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Strongly interacting Dirac semimetals are investigated using a holographic model especially geared to compute
the single-particle correlation function for this case, including both interaction effects and nonzero temperature.
We calculate the (homogeneous) electrical conductivity at zero chemical potential, and show that it consists of
two contributions. The interband contribution scales as a power law either in frequency or in temperature for
low frequency. The precise power is related to a critical exponent of the dual holographic theory, which is a
parameter in the model. On top of that we find for nonzero temperatures a Drude peak corresponding to intraband
transitions. A behavior similar to Coulomb interactions is recovered as a special limiting case.
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I. INTRODUCTION

Dirac semimetals are a state of matter that can be seen
as the three-dimensional version of graphene. Indeed, Dirac
semimetals are zero-gap semiconductors, and without interac-
tions their conduction and valence band touch each other at
isolated points in momentum space, the so-called Dirac points
[1]. As a result these semimetals have a low-energy description
in terms of massless (3+1)-dimensional Dirac fermions with
a linear dispersion. Such a Dirac fermion consists of two
Weyl fermions of opposite chirality. Breaking time-reversal
or spatial inversion symmetry, the associated degeneracy of
the Dirac point is lifted and the two Weyl nodes become
separated in momentum-space, forming a Weyl semimetal
[2–4]. This hypothetical phase of matter exhibits unusual
transport properties such as an anomalous Hall effect [5] and
also gapless surface states forming a Fermi arc instead of the
usual closed Fermi surface.

Dirac semimetals have been predicted theoretically [6]
and are known to occur on the phase boundary between a
topological and a trivial insulator [7]. However, to realize the
Dirac semimetal in this manner turned out to be experimentally
challenging [8]. Nevertheless, recent theoretical [9,10] and
experimental progress has ultimately resulted in the realization
of Dirac semimetals in the crystals Na3Bi [11] and Cd3As2

[12–14]. Their crystal symmetry prevents the Dirac points
from becoming gapped, making these systems a more robust
testing ground for relativistic physics in a tabletop experiment.
On the theoretical side, most of the work on Dirac and Weyl
semimetals has been on noninteracting systems [2–5,15],
although in a number of cases, also Coulomb interactions
[16–18] and short-ranged interactions [19] have been con-
sidered. In this work, however, we focus on a more strongly
interacting Dirac semimetal that is coupled to a critical order-
parameter field near a quantum critical point. If this critical
point is nontrivial, the order-parameter fluctuations may induce
strong interactions between the Dirac fermions that are not
necessarily of a Coulombic nature and whose treatment goes
beyond perturbation theory. In particular, we want to address
what the effective low-energy theory is for Dirac fermions in
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the presence of such generic critical order-parameter fluctu-
ations. Since the behavior of fermions coupled to a critical
collective mode is a long-standing problem in the context
of non-Fermi liquids [20,21], this motivates the search for
a description of the strongly interacting Dirac semimetal using
the recently developed techniques from the so-called anti-de
Sitter/conformal field theory (AdS/CFT) correspondence [22].
In this work, we indeed present such a holographic model for
a Dirac semimetal, where the interactions between the Dirac
fermions are mediated by the critical fluctuations modeled
in holography by a strongly coupled conformal field theory.
The model describes a class of gapless and particle-hole
symmetric systems that behave as Dirac semimetals with
strong interactions in the infrared and which are free in the
ultraviolet.

To achieve this, we generalize previous work [23,24] to
formulate a holographic model that allows us to obtain the
single-particle Green’s function of the strongly interacting
Dirac semimetal. Most importantly for our purposes, this cor-
relation function satisfies the desired (zeroth-order) frequency
sum rule, which makes it a feasible candidate for applications
in realistic solid-state materials, e.g., by a direct comparison to
angle-resolved photoemission spectroscopy (ARPES) exper-
iments. Next, using this single-particle Green’s function, we
determine also the electrical conductivity including the effects
of the holographic interactions and nonzero temperature. It is
very important to realize that because of particle-hole sym-
metry, the fermionic contribution to the electrical conductivity
remains finite even in the absence of disorder. This is a result
of the fact that in the particle-hole symmetric case the electric
field cannot affect the center-of-mass motion of the system
and that the interactions cause a drag between the electrons
and holes that lead to a finite relaxation time for the charge
current.

