of non-diabetics and diabetics. 

N.B. RR< 1 = protective effect of CABG. Extreme values were truncated. Interaction effects are ratio of the effect in non-
diabetics by effect in diabetics.

Effect of statin therapy by age

The Cholesterol Treatment Trialists’ (CTT) Collaborators (24) IPDMA, studied the effect of 

statin therapy versus placebo or an active comparison group on a composite of cardiovas-

cular endpoints (n=14 trials). The IPDMA explored numerous subgroups including a signifi-

cant (p=0.01) interaction by age (≤65/>65) on major coronary events. Since the screened 

RCTs and observational studies mostly reported subgroup-specific effects by age, here we 

focus on this subgroup. The data of the IPDMA could be compared with 6 RCTs (30;53-57) 

(of which 5 were included in the IPDMA), and 4 observational studies (three cohort stud-

ies (29;58;59) and one case-control study(60)). The IPDMA consisted of 90 056 subjects of 

whom 7757 developed the outcome of interest. In the RCTs 70 877 subjects were included of 

whom 8192 developed a major coronary event. The observational studies comprised 50 553 

subjects of whom 22 219 participated in cohort studies and 28 334 in the case-control study; 

2485 cases were included by these studies. The cohort study described by Poluzzi et al.  did 

not report the number of cases for the primary prevention group in which they stratified for 
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age. Heterogeneity in interventions, comparisons and outcomes was large in the  IPDMA, 

RCTs and observational studies. For example, interventions differed in type and dosage of 

statins, age dichotomization ranged from 60 to 70 years, control groups ranged from placebo 

controlled to active comparison in RCTs and from active comparison to adherence to therapy 

in the observational studies (see Appendix II).  

The main effects (RRs) observed in the IPDMA, RCTs, and observational studies were 0.75 

(95%CI 0.72;0.79), 0.79 (95%CI 0.71;0.89), and 0.65 (95%CI 0.53;0.78), respectively (Fig-

ure 5). 

When stratifying the results by age groups and pooling the individual studies, the estimates 

of the RCTs and observational studies were in concordance with the IPDMA (Figure 6). The 

exception to this was the older subgroup in the observational study, in which the effect was 

smaller (but in the same direction) than the effect found in the IPDMA. The interaction effects 

(RRR) in young versus older subjects were 0.90 (95%CI 0.84;0.97), 0.97(95%CI 0.84;1.12), 

and 1.35 (95%CI 1.13;1.61) in IPDMA, RCTs and observational studies, respectively.

Figure 5 Effect of statin therapy on cardiovascular endpoints, stratified by study design. RR < 1 = protective effect of 
statins. 
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Figure 6 Effects of statin therapy on cardiovascular endpoints in strata of younger and older subjects. 

N.B. RR< 1 = protective effect of statins. Extreme values were truncated.  Interaction effects are the ratio of the effect in younger 
subjects (<60 to 70 years) divided by effect in older subjects (>60 to 70 years).

Discussion 

In the three clinical examples that we presented, main and subgroup-specific effects for 

observational studies were in agreement with those found in RCTs and IPDMA. This was not 

the case for interaction effects. In the mammography example, observational studies sho-

wed a significant interaction, whereas RCTs and the IPDMA did not. However, the interaction 

effect was in the same direction. In the other two examples observational based interaction 

effects showed either no effect or an effect in the opposite direction compared to RCTs and 

IPDMAs. 

These results are in agreement with earlier studies which also found comparable main effect 

estimates between RCTs and observational studies (14-16). The novelty of our study is that 

we compared subgroup-specific, as well as interaction effects in IPDMAs, RCTs and obser-

vational studies. We urge readers to be aware that similarity of effects between observational 

and RCT studies is topic specific and depends on the likelihood of measuring all important 

confounders. Because RCTs are not hampered by the potential of unmeasured confoun-

ding, they are typically preferred over observational studies to assess the effects of medical 

interventions. This research showed that, despite the potential of confounding by indication 

and inclusion of potentially different patient populations, main and subgroup-specific effects, 

derived from observational data can, at least in our three examples, resemble IPDMA based 

estimates.
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Our study has several limitations that need to be addressed. An important limitation of our 

study is that we included only three clinical examples. Furthermore, although we tried to 

search systematically in the literature, we may have missed studies. Additionally, we concede 

that requiring our examples to comprise at least two observational studies and two RCT stu-

dies is arbitrarily chosen and increasing this threshold would obviously decrease the number 

of example presented here. It seems highly unlikely, however, that these issues would lead to 

a bias that favours comparability of reported results. 

Second, differences in confounding adjustment and other analytical discrepancies might 

have influenced our results. For example, all RCTs conducted an intention to treat (ITT) 

analysis, whereas most observational studies did not, but conducted an as-treated analysis 

instead. In the mammography example this may have led to a dilution of effects in RCTs, 

compared to the observational studies (61;62). The (TEDBC) (41) observational study analy-

zed their data based on screening versus non-screening center (an analysis more similar to 

ITT) and found no interaction effect, which is in line with the IPDMA. Furthermore, for other 

examples we were unable to extract adjusted subgroup-specific effects (either they were not 

presented adequately or not performed. For example, only the CABG study by Malenka et al. 

(32) reported adjusted subgroup-specific effects. However, they only adjusted for “number of 

diseased coronary arteries”. This may have resulted in a somewhat biased subgroup-specific 

estimate in which it seemed that diabetics, with a higher mortality risk (e.g. morbidity burde-

ned diabetics), were more likely to receive CABG intervention. Similar, in the statin example 

only the Poluzzi (59) cohort study adjusted for confounding in subgroups, for instance by 

using a categorized age variable (<50, 50-65,65-80,>80). However, this does not sufficiently 

exclude residual confounding. In this case, lack of adjustment revealed a healthy user bias, 

where healthy older subjects received, or complied the most with, the strictest drug therapy. 

Third, apart from differences in analyses, factors such as duration of follow-up, comparison 

group treatment and outcome assessment are known reasons for discrepancies between 

studies. Our examples were also harmed by this, follow-up duration ranges were 8.8 to 18 

years in the mammography example, 5.6 to 10.4 years in the CABG example and 0.5 to 8 

years in the statin example. Furthermore, while treatment and outcomes were very similar 

in the mammography and CABG examples (appendix II), in the statin example RCTs used 
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placebo or active comparison groups, whereas observational studies used no or diminished 

treatment adherence as comparator group. 

Fourth, we concede that using IPDMA based on RCTs as a gold standard is not unattested. 

For example RCTs are known to include relatively healthier patients and increase compliance 

towards unrealistic levels, which might be unattainably in clinical practice. Hence estimates of 

treatment effects based on RCTs could overestimate the treatment effects observed in daily 

practice which consequently also results in differences in effect estimates. 

Finally, a different issue is that exploring multiple subgroup-specific and interaction effects 

increases the type 1 error rate. This results in confidence intervals that are smaller than 95% 

and therefore increase the likelihood of finding a false positive result. The impact of multi-

ple testing, however, is unlikely to differ between observational, RCT and IPDMAs. Despite 

above described shortcomings we still found agreement for main and subgroup-specific 

effect across differently designed studies. However, it is possible that using more appropriate 

observational (IPD) data, some of these issues could be solved which in turn might increase 

the similarity between interaction effects based on observational and RCTs studies. 

In conclusion, main and subgroup-specific effects based on reported observational data were 

similar in direction to those from IPDMAs. Interaction effects found in RCTs and IPDMAs 

were also similar. In two examples observational based interaction effects showed different 

direction of effects compared to RCTs and the IPDMA estimates. Similarity of main and sub-

group-specific effects across designs therefore does not imply similarity of interaction effects.
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1

Appendix I Search strategy for the mammography example. 
IPDMA MEDLINE  CENTRAL Combined 
Nystrom 
et al., 
2002I  

(breast neoplasms [MeSH] OR “breast cancer”[tiab] OR 
mammography[MeSH] OR “mammograph*” [tiab])  
 
AND  
 
(mass screening[MeSH] OR “screen*” [tiab] )  
 
AND  
 
(“randomized controlled trial” [tiab] OR “randomized 
clinical trial” [tiab] OR “randomised controlled trial” 
[tiab] OR “randomised clinical trial” [tiab] OR RCT* [tiab] 
OR trial* [tiab] OR observational [tiab] OR retrospective 
[tiab] OR cohort [tiab] OR case-control [tiab] OR 
nonrandomized [tiab]OR nonrandomised [tiab] OR non-
randomized [tiab] OR non-randomised [tiab]) 
 
Results:1490 
 

(“breast neoplasms” 
OR “breast cancer” OR 
mammography OR 
“mammograph*” )  
 
AND (“mass screening” 
OR “screen*”  )  
 
Results:377 

Screened on 
title, abstract 
and full text:  
1468 
 
 
Included 
studies:12 

                                                 
I Search strategy adapted from Gotzsche and Nielsen 2011  



69

Similarity of interaction and subgroup-specific effects

1

A
pp

en
di

x 
II 

B
as

el
in

e 
ch

ar
ac

te
ris

tic
s 

of
 in

cl
ud

ed
 s

tu
di

es
  

St
ud

y 
 

De
si

gn
  

N
 

In
te

rv
en

tio
n 

Co
m

pa
ris

on
 

Su
bg

ro
up

s 
N

 o
f 

va
ria

bl
es

 
ad

ju
st

ed
 fo

r 

N
 o

f v
ar

ia
bl

es
 

ad
ju

st
ed

 fo
r i

n 
st

ra
tif

ie
d 

an
al

ys
es

 

O
ut

co
m

e 

M
am

m
og

ra
ph

y 
st

ud
ie

s 
N

ys
tr

om
   

   
   

   
  

20
02

 
IP

DM
A 

24
70

10
 

M
am

m
og

ra
ph

y 
No

 sc
re

en
in

g 
Ag

e 
(<

50
/≥

50
) 

1 
0 

Br
ea

st
 c

an
ce

r 
de

at
h 

Bj
ur

st
am

   
   

   
   

 
20

03
 

RC
T 

51
61

1 
M

am
m

og
ra

ph
y 

No
 sc

re
en

in
g 

Ag
e 

(<
50

/≥
50

) 
1 

1 
Br

ea
st

 c
an

ce
r 

de
at

h 
Fr

is
el

l  
   

   
   

   
19

97
 

RC
T 

60
26

1 
M

am
m

og
ra

ph
y 

No
 sc

re
en

in
g 

Ag
e 

(<
50

/≥
50

) 
0 

0 
Br

ea
st

 c
an

ce
r 

de
at

h 
Al

ex
an

de
r  

   
   

   
 

19
99

 
RC

T 
44

26
8 

M
am

m
og

ra
ph

y 
an

d 
cl

in
ic

al
 b

re
as

t 
ex

am
in

ca
tio

n 

No
 sc

re
en

in
g 

< 
Ag

e 
(<

50
/≥

50
) 

1 
1 

Br
ea

st
 c

an
ce

r 
de

at
h 

Ta
ba

r  
   

   
   

   
  

19
99

 
RC

T 
13

30
65

 
M

am
m

og
ra

ph
y 

No
 sc

re
en

in
g 

Ag
e 

(<
50

/≥
50

) 
0 

0 
Br

ea
st

 c
an

ce
r 

de
at

h 
Sh

ap
iro

   
   

   
   

  
19

85
 

RC
T 

60
99

5 
M

am
m

og
ra

ph
y 

an
d 

cl
in

ic
al

 b
re

as
t 

ex
am

in
ca

tio
n 

No
 sc

re
en

in
g 

Ag
e 

(<
50

/≥
50

) 
0 

0 
Br

ea
st

 c
an

ce
r 

de
at

h 

An
de

rs
so

n 
   

   
   

   
19

88
 

RC
T 

42
28

3 
  

M
am

m
og

ra
ph

y 
No

 sc
re

en
in

g 
Ag

e 
(<

55
/≥

55
) 

0 
0 

Br
ea

st
 c

an
ce

r 
de

at
h 

TE
DB

C 
19

99
 

Co
ho

rt
 

st
ud

y 
22

24
46

 
M

am
m

og
ra

ph
y 

No
 sc

re
en

in
g 

Ag
e 

(<
50

/≥
50

) 
3 

3 
Br

ea
st

 c
an

ce
r 

de
at

h 
Ro

de
r 2

00
8 

Ca
se

-
co

nt
ro

l 
19

64
 

Pa
rt

ic
ip

at
io

n 
in

 
m

am
m

og
ra

ph
y 

sc
re

en
in

g 
pr

og
ra

m
 

No
t P

ar
tic

ip
at

io
n 

in
 

m
am

m
og

ra
ph

y 
sc

re
en

in
g 

pr
og

ra
m

 

Ag
e 

(<
50

/≥
50

) 
3 

3 
Br

ea
st

 c
an

ce
r 

de
at

h 

El
m

or
e 

   
   

 
20

05
 

Ca
se

-
co

nt
ro

l 
38

52
 

M
am

m
og

ra
ph

y 
+/

-
se

lf 
br

ea
st

 
ex

am
in

at
io

n 

No
 sc

re
en

in
g 

Ag
e 

(<
50

/≥
50

) 
7 

7 
Br

ea
st

 c
an

ce
r 

de
at

h 

Pa
lli

   
   

   
   

 
19

89
 

Ca
se

-
co

nt
ro

l 
61

8 
M

am
m

og
ra

ph
y 

No
 sc

re
en

in
g 

< 
Ag

e 
(<

50
/≥

50
) 

11
 

11
 

Br
ea

st
 c

an
ce

r 
de

at
h 

N
or

m
an

   
   

   
   

   
20

07
 

Ca
se

-
co

nt
ro

l 
45

49
 

M
am

m
og

ra
ph

y 
No

 sc
re

en
in

g 
in

 2
 y

ea
rs

 
pr

io
r t

o 
in

de
xi

ng
 d

at
e 

Ag
e 

(<
50

/≥
50

) 
14

 
14

 
Br

ea
st

 c
an

ce
r 

de
at

h 
Pa

lli
   

   
   

   
 

19
86

 
Ca

se
-

co
nt

ro
l 

34
2 

M
am

m
og

ra
ph

y 
No

 sc
re

en
in

g 
Ag

e 
(<

50
/≥

50
) 

5 
5 

Br
ea

st
 c

an
ce

r 
de

at
h 

CA
BG

 st
ud

ie
s 



70

Chapter 2

2

Hl
at

ky
   

   
   

   
   

20
09

 
IP

DM
A 

78
12

 
CA

BG
 

PC
I 

Di
ab

et
es

 
(y

es
/n

o)
 

0 
0 

M
or

ta
lit

y 

CA
BR

I  
   

   
   

   
  

20
01

 
RC

T 
10

54
 

CA
BG

 
PC

I 
Di

ab
et

es
 

(y
es

/n
o)

 
0 

0 
M

or
ta

lit
y 

BA
RI

   
   

   
   

   
  

20
07

 
RC

T 
18

29
 

CA
BG

 
PC

I 
Di

ab
et

es
 

(y
es

/n
o)

 
0 

0 
M

or
ta

lit
y 

Bo
ot

h 
   

   
   

   
   

20
08

 
RC

T 
98

8 
CA

BG
 

PC
I  

 
Di

ab
et

es
 

(y
es

/n
o)

 
0 

0 
M

or
ta

lit
y 

Se
rr

uy
s 

   
   

   
   

 
20

05
 

RC
T 

12
05

 
CA

BG
 

PC
I 

Di
ab

et
es

 
(y

es
/n

o)
 

0 
0 

M
or

ta
lit

y 

He
nd

er
so

n 
   

   
   

  
19

98
 

RC
T 

10
11

 
CA

BG
 

PC
I 

Di
ab

et
es

 
(y

es
/n

o)
 

0 
0 

M
or

ta
lit

y 

Fe
it 

   
   

   
   

   
 

20
00

 
Co

ho
rt

 
st

ud
y 

18
14

 
CA

BG
 

PC
I 

Di
ab

et
es

 
(y

es
/n

o)
 

14
 

0 
m

or
ta

lit
y 

Dz
av

ik
   

   
   

   
   

20
01

 
Co

ho
rt

 
st

ud
y 

73
22

 
CA

BG
 

PC
I 

Di
ab

et
es

 
(y

es
/n

o)
 

18
 

0 
m

or
ta

lit
y 

M
al

en
ka

   
   

   
   

  
20

05
 

Co
ho

rt
 

st
ud

y 
14

49
3 

CA
BG

 
PC

I 
Di

ab
et

es
 

(y
es

/n
o)

 
11

 
1 

m
or

ta
lit

y 

St
at

in
 st

ud
ie

s 
CT

T 
   

   
   

   
   

  
20

05
 

IP
DM

A 
90

05
6 

St
at

in
s 

Pl
ac

eb
o/

us
ua

l c
ar

e/
no

 
tr

ea
tm

en
t/

ac
tiv

e 
co

m
pa

ris
on

 

Ag
e 

(≤
65

/>
65

) 
0 

0 
CH

D 
de

at
h+

M
I  

  

Se
ve

r  
   

   
   

   
  

20
03

 
RC

T 
10

30
5 

At
or

va
st

at
in

 1
0 

m
g 

  
Pl

ac
eb

o 
Ag

e 
(≤

60
/>

60
) 

0 
0 

CH
D 

de
at

h+
M

I 

SE
AR

CH
   

   
   

   
   

20
10

 
RC

T 
12

06
4 

Si
m

va
st

at
in

 8
0m

g 
Si

m
va

st
at

in
 2

0 
m

g 
Ag

e 
(<

60
/≥

60
) 

0 
0 

CH
D 

de
at

h+
M

I, 
st

ro
ke

, C
AB

G
   

AL
LH

AT
   

   
   

   
   

20
02

 
RC

T 
10

35
5 

Pr
av

as
ta

tin
 4

0 
m

g 
Us

ua
l c

ar
e 

Ag
e 

(<
65

/≥
65

) 
0 

0 
CH

D 
de

at
h+

M
I 

4S
   

   
   

   
   

   
 

19
94

 
RC

T 
44

44
 

Si
m

va
st

at
in

 2
0 

m
g 

Pl
ac

eb
o 

Ag
e 

(<
60

/≥
60

) 
0 

0 
CH

D 
de

at
h+

M
I 

Sa
ck

s  
   

   
   

   
  

19
96

 
RC

T 
41

59
 

Pr
av

as
ta

tin
 4

0 
m

g 
Pl

ac
eb

o 
Ag

e 
(<

60
/≥

60
) 

0 
0 

CH
D 

de
at

h+
M

I+
CA

BG
 

PT
CA

 
Li

pi
d 

   
   

   
   

   
19

98
 

RC
T 

90
14

 
Pr

av
as

ta
tin

 4
0 

m
g 

Pl
ac

eb
o 

Ag
e 

(<
65

/≥
65

) 
0 

0 
CH

D 
de

at
h+

M
I 

He
ar

t  
   

   
   

   
  

20
02

 
RC

T 
20

53
6 

Si
m

va
st

at
in

 4
0 

m
g 

Pl
ac

eb
o 

Ag
e 

(<
65

/≥
65

) 
0 

0 
CH

D 
de

at
h+

M
I 



71

Similarity of interaction and subgroup-specific effects

3

Ar
on

ow
   

   
   

   
   

20
01

 
Co

ho
rt

 
st

ud
y 

20
80

9 
St

at
in

s 
No

 st
at

in
s 

Ag
e 

(<
65

/≥
65

) 
32

 
0 

M
or

ta
lit

y 

Ar
on

ow
   

   
   

   
   

20
02

 
Co

ho
rt

 
st

ud
y 

14
10

 
St

at
in

s 
No

 st
at

in
s 

Ag
e 

(≤
70

/>
70

) 
6 

0 
CH

D 
de

at
h+

M
I 

Po
lu

zz
i 2

01
1 

Co
ho

rt
 

st
ud

y 
48

38
6 

 
≥8

0%
 st

at
in

 
ad

he
re

nc
e 

 
≤8

0%
 st

at
in

 a
dh

er
en

ce
 

Ag
e 

(≤
65

/>
65

 
3 

3 
No

n-
fa

ta
l C

HD
 

ev
en

ts
 

Pe
rr

ea
ul

t 
20

09
 

Ne
st

ed
 

ca
se

-
co

nt
ro

l 

28
33

4 
≥8

0%
 st

at
in

 
ad

he
re

nc
e 

≤2
0%

 st
at

in
 a

dh
er

en
ce

 
Ag

e 
(<

65
/≥

65
) 

8 
un

cl
ea

r 
No

n-
fa

ta
l 

ce
re

br
ov

as
cu

la
r 

ev
en

ts
   

   
 





CHAPTER 3

Increasing efficiency of post-launch RCTs to detect
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Abstract

Background Findings from nonrandomized studies on safety or efficacy of treatment in pa-

tient subgroups may trigger post-launch randomized clinical trials (RCTs). In the analysis of 

such RCTs, results from nonrandomized studies are typically ignored, however incorporating 

prior evidence could increase power of post-launch RCTs. 

Objective To study the trade-off between bias and power of Bayesian RCT analysis when 

incorporating information from nonrandomized studies as prior information.

Methods A simulation study was conducted to compare frequentist with Bayesian analysis 

using non-informative and informative priors. Scenarios were based on a RCT that showed 

that the effect of rosiglitazone on bone fractures is modified by gender: odds ratio (OR) 1.00 

in men, 2.23 in women, and interaction OR of 0.45. Simulations varied in sample size, pro-

portion of women, agreement between nonrandomized and RCT data and the hyperparame-

ter of the prior distributions. 

Results The frequentist and non-informative Bayesian analysis both yielded unbiased effects 

estimates. Results from informative Bayesian analyses were biased, e.g. interaction OR 0.71 

for optimistic prior. However, due to a reduction in posterior variance, power increased from 

44% to 93% when using an optimistic prior. Type 1 error rates were generally around 5%. 

However, when the informative priors were in the opposite direction of the RCT data (e.g., 

interaction OR>1.0 instead of <1.0), type 1 error rates could be 100% and power 0%. 

Conclusion When prior information and interaction effects in the available data are in the 

same direction, Bayesian methods incorporating data from nonrandomized studies can me-

aningfully increase power of interaction tests in post-launch RCTs. 
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Background

Randomized clinical trials (RCTs) are the gold standard to assess effects of interventions 

(e.g., a drug or surgical procedure). An important reason for this is that random allocation of 

treatment prevents confounding. It is well known, however, that RCTs are usually underpo-

wered to detect adverse events or treatment effect modification (i.e., underpowered to detect 

differences in treatment effects between patient subgroups) (1;2). It is therefore possible 

that signals of effect modification or adverse events are only detected after marketing of the 

treatment in post-launch nonrandomized studies (e.g., case-control or cohort studies). Such 

signals might then lead to the initiation of new (subgroup-specific) RCTs in an attempt to pro-

vide more evidence on which patient group benefit most from the treatment. 

An example of treatment effect modification is the effect of the oral antidiabetic drug rosiglita-

zone, a type of thiazolidinedione (TZDs), on bone fractures: rosiglitazone increases the risk 

of bone fractures in women but not in men (3-5) (which was already observed in the pre-

launch RCT). Customarily, post-launch RCTs are analysed without incorporating information 

from nonrandomized studies. On the other hand, including information from nonrandomized 

studies in the analysis of RCTs may decrease the required number of subjects for that trial. 

This may be particularly important in studies of treatment effect modification or adverse ad-

vents, since these typically require considerably more patients than studies exploring avera-

ge treatment effects (1;2). 

The validity of an RCT analysis that incorporates information from nonrandomized studies 

will heavily depend on the quality (i.e., validity) of the latter. With the advent of healthcare 

databases (6) developed specifically for research, like CPRD (www.cprd.com) or PHARMO 

(www.pharmo.nl), the quality of nonrandomized studies may have increased by allowing 

better control for confounders through improved data quality and data analytical techniques, 

more appropriate selection of comparators, and decreased likelihood of loss to follow-up. 

Furthermore, if bias is constant across subgroups this will cancel out when assessing e.g. the 

ratio of treatment effects in two patient subgroups, resulting in correct estimate of interaction. 

For example, assume that the true risk ratio (RR) in men equals 1.00 and 2.00 in women;  

the interaction effect is 1.00/2.00 = 0.50. If both RRs were biased upward by 40% e.g. due 

to confounding, the interaction effect would still be (1.00 * 1.40)/(2.00 * 1.40) = 0.50. Unfor-

tunately, the assumption of equal bias is untestable.  However, even when this assumption 
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is not exactly met, estimates of interaction effects will likely be less biased than main effect 

estimates. Given that most RCTs lack power to detect  interaction effects, and the increased 

potential to adjust for confounding in nonrandomized studies, it might be time to more se-

riously consider combing results from both sources. 

One way of incorporating information from nonrandomized studies in RCT analysis is by 

means of Bayesian statistics (7). Although not the only way to incorporate results from previ-

ous studies, Bayesian methods are intuitively appealing because of their ease of reweighing 

prior knowledge, depending on for example its perceived relevance or validity (8). To explore 

the trade-off between bias and power when including results of nonrandomized studies in 

the analysis of a post-launch RCT, we conducted a simulation study based on the aforemen-

tioned example of effect modification by gender in a study of the adverse effect of rosiglita-

zone on the risk of bone fracture.

Methods

A simulation study was performed. In the following, we first describe the clinical example of 

rosiglitazone use and the risk of hip fracture, which was the starting point for the simulations. 

Second, we describe the classical (frequentist) and Bayesian analyses that were performed 

on the simulated data. Finally, we describe the different parameters that were varied across 

simulations.

Clinical example: rosiglitazone and hip fractures

RCT data were simulated based on the empirical example of the effect of rosiglitazone on 

bone fractures. This effect was modified by gender. Specifically, effect estimates were used 

from a recent meta-analysis (5) of five RCTs comparing TZDs to placebo or an active com-

parator (e.g. metformin) on the risk of bone fractures (Table 1). This meta-analysis used data 

from 11,401 subjects, of whom 346 experienced a bone fracture. Among the 11,401 subjects, 

the male to female ratio was 1.59. The odds ratio (OR) of fracture for TZD in men was 1.00 

(95% confidence interval [95%CI] 0.73 ; 1.39), while the OR in women was 2.23 (95%CI 1.65 

; 3.01), resulting in an interaction effect of 0.45 (95%CI 0.29 ; 0.70). Information from non-

randomized studies was based on a recent individual patient data meta-analysis (IPDMA) by 

Bazelier et.al (3), which included data from three nonrandomized studies comparing TZDs 

to other oral anti-diabetic treatments. In total 1,637,084 patients were included, with a male 
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to female ratio of 1.05, of whom 32,244 experienced a bone fracture during follow-up. This 

IPDMA was used because it presented subgroup-specific effect estimates after confounding 

adjustment: OR 1.05 (95%CI 0.96 ; 1.14) in men, OR 1.44 (95%CI 1.35 ; 1.53) in women, 

and an interaction OR of 1.05/1.44 = 0.73 (95%CI 0.66 ; 0.81).

Statistical analyses

RCTs are typically analysed without taking prior knowledge into account i.e., a frequentist 

approach. This frequentist analysis was considered as the reference. We assumed that the 

gender-specific treatment effects (the natural logarithm of the OR [ ]iy ) were approximately 

normally distributed and Wald based 95%CI were constructed. Here iy  indicates the ln(OR) 

of rosiglitazone in males (i = 1) or females (i = 2) based on the simulated RCT data. Note, 

that the ORs can be interpreted as risk ratios, since the incidence of bone fractures is low 

(<10%) (9). Interaction effects were calculated by dividing the treatment effect among men by 

that among women. The variance in interaction effect was derived by taking the sum of the 

variances 2[ ]is  in gender-specific treatment effect estimates (10). 

Bayesian methods were implemented by combining the above described gender specific 

likelihoods with conjugate (normally distributed) gender-specific priors: 2( , )i iN x t with the hy-

perparameter ix  representing the gender-specific mean ln(OR) of treatment and 2
it  the cor-

responding variance in ix . Given that the variance ( 2
it ) of an OR depends on its mean, we 

assumed this variance to be known and no prior distribution was defined. Since the nonran-

domized IPDMA (3) only reported confounding adjusted effect estimates (ORs) and not the 

absolute fracture risk in different subgroups, we did not use beta-distributions in the Bayesian 

analysis.

Information from nonrandomized studies was incorporated in the prior distribution in different 

1 
 

Table 1 Empirical data on the adverse effect of thiazolidinediones (TZDs) on bone fracture incidence within  
male and female patient subgroups; effects presented as odds ratio and 95% confidence interval*. 

RCT data Nonrandomized data 
 TZDs effects on bone 

fractures 
Interaction effects TZDs effects on bone 

fractures 
Interaction effects 

Subgroup 1(men) 1.00 (0.73; 1.39) 0.45 (0.29; 0.70) 1.05 (0.96; 1.14) 0.73 (0.66; 0.81) 
Subgroup 2(women) 2.23 (1.65; 3.01) Reference 1.44 (1.35; 1.53) Reference 
* The empirical RCT data was used to simulate a new RCT and was combined with prior information based on the 
nonrandomized data. RCT data consisted of 11,401 subjects, of whom 346 experienced a bone fracture; the  
nonrandomized data consisted of 1,637,084 patients of whom 32,244 experienced a bone fracture. Presented RCT 
effect estimates are unadjusted for covariables, while nonrandomized estimates are adjusted for potential confounders. 
Interaction effects are the ratio of the subgroup specific effects and measure how much the treatment effect is modified  
by gender.  
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ways. First, as a reference a non-informative prior was used, with hyperparameters 0ix =  

and 2 610it = . Second, three informative prior distributions were used with different precision 

(i.e., different variance hyperparameters) denoted sceptical, equivalent and optimistic (Figure 

1). For the sceptical prior, a variance hyperparameter 2
it was used that equalled four times 

the variance in ln(OR) of the simulated RCT: 2 2 *4i it s= . The variance hyperparameter of 

the equivalent prior was set equal to the variance in ln(OR) of the simulated RCT: 2 2 *1i it s=

. By setting the variance hyperparameter proportional to variance in the RCT treatment effect 

estimates, the sceptical and equivalent priors prevent the prior information from over influen-

cing the data (11). For the optimistic prior the variance hyperparameter was set to 2 0.027it =

, which was similar to the precision of main effect of original RCT meta-analysis (5).

The hyperparameters of ix  were based on the reported nonrandomized treatment effect 

estimates presented in Table 1. All three informative priors mentioned above (i.e., sceptical, 

equivalent, and optimistic) used the same hyperparameters ix . To reflect the uncertainty in 

this hyperparameter, ix  was set to the point estimates [ln(1.05) in men; ln(1.44) in women], 

the lower bound of the 95%CI [ln(0.96); ln(1.35)] or the upper bound [ln(1.14); ln(1.53)] of the 

gender-specific treatment effects observed in the empirical IPDMA (Table 1). 

Finally, using the previously defined gender-specific likelihoods and priors, the posterior dis-

tribution was estimated using equation 1. 

2 2 2 2
2

2 2 2 2
ˆ ˆˆ~ ,i i i i i i
i i i

i i i i

s x t y s tN
s t s t

θ µ δ
 +

= = + + 

From this posterior distribution the mean ln(OR) and 95% credibility intervals (95%CrI) were 

estimated by the posterior mean ˆiµ  and the 2.5th and 97.5th percentiles. Posterior standard 

deviations for the gender-specific ORs of treatment were estimated by taking the square 

root of 2
îδ ; following frequentist practice this will subsequently be referred to as the standard 

error (SE). The interaction effect was defined as the ratio of the gender-specific treatment ef-

fects, while the variance in interaction effect was estimated by summing the variances of the 

gender-specific treatment effect estimates. 

Simulations 

Based on the described empirical RCT data, a basic simulated RCT scenario was created 
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with gender-specific treatment effects (OR) of 1.00 in men and 2.23 in women resulting in 

an interaction OR of 0.45. To explore the impact of decreasing the RCT sample size, fre-

quentist and Bayesian methods were evaluated for sample sizes of 1,000, 5,000 or 10,000 

subjects for the post launch RCT. Subjects were equally divided between exposure groups 

and between genders. Dichotomous outcome data (bone fracture yes/no) per gender-specific 

subgroup were generated using random draws from a binomial distribution; with the outcome 

incidence in the comparator group set to 0.03 in women and 0.02 in men. All simulations 

were repeated 10,000 times, using the R statistical package for windows version 3.0.2 (12). 

In the basic scenario, the type 1 error rate was explored among males (true OR = 1.00) and 

power was evaluated among females (true OR = 2.23) and for the interaction effect (i.e., 

0.45). To also evaluate type 1 error rates of the interaction effect, additional scenarios were 

created (Table 2). In a second scenario the gender-specific ORs from the RCT were set to 

2.23 in both subgroups, resulting in an interaction OR of 1.00. This represents no interaction 

in the presence of an overall main effect. In the third scenario the gender-specific ORs from 

the RCT were set to 1.00 in both subgroups, which represent the absence of a main, as well 

as an interaction effect. In a fourth scenario we explored the performance of Bayesian analy-

sis of interaction tests when the prior information contradicted the simulated data (OR1=1.00 

and OR2=2.23), by setting the prior hyperparameter     for men to ln(1.35), ln(1.44) or ln(1.53) 

and the prior ln(OR) for women to ln(0.96), ln(1.05) or ln(1.14). Finally, all scenarios were 

repeated with a different gender distribution in the simulated RCT population: 15% women,  

instead of 50%. Table 2 presents an overview of the different scenarios and parameteriza-

tions. 

2 
 

Table 2 Scenarios of a simulation study comparing frequentist to Bayesian analyses of a  
post-launch RCT*. 

