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A hypergraph model for mapping applications with an all-neighbor communication pat-
tern to distributed-memory computers is proposed, which originated in finite element tri-
angulations. Rather than approximating the communication volume for linear algebra
operations, this new model represents the communication volume exactly. To this end, a
hypergraph partitioning problem is formulated where the objective function involves a
new metric. This metric, the kðk� 1Þ-metric, accurately models the communication volume
for an all-neighbor communication pattern occurring in a concrete finite element applica-
tion. It is a member of a more general class of metrics, which also contains more widely
used metrics, such as the cut–net and the ðk� 1Þ-metric. In addition, we develop a heuristic
to minimize the communication volume in the new kðk� 1Þ-metric. For the solution of sev-
eral real-world finite element problems, experimental results based on this new heuristic
demonstrate a small reduction in communication volume compared to a standard graph
partitioner and do not show significant reductions in communication volume compared
to a hypergraph partitioner using the common ðk� 1Þ-metric. However, for this set of
problems, the new approach does reduce actual communication times. As a by-product,
we observe that it also tends to reduce the number of messages. Furthermore, the new
approach dramatically reduces the communication volume for a set of sparse matrix prob-
lems that are more irregularly-structured than finite element problems.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

A parallel implementation of a finite element method on a distributed-memory computer demands a mapping of the
underlying triangulation to the processes. The goal of this distribution is to minimize the data communication necessary
between the processes when computation is carried out using this finite element triangulation. The distribution is only
acceptable if the resulting computational load is evenly balanced among all participating processes. Modeling this data dis-
tribution as a graph partitioning problem has a long tradition in parallel computing; see the survey [1] and the references
therein. In such an undirected graph model, the vertices represent the computational tasks while the edges represent the
dependencies between these tasks. An edge in a graph connects exactly two vertices. In a hypergraph model, this is extended
by hyperedges that connect any number of vertices and hence are capable of expressing more general connectivity
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information. This additional flexibility of the hypergraph model is exploited in various application areas of parallel comput-
ing including sparse matrix–vector multiplication [2], volume rendering [3], and scheduling [4]. Previous work on represent-
ing aspects of finite element triangulations using hypergraph models includes partitioning followed by local reorderings
within each resulting part of the partitioning in an attempt to improve data locality [5].

Standard techniques for distributing finite element triangulations on distributed-memory computers focus on parallel
sparse matrix–vector multiplication which is often the most time-consuming operation of a finite element method. Though,
in practice, a large number of finite element codes carry out this operation differently, these approaches conceptually rely on
assembling the stiffness matrix and employing any graph or hypergraph partitioning for the resulting sparse matrix–vector
multiplication. Another class of techniques is based on performing graph partitioning on the dual graph of the finite element
triangulation. Here, the dual graph represents the elements of the triangulations and their adjacencies. While both these
classes of techniques have been successfully used in practice, they fall short in modeling the communication volume exactly.
The communication volume is defined as the number of data words to be communicated between processes when compu-
tations are carried out using the underlying finite element triangulation. While all established models approximate the
‘‘true’’ communication volume, the first new contribution of the present paper is to develop a hypergraph model that rep-
resents the communication volume exactly. When preparing the revised version of this paper, we found out that an exact
hypergraph model for a mesh is also mentioned in [6,7]. This model uses the ðk� 1Þ-metric as described below and is avail-
able via a load balancing service called iZoltan developed within the Interoperable Technologies for Advanced Petascale Sim-
ulations project, defining an abstract data model and interfaces for parallel mesh data [8]. The mesh-based iZoltan service
uses Zoltan [9]. Our work which was carried out independently from this related work is inspired by analyzing the commu-
nication pattern occurring in the parallel finite element solver DROPS [10]. Previous approaches based on the undirected graph
model [11,12] were not successful in modeling the communication volume of that software accurately.

The finite element software package DROPS is being developed for the solution of two-phase flow problems where two
immiscible fluids are interacting in three space dimensions. DROPS is based on the level-set approach to capture the time-
dependent boundary between the two fluids and discretizes the flow and the level set function on an adaptively refined
unstructured tetrahedral mesh. Though adaptivity is an important issue in real-world finite element computations, we do
not consider hypergraph models for dynamic partitioning [13,14]. By focusing on a hypergraph model for static partitioning,
we defer the extension from static to dynamic partitioning for future research. An overview of algorithms and techniques to
dynamically partition application data and work among processes for numerically solving partial differential equations is
given in [15].

