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The lipid composition of cellular membranes may seem unnecessarily 
complex. However, the lipid composition of each membrane is carefully 
regulated by local metabolism and specificity in transport, marking 
the functional significance for the cell. Recent research has revealed 
unexpected discoveries concerning the topology of lipid synthesis, 
specificity in lipid transport, and the function of lipid and protein 

microdomains in sorting. 
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Introduction 

Each cellular membrane consists of a unique mixture of 
some 50 out of approximately 500 different membrane 
lipids, but the function of these complex lipid composi- 
tions has long remained obscure. The field of membrane 
lipid research has gained momentum by recent observa- 
tions that specik glycolipids fulI?l recognition events on 
the cell surface, that many common membrane lipids act 
as precursors for second messengers during signal trans- 
duction, and that various lipids function as membrane 
anchors for proteins. In addition, the lipid composition 
of the Go@ appears to be involved in the regulation of 
exocytotic vesicle transport, 

Lipids diIfuse in the plane of the membrane, across mem- 
brane bilayers and to some extent through the aqueous 
phase. In addition, vesicular pathways carry lipids be- 
tween organelles of the vacuolar system. Without regula- 
tion, these processes would randomize the lipid compo- 
sition of cellular membranes. A major challenge in cell bi- 
ology is to lind out how the cell succeeds in maintaining 
the differences in lipid composition between the various 
cellular membranes. This review begins with a descrip- 
tion of sphingolipids, because most is known about their 
synthesis in the Golgi and their transport by membrane 
vesicles [ l*-3*]. Cholesterol, thought to have a specific 
interaction with sphingolipids, is treated next [4*,5**]. Fi- 
nally, the review deals with the synthesis and transport of 
the major phospho(glycero)lipids, phosphatidylcholine 
(PC), phosphatidylethanolamine (PE), phosphatidylser- 
ine (PS) and phosphatidylinositol (PI). These lipids are 
synthesized at the cytosolk surface of the endoplasmic 
reticulum (ER), and although they are transported not 
only by vesicles but by exchange as well [&I, their traf- 
ficking displays specikity, like that of the sphingolipids 
and cholesterol. Our knowledge on the intracellular lo- 
cation of lipid synthesis and modification turns out to 

be fragmentary and superficial. The same is true for 
our insight into the relative contribution of the various 
transport mechanisms to the actual traIhcking of indivld- 
ual lipid classes. By definition, therefore, ideas on speci- 
ficity in lipid transport and the connection between lipid 
and protein sorting remain largely hypothetical. 

Sites of sphingolipid synthesis 

The precursor for all complex sphingolipids, ceramide, 
is synthesized in the ER [7*-9.1, and is transported to 
the Golgl for conversion to sphingomyelin (SM) and 
glycosphingolipids, by an as yet unknown mechanism 
[ lo**,1 lo]. SM synthase transfers a phosphocholine head- 
group from PC onto cerarnide (Fig. 1). Stuck that 
carefully discriminated Golgi from plasma membrane 
localized the major part of the SM synthase activity 
to the &Golgi. Thirteen per cent of the activity was 
found in the plasma membrane [ 12,13*]. In agreement 
with this, cells provided with radiolabeled precursors for 
phosphocholine [14*-16.1 or for de notro synthesis of 
ceramide [ 10**,17*], synthesize radiolabeled SM mainly 
in the Golgi [ 16*]. 