Our main result, the optical conductivity, is plotted in Fig. 1.
It consists of two contributions, which can be understood as
coming from interband and intraband transitions. In particular,
for very high frequencies, we obtain the free result [2,17]
where the conductivity scales linearly with frequency. As
the frequency is lowered, a crossover takes place as the
holographic interaction effects dominate the conductivity. An
example of other work in which there is a crossover behavior
from infrared to ultraviolet in the context of holography
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FIG. 1. Real part of the dimensionless fermionic conductivity
Re σ̄xx = Re σxx�c/e2ωc as a function of the rescaled frequency ω/ωc

defined in the text. The curves are for the holographic parameter M =
1/4 and for different values of the dimensionless temperature T̄ =
kBT /�ωc. For ω/ωc � 1, the Dirac semimetal is free and σ ∝ |ω|
(not visible here). For T = 0 (solid curve) and as ω � ωc, a crossover
occurs to a regime where self-energy effects are dominant. Here,
the conductivity scales as σ ∝ |ω|3−4M . For lower frequencies and
T > 0, on top of this power law, a Drude peak appears, corresponding
to intraband transitions. For T > 0 and in the far infrared, i.e., �ω �
kBT � �ωc, the interactions are temperature dominated and the dc
conductivity scales as σ ∝ T 3−4M .

is Ref. [25]. For zero temperature and in the infrared, the
interband conductivity scales as |ω|3−4M , where −1/2 <

M < 1/2 is the (dimensionless) fermion mass in the Anti-
de-Sitter background and physically represents a parameter
related to the anomalous dimension of the order-parameter
fluctuations in the conformal field theory. For kBT � �ω,
the interaction effects are temperature dominated and the
interband conductivity scales as T 3−4M . On top of this, we have
a Drude-like peak coming from the intraband contribution.

Interestingly, in the case M = 1/2, which requires a
separate computation, the self-energy scales linearly with loga-
rithmic corrections [24]. These two features are also present in
the conductivity, resulting in a Coulomb-like behavior. Indeed,
a linear scaling with logarithmic corrections is precisely the
behavior found in Ref. [17] for the dc conductivity in the
case of Coulomb interactions. Note that the Fermi velocity is
equal to the speed of light in our relativistic model so it is not
renormalized.

II. HOLOGRAPHY

The AdS/CFT correspondence generally provides correla-
tion functions of operators in a strongly coupled conformal
field theory, which can be computed by solving classical equa-
tions of motion in the dual curved space-time of one dimension
higher [22]. In particular, in the spirit of the semiholographic
approach [26], the holographic prescription that starts from
a free Dirac fermion in a curved (4+1)-dimensional bulk
space-time was shown in Refs. [23,24] to lead on the flat
(3+1)-dimensional boundary of the bulk space-time to a model
that corresponds to an elementary Weyl fermion coupled to a
conformal field theory. This is in agreement with the general
observation that holographic techniques are particularly ap-
pealing for the description of chiral boundary fermions [27]. To

generalize this prescription to a Dirac fermion, we essentially
need two copies of this model, with the two Weyl fermions
having opposite chirality. This can be illustrated by the free
Dirac Hamiltonian, of which a particular representation in the
Weyl basis is H = τ3 ⊗ σ · c�k with c the speed of light. The
last factor is the Weyl Hamiltonian for a single Weyl cone,
where �σ/2 denotes the electron spin, and the Pauli matrix
τ3 introduces the second Weyl cone with opposite chirality.
We start by considering a (4+1)-dimensional asymptotically
Anti-de Sitter background with radius �, with the line element

ds2 = −V 2(r)r2

�2
c2dt2 + �2

r2V 2(r)
dr2 + r2

�2
d �x2. (1)

Here, r is the extra spatial holographic dimension and the sys-
tem is in thermal equilibrium at a temperature T = 1/kBβ due
to the presence of the planar black hole in the bulk described by
the blackening function V (r) =