There are different communication volume metrics used in hypergraph partitioning models. The ðk� 1Þ-metric is widely
used for sparse matrix–vector multiplication [2]. For the distribution of finite element triangulations, we show that the
ðk� 1Þ-metric exactly models the communication volume when each data item is kept by a single owner during the com-
putation and communicated when needed. However, it fails to model the communication volume for implementations like
DROPS where all neighbors share data among each other and communicate in an all-to-all fashion. To reflect this situation, we
propose the novel kðk� 1Þ-metric, which models the number of communicated data words exactly in that case. The new
metric falls into the category partitioning for complex objectives, a term coined by Pinar and Hendrickson in 2001 [16].
Another recent example of complex objectives is the work by Kaya et al. [17] who try to achieve balance on the number
of nonzeros on certain parts of sparse matrices. In this paper, we introduce the kðk� 1Þ-metric, as well as a bipartitioning
heuristic for the solution of the hypergraph partitioning problem with this new metric as the objective function.

In Section 2, we discuss the finite element triangulation and the different types of communication patterns required by
the parallel software package DROPS. Minimizing the number of communicated data words while, at the same time, balancing
the computational load is reformulated as a hypergraph partitioning problem in Section 3. In Section 4, we show that such
partitioning problems, with general communication volumes, can be minimized greedily using a standard hypergraph par-
titioner. To measure the performance of this strategy, we partition a finite element triangulation from a real-world applica-
tion taken from [18] in Section 5 and measure the resulting communication volumes and communication times of DROPS for
up to 1024 processes. We compare partitionings obtained by the Mondriaan hypergraph partitioner [19] together with
PaToH [20] to those generated by partitioning the undirected graph model using METIS [21]. Our new hypergraph model
for the communication volume leads to communication volumes that are smaller than the undirected graph model. Further-
more, it tends to reduce the number of messages sent among all processes and also results in lower communication times.
2. Distribution of finite element triangulations

Triangulations of computational domains are crucial for various numerical techniques in scientific computing, in partic-
ular for finite element methods. In this section, we first consider triangulations with a focus on how they are represented on
distributed-memory parallel computers. We then discuss the parallel execution of finite element computations on these tri-
angulations with a focus on the communication volume. Afterward, we formulate a problem describing a ‘‘perfect’’ distribu-
tion of these triangulations in the sense of minimizing communication volume while balancing computational load. We
stress that the aim of this section is to describe the communication volume of the finite element software package DROPS

exactly rather than approximately. Since the techniques implemented in DROPS are also used elsewhere, the discussion is
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intentionally formulated in a general notation. In the final subsection, we also give some remarks on implementations that
differ from DROPS.

2.1. Distributed triangulations

Throughout this paper, we consider a triangulation
Fig. 1.
triangu
tetrahe
T ¼ ft1; . . . ; tKg
of a three-dimensional domain X � R3 by a tetrahedral mesh. The mesh consists of K tetrahedra ti, whose neighborship rela-
tion is defined by the topological adjacency in the mesh. A tetrahedron consists of nodes, edges, and faces. Let
N ¼ fn1; . . . ;nLg
denote the set of nodes and edges of the triangulation. We refer to all elements of N as ‘‘nodes’’ without distinguishing
whether these are actually nodes or edges. The face between a tetrahedron ti and a neighboring tetrahedron tj is denoted
by ti \ tj.

