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Quasiparticle Berry curvature and Chern numbers in spin-orbit-coupled bosonic Mott insulators
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We study the ground-state topology and quasiparticle properties in bosonic Mott insulators with two-
dimensional spin-orbit couplings in cold atomic optical lattices. We show that the many-body Chern and
spin-Chern number can be expressed as an integral of the quasihole Berry curvatures over the Brillouin zone.
Using a strong-coupling perturbation theory, for an experimentally feasible spin-orbit coupling, we compute the
Berry curvature and the spin Chern number and find that these quantities can be generated purely by interactions.
We also compute the quasiparticle dispersions, spectral weights, and the quasimomentum space distribution of
particle and spin density, which can be accessed in cold-atom experiments and used to deduce the Berry curvature
and Chern numbers.

DOI: 10.1103/PhysRevA.88.053631 PACS number(s): 03.75.Hh, 03.65.Vf, 05.30.Rt, 37.10.Jk

I. INTRODUCTION

Spin-orbit (SO) coupling is responsible for many Hall-
and quantum-Hall-type phenomena and associated topological
phases in solid-state systems without magnetic fields, such as
the anomalous Hall effect in ferromagnetic metals, the spin
Hall effect in semiconductors, and the quantum spin Hall effect
in topological insulators [1]. Recently, there has been much
experimental effort to engineer spin-orbit couplings in cold
atomic systems, with the aim of achieving similar topological
phases, such as the quantum anomalous Hall insulator [2,3],
and the atomic topological insulators and superfluids [4,5].

While topological insulators and related phases are well
understood in the weakly interacting limit [1], recent work has
turned toward the strongly interacting regime [6,7], which is
less well understood and may be relevant for some strongly
correlated materials such as the transition-metal oxides. An
outgrowth of this field is the study of bosonic topological
insulators and related quantum phases [8,9], which, unlike
fermions, necessarily require interactions. Ultracold atomic
systems are the natural candidates for creating these quantum
phases because of the ability of experimentalists to trap bosons
in clean optical lattices and to control microscopic parameters
such as hopping and interaction strength [10].

So far, only one-dimensional (Abelian) SO couplings
equivalent to a combination of Rashba and Dresselhaus SO
coupling with equal magnitude has been achieved in cold-atom
experiments [11]. Experimental methods to achieve two-
dimensional SO coupling (i.e. Rashba) have been proposed [3],
but topologically nontrivial phases generally require a three-
dimensional SO coupling which is much more difficult to
realize without introducing a sublattice degree of freedom. On
the other hand, as we demonstrate in this paper, interactions in
the ferromagnetic Mott insulating regime can generate a SO
coupling in the quasiparticle Hamiltonian that is independent
of the SO coupling in the hopping Hamiltonian, providing
another experimental knob to engineer SO coupling.

With these motivations, building on our previous work in
Ref. [12], we study and compute the ground-state properties
of SO coupled bosonic Mott insulators, including the quasi-
particle dispersions and spectral weights, the quasimomentum
space distributions of particle and spin density, the interacting
SO texture, Berry curvature, and Chern numbers. We present a

strong-coupling perturbation theory to compute the single-
particle propagator in the Mott insulator, from which all
the aforementioned ground-state properties will follow. We
will furthermore show that the interaction generated Berry
curvature can lead to a topological phase characterized by a
spin Chern number.

Our results can be measured by various experimental tech-
niques. The quasimomentum space distributions of particle
and spin density can be measured using phase contrast imaging
followed by time-of-flight measurements [5]. The interacting
SO texture and the corresponding Berry curvature can be
inferred from the these measurements, once the many-body
occupation function on the quasiparticle SO bands which
determine the local quasimomentum space polarization is
known, which, as we will show, can be computed in our
formalism.

For the cases considered in this paper, the Chern numbers
will depend only on the sign of the SO texture at four high-
symmetry points in the Brillouin zone. In fact, we will show
that at these points that the SO texture is proportional to the SO
energy splitting in the quasiparticle dispersions [cf. Sec. V A],
which can be measured, for example, with Bragg spectroscopy,
providing a simple way of experimentally determining the spin
Chern number.

The quasiparticle Berry curvature causes an anomalous
velocity in the wave-packet dynamics that can be measured as
deviations in Bloch oscillations, which, in the absence of Berry
curvature, are real-space oscillations of quasiparticle wave
packets in the direction of the external forces, stemming from
the usual band velocity in quasimomentum space. Recently,
there have been several experimental proposals for measuring
these deviations for the noninteracting Berry curvature [3,13],
and we expect that similar methods can be applied to measure
the interaction-generated ones that we study as well.

This paper is organized as follows. In Sec. II, we introduce
the SO coupled Bose-Hubbard model and review the hopping
Hamiltonian we use for our calculations. In Sec. III, we review
the properties of the single-particle propagator in the Mott
insulator. In Sec. IV, we show that the interacting Chern
number can be expressed in terms of the Berry curvature
of the quaisparticle Hamiltonian. In Sec. V, we compute
the propagator using the strong-coupling perturbation theory.
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In Sec. VII we compute the aforementioned observables for
onsite parameters given in Sec. VI 1, we compute the phase
diagram determined by the spin Chern number.

II. BOSE HUBBARD MODEL WITH
SPIN-ORBIT COUPLING

We consider a two-dimensional optical lattice of bosons
with two spin components, generic spin-dependent hopping
amplitudes with on-site repulsive interactions, deep in the
Mott-insulating phase at a commensurate filling. We will
describe the system by a pseudospin-1/2 Bose-Hubbard model
and write the Hamiltonian as

H = H0 + V,

where

H0 = 1

2

∑
i,αβ

Uαβa
†
iαa

†
iβaiβaiα − μαa

†
iαaiα

=
∑
iα

[
Uαα

2
niα(niα − 1) − μαniα

]
+ U+−ni+ni−,

and

V =
∑
i,j

�a†
i (ε̂δij + t̂ij )�aj ,

where i,j denotes the position of atoms in the optical lattice,
α,β = ± are spin indices, hats denote matrices in spin space,
�ai and niα = a

†
iαaiα are two-component spinor field operators

and occupation number operators in the real-space Wannier
basis, respectively, and we will keep only the lowest Bloch
band. Also, ε̂ are the on-site energies, and t̂ij are the matrices
of hopping amplitudes.

We will develop our theory for a generic tight-binding
Hamiltonian with SO or pseudo-SO coupling, and illustrate
the results with the SO coupling which was recently proposed
for a cold-atom system which may have some experimental
advantages [3]. This SO coupling is generated in a square
optical lattice and is formally identical to one component
of the Bernevig-Hughes-Zhang Hamiltonian which describes
mercury telluride quantum wells, the well-known solid-state
topological insulator [14]. Of course, the microscopic meaning
of the parameters are different; specifically, the spin in our
model refers to the atomic hyperfine states.

The quasimomentum space hopping Hamiltonian is given
by

V =
∫

BZ

dk
(2π )2

�a†
kĥk�ak, ĥk = hk + hk · σ̂ ,

where the quasimomentum k is in units of inverse lattice
spacing, the integral is over the Brillouin zone (BZ), �ak denote
second quantized operators in quasimomentum space, given by
�ak =∑i �aie

ik·ri [15], where {ri} are the Bravais lattice vectors,
where σ̂ is the vector of Pauli matrices, the noninteracting
spin-orbit field is given by hk, and the dispersions of the
noninteracting particles are given by ε

(1)
kα = hk + α|hk|.

In our model, we will consider only nearest-neighbor
hopping. The hopping matrices along the unit vectors of the
x,y axes {eδ} = {±x̂, ± ŷ} with the average on-site energies

set to zero are given by

ε̂ =
(

�/2 0
0 −�/2

)
, t̂±x =

(
D + B ±iA

±iA D − B

)
,

t̂±y =
(

D + B ±A

∓A D − B

)
.