The plasma membrane SM synthase [ 121, which was de- 
tected at the cell surface when ceramide was generated 
in the plasma membrane by external sphingomyelinase 
(SMase) [I601 is found on the basolateral surface of 
MDCK cells upon external addition of ceramide (AIB 
van Helvoort, W van ‘t Hof, T Rltsema, A Sandra, G 
van Meer, unpublished data). It may be different from the 
Golgl enzyme and could play an important role in signal 
transduction. We recently found that the well known lipid 
second messenger diacylglycerol (DG) [ 18*] is converted 
to PC on the MDCK basolateral surface and that this re- 
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action is inhibited by ceramide, another important lipid 
second messenger [19*]. The SM synthase, more com- 
monly known as phosphocholine transferase, seems to 
interconvert the two second messengers on the cell sur- 
face (Fig. 1). The amounts of DG and ceramide that arise 
in the plasma membrane from hydrolysis of PIP2, PC 
and SM upon stimulation of cells are sign&ant. Values 
of 10-20 mol % of plasma membrane lipids are reported 
(references in [ 18*,19*] >. Because DG and ceramide are 
non-bilayer forming lipids, dramatic (transient) changes 
in the organization and physical properties of the plasma 
membrane may ensue (Fig. 2). It remains unclear how 
DG and ceramide eventually disappear from the plasma 
membrane. 

The location of SM synthase within the Golgi has not 
been completely resolved. Brefeldin A (BFA), which in 
most cells causes the Golgi (but not the trans-Go@ net- 
work) to merge into a mixed ER-Golgi, stimulated SM 
synthase several-fold [14*,15*,17*], cor&rning its loca- 
tion in early Golgi [12,13*,20]. By contrast, a late Golgi 
location was suggested by the observations that BFA in- 
hibits SM synthesis in cerebellar cells [21] and that SM 
synthase does not relocate to the ER in otherwise BFA- 
sensitive HepG2 cells (Table 1) [ 22.1. 

Also, some of the first reactions in glycosphingolipid 
biosynthesis co-fractionated with c&Go@ markers on 
sucrose gradients (Table 1): the transfer of glucose to 
ceramide by glucosyltransferase (GlcT) to yield glucosyl- 
ceramide (GlcCer) [12,13*], and the sialyl transferases 
that convert Gal-GlcCer [lactosylceramide (IacCer)] to 
G, and Go3 [ 23*]. In the presence of BFA, these lipids 
and Lc3, a three sugar sphingolipid, were still produced 
[24*], suggesting redistribution of the respective trans- 
ferases to the ER Redistribution has been shown directly 
for GlcT [22*], Whether the glycosyl transferases that no 
longer act on newly synthesized substrates are situated 
in the h-an&c&i network, which resists the action of 
BFA, remains to be clarified. Finally, the intra-Golgi lo- 
calization of galactosyl transferase, GalT-1, that generates 
galactosylceramide (GalCer), is unknown. 

Fig. 1. Hydrolysis of plasma membrane 
phospholipids during signal transduc- 
tion. The type of stimulus determines 
the kind of enzyme that will act: 
(a) neutral cell surface SMase I20,1031, 
which would have to be regulated; (b) 
scrambling activity [52*,70**1; W neu- 
tral cytosolic SMase (Y Hannun, per- 
sonal communication, 11041; because 
most, if not all, SM originally resides 
in the outer layer, possibly due to a 
cytosolic SMase, cell activation may 
induce SM translocation to the in- 
ner leaflet rather than switching on 
the SMase); (d) phosphocholine trans- 
ferase (van Helvoort et al., unpublished 
data); fe) exoplasmic PC-phospholipase 
C; (0 cytosolic phospholipase D; (g, 
DC kinase/ PA phosphohydrolase; (h) 
phosphoinositide-phospholipase C IIS*l. 

Sidedness of sphingolipid synthesis in the 
Golgi 

In intact Golgi membranes, SM synthase is protected 
against added proteases and newly synthesized SM is sit- 
uated in the lumenal leaflet of the Golgi membrane [Fig. 
3(a)]. In contrast, newly synthesized GlcCer is accessi- 
ble at the cytosolic Golgi surface ([13*] and references 
therein). Although data from Trinchera et al. [ 251 suggest 
that IacCer is synthesized in the cytosolic leatlet of the 
Golgi as well, mutant Chinese hamster ovary cells lack- 
ing the UDP-galactose carrier but with normal levels of 
GalT-2 displayed strongly reduced LacCer synthesis, im- 
plying a lumenal GalT-2 disposition [26]. Indeed, newly 
synthesized short-chain IacCer is protected against ex- 
traction from the membrane by serum albumin (BSA). 
Surprisingly, just like GlcCer [ 13.1, newly synthesized 
short-chain GalCer is extracted by BSA (KNJ Burger, P 
van der Bijl, G van Meer, unpublished data). Because 
GlcCer is galactosylated to LacCer and GalCer is sul- 
fated to sulfatide in the lumenal leailet of the Go@, 
both GlcCer and GalCer have to translocate across the 
Golgi membrane (Fig. 1). Whether or not complex gly- 
cosphingolipids can translocate back to the cytosolic sur- 
face, where they could bind and thereby regulate specific 
cytosolic proteins, remains an important issue to be re- 
solved [ 27*,28**,29*]. 