We assume that the triangulation is represented by separate data structures for the tetrahedra, nodes, and faces which are
distributed among P P 2 processes. We further assume that each tetrahedron t 2 T is stored by a unique process 1 6 p 6 P.
That is, there is no tetrahedron stored by more than one process. Let the symbol Tp denote the set of tetrahedra which is
stored by process p. Since a node or a face can belong to more than one tetrahedron, they are distributed differently than
the tetrahedra. While a tetrahedron is assigned to exactly one process, nodes and faces can be assigned to multiple processes,
yielding an overlap at process boundaries as illustrated in Fig. 1. The discussions and results given in this paper apply to three
spatial dimensions; for clarity, the example in Fig. 1 is two-dimensional. This example illustrates the distribution of the tri-
angulation T ¼ ft1; t2; . . . ; t10gwith K ¼ 10 tetrahedra among P ¼ 3 processes p1; p2, and p3. The process boundaries between
these sets of tetrahedra T1; T2, and T3 consist of faces and nodes. For instance, the boundary of the two processes p1 and p2 is
given by the two faces t1 \ t2 and t7 \ t8 and the three nodes n1;n5, and n9. The process boundary between the two processes
p1 and p3 is solely described by the node n9.

This example illustrates the distribution of tetrahedra among processes which is formally described by the following
definition.

Definition 1 (P-way Tetrahedron Distribution). Given a triangulation T and a number of processes P P 2, a distribution of
its tetrahedra among P processes denoted by T :¼ fT1; . . . ; TPg is called a P-way tetrahedron distribution of T if the following
three conditions hold:

1. Each process stores one or more tetrahedra, i.e.,
Tp � T and Tp – ; for 1 6 p 6 P:
A 3-way tetrahedron distribution T ¼ fT1; T2; T3g of a given triangulation T ¼ ft1; t2; . . . ; t10g with nodes N ¼ fn1; . . . ;n10g. The tetrahedra of this
lation are distributed among three processes p1;p2, and p3. The shading indicates the sets of tetrahedra T1; T2, and T3 assigned to these processes:
dra assigned to p1 are colored light gray, those assigned to p2 white, and those assigned to p3 dark gray.
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2. Processes store disjoint subsets of tetrahedra, i.e.,
Tp \ Tq ¼ ; for 1 6 p < q 6 P:
3. The union of tetrahedra stored on all processes is the triangulation itself, i.e.,
[P
p¼1

Tp ¼ T:
A given P-way tetrahedron distribution induces a distribution of the nodes N. We assume that if a tetrahedron t is stored
on a process p then all the nodes of t are also located at the same process. We formalize this node distribution as follows. Let
PðSÞ denote the power set of a set S. Then, for a given P-way tetrahedron distribution T , we introduce the mapping
KT : N ! P f1; . . . ; Pgð Þ
which maps each node n 2 N to the set of processes that store a tetrahedron containing n. Let
kT ðnÞ :¼ jKT ðnÞj
denote the number of processes on which a node n is stored. A node n that is stored at a single process, i.e., kT ðnÞ ¼ 1, is called
local whereas a node located at a process boundary for which kT ðnÞP 2, is called distributed. For instance, in Fig. 1 with
L ¼ 10 nodes, the local node n2 is stored only by process p2. Thus, KT ðn2Þ ¼ fp2g and kT ðn2Þ ¼ 1. Since the distributed node
n9 is found at all three processes, we have KT ðn9Þ ¼ fp1; p2; p3g and kT ðn9Þ ¼ 3.
2.2. Distributed degrees of freedom

In triangulations arising from finite element discretizations of partial differential equations, degrees of freedom (DOF) are
introduced to represent finite element functions which, in turn, describe a solution of an underlying problem. We assume
that these DOF are located at nodes n 2 N. The values of the DOF at a node n are represented by a vector xn 2 RcðnÞ where
cðnÞ denotes the number of DOF. This number cðnÞ may vary for different nodes. Now suppose that there is a P-way tetra-
hedron distribution of the triangulation together with its induced node distribution. Let xp

n 2 RcðnÞ denote the value of the
DOF of a node n assigned to process p. For a local node n, we have xp

n ¼ xn. For distributed nodes, however, we store the dis-
tributed additive contributions: each of the processes p 2 KT ðnÞ stores the portion xp

n of xn such that
xn ¼
X

p2KT ðnÞ
xp

n: ð1Þ
To evaluate (1) for a distributed node n, the processes p 2 KT ðnÞ need to communicate their local values. We assume the
following all-neighbor approach to transform the local values xp

n into the global value xn by all processes p 2 KT ðnÞ such that
each process p 2 KT ðnÞ stores a copy of the global value, afterward. In this approach, each process p 2 KT ðnÞ sends its xp