It is convenient to parametrize the matrices of hopping
amplitudes of by t̂δ = tδ + tδ · σ̂ , then ĥk = ε̂ +∑δ t̂δe

−ik·eδ ,
or, in components hk = ε̂ +∑δ tδe

−ik·eδ ,hk =∑δ tδe−ik·eδ ,

from which follows

hk = 2D(cos kx + cos ky), (hx,hy) = 2A(sin kx, sin ky),

hz = �

2
+ 2B(cos kx + cos ky). (1)

Next, we give a brief review of this model in the absence
of interactions, which contains many features that will re-
main in the Mott insulator phase. As evident from the x,y

hopping matrices and hx,y(k), this model breaks inversion
symmetry (defined by k → −k), except at special points ki =
{(0,0),(π,π ),(π,0),(0,π )}, which correspond to locations of
vortices ({(π,0),(0,π )}) and antivortices ({(0,0),(π,π )}) in the
SO field hk, plotted for A = B in Fig. 1. If one defines an
artificial time-reversal symmetry operator [16], T = iσ̂yK ,
K denotes complex conjugation, the term hz(k) breaks this
symmetry. The lattice has a fourfold symmetry which will be
apparent in all quantities to be computed in the following.

The noninteracting Chern number of band α is given by the
winding number of hk [14,17],

να = 1

2π

∫
d2k

α

2

hk · ∂xhk × ∂yhk

|hk|3

= −α

2

∫
d2k

2π

∂(cos θk,ϕk)

∂(kx,ky)

= α

2

∑
i

p(ki)c(ki), (2)

FIG. 1. (Color online) Spin-orbit texture of the hopping Hamil-
tonian, hk/t for A = B = t , � = 0 where the vector fields and and
density plot denote in-plane components (hx,hy) and z component
hz/U , respectively. Oriented contours in red centered around vortices
indicate the chirality and polarity.

053631-2



QUASIPARTICLE BERRY CURVATURE AND CHERN . . . PHYSICAL REVIEW A 88, 053631 (2013)

TABLE I. Computation of the sum of topological charges of quasimomentum space vortices as a function of �,B in the noninteracting
BHZ model.

ki c(ki) p(ki)c(ki) 0 � � < 8B −8B < � � 0 � < −8B � > 8B

(0,0) + sgn(�/2 + 4B) + + − +
(π,π ) + sgn (�/2 − 4B) − − − +
(0,π ),(π,0) − −sgn(�/2) − + + +∑

i p(ki)c(ki)/2 −1 1 0 0

where (θk,ϕk) are the spherical angles of hk, c(ki) is the
chirality, defined by the sense of rotation of hk as one
encircles the vortex center counterclockwise [c(ki) > 0 for
counterclockwise], and p(ki) = sgn hz(ki) is the polarity,
which for this model depends on both the sign and magnitude
of �. Since the integrand in Eq. (2) is the Berry curvature of
the spinor Bloch states, να can be interpreted as the total Berry
flux modulo 2π entering into band α and is concentrated at ki

with ∼π fluxes. Thus, the Chern number is determined by the
sign of the Berry curvature at these points.

The Bloch states at ki are eigenstates of σz with eigenvalues
αp(ki), a consequence of ĥ(ki) having 2D spin rotational
invariance about the z axis. These eigenvalues determine the
sign of the topological charge p(ki)c(ki)/2 of the quasimo-
mentum space vortices, which occur in pairs of opposite
chirality [18]. Thus, when hz(k) has uniform sign, which
occurs for |�| > 8B, the Chern number vanishes due to
cancellations among topological charges. When |�| < 8B, the
Chern numbers are ±1 and is determined by the {(0,π ),(π,0)}
topological charges. The sum of topological charges as a
function of (B,�) is shown in Table I.

In the Mott insulator, the SO texture and corresponding
Chern numbers are determined from the single-particle Green
function, Ĝ(ω,k), which, in the strong-coupling perturbation
theory to be presented in the following, will inherit the
k-space symmetries of ĥk. For the homogeneous ferromag-
netism considered here, the in-plane textures will remain
unchanged. Therefore, the interacting Chern numbers are again
determined by the polarities, given by sgn{tr[σ̂zĜ(ω,ki)]}.
Furthermore, it is clear the leading-order term in perturbation
theory suffices for the purpose of determining the sign, and
hence the Chern numbers.

It is clear from the discussion above that the topolog-
ical state defined by a nonzero Chern number requires a
k-dependent SO gap, provided in the noninteracting case by
the T symmetry-breaking coupling B. In the bosonic Mott in-
sulator, such a gap can be generated by ferromagnetism which
spontaneously breaks T symmetry, thus generating a Chern
number which is generally different than the noninteracting
one. To illustrate this effect, we will show in the following that
interactions in Mott insulating phase can generate the requisite
gap even when B = 0 but D �= 0, even with homogeneous
ferromagnetism, an effect which cannot be captured in a mean-
field decoupling of the interaction, as, for example, in Ref. [19].

III. GENERAL PROPERTIES OF THE BULK
QUASIPARTICLE PROPAGATOR

In this section, we summarize some general properties of
the quasiparticle propagator in the Mott insulator, express

the particle and spin density distributions in terms of the
propagator, and establish the notation we use in the following
sections. The results obtained in this section will be used to
derive an expression for the interacting Chern numbers in terms
of the quasihole Berry curvatures in Sec. IV.

A. Spectral representation

The quasimomentum space, zero-temperature, time-
ordered propagator is defined by

Gαβ(ω,k) = −i

∫
dt eiωt 〈T akα(t)a†

kβ(0)〉, (3)

where 〈T . . .〉 denotes time-ordered expectation values in
the ground state and α,β denote spin indices in the “lab”
frame. Considering in this section only bulk single-particle
excitations, which are particle or hole excitations [illustrated
in Fig. 2(a)] the spectral representation of the propagator, the
quasiparticle poles read [20]

Ĝ(ω,k) =
∑
s,n

Zksn �χksn �χ †
ksn

ω − εksn + in0+ , (4)

where n = ± labels quasiparticle (+) and quasihole (−) bands,
s = ± labels the spin-orbit bands, and εksn are excitation
energies relative to the chemical potentials which satisfy
εks+ > 0 and εks− < 0, provided we are in the Mott insulating
phase. The numerator of Eq. (4) defines normalized spinor
wave functions,√

Zks+ �χks+ = 〈ks + |�a†
k|�〉,

√
|Zks−| �χks− = 〈ks−|�ak|�〉,

where |�〉 denotes the ground state and the spectral weights
are given by

Zks± = ±
∑

α

|〈ks±|akα|�〉|2,

t̂ij

U++ ∇φ
(a) (b)

FIG. 2. (Color online) Illustration of (a) particle-hole excitations
in the Bose-Hubbard model, (b) spin-dependent anomalous velocities.
The opposite orientation of the spins indicate the two spin-orbit bands.
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which measures the probability of creating quasiparticles or
holes by adding or removing an atom. We can define the spinors
above by (k space) unitary transformations of reference spinors
�ηs with spin quantization axis along the z direction,

�χksn = Ûksn�ηs , �η± = {(1,0),(0,1)}
that satisfy

Û
†
ksn(f̂ksn · σ̂ )Ûksn = σz,

where f̂ksn is a unit k dependent vector in direction of the
spinors’ quantization axis and which defines the quasiparticle
SO field. The numerators in Eq. (4) are projection operators
along the SO field, so that the propagator near its poles can be
written as

lim
ω→εksn

Ĝ(ω,k) = Zksn

(1 + s f̂ksn · σ̂ )/2

ω − εksn + in0+ . (5)

The unitary transformations define above separately di-
agonalizes the particle and hole parts of the propagator
Eq. (4), and they are the on-shell versions of the ones which
diagonalize Ĝ(ω,k): Ûksn = Û (ω → εksn,k). The particle
or hole parts of the diagonalized propagator, Gss ′ (ω,k) ≡
[Û †(ω,k)Ĝ(ω,k)Û (ω,k)]ss ′ , are given by

lim
ω→εksn

Gss ′ (ω,k) ∼ δss ′
Zksn

ω − εksn + in0+ . (6)

The same information is contained in the spectral function,
which for bosons is defined as

Aαβ(ω,k) =
∫

dt dr e−ik·r+iωt 〈[aα(r,t),a†
β(0,0)]〉.