Sphingolipid transport and the occurrence of 
microdomains 

The lumenal synthesis of both SM and the complex gly- 
cosphingolipids would predict that subsequent transport 
to the plasma membrane occurs by vesicles. Indeed, 
transport of IacCer between Golgi cistemae 1301, and of 
GM3 [31-l and short-chain SMs [22*,32,33*] to the cell 
surface have been found to display typical characteris- 
tics of vesicular traffic. The cytosolic orientation of newly 
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Fig. 2. Changes in plasma membrane 
organization due to the generation of 
non-bilayer lipids. Ceramide droplets in 
the hydrophobic core of the plasma 
membrane of a human erythrocyte af- 
ter hydrolysis of 85 % of the SM (20 % 
of total phospholipid) with SMase, vi- 
sualized by freeze fracture EM as 75A 
spheres on the exoplasmic fracture face 
(a) and complementary pits on the pro- 
toplasmic fracture face (b). Direction 
of shadowing towards top of figure 
I109 Segregation of DC has been re- 
ported upon treatment of membranes 
with phospholipase C at DC levels 
of 50 mol % [681, while DC remained 
intercalated in a (model) bilayer at 
< 10 mol % [106*1. 
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Table 1. Distribution of SM synthase and glycosyltransferases over the Golgi stack. 

Enzyme function with: 

Enzyme Il.1 Precursor 13.1 Product 13.1 BFA Mitotic cells Cell fractionation 

SM synthase 
GlcT 
GalT-2 
SAT-l 
SAT-2 
GlcNAcT 
GalNAcT 
GalT-6 
GalT-4 
GalT-3 
SAT-415 

Ceramide SM + 114*,15~1 + [lo**1 cislmedial [12,13*1 
, Ceramide GlcCer + [21,24*,1071 + [IO..1 cis [I 2,13*1 

ClcCer LacCer + [21,24~,1071 + [IO..1 
LacCer CM3 + [21,24°,1071 cis [23*,991 

=M3 GD3 + I21,1071 cislmedialltrans 123*,991 
LacCer Lc3 + f24*] cis WOI 

LacCer/G,3 CD3 GA2/GM2~ cD2 - [21,1071 - II 0-l medial 1991 
LacCer Gb3 - [24*1 

Lc3 nLc4 - [24*1 Vans I1001 

GA2 GAl Vans 1991 
GAl/GMlb GMlb/GDlc trans [23*,991 

For enzyme nomenclature see II*]; only the substrates and products under study are listed (for a more complete overview see 
[VI). These data support the idea that BFA would relocate enzymes from cis-Golgi back to the ER, and that the products can no 
longer reach the next glycosyltransferase. However, transport of fC,-NBD-KM and GlcCer to the plasma membrane was unaffected 
by BFA, SM synthase did not return to the ER [22*1, and SM synthesis was reduced in cerebellar cells 1211. Also, GaINAcT, a medial- 
Golgi enzyme, no longer functioned with BFA, whereas it is generally believed that enzymes from the medial- and trans-Golgi, but 
not the trans-Golgi network, return to the ER. 