n to all
other processes in KT ðnÞ. The communication pattern of the all-neighbor approach corresponds to an all-to-all broadcast
within the group of processes KT ðnÞ. Afterward, each process in KT ðnÞ is capable of evaluating the global value xn according
to formula (1) by adding the received data to its local value xp

n.
We now consider the communication volume that is caused by distributed nodes. Given the number of processes, kT ðnÞ,

on which node n is stored, let f ðkT ðnÞÞ denote the number of data words to be communicated between the processes in KT ðnÞ
to evaluate a scalar entry of (1) for this node n. Then summing up the contributions of all n 2 N with the corresponding num-
ber of DOF gives the total communication volume
Cf ðT Þ :¼
X
n2N

cðnÞ f ðkT ðnÞÞ: ð2Þ
For the all-neighbor approach, the function f is given by
fall-neighðkT ðnÞÞ :¼ kT ðnÞ � kT ðnÞ � 1ð Þ; ð3Þ
because each of the kT ðnÞ processes in KT ðnÞ sends its local xp
n to kT ðnÞ � 1 processes. Here, we assume that, rather than per-

forming multiple send operations between any two processes separately, communication between these processes is carried
out by collecting the data in a single message. Adding up the message volumes between all neighboring processes yields the
total communication volume (2).

For parallel finite element simulations on a distributed triangulation, it is not uncommon that communication among
neighboring processes resulting from computations of the form (1) is the only type of neighboring communication occurring
in linear algebra operations. In the present paper, we will therefore assume that (2) represents the total communication vol-
ume exactly—an assumption which is valid for DROPS.
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2.3. Problem of finding a distribution

After identifying the total communication volume of a given P-way tetrahedron distribution of a triangulation, the prob-
lem is now to find the ‘‘best’’ distribution of the tetrahedra among a set of P processes. Here, the meaning of ‘‘best’’ is under-
stood as finding a distribution of the tetrahedra such that the total communication volume involved in the computations is
minimized while, at the same time, the number of tetrahedra is evenly balanced among the processes. This problem is for-
mally stated as follows.

Problem 1 (Triangulation Distribution Problem). Given a triangulation T with cðnÞ DOF located at each node n 2 N, a number
of processes P P 2, a function f ðkT ðnÞÞ representing the number of data words to be communicated caused by a node n 2 N
which is stored at kT ðnÞ processes, and a balancing tolerance parameter e > 0, find a P-way tetrahedron distribution
T ¼ fT1; . . . ; TPg of T which minimizes the total communication volume
Cf ðT Þ :¼
X
n2N

cðnÞ f ðkT ðnÞÞ;
while satisfying the balancing constraint
jTpj 6 ð1þ eÞ jTj
P

for all 1 6 p 6 P: ð4Þ

A P-way tetrahedron distribution T satisfying (4) is called e-balanced.
2.4. A related communication pattern

The all-neighbor approach implemented in DROPS involves a communication pattern for the evaluation of (1) for a distrib-
uted node n. However, there are alternatives based on different communication patterns. In all these patterns, the processes
p 2 KT ðnÞ need to send their local values to other processes. The objective is to transform the local values xp

n into the global
value xn by all processes p 2 KT ðnÞ such that each process p 2 KT ðnÞ stores a copy of the global value, afterward.

An alternative to the all-neighbor approach is as follows. First, we define a particular process p� 2 KT ðnÞ for each node
n 2 N. The approach is based on [22,23], where this process p� is called the ‘‘owner process’’ of the node n. Then, each process
p 2 KT ðnÞ n fp�g sends its xp

n to the owner process that evaluates the global value xn by formula (1). Afterward, the owner
sends xn back to all processes p 2 KT ðnÞ n fp�g. In this approach, referred to as the owner approach, all xp

n are first sent by
kT ðnÞ � 1 processes to the owner. Then, the owner sends the global xn back to kT ðnÞ � 1 processes. Hence, the number of data
words to be communicated between the processes in KT ðnÞ is given by
fowner ðkT ðnÞÞ :¼ 2 kT ðnÞ � 1ð Þ: ð5Þ
Recall from (3) that the corresponding function of the all-neighbor approach, fall-neigh, is different. So, the communication vol-
umes for the two approaches denoted by Cfowner and Cfall-neigh

also differ; see the definition in (2). The main focus of the present
paper is on the all-neighbor approach. However, to judge it against a different approach we briefly take the owner approach
into account for certain parts of the numerical experiments.