√
1 − (π�2/�βcr)4. We now

consider two uncoupled species of free probe Dirac fermions in
4+1 dimensions with masses Mi�/c�, where i = 1,2 and Mi

are dimensionless numbers. They are described by the spinor
fields �(i) that propagate in the curved background of Eq. (1).
The Dirac masses are subject to the restriction −1/2 � Mi �
1/2 where the cases Mi = ±1/2 need to be treated separately
[24]. With respect to the boundary chirality operator, both bulk
Dirac fields can be conveniently expressed in terms of two
chiral spinors �

(i)
R(L). Using the Dirac equation, the chiral com-

ponents of each species are expressed in terms of the other as

�
(i)
L =

(
0 0

−iξ (i) 0

)
�

(i)
R , (2)

which is the defining equation for the diagonal 2×2 matrices
ξ (i). Choosing the masses such that M1 = −M2 ≡ M , the
complex eigenvalues of ξ (1) and ξ (2) are ξ+ and ξ−, and −1/ξ−
and −1/ξ+, respectively. A different choice for the masses
Mi would not lead to this inverse relationship between the
eigenvalues and ultimately break the desired spatial inversion
symmetry on the boundary. As in Ref. [27], the bulk equations
of motion for ξ± are given by( r

�

)2
V (r)∂rξ± + 2Mr

�2
ξ±

= ω

cV (r)
∓ |k| +

(
ω

cV (r)
± |k|

)
ξ 2
±, (3)

with the in-falling boundary condition at the horizon
ξ±(π�2/�βc) = i. The variation of the action leading to
Eq. (3) is well-defined only if we specify the action at the
boundary. Therefore Dirichlet conditions [27] are imposed on
half of the chiral components of each bulk Dirac field. Most
conveniently for our purposes we fix �

(1)
R and �

(2)
L at a slice

r = r0 close to the boundary, specifying the boundary terms as

S∂ = igf

∫
r=r0

d4x
√−g

√
grr

(
�̄

(1)
R �

(1)
L − �̄

(2)
L �

(2)
R

)
,

where g and gμν are respectively the determinant and the μν-
component of the metric corresponding to Eq. (1) and gf is a
dimensionless normalization constant. Besides this, following
the procedure in Refs. [23,24,26], we add kinetic terms for
both �

(1)
R and �

(2)
L on the same slice which do not obstruct
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the variational principle. These additional terms describe
elementary fermionic excitations in the boundary theory,

Skin = Z

∫
r=r0

d4x
√−g

(
�̄

(1)
R

/D�
(1)
R + �̄

(2)
L

/D�
(2)
L

)
.

Here, Z is a dimensionful constant, /D = �ae
μ

a i∂μ, where
e

μ
a are the vielbeins corresponding to the metric in Eq. (1),

and �a are the Dirac matrices in the (4+1)- dimensional bulk.
The holographic prescription instructs that the generating
functional for correlation functions in the boundary field theory
is equal to the limit r → ∞ of the on-shell bulk action. Fourier
transforming and putting the action on-shell using Eq. (2), the
bulk Dirac action vanishes, but the boundary terms do not.
Performing the Gaussian integration over half of the chiral
components of each species boils down to eliminating �

(1)
L

and �
(2)
R using Eq. (2). After this, we carry out a field rescaling

so that both �
(1)
R and �

(2)
L acquire the canonical dimensions of

a (3+1)-dimensional spinor, and subsequently take a specific
double-scaling limit to bring r0 → ∞, namely [23,24],

r0

�
→ ∞, gf → 0,

gf

Z

( r0

�

)2−2M

→ λ

c�2M
.