synthesized GlcCer and GalCer would, in principle, allow 
transport of these lipids between organelles by protein- 
mediated exchange through the aqueous phase [3*]. 
However, three pieces of evidence currently favor a vesic- 
ular mechanism of transport. First, it has been reported 
that newly SyIdesbXd c(j-~&&cer, like C6-Nf3&%f, 
did not arrive at the surface of mitotic cells [34] where 
the normal vesicular Golgi route of lipid exocytosis ap- 
pears to be inhibited [ lO**] . Second, transport of GlcCer 
and SM to the cell surface was reduced to the same extent 
by monensin [22*,35], by microtubule-depolymerization 
and low extracellular pH in epithelial cells (G van Meer, 
unpublished data) [22*], and by an inhibitor of sphin- 
golipid synthesis [3@]. Finally, short-chain GlcCer was 
found to be partially protected in isolated Golgi [37,38*], 
and endocytosed C@B&GlCCer remained sequestered 
inside recycling organelles [ 391. 

It appears that sphingolipids follow all vesicular routes 
that exist in the cell. From the Golgi they reach the 
cell surface [ 16*,17*,22*,31**, 33*,36*], from where they 
recycle through early and late endosomes [20,39] and 
halIy end up in lysosomes where they are degraded 
13.1. It is unclear at present to what extent they follow 
the direct pathway from Golgi to endosomes. After en- 
docytosis, GlcCer has been observed to reach the Golgi 
[39], and retrograde transport of sphingolipids through 
the Go@ stack and to the ER has been inferred from 
(re)utilization of endocytosed GlcCer for LacCer synthe- 
sis [40], the presence of endocytosed glycolipid Gb3, as 
monitored by its ligand Shiga toxin, through Golgi and ER 
[41**], and the presence of gangliosides and Forssman 
glycolipid in the ER and nuclear membrane [ 2@0,42]. 

Sphingolipids do not partition into the various vesicular 
routes at random. In epithelial cells, newly synthesized 

short-chain GlcCer was enriched on the apical surface rel- 
ative to SM [22*,X5*,43], GalCer and sulfatide (P van der 
Bijl, M Lopes-Cardozo, G van Meer, unpublished data), 
which were preferentially delivered to the basolateral 
surface. Moreover, endocytosed Cg-MDGlcCer reached 
the Golgi, whereas C@BD-SM, C(j-m&GalCer and Cg- 
NBINacCer preferentially recycled to the cell surface in 
(undifferentiated) epithelial HT29 cells [ 391. In most cell 
types, newly synthesized GlcCer reaches the cell surface 
earlier than SM [ 220,371. This may be due to a more elfi 
cient incorporation of GlcCer than of SM in anterogtade 
transport vesicles, while, judging from the low GlcCer 
and SM concentration in the ER, both seem to pre- 
fer the anterograde route from cz&Golgi instead of the 
retrograde pathway to the ER. The only way by which a 
lumenal lipid can be concentrated into a specilic vesicular 
pathway is by a relative increase in surface density at the 
site of vesicle budding. This implies the presence of at 
least two membrane domains that differ in lipid com- 
position [Fig. 3(b)] [I*]. It has been demonstrated in 
innumerable model membrane studies that domain for- 
mation can be driven by simple lipid immiscibility and 
phase separation. However, lipid domains would only 
seem of biological relevance if the various domains 
could be recognized by specific proteins (reviewed in 
[44*]). Specific lipid and protein compositions have so 
far only been demonstrated for the macrodomains of 
the plasma membrane of epithelial and neuronal cells 
that in most cases are separated by a diffusion barrier 
[43,45*,46]. The first example of specific lipids and pro- 
teins assembling into the same microdomain may be the 
combination of certain glycosphingolipids and a class of 
proteins attached to the exoplasmic side of the mem- 
brane by a glycosyl-phosphatidylinositol (GPI) anchor. 
In most epithelial cells, both glycosphingolipids and GPI 
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proteins are enriched on the apical cell surface relative 
to the basolateral surface. It has been proposed that gly- 
cosphingolipids are sorted in the truzrs-Golgi network by 
self-aggregation into apical precursor domains [43] and 
that GPI proteins preferentially associate with these puta- 
tive glycosphingolipid microdomains [Fig. 3 (b)] [47**]. 
Indeed, Fischer rat thyroid (FRT) cells exhibit a reversed 
polarity of GPI proteins and epithelial lipid sorting also 
appears to be reversed [48**]. In addition, both GPI 
proteins and sphingolipids could be recovered from ep- 
ithelial cells in detergent-insoluble membrane fragments, 
and newly synthesized GPI protein only became insol- 
uble after entering the Golgi [47**]. The same result 
has been observed for an apical but not a basolateral 
transmembrane glycoprotein [49”]. Independently, the 
involvement of membrane microdomains in GPI protein 
sorting has recently been proposed, based on the ob- 
servation that GPI proteins newly arrived at the apical 
surface were clustered and relatively immobile [ 50**]. 
On the cell surface, some GPI protein rich microdomains 
may persist, as GPI proteins are concentrated in caveo- 
lae that are also enriched in gangliosides (see Anderson, 
this issue, pp 647-652; [49**]). Interestingly, an integral 
caveolar membrane protein, caveoWVIP21 has been lo- 
calized to transport vesicles arising from the &u?rs-Golgi 
network [49*]; in addition, tyrosine kinases on the cy 
tosolic surface have been found associated with GPI pro- 
teins. Finally, it is important to note that both caveolar in- 
tegrity and the detergent inextractability of GPI proteins 
were abolished by cholesterol depletion. 