3. A hypergraph model for distributions of triangulations

In this section, we transform the triangulation distribution Problem 1 into an equivalent partitioning problem on a hyper-
graph. The corresponding hypergraph model enables a systematic approach to find a distribution of the tetrahedra among
processes. To a triangulation T ¼ ft1; . . . ; tKg with nodes N ¼ fn1; . . . ;nLg we associate a hypergraph H ¼ ðV ; EÞ where V de-
notes the set of vertices and E � PðVÞ the set of hyperedges. A hyperedge is a nonempty subset of the set of vertices V. Every
tetrahedron ti 2 T is associated with a vertex v i 2 V . Thus, the hypergraph has K vertices V ¼ fv1; . . . ;vKg. Every node ni 2 N
is associated with a hyperedge ei 2 E such that there are L hyperedges and E ¼ fe1; . . . ; eLg. A vertex v i is in the hyperedge ej if
and only if the tetrahedron represented by v i contains the node represented by ej. Such a vertex v i 2 ej is called a pin of the
hyperedge ej. The number of pins of a hyperedge is referred to as hyperedge size. A hyperedge in a hypergraph represents
connections between any number of vertices; this is necessary because more than two tetrahedra in T can intersect in a sin-
gle node. Alternatively, the hyperedges can be interpreted as a means to capture the topological neighborship relation be-
tween tetrahedra in T. Two or more tetrahedra that are adjacent in T share a common node. The hyperedge representing
that node then contains all the vertices representing these adjacent tetrahedra.

The hypergraph H associated to the triangulation T given in Fig. 1 is displayed in Fig. 2. Since T ¼ ft1; . . . ; t10g consists of
K ¼ 10 tetrahedra, this hypergraph H consists of 10 vertices V ¼ fv1; . . . ;v10g, which are illustrated by circles. The L ¼ 10
nodes N ¼ fn1; . . . ;n10g in T correspond to 10 hyperedges E ¼ fe1; . . . ; e10g in H. A hyperedge in this figure is shown by a
square together with pins to the vertices belonging to that hyperedge. For instance, the node n9 is adjacent to the tetrahedra
t7; t8, and t9. Thus, the associated hyperedge e9 ¼ fv7;v8;v9g connects the three corresponding vertices.

A distribution of tetrahedra in T induces a partitioning of the vertices in H. More precisely, for a given P-way tetrahedron
distribution of T, there is a P-way hypergraph partitioning of H with the following property: if a tetrahedron is stored by



Fig. 2. A 3-way hypergraph partitioning V ¼ fV1;V2;V3g of the hypergraph H associated to the triangulation T from Fig. 1. The vertices are illustrated by
circles whereas the hyperedges are drawn using squares and pins. The vertices of this hypergraph are distributed among three processes as indicated by the
same shading used in Fig. 1.
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process p, then the associated hypergraph vertex is also stored by process p. The following definition introduces a P-way
hypergraph partitioning formally.

Definition 2 (P-way Hypergraph Partitioning). Given a hypergraph H ¼ ðV ; EÞ and a number P P 2, a partition of its vertices
into P parts denoted by V :¼ fV1; . . . ;VPg is called a P-way hypergraph partitioning of H if the following three conditions hold:
1. Each part is a nonempty set of vertices, i.e.,
Vp � V and Vp – ; for 1 6 p 6 P:
2. Parts are disjoint, i.e.,
Vp \ Vq ¼ ; for 1 6 p < q 6 P:
3. The union of vertices of all parts is the vertex set itself, i.e.,
[P
p¼1