Scenario Default (I) II III IV 
Sample size 1,000 

5,000 
10,000 

1,000 
5,000 

10,000 

1,000 
5,000 

10,000 

1,000 
5,000 

10,000 
Simulated OR of treatment in men 1.00 2.23 1.00 1.00 
Simulated OR of treatment in women 2.23 2.23 1.00 2.23 
Prior OR in men 1.05 

0.96 
1.14 

1.05 
0.96 
1.14 

1.05 
0.96 
1.14 

1.44 
1.35 
1.53 

Prior OR of treatment in women 1.44 
1.35 
1.53 

1.44 
1.35 
1.53 

1.44 
1.35 
1.53 

1.05 
0.96 
1.14 

Percentage women included* 50% 50% 50% 50% 
* Note all scenarios were repeated using RCT including only 15% percent women

ix
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Performance of the frequentist and Bayesian analyses were evaluated using power, type I 

error rate and bias. Power is defined as the proportion of times the 95% credibility interval 

(95%CrI) or 95%CI excluded an OR of 1, when there was an effect. The type 1 error rate is 

defined as the proportion of times the 95%CrI or 95%CI excluded an OR of 1, when in fact 

there was no treatment effect. Bias was defined as the mean difference between the true 

treatment effect (Table 1, RCT column) and the estimated treatment effect on the ln scale.

Figure 1. Probability density distributions of simulated RCT data (N = 5,000) and three informative priors. 

The mean OR of the simulated RCT data was 1.00, 2.23 and 0.45 for the rosiglitazone effect in men, women and their 
interaction. For the informative priors the mean OR was set to 1.05, 1.44 and 0.73, based on results from nonrandomized 
studies (see table 1).

Results

In the basic scenario (Table 3), subgroup-specific rosiglitazone effect estimates in men were 

around 1.00, independent of simulated RCT size and the type of analyses. Type 1 error rates 

for the frequentist and non-informative priors were at most 5% and lower for the informa-

tive priors (range: 0; 3%). Subgroup-specific treatment effect estimates in women differed 

between the analytic methods applied and depended on the prior. For example, for a sample 

size of 1,000: non-informative prior (OR = 2.33), sceptical prior (OR = 2.13), equivalent prior 

(OR = 1.83) and optimistic prior (OR = 1.51). Stated otherwise, bias increased by adding 

prior knowledge, and was largest with the optimistic Bayesian analyses (bias range: -0.04; 

0.12). Despite bias towards a neutral effect of 1, power improved by adding prior knowledge. 

For example in a RCT of 1,000 subjects, the power to detect a treatment effect in the sub-

group of females was 40% for the frequentist analysis and between 87% - 100% for Bay-
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esian analysis with an optimistic prior (Table 3). This increase in power was driven by the 

decrease in SE that offset the increase in bias (Table 3). For example, the SE of the inter-

action effect in a RCT of 5,000 subjects was 0.36, 0.36, 0.32, 0.25, and 0,19 for frequentist, 

non-informative prior, sceptical prior, equivalent prior, and optimistic prior, respectively. This 

also translated in an increased power for the interaction test: 62% power for the frequentist 

analysis compared to 83% - 93% using an optimistic prior. Finally, we note that in general the 

point estimates of the OR did not change with increasing RCT sample size. The one excep-

tion being the optimistic prior ORs which changed in the direction of the true treatment effect 

as sample size increased. 

To explore the type 1 error rates of the interaction effect we simulated a RCT where the 

true OR in men as well as in women was 2.23 (i.e., no interaction). Type 1 error rates of the 

frequentist, non-informative prior and sceptical prior interaction tests were ≤ 5% (Table 4). 

Using an equivalent prior, the type 1 error rate could be as high as 10% (N = 10,000), but 

generally the rate was below 5% (N = 5,000 or 1,000). Type 1 error rates as high as 20% 

were found for the Bayesian analyses using optimistic priors. Finally, in scenarios in which 

the main effect was absent (i.e., OR in men and women was 1.00, see Appendix table 1), 

the type 1 error rates of the interaction tests were generally lower, with a maximum of 8% for 

the optimistic prior. 

To assess the impact of incorrectly specifying the prior mean hyperparameter, Bayesian ana-

lyses were performed in which the priors contradicted the RCT, e.g., a prior interaction effect 

of 1.41 compared to the simulated OR of 0.45 (Table 5). As expected, the frequentist and 

non-informative Bayesian analyses showed ORs close to the true values. Informative Bayesi-

an analyses, using for example a sample size of 1,000 subjects, showed ORs in men ranging 

from 1.07 (sceptical prior) to 1.49 (optimistic prior). Similarly, the OR in women ranged from 

2.03 (sceptical prior) to 1.05 (optimistic prior). In the same scenario, interaction effects based 

on informative priors ranged from 0.53 (sceptical prior) to 1.26 (optimistic prior). In these 

cases, power and type 1 error rates were both affected, with observed powers as low as 0% 

(i.e., interaction effect and female subgroup) and type 1 error rates as high as 100% (male 

subgroup). 
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3 
 

Table 3 Results of a simulated RCT exploring subgroup-specific and interaction effects using frequentist and Bayesian 
methods*.  
Simulation  True 

OR 
N = 1,000 N = 5,000 N = 10,000 

OR(SE) % reject Bias OR(SE) % reject Bias OR(SE) % reject Bias 
Men 

1.00 

         
Frequentist 1.00(0.71) 2% 0.00 1.00(0.29) 5% 0.00 1.00(0.21) 5% 0.00 
Non-informative prior 0.99(0.72) 2% -0.01 1.00(0.29) 4% 0.00 1.00(0.21) 5% 0.00 
Sceptical prior: 

 = ln(1.05) 
 = ln(0.96) 
 = ln(1.14)

1.01(0.64) 
0.99(0.64) 
1.02(0.64) 

1% 
1% 
1% 

0.01 
-0.01 
0.02 

1.01(0.26) 
0.99(0.26) 
1.03(0.26) 

2% 
3% 
3% 

0.01 
-0.01 
0.03 

1.01(0.18) 
0.99(0.18) 
1.02(0.18) 

3% 
3% 
3% 

0.01 
-0.01 
0.02 

Equivalent prior: 
 = ln(1.05) 
 = ln(0.96) 
 = ln(1.14)

1.02(0.51) 
0.98(0.51) 
1.06(0.51) 

0% 
0% 
0% 

0.02 
-0.02 
0.06 

1.03(0.21) 
0.98(0.21) 
1.07(0.21) 

0% 
1% 
1% 

0.03 
-0.02 
0.06 

1.02(0.15) 
0.98(0.15) 
1.07(0.15) 

1% 
1% 
2% 

0.02 
-0.02 
0.06 

Optimistic prior: 
 = ln(1.05) 
 = ln(0.96) 
 = ln(1.14)

1.05(0.16) 
0.96(0.16) 
1.13(0.16) 

0% 
0% 
0% 

0.05 
-0.04 
0.12 

1.04(0.14) 
0.97(0.14) 
1.11(0.14) 

0% 
0% 
0% 

0.04 
-0.03 
0.10 

1.03(0.13) 
0.98(0.13) 
1.08(0.13) 

0% 
0% 
2% 

0.03 
-0.03 
0.08 

Women 

2.23 

         
Frequentist 2.32(0.48) 40% 0.04 2.25(0.21) 98% 0.01 2.24(0.15) 100% 0.00 
Non-informative prior 2.33(0.48) 41% 0.05 2.26(0.21) 98% 0.01 2.23(0.15) 100% 0.00 
Sceptical prior: 

 = ln(1.44) 
 = ln(1.35) 
 = ln(1.53)

2.13(0.43) 
2.10(0.43) 
2.14(0.43) 

40% 
38% 
40% 

-0.04 
-0.06 
-0.04 

2.06(0.18) 
2.03(0.18) 
2.08(0.18) 

99% 
99% 
99% 

-0.08 
-0.09 
-0.07 

2.05(0.13) 
2.03(0.13) 
2.07(0.13) 

100% 
100% 
100% 

-0.08 
-0.10 
-0.07 

Equivalent prior: 
 = ln(1.44) 
 = ln(1.35) 
 = ln(1.53)

1.83(0.34) 
1.77(0.34) 
1.89(0.34) 

38% 
33% 
45% 

-0.20 
-0.23 
-0.17 

1.80(0.15) 
1.74(0.15) 
1.86(0.15) 

100% 
100% 
100% 

-0.21 
-0.25 
-0.18 

1.80(0.10) 
1.74(0.10) 
1.85(0.10) 

100% 
100% 
100% 

-0.22 
-0.25 
-0.18 

Optimistic prior: 
 = ln(1.44) 
 = ln(1.35) 
 = ln(1.53)

1.51(0.16) 
1.42(0.16) 
1.59(0.16) 

99% 
87% 

100% 

-0.39 
-0.45 
-0.34 

1.71(0.13) 
1.64(0.13) 
1.77(0.13) 

100% 
100% 
100% 

-0.27 
-0.31 
-0.23 

1.84(0.11) 
1.79(0.11) 
1.89(0.11) 

100% 
100% 
100% 

-0.19 
-0.22 
-0.16 

Interaction 

0.45 

         
Frequentist 0.43(0.87) 16% -0.04 0.44(0.36) 62% -0.01 0.45(0.25) 89% -0.01 
Non-informative prior 0.42(0.87) 16% -0.06 0.44(0.36) 63% -0.01 0.45(0.25) 90% 0.00 
Sceptical prior: 

= ln(0.73)

= ln(0.71)

= ln(0.75)

0.48(0.78) 
0.47(0.78) 
0.48(0.78) 

12% 
12% 
12% 

0.06 
0.05 
0.07 

0.49(0.32) 
0.49(0.32) 
0.49(0.32) 

61% 
62% 
62% 

0.09 
0.08 
0.09 

0.49(0.23) 
0.49(0.23) 
0.49(0.23) 

91% 
91% 
90% 

0.09 
0.09 
0.10 

Equivalent prior: 
= ln(0.73)

= ln(0.71)

= ln(0.75)

0.56(0.62) 
0.55(0.62) 
0.56(0.62) 

6% 
6% 
6% 

0.22 
0.21 
0.22 

0.57(0.25) 
0.56(0.25) 
0.57(0.25) 

65% 
67% 
63% 

0.24 
0.23 
0.25 

0.57(0.18) 
0.56(0.18) 
0.57(0.18) 

95% 
96% 
95% 

0.24 
0.23 
0.25 

Optimistic prior: 
= ln(0.73)

= ln(0.71)

= ln(0.75)

0.70(0.22) 
0.68(0.22) 
0.71(0.22) 

8% 
19% 
3% 

0.44 
0.41 
0.46 

0.61(0.19) 
0.59(0.19) 
0.62(0.19) 

88% 
93% 
83% 

0.31 
0.28 
0.33 

0.56(0.17) 
0.54(0.17) 
0.57(0.17) 

99% 
99% 
98% 

0.22 
0.19 
0.24 

* Women contributed 50% to the overall sample size N. In all simulations Bayesian RCT analysis are compared to a frequentist 
analysis ignoring prior information. Subgroup-specific and interaction effect results are evaluated using the treatment OR, with 
the frequentist estimator reflecting the data likelihood and the Bayesian estimators the mean of the posterior distribution. 
Results were further evaluated using standard errors (SE) or from a Bayesian perspective standard deviations (SD), the 
percentage of times an OR of 1 was excluded by the 95% confidence or credibility interval (% reject). Depending on the true OR 
the % reject should be interpreted as power or type 1 error rate. The non-informative prior is based on a normal distribution with 
a mean hyperparameter of 0 and variance of 10^6; the equivalent prior is based on a normal distribution with the reported ln OR 

and variance hyperparameter  equal to the simulated data; the sceptical prior uses the same mean and variance 
hyperparameters only now multiplying the variance by 4; the optimistic prior again uses the same point estimates from 
nonrandomized data but now uses a variance of 0.027 for each subgroup. All simulation results are based on 10,000 
repetitions. 
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4 
 

Table 4 Results of a simulated RCT exploring subgroup-specific and interaction effects using frequentist and Bayesian 
methods in the presence of an interaction effect of 1.00*.  
Simulation  True 

OR 
N = 1,000 N = 5,000 N = 10,000 

OR(SE) % reject Bias OR(SE) % reject Bias OR(SE) % reject Bias 
Men 

2.23 

         
Frequentist 2.36(0.60) 28% 0.06 2.25(0.25) 91% 0.01 2.24(0.18) 100% 0.00 
Non-informative prior 2.34(0.60) 27% 0.05 2.26(0.25) 92% 0.01 2.24(0.18) 100% 0.01 
Sceptical prior: 

 = ln(1.05) 
 = ln(0.96) 
 = ln(1.14)

2.01(0.54) 
1.98(0.54) 
2.04(0.53) 

17% 
17% 
19% 

-0.10 
-0.12 
-0.09 

1.95(0.22) 
1.90(0.22) 
1.96(0.22) 

89% 
87% 
90% 

-0.14 
-0.16 
-0.13 

1.93(0.16) 
1.89(0.16) 
1.96(0.16) 

99% 
100% 
100% 

-0.15 
-0.17 
-0.13 

Equivalent prior: 
 = ln(1.05) 
 = ln(0.96) 
 = ln(1.14)

1.57(0.42) 
1.51(0.42) 
1.63(0.42) 

3% 
2% 
5% 

-0.35 
-0.39 
-0.31 

1.54(0.18) 
1.47(0.18) 
1.60(0.18) 

78% 
63% 
86% 

-0.37 
-0.42 
-0.33 

1.54(0.12) 
1.47(0.12) 
1.60(0.12) 

99% 
96% 

100% 

-0.37 
-0.42 
-0.33 

Optimistic prior: 
 = ln(1.05) 
 = ln(0.96) 
 = ln(1.14)

1.11(0.16) 
1.02(0.16) 
1.19(0.16) 

0% 
0% 
0% 

-0.70 
-0.78 
-0.62 

1.32(0.14) 
1.24(0.14) 
1.39(0.14) 

57% 
18% 
84% 

-0.53 
-0.59 
-0.47 

1.49(0.12) 
1.42(0.12) 
1.56(0.12) 

99% 
95% 

100% 

-0.40 
-0.45 
-0.36 

Women 

2.23 

         
Frequentist 2.32(0.48) 40% 0.04 2.25(0.21) 98% 0.01 2.24(0.15) 100% 0.01 
Non-informative prior 2.32(0.48) 41% 0.04 2.25(0.21) 98% 0.01 2.24(0.15) 100% 0.00 
Sceptical prior: 

 = ln(1.44) 
 = ln(1.35) 
 = ln(1.53)

2.12(0.43) 
2.07(0.43) 
2.13(0.43) 

39% 
37% 
40% 

-0.05 
-0.07 
-0.04 

2.05(0.18) 
2.03(0.18) 
2.08(0.18) 

99% 
99% 
99% 

-0.08 
-0.09 
-0.07 

2.05(0.13) 
2.02(0.13) 
2.08(0.13) 

100% 
100% 
100% 

-0.08 
-0.10 
-0.07 

Equivalent prior: 
 = ln(1.44) 
 = ln(1.35) 
 = ln(1.53)

1.83(0.34) 
1.77(0.34) 
1.88(0.34) 

39% 
32% 
44% 

-0.20 
-0.23 
-0.17 

1.80(0.15) 
1.74(0.15) 
1.85(0.15) 

100% 
100% 
100% 

-0.21 
-0.25 
-0.19 

1.80(0.10) 
1.74(0.10) 
1.85(0.10) 

100% 
100% 
100% 

-0.22 
-0.25 
-0.19 

Optimistic prior: 
 = ln(1.44) 
 = ln(1.35) 
 = ln(1.53)

1.51(0.16) 
1.42(0.16) 
1.59(0.16) 

98% 
86% 

100% 

-0.39 
-0.45 
-0.34 

1.71(0.13) 
1.64(0.13) 
1.77(0.13) 

100% 
100% 
100% 

-0.27 
-0.31 
-0.23 

1.84(0.11) 
1.79(0.11) 
1.89(0.11) 

100% 
100% 
100% 

-0.19 
-0.22 
-0.16 

Interaction 

1.00 

         
Frequentist 1.02(0.77) 4% -0.01 1.00(0.33) 5% 0.00 1.00(0.23) 5% 0.00 
Non-informative prior 1.01(0.77) 4% -0.01 1.01(0.33) 5% -0.01 1.00(0.23) 5% 0.00 
Sceptical prior: 

= ln(0.73)

= ln(0.71)

= ln(0.75)

0.95(0.69) 
0.95(0.69) 
0.96(0.69) 

2% 
2% 
2% 

-0.07 
-0.06 
-0.07 

0.95(0.29) 
0.94(0.29) 
0.94(0.29) 

3% 
4% 
4% 

-0.05 
-0.06 
-0.06 

0.94(0.20) 
0.93(0.20) 
0.94(0.20) 

4% 
4% 
4% 

-0.06 
-0.07 
-0.06 

Equivalent prior: 
= ln(0.73)

= ln(0.71)

= ln(0.75)

0.86(0.55) 
0.85(0.55) 
0.87(0.55) 

1% 
1% 
1% 

-0.15 
-0.17 
-0.15 

0.86(0.23) 
0.84(0.23) 
0.87(0.23) 

4% 
4% 
3% 

-0.15 
-0.17 
-0.14 

0.86(0.16) 
0.84(0.16) 
0.86(0.16) 

9% 
10% 
7% 

-0.16 
-0.17 
-0.15 

Optimistic prior: 
= ln(0.73)

= ln(0.71)

= ln(0.75)

0.74(0.22) 
0.72(0.22) 
0.75(0.22) 

1% 
3% 
0% 

-0.30 
-0.32 
-0.28 

0.77(0.19) 
0.76(0.19) 
0.79(0.19) 

13% 
17% 
9% 

-0.26 
-0.28 
-0.24 

0.81(0.16) 
0.79(0.16) 
0.82(0.16) 

15% 
20% 
12% 

-0.21 
-0.23 
-0.19 

* Women contributed 50% to the overall sample size N.. In all simulations Bayesian RCT analysis are compared to a frequentist 
analysis ignoring prior information. Subgroup-specific and interaction effect results are evaluated using the treatment OR, with 
the frequentist estimator reflecting the data likelihood and the Bayesian estimators the mean of the posterior distribution. 
Results were further evaluated using standard errors (SE) or from a Bayesian perspective standard deviations (SD), the 
percentage of times an OR of 1 was excluded by the 95% confidence or credibility interval (% reject). Depending on the true OR 
the % reject should be interpreted as power or type 1 error rate. The non-informative prior is based on a normal distribution with 
a mean hyperparameter of 0 and variance of 10^6; the equivalent prior is based on a normal distribution with the reported ln OR 

and variance hyperparameter  equal to the simulated data; the sceptical prior uses the same mean and variance 
hyperparameters only now multiplying the variance by 4; the optimistic prior again uses the same point estimates from 
nonrandomized data but now uses a variance of 0.027 for each subgroup. All simulation results are based on 10,000 
repetitions. 
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Table 5 Results of a simulated RCT exploring subgroup-specific and interaction effects using frequentist and Bayesian 
methods showing the impact of misspecified priors*. 
Simulation True 

OR 
N = 1,000 N = 5,000 N = 10,000 

OR(SE) % reject Bias OR(SE) % reject Bias OR(SE) % reject Bias 
Men  

1.00 

         
Frequentist 0.99(0.72) 2% -0.01 1.00(0.29) 5% -0.01 1.00(0.21) 5% 0.00 
Non-informative prior 1.00(0.72) 2% 0.00 1.00(0.29) 5% 0.00 1.00(0.21) 4% 0.00 
Sceptical prior: 

 = ln(1.44) 
 = ln(1.35) 
 = ln(1.53)

1.08(0.64) 
1.07(0.64) 
1.08(0.64) 

1% 
1% 
1% 

0.07 
0.07 
0.08 

1.08(0.26) 
1.06(0.26) 
1.09(0.26) 

4% 
3% 
3% 

0.07 
0.07 
0.08 

1.07(0.18) 
1.06(0.18) 
1.09(0.18) 

4% 
4% 
5% 

0.07 
0.06 
0.08 

Equivalent prior: 
 = ln(1.44) 
 = ln(1.35) 
 = ln(1.53)

1.19(0.51) 
1.16(0.51) 
1.24(0.51) 

0% 
0% 
0% 

0.18 
0.15 
0.22 

1.20(0.21) 
1.16(0.21) 
1.23(0.21) 

6% 
4% 
9% 

0.18 
0.15 
0.22 

1.20(0.15) 
1.16(0.15) 
1.24(0.15) 

16% 
9% 
24% 

0.18 
0.15 
0.21 

Optimistic prior: 
 = ln(1.44) 
 = ln(1.35) 
 = ln(1.53)

1.41(0.16) 
1.33(0.16) 
1.49(0.16) 

82% 
21% 

100% 

0.34 
0.28 
0.40 

1.32(0.14) 
1.26(0.14) 
1.38(0.14) 

47% 
22% 
73% 

0.34 
0.28 
0.40 

1.25(0.13) 
1.20(0.13) 
1.30(0.13) 

36% 
20% 
54% 

0.22 
0.18 
0.26 

Women  

2.23 

         
Frequentist 2.34(0.49) 41% 0.05 2.25(0.21) 98% 0.01 2.24(0.15) 100% 0.00 
Non-informative prior 2.30(0.48) 40% 0.03 2.25(0.21) 98% 0.01 2.24(0.15) 100% 0.00 
Sceptical prior: 

 = ln(1.05) 
 = ln(0.96) 
 = ln(1.14)

1.98(0.43) 
1.96(0.43) 
2.03(0.43) 

31% 
30% 
34% 

-0.12 
-0.13 
-0.09 

1.93(0.18) 
1.89(0.18) 
1.97(0.18) 

97% 
96% 
98% 

-0.14 
-0.16 
-0.13 

1.92(0.13) 
1.89(0.13) 
1.96(0.13) 

100% 
100% 
100% 

-0.15 
-0.17 
-0.13 

Equivalent prior: 
 = ln(1.05) 
 = ln(0.96) 
 = ln(1.14)

1.57(0.34) 
1.50(0.34) 
1.63(0.34) 

13% 
8% 
18% 

-0.35 
-0.40 
-0.31 

1.54(0.15) 
1.47(0.15) 
1.60(0.15) 

93% 
86% 
98% 

-0.37 
-0.42 
-0.33 

1.53(0.10) 
1.47(0.10) 
1.60(0.10) 

100% 
100% 
100% 

-0.37 
-0.42 
-0.33 

Optimistic prior: 
 = ln(1.05) 
 = ln(0.96) 
 = ln(1.14)

1.14(0.16) 
1.05(0.16) 
1.22(0.16) 

0% 
0% 
0% 

-0.67 
-0.75 
-0.60 

1.41(0.13) 
1.33(0.13) 
1.48(0.13) 

91% 
72% 
97% 

-0.46 
-0.51 
-0.41 

1.60(0.11) 
1.54(0.11) 
1.66(0.11) 

100% 
100% 
100% 

-0.33 
-0.37 
-0.29 

Interaction 

0.45 

         
Frequentist 0.42(0.87) 16% -0.06 0.44(0.36) 62% -0.01 0.45(0.25) 89% 0.00 
Non-informative prior 0.43(0.87) 15% -0.03 0.45(0.36) 62% -0.01 0.45(0.25) 89% 0.00 
Sceptical prior: 

= ln(1.37)

= ln(1.41)

= ln(1.34)

0.55(0.78) 
0.55(0.78) 
0.53(0.78) 

8% 
8% 
8% 

0.20 
0.20 
0.17 

0.56(0.32) 
0.56(0.32) 
0.55(0.32) 

44% 
43% 
45% 

0.22 
0.22 
0.21 

0.56(0.23) 
0.56(0.23) 
0.56(0.23) 

76% 
75% 
77% 

0.22 
0.22 
0.22 

Equivalent prior: 
= ln(1.37)

= ln(1.41)

= ln(1.34)

0.76(0.62) 
0.78(0.62) 
0.76(0.61) 

1% 
0% 
1% 

0.53 
0.55 
0.53 

0.78(0.25) 
0.79(0.25) 
0.77(0.25) 

8% 
7% 
9% 

0.56 
0.57 
0.54 

0.78(0.18) 
0.79(0.18) 
0.78(0.18) 

21% 
17% 
22% 

0.56 
0.57 
0.55 

Optimistic prior: 
= ln(1.37)

= ln(1.41)

= ln(1.34)

1.24(0.22) 
1.26(0.22) 
1.22(0.22) 

0% 
0% 
0% 

1.02 
1.04 
1.00 

0.94(0.19) 
0.94(0.19) 
0.93(0.19) 

0% 
0% 
0% 

0.74 
0.74 
0.73 

0.78(0.17) 
0.78(0.17) 
0.78(0.17) 

23% 
22% 
23% 

0.55 
0.55 
0.55 

* Women contributed 50% to the overall sample size N. In all simulations Bayesian RCT analysis are compared to a frequentist 
analysis ignoring prior information. Subgroup-specific and interaction effect results are evaluated using the treatment OR, with 
the frequentist estimator reflecting the data likelihood and the Bayesian estimators the mean of the posterior distribution. 
Results were further evaluated using standard errors (SE) or from a Bayesian perspective standard deviations (SD), the 
percentage of times an OR of 1 was excluded by the 95% confidence or credibility interval (% reject). Depending on the true OR 
the % reject should be interpreted as power or type 1 error rate. The non-informative prior is based on a normal distribution with 
a mean hyperparameter of 0 and variance of 10^6; the equivalent prior is based on a normal distribution with the reported ln OR 

and variance hyperparameter  equal to the simulated data; the sceptical prior uses the same mean and variance 
hyperparameters only now multiplying the variance by 4; the optimistic prior again uses the same point estimates from 
nonrandomized data but now uses a variance of 0.027 for each subgroup. All simulation results are based on 10,000 
repetitions. 
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Table 6 Results of a simulated RCT exploring subgroup-specific and interaction effects using frequentist and Bayesian 
methods showing the impact of disbalance in gender subgroup sizes*.  
Simulation  True 

OR 
N = 1,000 N = 5,000 N = 10,000 

OR(SE) % reject Bias OR(SE) % reject Bias OR(SE) % reject Bias 
Men 

1.00 

         
Frequentist 1.00(0.53) 4% 0.00 1.00(0.22) 5% 0.00 1.00(0.16) 5% 0.00 
Non-informative prior 1.00(0.53) 4% 0.00 1.00(0.22) 5% 0.00 1.00(0.16) 5% 0.00 
Sceptical prior: 

 = ln(1.05) 
 = ln(0.96) 
 = ln(1.14)

1.01(0.47) 
1.00(0.47) 
1.02(0.47) 

2% 
2% 
2% 

0.01 
0.00 
0.03 

1.01(0.20) 
0.99(0.20) 
1.02(0.20) 

3% 
3% 
3% 

0.01 
-0.01 
0.02 

1.01(0.14) 
0.99(0.14) 
1.03(0.14) 

3% 
3% 
3% 

0.01 
-0.01 
0.02 

Equivalent prior: 
 = ln(1.05) 
 = ln(0.96) 
 = ln(1.14)

1.03(0.37) 
0.98(0.37) 
1.07(0.37) 

0% 
0% 
0% 

0.02 
-0.02 
0.06 

1.02(0.16) 
0.98(0.16) 
1.07(0.16) 

1% 
1% 
1% 

0.02 
-0.02 
0.07 

1.03(0.11) 
0.98(0.11) 
1.07(0.11) 

1% 
1% 
3% 

0.02 
-0.02 
0.07 

Optimistic prior: 
 = ln(1.05) 
 = ln(0.96) 
 = ln(1.14)

1.04(0.16) 
0.96(0.16) 
1.13(0.16) 

0% 
0% 
0% 

0.04 
-0.04 
0.12 

1.03(0.13) 
0.97(0.13) 
1.09(0.13) 

0% 
0% 
1% 

0.03 
-0.03 
0.09 

1.02(0.11) 
0.98(0.11) 
1.07(0.11) 

1% 
1% 
2% 

0.02 
-0.02 
0.06 

Women 

2.23 

         
Frequentist 2.07(0.91) 4% -0.07 2.28(0.39) 58% 0.02 2.26(0.27) 88% 0.01 
Non-informative prior 2.06(0.91) 4% -0.08 2.30(0.39) 59% 0.03 2.26(0.27) 88% 0.01 
Sceptical prior: 

 = ln(1.44) 
 = ln(1.35) 
 = ln(1.53)

1.92(0.81) 
1.92(0.81) 
1.95(0.81) 

2% 
2% 
2% 

-0.15 
-0.15 
-0.13 

2.08(0.35) 
2.05(0.35) 
2.11(0.35) 

60% 
57% 
61% 

-0.07 
-0.08 
-0.06 

2.06(0.24) 
2.03(0.24) 
2.09(0.24) 

90% 
89% 
92% 

-0.08 
-0.09 
-0.07 

Equivalent prior: 
 = ln(1.44) 
 = ln(1.35) 
 = ln(1.53)

1.72(0.64) 
1.67(0.64) 
1.78(0.64) 

0% 
0% 
1% 

-0.26 
-0.29 
-0.23 

1.81(0.27) 
1.76(0.27) 
1.87(0.27) 

65% 
59% 
72% 

-0.21 
-0.24 
-0.17 

1.81(0.19) 
1.75(0.19) 
1.86(0.19) 

97% 
94% 
98% 

-0.21 
-0.24 
-0.18 

Optimistic prior: 
 = ln(1.44) 
 = ln(1.35) 
 = ln(1.53)

1.45(0.16) 
1.37(0.16) 
1.54(0.16) 

99% 
49% 

100% 

-0.43 
-0.49 
-0.37 

1.54(0.15) 
1.46(0.15) 
1.62(0.15) 

99% 
93% 

100% 

-0.37 
-0.43 
-0.32 

1.62(0.14) 
1.55(0.14) 
1.70(0.14) 

100% 
99% 

100% 

-0.32 
-0.37 
-0.27 

Interaction

0.45 

         
Frequentist 0.48(1.05) 6% 0.08 0.44(0.45) 45% -0.03 0.44(0.31) 76% -0.01 
Non-informative prior 0.49(1.05) 6% 0.08 0.44(0.45) 46% -0.03 0.44(0.31) 76% -0.02 
Sceptical prior: 

= ln(0.73)

= ln(0.71)

= ln(0.75)

0.53(0.94) 
0.52(0.94) 
0.53(0.94) 

3% 
3% 
3% 

0.17 
0.15 
0.16 

0.48(0.40) 
0.48(0.40) 
0.49(0.40) 

43% 
43% 
42% 

0.08 
0.07 
0.08 

0.49(0.28) 
0.49(0.28) 
0.49(0.28) 

76% 
77% 
77% 

0.09 
0.08 
0.09 

Equivalent prior: 
= ln(0.73)

= ln(0.71)

= ln(0.75)

0.59(0.74) 
0.59(0.74) 
0.60(0.74) 

1% 
1% 
1% 

0.28 
0.27 
0.29 

0.56(0.32) 
0.56(0.32) 
0.57(0.32) 

41% 
44% 
38% 

0.23 
0.21 
0.24 

0.57(0.22) 
0.56(0.22) 
0.57(0.22) 

83% 
84% 
80% 

0.24 
0.22 
0.25 

Optimistic prior: 
= ln(0.73)

= ln(0.71)

= ln(0.75)

0.72(0.22) 
0.71(0.22) 
0.73(0.22) 

1% 
3% 
0% 

0.47 
0.45 
0.49 

0.67(0.20) 
0.67(0.20) 
0.67(0.20) 

53% 
54% 
52% 

0.40 
0.40 
0.40 

0.63(0.18) 
0.63(0.18) 
0.63(0.18) 

85% 
85% 
86% 

0.34 
0.34 
0.34 

* Women contributed 15% to the overall sample size N. In all simulations Bayesian RCT analysis are compared to a frequentist analysis 
ignoring prior information. Subgroup-specific and interaction effect results are evaluated using the treatment OR, with the frequentist 
estimator reflecting the data likelihood and the Bayesian estimators the mean of the posterior distribution. Results were further evaluated 
using standard errors (SE) or from a Bayesian perspective standard deviations (SD), the percentage of times an OR of 1 was excluded by the 
95% confidence or credibility interval (% reject). Depending on the true OR the % reject should be interpreted as power or type 1 error rate. 
The non-informative prior is based on a normal distribution with a mean hyperparameter of 0 and variance of 10^6; the equivalent prior is 
based on a normal distribution with the reported ln OR and variance hyperparameter  equal to the simulated data; the sceptical prior 
uses the same mean and variance hyperparameters only now multiplying the variance by 4; the optimistic prior again uses the same point 
estimates from nonrandomized data but now uses a variance of 0.027 for each subgroup. All simulation results are based on 10,000 
repetitions. 
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In scenarios in which 15% of the RCT sample were female, ,Bayesian analysis using in-

formative priors outperformed the frequentist and non-informative prior analyses regarding 

power and type 1 error rate (Table 6). However, this difference between frequentist and 

informative Bayesian results was smaller than in the scenarios of equally sized subgroups. 

For example, in a sample size of 10,000 subjects, power of interaction tests was 85-86% 

using an optimistic prior and 76% using the non-informative prior. Type 1 error rates of the 

interaction tests in the presence of a main effect were always lower than the frequentist and 

non-informative prior analyses (which was 5%) (Appendix table 2). When there was no 

main effect and no interaction effect, type 1 error rates were similarly low, except for analyses 

using an optimistic prior; which had error rates up to 20% (Appendix table 3). In the scena-

rios in which the hyperparameters were in the opposite direction of the simulated data, power 

of the informative prior analysis was lower than that of a frequentist or non-informative analy-

sis (Appendix table 4). For example, in a RCT of 10,000 subjects, power was 1% using an 

optimistic prior and 75% using a frequentist analysis. 