Cholesterol: intracellular distribution, site of 
synthesis and mechanism of transport 

Although it is generally agreed that cholesterol concentra- 
tion is highest in the plasma membrane and membranes 
of the endocytotic system, estimates of the actual fraction 
of cellular cholesterol residing in the plasma membrane 
can vary [4*,5**]. This is in part due to variation in the re- 
ported surface area of the plasma membrane, from 7 % of 
total membrane surface area for hepatocytes to 14 % for 
fibroblast-like baby hamster kidney (BHK) cells [51], or 
even 50 % for libroblasts [4*]. An additional problem in 
the characterization of cholesterol transport is that little is 
known about the transbilayer distribution of cholesterol 
except that the half-time of its transbilayer movement is 
in the order of seconds [4*,52*]. The well known pref- 
erential interaction of cholesterol with SM, together with 
the exoplasmic orientation of SM [ 53,54*], predicts a dra- 
matic enrichment of cholesterol in the outer leaflet of the 
plasma membrane. Unexpectedly, recent work assigned 
75 % of erythrocyte cholesterol to the inner leallet [ 551. 
This controversy awaits to be resolved. 

Although traditionally the ER has been considered the 
main site of cholesterol synthesis, recent evidence ar- 
gues that peroxisomes are essential and may even be 
an obligatory stage during cellular cholesterol synthesis 
[56*]. As far as we know, peroxisomes are not con- 
nected to the vesicular transport routes, and as choles- 

terol has to reach the mitochondria of steroidogenic 
cells, cholesterol exchange through the cytosol must oc- 
cur. The activity of carrier proteins for cholesterol in the 
cytoplasm is controversial. The non-specilic lipid transfer 
protein, sterol carrier protein 2, is peroxisomal [ 57=,58*]. 
As the rate of both protein-mediated and spontaneous 
exchange strongly decreases with distance [6*], choles- 
terol exchange between peroxisomes, ER and mitochon- 
dria may require close contacts between the organelles. 
An indication for such a structural requirement is that ef- 
ficient exchange depends on intact microiilaments and 
microtubules [ 5**]. This exchange and the mechanism 
by which cholesterol reaches the inner mltochondrial 
membrane closely parallel transport steps required for 
phospholipid transport (see below). 

From the ER, cholesterol is transported to the plasma 
membrane predominantly by vesicular transport [ 4*,5**]. 
The persistence of this transport in the presence of BFA 
[59], also observed for PE [6O], and short-chain SM and 
short-chain GlcCer [22*], has suggested a vesicular route 
that bypasses the Golgi [ 591. However, as the Golgl has 
become part of the ER this route might simply reflect the 
Golgl-plasma membrane route. Still, it is surprising that 
lipid transport continues while transport has stopped for 
all proteins studied so far. 