Integration over frequency gives the equal time commutator
which leads to the sum rule (for each k)∫

dω

2π
Aαβ(ω,k) = 〈[akα,a

†
kβ]〉 = δαβ. (7)

It is related to the imaginary time propagator by

Ĝ(iωn) =
∫

dω′

2π

Â(ω′,k)

iωn − ω′ , (8)

or equivalently,

Â(ω,k) = i[Ĝ(ω + i0+,k) − Ĝ(ω − i0+,k)]. (9)

Similarly, its eigenvalues are given by Ass ′ (ω,k) ≡
[Û †(ω,k)Â(ω,k)Û (ω,k)]ss ′ .

So far, we have made general, formal deductions based the
spectral representation. In our perturbation theory, we will first
calculate the quasimomentum space inverse propagator, which
can generally be written as [21]

Ĝ−1(ω,k) = ω + μ − ĥ(k) − �̂(ω,k). (10)

When the self-energy is Hermitian, which is the case that we
will encounter [22], the eigenvalues and eigenspinors �χs(ω,k)
are given by

Ĝ−1(ω,k) �χs(ω,k) = G−1
s (ω,k) �χs(ω,k),

where G−1
s (ω,k) = ω − Hs(ω,k), Hs being eigenvalues of

Ĥ (ω,k) = ĥ(k) + �̂(ω,k).

Since quasiparticle energies follow from solutions of the
equation G−1

s (ω = εksn,k) = 0, the quasiparticle spinor wave
functions, �χksn = �χs(ω = εksn,k), are the on-shell versions of
the (ω,k) eigenspinors with zero eigenvalue. Near the zeros,
which in the Mott insulator have two roots corresponding to
particles and holes, we have

lim
ω→εksn

G−1
s (ω,k) = Z−1

ksn(ω − εksn),

Z−1
ksn = ∂G−1

s

∂ω

∣∣∣∣
ω=εksn

= 1 − ∂�s

∂ω

∣∣∣∣
ω=εksn

,

where �s denotes eigenvalues of �̂(ω,k).
It will furthermore be convenient to introduce the four-

vector parametrization

−Ĝ−1(ω,k) = d(ω,k) + d(ω,k) · σ̂
= −

∑
s

G−1
s (ω,k)Ps(ω,k), (11)

where the eigenvalues and projection operators are given by

−G−1
s (ω,k) = d + s|d|, Ps = 1 + sd̂ · σ̂

2
, (12)

where d̂ = d/|d|. Then we have

Z−1
ksn = −∂(d + s|d|)

∂ω

∣∣∣∣
ω=εksn

, (13)

and the quasiparticle SO fields are fksn = d(ω = εksn,k).

B. Particle and spin density

The ground-state momentum space distributions of atomic
particle and spin density are defined by(

nk
sk

)
= 〈�a†

k

(
1
σ̂

)
�ak〉

= i

∮
Imω>0

dω eiω0+
tr

[(
1
σ̂

)
Ĝ(ω,k)

]
,

where in the first equality, the correlation functions are for
equal time, and in the second, they are expressed in terms of
the time-ordered propagator by maintaining the correct order
of operators with the limiting procedure t → −0+ in Eq. (3).
Defining the band s density distributions by nks = 〈a†

ksaks〉
and using the form of the propagator from Eq. (5), we have

nks = −Zks−, nk =
∑

s

nks , sk =
∑

s

snks f̂ks−.

As expected, the spin density is simply the difference of the
spin s particle density along the quasiparticle spin quantization
axis.

One can measure these distributions using phase-contrast
imaging following a time-of-flight expansion [5]. But in such
an experiment, one measures the real (not quasi) momentum
distribution. Recalling that the Bloch functions, which will
be the basis function in our perturbation theory presented in
Sec. V, have the momentum space expansion

ψkα(r) =
∑

K∈(2πn/a){x̂,ŷ}
ck−K,αei(k−K)·r, n ∈ Z,
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where K are the reciprocal-lattice vectors for a square lattice,
ck−K,α are expansion coefficients, and denoting the second
quantized (real) momentum-space operators by ckα , it follows
that (

nk
sk

)
=
∑
K,s

〈
�c†k+K,s

(
1
σ̂

)
�ck+K,s

〉
,

where the right-hand side are the distributions measured in
experiments.

IV. BERRY CURVATURE AND CHERN NUMBERS

The topology of the ground-state wave function can be
characterized by the Chern and spin Chern number, denoted by
C0,Cz, which are topological invariants that can be expressed
in terms of the single-particle propagator, given in two spatial
dimensions by

Ca = − εij

8π2

∫
Imω>0

eiω0+
dω

∫
dktr[σ̂a∂ωĜ∂iĜ

−1Ĝ∂j Ĝ
−1],

(14)

where here and below i = (kx,ky) and 0+ denotes a positive
infinitesimal, a = 0 or z with σ̂0 = 1̂, and Ĝ(ω,k) is defined in
Eq. (3). The Hall conductivity is given by σH = C0/h [23,24]
and is equivalent to the Chern number defined by the many-
body wave function [6]. If spin is conserved, Cz is proportional
to the spin Hall conductivity [7].

The frequency integration in Eq. (14) picks up many-
body excitations corresponding to singularities in ω in the
upper complex plane. Although it is possible to evaluate this
expression directly in terms of the Green functions, when
there are only quasiparticle poles (as in the case for the
approximation taken in this paper) it is useful to express Ca

in terms of the quasiparticle Berry curvature [25]. To this end,
we define the (ω,k) space matrix gauge field Âμ ≡ iÛ †∂μÛ ,
which arises in the integrand of Eq. (14) when the Green
function is rotated in spin space to the SO basis [26]. Denoting
the diagonalized Green function by Ĝd , we find

Ca = 1

4π

∫
BZ

dk
∮

dω

2πi
eiω0+

2εij tr
[
σ̂a

(
Ĝ−1

d ∂ωĜdÂiÂj

+ Ĝ−1
d ∂iĜdÂj Âω

)]
. (15)

Then, the only ω singularities come from Ĝd , and their
contributions read [cf. Eq. (6)]

lim
ω→εksn

(
Ĝ−1

d ∂ωĜd

Ĝ−1
d ∂kĜd

)
∼ − 1̂

ω − εksn + in0+

(
1

vksn

)
,

where 1̂ is the 2 × 2 unit matrix, n = ± for particles or holes
and vksn = ∂kεksn. We thus pick up only hole contributions
with poles at ω = εks− + i0+. Note that in the terms above we
have omitted the terms containing it, ∼∂kZksn/Zksn, which is
finite and vanishes in the ω integration in Eq. (15).

Next, we define the Berry gauge field by the diagonal
part As

μ ≡ [Âμ]ss and the Berry field strength tensor by the
diagonal part of the commutator that appears in the integrand

of Eq. (15),

F s
μν ≡ i([Âμ,Âν])ss = ∂μAs

ν − ∂νAs
μ,

with μ,ν = (ω,kx,ky). The second equality follows from the
fact that Âμ is “pure gauge,” so that its non-Abelian field
strength is always zero. The associated Berry electric and
magnetic fields E s(ω,k), Bz

s (ω,k), respectively, are defined
given by (E i

s ,Bz
s ) = (F s

ωi,F s
xy).