Discussion

In this proof of principle study we showed that incorporating prior knowledge using Bayesian 

analysis of a post-launch RCT increases the power to detect interaction effects at the cost 

of increasing bias. For example, in one of our simulations (Table 3, N  = 5,000) the power 

of the interaction test was 62% when using a frequentist approach compared to a power of 

83% - 93% when using a Bayesian approach. This at the cost of bias between 0.28 and 0.33 

(Bayesian analysis) compared to an unbiased estimate when using a frequentist approach. 

Alternatively phrased, to gain a similar power (62%) as the frequentist analysis, the Bayesian 

method required 22% - 48% less patients (i.e., 3,914 - 2,586 subjects instead of 5,000 sub-

jects). This increase in power (or decrease in sample size) is clearly relevant for the detection 

of treatment effect modification and adverse events, for which RCTs are notoriously underpo-

wered. 

Previous research on Bayesian RCT analyses (7;13;14), some also focussing on effect modi-

fication (15-17), showed that non-informative priors could be used to guard against multiplic-

ity. However, up till now none have focussed on incorporating nonrandomized study results of 

treatment effect modification as prior information for Bayesian analysis of RCT data. 
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Our study has several limitations. First, in all simulations, estimates from RCT data were con-

sidered the true treatment effect. Therefore, it should be no surprise that bias increased by 

adding prior information. In practice RCT estimates do not necessarily equal the true causal 

effect of treatment (18-20). However, due to the limitations of nonrandomized designs (nota-

bly confounding), RCTs seem to provide the most reliable approximation of the true treatment 

effect. Given that patients within subgroups are likely to be more similar, one might expect 

comparable subgroup-specific estimates from RCTs and nonrandomized studies. However, 

previously we showed that such similarity is very topic specific and small differences in sub-

group-specific treatment estimates can cause interaction effects in opposing directions (21). 

Second, Bayesian analysis of RCTs was evaluated based on power and type 1 error. These 

metrics are usually exclusive to frequentist analyses following the Neyman-Pearson perspec-

tive. However, given that at completion of a post-launch RCT decisions may have to be made 

on continued market access, e.g., by a drug regulatory agencies such as EMA of FDA, we 

feel that these metrics are relevant (22;23). 

Third, Bayesian analyses have been criticized for basing prior information on subjective 

sources such as expert opinion. This study partly solved this using nonrandomized study 

results as prior information. However, there is still subjectivity about which nonrandomized 

studies to include. Similarly, weighing (i.e., the variance estimate) of the prior information is 

still subjective in such settings. Our study used three different informative priors (sceptical, 

equivalent and optimistic), which differed in variance hyperparameters. The sceptical and 

equivalent priors kept the variance hyperparameters proportional to the variances of the RCT 

effect estimates in order to prevent the prior from over influencing the data. At the same time, 

however, they also prevented the data from overwhelming the prior. Thus when the prior 

distributions do not equal the data likelihood distributions, analyses using these priors can 

never result in the true effect estimates (again assuming that the RCT estimate represents 

the truth). 

Finally, it might seem inappropriate to combine information from nonrandomized studies with 

RCT data, because the results of RCTs are typically of higher quality. However, it also seems 

inappropriate to exclude information simply because treatment was not randomly allocated, 

especially in studies of adverse events (24-26). A more inclusive view on interventional re-
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search seems sensible. Researchers should not only focus on RCTs, but include all available 

information from RCT and nonrandomized studies, and explore if and why results differ be-

tween designs (24-26). Following this inclusive strategy it seems obvious to include Bayesian 

methods for RCT analysis. This allows for a transparent way to weight the prior knowledge 

against the perceived chance of bias/validity.

Based on our study results we recommend the following. First, we showed that Bayes-

ian RCT analyses, using informative priors, can increase power at the cost of an increase 

in bias. This trade-off between power and bias might be acceptable for interaction effects, 

because the power of interaction tests is notoriously limited (27). Second, when designing a 

RCT we suggest that if one is confident about the direction of an effect, an informative prior 

based on nonrandomized studies might be used. This will result in a decrease in the number 

of patients needed in the post-launch RCT, reduce costs and in posterior effect estimates 

reflecting all available (non-conflicting) evidence. In designing such a Bayesian post-launch 

RCT, similar to the more familiar sample size calculation, we suggest researchers to use sim-

ulations to gain insight in how the prior knowledge may influence the posterior distribution. 

If, after data collection, the RCT data unexpectedly contradict the prior distribution, the use 

of informative priors seems inappropriate. Our simulations showed a large increase in type 

1 error rate and almost meaningless power. However, instead of simply ignoring the nonran-

domized study results, as is current practice, we feel that in such settings it is essential to 

discuss and explore why RCTs and prior information differed. To be meaningful this discus-

sion should go beyond a statement on the hierarchy of study design and the known short-

comings of nonrandomized studies (most notably potential for confounding). The possibility 

that the data and the prior information disagree might seem a shortcoming of Bayesian RCT 

analyses, but we feel that when the data contradict the prior information further research is 

needed. Because Bayesian methods will emphasize such contradictory findings and fuel the 

need for additional research, we see this as a virtue rather than a shortcoming. 

Specifically in the Bayesian analysis of adverse events, it seems important to take in to ac-

count the type of adverse event (A or B) (28;29) when deciding on the hyperparameters of 

the informative prior. Type A adverse events result from the primary mechanism of action of 

the intervention, therefore confounding by indication seems more likely and this should be 

reflected in the prior distribution. However, for type B adverse events the underlying mecha-
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nism is often unknown, thus decreasing the potential for confounding. While initiating a RCT 

to study adverse events (notably type B) seems unlikely because of the huge sample size 

required, pooling results from completed RCTs and nonrandomized studies appears highly 

advisable.

In conclusion, Bayesian analysis of post-launch RCTs using informative priors will likely bias 

estimates of treatment effects. However, when the prior information and the expected RCT 

results are in the same direction the decrease in variance can lead to relatively higher power 

of the Bayesian analysis with an acceptable degree of bias. This trade-off between power 

and bias might be acceptable for interaction effects because most RCTs only have limited 

power to detect these effects. 
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Appendix table 1 Results of a simulated RCT exploring subgroup-specific and interaction effects using frequentist and 
Bayesian methods in the presence of subgroup-specific and interaction effects of 1.00*. 
Simulation  True  

OR 
N = 1,000 N = 5,000 N = 10,000 

OR(SE) % reject Bias OR(SE) % reject Bias OR(SE) % reject Bias
Men 

1.00 

         
Frequentist 0.99(0.71) 2% -0.01 1.00(0.29) 5% 0.00 1.00(0.21) 5% 0.00 
Non-informative prior 0.99(0.71) 2% -0.01 1.01(0.29) 5% 0.01 1.00(0.21) 5% 0.00 
Sceptical prior: 

 = ln(1.05) 
 = ln(0.96) 
 = ln(1.14)

1.01(0.64) 
0.99(0.64) 
1.02(0.64) 

0% 
0% 
0% 

0.01 
-0.01 
0.02 

1.01(0.26) 
0.99(0.26) 
1.03(0.26) 

2% 
3% 
3% 

0.01 
-0.01 
0.03 

1.01(0.18) 
0.99(0.18) 
1.03(0.18) 

3% 
3% 
3% 

0.01 
-0.01 
0.03 

Equivalent prior: 
 = ln(1.05) 
 = ln(0.96) 
 = ln(1.14)

1.03(0.51) 
0.98(0.50) 
1.07(0.51) 

0% 
0% 
0% 

0.03 
-0.02 
0.07 

1.02(0.21) 
0.98(0.21) 
1.07(0.21) 

0% 
1% 
1% 

0.02 
-0.02 
0.06 

1.02(0.15) 
0.98(0.15) 
1.07(0.15) 

1% 
1% 
2% 

0.02 
-0.02 
0.07 

Optimistic prior: 
 = ln(1.05) 
 = ln(0.96) 
 = ln(1.14)

1.05(0.16) 
0.96(0.16) 
1.13(0.16) 

0% 
0% 
0% 

0.05 
-0.04 
0.12 

1.04(0.14) 
0.97(0.14) 
1.10(0.14) 

0% 
0% 
0% 

0.04 
-0.03 
0.10 

1.03(0.13) 
0.97(0.13) 
1.08(0.13) 

0% 
0% 
1% 

0.03 
-0.03 
0.08 

Women

1.00 

Frequentist 1.01(0.57) 3% 0.01 1.00(0.24) 5% 0.00 1.00(0.17) 5% 0.00
Non-informative prior 1.00(0.57) 3% 0.00 1.00(0.24) 4% 0.00 1.00(0.17) 5% 0.00 
Sceptical prior: 

 = ln(1.44) 
 = ln(1.35) 
 = ln(1.53)

1.08(0.51) 
1.05(0.51) 
1.09(0.51) 

1% 
1% 
2% 

0.08 
0.05 
0.09 

1.07(0.22) 
1.06(0.22) 
1.09(0.22) 

4% 
4% 
4% 

0.07 
0.06 
0.08 

1.08(0.15) 
1.06(0.15) 
1.09(0.15) 

5% 
4% 
6% 

0.07 
0.06 
0.09 

Equivalent prior: 
 = ln(1.44) 
 = ln(1.35) 
 = ln(1.53)

1.20(0.41) 
1.17(0.40) 
1.24(0.40) 

1% 
0% 
1% 

0.18 
0.15 
0.21 

1.20(0.17) 
1.16(0.17) 
1.23(0.17) 

10% 
6% 
15% 

0.18 
0.15 
0.21 

1.20(0.12) 
1.16(0.12) 
1.24(0.12) 

27% 
16% 
40% 

0.18 
0.15 
0.21 

Optimistic prior: 
 = ln(1.44) 
 = ln(1.35) 
 = ln(1.53)

1.40(0.16) 
1.32(0.16) 
1.48(0.16) 

72% 
24% 
98% 

0.33 
0.28 
0.39 

1.28(0.14) 
1.22(0.14) 
1.34(0.14) 

41% 
21% 
62% 

0.25 
0.20 
0.29 

1.21(0.12) 
1.17(0.12) 
1.24(0.12) 

30% 
17% 
44% 

0.19 
0.15 
0.22 

Interaction

1.00 

         
Frequentist 0.99(0.92) 3% -0.01 1.00(0.38) 5% 0.00 1.00(0.27) 5% 0.00 
Non-informative prior 0.99(0.92) 3% -0.01 1.01(0.38) 5% 0.01 1.00(0.27) 5% 0.00 
Sceptical prior: 

= ln(0.73)

= ln(0.71)

= ln(0.75)

0.93(0.83) 
0.94(0.82) 
0.93(0.83) 

2% 
2% 
2% 

-0.07 
-0.06 
-0.07 

0.94(0.34) 
0.93(0.34) 
0.94(0.34) 

3% 
3% 
3% 

-0.07 
-0.07 
-0.06 

0.94(0.24) 
0.93(0.24) 
0.94(0.24) 

3% 
3% 
4% 

-0.07 
-0.07 
-0.06 

Equivalent prior: 
= ln(0.73)

= ln(0.71)

= ln(0.75)

0.86(0.66) 
0.84(0.65) 
0.86(0.65) 

0% 
0% 
0% 

-0.15 
-0.17 
-0.15 

0.85(0.27) 
0.84(0.27) 
0.86(0.27) 

3% 
3% 
2% 

-0.16 
-0.17 
-0.15 

0.85(0.19) 
0.84(0.19) 
0.86(0.19) 

6% 
7% 
5% 

-0.16 
-0.17 
-0.15 

Optimistic prior: 
= ln(0.73)

= ln(0.71)

= ln(0.75)

0.75(0.22) 
0.73(0.22) 
0.77(0.22) 

0% 
1% 
0% 

-0.29 
-0.31 
-0.27 

0.81(0.20) 
0.79(0.20) 
0.83(0.20) 

4% 
7% 
3% 

-0.21 
-0.23 
-0.19 

0.85(0.17) 
0.84(0.17) 
0.87(0.17) 

6% 
8% 
4% 

-0.16 
-0.18 
-0.14 

* Women contributed 50% to the overall sample size N. In all simulations Bayesian RCT analysis are compared to a frequentist 
analysis ignoring prior information. Subgroup-specific and interaction effect results are evaluated using the treatment OR, with the 
frequentist estimator reflecting the data likelihood and the Bayesian estimators the mean of the posterior distribution. Results were 
further evaluated using standard errors (SE) or from a Bayesian perspective standard deviations (SD), the percentage of times an 
OR of 1 was excluded by the 95% confidence or credibility interval (% reject). Depending on the true OR the % reject should be 
interpreted as power or type 1 error rate. The non-informative prior is based on a normal distribution with a mean hyperparameter of 
0 and variance of 10^6; the equivalent prior is based on a normal distribution with the reported ln OR and variance hyperparameter 

 equal to the simulated data; the sceptical prior uses the same mean and variance hyperparameters only now multiplying the 
variance by 4; the optimistic prior again uses the same point estimates from nonrandomized data but now uses a variance of 0.027 
for each subgroup. All simulation results are based on 10,000 repetitions.
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Appendix table 2 Results of a simulated RCT exploring subgroup-specific and interaction effects using frequentist and 
Bayesian methods showing the impact of disbalance in gender subgroup sizes in the presence an interaction effect of 
1.00*. 
Simulation  True 

OR 
N = 1,000 N = 5,000 N = 10,000 

OR(SE) % reject Bias OR(SE) % reject Bias OR(SE) % reject Bias 
Men

2.23 

Frequentist 2.34(0.45) 48% 0.05 2.24(0.19) 99% 0.01 2.24(0.13) 100% 0.00 
Non-informative prior 2.31(0.45) 47% 0.04 2.24(0.19) 99% 0.01 2.24(0.13) 100% 0.00 
Sceptical prior: 

 = ln(1.05) 
 = ln(0.96) 
 = ln(1.14)

1.97(0.40) 
1.94(0.40) 
2.03(0.40) 

38% 
35% 
41% 

-0.12 
-0.14 
-0.10 

1.93(0.17) 
1.89(0.17) 
1.96(0.17) 

99% 
98% 
99% 

-0.15 
-0.17 
-0.13 

1.92(0.12) 
1.89(0.12) 
1.96(0.12) 

100% 
100% 
100% 

-0.15 
-0.17 
-0.13 

Equivalent prior: 
 = ln(1.05) 
 = ln(0.96) 
 = ln(1.14)

1.56(0.31) 
1.49(0.31) 
1.63(0.31) 

17% 
11% 
24% 

-0.36 
-0.40 
-0.31 

1.54(0.14) 
1.47(0.14) 
1.60(0.14) 

97% 
91% 
99% 

-0.37 
-0.42 
-0.33 

1.53(0.10) 
1.47(0.10) 
1.60(0.10) 

100% 
100% 
100% 

-0.38 
-0.42 
-0.33 

Optimistic prior: 
 = ln(1.05) 
 = ln(0.96) 
 = ln(1.14)

1.15(0.15) 
1.06(0.15) 
1.24(0.15) 

0% 
0% 
1% 

-0.66 
-0.74 
-0.59 

1.45(0.12) 
1.37(0.12) 
1.52(0.12) 

96% 
86% 
99% 

-0.43 
-0.49 
-0.39 

1.65(0.10) 
1.59(0.10) 
1.70(0.10 

99% 
95% 

100% 

-0.30 
-0.34 
-0.27 

Women 

2.23 

         
Frequentist 2.05(0.90) 4% -0.09 2.31(0.39) 60% 0.01 2.27(0.27) 88% 0.02 
Non-informative prior 2.07(0.90) 4% -0.08 2.30(0.39) 58% 0.01 2.26(0.27) 88% 0.01 
Sceptical prior: 

 = ln(1.44) 
 = ln(1.35) 
 = ln(1.53)

1.91(0.81) 
1.88(0.81) 
1.93(0.81) 

2% 
2% 
3% 

-0.15 
-0.17 
-0.14 

2.09(0.35) 
2.07(0.35) 
2.13(0.35) 

60% 
58% 
62% 

-0.08 
-0.09 
-0.07 

2.06(0.24) 
2.04(0.24) 
2.10(0.24) 

91% 
89% 
92% 

-0.08 
-0.09 
-0.06 

Equivalent prior: 
 = ln(1.44) 
 = ln(1.35) 
 = ln(1.53)

1.72(0.64) 
1.67(0.64) 
1.79(0.64) 

0% 
0% 
1% 

-0.26 
-0.29 
-0.22 

1.81(0.27) 
1.76(0.27) 
1.87(0.27) 

66% 
58% 
72% 

-0.21 
-0.25 
-0.19 

1.80(0.19) 
1.75(0.19) 
1.86(0.19) 

96% 
94% 
98% 

-0.22 
-0.24 
-0.18 

Optimistic prior: 
 = ln(1.44) 
 = ln(1.35) 
 = ln(1.53)

1.45(0.16) 
1.37(0.16) 
1.54(0.16) 

99% 
49% 

100% 

-0.43 
-0.49 
-0.37 

1.54(0.15) 
1.46(0.15) 
1.62(0.15) 

99% 
94% 

100% 

-0.27 
-0.31 
-0.23 

1.62(0.14) 
1.55(0.14) 
1.69(0.14) 

100% 
99% 

100% 

-0.32 
-0.37 
-0.28 

Interaction

2.23 

         
Frequentist 1.15(1.01) 3% 0.14 0.97(0.43) 5% -0.03 0.99(0.30) 5% -0.01
Non-informative prior 1.12(1.01) 2% 0.11 0.98(0.43) 5% -0.03 0.99(0.30) 5% -0.01
Sceptical prior: 

= ln(0.73)

= ln(0.71)

= ln(0.75)

1.03(0.91) 
1.03(0.91) 
1.05(0.91) 

1% 
1% 
1% 

0.03 
0.03 
0.05 

0.92(0.39) 
0.91(0.39) 
0.92(0.39) 

3% 
3% 
3% 

-0.08 
-0.09 
-0.08 

0.93(0.27) 
0.93(0.27) 
0.93(0.27) 

3% 
3% 
3% 

-0.07 
-0.07 
-0.07 

Equivalent prior: 
= ln(0.73)

= ln(0.71)

= ln(0.75)

0.91(0.72) 
0.89(0.72) 
0.91(0.72) 

0% 
0% 
0% 

-0.10 
-0.12 
-0.09 

0.85(0.31) 
0.84(0.31) 
0.85(0.31) 

1% 
1% 
1% 

-0.17 
-0.18 
-0.16 

0.85(0.21) 
0.84(0.21) 
0.86(0.21) 

3% 
4% 
3% 

-0.16 
-0.18 
-0.15 

Optimistic prior: 
= ln(0.73)

= ln(0.71)

= ln(0.75)

0.79(0.22) 
0.78(0.22) 
0.80(0.22) 

0% 
0% 
0% 

-0.23 
-0.25 
-0.22 

0.94(0.20) 
0.94(0.20) 
0.94(0.20) 

0% 
0% 
0% 

-0.06 
-0.06 
-0.07 

1.02(0.17) 
1.03(0.17) 
1.01(0.17) 

0% 
0% 
0% 

0.02 
0.03 
0.01 

* Women contributed 15% to the overall sample size N. In all simulations Bayesian RCT analysis are compared to a frequentist 
analysis ignoring prior information. Subgroup-specific and interaction effect results are evaluated using the treatment OR, with the 
frequentist estimator reflecting the data likelihood and the Bayesian estimators the mean of the posterior distribution. Results were 
further evaluated using standard errors (SE) or from a Bayesian perspective standard deviations (SD), the percentage of times an 
OR of 1 was excluded by the 95% confidence or credibility interval (% reject). Depending on the true OR the % reject should be 
interpreted as power or type 1 error rate. The non-informative prior is based on a normal distribution with a mean hyperparameter of 
0 and variance of 10^6; the equivalent prior is based on a normal distribution with the reported ln OR and variance hyperparameter 

 equal to the simulated data; the sceptical prior uses the same mean and variance hyperparameters only now multiplying the 
variance by 4; the optimistic prior again uses the same point estimates from nonrandomized data but now uses a variance of 0.027 
for each subgroup. All simulation results are based on 10,000 repetitions.  
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Appendix table 3 Results of a simulated RCT exploring subgroup-specific and interaction effects using frequentist and 
Bayesian methods showing the impact of disbalance in gender subgroup sizes in the presence of subgroup-specific and 
interaction effects of 1.00*. 
Simulation  True 

OR
N = 1,000 N = 5,000 N = 10,000 

OR(SE) % reject Bias OR(SE) % reject Bias OR(SE) % reject Bias
Men

1.00 

Frequentist 1.00(0.53) 3% 0.00 1.00(0.22) 5% 0.00 1.00(0.16) 5% 0.00 
Non-informative prior 1.00(0.53) 4% 0.00 1.00(0.22) 5% 0.00 1.00(0.16) 5% 0.00 
Sceptical prior: 

 = ln(1.05) 
 = ln(0.96) 
 = ln(1.14)

1.01(0.47) 
0.98(0.47) 
1.03(0.47) 

1% 
2% 
2% 

0.01 
-0.02 
0.03 

1.01(0.20) 
0.99(0.20) 
1.03(0.20) 

2% 
2% 
3% 

0.01 
-0.01 
0.02 

1.01(0.14) 
0.99(0.14) 
1.03(0.14) 

3% 
3% 
3% 

0.01 
-0.01 
0.03 

Equivalent prior: 
 = ln(1.05) 
 = ln(0.96) 
 = ln(1.14)

1.03(0.37) 
0.98(0.37) 
1.07(0.37) 

0% 
0% 
0% 

0.02 
-0.02 
0.07 

1.03(0.16) 
0.98(0.16) 
1.07(0.16) 

1% 
1% 
1% 

0.02 
-0.02 
0.07 

1.02(0.11) 
0.98(0.11) 
1.07(0.11) 

1% 
1% 
3% 

0.02 
-0.02 
0.07 

Optimistic prior: 
 = ln(1.05) 
 = ln(0.96) 
 = ln(1.14)

1.05(0.16) 
0.96(0.16) 
1.13(0.16) 

0% 
0% 
0% 

0.04 
-0.04 
0.12 

1.03(0.13) 
0.97(0.13) 
1.09(0.13) 

0% 
0% 
1% 

0.03 
-0.03 
0.08 

1.02(0.11) 
0.98(0.11) 
1.06(0.11) 

1% 
1% 
2% 

0.02 
-0.02 
0.06 

Women 

1.00 

         
Frequentist 1.02(1.04) 0% 0.02 1.00(0.45) 4% 0.00 1.00(0.31) 4% 0.00 
Non-informative prior 1.00(1.04) 0% 0.00 1.01(0.45) 4% 0.01 1.00(0.31) 5% 0.00 
Sceptical prior: 

 = ln(1.44) 
 = ln(1.35) 
 = ln(1.53)

1.07(0.93) 
1.06(0.93) 
1.10(0.93) 

0% 
0% 
0% 

0.07 
0.06 
0.10 

1.07(0.41) 
1.06(0.41) 
1.09(0.41) 

2% 
2% 
3% 

0.07 
0.06 
0.09 

1.08(0.28) 
1.06(0.28) 
1.09(0.28) 

3% 
3% 
4% 

0.07 
0.06 
0.08 

Equivalent prior: 
 = ln(1.44) 
 = ln(1.35) 
 = ln(1.53)

1.21(0.73) 
1.17(0.74) 
1.24(0.74) 

0% 
0% 
0% 

0.19 
0.15 
0.22 

1.20(0.32) 
1.16(0.32) 
1.24(0.32) 

2% 
1% 
3% 

0.18 
0.15 
0.21 

1.20(0.22) 
1.16(0.22) 
1.24(0.22) 

5% 
3% 
8% 

0.18 
0.15 
0.21 

Optimistic prior: 
 = ln(1.44) 
 = ln(1.35) 
 = ln(1.53)

1.43(0.16) 
1.34(0.16) 
1.51(0.16) 

97% 
10% 

100% 

0.35 
0.29 
0.41 

1.38(0.15) 
1.30(0.15) 
1.46(0.15) 

63% 
24% 
93% 

0.32 
0.26 
0.38 

1.33(0.15) 
1.26(0.15) 
1.39(0.15) 

50% 
23% 
76% 

0.28 
0.23 
0.33 

Interaction

1.00 

         
Frequentist 0.99(1.18) 1% -0.01 1.00(0.51) 5% 0.00 1.00(0.35) 5% 0.00 
Non-informative prior 1.01(1.17) 1% 0.01 0.99(0.51) 4% -0.01 1.01(0.35) 5% 0.01 
Sceptical prior: 

= ln(0.73)

= ln(0.71)

= ln(0.75)

0.94(1.05) 
0.93(1.05) 
0.94(1.05) 

0% 
0% 
0% 

-0.06 
-0.08 
-0.07 

0.94(0.45) 
0.93(0.45) 
0.94(0.45) 

3% 
3% 
3% 

-0.06 
-0.07 
-0.06 

0.94(0.31) 
0.94(0.31) 
0.94(0.31) 

3% 
3% 
3% 

-0.06 
-0.07 
-0.06 

Equivalent prior: 
= ln(0.73)

= ln(0.71)

= ln(0.75)

0.85(0.83) 
0.84(0.83) 
0.86(0.83) 

0% 
0% 
0% 

-0.16 
-0.18 
-0.15 

0.86(0.36) 
0.84(0.36) 
0.86(0.36) 

1% 
1% 
1% 

-0.16 
-0.17 
-0.15 

0.85(0.25) 
0.84(0.25) 
0.86(0.25) 

3% 
3% 
3% 

-0.16 
-0.17 
-0.15 

Optimistic prior: 
= ln(0.73)

= ln(0.71)

= ln(0.75)

0.73(0.23) 
0.72(0.23) 
0.74(0.23) 

0% 
1% 
0% 

-0.31 
-0.33 
-0.30 

0.75(0.20) 
0.75(0.20) 
0.75(0.20) 

12% 
12% 
13% 

-0.29 
-0.29 
-0.29 

0.77(0.18) 
0.78(0.18) 
0.76(0.18) 

17% 
15% 
20% 

-0.26 
-0.25 
-0.27 

* Women contributed 15% to the overall sample size N. In all simulations Bayesian RCT analysis are compared to a frequentist 
analysis ignoring prior information. Subgroup-specific and interaction effect results are evaluated using the treatment OR, with the 
frequentist estimator reflecting the data likelihood and the Bayesian estimators the mean of the posterior distribution. Results were 
further evaluated using standard errors (SE) or from a Bayesian perspective standard deviations (SD), the percentage of times an 
OR of 1 was excluded by the 95% confidence or credibility interval (% reject). Depending on the true OR the % reject should be 
interpreted as power or type 1 error rate. The non-informative prior is based on a normal distribution with a mean hyperparameter of 
0 and variance of 10^6; the equivalent prior is based on a normal distribution with the reported ln OR and variance hyperparameter 

 equal to the simulated data; the sceptical prior uses the same mean and variance hyperparameters only now multiplying the 
variance by 4; the optimistic prior again uses the same point estimates from nonrandomized data but now uses a variance of 0.027 
for each subgroup. All simulation results are based on 10,000 repetitions. 
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Appendix table 4 Results of a simulated RCT exploring subgroup-specific and interaction effects using frequentist and 
Bayesian methods showing the impact of misspecified priors and disbalance in gender subgroup sizes*. 
Simulation True 

OR
N = 1,000 N = 5,000 N = 10,000 

OR(SE) % reject Bias OR(SE) % reject Bias OR(SE) % reject Bias
Men

1.00 

Frequentist 1.00(0.53) 4% 0.00 1.00(0.22) 5% 0.00 1.00(0.16) 5% 0.00 
Non-informative prior 1.00(0.53) 4% 0.00 1.00(0.22) 5% 0.00 1.00(0.16) 5% 0.00 
Sceptical prior: 

 = ln(1.44) 
 = ln(1.35) 
 = ln(1.53)

1.07(0.47) 
1.06(0.47) 
1.09(0.47) 

2% 
2% 
2% 

0.07 
0.06 
0.08 

1.07(0.20) 
1.06(0.20) 
1.09(0.20) 

4% 
4% 
5% 

0.07 
0.06 
0.08 

1.08(0.14) 
1.06(0.14) 
1.09(0.14) 

5% 
5% 
6% 

0.07 
0.06 
0.09 

Equivalent prior: 
 = ln(1.44) 
 = ln(1.35) 
 = ln(1.53)

1.20(0.37) 
1.16(0.37) 
1.24(0.37) 

1% 
1% 
1% 

0.18 
0.15 
0.22 

1.20(0.16) 
1.16(0.16) 
1.24(0.16) 

13% 
7% 
19% 

0.18 
0.15 
0.21 

1.20(0.11) 
1.16(0.11) 
1.24(0.11) 

33% 
19% 
47% 

0.18 
0.15 
0.21 

Optimistic prior: 
 = ln(1.44) 
 = ln(1.35) 
 = ln(1.53)

1.39(0.16) 
1.31(0.16) 
1.47(0.16) 

68% 
24% 
97% 

0.33 
0.27 
0.39 

1.27(0.13) 
1.21(0.13) 
1.32(0.13) 

39% 
20% 
59% 

0.24 
0.19 
0.28 

1.19(0.11) 
1.15(0.11) 
1.22(0.11) 

28% 
17% 
40% 

0.18 
0.14 
0.20 

Women  

2.23 

         
Frequentist 2.06(0.90) 4% -0.08 2.30(0.39) 59% 0.03 2.26(0.27) 88% 0.01 
Non-informative prior 2.08(0.90) 4% -0.07 2.31(0.39) 59% 0.04 2.27(0.27) 88% 0.02 
Sceptical prior: 

 = ln(1.05) 
 = ln(0.96) 
 = ln(1.14)

1.79(0.81) 
1.74(0.81) 
1.83(0.81) 

2% 
1% 
2% 

-0.22 
-0.25 
-0.20 

1.97(0.35) 
1.92(0.35) 
2.00(0.35) 

50% 
47% 
53% 

-0.13 
-0.15 
-0.11 

1.94(0.24) 
1.90(0.24) 
1.97(0.24) 

84% 
82% 
85% 

-0.14 
-0.16 
-0.12 

Equivalent prior: 
 = ln(1.05) 
 = ln(0.96) 
 = ln(1.14)

1.47(0.64) 
1.40(0.64) 
1.54(0.64) 

0% 
0% 
0% 

-0.42 
-0.46 
-0.37 

1.55(0.27) 
1.49(0.27) 
1.62(0.27) 

28% 
20% 
38% 

-0.36 
-0.40 
-0.32 

1.54(0.19) 
1.47(0.19) 
1.60(0.19) 

70% 
55% 
80% 

-0.37 
-0.41 
-0.33 

Optimistic prior: 
 = ln(1.05) 
 = ln(0.96) 
 = ln(1.14)

1.07(0.16) 
0.98(0.16) 
1.16(0.16) 

0% 
0% 
0% 

-0.73 
-0.82 
-0.65 

1.18(0.15) 
1.09(0.15) 
1.26(0.15) 

0% 
0% 
8% 

-0.64 
-0.71 
-0.57 

1.29(0.14) 
1.21(0.14) 
1.37(0.14) 

39% 
6% 
76% 

-0.55 
-0.61 
-0.49 

Interaction 

0.45 

         
Frequentist 0.49(1.05) 6% 0.08 0.43(0.45) 46% -0.03 0.44(0.31) 75% -0.01 
Non-informative prior 0.48(1.05) 6% 0.06 0.43(0.45) 46% -0.04 0.44(0.31) 76% -0.02 
Sceptical prior: 

= ln(1.37)

= ln(1.41)

= ln(1.34)

0.60(0.94) 
0.61(0.94) 
0.60(0.94) 

2% 
2% 
2% 

0.29 
0.31 
0.28 

0.55(0.40) 
0.55(0.40) 
0.54(0.40) 

29% 
29% 
29% 

0.20 
0.21 
0.19 

0.55(0.28) 
0.56(0.28) 
0.55(0.28) 

57% 
57% 
58% 

0.21 
0.22 
0.21 

Equivalent prior: 
= ln(1.37)

= ln(1.41)

= ln(1.34)

0.82(0.74) 
0.83(0.75) 
0.80(0.74) 

0% 
0% 
0% 

0.60 
0.61 
0.58 

0.77(0.32) 
0.78(0.32) 
0.76(0.32) 

4% 
3% 
4% 

0.54 
0.55 
0.53 

0.78(0.22) 
0.79(0.22) 
0.77(0.22) 

10% 
9% 
12% 

0.55 
0.56 
0.54 

Optimistic prior: 
= ln(1.37)

= ln(1.41)

= ln(1.34)

1.30(0.22) 
1.34(0.22) 
1.27(0.22) 

0% 
1% 
0% 

1.06 
1.09 
1.04 

1.07(0.20) 
1.11(0.20) 
1.04(0.20) 

0% 
0% 
0% 

0.87 
0.91 
0.85 

0.92(0.18) 
0.95(0.18) 
0.89(0.18) 

0% 
0% 
1% 

0.72 
0.76 
0.69 

* Women contributed 15% to the overall sample size N. In all simulations Bayesian RCT analysis are compared to a frequentist 
analysis ignoring prior information. Subgroup-specific and interaction effect results are evaluated using the treatment OR, with the 
frequentist estimator reflecting the data likelihood and the Bayesian estimators the mean of the posterior distribution. Results were 
further evaluated using standard errors (SE) or from a Bayesian perspective standard deviations (SD), the percentage of times an 
OR of 1 was excluded by the 95% confidence or credibility interval (% reject). Depending on the true OR the % reject should be 
interpreted as power or type 1 error rate. The non-informative prior is based on a normal distribution with a mean hyperparameter of 
0 and variance of 10^6; the equivalent prior is based on a normal distribution with the reported ln OR and variance hyperparameter 

 equal to the simulated data; the sceptical prior uses the same mean and variance hyperparameters only now multiplying the 
variance by 4; the optimistic prior again uses the same point estimates from nonrandomized data but now uses a variance of 0.027 
for each subgroup. All simulation results are based on 10,000 repetitions. 
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Abstract

Recently an aggregated data meta-analysis showed that serum alkaline phosphatase (SALP) 

and proximal humerus location are predictors for shorter survival in canine osteosarcoma. 