In addition, cholesterol derived from low-density lipopro- 
tein (LDL)-cholesteryl esters in the lysosomes appears to 
reach other cellular membranes by vesicular traffic. Im- 
portant information on this process has been obtained 
in extensive studies (reviewed in [ 5**] > demonstrating 
the incapability of LDL-derived cholesterol to reach reg- 
ulatory sites in the ER in Niemann-Pick type C cells, in 
mutant cells [6I*], in cells lacking intermediate filaments 
[62*], and in the presence of a number of lipophilic 
amines [ 63.1, of progesterone [64=] and possibly mevi- 
nolin [65*]. The first step appears to be vesicular trans- 
port back to the plasma membrane, from where, most 
likely, retrograde transport through the Golgi leads to a 
rise in the ER cholesterol level. This imally activates es- 
terifrcation and downregulates cholesterol synthesis and 
uptake, by mechanisms that are not yet understood. 

Whether cholesterol equilibrates between membranes by 
vesicular transport or by exchange, its steady-state distri- 
bution is most likely governed by its relative afRnity for 
the components of the various membranes. The choles- 
terol concentration gradient from ER (low) to plasma 
membrane (high) parallels the SM content [53,66], and 
the sorting of SM (see above) may concentrate choles- 
terol into the exocytotic pathway. The retrograde trans- 
port of LDL-derived cholesterol through the Golgi against 
the proposed outward sorting by SM could simply re- 
flect overloading of the sorting machinery. This idea is 
supported by the fact that lowering the SM content of 
the plasma membrane using SMase results in enhanced 
cholesterol transport to the ER [53]. TWO other factors 
that contribute to the maintenance of the intracellular 
cholesterol gradient are the exchange equilibrium be- 
tween the plasma membrane and extracellular lipopro- 
teins, and the lowering of free cholesterol in the ER by 
esterihcation. 
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Fig. 3. Lipid trafficking in an epithelial cell. Arrows indicate vesicular pathways. (a) Sidedness of newly synthesized sphingolipids in the 
Colgi. (b) Defined sets of lipids and proteins are sorted to the apical and basolateral cell surface domains by preferential partitioning 
into either precursor domain. (c) PC is synthesized on the cytoplasmic surface of the ER. The enzyme that converts DC to PC is also 
present on the surface of transport vesicles to the Colgi. The phosphorylated inactive enzyme (Pi) is located in the cytosol. (d) After 
synthesis in a specialized part of the ER, closely associated with the mitochondrion (possibly the intermediate compartment), PS diffuses 
into and translocates across the outer mitochondrial membrane and is decarboxylated at the inner membrane. PE diffuses back to the 
ER. TCN, trans-Golgi network; CCN, cis-Golgi network. 

Glycerophospholipid transport 

The glycerophospholipids PC, PE, PS and PI are synthe- 
sized at the cytosolic surface of the ER by a number of 

pathways. The relative contribution of each depends on 
cell type [67-l. They can rapidly equilibrate over the ER 
membrane by lateral diffusion and by facilitated diffusion 
across the membrane through the action of a non-spe- 
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ciiic flippase (tr/z = 20 min) [52*,68]. The glycerophos- 
pholipids are the main constituents of the membrane of 
the transport vesicles that travel between the organelles 
of the vacuolar system. Because they also constitute the 
bulk of the lipids of the mitochondrial and peroxisomal 
membranes, they must travel by a different mechanism as 
well, presumably by monomeric exchange. What, then, 
imposes specificity onto glycerophospholipid transport? 