Vp ¼ V :
Next, we focus on the communication volume and how it is transformed from the triangulation to the hypergraph. Recall
from (2) that, in T, the communication volume depends on the number kT ðnÞ of different processes on which a node n is
stored. Processes in a tetrahedron distribution T ¼ fT1; . . . ; TPg correspond to parts in the induced hypergraph partitioning
V :¼ fV1; . . . ;VPg. Since a node n in T corresponds to a hyperedge e in H, the number kT ðnÞ corresponds to the number of dif-
ferent parts in which e has vertices. This number is called the connectivity kVðeÞ of a hyperedge e 2 E and is defined by
kVðeÞ :¼ jf1 6 i 6 P j e \ Vi – ;gj:
Since all hyperedges e – ;, we have that kVðeÞP 1. This definition allows us to describe the total communication volume (2)
in terms of the hypergraph H as
Cf ðVÞ :¼
X
e2E

rðeÞ f ðkVðeÞÞ: ð6Þ
Here, the weight rðeÞ of a hyperedge e is introduced as the number of DOF located at the node n 2 N to which e is associated:
rðeÞ :¼ cðnÞ: ð7Þ
The function f in (6) is a communication volume metric and is given by
fall-neighðkVðeÞÞ :¼ kVðeÞ � kVðeÞ � 1ð Þ
for the all-neighbor approach; cf. (3).
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Weights cannot only be introduced for hyperedges but also for vertices. Let . denote the function which assigns a weight
.ðvÞ > 0 to each vertex (or tetrahedron) v. We will consider a hypergraph H ¼ ðV ; E;.;rÞ with a weighting function for ver-
tices . : V ! R>0, as well as a weighting function for hyperedges r : E! R>0.

Overall, the discussion in this section shows that the triangulation distribution Problem 1 is equivalent to the following
hypergraph partitioning problem. This partitioning problem represents an exact model of the total communication volume,
rather than just an approximation.

Problem 2 (Hypergraph Partitioning Problem). Given a hypergraph H ¼ ðV ; E;.;rÞ, a number P P 2, a communication
volume metric f ðkVðeÞÞ depending on the connectivity kVðeÞ of a hyperedge e 2 E, and a balancing tolerance parameter e > 0,
find a P-way hypergraph partitioning V ¼ fV1; . . . ;VPg of H which minimizes the total communication volume
Cf ðVÞ :¼
X
e2E

rðeÞ f ðkVðeÞÞ;
while satisfying the balancing constraint
.ðVpÞ 6 ð1þ eÞ.ðVÞ
P

for all 1 6 p 6 P: ð8Þ

As usual, the weight of a set of vertices in (8) is defined as the sum of the weights of the vertices in that set. A P-way

hypergraph partitioning V satisfying (8) is called e-balanced.
3.1. Related communication volume metrics

Though the focus of the present paper is on the all-neighbor communication volume metric, we mention that different
metrics are also commonly used in hypergraph partitioning. In particular, we consider two additional metrics in the numer-
ical experiments below so that, overall, we are concerned with the following three metrics:
fall-neighðkVðeÞÞ :¼ kVðeÞ � kVðeÞ � 1ð Þ ð9Þ
fownerðkVðeÞÞ :¼ 2 kVðeÞ � 1ð Þ; ð10Þ
fcut—netðkVðeÞÞ :¼minðkVðeÞ � 1;1Þ: ð11Þ
The first two metrics, (9) and (10), represent the previously described approaches to transform the local values to global val-
ues; see the all-neighbor approach (3) and the owner approach (5), respectively. The metric of the owner approach (10) is a
scaled version of the connectivity�1 metric, f ðkVÞ ¼ kV � 1, which is used for parallelization of sparse matrix–vector multi-
plication [2]. Moreover, the choice (11) is commonly known as the cut–net metric, f ðkVÞ ¼minðkV � 1;1Þ, which is applied in
[24]. The choice of f ðkVÞ ¼ kV ðkV � 1Þ we propose in (9) is new in the context of partitioning finite element triangulations, to
the best of our knowledge. However, a scaled version of this all-neighbor metric is briefly mentioned in [25] where the
author conjectures that this metric ‘‘may be useful in distributed systems applications where it is desired to assign a unit
cost to each processor-to-processor communication.’’