To identify additional prognostic factors of mortality and metastasis an individual patient data 

meta-analysis (IPDMA) was conducted. Individual patient data from 20 studies, identified via 

the VSSO society, were pooled. Univariable and multivariable hazard ratios (HR) for metasta-

sis and mortality were assessed, using stratified Cox models. The study included 1405 dogs 

who received surgical treatment, of which the metastasis status was measured in 1155 dogs 

and mortality status in 1336 dogs, median survival was 256 days. High versus normal SALP 

and weight (kg) were associated with an increase in hazard of metastasis [HR 1.34 (95%CI 

1.07; 1.68) and HR 1.02 (per kg increase) (95%CI 1.01; 1.03)] and for mortality [HR 1.43 

(95%CI 1.16; 1.77) and HR 1.02 (95%CI 1.01; 1.02)]. Distal radius tumor was associated 

with a lower hazard of metastasis compared to other locations: HR 0.75 (95%CI 0.58; 0.96). 

Proximal humerus and distal femur or proximal tibia location were related with an increased 

mortality: HR 1.53 (95%CI 1.26; 1.84) and HR 1.23 (95%CI 1.01; 1.49) compared to other 

locations. Older age (years) was associated with a higher  hazard for mortality [HR 1.06 per 

year (95%CI 1.03; 1.09)] but not for metastasis: HR 1.03 (95%CI 0.99; 1.06). These results 

confirm findings from a recent aggregated data meta-analysis and (in addition) showed that 

tumor location, SALP, weight were prognostic factors for both mortality and metastasis. Age 

was a prognostic factor for mortality but not for metastasis. 
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Introduction

Osteosarcoma (OS) is a malignant tumor of mesenchymal origin that produces osteoid. Simi-

larities between human and canine OS are striking and include the bimodal age distribution, 

the high incidence of morbidity and mortality, the site of the tumor, histologic features and the 

response to the various treatment modalities (1;2). The biggest difference is that OS is much 

more common in dogs than in people. The majority of canine primary bone tumors can be 

classified as OS, which predominantly occurs in large and giant breeds (3-7). OS dogs, trea-

ted only by amputation, have a median survival time of five months or less, with the majority 

succumbing to metastatic disease (4;8;9). Due to advances in disease management overall 

survival can be extended to 1 year (9). Given the increased treatment options, such as adju-

vant chemotherapy, ‘limb-sparing’ surgery and radio-ablative methods, it has become even 

more important to differentiate between dogs with a worse and relatively improved prognosis. 

Numerous studies have explored the prognostic value of, for example gender, neuter status, 

age or serum alkaline phosphatase (SALP), but these studies have important limitations. 

Most notably, the relatively small number of patients included in these studies precludes 

precise estimation of the prognostic consequences of these factors. A possible solution for 

this is collecting and pooling reported prognostic associations from individual studies. Re-

cently, Boerman et al. (10) conducted an aggregated data meta-analysis. This meta-analysis 

showed that elevated SALP and location of OS in the (proximal) humerus are associated 

with a shorter disease free survival time. However, as Boerman acknowledges, the included 

studies did not analyze SALP and tumor location consistently; some explored the univaria-

ble association, while other used multivariable methods. Furthermore, other characteristics, 

for example age, weight and neuter status, could not be analyzed because these were not 

reported for all studies.

An alternative to pooling the aggregated data is to acquire the individual patient data files. An 

individual patient data meta-analysis (IPDMA) permits for more uniform analyses with regard 

to follow-up time, categorization of variables, missing values and analysis methods used 

(11;12). Furthermore, individual patient data allows exploring associations not reported in 

the original publications. Consequently, such prognostic IPDMAs are powerful tools to iden-

tify prognostic factors and subgroups of patients with different prognoses. We conducted an 

IPDMA in order to estimate the independent prognostic value of gender, neuter status, age, 

weight, breed, tumor location and SALP in predicting mortality or metastasis in canine OS. 
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Methods

Inclusion of individual patient data and assessment of data quality.

To explore the relations between patient characteristic and (DF) survival we identified studies 

via the Veterinary Society of Surgical Oncology (VSSO). In January 2012 a call for collabo-

ration was send out to VSSO members and other veterinary researchers. We attempted to 

include data from as many different researchers and institutes as possible. No a priori sam-

ple size calculations were performed. Data was deemed eligible if baseline patient charac-

teristics of OS dogs and time to event (death or metastasis) were recorded. To reduce the 

possibility of publication bias (13), published and unpublished studies were both eligible. 

Impossible or unlikely data entries were explored and remaining irregularities were discussed 

with the original investigators. Data were collected on gender, neuter status, age (years), 

weight (kg), breed (Rottweiler, Golden Retriever, Labrador Retriever, Greyhound, Dober-

man, Irish Setter, mixed breeds, and other breeds), tumor location (proximal humerus, distal 

femur or proximal tibia, distal radius, and other locations), dichotomous SALP (using study 

specific cut-off values for high and normal SALP levels), surgery (limb-sparing, amputations), 

chemotherapy (no chemotherapy, cisplatin, lobaplatin or carboplatin, doxorubicin, doxorubi-

cin combinations), and other treatments. To prevent low cell counts we refrained from using 

finer categories for breed, tumor location and chemotherapy. SALP status (at baseline) was 

dichotomized to follow clinical practice and because continues SALP showed a positive linear 

sloped relationship with the outcomes that stabilized to a flat slope at high SALP values. 

Patients who did not receive surgery, mostly due to euthanasia (n = 197), who received an 

infrequently used chemotherapeutic protocol (n = 13), or who received radiation therapy (n 

=11) were excluded from all analyses.

Data analysis

To illustrate how patient characteristics were related to mortality or metastases at the clini-

cally relevant time points of 5 and 12 months (4;8;9), we stratified baseline characteristics 

according to the outcome status (mortality and metastasis) at these time points. Univariable 

associations were estimated using a stratified Cox proportional hazards model (14). All the 

models were stratified by study to account for possible differences in baseline hazard. If a 

variable was missing for a certain patient, that patient was excluded from the univariable ana-
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lysis (i.e., listwise deletion).

We then performed a multivariable Cox proportional hazards analysis (stratified by study) 

to assess the independent associations between prognostic factors and outcome. Subjects 

were censored if they were lost to follow-up or died (censoring for mortality was only applied 

in models using the metastasis outcome). Associations are given as hazard ratios (HRs) with 

95% confidence intervals (95%CI) and p-values using an alpha of 0.05. For categorical vari-

ables a p-value for trend was computed and the individual associations were only explored 

if this overall test was significant (i.e., p < 0.05). All models were corrected for chemotherapy 

status. Variable selection for the multivariable model was based on prior knowledge, no data 

driven selection method was used (i.e., no stepwise selection). The proportional hazard (PH) 

assumption  of the Cox models was checked based on Schoenfield residuals (14). For the 

continues variables weight and age, a linear relation with the outcome was assessed using 

restricted cubic splines plots (15); relations appeared to be linear. To determine how well the 

multivariable models discriminate between subjects with a short time to event and subjects 

with a longer time to event, the c-statistic (i.e., area under the receiver operator characteris-

tic curve) was calculated (Steyerberg et al., 2010). The c-statistic represents the proportion 

of pairs of subjects where the subject with the longest observed time to event also received 

the longest predicted time to event; the c-statistic varies from 0.5 (no discrimination) and 1 

(perfect discrimination).

In the multivariable analysis missing values were imputed, across studies, based on the 

aregImputation algorithm with ten imputations (16;17). In each of the ten imputed datasets, 

a multivariable Cox proportional hazards analyses was conducted and results were pooled 

using Rubin´s rule (18). The study by Sottnik et al., (19) (n = 69) did not provide information 

on time until death. Similarly, the Phillips et al., (20) (n=156) and Berg et al., (21) (n = 94) 

studies did not record information on time to metastasis. These studies were only used for 

the analyses they provided data for. 

Sensitivity analysis.

Effect estimates of the association between prognostic factors and non-mortality outcomes, 

such as metastases, are potentially biased by competing risks. (22). In the case of time till 

metastasis a subject can be censored due to competing risks such as death (informative 
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censoring). In such a case it is obviously wrong to assume that the subjects will get the event 

somewhere in the future (which is assumed when censoring). If this informative censoring is 

systematically related to a specific group (e.g., high SALP) censoring the deceased subjects 

inflates the cumulative incidence and competing risk occurs. Instead of censoring subjects 

who die before developing a metastasis a competing risk analysis keeps these subjects in 

the denominator, decreasing the cumulative incidence. In canine OS, most subjects first ex-

perience a metastasis before dying; nevertheless we conducted competing risk analyses to 

assess how much this impacted our results (23). We also assessed the impact of missing ob-

servations through a sensitivity analysis in which a multivariate analysis was conducted using 

only those subjects with completely observed data. Additionally, to determine whether inclu-

ding subjects from small studies or unpublished studies biased our results we performed all 

analyses separately for large (50 or more subjects) and small studies (less than 50 subjects) 

and also stratified for publication status (i.e., if the study was published or not). To determine 

how influential the inclusion was of subjects who were not treated with chemotherapy, all 

analyses were also performed after excluding these patients. Finally, we assessed the impact 

of grouping lobaplatin and carboplatin in one group by repeated the analyses using separate 

categories for these chemotherapies. 

All analyses were carried out with the R statistical package version 3.0.0 (24), the survival 

(25), the rms (26) and the Hmisc (16) packages.

Results

Data from 20 studies were included in this IPDMA, of which 11 studies were previously pu-

blished (19-21;27-33). 19 studies reported solely on large breed dogs, while the unpublished 

study of Dr. Amsellem included 36 small breed canines. Characteristics of these studies are 

presented in Table 1. Eighteen studies (1155 patients) provided data on metastasis status 

and nineteen studies (1336 patients) provided information on mortality.

Univariable analysis

At 5 months, in the 550 dogs without missing data, 153 dogs developed a metastasis (Table 

2). High weight (per kg) was related to an increase in metastasis hazard: hazard ratio (HR) 

1.02 (95%CI 1.00; 1.03). Compared to the category other tumor locations, the distal radius 

category was associated with a decrease in hazard: HR 0.40 (95%CI 0.23; 0.68). Elevated 
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baseline SALP was associated with an increased hazard of metastasis: HR 2.12 (95%CI 

1.52; 2.95); see Appendix I figure A1 for the Kaplan Meier curves of SALP. Using other 

breeds as a reference Doberman subjects were related to a higher hazard, while mixed 

breed subjects were associated with a lower hazard: [HR 2.16 (95%CI 1.06; 4.42) and HR 

0.49 (95%CI 0.29; 0.84)]. By 1 year of follow-up the associations for metastasis of OS were 

similar to the results at 5 months (Table 2); median DF survival was 234 days.

The median survival was 256 days, based on the 598 dogs that had no missing data. At 5 

months of follow up, the prognostic factors tumor location, breed and SALP at baseline were 

both univariable related to mortality and the magnitude of the observed relations was similar 

to those for metastasis. At 1 year, weight, location, breed and SALP showed similar and sig-

nificant associations as found for metastasis at 1 year (Appendix I table A1).

Multivariable analysis

After imputing missing values, 1155 subjects were available for the metastasis outcome 

(Table 3). By the end of follow-up 765 experienced a metastasis. Weight was associated 

with an increased hazard [HR 1.02 (per kg increase) (95% CI 1.01; 1.03)], as well as high 

SALP [HR 1.34 (95% CI 1.07;1.68)]. Compared to other tumor locations, patients with a distal 

radius OS were associated with a decreased hazard of metastases: HR 0.75 (95%CI 0.58; 

0.96). Furthermore, the proximal humerus location was associated with an increased hazard 

of metastases, however this association was not significant: HR 1.21 (95% CI 0.96; 1.53). Si-

milarly, breed was no longer significantly associated with metastasis after adjusting for other 

baseline characteristics. 

For the outcome mortality, 1336 dogs were available for analysis, of which 1076 died. The 

associations between weight and mortality, and SALP and mortality were similar to those 

found for the outcome metastasis (Table 3). Compared to the category other OS locati-

ons, proximal humerus tumours were associated with a higher hazard of mortality: HR 1.53 

(95%CI 1.26; 1.84). Similarly, having an OS at the distal femur or proximal tibia was related 

to an increased hazard:  HR 1.23 (95%CI 1.01; 1.49). Finally, older aged subjects were also 

related to a higher hazard of mortality: HR 1.06 per year (95%CI 1.03; 1.09).
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The discriminative performance of the multivariable models was modest: the model for the 

outcome metastasis had a c-statistic of 0.63, whereas the model for the outcome mortality 

had a c-statistic of 0.61.

Sensitivity analysis

Figure 1 shows the Kaplan Meier survival curves for the outcome metastasis (with and wit-

hout accounting for competing risks). 29 (4%) subjects died without experiencing a metasta-

sis event before dying. Consequently, ignoring competing risks had little impact on results: 

the standard Kaplan-Meier estimates only marginally overestimate the cumulative incidence 

of metastases when accounting for competing risks. 

Additional sensitivity analyses (on the impact of missing observations, size of the included 

studies, publication status of the included studies, and chemotherapy status of the dogs) did 

not show material difference compared to the results presented in Table 3. Results of these 

sensitivity analyses are available upon request. 

Table 3 Multivariable hazard ratios (HR) with 95% confidence intervals (95%CI) and p-values  
for the hazard of metastases or mortality, using the entire follow-up period*.  
Variables Metastasis 

HR (95%CI), p-value

Mortality 

HR (95%CI) p-value  

Number of observations  
(total dog years at risk)

1155 (621 years) 1336 (1042 years) 

Number of events 765 1076 

Age (years) 1.03 (0.99;1.06) p = 0.15 1.06 (1.03;1.09) p < 0.01

Weight (kg) 1.02 (1.01;1.03) p < 0.01 1.02 (1.01;1.02) p < 0.01

Male gender 0.91 (0.77;1.08) p = 0.29 0.95 (0.83;1.09) p = 0.50

Neutered 0.90 (0.70;1.15) p = 0.38 0.85 (0.70;1.03) p = 0.09

High SALP 1.34 (1.07;1.68) p = 0.01 1.43 (1.16;1.77) p < 0.01

Breed 
Other 
Rottweiler 
Golden Retriever 
Labrador Retriever 
Greyhound 
Doberman 
Irish Setter 
Mixed 

Overall p-value = 0.67 
Reference 
1.00 (0.78;1.30) p = 0.98 
1.09 (0.82;1.45) p = 0.56 
1.04 (0.79;1.38) p = 0.78 
1.31 (0.91;1.89) p = 0.15 
1.02 (0.71;1.47) p = 0.93 
0.77 (0.44;1.38) p = 0.38 
0.92 (0.73;1.15) p = 0.44 

Overall p-value = 0.65 
Reference 
0.98 (0.80;1.21) p = 0.87 
1.04 (0.83;1.31) p = 0.73 
0.89 (0.69;1.15) p = 0.36 
1.15 (0.86;1.56) p = 0.35 
1.10 (0.80;1.51) p = 0.56 
0.91 (0.57;1.45) p = 0.69 
0.89 (0.73;1.07) p = 0.22 

Tumor location 
Other 
Prox. Humerus 
Dist. Femur or Prox. Tibia 
Dist. Radius 

Overall p-value < 0.01 
Reference 
1.21 (0.96;1.53) p = 0.10 
1.10 (0.88;1.39) p = 0.40 
0.75 (0.58;0.96) p = 0.02 

Overall p-value < 0.01 
Reference 
1.53 (1.26;1.84) p < 0.01 
1.23 (1.01;1.49) p = 0.04 
0.90 (0.74;1.10) p = 0.30 

Chemotherapy
No chemo 
Cisplatin 
Lobaplatin, carboplatin  
Doxorubicin 
Doxorubicin combinations 

Overall p-value = 0.28 
Reference 
1.17 (0.75;1.82) p = 0.50 
1.27 (0.86;1.87) p = 0.23 
0.88 (0. 60;1.28) p = 0.50 
0.91 (0.64;1.31) p = 0.61 

Overall p-value = 0.43 
Reference 
1.04 (0.67;1.60) p = 0.87 
1.04 (0.72;1.51) p = 0.85 
0.98 (0.67;1.46) p = 0.94 
0.75 (0.53;1.06) p = 0.10 

*results are based on a model including all variables presented, no stepwise selection was applied.  
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Figure 1 Kaplan Meier survival curves for canines with osteosarcoma

Competing risk curve for metastases, with biased Kaplan Meier curve for metastases and mortality without a metastasis. 
Results are based on 511 subjects without missings that had data on both mortality and metastases outcome. 

Discussion

In our IPD meta-analysis on prognostic factors for metastasis and mortality among dogs with 

OS, weight, SALP and tumor location were independently prognostic predictors of mortality 

as well as metastasis. Age was significantly related with mortality only.

In accordance with the “aggregated data” meta-analysis by Boerman et al. (10), we found 

that elevated SALP was associated with a higher hazard of early mortality or metastasis. 

However, the Boerman study showed somewhat larger and less precise estimates [HR 1.62 

(95%CI 1.21; 2.17) for mortality and 1.96 (95%CI 1.50; 2.56) for metastasis] compared to 

our results: HR 1.43 (95%CI 1.16; 1.77) and HR 1.34 (95%CI 1.07; 1.68). Compared to other 

tumor sites, proximal humerus and distal femur or proximal tibia OS locations were related to 

an increased mortality hazard, but not metastasis. This is different from the Boerman study, 

which concluded that proximal humerus was significantly associated with both mortality and 

metastasis [HR 1.86 (95%CI 1.34; 2.57) and 2.53 (95%CI 1.34; 4.77)]. Furthermore, we 

found that having an OS tumor at the distal radius was associated with a decreased metasta-

sis hazard. Our IPDMA also showed that independent of breed, high weight increased the 
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hazard of both metastases and mortality. Possibly, this is due to the crude categorisation of 

the breed variable, with a large “other” category resulting in unexplained variance. Also diffe-

rent from the findings of the Boerman study was that we found age to be significantly related 

with mortality (increasing the hazard).

In this section we will discuss limitation and strengths of our study. First the number of pa-

tients with at least one missing observation was high (52% for the metastasis outcome and 

57% for mortality). This was predominantly driven by SALP, which was only measured in 9 

out of 20 studies. In aggregated meta-analyses, like the one conducted by Boerman et.al. 

(10), it is difficult to deal with missing data. In the current study we used an individual patient 

data meta-analyses (IPDMA) design, which allows for imputation of missing values. Like all 

studies with missing observations, it is possible that missingness was not only dependent 

on measured factors but also on unmeasured factors, thus results may still be biased even 

though missing data was multiple imputed. However, assuming that at least some of the mis-

sing values are dependent on measured factors, imputing missing values would likely decre-

ase bias compared to a complete cases analysis. Secondly, several sensitivity analyses were 

performed, all showing similar associations as our main analysis, confirming the robustness 

of our findings. Third, most studies used 1 or 2 specific chemotherapy regimens, making it 

difficult to distinguish between chemotherapy effects and other study-specific influences. 

Thus, while it seems essential to include chemotherapy in modelling the independent prog-

nostic associations between patient characteristics and outcomes, observed associations 

between chemotherapy and outcomes should not be interpreted causally. Fourth, none of the 

baseline variables, except chemotherapy (and only in some studies), were randomly alloca-

ted. Therefore, it is possible that unmeasured or residual confounding influence our results. 

Given that it is impossible to randomly allocate baseline characteristics such as gender or 

age, every study exploring these associations is potentially hampered by the possibility of 

confounding. Causal interpretation of observed associations might therefore lead to errone-

ous conclusions. For example, when, contrary to the association reported here, there is no 

causal relationship between weight and mortality (possible due to some unmeasured protec-

tive genetic factor that is closely related to lower weight) intervening on weight will have no 

effect on the outcome. However, in such a situation (no causal relationship of weight) weight 

will still provide useful information on the baseline risk for the outcome. Thus, the importance 

of causality of the here reported associations depends on the goal; either to intervene on risk 
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factors or to use those factors for prognostication. Fifth, (aggregated) meta-analyses can be 

subject to publication bias (i.e., bias due to including published studies only) (13). By recrui-

ting data via the VSSO network, about 40% of the included subjects were from unpublished 

sources, making the potential for publication bias smaller. On the other hand, some resear-

chers did not respond to our requests for collaboration therefore results presented here do 

not include all possible data and we cannot rule out the possibility that inclusion of more data 

could change our estimations. Finally, the discriminative ability of all models was modest. 

Including clinical predictors like grade or type of tumor could potentially increase this discri-

minative ability. However, in the current study this was impossible due to the large number of 

studies that did not record data on these variables.

Our present study used relatively new study techniques to combine individual patient data 

from different sources termed individual patient data meta-analysis (IPDMA). While an IP-

DMA requires big investments regarding time and resources we believe that the opportunities 

of using individual patient data compared to the alternative of relying on aggregated data out-

weigh this burden. An advantage of conducting an IPDMA is that one can explore relations 

not reported by the original authors. In our case this allowed us to estimate 7 associations 

while the Boerman study (10) could only explore 3 associations. Similarly, IPMDA techniques 

ensure that when one wants to conduct multivariable analysis all estimates are corrected 

for the same set of variables. Without the same corrections, one has to rely on the reported 

estimates and as Boerman showed it is likely that every study uses distinct sets of covaria-

bles. A third advantage is that one can uniformly recode the data which can be particularly 

important if different cut off values or reference categories are used by the original authors 

(e.g., categorizing age using a cut point of 5 or 7 years). Fourth, IPDMAs also allows one to 

check model assumption such as linearity or proportional hazard. Lastly by having access to 

individual patient data one can more easily perform subgroup analysis, sensitivity analysis 

and apply more refined methods to deal with problems such as missing values or competing 

risks. However, while we strongly recommend researcher to use IPDMA techniques in meta-

analyses one should remember that the success of any meta-analysis ultimately depends on 

quality of the original data. 

Conclusions

In conclusion, the IPDMA design used in this study allowed us to assess prognostic factors 
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in canines with osteosarcoma. We identified weight, SALP, and tumor location as indepen-

dent prognostic factors of metastasis and mortality, while age was only associated with early 

mortality. This study design allowed for the application of advanced missing data techniques 

and multiple sensitivity analyses and showed the necessity to use individual participant data 

in order to comprehensively assess prognostic factors in this field of research.
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Figure A1: Kaplan-Meier survival curves for mortality and metastases free survival, stratified for high or normal serum 
alkaline phosphatase (SALP), including the unstratified estimates 

Legend: + indicates censoring.
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Abstract

Osteosarcoma (OS) is a malignant tumor of mesenchymal origin that produces osteoid. 

Given that the prognosis varies considerably between dogs, we explored whether treatment 

could be tailored towards prognostic subgroups of patients. For the current study, individual 

patient data from five nonrandomized studies were combined. Based on a multivariable 

prognostic model, the 5-month mortality risk was estimated. Subsequently, in surgically 

treated dogs, we explored whether the effects of the chemotherapeutics carboplatin, cispla-

tin, doxorubicin or doxorubicin combination therapy compared to no chemotherapy differed 

between dogs according to their baseline prognosis. For all of the four comparisons, effect 

estimates differed consistently according to baseline mortality risk. For example, in the com-

parison of carboplatin treatment vs. no chemotherapy, the overall treatment risk ratio (RR) on 

mortality was 0.49 (95%CI 0.25; 0.94). This effect differed according to baseline risk: with the 

RR ranging from 0.10 (95%CI 0.02; 0.64) to 2.38 (95%CI 0.58; 9.81); representing the treat-

ment effect in dogs with the lowest  and highest 5-month mortality risk (19% vs. 52%). Similar 

results were found for the other three treatment comparisons. These results indicate that the 

main treatment effects of chemotherapy do not necessarily apply to all patients. Specifically, 

dogs with a relatively low mortality risk at baseline appeared to benefit most from chemothe-

rapy. In general, researchers should more often explore whether treatment can be tailored 

toward subgroups of patients. 
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Introduction

Osteosarcoma (OS) is a malignant tumor of mesenchymal origin that produces osteoid. In 

dogs, OS most frequently occurs in large and giant breeds (1-5). Dogs that are treated with 

amputation have a median survival time of five months, with the majority succumbing to me-

tastatic disease (6;7). Clinical studies have shown that on average survival in OS dogs can 

be extended by administrating chemotherapy (8-12). 

In a recent Individual Patient Data Meta-Analysis (IPDMA), we identified baseline variables 

that were associated with survival in dogs with osteosarcoma (13). Such a prognostic model 

can be used to predict a dog’s risk of early mortality (14). This offers the possibility to identify 

subgroups of dogs according to their baseline prognosis and target treatment at those pa-

tients most likely to benefit. This can potentially prevent dogs from unnecessarily receiving 

treatment, which is relevant in terms of both costs and quality of life. Cleary there is a need to 

obtain estimates of individualized treatment effects (15-17). 

In the current paper, treatment effects were individualized by determining whether dogs with 

a different 5-month mortality risk, reacted differently to chemotherapy treatment. Specifically, 

we compared the effects of carboplatin, cisplatin, doxorubicin and doxorubicin combination 

therapy to no chemotherapy on 5-month mortality. 

Materials and Methods

The effects of the different chemotherapeutics compared to no chemotherapy were de-

termined using individual patient data (IPD). These IPD were previously used in an IPD 

meta-analysis (IPDMA) combing data of 20 studies to determine prognostic factors for early 

mortality in dogs with osteosarcoma (13). All dogs in these studies were diagnosed with 

osteosarcoma and received surgical intervention (amputation or limb-spare). For the present 

analysis, data were used of studies that included at least five dogs on no chemotherapy and 

at least five dogs treated with one of the interventions of interest (i.e., carboplatin, cisplatin, 

doxorubicin or doxorubicin combination therapy). Of the 20 studies included in the IPDMA, 

five studies fulfilled this criterion; of these five studies two were previously published (18;19). 

Of the 5 included studies, only two include dogs on all four chemotherapies of interest (Ap-

pendix Table 1). Therefore, per comparison, a different selection of patients was used (Ap-

pendix Table 1); this to prevent extrapolation over studies. To assess the effects of treatment 
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this study focused on 5-month mortality, which is regarded as a clinical relevant endpoint 

(2;6;8). As in our previous IPDMA study (13), missing values were imputed (20) using the 

aregImpute algorithm from the Hmisc package (21). 

Data analysis

Treatment effects were estimated using Poisson regression models. Coefficients of such mo-

dels can be interpreted as (the natural logarithm of) risk ratios (RR) (22;23). Poisson models 

produce overly conservative estimates of the standard errors therefore these were replaced 

by robust (Heteroscedasticity-Consistent covariance estimator 4m [i.e., HC4m]) estimates 

(24). Effect estimates were adjusted for the following potential confounders: gender, neuter 

status, tumor locations (proximal humerus, distal femur or proximal tibia, distal radius, versus 

other locations), age (years, continuous), weight (kg, continuous), breed (Rottweiler, Golden 

Retriever, Labrador Retriever, Greyhound, Doberman, Irish Setter, mixed breeds, versus 

other breeds) and serum alkaline phosphatase (SALP, using study specific cut-off values for 

high and normal SALP levels). 

To determine whether chemotherapy effects differed between patients according to their 

baseline prognosis, the following three-step approach was applied. (15-17;25;26) First, the 

main or overall treatment effect was determined, without taking the possibility of differential 

treatment effects into account. We refer to this effect as the main treatment effect. Second, 

using an adapted version of the previously published prediction model (13), the baseline risk 

of mortality was determined. Details of the model are presented in Table 1. For all dogs this 

risk was determined under the assumption that the dogs would not be treated with chemothe-

rapy. Third, we explored whether the effect of chemotherapy on mortality differed according 

to patients’ baseline risk. Note that out of convenience the logit(baseline risk) will be model-

led and transformed to the baseline risk where appropriate (see next section).  

The logit of 5-month mortality risk was calculated conditional on no chemotherapy:

0 1ˆ( . ) ( ) * (0) ...i j ijlogit baseline risk logit p treatment xγ γ γ= = + + + . With ijx  representing the 

j th baseline characteristics of Table 1 for the i th individual and jγ  the coefficient of the 

relevant baseline characteristic. Theoretically the logit(baseline risk) can vary from minus to 

plus infinity, with zero referring to a risk of 50%. This logit(baseline risk) can be transformed 

to the baseline risk, bound between 0 and 1, by the following equation: 
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ˆ( )
1ˆ

1 ii logit pp
e−=

+ 					      [equation 1]; see Table 1 for an 

example. 

Whether treatment effects differed according to baseline risk was tested 

using a treatment by logit(baseline risk) interaction. A Poisson model inclu-

ding a treatment by logit(baseline risk) interaction contains the following terms: 

( ) 0 1 2 3ˆ ˆ ˆ ˆˆ ˆ1 * * ( ) * * ( )i iln event treatment logit p treatment logit pα α α α= = + + + , with 1α̂  repre-

senting the ln(RR) of treatment for a dog with 50% baseline risk of 5-month mortality and 3α̂  

by how much the treatment effect changes with increasing or decreasing logit(baseline risk). 

Table 1. Multivariable adjusted risk factors for 5-month mortality*.  
Variables Odds ratio (95%CI) Regression coefficients 

Intercept    -0.7412  

Chemotherapy 
No chemotherapy 
Cisplatin  
Lobaplatin, carboplatin 
Doxorubicin  
Doxorubicin combinations  

 
Reference 
0.48 (0.28;0.82)  
0.70 (0.43;1.14)  
0.63 (0.40;1.01) 
0.39 (0.24;0.64) 

 
 0.0000 
 -0.7427 
 -0.3574 
 -0.4549 
 -0.9364 

Age (years) 1.00 (0.94;1.06)  -0.0023 

Weight (kg) 1.01 (1.00;1.03)  0.0129 

Male gender 0.74 (0.56;0.98)  -0.2961 

Neutered 0.68 (0.48;0.97)  -0.3823 

High SALP 1.78 (1.18;2.68)  0.5751 

Breed 
Other 
Rottweiler 
Golden Retriever 
Labrador Retriever 
Greyhound 
Doberman 
Irish Setter 
Mixed 

 
Reference 
0.92 (0.61;1.40)  
0.91 (0.56;1.47)  
0.74 (0.43;1.27)  
1.30 (0.70;2.39)  
1.39 (0.77;2.50)  
0.38 (0.11;1.33)  
0.64 (0.42;0.97)  

 
  0.0000 
 -0.0789 
 -0.0928 
 -0.3066 
 0.2603 
 0.3278 
 -0.9577 
 -0.4453 

Tumor location 
Other 
Prox. Humerus 
Dist. Femur or Prox. Tibia 
Dist. Radius 

 
Reference 
1.48 (1.01;2.68)  
0.90 (0.61;1.33)  
0.63 (0.41;0.96)  

 
 0.0000 
 0.3930 
 -0.1044 
 -0.4633 

   

Example patient logit(baseline risk) = -0.7412 + 0.0000*no chemotherapy(0) + 
-0.0023*5 years + 0.0129*25 kg + -0.2961*female(0) + -0.3823* not neutered (0)  
+ 0.5751*high salp(1) +  -0.0928*Golden Retriever(1) + 0.3902*proximal humerus(1) =0.44 

Example patient baseline risk = 1/(1+e-0.44) = 0.61 

*Numbers represent odds ratios with 95% confidence intervals (95%CI). All odds ratios were adjusted f 
or all other presented variables This multivariable logistic regression model is a variation of the cox  
proportional hazard model described in Schmidt et.al., 2013.
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In the presence of interaction, the treatment effect of chemotherapy per unit increase (or 

decrease) of the baseline on the logit scale becomes: 

1 3ˆ ˆ ˆ* (1) * (1)* ( )itreatment treatment logit p
iRR eα α+=  [equation 2]

In the absence of interaction, 3α̂  becomes zero and can be omitted. Instead of assuming a 

linear effect of the interaction, as equation 2 assumes, we also determined the treatment ef-

fect per quintiles of the baseline risk. For comparisons sake these non-linear quintile specific 

treatment effects were compared to the linear effects from equation 2. 

All tests were applied using a significance level of 0.05 and 95% confidence intervals 

(95%CI). Analyses were carried out using the R statistical package for windows version 3.0.2 

(27) and the sandwich package (28).

Results

Results were similar across all four treatment comparisons to no chemotherapy. As an 

example, we focus on the effect of carboplatin compared to no chemotherapy, results from 

the other comparisons are presented in the Appendix. 

Of the 199 dogs included in the carboplatin vs. no chemotherapy analysis, 47 were treated 

with carboplatin and 152 with no chemotherapy; within 5 months 69 dogs died. Baseline 

characteristics are presented in Table 2 and for the other treatment options in the Appendix 

(Tables A2-A4). The crude main treatment effect of carboplatin on 5 month mortality compa-

red to no chemotherapy was RR 0.49 (95%CI 0.26; 0.92). After adjustment for potential con-

founders the treatment RR was 0.49 (95%CI 0.25; 0.94), see Table 3. As previously, stated 

results from the other comparisons were similar; with the possible exception of the cisplatin 

effect, which was non-significant (Table 3). 