In the plasma membrane, the endocytotic pathway and, 
presumably in the Go@, the phospholipids do not equili- 
brate rapidly across the bilayer. An asymmetric phospho- 
lipid distribution is maintained by the aminophospho- 
lipid translocase, an ATP-dependent enzyme that pumps 
arninophospholipids (PS and with less efficiency PE) to- 
wards the cytoplasmic side, possibly in combination with 
other pump proteins [52*,69**]. As a result, the cytoso- 
lit leaflet of these membranes contains essentially all PS, 
most PE (and PI), a little less than half of the PC and 
essentially no SM. The asymmetrical arrangement of the 
lipids may deteriorate during fusion and fission reactions, 
passage through the ER, or during cell activation [70**], 
in the latter case by a regulated Ca2+-activated scram- 
blase [52*] or by a physical disruption of plasma mem- 
brane structure (Fig. 1). The combined action of lipid 
pumps may repair such losses in asymmetry. 

The mechanism by which PC is transported through the 
cell depends on its localization. After synthesis, PC can 
flip across the ER membrane and follow the vesicular 
pathway to the cell surface from where it can be endo- 
cytosed and recycled, idling away in the lumenal leaflet. 
From the ER, PC could also follow the vesicular pathways 
on the cytosolic face of the membranes. The fact that PC 
synthesis seems to continue on the transport vesicles that 
travel from the ER to the Golgi (possibly the intermediate 
compartment) corroborates the notion that such synthe- 
sis may provide the cmvature needed for budding in the 
ER [Fig. 3(c)] [71*]. At the same time, being oriented 
towards the cytosol, PC could reach other membranes 
by monomeric exchange. Within minutes, newly synthe- 
sized PC reaches the plasma membrane [72] and equi- 
librates with PC in the outer mitochondrial membrane 
[73]. This strongly suggests the involvement of transfer 
proteins present in the cytosol (74-l. It should be noted 
that, so far, the potential of these proteins to support a 
net transfer of phospholipids under biologically relevant 
conditions has not been demonstrated. 
Interestingly, newly synthesized PE appears at the cell sur- 
face [34,60] and equilibrates with the outer mitochon- 
drial membrane [73], at an order of magnitude slower 
than PC with a typical half-time of 0.5-1.5 h. Whereas PE 
may reach the surface by a combination of either vesicu- 
lar traffic or exchange with flip-flop, transport to the mi- 
tochondrion most likely involves monomeric exchange. 
PE still reaches the surface during mitosis [34] and in 
the presence of BFA [ 601. This could suggest transport 
through monomeric exchange, but it should be realized 
that for some lipids a vesicular pathway persisted in the 
presence of BFA [ 220,591. 
PI, the precursor for GPI-anchored proteins [47*-l and 
for the signal transduction phosphoinositides PIP, PIP2 

and PIPS, is synthesized in the ER [75,76,77*]. PI kinase 
and PIP kinase are distributed along the exocytotic route 
[75] and in the nucleus [75,78*]. While PI is found in 
all cellular membranes, PIP2 is especially abundant in 
the plasma membrane and, in addition, in the nucleus 
in a form that is not membrane-associated [28Do]. The 
presence of regulated PIP2-phospholipase C (and pro- 
tein kinase C) activities both on the inside of the plasma 
membrane and in the nucleus have led to the sugges- 
tion that separate plasma membrane and intranuclear 
inositide cycles exist [78*]. In the plasma membrane, 
the phosphoinositides have been found preferentially in 
the cytoplasmic 1eaIlet [52*], and the distribution of PI 
may be maintained by an exoplasmic PI-phospholipase 
C [79]. Phosphoinosiddes can thus be transported on 
the cytosolic face of carrier vesicles. In addition, PI may 
exchange between membranes mediated by the cytoplas- 
mic PI-PC transfer protein [74.] or not [80*]. A sensa- 
tional development is the apparent role of this protein 
(it is essential for growth of yeast) and of PI kinase 
in the exocytotic pathway, where they appear to be in- 
volved in regulation of vesicular transport and sorting. 
While the PI-PC transfer protein may monitor and/or 
modify the PI: PC ratio in the cytosolic leaflet of the 
Golgi [74*], the PI kinase appears to function in a sig- 
nal transduction complex (see Stack and Emr, this issue, 
pp 641-646). 