This results in an effective boundary action from which
the corresponding retarded Green’s function for the
(3+1)-dimensional boundary Dirac fermion � = �

(1)
R + �

(2)
L

can be obtained. So each of the chiral components of this
Dirac fermion is supplied by one of the bulk fermion species.
In four-vector notation, using the Minkowski metric with
signature (−1,1,1,1), the retarded single-particle correlation
function is given by

GR(k) = ckμ + �μ(k)

(ck + �(k))2
γ μγ 0, (4)

where ck0 = ω + i0 ≡ ω+, γ μ are the (boundary) Dirac
matrices, and �μ(k) are the components of the effective self-
energy of the strongly interacting Dirac semimetal obeying

�μ(k) = −λ

2
lim

r0→∞

(
r0

�2

)2M[
(ξ+ + ξ−)δ0

μ

+ (ξ+ − ξ−)
ki

|�k|δ
i
μ

]
. (5)

Here, the index i runs over the spatial directions, and λ � 0
is the square of the coupling constant between the Dirac
fermion and the dual conformal field theory containing critical
order-parameter fluctuations with an anomalous dimension
related to M . Notice that for zero temperature, V (r) = 1,
and Eq. (3) can be solved analytically [24], resulting in
�μ(k,T = 0) = (ck/ωc)2M−1ckμ, where ωc = [λ�(1/2 −
M)/(2c)2M�(1/2 + M)]1/(1−2M). Finally, the spectral-weight
function is the 4×4 matrix A(k,ω) = Im[GR(k)]/π . After
diagonalization, its components are given by

A±(k,ω)

= 1

π
Im

[ −1

ω+ ∓ c|k| + λ limr0→∞(r0/�2)2Mξ±

]
, (6)

where the +(−) component denotes the conduction (valence)
band of the Dirac semimetal. The components of the

spectral-weight function A± are normalized such that∫ ∞
−∞ A±(k,ω)dω = 1, so the desired frequency sum rule is

obeyed. This is in contrast to earlier holographic computations
in the literature which yield correlation functions of composite
operators [27–29].

III. ELECTRICAL CONDUCTIVITY

The fermionic contribution to the electrical conductivity
σμν is computed in linear-response theory. The (3+1)-
dimensional Dirac fermions are thus minimally coupled to
a sufficiently small background electric field. The Kubo
formula relates the conductivity to the retarded current-
current correlation function �μν(q,ω+) in the Dirac semimetal
as σμν(q,ω) = i�μν(q,ω+)/ω. The retarded current-current
correlation function can be expressed in terms of the fermionic
Green’s function from Eq. (4) using the particle-hole bubble
diagram. To compute it, we start off in the Matsubara
formalism, and afterwards make an analytic continuation to
real frequency to obtain the retarded correlation function.
Several cases can now be distinguished.

In the noninteracting case, i.e., λ = 0, the Matsubara
Green’s function is given by GM (k) = kμγ μγ 0/ck2 with
k0 = iωm/c and ωm the fermionic Matsubara frequencies.
After regularization and analytic continuation, the free current-
current correlation function at zero temperature is a manifestly
transversal tensor, i.e., �

μν

0 (q) = (q2ημν − qμqν)�0(q2).
Considering the homogeneous response, we obtain then at zero
temperature σ0,xx(0,ω) = ie2|ω| log[−(ω+/ωexp)2]/12π2

�c.
The real part of the free conductivity is universal and
coincides with the result known from the literature [2,17],
Re[σ0,xx(0,ω)] = e2|ω|/12π�c, i.e., the free conductivity of
two coincident Weyl cones of opposite chirality at zero
temperature and Fermi velocity c. The imaginary part of
the conductivity, however, is nonuniversal and depends on
a single frequency parameter ωexp that should be determined
by experiment from the vanishing of the imaginary part of the
conductivity at that particular frequency in the Dirac semimetal
of interest.

The zero temperature result just discussed originates from
particle-hole excitations, i.e., transitions between the valence
and conduction band. Additionally, at nonzero temperature,
the noninteracting conductivity contains a Drude peak of
weight T 2, which comes from the transport of thermally
excited particles and holes within the same band. These
two contributions are referred to as the inter- and intraband
contribution, respectively. At nonzero temperature, the real
part of the total noninteracting conductivity can be computed
analytically, the result is

Re σ0,xx(0,ω)

= e2

3�c

[
π

3

(
kBT

�

)2

δ(ω) + |ω|
4π

tanh

(
�|ω|
4kBT

)]
. (7)