Testing for treatment by baseline risk interaction revealed that the effects of carboplatin (com-

pared to no chemotherapy) decreased with increasing baseline risk (Table 4); interaction 

P-value = 0.01. For example, in dogs with a baseline risk of 5-month mortality between 0.24 

and 0.30 carboplatin therapy reduced this risk by 87% (RR 0.13, 95%CI 0.02; 1.00), whereas 

in dogs with a baseline risk of 5-month mortality between 0.36 and 0.43 carboplatin therapy 
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seemed to increase mortality risk (RR 1.86, 95%CI 0.70; 4.95). Figure 1 shows the treatment 

effect of carboplatin against the baseline risk, based on a model assuming a linear increase 

(or decrease) in the treatment effect; model details are presented in Table A5. For the other 

treatment comparison, cisplatin, doxorubicin and doxorubicin combination, similar interacti-

ons were found (Tables A5-A8 in the Appendix). Depending on the comparison the simila-

rity between the linear and non-linear quintile specific treatment estimates, given in Table 4 

and A6-A8, differed.

Discussion 

This study showed that dogs with osteosarcoma and a relatively low 5-month mortality risk at 

baseline benefited more from additional chemotherapy (carboplatin, cisplatin, doxorubicin or 

doxorubicin combination therapy) than those with a worse baseline prognosis. In our sample 

dogs with a baseline risk of 36% (based on the quintile specific estimates) or lower seemed 

Table 2. Baseline characteristics of canines with osteosarcoma stratified by treatment status*.
Variables No chemotherapy; N = 152 Carboplatin; N = 47 

5-month mortality N (%) 60(39%) 9(19%) 

Age (years) mean(sd) 8.88(2.84) 8.09(2.69) 

Weight (kg) mean(sd) 33.17(13.69) 32.79(19.87) 

Male gender N (%) 79(52%) 32(68%) 

Neutered N (%) 112(74%) 36(77%) 

High SALP N (%) 67(44%) 11(23%) 

Breed 
Other N (%) 
Rottweiler N (%) 
Golden Retriever N (%) 
Labrador Retriever N (%) 
Greyhound N (%) 
Doberman N (%) 
Irish Setter N (%) 
Mixed N (%) 

 
68(45%) 
14(9%) 
7(5%) 
14(9%) 
5(3%) 
8(5%) 
1(1%) 
35(23%) 

 
24(51%) 
6(13%) 
0(0%) 
2(4%) 
2(4%) 
4(9%) 
1(2%) 
8(17%)) 

Tumor location 
Other N (%) 
Prox. Humerus N (%) 
Dist. Femur or Prox. Tibia N (%) 
Dist. Radius N (%) 

 
88(58%) 
19(12%) 
25(16%) 
20(13%) 

 
17(36%) 
9(19%) 
5(11%) 
16(34%) 

Logit(baseline risk) mean (sd) -0.67(0.48) -0.87(0.49) 

Baseline risk mean (sd) 0.35(0.11) 0.30(0.09) 

*Serum alkaline phosphatase (SALP); N equals the number of subjects, sd equals the standard deviation.  
These dogs were originally included in studies by Amsellum, Bacon, Kirpenstijn, Kow and Maritato. 
  

Table 3. Treatment effect estimates of different chemotherapeutics compared to no chemotherapy on 5-month mortality*.  
 Carboplatin Cisplatin Doxorubicin Doxorubicin 

combination 
Crude model 
Treatment effect 

 
0.49 (0.26; 0.92) 

 
0.86 (0.55; 1.36) 

 
0.48 (0.29; 0.78) 

 
0.61 (0.39; 0.95) 

Model adjusted for confounders(except breed) 
Treatment effect  

 
0.55 (0.28; 1.08) 

 
0.98 (0.59; 1.60) 

 
0.47 (0.28; 0.77) 

 
0.62 (0.39; 0.99) 

Model additionally adjusting for breed 
Treatment effect 

 
0.49 (0.25; 0.94) 

 
0.86 (0.54; 1.38) 

 
0.48 (0.29; 0.78) 

 
0.62 (0.39; 0.97) 

Results presented as risk ratios (RRs) and 95 % confidence intervals (95%).  
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to have benefited from additional treatment with chemotherapy.

Previous clinical studies showed that the effect of chemotherapy might be modified by ano-

ther factor. One of the clearest examples of this in dogs is the synergistic effect between im-

munotherapy and chemotherapy (29;30). To the best of our knowledge, our study is the first 

to explore whether treatment effects vary according to baseline mortality risk (using multiple 

variables). 

The current study has some limitations. First, only data from nonrandomized studies were 

available. Therefore, treatment effect estimates could be biased due to unobserved and 

residual confounding. This is most likely for the cisplatin comparison were the main treatment 

effect estimate did not significantly differ from a neutral risk ratio of 1, which is contrary to the 

expected benefit of treatment. Second, despite combining data from different individual stu-

dies, sample size was limited. This complicated confounding adjustment, interaction testing 

and exploration of non-linear relations. However and importantly, adjustment for clustering 

by study did not markedly influence results (data no shown). The limitations of sample size 

is clearly shown in the baseline risk quintile specific treatment effect estimates, which lac-

ked precision (i.e., the 95% confidence intervals were wide). While there were indications to 

doubt that treatment effect linearly changed with baseline risk, transformations of the base-

line risk did not improve model fit. Given the limited sample size we did not correct for multi-

ple testing and subsequent studies should confirm our findings. Third, the prediction model 

used in this paper was not validated in external data. Another limitation is the fact that 22%, 

16%, 18% and 21% of the data was missing for the carboplatin, cisplatin, doxorubicin and 

doxorubicin combination comparisons, respectively. Information on exposure was missing 

0.5%, 1%, 3% and 5% of the times for the carboplatin, cisplatin, doxorubicin and doxorubi-

cin combination comparisons, respectively. The outcome was not available in 6%, 7%, 10% 

and 10% of the data for carboplatin, cisplatin, doxorubicin and doxorubicin combination 

therapy, respectively. Assuming that at least some of the missing values were dependent 

on measured factors, missing values were imputed to reduce bias compared to a complete 

cases analysis (31;32). Despite these limitations our findings suggest that for all four different 

comparisons dogs with a relatively low 5-month mortality risk at baseline benefited most from 

chemotherapy. 
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Figure 1. Estimated relative treatment effect of carboplatin therapy compared to no chemotherapy on 
5-month mortality in surgically treated dogs with osteosarcoma.

Figure shows the risk ratio (RR) of carboplatin treatment (solid line) with 95% confidence intervals (dotted lines) for different 
baseline risk. The horizontal solid line indicates a neutral RR of 1.00. At the top a rug plot is given, corresponding to the patient 

frequencies of the x-axis measurements. 

Table 4. Treatment effect estimates of carboplatin chemotherapy compared to no chemotherapy on 5-month  
mortality in dogs with osteosarcoma stratified by baseline risk*.
Treatment effects Mortality events/group size RR (95%CI) 

[non-linear]* 
RR (95%CI) 
[linear]* 

Carboplatin No 
chemotherapy 

  

Effect stratified for baseline risk quintiles     

Quintile 1; Baseline risk (0.08 ; 0.24) 0/9 13/31 NA 0.12 (0.03; 0.48) 

Quintile 2; Baseline risk (0.24 ; 0.30) 1/16 12/24 0.13 (0.02; 1.00) 0.26 (0.11; 0.64) 

Quintile 3: Baseline risk (0.30 ; 0.36) 1/5 16/34 0.43 (0.04; 4.44)  0.47 (0.24; 0.92)  

Quintile 4; Baseline risk (0.36 ; 0.43) 6/14 6/26 1.86 (0.70; 4.95) 0.79 (0.40; 1.57) 

Quintile 5; Baseline risk (0.43 ; 0.63) 1/3 13/37 0.95 (0.06; 14.02) 1.84 (0.61; 5.56)  

*Non-linear treatment estimates are based on the quintile specific estimates. The linear treatment estimates are based  
on equation 2 and treatment and interaction estimates given in appendix Table A5. 
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As noted previously, for each comparison a different subset of the five studies was used, 

thus to some extend these comparisons were independent, decreasing the likelihood that 

results were due to a common data irregularity. Given the described shortcomings, we feel 

that before these findings can be used in clinical practice, additional research should try to 

replicate our results and specifically focus on the following: first, the prediction model used 

should be updated to include more clinical parameters such as tumor grading and be subse-

quently validated in external data. Second, these and possibly other treatment comparisons 

should be repeated, preferably using randomized controlled trial data to prevent confounding. 

Finally, if the results are replicated in external data, an algorithm such as a nomogram or a 

(spreadsheet) program might be developed to aid detection of patients with an increased or 

decreased benefit of chemotherapy in clinical practice. 

Conclusions

In conclusion, surgically treated dogs with osteosarcoma who have a relatively low risk of 

5-month mortality might benefit most from treatment with carboplatin, cisplatin, doxorubicin or 

doxorubicin combination chemotherapy.
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Table A2. Baseline characteristics of canines with osteosarcoma stratified by treatment status.
Variables No chemotherapy; N = 102 Cisplatin; N = 42 

5-month mortality N (%) 45(44%) 16(38%) 

Age (years) mean (sd) 8.83(2.74) 8.55(2.77) 

Weight (kg) mean (sd) 34.61(13.45) 35.30(12.42)

Male gender N (%) 48(47%) 21(50%)

Neutered N (%) 68(67%) 35(83%) 

High SALP N (%) 50(49%) 23(55%)

Breed 
Other N (%) 
Rottweiler N (%) 
Golden Retriever N (%) 
Labrador Retriever N (%) 
Greyhound N (%) 
Doberman N (%) 
Irish Setter N (%) 
Mixed N (%)

48(47%) 
13(13%) 
3(3%) 
9(9%) 
1(1%) 
7(7%) 
1(1%) 
20(20%)

16(38%) 
1(2%) 
7(17%) 
3(7%) 
2(5%) 
1(2%) 
1(2%) 
11(26%))

Tumor location 
Other N( %) 
Prox. Humerus N (%) 
Dist. Femur or Prox. Tibia N (%) 
Dist. Radius N (%)

63(62%) 
14(14%) 
11(11%) 
14(14%)

22(52%) 
2(5%) 
9(21%) 
9(21%)

Logit(baseline risk) mean (sd) -0.56(0.47) -0.72(0.57)

Baseline risk mean (sd) 0.37(0.10) 0.34(0.12) 
Serum alkaline phosphatase (SALP); N equals the number of subjects, sd equals the standard deviation. 
These dogs were originally included in studies by Bacon and Kirpensteijn.  
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Table A3. Baseline characteristics of canines with osteosarcoma stratified by treatment status.
Variables No chemotherapy; N = 147 Doxorubicin; N = 83 

5-month mortality N (%) 59(40%) 16(19%) 

Age (years) mean (sd) 8.88(2.88) 9.34(2.62) 

Weight (kg) mean (sd) 33.91(13.28) 36.70(11.42)

Male gender N (%) 77(52%) 45(54%)

Neutered N (%) 109(74%) 73(88%) 

High SALP N (%) 65(44%) 41(49%)

Breed 
Other N (%) 
Rottweiler N (%) 
Golden Retriever N (%) 
Labrador Retriever N (%) 
Greyhound N (%) 
Doberman N (%) 
Irish Setter N (%) 
Mixed N (%)

65(44%) 
14(10%) 
7(5%) 
14(10%) 
5(3%) 
8(5%) 
1(1%) 
33(22%)

24(29%) 
12(14%) 
11(13%) 
3(4%) 
10(12%) 
1(1%) 
2(2%) 
20(24%))

Tumor location 
Other N (%) 
Prox. Humerus N (%) 
Dist. Femur or Prox. Tibia N (%) 
Dist. Radius N (%)

85(58%) 
19(13%) 
23(16%) 
20(14%)

27(33%) 
22(27%) 
22(27%) 
12(14%)

Logit(baseline risk) mean (sd) -0.66(0.48) -0.62(0.52)

Baseline risk mean (sd) 0.35(0.11) 0.36(0.11) 
Serum alkaline phosphatase (SALP); N equals the number of subjects, sd equals the standard deviation. 
These dogs were originally included in studies by Bacon, Kirpensteijn, Kow and Maritato. 
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Table A4. Baseline characteristics of canines with osteosarcoma stratified by treatment status.
Variables No chemotherapy; N = 152 Doxorubicin combination 

chemotherapy; N = 79 

5-month mortality N (%) 60(39%) 19(24%)

Age (years) mean (sd) 8.88(2.84) 8.12(2.93) 

Weight (kg) mean (sd) 33.17(13.69) 35.82(15.55) 

Male gender N (%) 79(52%) 45(57%) 

Neutered N (%) 112(74%) 63(80%)

High SALP N (%) 67(44%) 28(35%) 

Breed 
Other N (%) 
Rottweiler N (%) 
Golden Retriever N (%) 
Labrador Retriever N (%) 
Greyhound N (%) 
Doberman N (%) 
Irish Setter N (%) 
Mixed N (%)

68(45%) 
14(9%) 
7(5%) 
14(9%) 
5(3%) 
8(5%) 
1(1%) 
35(23%) 

35(44%) 
10(13%) 
5(4%) 
3(4%) 
2(3%) 
1(1%) 
5(6%) 
18(23%)) 

Tumor location 
Other N (%) 
Prox. Humerus N (%) 
Dist. Femur or Prox. Tibia N (%) 
Dist. Radius N (%)

88(58%) 
19(12%) 
25(16%) 
20(13%) 

26(33%) 
15(19%) 
18(23%) 
20(25%) 

Logit(baseline risk) mean (sd) -0.67(0.48) -0.81(0.59)

Baseline risk mean (sd) 0.35(0.11) 0.32(0.12)
Serum alkaline phosphatase (SALP); N equals the number of subjects, sd equals the standard deviation. 
These dogs were originally included in studies by Amsellem, Bacon, Kirpensteijn, Kow and Maritato. 



141

Chemotherapy in dogs with osteosarcoma

Ta
bl

e 
A

5.
 T

re
at

m
en

t e
ffe

ct
 a

nd
 in

te
ra

ct
io

n 
ef

fe
ct

 e
st

im
at

es
 o

f c
is

pl
at

in
 c

he
m

ot
he

ra
py

 c
om

pa
re

d 
to

 n
o 

ch
em

ot
he

ra
py

 o
n 

5-
m

on
th

 m
or

ta
lit

y 
in

 d
og

s 
w

ith
 o

st
eo

sa
rc

om
a 

m
od

ifi
ed

 b
y 

ba
se

lin
e 

ris
k.

 
C

ar
bo

pl
at

in
 

C
isp

la
tin

 
D

ox
or

ub
ic

in
 

D
ox

or
ub

ic
in

 
co

m
bi

na
tio

n 
M

od
el

 w
ith

 b
as

el
in

e 
ri

sk
 b

y 
tr

ea
tm

en
t i

nt
er

ac
tio

n 
Tr

ea
tm

en
t e

ff
ec

t 
In

te
ra

ct
io

n 
ef

fe
ct

s
2.

00
 (0

.6
3;

 6
.3

9)
 

7.
73

 (1
.5

6;
 3

8.
45

) 
1.

49
 (0

.7
6;

 2
.9

2)
 

2.
42

 (0
.8

8;
 6

.6
5)

 
0.

93
 (0

.4
9;

 1
.7

7)
 

3.
62

 (1
.1

5;
 1

1.
34

) 
1.

11
 (0

.6
0;

 2
.0

6)
 

2.
38

 (1
.1

2;
 5

.0
5)

 
R

es
ul

ts
 p

re
se

nt
ed

 a
s 

ris
k 

ra
tio

s 
(R

R
s)

 a
nd

 9
5 

%
 c

on
fid

en
ce

 in
te

rv
al

s 
(9

5%
). 

Th
e 

tre
at

m
en

t e
ffe

ct
 e

st
im

at
es

 c
an

 b
e 

in
te

rp
re

te
d 

as
 th

e 
tre

at
m

en
t e

ffe
ct

 w
he

n 
th

e 
lo

gi
t(b

as
el

in
e 

ris
k)

 
eq

ua
ls

 0
 o

r s
ta

te
d 

ot
he

rw
is

e 
w

he
n 

th
e 

ba
se

lin
e 

ris
k 

fo
r 5

-m
on

th
 m

or
ta

lit
y 

is
 0

.5
0.

 A
ss

um
in

g 
lin

ea
rit

y 
th

e 
in

te
ra

ct
io

n 
ef

fe
ct

s 
in

di
ca

te
s 

ho
w

 m
uc

h 
th

e 
tre

at
m

en
t e

ffe
ct

 c
ha

ng
es

 w
ith

 
ch

an
gi

ng
 lo

gi
t(b

as
el

in
e 

ris
k)

; a
 9

5%
C

I e
xc

lu
di

ng
 th

e 
1 

in
di

ca
te

s 
a 

si
gn

ifi
ca

nt
 in

te
ra

ct
io

n.



142

Chapter	  5

Ta
bl

e 
A

6.
 T

re
at

m
en

t e
ffe

ct
 e

st
im

at
es

 o
f c

is
pl

at
in

 c
he

m
ot

he
ra

py
 c

om
pa

re
d 

to
 n

o 
ch

em
ot

he
ra

py
 o

n 
5-

m
on

th
 m

or
ta

lit
y 

in
 

do
gs

 w
ith

 o
st

eo
sa

rc
om

a 
st

ra
tif

ie
d 

by
 b

as
el

in
e 

ris
k.

T
re

at
m

en
t e

ff
ec

ts
 

M
or

ta
lit

y 
ev

en
ts

/g
ro

up
 si

ze
 

R
R

 (9
5%

C
I)

 
[n

on
-li

ne
ar

]*
 

R
R

 (9
5%

C
I)

  
[li

ne
ar

]*
 

C
is

pl
at

in
 

N
o 

ch
em

ot
he

ra
py

 
 

 

Ef
fe

ct
 st

ra
tif

ie
d 

fo
r b

as
el

in
e 

ris
k 

qu
in

til
es

 
 

 
 

 

Q
ui

nt
ile

 1
; B

as
el

in
e 

ris
k 

(0
.1

1;
 0

.2
5)

 
3/

12
 

10
/1

7 
0.

43
 (0

.1
3;

 1
.3

5)
 

0.
46

 (0
.1

8;
 1

.2
0)

 

Q
ui

nt
ile

 2
; B

as
el

in
e 

ris
k 

(0
.2

6;
 0

.3
3)

 
4/

11
 

8/
18

 
0.

82
 (0

.2
9;

 2
.2

8)
 

0.
68

 (0
.3

7;
 1

.2
5)

 

Q
ui

nt
ile

 3
: B

as
el

in
e 

ris
k 

(0
.3

3;
 0

.3
8)

 
1/

4 
12

/2
4 

0.
50

 (0
.0

4;
 5

.8
9)

  
0.

88
 (0

.5
5;

 1
.4

0)
  

Q
ui

nt
ile

 4
; B

as
el

in
e 

ris
k 

(0
.3

8;
 0

.4
6)

 
3/

7 
7/

22
 

1.
35

 (0
.4

0;
 4

.5
3)

 
1.

13
 (0

.6
9;

 1
.8

3)
 

Q
ui

nt
ile

 5
; B

as
el

in
e 

ris
k 

(0
.4

7;
 0

.6
3)

 
5/

8 
8/

21
 

1.
64

 (0
.7

0;
 3

.8
3)

  
1.

60
 (0

.7
7;

 3
.3

5)
  

*N
on

-li
ne

ar
 tr

ea
tm

en
t e

st
im

at
es

 a
re

 b
as

ed
 o

n 
th

e 
qu

in
til

e 
sp

ec
ifi

c 
es

tim
at

es
. T

he
 li

ne
ar

 tr
ea

tm
en

t e
st

im
at

es
 a

re
 b

as
ed

 o
n 

eq
ua

tio
n 

2 
an

d 
tre

at
m

en
t a

nd
 in

te
ra

ct
io

n 
es

tim
at

es
 g

iv
en

 in
 a

pp
en

di
x 

Ta
bl

e 
A5

 



143

Chemotherapy in dogs with osteosarcoma

Ta
bl

e 
A

7.
 T

re
at

m
en

t e
ffe

ct
 e

st
im

at
es

 o
f d

ox
or

ub
ic

in
 c

he
m

ot
he

ra
py

 c
om

pa
re

d 
to

 n
o 

ch
em

ot
he

ra
py

 o
n 

5-
m

on
th

 m
or

ta
lit

y 
in

 
do

gs
 w

ith
 o

st
eo

sa
rc

om
a 

st
ra

tif
ie

d 
by

 b
as

el
in

e 
ris

k.
T

re
at

m
en

t e
ff

ec
ts

 
M

or
ta

lit
y 

ev
en

ts
/g

ro
up

 si
ze

 
R

R
 (9

5%
C

I)
 

[n
on

-li
ne

ar
]*

 
R

R
 (9

5%
C

I)
 

[li
ne

ar
]*

 

D
ox

or
ub

ic
in

  
N

o 
ch

em
ot

he
ra

py
 

 
 

Ef
fe

ct
 st

ra
tif

ie
d 

fo
r b

as
el

in
e 

ris
k 

qu
in

til
es

 
 

 
 

 

Q
ui

nt
ile

 1
; B

as
el

in
e 

ris
k 

(0
.1

1;
 0

.2
6)

 
1/

14
 

14
/3

2 
0.

16
 (0

.0
2;

 1
.3

5)
 

0.
16

 (0
.0

5;
 0

.5
8)

 

Q
ui

nt
ile

 2
; B

as
el

in
e 

ris
k 

(0
.2

6;
 0

.3
2)

 
3/

18
 

15
/2

8 
0.

31
 (0

.1
0;

 0
.9

9)
 

0.
30

 (0
.1

3;
 0

.6
6)

 

Q
ui

nt
ile

 3
: B

as
el

in
e 

ris
k 

(0
.3

2;
 0

.3
7)

 
2/

16
 

11
/3

0 
0.

34
 (0

.0
8;

 1
.5

0)
  

0.
40

 (0
.2

2;
 0

.7
5)

  

Q
ui

nt
ile

 4
; B

as
el

in
e 

ris
k 

(0
.3

7;
 0

.4
5)

 
3/

17
 

10
/2

9 
0.

51
 (0

.1
5;

 1
.7

3)
 

0.
57

 (0
.3

4;
 0

.9
5)

 

Q
ui

nt
ile

 5
; B

as
el

in
e 

ris
k 

(0
.4

5;
 0

.6
3)

 
7/

18
 

9/
28

 
1.

21
 (0

.5
3;

 2
.7

8)
  

1.
00

 (0
.5

1;
 1

.9
7)

  

*N
on

-li
ne

ar
 tr

ea
tm

en
t e

st
im

at
es

 a
re

 b
as

ed
 o

n 
th

e 
qu

in
til

e 
sp

ec
ifi

c 
es

tim
at

es
. T

he
 li

ne
ar

 tr
ea

tm
en

t e
st

im
at

es
 a

re
 b

as
ed

 o
n 

eq
ua

tio
n 

2 
an

d 
tre

at
m

en
t a

nd
 in

te
ra

ct
io

n 
es

tim
at

es
 g

iv
en

 in
 a

pp
en

di
x 

Ta
bl

e 
A5

 



144

Chapter	  5

Ta
bl

e 
A

8.
 T

re
at

m
en

t e
ffe

ct
 e

st
im

at
es

 o
f c

ar
bo

pl
at

in
 c

he
m

ot
he

ra
py

 c
om

pa
re

d 
to

 n
o 

ch
em

ot
he

ra
py

 o
n 

5-
m

on
th

 m
or

ta
lit

y 
in

 
do

gs
 w

ith
 o

st
eo

sa
rc

om
a 

st
ra

tif
ie

d 
by

 b
as

el
in

e 
ris

k.
T

re
at

m
en

t e
ff

ec
ts

 
M

or
ta

lit
y 

ev
en

ts
/g

ro
up

 si
ze

 
R

R
 (9

5%
C

I)
 

[n
on

-li
ne

ar
]*

 
R

R
 (9

5%
C

I)
  

[li
ne

ar
]*

 

D
ox

or
ub

ic
in

 
co

m
bi

na
tio

ns
 

N
o 

ch
em

ot
he

ra
py

 
 

 

Ef
fe

ct
 st

ra
tif

ie
d 

fo
r b

as
el

in
e 

ris
k 

qu
in

til
es

 
 

 
 

 

Q
ui

nt
ile

 1
; B

as
el

in
e 

ris
k 

(0
.0

8;
 0

.2
4)

 
3/

18
 

11
/2

9 
0.

44
 (0

.1
3;

 1
.4

6)
 

0.
32

 (0
.1

5;
 0

.7
1)

 

Q
ui

nt
ile

 2
; B

as
el

in
e 

ris
k 

(0
.2

4;
 0

.3
0)

 
5/

17
 

16
/2

9 
0.

53
 (0

.2
3;

 1
.2

6)
 

0.
47

 (0
.2

7;
 0

.8
2)

 

Q
ui

nt
ile

 3
: B

as
el

in
e 

ris
k 

(0
.3

0;
 0

.3
6)

 
1/

16
 

14
/3

0 
0.

13
 (0

.0
2;

 1
.0

8)
  

0.
60

 (0
.3

8;
 0

.9
4)

  

Q
ui

nt
ile

 4
; B

as
el

in
e 

ris
k 

(0
.3

6;
 0

.4
3)

 
5/

17
 

6/
29

 
1.

42
 (0

.4
8;

 4
.1

8)
 

0.
75

 (0
.4

8;
 1

.1
9)

 

Q
ui

nt
ile

 5
; B

as
el

in
e 

ris
k 

(0
.4

3;
 0

.6
7)

 
5/

11
 

13
/3

5 
1.

22
 (0

.5
2;

 2
.8

7)
  

1.
12

 (0
.6

0;
 2

.0
8)

  

*N
on

-li
ne

ar
 tr

ea
tm

en
t e

st
im

at
es

 a
re

 b
as

ed
 o

n 
th

e 
qu

in
til

e 
sp

ec
ifi

c 
es

tim
at

es
. T

he
 li

ne
ar

 tr
ea

tm
en

t e
st

im
at

es
 a

re
 b

as
ed

 o
n 

eq
ua

tio
n 

2 
an

d 
tre

at
m

en
t a

nd
 in

te
ra

ct
io

n 
es

tim
at

es
 g

iv
en

 in
 a

pp
en

di
x 

Ta
bl

e 
A5

 



145

Chemotherapy in dogs with osteosarcoma





Part IV 

Generalizability of the effects of 
interventions





CHAPTER 6

The generalizability of randomized controlled trial results of the 
effects of beta-blockers compared to diuretics on the risk 

of non-fatal myocardial infarction

A F Schmidt, R H H Groenwold, F Gueyffier, A W Hoes, A de Boer

 M Nielen, O H Klungel

In revision



150

Chapter 6



151

Generalizabilty of beta-blocker effect estimates

Abstract

Purpose To explore the generalizability of the RCT effect estimates of atenolol and propra-

nolol compared to diuretics on the risk of non-fatal myocardial infarction (MI) and whether 

generalizability differed between age groups. 

Methods The effect of beta-blocker versus diuretic use on the risk of MI was estimated using 

data from two RCTs (antihypertensive MRC trials), a case-control study, and a cohort study. 

Treatment effect modification by age was assessed. 

Results The estimated effects of propranolol compared to diuretics did not differ between 

designs: HR 0.86 (95%CI 0.59; 1.26) and HR 0.61 (95%CI 0.26; 1.42), for the RCT and 

cohort study, respectively. While the atenolol effect estimates (compared to diuretics) differed 

from the propranolol estimates, they were similar across the differently designed studies: HR 

2.17 (95%CI 1.11; 4.23) in the RCT, HR 1.61 (95%CI 1.06; 2.45) in the cohort, and OR 0.96 

(95%CI 0.43; 2.15) in the case-control study. Results from the cohort study indicate that the 

effect of atenolol might change with age: treatment by age (per 10 years) interaction HR 0.63 

(95%CI 0.40; 0.99). Similar (though non-significant) interaction effects were observed in the 

RCT and case-control data (for atenolol and propranolol. 

Conclusions The RCT effect estimates of propranolol and atenolol compared to diuretics 

were similar to those in nonrandomized data suggesting generalizability of effect estimates to 

less controlled settings. Compared to diuretics, atenolol increased the hazard of MI; propra-

nolol on the other hand seemed to be equally effective. An age interaction could not be exclu-

ded.
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Background

In comparative effectiveness research, randomized clinical trials (RCTs) are considered the 

gold standard to assess treatment effects. One reason for this is that random allocation of 

treatment prevents confounding (i.e., treatment groups will have the same baseline risk for 

the outcome). It is well known however, that patients included in RCTs may differ from those 

included in nonrandomized studies. The latter include “real life” patients, whereas RCTs may 

include highly selected patient populations, as a result of strict in- and exclusion criteria (1-3). 

If treatment effects differs between patients included and excluded, effect estimates based 

on RCTs are not generalizable to all patients(4;5). 

To explore generalizability, researchers have compared results from RCTs to results from 

nonrandomized studies and in some cases found comparable results (6-10).Empirical evi-

dence showed that generalizability might be subgroup specific(10). Previously, the generali-

zability of a number of interventions (e.g., statin, beta-blocker and CABG therapy) has been 

explored. However, generalizability of subgroup effects has not been previously addressed. 

We assessed to what extent the RCT effect estimates of propranolol and atenolol compared 

to diuretics on the risk of non-fatal myocardial infarction (MI) are generalizable to estimates 

based on nonrandomized data. Furthermore, we also assessed whether the relative ef-

fectiveness and generalizability of treatment effects was constant across patients subgroup 

defined by age (11). For this, individual patient data was used from two RCTs and two non-

randomized studies based on electronic health care record databases (12;13). 

Methods

To assess the generalizability of the treatment effect estimates of propranolol and atenolol 

compared to diuretics on the risk of non-fatal myocardial infarction (MI) individual patient data 

was obtained from the INDANA (14) and the PHARMO(15) databases. In these data, we first 

estimated the effect of beta-blockers (propranolol or atenolol) compared to diuretics. Second, 

we explored whether effect estimates were constant across age categories. Third, recogni-

zing that propranolol and atenolol might differ in relative effectiveness, both compounds were 

individually compared to diuretics and effect modification by age was explored. 
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Data sources

From the INDANA database we extracted data from the two MRC antihypertensive trials 

(16;17), which were used as the reference standard in the current study. The MRC trials 

recruited untreated hypertensive patients. The first RCT (MRC younger) included patients 

aged 35 through 64 years with diastolic blood pressure (DBP) between 90 and 109 and a 

systolic blood pressure (SBP) < 200 mmHg. The second trial (MRC older) recruited patients 

aged 65 through 74 years with a DBP < 115 and with a SBP between 160 and 209 mmHg. In 

the MRC younger, patients were randomized to propanolol, bendrofluazide or placebo. In the 

MRC older, atenolol, hydrochlorothiazide (or hydrochlorothiazide with amiloride) or placebo 

were given. For the current comparison, patients randomized to placebo (n = 10,867) as well 

as those aged below 35 (n = 20) and above 75 years (n = 10) were excluded, resulting in 

10,853 patients within the age inclusion criteria of the original trial. In the MRC trials, outco-

mes were assessed by the researchers using general practitioners’ documents, hospital files, 

and ECGs. 

As nonrandomized counterparts, we used a case-control and a cohort study, both sampled 

from the PHARMO database. The PHARMO database includes drug-dispensing histories 

from a sample of Dutch community pharmacies (including about 2,000,000 subjects (15)) 

that are linked to the national hospital discharge registry. Drug-dispensing is registered using 

the Anatomical Therapeutic Chemical (ATC) classification system. Subjects were eligible for 

the nonrandomized studies when they were incident users (at least 1 year without antihyper-

tensive drug) starting on mono-therapy and were registered in the PHARMO database for at 

least 1 year. Atenolol use was defined as ATC code C07AB03, propranolol users were selec-

ted based on ATC C07AA05. Use of diuretic was defined based on the ATC codes C03AA03, 

C03AA04, C03BA04, C03BA05, C03BA11, C03DB01, C03EA01, C03EA03. See Appendix 

Table 1 for number of users per compound. MI events were retrieved from hospital discharge 

records (ICD-9 code 410). 

From the PHARMO database, 11,471 patients aged between 35 and 75 were sampled. In the 

cohort study information was available on age, sex, diabetes status and drug dispensing and 

hospital discharge records. 

To explore the relevance of additional confounding adjustment the Utrecht Cardiovascular 
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Pharmacogenetic (UCP) study was used. This study was designed as a case-control study 

nested among antihypertensive drug users in the PHARMO database (15). This study inclu-

ded additional information on the baseline lifestyle factors: BMI, smoking habits, hypercho-

lesterolemia, physical activity, and alcohol use. Cases were hospitalized for a first MI and 

prior to the event were on antihypertensive medication. Control patients were selected using 

incidence sampling and met the same criteria as cases but were not hospitalized for MI. Ca-

ses and controls were matched on age, sex and pharmacy location. After excluding subjects 

aged younger than 35 years (n = 7) and older than 75 years (n =112), the total number of 

patients consisted of 150 cases and 916 controls. 

Data Analysis

All analyses were done using the R statistical package, version 3.0.2 (18) and the survival 

(19) package. RCT data were analysed according to the intention-to-treat principle. In the 

cohort study, exposure status was based on the first prescription of beta-blocker or diuretics 

during follow-up (and considered constant during follow-up). In the case-control study, ex-

posure status was based on the prescription filled in the 90 days prior to the index date (i.e., 

becoming a case or control). 