Sorting of glycerophospholipids 

There are some indications that microdomain formation 
in vesicular pathways may also be involved in sorting glyc- 
erophospholipids. Because the sphingolipids are pref- 
erentially included in certain routes, lumenal PC could 
be incorporated into other ones by default, e.g. from the 
rrulzc;Golgi network to the basolateral cell surface of epi- 
thelial cells, which is indeed enriched in PC [43], and into 
the retrograde pathway through the Golgi to the ER 1811. 
Sorting by microdomain formation may occur in cytosolic 
leaflets as well: the enrichment of PS in the plasma mem- 
brane [82] could be explained by anterograde sorting 
of PS in the Golgi. However, PS is possibly sorted in a 
diiferent way. While short-chain C@JBD-PS after trans- 
location across the plasma membrane diffused all over 
the cell, the less readily exchangeable Cr2-NBD-PS, after 
insertion into the cell surface and ATP-dependent flip- 
flop, concentrated in the Golgi by what seemed to be 
an exchange process as it was functional in mitotic cells 
(831. 

There is evidence that newly synthesized lipids do not 
freely intermix with the pre-existing pool of that lipid 
in the ER [71*,76,82,84-86,87*,88*]. PS is synthesized 
by exchanging the choline headgroup of PC or the 
ethanolamine headgroup of PE for serine, mostly in 
the ER [89], Newly synthesized PS transported to the 
plasma membrane [ 821 and to mitochondria [ 80*,86,88*] 
has a higher specific radioactivity than PS in ER, and it has 
been proposed that PS is synthesized in a specialized do- 
main of the ER that is in close physical contract with the 
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outer mitochondrial membrane [Fig. 3(d)] .‘The need for 
contact could explain the ATP (or Caz+) requirement 
of PS transport [90**]. Indeed, upon cell fractionation, 
a mitochondrion-associated membrane displayed a high 
spedc activity of PS synthase [85], PS transport in per- 
meabilized cells was insensitive to dilution of the assay 
system [9W] and PS transport from ER to mitochondria 
occurred in virr~, but not to mitochondrla isolated from 
separate cells [90=:]. The advantages of close contacts 
for exchange processes have been discussed in detail by 
Brown [ 6.1. After reaching the outer mitochondrial mem- 
brane, all evidence indicates that PS rapidly llip-flops and 
reaches the PS decarboxylase in the inner membrane by 
lateral diIfusion most likely through the contact sites be- 
tween the inner and outer membranes [91,92**,93**,94*]. 
The resulting PE does not mix with the inner membrane 
PE and is rapidly exported to the mitochondrion-associ- 
ated ER This compartmentalization is again not topologi- 
tally understood. In the mitochondrion-associated mem- 
brane, PS and PC are synthesized and PS-derived PE is 
received from the mitochondrion [ 85,861. The preferen- 
tial tmnsport of PC and PS-derived PE from this site to 
lipoproteins in the Golgi lumen [84] and of PC and PS 
1821 and PS-derived PE [6O] to the plasma membrane 
suggests that this membrane is part of the exocytotic 
route. Possibly it belongs to the smooth, peripheral el- 
ements of the intermediate compartment [ 71*,95*]. 

Conclusion 

Progress in the field of lipid transport and sorting may 
now be expected from careful localization of the pro- 
teins involved in the synthesis, hydrolysis and transport 
of lipids and from defming the sidedness of these events. 
In the end the cytoskeleton will also turn out to be 
an Important organizer of transport. In addition, quan- 
titative analysis of the intracellular lipid distribution and 
accurate deli&ion of the kinetic parameters of the vari- 
ous processes will be of great help in finding regulatory 
hot-spots and defining the proteins involved. 

Finally, we are only starting to realize what physical prop- 
erties of lipids may be important for cellular functions. 
What makes lipids segregate into domains and how are 
these domains recognized by proteins? What makes a 
membrane bend and bud? What delines the size of 
organelles? What sensor measures the concentration of 
the various lipids in each membrane, and how does 
it feed back to the responsible enzymes and genes? It 
is gratifying to see how many ditferent fields of science 
now merge to contribute to a solution to these integrated 
questions, questions of a living cell. 
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