In the interacting case, computing the current-current
correlation function from the bubble diagram with dressed
propagators and including the vertex corrections is an exact ap-
proach within linear-response theory. The interacting Green’s
function is given by Eq. (4). As an approximation we ignore
the vertex corrections, but do take into account the self-energy
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FIG. 2. The dimensionless purely interband contribution σ̄ inter =
σ inter

�c/e2ωc as a function of the rescaled frequency ω/ωc for M =
1/4 and for different values of the dimensionless temperature T̄ . For
T > 0, this contribution goes to a constant as ω → 0.

corrections to the propagator. This approximation is justified
and consistent in the particle-hole symmetric case at zero
chemical potential that is of interest to us here. This is because
in this specific case the conductivity is finite even without
impurity scattering, and the vertex corrections do not lead to
a qualitatively different behavior of the conductivity. In this
so-called GG approximation, the current-current correlation
tensor is not manifestly transversal anymore, but it is in
fact almost transversal at zero temperature, with a 5% error.
In the GG approximation, the conductivity consists again
of two contributions, an interband and intraband part. Due
to rotational invariance, all three spatial components of the
conductivity tensor are equal. The total contribution to the
interacting conductivity is in the GG approximation given by

Re σxx(0,ω) = σ inter(0,ω) + σ intra(0,ω).

We discuss the two contributions separately, which makes it
easier to quantify the distinct behavior they lead to. The results
are also plotted separately in Figs. 2 and 3.
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FIG. 3. The dimensionless purely intraband contribution σ̄ intra =
σ intra

�c/e2ωc as a function of the rescaled frequency ω/ωc for M =
1/4 and for different values of the dimensionless temperature T̄ . For
nonzero temperature the Drude peak is visible.
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FIG. 4. Logarithmic plot of the real part of the dimensionless
fermionic conductivity Re σ̄xx as a function of the rescaled frequency
ω/ωc defined in the text. The black curves are for M = 1/4 and for
different values of the dimensionless temperature T̄ . The gray-scale
curves are for T = 0 and for various values of M , respectively from
top to bottom M = 1/8, −1/8, −1/4, and −1/3. The dotted lines
denote the asymptotics for M = 1/4, respectively, the free result for
ω/ωc � 1, and the zero-temperature infrared result for ω/ωc � 1.
Both results are mentioned explicitly in the text.

A. Interband contribution

The interband contribution to the interacting conductivity
is in the GG approximation given by

σ inter(0,ω)

= 2e2c2

3π

∫ ∞

0
dρ ρ2

∫ ∞

−∞
dω′ Nf (�ω′) − Nf (�ω′ + �ω)

�ω

× (A+(ρ,ω′)A−(ρ,ω′ + ω) +A−(ρ,ω′)A+(ρ,ω′ +ω)),

with Nf (ε) = (1 + eβε)−1. It is shown in Fig. 2.
For zero temperature, two regimes can be discerned, which

are reflected in the logarithmic plot of Fig. 4 as curves with a
different slope.1 For large external frequency, the interband
conductivity approaches the ultraviolet behavior, which is
the interband part of the free result, i.e., the second term
in Eq. (7). Here, σ scales linearly in ω. As the external
frequency is decreased, a crossover occurs to the infrared
behavior. Here, the interband conductivity is dominated by the
fermionic self-energy and scales as a different power law in
frequency. Indeed, from dimensional arguments, we can infer
that the zero-temperature interband conductivity in the infrared
vanishes as σ (ω) ∝ e2ωc(|ω|/ωc)3−4M/12π�c. This scaling
behavior is confirmed by the numerical results shown in Fig. 4.
The crossover to the infrared behavior occurs as the self-energy
term in the Green’s function becomes dominant over the
kinetic term, which is precisely at ωc. This low-frequency
behavior reflects the fact that the order-parameter field has
an anomalous dimension related to M in the infrared. An
alternative way to understand the behavior of the interband
contribution can be accomplished using Fermi’s golden rule.
The effect of interactions is to smear out the delta peaks in
the spectral function. At zero temperature, Lorentz invariance
ensures that the delta peaks are broadened only inside the light