Both the RCTs and the cohort data were analysed using multivariable Cox proportional 

hazard models (20), with calendar time as time axis. Subjects were censored when lost to 

follow-up, or at study end (22-01-1985, 31-07-1990 and 31-03-2005, for the younger, older 

MRC trials and the PHARMO cohort). The proportional hazard assumption was assessed 

by graphing time against the scaled Schoenfeld residuals (a time varying beta coefficient) 

and by testing whether there was an interaction with time using a global chi-square test; no 

deviations were observed. The case-control study was analysed using conditional multivari-

able logistic regression. Effect estimates are presented as hazard ratios (HRs) or odds ratios 

(ORs) with 95% confidence intervals (95%CI). Observations with missing values were exclu-

ded from the analysis (complete case analysis), which resulted in exclusion of 3%, 17%, and 

0% of the subjects from the RCT, case-control, and cohort data, respectively.

Treatment effect estimates were adjusted for baseline variables using multivariable regres-

sion models. Three different models were constructed with increasing adjustments. Model 

1 estimated the association of exposure with the outcome including variables for age and 
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gender. Model 2, which was only fitted for the RCTs and case-control study, additionally 

included BMI, smoking status, cholesterol (or hypercholesterolemia), and in the case-control 

study also physical activity and alcohol use. Note that, because these variables were not 

available in the cohort data, model 2 was not fitted for the cohort study. Model 3 corrected for 

a dichotomous morbidity or co-medication variable (defined subsequently), which indicated 

the presence or absence of co-morbidity or co-medication at first drug use. 

The dichotomous co-morbidity or co-medication variable mimicked the exclusion criteria 

of the MRC trials (see Appendix) (16;17). Co-morbidity was based on the following ICD-9 

codes: essential hypertension (401), secondary hypertension (402 through 405), liver cir-

rhosis (571), nephrotic syndrome (581), (nephrogenic) diabetes insipidus (253.5 and 588,1), 

nephrolithiasis (592.0 and 274.11), angina pectoris (413), tachycardia (785.0), migraine 

(346.0 through 346.9; excluding 346.4), gout (274), intermittent claudication (440.21), COPD, 

chronic bronchitis, asthma (490 through 496), malignancies (140 through 239; excluding 210 

through 229), stroke (434.91, 434.11, 430, 431, 432), transient ischemic attack (TIA) (435), 

late effects of cerebrovascular disease (438), heart failure (428), cardiac dysrhythmias (427), 

or because of admission for a previous MI (410 and 412). Similarly Co-medication use was 

defined using the ACT codes: antidepressants (N06A), statins (C10), nitrates (C01D), drugs 

for obstructive airway diseases (R03), or anti-diabetic drugs (A10).The presence of co-me-

dication was defined as any filled prescription in the 6 months prior to first antihypertensive 

prescription. Similarly,  co-morbidity was based on any hospital prior to the first antihyperten-

sive prescription registered. Since the case-control study was nested in the PHARMO da-

tabase, the co-morbidity and/or co-medication variable was also based on data prior to first 

antihypertensive drug use. 

A next step in the analysis was to assess whether treatment effects changed by patient 

subgroups defined by age and whether this impacted generalizability. To assess this, an age 

(continuous) by treatment interaction term was added to the previously defined models. To 

simplify interpretation of the interaction coefficient results are presented per 10 years and 

centred at 65 years; i.e., 65 was subtracted from every age measurement centring zero at 65 

and divided by 10. Deviations of linearity of the interaction effect was tested using a likeli-

hood ratio test comparing a linear model with a model including a restricted cubic spline for 

the interaction effect with five knots; no significant deviations were found. 
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Due to the age inclusion criteria of the RCTs, propranolol was only administered to subjects 

aged < 65 and atenolol only to subjects ≥ 65 years. Therefore, the treatment by age interacti-

on effects could not differentiate between age, center or treatment effects. Furthermore, there 

is evidence that the relative effectiveness of atenolol and propranolol might differ (21-23). To 

explore this, all analyses (for the RCTs, cohort and case-control study) were repeated com-

paring atenolol to diuretics or propranolol to diuretics (as two separate comparisons). 

Results

Baseline characteristics of included patients are presented in Table 1. The MRC trials in-

cluded 10,863 subjects of whom 159 (1.5%) experienced a non-fatal myocardial infarction 

(MI). In the cohort study 0.9% (N = 103) experienced an MI event, whereas in the case-

control study 150 subjects were included as cases and 916 as controls. In the RCTs 1095 

(28 MI events; 2.6%) subjects were randomized to atenolol and 4389 (56 MI events; 1.3%) 

to propranolol (Table 1). In the cohort study 4154 subjects started on atenolol (58 MI events 

1.4%) and 2341 on propranolol (7 MI events 0.3%). Of the 150 cases included in the case 

control study, 71 used atenolol and 17 propranolol. 

1 
 

Table 1 Baseline characteristics of the RCTs, the cohort study and the case-control study, stratified for type of  
beta-blocker used. 

RCT  
Atenolol 

RCT  
Propranolol  

Diuretics 
N=1077 

Atenolol 
N=1095 

Missing Diuretics 
N=4288 

Propranolol  
N=4389 

Missing 

Non-fatal MI, % 15 (1%) 28 (3%) 0 60 (1%) 56 (1%) 0
Follow-up time (years) 
median (IQR)

5.5 (4.1;6.5) 5.4 (3.4;6.5) 0 5.0 (4.0;5.5) 5.0 (4.0;5.5) 0 

Men (%) 452 (42%) 453 (41%) 0 2231 (52%) 2276 (52%) 0 
Age (years) median (IQR) 70.6 (68.2;72.7) 70.4 (68.1;72.7) 0 52.7 (46.7;58.2) 52.7 (46.8;58.2) 0 
BMI (kg/m^2) mean (sd) 26.5 (3.9) 26.6 (4.0) 3 27.2 (4.2) 27.1 (4.2) 5
Smokers (%) 230 (21%) 244 (22%) 1 1258 (29%) 1224 (28%) 47 
Serum cholesterol 
(mmol/L) mean (sd) 

6.5 (1.3) 6.5 (1.2) 9 6.5 (1.1) 6.5 (1.2) 233 

Co-medication or morbidity (%) 0 (0%) 0(0%) 0 0 (0%) 0 (0%) 0 
Complete observations (%) 1072 (100%) 1087 (99%) 13 4144 (97%) 4253 (97%) 280 

Cohort study 
 Atenolol 

Cohort study 
Propranolol 

Diuretics 
N=4976 

Atenolol 
N=4154 

Missing Diuretics 
N=4976 

Propranolol  
N=2341 

Missing 

Non-fatal MI, % 38 (1%) 58 (1%) 0 38 (1%) 7 (0%) 0 
Follow-up time (years) 
median (IQR) 

2.7 (1.2;5.0) 3.0 (1.4;4.9) 0 2.7 (1.2;5.0) 3.1 (1.5;5.0) 0 

Men (%) 1674 (34%) 1828 (44%) 0 1674 (34%) 686 (29%) 1 
Age (years) median (IQR) 57.3 (49.2;62.4) 53.8 (53.8;62.4) 0 57.3 (49.2;54.5) 46.4 (40.3;54.5) 0
Co-medication or morbidity (%) 1109 (22%) 677 (16%) 0 1109 (22%) 396 (17%) 0 
Complete observations (%) 4976 (100%) 4154 (100%) 0 4976 (100%) 2340 (100%) 0 

Case-control study 
Atenolol 

Case-control study 
Propranolol 

Controls 
N=851 

Cases 
N=133 

Missing Controls 
N=476 

Cases 
N=79 

Missing 

Beta-blocker use (%) 440 (52%) 71 (53%) 0 65 (14%) 17 (22%) 0 
Diuretic use (%) 411 (48%) 62 (47%) 0 411 (86%) 62 (78%) 0 
Men (%)  602 (71%) 99 (74%) 0 346 (73%) 57 (72%) 0 
Age (years) median (IQR) 59.2 (52.8;66.7) 61.2 (54.0;67.0) 0 59.2 (52.2;67.6) 62.3 (55.4;67.6) 0 
BMI (kg/m^2) mean (sd) 27.1 (3.9) 28.1 (6.0) 39 27.2 (4.1) 26.7 (3.6) 21 
Smokers (%) 507 (63%) 90 (70%) 46 291 (65%) 54 (73%) 30 
Alcohol consumer (%) 325 (39%) 40 (31%) 18 198 (42%) 21 (29%) 14 
Hypercholesterolemia (%) 267 (32%) 52 (39%) 7 162 (34%) 29 (37%) 3 
Co-medication or morbidity (%) 173 (20%) 34 (26%) 0 92 (19%) 22 (28%) 0 
Complete observations (%) 726 (85%) 99 (74%) 159 400 (84%) 52 (66%) 103 
Unless otherwise stated figures are absolute numbers. % = column percentage; IQR = Inter Quartile Range;  
sd = standard deviation.
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Comparing propranolol and atenolol to diuretics showed no significant effect on MI: HR 1.10 

(95%CI 0.80;1.53) for the RCTs, HR 1.33 (95% 0.88; 2.00) for the cohort study and OR 1.06 

(95%CI 0.48; 2.30) for the case-control study (Appendix Table 2). Additional adjusting for 

baseline characteristics resulted in a small shift away from the neutral effect in the nonran-

domized studies: HR 1.33 (95%CI 0.88; 2.01) and OR 1.16 (95%CI 0.50; 2.73) for the cohort 

and case-control studies. In the analysis of the RCT data, including a treatment by age (per 

10 years) interaction term showed that as age increases the treatment HR increases as well: 

interaction HR 1.32 (95%CI 0.94; 1.85). The interaction effects in the nonrandomized studies 

were in opposite direction: HR 0.69 (95%CI 0.44; 1.06) for the cohort study and OR 0.81 

(95%CI 0.36; 1.82) for the case-control study. After dichotomizing age (<65 years, and >= 65 

years, i.e., stratifying for trial in the RCT data) the p-values of the interaction term were 0.04, 

<0.01 and 0.82 for the RCT, cohort and the case-control studies. 

Given that propranolol and atenolol potentially differ in relative effectiveness, the analyses 

were repeated per compound (note that the propranolol RCT only included subjects aged 

<65 and the atenolol RCT subjects were aged between 65 and 75). Compared to diuretics 

propranolol seemed to be equally effective in preventing MI: HR 0.86 (95%CI 0.59; 1.26) for 

the RCT and HR 0.61 (95%CI 0.26; 1.43) for the cohort study (Table 2). Due to data sparse-

ness, the conditional logistic regression models failed to converge for the case-control study. 

Interaction effects of the RCT and the cohort study pointed towards an (non-significant) incre-

ase in treatment effect with increasing age: HR 0.89 (95%CI 0.52; 1.53) per 10 years for the 

RCT and HR 0.63 (95%CI 0.29; 1.38) per 10 years for the cohort study (Models 1, Table 2). 

Compared to diuretics atenolol increased the hazard of MI in the RCT and the cohort study: 

HR 2.17 (95%CI 1.11; 4.23) and HR 1.61 (95%CI 1.06; 2.45). In the case-control the OR was 

0.96 (95%CI 0.43; 2.15). Additional adjustment for baseline characteristics did not result in a 

marked change in estimate (Table 2). Interaction effects per 10 years were HR 0.86 (95%CI 

0.06; 11.56) for the RCT, HR 0.63 (95%CI 0.40; 0.99) for the cohort study and OR 0.78 (95CI 

0.35; 1.76) for the case-control study. 

Discussion

This study showed that the RCTs effect estimates of the beta-blockers atenolol and propra-

nolol compared to diuretics on non-fatal myocardial infraction (MI) were comparable to those 

estimated in a cohort study using electronic health care record databases. The case-control 
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study lacked precision therefore, generalizability to these patients could not be definitively 

shown. Exploring generalizability within patient subgroups defined by age, showed that there 

was some indication that the propranolol effects changed with age. However, generalizability 

between age groups could not be rejected. Finally, we showed that, in the RCT and nonran-

domized data propranolol and atenolol were differently associated with the incidence of MI. 

Previously, others have also found comparability between RCTs and nonrandomized studies 

(6;7). However, these studies used aggregated data, complicating exploration of interac-

tion effects and consistency across subgroups (5;10). Our findings are in line with previous 

studies that found no significant difference of atenolol compared to placebo on myocardial 

infraction: risk ratio 0.99 (95%CI 0.83; 1.19) (24), and showed that atenolol was inferior to 

diuretics in preventing MI (21-23). Most of these RCTs included subjects <65 or >65 and 

therefore consistency across age groups could not be fully explored in these studies. In 

the present study, the cohort and case-control studies included subjects aged between 35 

and 75 years allowing exploration of the treatment effects across different age groups. The 

propranolol interaction effects seemed to imply that if there was a treatment by age interac-

tion the treatment effects would increase with increasing age: HR 0.80 (95%CI 0.47; 1.38) 

for the RCT and HR 0.63 (95%CI 0.29; 1.38) for the cohort study. The atenolol by age in-

teraction terms indicated that as age increased the (relative to diuretics) harmful effect [HR 

2.41 (95%CI 0.47; 12. 36) for the RCT] decreased to a HR 1 as aged increased: HR 0.92 

1 
 

Table 2 Main and continuous age by treatment effects of propranolol versus diuretic treatment or atenolol versus diuretic treatment on  
non-fatal myocardial infarction in different study designs.  

Model RCT Cohort study Case-control study
 Main Effects Interaction effects Main Effects Interaction effects Main Effects Interaction effects 

Propranolol
Propranolol Model 1 0.86 (0.59; 1.26) - 0.61 (0.26; 1.42) - N.A. - 
Propranolol Model 2 0.83 (0.57; 1.22) - - - N.A. - 
Propranolol Model 3 - - 0.61 (0.26; 1.42) - N.A. - 
Propranolol Model 1 
with age interaction 

0.76 (0.37; 1.56) 0.89 (0.52; 1.53) 0.41 (0.12; 1.38) 0.63 (0.29; 1.38) N.A. N.A. 

Propranolol Model 2 
with age interaction 

0.65 (0.31; 1.56) 0.80 (0.47; 1.38) - - N.A. N.A. 

Propranolol Model 3 
with age interaction 

- - 0.41 (0.12; 1.38) 0.63 (0.29; 1.38) N.A. N.A. 

Atenolol
Atenolol Model 1 2.17 (1.11; 4.23) - 1.61 (1.06; 2.45) - 0.96 (0.43; 2.15) - 
Atenolol Model 2 2.30 (1.16; 4.54) - - - 0.92 (0.38; 2.23) - 
Atenolol Model 3 - - 1.62 (1.06; 2.47) - 0.95 (0.39; 2.33) - 
Atenolol Model 1 
with age interaction

2.36 (0.46; 12.16) 0.86 (0.06; 11.56) 1.35 (0.85; 2.15) 0.63 (0.40; 0.99) 0.82 (0.32; 2.13) 0.78 (0.35; 1.76) 

Atenolol Model 2 
with age interaction 

2.41 (0.47; 12.36) 0.92 (0.07; 12.11) - - 0.81 (0.29; 2.31) 0.81 (0.32; 2.05) 

Atenolol Model 3 
with age interaction 

- - 1.36 (0.86; 2.17) 0.63 (0.40; 0.99) 0.85 (0.30; 2.44) 0.83 (0.33; 2.10) 

Reported associations are hazard ratios for the RCT and cohort study and odds ratios for the case-control study  
(including 95% confidence intervals). RCT models were stratified for center. Case-control models were conditioned on the matching variables:  
age (categories of 1 year), sex and region. Model 1 consist of treatment, outcome, age and sex. Model 2, only fit for the RCT and case-control 
studies, additionally adjusted for BMI, smoking and cholesterol and in the case control study physical activity, and alcohol use. Model 3 additionally included  
the co-medications and comorbidity indicator The age interaction effects are per 10 years and centred at 65. N.A. not available due to small sample size. 
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(95%CI 0.07; 12.11) for the RCT, HR 0.63 (95%CI 0.40; 0.99) for the cohort study and OR 

0.83 (95%CI 0.33; 2.10) for the case-control study. Despite a significant interaction effect in 

the cohort study, the other interaction effects were non-significant and homogeneity of treat-

ment effects could not be rejected. Therefore, focusing on the main effect estimates seems 

appropriate. These showed that, compared to diuretics, atenolol increased the hazard of MI 

in the RCTs and in the cohort study. Propranolol seemed to be equally effective as diuretics 

in preventing MI in both the RCT and the cohort study. However, due to a lack of precision, a 

harmful effect could not be ruled out (the upper bound was 1.26 in the RCT and 1.42 in the 

cohort). Results of these main effects were similar across study designs indicating generali-

zability of the RCT effect estimates to less controlled settings. 

Despite careful considerations, the current study suffers from a few limitations. In the RCTs, 

all patients received therapy due to hypertension. Contrary to this, the prescription indication 

was not recorded in the nonrandomized studies. Given that cardiovascular risk increases 

which age it seems likely that the proportion of subjects receiving treatment for cardiovascu-

lar diseases increased with age, potentially explaining the observed interaction effects in the 

cohort study. Alternatively, the observed interaction effects in the nonrandomized data, might 

be due to a relation between unobserved confounding and age. Including a treatment by age 

interaction could than result in an erroneous interaction effect reflecting this bias. Finally, we 

should note that no correction was made for multiple testing which might provide an expla-

nation for the significant atenolol by age interaction effect. Other differences between RCTs 

and nonrandomized studies include differences in outcome and exposure definitions. In the 

RCTs MI was assessed using data from multiple sources. In the nonrandomized studies the 

outcome was based on hospital discharge diagnoses only. Previously, the sensitivity of the 

hospital discharge data for acute MI was found to be 84% (25). Second, in the nonrandomi-

zed studies, exposure was defined as a filled pharmacy prescription. Clearly, filling a pres-

cription is different from taking the medication however this is obviously very similar to the 

ITT analysis used in the RCT studies. Regardless, a validation study found that the positive 

predictive value for both prescription types of a filled prescription was 100%, compared to a 

home inventory (26). Finally, exposure in the case-control study was based on current use at 

the index-date which is not the same as in the RCTs and cohort study where exposure was 

based on starting with a beta-blockers or diuretic. This might explain why results of the cohort 

study was more in line with the RCT results than the case-control study results.
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All effect estimates presented in this study were adjusted for baseline characteristics. Co-

variate adjustment in RCT differs from covariate adjustment in nonrandomized studies. In 

RCTs, adjusting for baseline variables is typically done to increase power (27), whereas in 

nonrandomized studies results are adjusted to control for potential confounding (28;29). 

Adjusted effect estimates were derived using regression analysis (conditional logistic regres-

sion model and Cox’s proportional hazards model). Due to the limitations of the available 

data, confounder adjustment differed between case-control and cohort study, the former 

allowing to adjust for more variables. In the case-control data, additional adjustment for 

confounding did not result in markedly different estimates. Given that both the cohort study 

and the case-control study were sampled from the same database, it is likely that further 

covariate adjustment in the cohort study would follow the direction of the case-control study. 

Besides confounding and effect modification, obviously other factors such as information 

or misclassification bias may also affect the comparability of results based on RCT and 

nonrandomized data.  Despite, not considering these biases, comparable estimates were 

observed.

We conclude that the RCT effect estimates of propranolol and atenolol compared to diu-

retics were similar to those in nonrandomized data indicating generalizability of effect esti-

mates. Compared to diuretics, atenolol increased the hazard of non-fatal myocardial infarc-

tion; propranolol on the other hand seemed to be equally effective as diuretics. While there 

was, some indication that the relative effectiveness of both beta-blockers changed with age, 

homogeneity of treatment effect across age groups could not be rejected.  
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Appendix 1 Exclusion criteria of the MRC younger and older trial.

Both trials excluded patients based on (suspected) secondary hypertension, antihypertensive 

drug use during the run-in phase, heart failure, treatment for angina, stroke in the previous 

3 months, prior MI, impaired renal function, diabetes, asthma, malignancies, and potassium 

≤ 3.4 or > 5 mmol/l. Furthermore, the MRC younger trial also excluded patients if they were 

pregnant, had gout, or suffered from intermittent claudication.
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1 
 

Appendix table 1 Type of medication used  
Type of medication MRC younger MRC older Cohort  Case-control 
Atenolol 0 1095 4154 511 
Propranolol 4391 0 2341 82 
Bendrofluazide 4289 0 0 0 
Amiloride/hydrochlorthiazide* 0 1078 3413 310 
Chlorothiazide 0 0 10 0 
Chlortalidone 0 0 1197 92 
Indapamide 0 0 87 25 
Epitizide and potassium-
sparing agents 

0 0 269 46 

Following the RCT amiloride or hydrochlorthiazide was used as a single category consisting of the  
ATC codes: C03AA03, C03DB01 and C03EA01.  
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Abstract

Objective Ethical guidelines for human subjects research require that the burdens and 

benefits of participation are equally distributed. This study aimed to provide empirical data 

on exclusion of trial participants and reasons for this exclusion. As a secondary objective we 

assessed to what extent exclusion affects generalizability of study results. 

Study Design and Setting Review of trials on secondary prevention of cardiovascular 

events. 

Results 113 trials were identified, of which 112 reported exclusion criteria. One study justified 

the exclusion criteria applied. Ambiguous exclusion criteria due to the opinion of the phy-

sician (28/112 = 25%) or physical disability (12/112 =11%) were reported. Within groups of 

trials that studied similar treatments (i.e., beta-blocker, clopidogrel or statins therapy) base-

line characteristics differed between trials. For example, the proportion of women ranged 

between 23.1%-47.4%, 2.1%-38.9%, and 10.6%-50.6% for the clopidogrel, beta-blocker, and 

statin trials, respectively. Nevertheless, no evidence was found for heterogeneity of treatment 

effects. 

Conclusion Almost none of the papers justified the applied exclusion criteria. No evidence 

was found that inclusion of dissimilar participants affected generalizability. To allow for a nor-

mative discussion on equitable selection of study populations, researchers should not only 

report exclusion criteria but also the reasons for using these criteria.
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Background 

International ethical guidelines for medical research involving humans widely acknowledge 

that inclusion of human beings for research purposes has to be justified (1;2). Inclusion of 

human participants in medical research, such as randomized clinical trials (RCTs), is ethi-

cally difficult since we ´use´ humans primarily for the purposes of science and society (3;4). 

Moreover, there have been serious wrongdoings and highly controversial cases in the past 

(5). Because of the ethical and historical complexity many have felt, and still feel, that specific 

groups should not be included in clinical trials, such as (pregnant) women, children, and peo-

ple from low- and middle income countries (2;5;6). However, such exclusion practices have 

resulted in underrepresentation in research of certain groups (7). Therefore, current versions 

of ethical guidelines require not only justification of inclusion but also of exclusion (2;8;9). For 

instance, the Council for International Organizations of Medical Sciences (CIOMS) guideline 

for biomedical research involving human beings requires that “Groups or communities to be 

invited to be subjects of research should be selected in such a way that the burdens and 

benefits of the research will be equitably distributed. The exclusion of groups or communi-

ties that might benefit from study participation must be justified.” (2) Likewise, the Canadian 

Tri-Council Policy Statement (TCPS) 2 (9) stresses that “taking into account the scope and 

objectives of their research, researchers should be inclusive in selecting participants. Re-

searchers shall not exclude individuals […] unless there is a valid reason for the exclusion.

Although ethical concerns of inappropriate exclusion of trial populations are expressed in 

guidelines (9), it is currently unknown to what extent benefits and burdens of research are 

equally distributed. It is not straightforward to evaluate the current selection of study location 

and population, because trial databases do not require reporting which potential study po-

pulations have been excluded and why. In addition, considerations on equitable distribution 

of burdens and benefits may be part of the evaluation of study protocols in research ethics 

committees, but the notes of these meetings are usually not publicly available. Therefore, 

a logical first step to assess in what proportion of studies unbalanced selection of patient 

groups was applied are literature reviews on reporting exclusion criteria and the grounds for 

using these criteria. Information on exclusion criteria is likely to be available in papers since 

both the CONsolidated Standards of Reporting Trials (CONSORT) and the Standard Protocol 

Items: Recommendations for Interventional Trials (SPIRIT) statements require the reporting 

of exclusion criteria (10;11). Although these data not necessarily reveal whether study popu-
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lations have been deliberately excluded, they may nevertheless show whether and to what 

extent the reasons for exclusion of trial participants have been transparent on a more general 

level and hence whether there are concerns of unjustifiable exclusion of study populations. 

This paper is the first to study the use of exclusion criteria in this way. There have been 

previous studies on the use of exclusion criteria, but they have focused on their unneces-

sary use (12-14). Thus far no study explored whether researchers themselves justified the 

exclusion criteria that were applied. In this paper, we will report both the current status of the 

application of exclusion criteria and the justification of exclusion criteria using reported data 

from RCTs on secondary prevention of cardiovascular events. We have chosen studies on 

this topic since we expected a large number of trials from a large number of research groups, 

thus increasing representativeness of the sample.

Apart from ethical reasons for justifying exclusion there are also methodological reasons: if 

certain patient populations are not represented in RCTs, this may reduce generalizability of 

trial results. The previous studies that explored the application of exclusion criteria assumed 

that any exclusion of potential subjects hampers generalizability (12-14). However, studies 

comparing RCTs and nonrandomized studies (typically with less stringent in- and exclusion 

criteria) found little differences in the treatment effects (15-18). Therefore, as a secondary 

objective of our study, we assessed to what extent inclusion of different patient groups affects 

generalizability and thus results in different treatment effects.

Methods

Review of trials on secondary prevention of cardiovascular events 

We conducted a review to assess the current practice in reporting and justification of ex-

clusion criteria in RCTs. We focused on the rationale for excluding groups of subjects by 

extracting information on included subjects and reported exclusion criteria. Using the query 

described in Appendix I we searched Medline (using PubMed) for papers indexed from 01-

10-2010 till 31-05-2012. Based on title and abstract, we identified RCTs on secondary pre-

vention of cardiovascular events, which was defined as trials including patients with a stroke, 

myocardial infarction (MI), heart failure, cardiac arrhythmia, peripheral vascular disease, 

or patients undergoing coronary artery bypass grafting (CABG) or percutaneous coronary 

intervention (PCI). In addition, participants had to be randomized to one of the following 
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treatments: statins, platelet aggregation inhibitors, beta blockers, angiotensin converting 

enzyme inhibitors, or angiotensin II receptor blockers and a placebo or active comparator. 

Furthermore, the papers needed to be written in English, and describe a single trial. To allow 

for a fair comparison between different paper types (e.g., main analyses of trial results vs. 

post hoc analyses) we also searched for design papers and primary publications using cross-

references and trial registries. Information from different sources related to a single trial was 

combined into a single entry. 

Data Extraction

Of the included papers, data were extracted on applied exclusion criteria, the justification 

of exclusion criteria, baseline characteristics, and treatment effect estimates. The number 

of exclusion criteria reported by a single paper is often large; to limit this number, data was 

extracted on 18 a priori defined criteria with the option to include more if relevant. In the case 

of inclusion criteria, we defined the opposite as an exclusion criterion. For example, if for a 

particular trial age of 65 years and older was reported as an inclusion criterion, age below 65 

years was considered as an exclusion criterion. Finally, we determined whether a rationale 

for exclusion criteria was provided. This was defined as any point by point explanation about 

why exclusion criteria were applied. This allowed us to differentiate between papers that 

mentioned very explicit criteria like any contraindication or high risk for loss to follow-up, but 

otherwise offered no explanation, from studies that did offer justification. Exclusion criteria 

were divided in those needing justification and those that were self-explanatory. Criteria were 

judged to be self-explanatory when there was one obvious explanation for excluding these 

patients. For example, a self-explanatory exclusion criterion would be a contraindication to 

the medication under study (e.g. allergy). The rationale behind excluding such patients is 

obviously safety concerns and patients with contraindications would not be considered future 

users. 

Obviously, RCTs exploring different treatments are also likely to differ regarding exclusion 

criteria and groups of participants included. Therefore, to allow for a fair comparison we se-

lected (from the larger overall review) three groups of trials that explored the effect of clopido-

grel (n = 20), beta-blocker (n = 6), or statin therapy (n = 13). These (phase III) trials compa-

red treatment (clopidogrel, beta-blocker, or statin therapy) to an active control or placebo, on 

(composite) outcomes including death, myocardial infarction, or stroke. Most studies rando-
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mized participants to add-on treatment, for example, adding clopidogrel to aspirin treatment 

and comparing this with aspirin plus placebo or usual care.

Data Analysis

All analyses were performed using R for Windows, version 3.0.2 (19). The flowchart of the 

Medline search was created using the Diagram Designer program (20). Baseline characte-

ristics and effect estimates were pooled and weighted by the number of subjects. To assess 

generalizability of treatment effect estimates, we compared baseline characteristics of study 

participant across trials and determined the heterogeneity of treatment effects. We chose not 

to (statistically) test for the presence of treatment heterogeneity. Instead, treatment hetero-

geneity was quantified using the I2 statistic (21) and its precision by a 95% confidence inter-

val (95%CI).  The I2 statistic represents the percentage of variation in effect estimates across 

studies explained by actual differences (i.e., not due to chance). An I2 value of 0%-25%, 

25%-50%, 50%-75% and >75% can be interpreted as no, low, moderate or high heterogen-

eity (22). Additionally, we explored if there were any signs of treatment effect modification by 

age and proportion women (i.e., if there was a trend of increasing or decreasing treatment 

effect dependent on age or gender) (23). These baseline characteristics were chosen be-

cause we expected them to be uniformly reported. While we did not expect a large number 

of trials to exclude subjects based on age or gender, we do expect that exclusion due to 

other reasons will impact the gender and age distribution. For example, if the number of co-

morbidities increases with age excluding subjects based on any co-morbidity will decrease 

the average age in the study sample. Therefore, mean age and gender are used as proxies 

for differences in the application of exclusion criteria. Finally, in order to evaluate the possibi-

lity that treatment heterogeneity was dependent on exclusion criteria and not (or not only) on 

baseline characteristics we evaluated whether treatment effects changed when stratifying for 

three exclusion criteria. These criteria (exclusion due to: any medication usage at baseline, 

non-naïve for Intervention, opinion of physician) were selected because they were applied 

around 50% of the times thus ensuring approximately equally sized strata. 

Results

Description of included trials

The Medline search resulted in 3001 potentially relevant papers, of which 113 were inclu-
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ded (see Figure 1 for the flow and Appendix II for references of the 113 included papers). 

Among the 113 included RCTs, 17 (15%) papers reported only on the design of the study. 

Characteristics of trial participants were reported in 96 (85%) of the papers, which included a 

median of 447 subjects (interquartile range (IQR): 192-2141). 

Figure 1. Flow of identified publications in the systematic review of RCTs in secondary 
prevention of cardiovascular events.

Reporting and justification of exclusion criteria

Exclusion criteria were reported in 112 (99%) papers, a median of 6 exclusion criteria were 

reported per paper (IQR: 4-6; range: 0-12). The prevalence of different exclusion criteria is 

presented in Table 1 and stratified for criteria needing justification and those criteria that are 

self-explanatory. Self-explanatory exclusion criteria included exclusion because of high blee-

ding risk (56/112 = 50%), contraindications for the studied intervention (73/112 = 65%) and 

impaired renal (63/112 = 56%) or liver (59/112 = 53%) function. Exclusion criteria that poten-

tially require justification are exclusion of pregnant or fertile women (reported by 53 (47%) of 

the trials) and exclusion of lactating women (30 (27%), all of which also excluded the cate-

gory pregnant or fertile women). Studies not excluding lactating or fertile/pregnant women 

reported a relatively high median age (64 years; IQR 62-67, for the first group and 64 
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years; IQR 62-67 for the latter group), indicating that only a small number of women would be 

affected by excluding lactating or fertile/pregnant women. Other criteria needing justification 

are exclusion due to impaired cognition (16/112 = 14%), physical disability (12/112 =11%), 

medication use at baseline (80/112 = 71%), non-naivety to the studied intervention (40/112 

= 36%), specific indication for either treatment arm (13/112 = 12%), short life expectancy 

(45/112 = 40%), based on the opinion of the physician (28/112 = 25%) or exclusion due to 

an increased risk of being lost to follow-up (9/112 = 8%). Furthermore, children (i.e., partici-

pants aged < 18 years) were excluded in 78 (70%) trials and exclusion based age, other than 

age <18, was reported in 41 trials (36%), often resulting in the inclusion of older subjects.  A 

 

1 
 

Table 1. Reported exclusion criteria (with percentage and 95% confidence interval) in RCTs in secondary prevention of 
cardiovascular events (published Oct 2010 – May 2012)*. 