The formulation of the total communication volume (6) does not distinguish between hyperedges that connect multiple
parts and those that contain only vertices of a single part. That is, the sum runs over all hyperedges, regardless of their con-
nectivity. However, hyperedges containing only vertices of a single part do not cause any communication at all. The formu-
lation of the total communication volume takes this into account by requiring the property
f ð1Þ ¼ 0
of a communication volume metric. More precisely, if the connectivity of a hyperedge is kVðeÞ ¼ 1, then the corresponding
term in the sum (6) vanishes due to the factor kVðeÞ � 1 in the metrics (9)–(11). Hence, this term in the sum does not con-
tribute to the total communication volume. For instance, the term corresponding to e4 in the partitioning given in Fig. 2 van-
ishes because kVðe4Þ ¼ 1.

4. Recursive bisection for the hypergraph partitioning problem

The hypergraph partitioning Problem 2 is known to be NP-hard for nondecreasing f with f ð1Þ ¼ 0 and f ð2Þ > 0; see [26,27]
where the special case of a bisection of an undirected graph is considered. Therefore, this problem is commonly solved by
heuristic approaches.

A powerful heuristic is based on recursively partitioning the hypergraph into two parts. The following theorem estab-
lishes the foundation for such a recursive bisection.

Theorem 1. Let V ¼ fV1; . . . ;VP�1;VPg be a P-way partitioning of a hypergraph H ¼ ðV ; E;.;rÞ. Suppose we split VP ¼ U [W as
a disjoint union to obtain the ðP þ 1Þ-way hypergraph partitioning V0 ¼ fV1; . . . ;VP�1;U;Wg, then
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Cf ðV0Þ ¼ Cf ðVÞ þ
X

e2EðU;WÞ
rðeÞ f ðkVðeÞ þ 1Þ � f ðkVðeÞÞð Þ; ð12Þ
where
EðU;WÞ :¼ fe 2 E j e \ U – ; ^ e \W – ;g:
Proof. Note that EðU;WÞ consists precisely of all hyperedges that are cut or cut further in the splitting of VP into U and W. All
other hyperedges are oblivious to the splitting of VP , i.e., the number of different parts they connect does not change:
kV0 ðeÞ ¼
kVðeÞ þ 1 if e 2 EðU;WÞ;
kVðeÞ otherwise:

�
ð13Þ
Therefore,
Cf ðV0Þ � Cf ðVÞ ¼
X
e2E

rðeÞ f ðkV0 ðeÞÞ � f ðkVðeÞÞð Þ ¼
X

e2EðU;WÞ
rðeÞ f ðkV0 ðeÞÞ � f ðkVðeÞÞð Þ þ

X
e2EnEðU;WÞ

rðeÞ f ðkV0 ðeÞÞ � f ðkVðeÞÞð Þ

¼
X

e2EðU;WÞ
rðeÞ f ðkVðeÞ þ 1Þ � f ðkVðeÞÞð Þ þ 0;
which shows the desired result. h

The theorem can be seen as a generalization of [19, Theorem 2.2], which deals with the case of f ðkVÞ ¼ kV � 1 in the con-
text of sparse matrix–vector multiplication with a two-dimensional partitioning. This, in turn, generalizes an earlier result
[2] for a one-dimensional matrix partitioning.

Algorithm 1. Algorithm outline for generating an e-balanced P-way partitioning V of a given hypergraph H ¼ ðV ; E;.;rÞ.
This algorithm solves Problem 2 by greedily minimizing Cf ðVÞ for a given metric f.

1: Let V  fVg and kVðeÞ  1 for all e 2 E.
2: whilejVj < P do
3: Select the largest part V 0 2 V and determine the bipartitioning imbalance e0 < e from V; P, and e