1In Fig. 4, the total conductivity is shown, but at zero temperature
it is dominated by the interband contribution for all frequencies.
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cone. As a consequence, an on average slightly higher photon
energy is needed to acquire the same scattering rate as in the
noninteracting case, so effectively the conductivity is lowered.
For nonzero temperatures, the interband conductivity does not
vanish but instead goes to a constant as ω → 0, as shown
in Fig. 2. A nonzero temperature breaks Lorentz invariance
and has an additional smearing-out effect on the peaks in the
spectral-weight function, this time also outside of the light
cone. Now there is residual spectral weight at the Dirac point,
so even at zero photon frequency interband transitions can be
made, resulting in a nonvanishing interband contribution to the
dc conductivity. This effect dominates in the far infrared where
�ω � kBT . Depending on the value of temperature compared
to the crossover frequency ωc, there are two or three regimes
upon increasing the photon frequency. For kBT < �ωc, the
zero-temperature interaction effects start to dominate, and the
interband conductivity approaches the zero-temperature result
from below, compensating for the extra smearing out and the
spectral weight now available at zero frequency. This explains
the intersection with the zero temperature curve in Figs. 1 and
2. As the frequency is increased beyond ωc, the curve will
approach the free result as explained above. If kBT > �ωc

a crossover immediately to the free ultraviolet regime takes
place around kBT = �ω, and no intermediate regime can be
discerned.

B. Intraband contribution

The intraband contribution is in the GG approximation
given by

σ intra(0,ω) (8)

= e2c2

3π

∫ ∞

0
dρ ρ2

∫ ∞

−∞
dω′ Nf (�ω′) − Nf (�ω′ + �ω)

�ω

× (A+(ρ,ω′)A+(ρ,ω′ +ω) +A−(ρ,ω′)A−(ρ,ω′ + ω)).

This contribution is shown in Fig. 3.
In the noninteracting case, only zero frequency transitions

contribute to σ intra, leading to the first term in Eq. (7). If
there are interactions, the bands become smeared out and less
well-defined. In particular, some spectral weight is moved
to the location of the other band. Therefore, even at zero
temperature, there is a small contribution from high frequency
transitions in σ intra, and this leads to a similar power-law
behavior in the IR as in the interband part. Namely, σ intra scales
as ω3−4M for small frequency. In the UV, the interactions have
a perturbative effect, so that the intraband contribution scales
as ω2M . Because this power is less than one, it is subdominant
to the interband part for high frequency. Indeed, the total
conductivity asymptotes to the noninteracting case where it
scales linearly with frequency, as can be seen in Fig. 4. The zero
temperature intraband contribution vanishes at zero frequency
just like the interband contribution.

At nonzero temperature, a Drude peak appears in the IR
on top of the power law behavior just discussed. It is the
interaction analog of the delta peak that is the first term of
Eq. (7) in the noninteracting case.
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FIG. 5. The numerical value of the dimensionless integral SIR
M

defined in the text as a function of M .

C. Infrared approximation

In order to scrutinize the value of the conductivity
in the dc limit �ω/kBT � 1, we firstly introduce di-
mensionless variables x = �ωβ and y = c�|k|β. As can
be inferred from Eq. (3), the eigenvalues ξ± scale as
limr→∞(r/�2)2Mξ±(ω,|k|) = (�cβ)−2MsM (x, ± y), with sM

an M-dependent dimensionless function. Next, we observe
that in the far infrared, the Green’s function is dominated by
the self-energy term. We can approximate it by neglecting the
kinetic part, so that the Green’s function inherits the 1/T 2M

temperature scaling from the self-energy. This approximation
is valid for �ω � kBT � �ωc. Proceeding to compute the
conductivity as before, we now obtain in this limit the
following expression for the total dc conductivity:

σ IR = lim
�ωβ→0

Re σxx(0,ω) � e2ωc

12π�c

(
kBT

�ωc

)3−4M

SIR
M ,

where SIR
M is a dimensionless integral that in the limit �ωβ → 0

is given by

SIR
M =

[
�

(
1
2 − M

)
4M�

(
1
2 + M

)
]2 ∫ ∞

0
dy

∫ ∞

−∞
dx

y2

cosh2(x/2)

× [4AIR
+ (x,y)AIR

− (x,y) + (AIR
+ (x,y))2 + (AIR

− (x,y))2].