 All RCTs 
(N=112)** 

RCT of beta-blocker 
therapy 
(N=6) 

RCTs of clopidogrel 
therapy  
(N=20) 

RCTs of statin therapy 
(N=13) 

Self-explanatory criteria 

Contraindication  
to intervention 

73  
(65% 95CI 56; 74) 

3  
(50% 95CI 10; 90) 

15  
(75% 95CI 56; 94) 

6  
(46% 95CI 27; 81) 

Any impaired renal condition 63  
(56% 95CI 47; 65) 

4  
(67% 95CI 29; 100) 

6  
(30% 95CI 10; 50) 

11  
(85% 95CI 65; 100) 

Any impaired liver condition 59  
(53% 95CI 43; 62) 

5  
(83% 95CI 54; 100) 

4  
(20% 95CI 2; 38) 

12  
(92% 95CI 78; 100) 

High risk of bleeding 56  
(50% 95CI 41; 59) 0 13  

(65% 95CI 44; 86) 
1  

(8% 95CI 0; 22) 

Criteria requiring justification 

Age below 18 78  
(70% 95CI 61; 78) 

4  
(67% 95CI 29; 100) 

13 
(65% 95CI 44; 86) 

9  
(69% 95CI 44; 94) 

Other age restrictions 41  
(37% 95CI 28; 46) 

3  
(50% 95CI 10; 90) 

6  
(30% 95CI 10; 50) 

6  
(46% 95CI 19; 73) 

Pregnant and/or fertile 53  
(47% 95CI 38; 57) 0 7  

(35% 95CI 14; 56) 
6  

(46% 95CI 19; 73) 

Lactating women 30  
(27% 95CI 19; 35) 0 4  

(20% 95CI 2; 38) 
4  

(31% 95CI 6; 56) 

Female gender 1  
(1% 95CI 0; 3) 0 0 0 

Male gender 0 0 0 0 

Any medication 
usage at baseline 

80  
(71% 95CI 63; 80) 

4  
(67% 95CI 29; 100) 

17  
(85% 95CI 69; 100) 

7  
(54% 95CI 27; 81) 

Non-naïve for  
Intervention 

40  
(36% 95CI 27; 45) 

3  
(50% 95CI 10; 90) 

9  
(45% 95CI 23; 67) 

9  
(69% 95CI 44; 94) 

Opinion of physician 28  
(25% 95CI 17; 33) 

3  
(50% 95CI 10; 90) 

5  
(25% 95CI 6; 44) 

3  
(23% 95CI 0; 46) 

Indication for either 
treatment arm 

13  
(12% 95CI 6; 18) 0 0 1  

(8% 95CI 0; 22) 

Likely to be lost to follow-up 9  
(8% 95CI 3; 13) 0 3  

(15% 95CI 0; 31) 0 

Short life expectancy 45  
(40% 95CI 31; 49) 

2  
(33% 95CI 0; 71) 

7  
(35% 95CI 14; 56) 

3  
(23% 95CI 0; 46) 

Lack of cognition or 
mental impairment 

16  
(14% 95CI 8; 21) 

2  
(33% 95CI 0; 71) 0 1  

(8% 95CI 0; 22) 
Physical disability 12  

(11% 95CI 5; 16) 0 0 1  
(8% 95CI 0; 22) 

* note 95% confidence intervals are based on the asymptotic Wald method and values below zero and above 100 were truncated. 
**One study did not report any exclusion criteria. 
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single trial (1%) mentioned excluding women. In a sensitivity analysis we explored whether 

exclusion criteria differed between publications from journals with a high (>5) and low (5≤) 

impact factor (Appendix III). This revealed that trials published in journals with a higher im-

pact factor tended to apply more exclusion criteria. 

Because differences in exclusion criteria in such a large group of trials might occur because 

of differences in e.g. treatment or outcome under study, we also explored the exclusion 

criteria mentioned in a subset of trials, i.e., trials on clopidogrel (n = 20), beta-blocker (n = 

6), or statin therapy (n = 13). These trials were similar in the studied treatments as well as 

the outcomes (see Appendix IV for details).  Given this similarity one might also except that 

within each group of trials similar exclusion criteria were applied. This was indeed the case 

for some criteria, for example 12 of the 13 statin trials excluded subjects with liver impair-

ment at baseline. Contrary to this, some exclusion criteria were more variably applied, within 

groups of trials. For example, within the group of clopidogrel trials, 9 (45%) RCTs excluded 

non-naive subjects, whereas 11 (55%) included such participants. In the group of statin trials, 

6 (46%) trials excluded pregnant or fertile women. Similarly within the beta-blocker RCTs 3 

out of 6 (50%) focused on a specific age group of adults. 

Only one paper reported a rationale for the applied exclusion criteria. This particular study 

assessed the effect of clopidogrel in patients undergoing CABG and used a non-fatal end-

point (24;25). The authors explain that subjects with a current malignancy were excluded by 

stating: “Higher risk of early postoperative mortality”(25). 

Generalizability

The baseline characteristics of included trials showed a large range in patient characteris-

tics  between trials (Table 2), also when focusing on the subsets of trials on clopidogrel, 

beta-blocker, or statin therapy. For example, the proportion of women included ranged from 

23.1%-47.4% for the clopidogrel, 2.1%-38.9% for the beta-blocker, and 10.6%-50.6% for 

the statin RCTs. Other examples could be differences in the proportion of subjects with e.g. 

diabetes, hypertension, and hypercholesterolemia (Table 2). Note that the minimum included 

proportion of women was 2.1% (despite the fact that this trial reported to exclude women). 
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Among the clopidogrel trials, 13 (80%) studies allowed for extraction of the treatment effect. 

Of the 7 trials not reporting outcome data, 3 were design papers and in 3 trials no outcomes 

were observed (e.g., due to the outcome being of secondary importance). The reported risk 

ratio (RR) for clopidogrel versus active or placebo add-on therapies ranged between 0.13 

and 0.99 [pooled RR = 0.77, 95%CI 0.67; 0.88], for the composite endpoint of mortality, MI, 

stroke, revascularization and stent-thrombosis (see Appendix IV). Plotting the RR against 

the proportion of women or mean age of the included subjects did not show any dependency 

(Figure 2). This is in line with the I2 statistic, which indicated little heterogeneity (I2 16%, 95CI 

0; 35). 

For the group of statin trials, treatment effects could be extracted from 12 (92%) papers. 

The RR for the composite endpoint of mortality, MI, stroke, and revascularization, ranged 

 

2 
 

Table 2. Baseline characteristic of study participants in RCTs on beta-blocker, clopidogrel or statin therapy in 
secondary prevention of cardiovascular events (published Oct 2010 – May 2012)*. 
 Beta-Blockers RCTS Clopidogrel RCTs Statin RCTs All RCTs 

Baseline characteristics Range  
(min-max) 

N of 
studies 
(N=6) 

Range  
(min-max) 

N of 
studies 
(N=17) 

Range  
(min-max) 

N of  
studies 
(N=12) 

Range  
(min-max) 

N of  
studies 
(N=96) 

Number of subjects  70-2708 6 60-13608 17 44-9251 12 36-26449 96 

Women  2.1%-38.9% 6 23.1%-47.4% 17 10.6%-50.6% 12 2.1%-78.4% 96 

Mean age (years) 46.6-75.7 6 59.0-68.6 16 58.4-71.0 12 46.6-81.0 88 

Mean weight (kg) 84.1 1 87.8 1 78.4-85.7 2 75.2-92.8 15 

Mean height (cm) 172.7 1 - 0 170.7-172.5 2 167.8-172.7 7 

Mean BMI (kg/m^2) 25.7-28.0 4 24.2-30.0 10 23.0-28.8 4 23.0-31.9 46 

Currently smoking 4.2%-17.5% 3 12.8%-49.8% 15 12.9%-58.7% 9 4.2%-59.8% 73 

Previously smoking 73% 1 - 0 37.1%-63.5% 2 23.7%-72.5% 13 

Never smoked - 0 - 0 24% 1 23.5%-48.5% 7 

White race 70% 1 88.8-93.7 3 90.9-94.3 2 69.9%-98.8% 21 

Black race 24% 1 1% 1 - 0 0.9%-100% 10 

Asian race - 0 7% 1 - 0 5.0%-100% 8 

Hispanic race 6% 1 - 0 - 0 3.0%-10.3% 3 

Diabetes 20.6%-35.5% 4 19.4%-45.1% 16 14.7%-44.0% 10 1.5%-100% 85 

Hypercholesterolemia 43.0%-63.0% 4 15.7%-82.6% 16 28.5%-40.7% 2 10.8%-87.9% 56 

Hypertension 59.0%-82.9% 4 40.1%-88.8% 15 43.0%-82.7% 10 29.9%-90.4% 75 

Mean serum cholesterol  
(mmol/L) 

4.8 1 4.0 1 4.5-6.2 4 3.8-6.2 11 

Mean systolic BP  
(mmHg)  

113.6-140.9 6 129.4-130.0 2 127.0-138.9 4 96.9-145.3 38 

Mean diastolic BP  
(mmHg) 

71.0-90.8 4 77.9-80.0 2 71.1-81.8 4 60.5-90.8 30 

Mean heart rate 73.0-81.5 6 75.0 1 67.0-68.0 2 64.2-91.1 26 

History of MI 40.0%-50.3% 3 3.8%-53.6% 12 18.5%-81.0% 6 1.5%-81.0% 57 

History of ST 10% 1 2.0%-7.7% 6 4.9%-9.4% 2 2.0%-99.8% 30 

*Displayed information is based on papers that allowed for extraction of patient characteristics. The range gives minimum and 
maximum mean or mean percentage if there were 2 or more RCTs included. If only 1 RCTs reported on the respective 
characteristics the mean is presented. BMI=body mass index, BP= blood pressure, MI=Myocardial infarction, ST=stroke. 
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between 0.25 and 1.50 (pooled RR = 0.82, 95%CI 0.75; 0.91). Graphics did not suggest any 

dependency between gender or age and the treatment effect (Figure 3) and neither did the I2  

statistic (I2 12%, 0; 31). 

Among the beta-blocker trials, using data from 5 (83%) studies, the RR for the mortality and/

or MI endpoint ranged between 0.68 and 2.25 (pooled RR = 0.91, 95%CI 0.68; 1.21). After 

excluding the most extreme observation of 2.25, the range was RR 0.68 to 0.94. As with the 

two previous examples, the graphical display (Figure 4) as well as the I2 statistic did not sug-

gest any heterogeneity (I2 0%, 95CI 0; 100). However, due to small sample size the 95%CI 

was large indicating a lack of precision. 

Finally, we explored whether treatment effects were dependent on the following exclusion 

criteria: ‘any medication at baseline’, non-naïve for intervention’ or ‘opinion of physician’; see 

Appendix V. No dependency between the treatment effect estimates and exclusion criteria 

was observed. 

Figure 2 Forrest plot of the effect of clopidogrel on the composite endpoint of mortality, myocardial infarction, stroke, 
revascularization and stent-thrombosis, ordered by the proportion of women or mean age of the individual trials.

Legend figure 2: Triangles indicate treatment effects (risk ratio). Horizontal bars indicate 95% confidence intervals of the risk 
ratio’s. N reflects the sample size including both genders, SD indicate the standard deviation. One of the clopidogrel trials did not 

report mean age and was excluded.
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Figure 3. Forrest plot of the effect of statins on the composite endpoint of mortality, myocardial infarction and 
revascularization, ordered by the proportion of women or mean age of the individual trials.
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Figure 4. Forrest plot of the effect of beta-blocker on the composite endpoint of mortality and myocardial infarction, or-
dered by the proportion of women or mean age of the individual trials.

Legend Figure 3 and 4: Triangles indicate treatment effects (risk ratio). Horizontal bars indicate 95% confidence intervals of the 
risk ratio’s. N reflects the sample size including both genders, SD indicate the standard deviation.
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Discussion

Key findings of this study are that 1.) a rationale for exclusion criteria is hardly ever reported; 

and 2.) the applied exclusion criteria differed considerably between studies exploring the 

same treatment, yet despite differences in baseline characteristics between these studies 

there was no evidence for impaired generalizability. In the following, we will discuss these 

findings. 

Although almost all RCTs in our review of secondary prevention of cardiovascular events 

reported exclusion criteria (112/113 = 99%), only 1 paper provided a reason for a specific 

criterion that had been applied. Therefore, it is difficult to assess whether the inclusion and 

exclusion of trial participants in these trials was justified. We categorized exclusion criteria 

in those needing justification and those that are self-explanatory. Obviously, this is to some 

extend an arbitrary decision and other categorizations are also possible. However, we expect 

that most would agree that justification is not needed for excluding patients due to safety 

reasons such as contra-indications for the intervention under study. We deemed other criteria 

less self-explanatory and these would require justification. For example, in some occasions 

participants were excluded because of a ‘short life expectancy’ (45/112 = 40%). Exclusion for 

this reason possibly has to do with statistical power when studying non-mortality outcomes.  

This can, however, also be interpreted as gatekeeping (26), meaning that some groups of 

subjects may have been eligible to participate but have nonetheless been excluded. Another 

example is ‘opinion of the physician’ (28/112 = 25%). This criterion may imply that resear-

chers in their roles as physicians have made individualized judgments for patients, which 

should typically be avoided in a research context. Other exclusion criteria, for example those 

relating to age or pregnancy, might be seen as self-explanatory by some. However, we still 

viewed these as needing justification because there can be multiple non-exclusive reason for 

applying these criteria. For example children could be excluded because treatment effecti-

veness was expected to differ but also because of the (administrative) burden of including 

children. Similarly, excluding pregnant/fertile, or lactating women could be due to expected 

adverse event or other reasons such as the need for closer monitoring which might be in-

feasible during the trial. In our sample of trials almost half of the papers excluded pregnant/

fertile women and one fourth excluded lactating women. However, due to the relatively older 

target population of studies of secondary prevention of cardiovascular events it remains un-

certain whether indeed women have been excluded inappropriately and if so how many have 



183

Justification of exclusion criteria

been unfairly excluded. In the introduction we have already mentioned that these reasons for 

exclusion of potential trial participants are probably not published elsewhere. Hence, there is 

a potential risk of unjustifiable exclusion. 

In three groups of RCTs of the same treatment, there were no uniform application of ex-

clusion criteria and baseline characteristics differed considerably between studies. Despite 

this the observed treatment effects were similar across trials. This suggests that findings 

from these trials can be generalized across groups of participants; i.e., inclusion of different 

groups of participants did not seem to impair generalizability of treatment effects. Generaliza-

bility was assessed using the I2 statistics and by graphically determining whether there was 

a trend between treatment effect estimates and the baseline characteristics age and gender; 

no trend was found. However, it could be possible that researchers did not a priori expect dif-

ference in treatment effects between age or gender subgroups, thus allowing for differences 

in exclusion rates for the different subgroups. On the other hand, it seems likely that age and 

gender are related to other patient characteristics such as frailty and polypharmacy. Thus 

age and gender might still be used as proxies for treatment effect modification between treat-

ment and other baseline characteristics. We focused, however, on age and gender, because 

these patient characteristics were reported by almost all trials.

Despite careful considerations, this review potentially suffers from a few weaknesses. Our 

review focused on trials on secondary prevention of cardiovascular events. Our findings may 

therefore be only applicable to this particular clinical domain and not to other domains. In ad-

dition, we conducted our search using the Medline database only. Hence, RCTs not indexed 

by Medline were not included in our review. Most if not all journals with a high impact factor 

are indexed by Medline. However, this is not the case for lower impact journal. Inclusion of 

more lower impact publications, from other databases, could possibly change our findings. 

As a sensitivity analysis we therefore stratified exclusion criteria by the impact factor (>5 vs. 

≤5), which  suggested that lower impact publication reported less exclusion criteria. Thus 

the percentage of reported exclusion criteria is possibly somewhat inflated by only using 

Medline(PubMed). However, it seems unlikely that searching additional databases would 

markedly increase the percentage of papers justifying exclusion criteria. Similarly, we recog-

nize that our Medline search, of which 4% of the hits were included, might have been overly 

sensitive. While inefficient, this might nevertheless reduce the likelihood of excluding relevant 
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publications. In the current review we observed differences between baseline characteristics 

of trial populations. It seems likely that these differences are not only explained by different 

application of exclusion criteria but also (partially) reflect differences in available patient 

population. Regardless, of the causes of these differences in baseline characteristics we 

did not find any indication of treatment heterogeneity depending on these differences. This 

heterogeneity was assessed using I2 and by determining whether there was a trend in the 

treatment effect estimates per study and  the mean age and the proportion of women. Due to 

the relative small number of studies precision of these methods was sometimes lacking. This 

was most pronounced in the beta-blocker example were the 95%CI of the I2 included 0% and 

100%. In the clopidogrel and statin examples the precision was higher indicating an upper 

level of 35% heterogeneity. Given these limitations, we cannot conclude that there is in fact 

no treatment heterogeneity but merely that we could not detect any. Another issue is that the 

pooling of baseline characteristics, treatment effect estimates, and the exploration of hetero-

geneity are based on meta-analysis methods. Given that our interest is not on estimating any 

clinically relevant treatment effect estimates no assessment of risk of bias of the individual 

studies was performed. On the other hand, little heterogeneity was found between the three 

trial subgroups, indicating that if a bias assessment would have been applied results would 

not differ markedly. 

Although ethical guidelines require justification of exclusion, this study shows that authors do 

not feel obliged to provide this rationale. However, if potential subjects are excluded because 

of expected differences in treatment effectiveness (or harm) it seems very relevant to report 

this information. It might be beneficial when reporting guidelines like the CONSORT or the 

SPIRIT statement would recommend such reporting. In fact the recent SPIRIT statement on 

RCT protocols (11) advices researchers to do just this and states: “Certain eligibility criteria 

warrant explicit justification in the protocol, particularly when they limit the trial sample to a 

narrow subset of the population” (11). In line with the SPIRIT statement, we feel that the qua-

lity of RCT reporting would improve when researchers report justification of exclusion criteria. 

Whether this is done in the RCT protocol, the primary publication, trial registries or in any 

other publicly available documentation is of secondary importance. 

Conclusion

Although ethical guidelines require justification of exclusion of study populations (8;10), this 
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study shows that authors do not feel obliged to provide this rationale in their papers. In line 

with these guidelines we emphasize that researchers should not only report exclusion criteria 

but also discuss why these exclusion criteria were used and to what extent exclusion of those 

subjects could affect generalizability of treatment effects. Explicitly reporting both exclusion 

criteria and rationales for these criteria may decrease the use of ambiguous exclusion crite-

ria, or at the very least readers can more easily judge whether exclusion of groups of patients 

was justified. 



186

Chapter 7

Reference List
1.	 WMA. Declaraction of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. 

Seoul, Korea 2010.
2.	 Council for International Organizations of Medical Sciences (CIOMS). International ethical guideli-

nes for biomedical research involving human subjects. Geneva; 2002. 
3.	 Jonas H. Reflections on experimenting with human subjects. Daedalus, the Journal of the Ameri-

can Academy of Arts and Sciences 1969;98:219-47.
4.	 Graaf vdR, van Delden JJ. On using people merely as a means in clinical research. Bioethics 2012 

Feb;26(2):76-83.
5.	 Emanuel EJ, Grady C. Four paradigms of clinical research and research oversight. Camb Q Heal-

thc Ethics 2007;16(1):82-96.
6.	 Baylis F, Halperin SA. Research involving pregnant women: trials and tribulations. Clinical Investi-

gation 2012 Feb 1;2(2):139-46.
7.	 The Oxford Textbook of Clinical Research Ethics. Reprint ed. Oxford New York: Oxford University 

Press; 2011.
8.	 Policy and Guidelines on the Inclusion of Women and Minorities as subjects in clinical research.  

National Institute of Health.; 1993. 
9.	 Tri-Council Policy Statement (TCPS) 2: Ethical Conduct for Research Involving Humans.  2010. 
10.	Moher D, Hopewell S, Schulz KF, Montori V, Gotzsche PC, Devereaux PJ, et al. CONSORT 2010 

Explanation and Elaboration: Updated guidelines for reporting parallel group randomised trials. J 
Clin Epidemiol 2010 Aug;63(8):e1-37.

11.	 Chan AW, Tetzlaff JM, Gotzsche PC, Altman DG, Mann H, Berlin JA, et al. SPIRIT 2013 explana-
tion and elaboration: guidance for protocols of clinical trials. BMJ 2013;346:e7586.

12.	Lee PY, Alexander KP, Hammill BG, Pasquali SK, Peterson ED. Representation of elderly per-
sons and women in published randomized trials of acute coronary syndromes. JAMA 2001 Aug 
8;286(6):708-13.

13.	Van Spall HG, Toren A, Kiss A, Fowler RA. Eligibility criteria of randomized controlled trials pu-
blished in high-impact general medical journals: a systematic sampling review. JAMA 2007 Mar 
21;297(11):1233-40.

14.	Bugeja G, Kumar A, Banerjee AK. Exclusion of elderly people from clinical research: a descriptive 
study of published reports. BMJ 1997 Oct 25;315(7115):1059.

15.	Concato J, Shah N, Horwitz RI. Randomized, controlled trials, observational studies, and the 
hierarchy of research designs. N Engl J Med 2000 Jun 22;342(25):1887-92.

16.	Benson K, Hartz AJ. A comparison of observational studies and randomized, controlled trials. Am J 
Ophthalmol 2000 Nov;130(5):688.

17.	Rovers MM, Straatman H, Ingels K, van der Wilt GJ, van den Broek P., Zielhuis GA. Generali-
zability of trial results based on randomized versus nonrandomized allocation of OME infants to 
ventilation tubes or watchful waiting. J Clin Epidemiol 2001 Aug;54(8):789-94.

18.	Schmidt AF, Rovers MM, Klungel OH, Hoes AW, Knol MJ, Nielen M, et al. Differences in interaction 
and subgroup-specific effects were observed between randomized and nonrandomized studies in 
three empirical examples. J Clin Epidemiol 2013 Jun;66(6):599-607.

19.	R Development Core Team. R: A language and environment for statistical computing. Vienna, Aus-
tria: R Foundation for Statistical Computing; 2012.

20.	Diagram Designer [computer program]. Version 1.25 MeeSoft; 2012.
21.	Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med 2002 Jun 

15;21(11):1539-58.
22.	Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 

2003 Sep 6;327(7414):557-60.
23.	Groenwold RH, Rovers MM, Lubsen J, van der Heijden GJ. Subgroup effects despite homogene-

ous heterogeneity test results. BMC Med Res Methodol 2010;10:43.



187

Justification of exclusion criteria

24.	Kulik A, Le May MR, Voisine P, Tardif JC, Delarochelliere R, Naidoo S, et al. Aspirin plus clopido-
grel versus aspirin alone after coronary artery bypass grafting: the clopidogrel after surgery for 
coronary artery disease (CASCADE) Trial. Circulation 2010 Dec 21;122(25):2680-7.

25.	Kulik A, Le MM, Wells GA, Mesana TG, Ruel M. The clopidogrel after surgery for coronary artery 
disease (CASCADE) randomized controlled trial: clopidogrel and aspirin versus aspirin alone after 
coronary bypass surgery [NCT00228423]. Curr Control Trials Cardiovasc Med 2005 Oct 11;6:15.

26.	Sharkey K, Savulescu J, Aranda S, Schofield P. Clinician gate-keeping in clinical research is not 
ethically defensible: an analysis. J Med Ethics 2010 Jun;36(6):363-6.



188

Chapter 7

Appendix I

Medline search strategy for randomized controlled trials on secondary prevention of cardiovascular 
events.

Search date:31-05-2012

(statin* OR hydromethylglytaryl OR ”CoA reductase inhibitors” OR “hydromethylglytaryl CoA” OR 
“hydromethylglytaryl Coenzyme A” OR hydromethylglytaryl-CoA OR HMG-COA OR “HMG COA” 
OR fluvastatin OR simvastatin OR Zocor OR lipex OR pravastatin OR lipostat OR atorvastatin 
OR Lipitor OR lovastatin OR cerivastatin OR rosuvastatin OR crestor OR “beta blocker” OR “beta 
blockers” OR beta-blockers OR “beta blockade” OR “adrenergic beta antagonist” OR “adrenergic 
beta antagonists” OR beta-antagonist OR beta-antagonists OR “beta adrenergic” OR “adrenergic 
receptor blockader” OR “adrenergic receptor blockaders” OR blocker OR blockers OR beta-adrenergic 
OR “blocking agent” OR “blocking agents” OR “beta adrenergic” OR acebutolol OR spectral OR 
atenolol OR Tenormin OR betaxolol OR kerlon OR bisoprolol OR bisobloc OR emcor OR carvedilol 
OR eucardic OR celiprolol OR dilanorm OR labetalol OR trandate OR metoprolol OR lopresor OR 
selokeen OR nebivolol OR nebilet OR oxprenolol OR trasicor OR pindolol OR viskeen OR propranolol 
OR Inderal OR sotalol OR sotacor OR esmolol OR brevibloc OR “platelet aggregation inhibitor” OR 
“platelet aggregation inhibitors” OR “platelet antiaggregant” OR “platelet antiaggregants” OR “platelet 
inhibitor” OR “platelet inhibitors” OR antiplatelet OR “platelet antagonist” OR “platelet antagonists” 
OR “acetylsalicylic acid” OR asprin OR “aspro cardio” OR acylpyrin OR aloxiprimum OR colfarit OR 
dispril OR easprin OR ecotrin OR endosprin OR magnecyl OR micristin OR polopirin OR polopiryna 
OR solprin OR solusan OR zorprin OR acetysal OR cardegic OR “calcium carbasalate” OR ascal 
OR “calcium acetylsalicylic carbamidate” OR clopidogrel OR Plavix OR iscover OR dipyridamol 
OR persantin OR asasantin OR dipyridamole OR miosen OR cleridium OR cerebrovase OR 
antistenocardin OR curantil OR curantyl OR kurantil OR persantine OR dipiradol OR “platelet IIb/
IIIa receptor” OR “platelet IIb/IIIa receptors” OR abciximab OR reopro OR eptifibatine OR integrilin 
OR tirofiban OR aggrastat OR “angiotensin converting enzyme inhibitor” OR “angiotensin converting 
enzyme inhibitors” OR ACE OR kininase II OR “angiotensin converting” OR angiotensin OR benazepril 
OR cibacen OR captopril OR capoten OR cilazapril OR vascace OR enalapril OR renitec OR fosinopril 
OR newace OR lisonopril OR novatec OR Zestril OR perindopril OR coversyl OR quinapril OR 
acupril OR ramipril OR tritace OR trandolapril OR gopten OR zofendopril OR zofil OR Sartan* OR 
“angiotensin receptor antagonist” OR “angiotensin receptor antagonists” OR angiotensin OR “receptor 
blocker” OR “angiotensin receptor blockers” OR “angiotensin II receptor antagonist” OR “angiotensin 
II receptor antagonists” OR “angiotensin II receptor blocker” OR “angiotensin II receptor blockers” OR 
AT1 OR candesartan OR atacand OR eprosartan OR teveten OR irbesartan OR aprovel OR losartan 
OR cozaar OR telmisartan OR micardis OR valsartan OR diovan OR olmesartan )

AND (CVA* OR stroke* OR cerebrovascular OR “brain vascular” OR apoplexy OR infarct* OR “heart 
attack” OR “heart attacks” OR cardiac OR coronary OR cardiovascular OR “cardio vascular”) 

AND (Randomized [tiab] OR randomised [tiab] OR RCT [tiab] OR trial [tiab] OR placebo [tiab] OR 
controlled [tiab] OR characteristics [tiab] OR baseline [tiab]) 

AND (2010/09/22:2012/05/31[edat])

NOT (Review OR meta-analysis)



189

Justification of exclusion criteria

Appendix II Trial subgroups of secondary prevention of cardiovascular events RCTs, with intervention, comparison 
and outcome.

Study Intervention Comparison Outcomes Baseline 
data 

Outcome 
data 
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Beta-Blocker RCTs 

Ambrosio 2010 (#4) Nebivolol Placebo        

Dungen 2011 (#24) Bisoprolol Carvedilol        

Funck- 
Brentano 2011(#28) Bisoprolol Enalapril        

Marazzi 2011 (#63) Nebivolol Carvedilol        

White 2012 (#107) Bucindolol Placebo        

Wojnicz 2010 (#109) Carvedilol Verapamil       

Clopidogrel RCTs

Ahn 2010 (#2) 
Aspirin,  
Clopidogrel, 
Cilastazol 

Aspirin,  
Clopidogrel        

Aradi 2012 (#6) Clopidogrel 
150 mg 

Clopidogrel 
75 mg       

Bhatt 2010 (#14) Clopidogrel, 
Omeprazole 

Clopidogrel, 
Placebo        

Collet 2011 (#22) 
Tailored  
Aspirin, 
Clopidogrel 

Usual dose 
Aspirin, 
Clopidogrel 

        

Fernandez 2011 (#27) Clopidogrel 
600 mg 

Clopidogrel  
300 mg        

Good 2012 (#34) Clopidogrel Placebo        

Hazarbasanov 2012 (#39) Tailored  
Clopidogrel 

Clopidogrel  
75 mg      

Jin 2012 (#44) 
Aspirin,  
Clopidogrel, 
Cilastazol 

Aspirin, 
Clopidogrel       

Khosravi 2011 (#46) Clopidogrel  
(Osvix) 

Clopidogrel  
(Plavix)        

Lee 2011(#55) 
Aspirin,  
Clopidogrel, 
Cilastazol 

Aspirin, 
Clopidogrel, 
Placebo 

      

Lee 2011 (#54) 
Aspirin,  
Clopidogrel, 
Cilastazol 

Aspirin,  
Clopidogrel        

Leonardi 2012 (#58) Cangrelor Clopidogrel         

Mauri 2010 (#64) 
30 months 
Aspirin, 
Clopidogrel 

12 months 
Aspirin, 
Clopidogrel 

        

Meng 2010 (#66) Clopidogrel 
(Talcom) 

Clopidogrel  
(Plavix)     

Patti 2011 (#79) Clopidogrel  
600 mg 

Clopidogrel  
300 mg        

Roghani 2011 (#83) Clopidogrel  
150 mg 

Clopidogrel  
75 mg         

Ruff 2012 (#84) Prasugrel Clopidogrel        

Steg 2010 (#87) Ticagrelor Clopidogrel        

Valgimigli 2012 (#99) 
12 months  
Aspirin, 
Clopidogrel 

6 months  
Aspirin, 
Clopidogrel 

       

Wang 2011 (#103) Tailored  
Clopidogrel 

Usual dose  
Clopidogrel        

Statin RCTs 

Arimura 2012 (#7) Atorvastatin, 
Ezetimibe Atorvastatin       
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Athyros 2010 (#8) Tailored  
Atorvastatin  

Usual dose  
Atorvastatin       

Baran 2011 (#10) Atorvastatin Placebo      

Callahan 2011 (#18) Atorvastatin Placebo        

Gerdts 2012 (#29) Simvastatin, 
Ezetimibe  Placebo        

Kouvelos 2012 (#49) Rovastatin,  
Ezetimibe Rosuvastatin        

Liu 2012 (#61) Atorvastatin No statins        

Mora 2012 (#72) Atorvastatin 
80 mg  

Atorvastatin 
10 mg        

Nohara 2012 (#75) Rosuvastatin Pravastatin       

Sardella 2012 (#86) Rosuvastatin No statins        

Truong 2011 (#95) Atorvastatin Pravastatin       

Veselka 2011 (#101) Atorvastatin No statins        

Youn 2011 (#111) Rovastatin No statins       
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Appendix IV Reported exclusion criteria in RCTs in secondary prevention of cardiovascular events stratified for low 
and high impact journals*. 

Trial publications in  
high impact journal 

(N=42) 

Trial publications in  
low impact journal 

(N=70) 

Self-explanatory criteria

Contraindication  
to intervention 31 (69% 95CI 55; 83) 44 (63% 95CI 52; 74) 

Any impaired renal condition 23 (55% 95CI 40; 70) 40 (57% 95CI 46; 69) 
Any impaired liver condition 25 (60% 95CI 45; 74) 34 (49% 95CI 37; 60) 
High risk of bleeding 22 (52% 95CI 37; 67) 34 (49% 95CI 37; 60) 

Criteria requiring justification 

Age below 18 32 (76% 95CI 63; 89) 46 (66% 95CI 55; 77) 
Other age restrictions 18 (43% 95CI 63; 58) 23 (33% 95CI 22; 44) 
Pregnant and/or fertile 23 (55% 95CI 40; 70) 30 (43% 95CI 31; 54) 
Lactating women 14 (33% 95CI 19; 48) 16 (23% 95CI 13; 33) 
Female gender 0 1 (1% 95CI 0; 4) 
Male gender 0 0 
Any medication 
usage at baseline 31 (74% 95CI 61; 87) 49 (70% 95CI 59; 81) 

Non-naïve for  
Intervention 19 (45% 95CI 30; 60) 21 (30% 95CI 19; 41) 

Opinion of physician 12 (29% 95CI 15; 42) 16 (23% 95CI 13; 33) 
Indication for either 
treatment arm 3 (7% 95CI 0; 15) 10 (14% 95CI 6; 22) 

Likely to be lost to follow-up 4 (10% 95CI 1; 18) 5 (7% 95CI 1; 13) 
Short life expectancy 22 (52% 95CI 37; 67) 23 (33% 95CI 22; 44) 
Lack of cognition or 
mental impairment 9 (21% 95CI 9; 34) 7 (10% 95CI 3; 17) 

Physical disability 5 (12% 95CI 2; 22) 7 (10% 95CI 3; 17) 
* High impact factor journals were those journals with an impact factor higher than 5, whereas low impact journals had an 
impact factor equal or lower than 5. The 95% confidence intervals (95CI)_are based on the asymptotic Wald method and  
values below 0% and above 100% were truncated. One study did not report any exclusion criteria. 
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It has been widely accepted that most randomized control trials (RCTs) include patient 

groups that are not a representative sample of the patients who will receive the intervention 

in daily practice [1-3]. This has raised concerns about the generalizability of RCT results. 