Picking up the contributions from the poles, Ca can be
expressed in terms of band s hole Chern numbers Cs ,

(
C0

Cz

)
=
(

C+ + C−
C+ − C−

)
, Cs = −

∫
BZ

dk
2π

Cks−, (16)

where Cksn is the k-space Berry curvature, which can be
expressed in terms of the on-shell Berry electromagnetic fields,

Cksn = Bz
ksn + vksn × Eksn,

(17)(
Eksn,Bz

ksn

) = (E s(ω,k),Bz
s (ω,k))

∣∣
ω=εksn

.

The electric-field contribution Eksn to the total Berry curvature
is strictly an interaction effect which requires nontrivial
frequency dependence in the matrix structure of Ĝ(ω,k)
and thus Û (ω,k). In the absence of interactions, Eksn = 0
and Bz

ks = Bz
s (ω,k) is independent of ω, and Cs reduces to

the noninteracting Chern number, which is a well-known
integer topological invariant. In the presence of interactions,
nontrivial ω dependence modifies both electric and magnetic
contributions, but in such a way that the integral of Berry
curvature in Eq. (16) remains an integer. This fact can be made
manifest by expressing Cksn as the curl of the on-shell gauge
fields,

Cksn = ∂xAy

ksn − ∂yAx
ksn,

which are defined in terms of on-shell matrix rotations
[cf. paragraph below Eq. (5)]

Aksn ≡ i[Û †
ksn∂kÛksn]ss = [As

ωvksn + As
k

]∣∣
ω=εksn

.

In terms of the d vector parametrization in Eq. (11), the
on-shell Berry field strength and its associate electromagnetic
fields are given by

F s
μν(ω = εksn,k) = s

2
d̂ · ∂μd̂ × ∂ν d̂

∣∣∣∣
ω=εksn

.

In terms of the quasiparticle spin-orbit field in k space, it is
readily verified that

Cksn = s

2
f̂ksn · ∂x f̂ksn × ∂y f̂ksn

, (18)

and thus the hole band Chern numbers Cs are the integer
winding number of the hole band SO fields fksn.
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While the Chern numbers describe the global topology of
the quasiparticle Hamiltonians, the Berry curvature describes
its local geometry, and furthermore, causes in the quasiparticle
wave-packet motion an anomalous velocity transverse to
external forces. The semiclassical equations of motion are
given by

ṙsn = vksn + Cksn(−∇φ × ẑ),
(19)

k̇sn = −∇φ,

where φ is an external potential. Thus, the Berry curvature
can be measured experimentally by detecting single-particle
wave-packet dynamics under external forces, which can be
applied, for example, by ramping the optical lattice poten-
tial [3,13], or simply be due to the force of gravity [27].
In addition, φ always includes a trapping potential, and
the corresponding anomalous velocity produces an edge
current. [28] This band-dependent velocity is illustrated in
Fig. 2(b).

In practice, a typical cold-atom experiment would detect
not a single wave packet but the phase-space distribution
function, which satisfies a semiclassical Boltzmann equation
with advective terms that read

(∂t + ṙsn · ∂r + k̇sn · ∂k)fksn(r,t) = · · · ,
where ṙsn,k̇sn are given in Eq. (19), fksn is the semi-
classical distribution function, and . . . denotes collisional
and other possible terms, but the rigorous derivation of
the Boltzmann equation is beyond the scope of this pa-
per. However, because we are considering an interacting
system, the semiclassical Boltzmann equation should be
properly derived from a quantum kinetic equation, which
can be based on a density matrix or nonequilibrium Green-
function formalism [25,29]. The single-particle equations of
motion, ṙsn,k̇sn, can then be inferred from the advective
terms.

We note here that the Berry curvature and Chern numbers
can change from zero in the noninteracting limit to nonzero in
the strongly interacting limit studied in this paper. An example
of the purely interaction generated Berry curvature (coming
from the Berry electric field) is given by the experimentally
realized SO coupling studied in Ref. [12]. In this paper, we
will consider the case the noninteracting Chern numbers are
zero when B = 0, while the interacting Chern numbers are
nonzero for a range of values of the hopping parameters D,�,
as shown in the phase diagram in Fig. 10(a).

When the Chern numbers are nonzero, we expect gapless
edges states. However, in an experiment, the confining po-
tential effectively raises the chemical potential of at the edge
of the system, resulting a superfluid phase at the edge of the
Mott insulator, while our formalism is only valid in the Mott
insulating phase (cf. Appendix B).

V. STRONG-COUPLING PERTURBATION THEORY

In this section, we present the computation of Ĝ−1(ω,k) and
related quantities in the Mott insulator. We use a perturbation
theory in which the hopping Hamiltonian V is the perturbation
to the interaction Hamiltonian H0 [30,31]. We will compute
the imaginary time (τ = it) propagator,

Giα,jβ (τ − τ ′) = −〈T aiα(τ )a†
jβ(τ )〉,

which, to zeroth order, is given by the on-site propagator,
which has the path-integral representation (here and below we
set h̄ = 1)

−〈T aiα(τ ′)a†
jβ(τ )〉0 = −

∫
D�aD�a∗ aiα(τ ′)a∗

iβ(τ )e−S0[�a]

≡ δij ĝi(τ,τ
′), (20)

which is local because H0 contains only on-site interactions.
Next, consider the grand canonical partition function with
external sources �J ,

Z[ �J , �J ∗] =
∫

D�aD�a∗ exp

⎡
⎣−S0[�a] +

∫
dτ

⎛
⎝∑

i,j

−�a∗
i · t̂ · �aj −

∑
i

�J ∗
i · �ai + �a∗

i · �Ji

⎞
⎠
⎤
⎦ ;

S0 =
∫

dτ
∑

i

[�a∗
i ∂τ �ai + H0(�ai,�a∗

i )]. (21)

Using the Hubbard Stratonovich transformation, we decouple the term quadratic in �a by introducing an integration over an
auxillary field

∫
D �ψD �ψ∗e−Shb , thus adding to the action [30]

Shb = −
∫

dτ
∑
i,j

(�a∗
i − �ψ∗

i − �J ∗
i ′ · t̂−1

i ′i )t̂ij (�aj − �ψj − t̂−1
jj ′ · �Jj ′ ),

so that the partition function is proportional to

Z[ �J , �J ∗] ∝
∫

D �ψD �ψ∗ exp

⎧⎨
⎩
∫

dτ

⎡
⎣∑

i,j

�ψ∗
i t̂ij �ψj + �J ∗

i · t̂−1
ij

�Jj +
(∑

i

�J ∗
i

�ψi + �ψ∗
i

�Ji

)⎤⎦− S1[ �ψ]

⎫⎬
⎭ ;

S1[ �ψ] = − ln
∫

D�a exp

⎡
⎣−S0[�a] −

∫
dτ
∑
i,j

(�a∗
i t̂ij

�ψj + �ψ∗
i t̂ij �aj )

⎤
⎦ . (22)
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Next, we define the effective action (Landau free energy)
for �ψ ,

Z[ �J , �J ∗] ≡
∫

D �ψD �ψ∗ exp(−W [ �ψ, �J ]),
(23)

W [ �ψ ; �J = 0] = −
∫

dτ
∑
i,j

�ψ∗
i t̂ij �ψj + S1[ �ψ].

By differentiating with respect to the sources, it follows readily
that

〈aiα〉 = 1

Z

δZ

δJiα

∣∣∣∣
J=0

= 〈ψiα〉,

〈T aiαa
†
jβ〉 = 1

Z

δ2Z

δJiαδJ ∗
jβ

∣∣∣∣
J=0

= t−1
jβ,iα + 〈T ψiαψ

†
jβ〉,

or in Fourier modes

Ĝ(iω,k) = Ĝ(ψ)(iω,k) − ĥ−1
k , (24)

where G,G(ψ) denote the atomic and superfluid propagators,
respectively. So far, we have made no approximations, so that
Eq. (24) is a general relation between the atomic and the
superfluid propagator. The superfluid propagator can now be
computed perturbatively by making a cumulant expansion of
S1 in �ψ . However, because H0 contains quartic terms, there are
no Feynman rules similar to the weak-coupling perturbation
theory.