Here, the components of the spectral-weight function in
the far infrared are given in terms of the functions sM by
AIR

± (x,y) = Im [−1/πsM (x + i0, ± y)]. The numerical value
of this integral is shown in Fig. 5 for various M . The
conductivity thus indeed tends to a constant in the far infrared,
and scales as σ IR ∝ T 3−4M . This is true for both contributions,
i.e., both the dc value of the interband part and the height of
the Drude peak scale as T 3−4M . The above scaling argument
also suggests that the width � of the Drude peak scales with
temperature in the same way as the self-energy, i.e., �(T ) ∝
T 2M , so that the Drude peak behaves as T 3−2M�/(�2 + ω2).
Our numerics are indeed consistent with this scaling.

IV. DISCUSSION

In this work, we have obtained a model for strongly coupled
Dirac semimetals with holographic interaction effects. Using
this model, we have computed the fermionic contribution
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to the electrical conductivity. We have shown that for small
frequency, it inherits the scaling of the critical order-parameter
field responsible for the interactions between the Dirac
fermions. The reason that the electrical conductivity is finite
at the charge neutrality point, is that an external electric
field couples to particle and hole currents with opposite sign.
This fact, combined with particle-hole symmetry, makes sure
that an electric field does not couple to the center-of-mass
motion of the system. In addition, the interactions lead to
a drag force that relaxes the charge current in finite time,
making the conductivity finite. This is in contrast to the
thermal conductivity. Indeed, because of the linear dispersion,
the heat current is directly proportional to the center-of-
mass momentum. Therefore interactions do not relax the
heat current driven by a thermal gradient, i.e., the thermal
conductivity of a Dirac semimetal is infinite [30].

A closely related consequence of particle-hole symmetry is
the fact that vertex corrections are not crucial for obtaining
the qualitative behavior of the conductivity. The charge
transport relaxation time is finite, and in the absence of
vertex corrections, it is approximated by the single-particle
lifetime. This decreases the final result for the conductivity
by a multiplicative numerical factor. The latter represents
an angular effect, taking into account that not all scattering
events contributing to a finite lifetime, contribute to current
relaxation equally effectively [31]. In fact, we expect this
angular correction to be small in the strongly coupled case,
where there is no preference for forward scattering, as opposed
to weakly coupled systems where small-angle scattering is
dominant. Therefore our results in the GG approximation can
be interpreted as a lower bound on the exact result, possibly
with different numerical coefficients in the scaling laws, but
with the same universal features. In particular, the facts that the
UV limit yields the free result, that the IR limit is a scaling law
with power 3 − 4M , that there is a Drude peak, and that one

or two crossovers are present in between these regimes, are all
universal features that are not sensitive to vertex corrections.
Computation of the vertex corrections requires further study.
In particular, we need information on the dependence of the
self-energy on the dressed Green’s function, which is difficult
to obtain in the present model and this is beyond the scope of
this work.

Holographic methods are usually entirely universal, in the
sense that they can be used to describe classes of possible
condensed-matter systems. The advantage is that our model is
very general. However, it remains a challenge to predict the
behavior of specific realistic systems. We expect the obtained
power-law behavior of the conductivity to be applicable to a
wide range of condensed-matter systems in a universality class
determined by M , but its coefficient to depend on material
specifics. For instance, in our model, the latter depends on the
Fermi velocity c, which must be replaced by its appropriate
experimental value. The Fermi velocities are of the order 105

and 106 m/s in Na3Bi and Cd3As2, respectively [11,12].
Hopefully, also future experiments will reveal the behavior

of Dirac semimetals coupled to fluctuating collective modes.
Comparing holographic models with experimental data will
then lead to a better understanding of the relation between
string-theoretic methods and realistic condensed-matter sys-
tems.
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