Recently Pressler and Kaizar [4] enriched the discussion by asserting that the bias that 

results from a lack of generalizability can be quantified. They define two populations: the 

first consisting of subjects fulfilling the inclusion criteria of a RCT (in their notation group I) 

and the second group (group E) comprising subjects not meeting the inclusion criteria. They 

propose to estimate the treatment effects in both groups ( ˆ ( )I∆ and ˆ ( )E∆ , respectively) using 

nonrandomized (i.e., observational) data. Assuming equal amounts of confounding in both 

groups ˆ ˆ ˆ( ) ( )I Eβ = ∆ −∆  provides an unbiased estimate of how much treatment effect modi-

fication there exists between included and excluded subjects. If the interest is in estimating 

the “population average treatment effect “ (PATE), weighing β̂  by the proportion of E among 

the total population of interest ˆ En
n

π = provides an estimate ˆˆ ˆγ πβ=  of how much “generaliz-

ability bias” is created by relying on ˆ ( )I∆  to estimate the PATE. This weighing of β̂  is neces-

sary because if there is treatment effect modification between groups I and E, the PATE is 

dependent on the proportionate size of both groups. While we acknowledge the relevance of 

the approach suggested by Pressler and Kaizer, we wish to touch upon some concerns and 

discuss alternative strategies for exploring generalizability.

First, Pressler and Kaizer fail to address why one would be interested in the treatment effect 

in group E. For example, if we explore the effectiveness of a new antihypertensive drug and 

E comprises subjects without hypertension it seems illogic to try to estimate treatment effect 

modification between groups I and E. 

Second, using nonrandomized data to estimate γ̂  or β̂  only results in an unbiased estimate 

if the amount of confounding is equal in both groups E and I. This assumption is not testable, 

as the authors acknowledge, and results in a problem encountered in virtually all nonrand-

omized studies; i.e., not knowing whether estimates are unbiased or biased by confounding. 

Third, when γ̂  is estimated an implicit assumption is made that the effects within groups 

I and E are homogenous, otherwise γ̂  does not necessarily reflect a lack of generaliz-

ability due to excluding group E. Imagine a RCT in which only subjects younger than 50 

years are enrolled and let there be treatment effect modification by diabetes status. Hence, 
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group E would consist of subjects older than 50 years. In that case, γ̂  might deviate from 

0 simply because age increases the number of diabetic subjects; i.e., the magnitude of 

γ̂  becomes dependent on the proportion diabetics subjects. To show that this is not a 

lack of generlizability between excluded and included patients, note that while there is ef-

fect modification between diabetic and non-diabetic subjects ( )ˆ ˆ ˆ 0DM NDMβ = ∆ −∆ =/  within 

diabetic and non-diabetic subgroups the difference between groups I and E equals 0;

( ) ( )ˆ ˆ ˆ ˆˆ ˆˆ ˆ* ( ) ( ) 0 * ( ) ( ) 0DM DM DM DM NDM NDM NDM NDMI E I Eγ π γ π   = ∆ −∆ = = = ∆ −∆ =    .

This brings us to the final issue. If there is treatment effect modification between groups I and 

E (and assuming homogenous effects within groups I and E) the “population average treat-

ment effect” (PATE) will depend on the proportion of excluded patients π̂ . For example, let 

there be treatment effect modification between group I and E caused by age. Specifically, the 

relative risk for the outcome under treatment is 0.4 in subjects younger than 50 years of age 

(group I) and 1 among subjects older than 50 (group E). Furthermore, let the proportion E 

differ from 0.1 to 0.9 between certain regions of a country. Consequently, the PATE will range 

from 0.44 to 0.91. Reporting numerous region specific PATE estimates is at the very least 

inefficient compared to the alternative of reporting two age specific estimates. Furthermore, 

in the presence of treatment effect modification, the PATE is not applicable to any (group 

of) subject(s) making this an inappropriate effect estimate. Instead, the age specific effect 

estimates are applicable to their respective group members. If estimating the PATE is inap-

propriate when there is treatment effect modification, it is equally inappropriate to interpret 

γ̂  as the amount of “generalizability bias”. Therefore, we suggest that instead of focussing 

on “generalizability bias” it is more helpful to simply indicate if treatment effect modification is 

present or absent (i.e., if ˆ 0β =/ ). This can be estimated between groups I and E, as Pressler 

and Kaizer advise, but also within subgroups of I or E.

Before discussing alternative strategies we want to recognize that in settings in which all 

trials exclude the same kind of subjects the approach suggested by Pressler and Kaizar to 

estimate β̂ can indeed provide valuable insights on generalizability. However, at the poten-

tial cost of confounding bias because the effect estimates in E and I are based on nonrand-

omized data. Alternatively, if some RCTs include patients excluded by other RCTs, compari-

sons of the effect estimates between trials can also provide information on generalizability 
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[5]. While this latter approach prevents confounding bias within trials, estimates may still 

differ due to differences between studies, e.g. concomitant drug use, which could also affect 

conclusions regarding generalizability [6]. Ideally β̂  should be estimated within RCTs, which 

guard both against bias due to study specific effects and confounding bias. Therefore, we 

suggest that researchers explore generalizability by focusing on treatment effect modification 

using individual patient data (IPD) from multiple RCTs, which allows β̂  to be estimated within 

studies.  
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Before launching a new treatment to the market, medical interventions and most notably 

drugs, are typically evaluated in randomized clinical trials (RCTs) that primarily focus on the 

intended effects of interventions. Sometimes, RCTs can also provide information on relati-

vely common (type A) unintended (i.e. adverse) effects (1-3). After marketing, intervention 

effects (both intended and unintended) are often monitored using nonrandomized studies 

(e.g., case-control or cohort studies), supplemented by post-launch RCTs when needed. 

These studies are usually designed to provide information on the average intervention effect. 

Therefore, differences in treatment effects between a wide range of potential users will often 

remain undetected (4-7). 

When treatment effects differ between patients, this is referred to as effect modification, 

interaction, or heterogeneity of treatment effects. For example, consider a hypothetical trial 

that includes patients with (20%) and without (80%) diabetes. The risk ratio (RR) of the inter-

vention effect on the 5-years incidence of stroke differs, between patients with and without 

diabetes: say RR= 0.40 among patients with diabetes and RR = 1.00 among patients without 

diabetes. The observed (average) intervention effect is a weighted average of the effect 

among patients with and patients without diabetes: RR = 0.83. In this example, the interven-

tion effect differs between subgroups based on diabetes status, i.e., there is effect modifica-

tion by diabetes. In the presence of effect modification, average treatment effects are non-

informative: the RR = 0.83 applies neither to patients with diabetes, nor to patients without 

diabetes. Instead, subgroup-specific effect estimates are more meaningful for future patients. 

Throughout this thesis, we used the term effect modification, interaction and heterogeneity in-

terchangeably. Some reserve the term interaction for the specific situation of heterogeneity of 

treatment effect  when a factor biologically interacts with the treatment and effect modification 

for the situation where it does not (8). This distinction can usually not be determined analy-

tically and will therefore not be made here. Also, it has been recognized that the presence 

of effect modification depends on the effect measure chosen (e.g., risk difference, risk ratio 

or odds ratio) [Chapter 1] (9-11). For example, if the odds ratio is constant across patient 

subgroups this does not preclude heterogeneity of the risk ratio (12). Effect modification is 

therefore also referred to as effect measure modification. Here, we consider situations where 

the effect measure was selected a priori and thus only consider effect modification of the 

particular effect measure chosen. 
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When study results do not suggest any effect modification, the main (i.e. average) treatment 

effect found in a study is likely generalizable beyond the population included in the study; 

because there is no direct reason to believe the treatment acts differently in other subjects 

[Chapters 7 and 8] (13;14). However, most clinical studies are not designed to detect tre-

atment effect modification and often assume homogeneity of treatment effects(15). As the 

aforementioned example showed, undetected effect modification can result in wrongfully ap-

plying the main treatment effect to patients. In our example, patients without diabetes would 

be treated despite not having any benefit from treatment. On the other hand, the effect in 

patients with diabetes was underestimated; affecting, for example, the willingness to pres-

cribe or take the medication, the cost-effectiveness ratio and possibly resulting in negative 

decisions regarding reimbursement. Overall, patients are treated suboptimally when effect 

modification is not recognized. 

In this chapter, we will consider how study results can be translated to individual patients 

using the concept of treatment effect modification. First, strategies to detect treatment effect 

modification are addressed. Second, we present a structured approach to assess to whom 

estimated treatment effects are generalizable and for whom a more tailored treatment effect 

estimate is needed. 

Detecting treatment effect modification 

Detecting treatment effect modification is essential in translating study results to individual 

patients. Effect modification can be detected by testing whether the interaction effect, e.g. in 

a regression model, differs from zero (16;17). However, such interaction tests are renowned 

for their lack of power (i.e., the probability of correctly concluding that interaction exists) com-

bined with large type 1 errors (i.e., the probability of falsely concluding that interaction exists) 

[Chapter 1] (10;18-23). While this might seem counterintuitive, this is due to the erratic be-

haviour of interaction tests (as any other test) in sparse data settings. In sparse data settings, 

interaction tests may show large outliers (away from zero) under the null-hypothesis, but also 

large outliers away from the expected value (thus toward zero), under the alternative hypoth-

esis. Often this performance is viewed as inevitable, but proper sample size calculations with 

oversampling of the relevant patients can prevent data sparseness. Thus, interaction tests do 

not inherently underperform, but rather they lack proper planning. 
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For more definitive conclusions on the absence or presence of treatment effect modifica-

tion, the current approach to interaction testing needs improvement. The first step is to more 

actively share and pool individual patient data to increase the effective sample size and thus 

increase the power of interaction tests [Chapters 1, 2, 3, 5 and 8] (14;24;25). Increases in 

sample size can increase power (and decrease type 1 errors). Perhaps equally important, 

data sharing allows exploring consistency of effects across multiple studies.

A second improvement, might be to follow a more inclusive view on the body of evidence, al-

lotting a more prominent role to nonrandomized intervention studies (26-29). Exploring inter-

actions in RCTs as well as nonrandomized studies can provide information on generalizability 

to less controlled settings, i.e. daily clinical practice. Recently, empirical studies on various 

clinical topics showed comparable results in RCTs and nonrandomized studies [Chapters 

2, 3 and 7] (24;30-33). At the same time we recognize that randomized and nonrandomized 

studies differ in their likelihood of bias (notably confounding) and consequently the strength 

of evidence. A possible way to incorporate this strength of evidence component is to use 

Bayesian methods. Bayesian methods provide an intuitive way to incorporate this [Chapter 

3] (34-39); for example by reweighting poor quality studies. At the very least, this reweighting 

of nonrandomized studies is more promising than acting as if nonrandomized studies provide 

no evidence at all; a practice commonly applied in most systematic reviews and meta-analy-

ses on intended treatment effects (29). Similarly, when RCT and randomized studies contra-

dict each other, focusing on RCT results alone, too easily puts the blame on nonrandomized 

studies. Instead researchers should try to explore why results differed between different 

designs [chapter 6] (40).

Third, for interaction tests to be anything but exploratory, interaction tests should be prespeci-

fied including proper sample size calculations. Sample size calculations and sampling strate-

gies (e.g., equally sized subgroups) can ensure appropriate power and type 1 error rates. 

One attractive idea is to incorporate interaction tests using adaptive trial designs (41-43). For 

example, design a trial to show presence of a main effect in a homogenous group of patients. 

When during interim analysis there is enough evidence to expect that the treatment is ef-

fective (i.e. there is a beneficial average effect), the second study period (the period follow-

ing the interim analysis) can be used to enrich the patient sample to explore heterogeneity 
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between important patient subgroups. We recognize that this contrasts with the more usual 

approach of focusing on a single promising subgroup after interim (41;44). Here we actually 

reverse the usual approach: we start with a subgroup where we expect treatment to be most 

beneficial and in the second stage (after interim) explore consistency of this treatment effect 

across important subgroups. 

Finally, while focusing on detecting generalizability of treatment effects, one should be aware  

that a non-significant interaction test can never be interpreted as proof for the absence of 

treatment effect modification. To quote Altman (45): “absence of evidence is not evidence 

of absence”. Instead to ‘prove’ equivalence, so called equivalence tests should be used. 

Recognizing that the strict null-hypothesis (i.e., H0: μ0 = 0) never holds, tests of equivalence 

determine margins between which differences in treatment effect estimates are small enough 

to be deemed clinically irrelevant (46;47). When the treatment effect estimate and its confi-

dence interval fall between these margins equivalence is ‘proven’ (Figure 1). This approach 

has been frequently applied to main effects (48). Equivalence tests can be extended to inter-

action tests by determining a margin around the neutral interaction effect, which is sufficiently 

small for the subgroup-specific estimates to be considered equivalent. As with any test, 

equivalence interaction tests require proper planning to ensure sufficient power and sample 

size. One approach could be to use the adaptive trial design suggested previously and in the 

second stage include enough patients to show equivalence for subgroups of major interest. 

Treating individuals

Probably there is not a single treatment that is equally effective in every patient, so there will 

always be a need for subgroup-specific (or even patient specific) treatment effect estimates; 

i.e., identification of subsets of patients for whom treatment effects are more or less similar. 

In Box 1, a scheme is presented to assess effects of interventions that are applicable to an 

individual rather than apply to a population that comprises a wide variety of patients. In this 

scheme it is suggested to first explore whether generalizability can be rejected and if so, con-

firmatory analyses are suggested to estimate specific treatment effects for individuals. 

To start with, one should decide for which subgroups the presence or absence of treatment 

effect modification should be determined e.g., based on age,, gender, comorbidity, etc. Often 

subgroups are chosen based on prior knowledge of the biological. However, it also seems 
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important to take into account how frequently certain patients are encountered in practice. 

When, for example comorbidity is a potential effect modifier, it seems more reasonable to 

assess whether relatively common diseases, such as diabetes, modify the effect than rare 

diseases. Focussing on common subgroups will obviously result in more patients benefitting. 

Furthermore, the costs of measuring the patient characteristic (49) should also be considered 

e.g., age, a common effect modifier, is easily measurable, whereas determining a genetic 

marker is quite expensive. Discussions on the choice of subgroups should focus on patients 

included but also certainly on patients not included in a (future) study (50). Often such dis-

cussions revolve around the question whether the patient sample was representative of the 

target population or the “average” patient (51). However, representativeness plays only a 

minor role in generalizing treatment effects to individuals, instead treatment effect modifica-

tion play a more important role (29;52;53). In the absence of effect modification the same 

treatment effect applies to every patient subgroup, and thus, representativeness is irrelevant. 

In the presence of treatment effect modification, a representative sample will more often 

than not actually preclude detection of treatment effect modification (due to unequal sub-

group sizes). Hence, representativeness often results in wrongfully assuming generalizability 

of treatment effects and in patients being treated suboptimally. Furthermore, even if one is 

interested in population average treatment effect (13), in the presence of interaction small dif-

ferences between populations can result in markedly different main treatment effects [Chap-

ter 8] (14). Assume, for example that the main treatment effect is 1.00 (RR) in a population 

aged 65. In the presence of an interaction effect of 0.95 (RR) per year, the treatment effect 

in a population aged 70 will be 0.77 (RR) [i.e, (1.00) (0.95)*(70 65) 0.77ln lne + − ≈ ].Thus, discussing 

which patients might respond differently to treatment is essential, however, this should not be 

guided by the issue of representativeness. 

In a second step, internal homogeneity of a study should be explored, preferably by selecting 

subgroups based on the results of step 1. Often this entails performing multiple interaction 

tests which inflate the overall type 1 error rate (54). In an attempt to decrease the number of 

false positive findings pre-specification of interaction tests has often been advocated (55-57). 

However, pre-specification does not necessarily decrease the number of tests applied, nor 

will it prevent an increase in the overall type 1 error rate. Furthermore, pre-specification does 

not significantly increase power to detect interactions unless proper design steps are taken 

(e.g., oversampling of subgroups) (58). Therefore, we suggest that these interaction tests are 



218

Part V

deemed exploratory unless pre-specification coincides with steps ensuring sufficient sample 

size, power and type 1 error levels.

In a third step heterogeneity across studies should be explored; again incorporating informa-

tion from the previous steps. The most basic approach is to compare aggregated results from 

different studies (24;59). This might also be an opportunity to explore whether similar esti-

mates where discovered in less controlled settings, e.g., comparing results from RCTs and 

nonrandomized studies [Chapters 2, 3 and 6] (24;59). However, attributing differences in 

treatment effects between studies to differences in baseline characteristics, using for exam-

ple meta-regression, may result in (ecological) bias. To prevent this bias, it is recommended 

to acquire access to the individual patient data from multiple studies and to explore if differ-

ences can be explained by (multiple) interactions terms [Chapters 4,5 and 6] (14;25;60). 

If, after performing the above discussed exploratory analyses, absence of effect modification 

cannot be excluded with confidence, one should estimate more specific treatment effects. 

The most common way is to estimate subgroup-specific treatment effects, such as the diabe-

tes specific estimates in our example study (RR = 0.40 versus RR = 1.00 in patients without 

diabetes).

Recently, such subgroup-specific estimates based on a single variable (i.e., univariable inter-

action tests) have been criticized (61-65). Among other reasons, critics recognized that pa-

tients likely differ on more than one characteristic (i.e., there is unexplained treatment effect 

modification). A straightforward solution is to include multiple interaction tests, for example 

exploring whether treatment effects differ by diabetes, gender, and age. However, exploring 

higher order interactions inevitably increases data sparseness, which dramatically reduces 

power and increases type 1 error rates [Chapters 1 and 3] (10;20-23;66-71). To solve this, 

a two-step multivariable method has been suggested. First, a multivariable risk prediction 

model is developed, predicting the risk of the outcome if no treatment is applied [Chapter 4] 

(72;73). Second, the predicted absolute risk is multiplied by a relative treatment effect esti-

mate (e.g. a risk ratio) (65). Assume, for example, that in our previous trial the multivariable 

predicted 5-year stroke risk is 0.10, for a particular patient with diabetes. Treating this patient 

will then result in a predicted 5 year risk of 0.04 (i.e., 0.40 * 0.10 = 0.04).
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While this multivariable approach to subgroup analysis is indeed an improvement, there are 

some remaining challenges. First, in the above described multivariable approach one implic-

itly assumes that the main relative treatment effect estimate (i.e., the RR) is homogeneous 

but that the effect of treatment is heterogeneous on an absolute scale (i.e., there is effect 

modification on the risk difference scale). While this is possible, it seems advisable to explore 

whether this is the case by adding a treatment by predicted risk interaction term to the statis-

tical model [Chapter 5]. Second, the described multivariable approach induces heterogeneity 

on the absolute scale, which depends on the magnitude of the treatment effect estimate on 

the relative scale and the range of the baseline risk across different subgroups. However, it is 

unclear whether this reflects true heterogeneity of the absolute risk and currently no statisti-

cal tests are available to explore this. Finally, this approach ignores factors unrelated to the 

outcome (such as genetic variants that are related to drug metabolism (74)). 

Figure 1. Examples of equivalence testing using confidence intervals. 

Based on Jones et al. (66).

Recommendations and conclusions

In the present commentary we have argued that detecting treatment effect modification is 

essential to bridge the gap between the results from clinical studies and treating individuals 
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in daily practice. We addressed strategies to detect effect modification and used these in a 

framework to estimate more individualized effects of treatment where needed (Box 1). 

We conclude with the following recommendations. First, treatment effect modification should 

be formally assessed using interaction tests. Second, for interaction tests to be anything but 

exploratory, these should not only be prespecified, but proper sample size calculations and 

sampling strategies should ensure appropriate levels of power and type 1 error rates. Third, 

prespecified subgroups should be selected based on biological plausibility, prevalence of the 

patient type and cost-effectiveness of determining the patient characteristic and subsequent 

tailored treatment. Fourth, to obtain sufficient sample size, researchers should collaborate 

and pool individual patient data. This includes combining data from randomized and non-

randomized studies, possibly by means of Bayesian statistical methods. Fifth, because it is 

important to assess whether effect modification is absent (and thus judge the generalizability 

of the results), equivalence testing can be considered. Finally, the above focuses very much 

on the analyses of study results within and between studies. However, discussing potential 

patients not included in clinical studies also seems as essential. Such discussions should be 

aimed at potential effect modifiers, however, and not on representativeness. 

Box 1 Proposed strategy to estimate differential treatment effects.

1.	 Explore whether generalizability of treatment effects can be rejected: 

a.	 Discuss for which patients treatment effects are expected to differ. This should 

be guided by biological plausibility, prevalence of the patient characteristic and 

cost-effectiveness of determining the patient characteristics and subsequent 

tailored treatment.

b.	 Use results of 1.a to assess internal homogeneity of treatment effects by per-

forming multiple exploratory interaction tests. 

c.	 Use results of 1.a and 1.b to explore whether treatment effects differ between 

studies and if this can be explained by differences in included patients. 

2.	 Perform confirmatory studies to estimate differential treatment effects based 

on the results from step 1: 

a.	 Use sample size calculations and oversampling strategies of patient subgroups 

to ensure appropriate levels of power and type 1 error. 

b.	 Perform multivariable interaction tests to determine and individual’s reaction to 

treatment. 
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In conclusion, generalizability and treatment effect modification are strongly interlinked. In 

the presence of effect modification, estimates of average (overall) treatment effects are non-

informative and only subgroup-specific effect estimates can be generalized. Generalizability 

of these specific treatment effect estimates should subsequently be assessed, resulting in a 

continuing cycle of ever improving knowledge on how individual patients will react to treat-

ment. 
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Samenvatting

Het is doorgaans moeilijk om resultaten uit klinische studies toe te passen bij de behande-

ling van individuele patiënten. De meeste klinische studies zijn ontworpen om informatie te 

verstrekken over het gemiddelde effect van een interventie. Hierdoor blijven de potentieel 

verschillende reacties van patiënten op interventies vaak onopgemerkt. 

Wanneer behandeleffect(en) verschillen tussen patiënten, spreekt men van effectmodificatie, 

interactie of heterogeniteit van de behandelingseffecten. Met behulp van het concept effect 

modificatie is in dit proefschrift beschreven hoe studieresultaten kunnen worden vertaald 

naar behandeleffecten die relevant zijn voor individuele patiënten. 

Het detecteren van effect modificatie

Zoals beschreven is het detecteren van factoren die behandeleffecten modificeren essentieel 

om individuele patiënten optimaal te behandelen. Doorgaans wordt dit gedaan door middel 

van zogenaamde interactietoetsen. In hoofdstuk 1 is de prestatie van een aantal veel ge-

bruikte interactietoesten geëvalueerd. Wanneer het aantal patiënten in een onderzoek groot 

is (bv. 1000 patiënten) is de prestatie van de verschillende testen gelijkwaardig. In kleinere 

steekproeven is, afhankelijk van de test, de kans om een interactieeffect te detecteren (als 

dat er werkelijk is) aanzienlijk kleiner dan het gebruikelijke niveau van 80%. Tegelijkertijd 

neemt de kans op fout-positieve bevindingen toe: van 5% naar 10%. De volgende testen 

presteerden het beste en worden daarom aanbevolen: Tarone, Breslow-Day, Likelihood Ratio 

en de testen gebaseerd op het Relative Excess Risk due to Interaction (RERI). 

In hoofdstuk 2 is onderzocht of interactie-effecten gebaseerd op gerandomiseerd onderzoek 

(RCTs) verschillen van de interactie-effecten verkregen uit niet-gerandomiseerd onderzoek. 

Doordat behandeling in RCTs willekeurig (at random) wordt toebedeeld aan patiënten is the-

oretisch de kans op verstoring kleiner en daarom heeft deze onderzoeksopzet de voorkeur 

boven niet-gerandomiseerde studies. Daarentegen kunnen niet-gerandomiseerde studies 

doorgaans meer patiënten includeren, wat de kans vergroot om interactie-effecten te detec-

teren. Om te bepalen of het mogelijk is om resultaten uit beide type onderzoeken te combine-

ren is empirische data vergeleken. Specifiek zijn de effecten van statine, een bypass operatie 

en mammografiescreening systematisch vergeleken voor gerandomiseerd en niet-geran-

domiseerd onderzoek. De vergelijkbaarheid van interactie-effecten tussen verschillende 

onderzoeksopzetten was afhankelijk van de onderzochte interventie. Ondanks vergelijkbare 
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gemiddelde effecten, verschilden interactie effecten tussen RCTs en niet-gerandomiseerde 

studies. 

In hoofdstuk 3 is bestudeerd of het combineren van resultaten uit RCTs en niet-gerandomi-

seerde studies mogelijk is met Bayesiaanse statistiek. Als voorbeeld is gebruik gemaakt van 

het geslachtsspecifieke effect van rosiglitazone op de incidentie van heupfracturen. De resul-

taten van dit onderzoek tonen aan dat in de meeste gevallen de kans om interactie-effecten 

te detecteren toe nam bij het gebruik van Bayesiaanse statistiek ten opzichten van frequen-

tistische statistiek Dit, zonder een onacceptabel hoge kans op fout-positieve bevindingen. 

Echter, wanneer RCTs en niet-gerandomiseerde studies resultaten in tegenovergestelde 

richtingen lieten zien, werden liep het risico op fout-positieve en fout-negatieve bevindingen 

op tot wel 100%. 

Het behandelen van individuele patiënten

In de hiervoor besproken en geëvalueerde methoden lag de focus voornamelijk op effect 

modificatie door een enkele factor, bijvoorbeeld geslacht. Uiteraard, verschillen patiënten op 

meer dan één factor van elkaar. Idealiter worden daarom meer variabelen gelijktijdig gebruikt 

om te bepalen hoe een patiënt reageert op een behandeling. Een manier om multivariabele 

effectmodificatie te bestuderen is om eerst een predictie regel te construeren om bijvoor-

beeld sterfte te voorspellen. Vervolgens kan worden bestudeerd of de reactie op behandeling 

af hangt van deze voorspelde kans op sterfte. Een voorbeeld hiervan is beschreven in de 

hoofdstukken 4 en 5. In hoofdstuk 4 is een voorspelmodel gemaakt om de kans te voorspel-

len op sterfte of het ontwikkelen van een metastase bij honden met operatief behandelde 

botkanker. Onafhankelijk van andere risicofactoren bleken serum alkalische fosfatase, 

gewicht, tumor locatie en leeftijd gerelateerd te zijn aan sterfte en/of het ontwikkelen van een 

metastase. Vervolgens is in hoofdstuk 5 bepaald of de reactie van honden op additionele 

chemotherapie afhangt van het voorspelde risico op sterfte en/of metastase. De resultaten 

suggereerden dat voornamelijk honden met een relatief laag risico op sterfte baat hadden 

van deze additionele chemotherapie. 

Generaliseerbaarheid van behandeleffecten

Wanneer effect modificatie afwezig is, is het waarschijnlijker dat patiënten niet verschillend 

reageren op de behandeling. In zulke gevallen zijn behandeleffecten ‘generaliseerbaar’. 
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Generaliseerbaarheid van behandeleffecten wordt soms in twijfel getrokken. Getwijfeld wordt 

er met name aan de generaliseerbaarheid van behandeleffecten die gebaseerd zijn op RCTs, 

omdat RCTs vaak slechts een zeer selecte groep patiënten includeren. Daarentegen worden 

in niet-gerandomiseerde onderzoeken vaak patiënten geïncludeerd die een betere afspiege-

ling zijn van de klinische praktijk. Als een empirisch voorbeeld zijn, in hoofdstuk 6, de RCT 

resultaten van de effecten van atenolol en propranolol op het voorkomen van een hartinfarct 

vergeleken met resultaten uit niet-gerandomiseerde onderzoeken. Er was weinig verschil 

tussen de effecten geschat in de RCTs en de effecten geschat in de niet-gerandomiseerde 

studies. Dit impliceert dat, in dit voorbeeld, de resultaten van de RCT generaliseerbaar zijn. 

In hoofdstuk 7 zijn de resultaten gepresenteerd van een systematische review van RCTs 

over secundaire cardiovasculaire preventie. In deze review is bestudeerd of RCTs verschil-

lende typen patienten includeerden en of dit verschil leidde tot andere effectschattingen van 

bètablokkers, clopidogrel en statines. Hoewel een verschil niet helemaal kon worden uitge-

sloten, leken de resultaten aan te geven dat er, ondanks het includeren van verschillende 

patienten, geen systematisch verschil was tussen de RCTs. In hoofdstuk 8 is de relatie tus-

sen effect modificatie en generaliseerbaarheid formeel gedefinieerd. Daarnaast, wordt er in 

dit hoofdstuk aangetoond dat, in de aanwezigheid van effect modificatie,  het gebruiken van 

subgroep-specifieke effect schatters te verkiezen is boven het gemiddelde effect van behan-

deling. 

In de general discussion wordt op basis van de voorgaande hoofstukken een stappenplan 

gepresenteerd om resultaten van klinische studies toe te passen bij het behandelen van 

individuele patiënten. 
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Summary

Applying results from clinical studies to individual patients is challenging. Clinical studies are 

usually designed to provide information on the average intervention effect. Therefore, diffe-

rences in treatment effects between a wide range of patients will often remain undetected.

When treatment effects differ between patients, this is referred to as effect modification, inter-

action, or heterogeneity of treatment effects. In this thesis, we considered how study results 

can be translated to individual patients using the concept of treatment effect modification.

Detecting effect modification of interventions

Before results from clinical studies can be translated to individual patients it is essential to 

determine whether results differ between patients. To detect this potential treatment effect 

modification a plethora of tests is available. In chapter 1, the performance of these tests was 

evaluated by simulating clinical studies of different sizes and with different interaction effects. 

When the number of patients was large (e.g., 1,000 subjects) all tests performed equally. 

In smaller sample sizes, depending on the tests chosen, the probability to detect treatment 

effect modification when it was present, was well below the customary level of 0.80. At the 

same time the probability of falsely concluding interaction could be as high as 0.10. In these 

small sample size settings the Tarone, Breslow-Day, Likelihood Ratio and Relative Excess 

Risk due to Interaction (RERI) based tests performed best and are recommended. 

In chapter 2 we explored whether interaction effects observed in randomized controlled trials 

(RCTs) were comparable to nonrandomized studies, using a review of empirical studies on 

statin therapy, bypass surgery and mammography screening. While nonrandomized studies 

are more prone to bias (mainly due to the lack of randomization), they also have the potential 

to include more subjects, increasing the probability of detecting treatment effect modification. 

This review showed that comparability of interaction effects across study designs was topic 

specific. Despite  comparable main effect estimates, interaction effects could still considera-

bly differ between RCTs and nonrandomized studies.

In chapter 3 the utility of Bayesian methods to incorporate nonrandomized study results in 

the analysis of an RCT was studied. As an example, we focused on the effect of rosiglitazone 

on bone fracture incidence and modification by gender. In most settings, the probability to 

detect an interaction effect increased in Bayesian analysis compared to frequentist analysis, 
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without increasing the false positive rate too severely. In settings where results from nonran-

domized and RCT studies were in opposing directions, false positive and negative rates as 

high as 100% were observed. 

Bridging the gap between clinical studies and individual patient care

The previously discussed methods predominantly focused on whether treatment effects differ 

between patients using a single baseline variable, for example gender. Obviously, patients 

differ on more than one variable. Ideally, treatment effect modification should include multi-

ple variables. One approach to multivariable treatment effect modification is to first construct 

a rule based on multiple variables to predict a subject’s future probability of developing a 

certain health outcome. By combining multiple variables into a single number (e.g., the pro-

bability of a future event), treatment effect modification can be explored in the usual manner 

only now including multiple predictors for the outcome. An application of such an approach is 

provided in chapters 4 and 5. In chapter 4 a prediction rule for early mortality and early me-

tastasis was developed for canines who were surgically treated for osteosarcoma. This study 

described an individual patient data meta-analysis using data from 20 studies, which showed 

that independent of other risk factors serum alkaline phosphatase, weight, tumor location 

and age were associated with early mortality and/or early metastasis. The follow-up study 

presented in chapter 5 showed that dogs with different predicted risk of 5-month mortality 

responded differently to additional chemotherapy treatment. Result suggested that dogs with 

a relatively low risk of 5-month mortality benefitted most from additional chemotherapy. 

Generalizability of the effects of interventions

In the absence of treatment effect modification, treatment effects are expected to be similar 

for every patient, in other words generalizable. In such settings, translating the results from 

clinical studies to individual patients becomes less complicated because the average (main) 

treatment effect is applicable to every patient. However, generalizability of RCT results is of-

ten questioned because it is well known that patients included in RCTs may differ from those 

included in nonrandomized studies. The latter include “real life” patients, whereas RCTs may 

include highly selected patient populations, as a result of strict in- and exclusion criteria. In 

chapter 6 the generalizability of RCT results on atenolol or propranolol compared to diuretics 

in preventing non-fatal myocardial infraction (MI) was assessed. Specifically, results of these 

RCTs were compared to results from two nonrandomized studies. There was evidence that 
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atenolol affected MI incidence differently compared to propranolol. However, the effect esti-

mates of propranolol and atenolol were comparable across the study designs (RCTs vs non-

randomized studies), suggesting generalizability. Results from a systematic review of secon-

dary cardiovascular RCTs, presented in chapter 7, showed that despite inclusion of different 

types of patients the effects of beta-blocker, clopidogrel, and statin therapy did not systemati-

cally differ between studies. While absence of effect modification could not be proven, results 

seemed to indicate that clinical study results might be generalizable. In chapter 8 the relation-

ship between generalizability and treatment effect modification was formally addressed and it 

was argued to use subgroup-specific estimates when treatment effect modification is present. 

Based on the previous chapters a unifying approach is presented in the general discussion to 

guide clinicians, patients and other potential stakeholders in most optimally treating patients 

encountered in clinical practice. We argue that to truly estimate individualized treatment ef-

fects, studies should be designed to detect treatment effect modification (or its absence), for 

example using adaptive designs. Additionally, we argue that it is time for a more inclusive 

view on intervention research allowing for a more prominent role of nonrandomized studies, 

potentially using Bayesian statistics to account for the possible bias in  nonrandomized stu-

dies.  
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