We will calculate the propagator in mean-field theory
by doing a saddle point approximation of the path integral
at �ψ = 0, since we are in the Mott insulating phase. This
means we keep S1[ψ] in Eq. (22) up to terms quadratic in ψ

[31],

W (2)[ �ψ] = −
∫

dτ
∑
i,j

�ψ†
i t̂ij

�ψj + S
(2)
1 [ �ψ]

≡ −
∫

dωdk
(2π )3

�ψ†
kωG(ψ)−1(iω,k) �ψ†

kω. (25)

The details of the computation are given in Appendix A. We
find that the superfluid propagator is given by

G(ψ)−1(iω,k) = ĥk − ĥkĝ(iω)ĥk, (26)

whence from the inverse of Eq. (24) and after performing the
wick rotation back to real time, or in frequency space, after
taking iω → ω [32], we find

Ĝ−1(ω,k) = ĝ−1(ω) − ĥ(k). (27)

Comparing Eqs. (27) and (10), the self-energy is simply given
by �̂(ω) = ĝ−1(ω) − ω, depending only on ω. We also note
that although Eq. (27) is first order in hopping, its inverse,
the propagator, contains all orders in hopping. The four-vector
components, defined in Eq. (11), are given by

d(ω,k; Nα) = h(k) − (g−1)z(ω; Nα)ẑ,
(28)

d(ω,k; Nα) = h(k) − (g−1)0(ω; Nα),

where

(g−1)0 = g−1
+ + g−1

−
2

, (g−1)z = g−1
+ − g−1

−
2

,

and the on-shell texture is given by

fksn = d(ω = εksn,k) = hk − (g−1)z(εksn)ẑ. (29)

Since the in-plane texture is unchanged, the in-plane spin
density is simplify given by

si
k = (nk+ − nk−)

hi
k

|hk| , i = x,y, (30)

which has the same orientation (up to a sign) as the SO
texture of the hopping Hamiltonian k, but its magnitude is
renormalized by the difference in the band s densities. On the
other hand, the z component is shifted by the σz component of
the inverse propagator.

The spectral weights are given explicitly by [cf. Eq. (13)]

Z−1
ksn = ∂ω(g−1)0|ω=εksn

− s cos θksn∂ω(g−1)z|ω=εksn
,

where we define the out-of-plane angle cos θksn = f z
ksn/|fksn|.

From Eq. (28) the frequency-dependent Berry curvature is
given by

Bz
ksn = s

2

d · ∂xd × ∂yd
|d|3

∣∣∣∣
ω=εksn

= s

2

fksn · ∂xhk × ∂yhk

|fksn|3 ,

E i
ksn = s

2

d · ∂ωd × ∂id
|d|3

∣∣∣∣
ω=εksn

(31)

= s

2

∂w(g−1)z
|fksn|3 fksn · ẑ × (∂xhk,∂yhk).

The band s dispersion is computed by setting G−1
s (ω =

εksn,k) = 0, which, from Eqs. (28) and (12), can be written as

(g−1)0(εksn) = hk + s|fksn| ≡ ε̃ksn. (32)

By functionally inverting (g−1)0(εksn), it can be expressed
implicitly in terms of ε̃ksn, which reduces to the noninteracting
hopping energy ε̄k if g−1

z = 0. To compute the dispersion, one
must solve

h(k) − (g−1)0(εsn,μ±)

= −s

√
h2

x(k) + h2
y(k) + [hz(k) − (g−1)z(εsn,μ±)]2,

(33)

for εsn.

A. An approximate expression for f z
ksn

In the following, we will consider only the hole bands,
which are the ones relevant for ground-state properties; thus
below where equations have two roots, we will consider only
the ones corresponding to holes, and for brevity omit the
particle or hole index n.

The SO gap including interactions is defined by [33]

−f z
α (k) = G−1

+ (εkα) − G−1
− (εkα) = −αG−1

−α(εkα),

which, in our perturbation theory, is given by

f z
α (k) = hz(k) − (g−1)z(εkα). (34)

It determines the Chern numbers in the Mott insulator similar
to the noninteracting case discussed in Sec. II, with the polarity
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FIG. 3. (Color online) Left: The (1,2) quasiparticle dispersions
plotted as functions of wave vectors the Brillouin zone in units of
inverse lattice spacing. Right: Illustration of the splitting between the
spin bands, approximately given by Eq. (37).

of the vortices now given by

pα(ki) = sgnf z
α (ki). (35)

Naively, since (g−1)z is of order Uαβ , one might expect it to
be the dominant term. However, generally in our perturbation
theory, the quasiparticle energies are always close to the on-
site particle or hole excitation energies ξ (n)

α , which are the
zeros of (g−1)z(ω), as shown for example in Fig. 4(b) (red
curve). Therefore, the winding number is determined by the
competition between the terms in Eq. (34), and may differ from
the noninteracting one determined by hz(ki).

An exception occurs for filling factors (N,0), where one
hole band and its corresponding zero in (g−1)z(ω) is missing,
as shown for the (1,0) filling in Fig. 4(b) (blue curve). In this
case, (g−1)z(ω < 0) ∼ U sets a gap with uniform sign over the
whole BZ, thereby making the Chern number zero.

Next, we illustrate the statements above explicitly by
deriving an approximate, analytic expression for SO gaps in
Eq. (34) at the vortex cores ki . At each vortex core, the in-plane
texture vanishes, so that Eq. (27) is diagonal and the energies
satisfy

G−1
α (εα(ki)) = g−1

α (εα(ki)) − ε(1)
α (ki) = 0, (36)

where ε(1)
α (ki) are the noninteracting energies. The quasipar-

ticle energies are given by the functional inverse of g−1
α as a

function of ε(1)
α [34], which to leading order in ε(1)

α is given by

εα(ki) ≈ ξα + Zαε(1)
α (ki),

where the spectral weights are simply given by

Z−1
α ≡ ∂ωg−1

α (ξα) = −1/Nα.

Thus, the energy splitting between the spin bands is given
by

δSO(ki) ≡ ε+(ki) − ε−(ki) ≈ Z+h+(ki) − Z−h−(ki), (37)

as illustrated in Fig. 3. Then, linearizing Eq. (34) with respect
to δSO, we find, to leading order,

−f z
α (ki) ≈ −Z−1

−αδSO(ki)

= 1

N−α

[
N+ − N−

2
h(ki) + N+ + N−

2
hz(ki)

]
.

(38)

This expression shows that if N+ �= N−, even the spin-
independent hopping h(k) can lead to a nonzero SO gap, which
is not possible in the absence of interactions. In general, the
SO gaps are determined by the competition between h(ki)

and hi(ki), thus the Chern numbers can be different than the
noninteracting ones.

We close this discussion by noting some simplifications
of our results when h(ki) = hz(ki) = 0, In this case, we
can generically express εksn in terms of the noninteracting
dispersion, by inverting

det Ĝ−1 = g−1
+ (ω)g−1

− (ω) − (ε(1)
kα

)2 = 0. (39)

So we can find explicit solutions in terms of |ε(1)
kα |, which we

plot in Fig. 6(b). The plot clearly shows that the symmetry
of the spectrum between spin ± bands, which has energies
±|ε(1)

kα | in the hopping Hamiltonian, is preserved in the Mott
insulator.

This highly symmetric case occurs at the massless Dirac
points of the hopping Hamiltonian, which occurs in our model
when � = 0 at (0,π ) and (π,0). Equation (38) shows that the
SO gap vanishes at these points. In fact, this is true beyond
the approximations taken above because ε

(1)
kα = 0 at the gap

closing points, so that Eq. (36) reads g−1
α (εα(ki)) = 0, and thus

εα(ki) = ξα are equal to the onsite hole excitation energies,
which are poles of the propagator and thus the zeros of g−1

α (ω).
Since we set the chemical potentials so that ξ+ = ξ−, we
also have G−1

−α(εα(ki)) = g−1
−α(εα(ki)) = 0, from which follows

f z
α (ki) = 0. Therefore, in our perturbation theory interactions

cannot open a SO gap at a massless Dirac point of the hopping
Hamiltonian.

VI. ON-SITE PROPAGATOR

The final ingredient needed to obtain results is the on-site
propagator. We will specify the unperturbed eigenstates in
the occupation number basis by the number of spin-up and
spin-down particles per site, (N+,N−), then the energies per
site are given by

E
(0)
N+N− =

∑
α

[
Uα

2
Nα(Nα − 1) − μαNα

]
+ U+−N+N−.

(40)

The unperturbed time-ordered correlation function is lo-
cal in space and diagonal in spin defined by gα(t) =
−i〈N+N−|T aiα(t)a†

iα(0)|N+N−〉, and its Fourier transform
reads

gα(ω) = 1 + Nα

ω − ξ
(+)
α + i0+ − Nα

ω−ξ
(−)
α − i0+ . (41)

where

ξ (+)
α = ENα+1,N−α

− ENα,N−α
> 0;

ξ (−)
α = ENα,N−α

− ENα−1,N−α
< 0,

are the excitation energies, and the inequalities must be
satisfied for the system to be in the Mott phase, which restricts
the chemical potentials to∑

β

UαβNβ − 1 < μα <
∑

β

UαβNβ,

i.e., they lie in the particle or hole gap.
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FIG. 4. (Color online) (a) The inverse onsite propagator
(g−1)α(ω) of band α for onsite filling factor Nα = 0 (blue, dashed
line), and Nα = 1,2 (red, solid line), and (b) the z component
(g−1)z(ω), given in Eq. (43), for filling factors (1,0) (blue, dashed
line) and (1,2) (red, solid line).

We consider equal intraspin interaction, and parametrize
the ratio of inter- to intraspin interaction as

U++ = U−− = U, U+− = λU,

then

λN−α − 1 <
μα

U
− Nα < λN−α. (42)

The interspin term in Eq. (40) favors a ferromagnetic state with
N+ − N− maximized, but the intraspin term favors both N±
to be minimized. Below, we consider two limits.

1. Without interspin interaction

Taking the limit of Ref. [12], we turn off the interspin
interaction, setting λ = 0, then the excitation energies are
ξα(Nα) = UNα − μα and the zeroth-order ground state has
filling factors Nα when Nα − 1 < μα/U < Nα . Setting μα =
U (Nα − 1/2), at the point where ∂E(0)/∂Nα = 0, the on-site
propagators are given by

g−1
α = (ω + 1/2)(ω − 1/2)

U (Nα + 1/2) + ω
,{

(g−1)0

(g−1)z

}
= U (4ω2 − 1)

2(1 + 2N+ + 2ω)(1 + 2N− + 2ω)

×
{

1 + N+ + N− + 2ω

N− − N+

}
. (43)

and plotted these in Fig. 4. filling factors (N,0), They show
zeros at the quasiparticle and quasihole excitation energies
except for the (1,0) filling, where the zero for one hole band is
missing in Fig. 4(b) (blue curve).

2. With interspin interaction

Consider now the case 0 < λ < 1 and μ+ = μ−. In this
case it is useful to express the ground-state energy in terms of
N = N+ + N−, Nz = N+ − N−,

E(0) (N,Nz) = N2
z

(
1 − λ

4

)
+ N2

(
1 + λ

4

)
− N

(
1

2
+ μ

)
.

For even N , it is energetically favorable to have Nz = 0, then
μ lies in

N+λ − 1 <
μ

U
− N+ < N+λ, N+ = N−.
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FIG. 5. (Color online) The spectral function As(ω,k = 0) for
B = 0, A = D = t ; (�/U,t/U ) = 0.01 and (a) (1,1) and (b) (1,2)
filling, with infinitesimal parameter 0+ = 10−3.

For N odd, however, Nz = 0 is not possible, and to minimize
energy the ground states will have N+ = N− ± 1, outside the
regions given by the inequality above. The phase diagram is
given in Ref. [35].

Choosing a line μ(λ) satisfying the above inequalities, the
particle and spin components of the inverse propagator are
then given by

(g−1)0 = μ(λ) + ω − U

2
(N+ + N−)(λ + 2)

+ U

2

∑
α

Nα(1 + Nα)

1 − N−αλ + (μ(λ) + ω)/U
;

(g−1)z = U

2
(N+ − N−)(λ − 2)

+ U

2

∑
α

α
Nα(1 + Nα)

1 − N−αλ + (μ(λ) + ω)/U
.

So far, we have assumed a uniform ferromagnetic ground state
in the z direction defined in the hopping Hamiltonian. Other
types of magnetic order such as XY ferromagnet and spin
spirals are possible, but a rigorous computation of the phase
diagram of the ground-state magnetization is beyond the scope
of this work.

VII. RESULTS FOR U+− = 0

Below we consider the hopping parameters B = 0, A =
D = t . We first check that the Green functions have only
simple poles which results in sharp quasiparticle peaks in the
spectral function. This is verified in in Fig. 5, where we plot the
band s spectral functions at the origin of the BZ, As(ω,k = 0),
for the (1,1) and (1,2) filling. Note that as the ratio N+/N−
decreases, so does the relative spectral weights, as expected,
since Zs− ∝ Ns .

Next, we find the dispersions by solving Eq. (33) with the
on-site propagators defined in Eq. (43). First, we note that in the
cases of equal filling fractions (N+,N−) = (N,N ), we can set
μα = μ. In this case, (g−1

z ) = 0, so that there are no corrections
to the spin texture, which is given by hk, and we have

(g−1)0 = −2UN+ + μ + ω + N+(N+ + 1)U 2

U + μ + ω
.

The dispersions can be expressed for any μ as

εksn + μ

U
= N+ − 1

2
+ ε̄ks

2
+ n

2

√
1 − 2(1 + 2N+)ε̄ks + ε̄2

ks ,

(44)
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FIG. 6. (Color online) (a) A plot of the dispersions as function
of ε̃s/U defined in Eq. (32) for (N+,N−) = {(1,0),(1,1),(1,2)}. (b)
For a massless Dirac hopping Hamiltonian, the (1,2) dispersion as
function of ε̄/U , given by the solution of Eq. (39).

where ε̄ks = ε
(1)
ks /U are the noninteracting dispersions in units

of U . A plot of this dispersion as function of ε̄ is given in
Fig. 6(a), and is very similar to the spinless case of Ref. [31,36].
The simplest filling fraction which gives an out-of-plane spin
texture is (1,0), which represents the simplest ferromagnetic
ground state. This case was discussed in Ref. [12]. The
quasiparticle dispersions can be expressed implicitly as

εksn

U
= 1

4

(
− 1 + 2

ε̃ksn

U
+ n

√
9 + 20

ε̃ksn

U
+ 4

(
ε̃ksn

U

)2)
,

where ε̃ksn is defined in Eq. (32), and we plot this function in
Fig. 6(a). Note that there is a missing quasihole band, so that in
this formula (s,n) �= (−,−), because there are no spin-down
atoms in the unperturbed (1,0) ground state. However, the
band which evolves from the spin-down band in the laboratory
frame is along fk,s=−,n and may not correspond to spin down
in the laboratory frame. As discussed in Sec. V A, in this
case, there is a uniform f z

ksn, so that the Chern numbers are
zero.

A. Topologically trivial state: (1,1) filling factor

We first consider the (1,1) filling factor at t/U = �/U =
0.01. Although the Chern numbers are zero, there are still
nontrivial, interaction induced effects. First, we define the
function ns(ω) = −Zs(ω) ≡ −[∂ωG−1

s (ω)]−1, given by

ns(ω) = 1

∂ωd(ω)
= − (3 + 2ω)2

1 + 12ω + 4ω2
,

which has no explicit k,s dependence, and can thus be
interpreted as a distribution function in frequency space
because the particle density on each hole band is given by
ns(εks−). We plot this function in Fig. 7(a) and note that it is
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FIG. 7. (Color online) For the filling fraction (1,1) and t/U = �/U = 0.01: (a) Quasimomentum distribution of particle density nk.
(b) The difference in band s densities nk+ − nk− (c) Quasimomentum distribution of spin density (in units of h̄) sk. (d) The in-plane spin
density, sx,y(k), where the color and size represent the in-plane magnitude (in units of h̄). In plots (b)–(d), the axes are wave vectors in the
Brillouin zone in units of inverse lattice spacing.
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FIG. 8. (Color online) For the filling fraction (1,2) and t/U = �/U = 0.01: (a) Quasimomentum distribution of the (1,2) particle density
distribution nk and (b) the difference in band s densities nk+ − nk−; Quasimomentum distribution of (c) in-plane sx,y(k), where the color and
size represent the in-plane magnitude (in units of h̄). The vector field changes from pointing outward in the center at k = (0,0) to inward away
from the center. (d) Out-of-plane spin density sz(k) (in units of h̄). In plots (b)–(d), the axes are in wave vectors in the Brillouin zone in units
of inverse lattice spacing.

positive at the hole-band energies, as it should be. We plot the
k-space particle density distribution in Fig. 7(b), which shows
that the particle distribution is nearly uniform at nk ≈ 2, so
that in terms of their k-space occupation the quasiparticles
have fermionic character. However, the distribution is peaked
at (π,π ), indicating a tendency to Bose condense at this point
at superfluid transition.

Computing the real-space density numerically, we find
for t/U = 0.01, that N (μ = U/2) = ∫ dk/(2π )2 nk = 2.03.

Thus, there is a small correction to μ of order t necessary to
keep the density at integer value. However, as shown in the plot
of N (μ) (computed numerically) in Fig. 10(d), only a small
tuning of μ is needed to satisfy N (μ) = 2 to stay in the Mott
insulating phase, which we will neglect for the purposes of
this paper.

As mentioned above, for this filling f̂ksn = ĥk ≡ hk/|hk|,
so that the Berry curvature is the same as the noninteracting
case, which is zero for B = 0. The spin density is given by
[cf. Eq. (30)] sk = (nk+ − nk−)ĥk, and is plotted in Fig. 7(d).
The quantity nk+ − nk−, can be thought of as a k-space
“magnetization” and is plotted in Fig. 7(c). Note that it is

negative, so the spin density sk has the opposite orientation
as hk.

B. Topological state: (1,2) filling factor

Next, we consider the (1,2) case, which will be representa-
tive of a generic ferromagnetic Mott insulating state with filling
factors N+ �= N−. This state has purely interaction-generated
SO gaps f z

ks−, plotted in Fig. 9. The dispersions are plotted in
Fig. 3, where it is seen that the hole bands actually have positive
curvature. We plot the density, k-space magnetization, in-plane
and out-of-plane spin density in Figs. 8(a)–8(d). In this case,
the k-space magnetization changes sign, causing a line of
defects where the in-plane spin density vanishes, while the
the out-of-plane spin density points everywhere down along
the z axis.

We plot the Berry electric field Eksn and the total Berry
curvature Cksn in Fig. 9. As in the noninteracting case, they are
concentrated at the high-symmetry points ki . The electric field
also forms vortices around these points, which is consistent
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FIG. 9. (Color online) Top row: The (1,2) interacting Berry electromagnetic fields on the hole bands, in units of lattice spacing squared,
for (a) s = − and (b) s = +. The vector field is the Berry electric field Eksn and the color density plot is the total Berry curvature Cksn. Bottom
row: The SO gaps f z

ksn/U of the quasiparticles in the Mott insulator, including the corrections to the hopping textures due to interactions, for
the filling fraction (1,2) and D/U = �/U = 0.01: (c) f z

ks−/U and (d) f z
ks+/U . In the plots, the axes are wave vectors k in the Brillouin zone

in units of inverse lattice spacing.

with the frequency-momentum space Faraday’s law [25],[
∂ωBz

ks(ω) + ∇k × Eks(ω)
]∣∣

ω=εksn
= 0,

which follows by virtue of their definition in terms of gauge
fields.

Next we consider the interacting Chern numbers, computed
similarly to Table I by summing the topological charge of each
vortex,

Cα = α

2
[pα(0,0) + pα(π,π ) − pα(0,π ) − pα(π,0)] ,

where the gaps are given by f z
α (ki) = �/2 − (g−1)z[εα(ki)],

and the energies at the gap locations are given by solving
ε(1)
α (ki) − g−1

α (ω) = 0. The analytical expression for the SO
gap at (0,0) is given by

f z
α (0,0) = �

2
−
∑
α′

α′ Fα(D,�)2/4 − 1

2 + 4Nα′ + Fα(D,�)
;

Fα(D,�) = 8D + α� (45)

−
√

(2 + 8D + α�)2 + 8(8D + α�)Nα.

On each SO band, the transition to the topological phase
with finite Cα(D,�) occurs in a similar manner to the
noninteracting case, when the topological charges from
the (0,0) and (π,π ) vortices cancel while the other con-
tributions add; specifically, Cα(D,�) = 0 when pα(0,0) =
pα(π,π ), and Cα(D,�) = ±1 when pα(0,0) = −pα(π,π ),
while pα(0,π ) = pα(π,0) = sgn�. This scenario is verified
by the plots of f z

α (ki) in Figs. 10(a) and 10(b). For fixed �,
this transition occurs at a finite value of D that is needed to
overcome a uniform SO gap imposed by � everywhere.

The spin Chern number Cz = C+ − C− is plotted as a
function of D and � in Fig. 11, which shows that Cz = 2sgn�

in a large part of the parameter space, consistent with the
discussion above. The plot terminates where the SO gap and
hence the dispersions [cf. Eq. (32)] acquire imaginary parts,
indicating the superfluid transition. We have thus shown that
a topological phase transition to a ground state with nonzero
spin Chern number occurs in the ferromagnetic Mott insulating
phase, which we again emphasize is a purely interaction effect.

On the other hand, the total Chern number C0 = C+ + C−
vanishes in the whole parameter space. This can be understood
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FIG. 10. (Color online) For �/U = 0.01: the SO gaps f z
α (ki) as

function of D for (a) α = − and (b) α = +. (c) Zooming in to the
region where the topological transition occurs, at |D| < 0.005, the
SO gaps at (0,0) and (π,π ). (d) The ground-state particle per site
N (μ) for the (1,1) filling factor plotted as a function of μ.

from Eq. (38), which shows that to leading order in the hopping
parameters D/U and �/U , f z

α is independent of α, so that
C+ = −C− [cf. Eq. 18]. Higher-order corrections to Eq. (38)
introduces a small dependence on α, as shown in Eq. (45),
which has the leading-order expansion in D or � given by

f z
α (0,0) = 4D (N+ − N−) + (N+ + N−) �/2

2N−α

+ 2Dα�

(
N− − N+

N−α

+ N+2 − N−2

N2−α

)

+O(D2) + O(�2). (46)

The first term agrees with Eq. (38), while the second shows
an α dependence. However, the point where the topological
transition occurs, where f z

α = 0, remains the same on each
SO band, as shown in Fig. 10(c). The fact that we do not
find the case with an odd Chern number, e.g., C+ = 1 and
C− = 0, is consistent with a general argument that the integer

0.05

0.05

U
0.05

0.05

D U
2

0

2

CZ

FIG. 11. (Color online) Phase diagram defined by the spin Chern
number Cz as function of the spin independent and spin dependent
hopping parameters, D/U,�/U , respectively. The colors red, green,
blue indicate the three values 2,0, − 2, respectively.

Hall conductivity (given here by C0) for bosons must be even
integer valued [9].

VIII. CONCLUSION AND OUTLOOK

In this work, we have shown that the many-body Chern
numbers in a generic spin-orbit coupled bosonic Mott insulator
can be expressed in terms of the quasiparticle Berry curvature
defined in terms of the single-particle propagator, which we
have computed using a strong-coupling perturbation theory.
This method has several advantages. It relates the many-body
Chern number to quasihole transport properties, somewhat
similar to the case of the noninteracting fermions. It does
not require calculating the many-body wave function, as in
the standard method in the quantum Hall literature, where
one imposes twisted periodic boundary conditions on the
many-body wave function, define a Berry gauge field as a
function of the phase changes at the boundary, and compute
the Berry flux through the torus of phases [37]. Furthermore,
instead of perturbation theory, one can apply various numerical
techniques available for calculating single-particle Green
functions [7], which can be used to check our claim that the
leading order of our perturbation theory suffices to determine
the Chern numbers.

The topologically nontrivial states that we find are charac-
terized by a spin Chern number, which we expect to be related
to the spin Hall conductance. However, the computation of the
spin Hall conductivity when spin is not conserved is a delicate
issue, which requires further study. It is straightforward in
the formalism of this paper to include more bands in the
hopping Hamiltonian ĥ(k), or its time-reversed copy. More
internal degrees of freedom may introduce more symmetries
and associated topological invariants.

Besides the Chern numbers, a central result of this work is
the calculation of quasiparticle Berry curvature in the presence
of strong interactions. Specifically, it would be interesting to
experimentally measure the electric-field contribution which
is purely interaction generated. Since it appears in the equation
of motion proportional to the band velocity vksn, it should be
distinguishable from the magnetic component. Furthermore,
in the Fermi liquid, the quasiparticle weight is renormalized
by a factor ∼−E · ∇φ [25], and we expect this to be valid in
the Mott insulator as well.

A realistic comparison with experiments will require a
precise computation of the phase diagram for the ground-state
magnetization, which can be textured [38]. As shown in
Appendix A magnetization textures can readily be included
in our theory, and may introduce regions of space that have
different SO texture, Berry curvature, and Chern numbers.

To conclude, this work reveals interesting ground-state
topology and quasiparticle transport properties in bosonic Mott
insulators with two-dimensional spin-orbit couplings, and we
hope this work provides further motivation to study these
systems both theoretically and experimentally in cold-atom
and solid-state systems.
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APPENDIX A: COMPUTATION OF S(2)
1 [ψ]

In this section, we determine the superfluid propagator G(ψ)

by computing quadratic part of the effective action W (2)[ψ] [cf.
Eq. (25)] by expanding S1[ �ψ], defined in Eq. (22), to second
order,

S
(2)
1 [ψ] = − ln

∫
D�ae−S0[�a]

⎡
⎣1 +

⎛
⎝∫ dτ

∑
i,j

tij (a†
i ψj + ψ

†
i aj )

⎞
⎠+ 1

2

⎛
⎝∫ dτ

∑
i,j

tij (a†
i ψj + ψ

†
i aj )

⎞
⎠

2

+ · · ·
⎤
⎦ .

Noting that in the Mott insulator 〈aα〉0 = 0,〈a†
α〉0 = 0, 〈aαaβ〉0 = 0,〈a†

αa
†
β〉0 = 0, where the brackets denote time-ordered

expectation value with the unperturbed H0, dropping ln Z0 where Z0 is the partition function corresponding to S0, which is
independent of ψ , and expanding the logarithm, we find

S
(2)
1 [ψ] = −1

2

〈
T

⎛
⎝∫ dτ

∑
i,j

tij (a†
i ψj + ψ

†
i aj )

⎞
⎠
⎛
⎝∫ dτ ′∑

i ′,j ′
ti ′j ′(a†

i ′ψj ′ + ψ
†
i ′aj ′ )

⎞
⎠〉

0

= −
∫

dτdτ ′ ∑
i,j ;i ′,j ′

ψ
†
i ′ (τ

′)ti ′j ′ 〈aj ′ (τ ′)a†
i (τ )〉0tijψj (τ )

=
∫

dω

2π

∫
dkdq
(2π )4

�ψ∗
k+q,nĥ(k + q)ĝ(iω,q)ĥ(k) �ψkn, (A1)

where t̂ij = ∫ dk
(2π)2 ĥke

ik·(ri−rj ), {ri} are the lattice sites and the
unperturbed on-site propagator is given by

ĝ(q) = −
∑

i

e−iq·ri 〈T aiα(τ ′)a†
iβ(τ )〉0,

where we allow the possibility of spatial dependence which
occurs when the ground state has inhomogeneous magneti-
zation that has a spatially varying angle relative to the fixed
quantization axis defined by aiα . The quadratic part of the
effective action is thus given by

�(2)[ �ψ] =
∫

dω

2π

∫
dkdq
(2π )4

�ψ†(ω,k + q)[−δ(q)ĥ(k)

+ ĥ(k + q)ĝ(iω,q)ĥ(k)] �ψ(ω,k).

The higher-order terms can be computed similarly, however,
the evaluation of time-ordered on-site correlation functions
with four or more operators becomes a tedious task be-
cause as S0[�a] is quartic in �a, one cannot directly express
higher point correlation function in terms of single-particle
propagators.

APPENDIX B: EDGE STATES

The inverse Green function provides an effective
Schrodinger equation for the quasiparticle, given by the lattice
eigenvalue equation

Ĝ−1
ij (ω) �ψj =

∑
j

[ωδij − ĥij − �̂ij (ω)] �ψj = 0,

but, to the leading order in our perturbation theory, the self-
energy is on-site, so that∑

j

[
δij g

−1
0 (ω)1̂ + g−1

z (ω)σ̂z − ĥij

] �ψj = 0. (B1)

Together with a set of boundary conditions, one can find a set
of wave functions �ψ (n)

i with eigenvalues εn. In addition to the
bulk, Bloch states computed above, one can find edge states,
for example, in a strip with periodic boundary conditions in y

and open boundaries in x.
Consider first the case with g−1

z = 0. Then the eigenfunc-
tions are the same as the wave functions of the hopping
Hamiltonian, ĥij

�ψj = ε(1)
n

�ψj , and near band crossing points
ĥij has the form of a Dirac Hamiltonian with well-known
edge states. However, the eigenvalues determined by solv-
ing g−1

0 (ω) + ε(1)
n = 0, i.e., inverting the on-site propagator,

will produce a particle and hole copies of the edge states
spectrum which lie between the bulk particle and hole spin
bands.

When m̂(ω) = g−1
z (ω)σ̂z is nonzero, it provides a “mass”

term, which can cause a transition to a topologically nontrivial
state, as we have seen in the previous, bulk analysis. However,
this term has ω dependence, which has to be solved by
satisfying g−1

0 (ω) + ε̃n(ω) = 0, where now ε̃(1)
n (ω) are the

eigenvalues of ĥij + m̂(ω).
In practice, the confining potential is smooth, and in a local-

density approximation, it acts as a local chemical potential
which puts the edge of the Mott insulator into a superfluid
phase. However, the computation of the Green function for
the superfluid using a strong-coupling theory is a delicate
matter [39] which is beyond the scope of this work.
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