(e.g., using [19, Algorithm 1]).
4: Extract the subhypergraph H0 of H corresponding to V 0.
5: Obtain the vertex weights of H0 through restriction .0 :¼ .jV 0 .
6: Calculate the hyperedge weights r0 of H0 using (14).
7: Create an e0-balanced partitioning of H0 ¼ ðV 0; E0;.0;r0Þ into two parts V 0 ¼ U [W .
8: Update the partitioning by V  ðV n fV 0gÞ [ fU;Wg.
9: Let kVðeÞ  kVðeÞ þ 1 for all e 2 EðU;WÞ according to (13).
10: end while
11: return V
In particular, (12) shows us that we can minimize the communication volume Cf for any valid f by using recursive bipar-
titioning (i.e. generating a partitioning by recursively cutting the set of all vertices into two) as outlined in Algorithm 1. We
start out with the partitioning V ¼ fVg, consisting of one part containing all vertices. Then, until we have created P parts, we
select the largest V 0 2 V and cut it up into two parts by bipartitioning the subhypergraph H0 :¼ ðV 0; E0;.0;r0Þ of H, with
E0 :¼ fe \ V 0 j e 2 E ^ e \ V 0 – ;g:
For more details on how to perform hypergraph bipartitioning based on this theorem (in particular load balancing), we
would like to refer the reader to [19, Algorithm 1] derived from [19, Theorem 2.2]. We provide H0 with vertex weights ob-
tained from restricting the nodes V to the set V 0, i.e., .0 :¼ .jV 0 , and hyperedge weights r0 determined by (12):
r0ðe \ V 0Þ :¼ rðeÞ f ðkVðeÞ þ 1Þ � f ðkVðeÞÞð Þ; for all e \ V 0 2 E0: ð14Þ
Now we find a bipartitioning V 0 ¼ U [W such that the total cost of all cut hyperedges,
X
e2E0ðU;WÞ

r0ðeÞ;
is minimal, and replace V 0 in the partitioning V by U and W. According to (12) this will yield an increase of the communi-
cation volume that is as small as possible, and therefore provides a heuristic for minimizing the total communication volume
for the partitioning into P parts, for any metric f. The only tool we require is a standard hypergraph bipartitioner in step 4.

The new hyperedge weights (14) in each bipartitioning step of Algorithm 1 depend on the metric f. For the all-neighbor
metric, these new hyperedge weights are given by
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r0all-neighðe \ V 0Þ ¼ rðeÞ kVðeÞ þ 1ð ÞkVðeÞ � kVðeÞ kVðeÞ � 1ð Þð Þ ¼ 2rðeÞkVðeÞ:
In summary, by inserting the different metrics (9)–(11) into (14), we arrive at the following three hyperedge weights:
r0all-neighðe \ V 0Þ ¼ 2rðeÞkVðeÞ for kVðeÞP 1;

r0ownerðe \ V 0Þ ¼ 2rðeÞ for kVðeÞP 1;

r0cut—netðe \ V 0Þ ¼
rðeÞ if kVðeÞ ¼ 1;
0 kVðeÞ > 1:

�

From inspection of these hyperedge weights, we conclude that the partitioning strategy for the all-neighbor metric is
straightforward in case of sequential partitioning. However, it will make parallelization of the partitioning process more dif-
ficult, because we need the kVðeÞ values of all hyperedges e \ V 0 2 E0 in the hypergraph. Hence, after the partitioning of any
part V 0 2 V, the kV values of H will need to be updated, resulting in a global synchronization step after each partitioning. For
the owner or cut–net metrics this problem is less severe, as r0ðe \ V 0Þ becomes independent of kVðeÞ once kVðeÞ > 1.

5. Numerical experiments

In the remainder of this article, we present numerical experiments for two different sets of problems. Since the main focus
of this article is on modeling the communication involved in the finite element solver DROPS, we begin our discussion in the
first subsection with a description of the corresponding results. In a second subsection, we consider a set of artificially con-
structed hypergraphs that, compared to those arising from DROPS, exhibit a larger variation in their hyperedge sizes.

Once a hypergraph is set up, the solution to the hypergraph partitioning Problem 2 can be computed by Algorithm 1 for
any of the three communication volume metrics (9)–(11). We will use the following partitioning approaches:

all-neigh We determine a hypergraph partitioning Vall-neigh by the solution of Problem 2 using f ¼ fall-neigh.
owner We determine a hypergraph partitioning Vowner by the solution of Problem 2 using f ¼ fowner.

cut–net We determine a hypergraph partitioning Vcut—net by the solution of Problem 2 using f ¼ fcut—net.
graph We determine a partitioning Vgraph using a standard (undirected) graph partitioning formulation in which vertices

are identical to those defined by the hypergraph model, while the edges differ. An edge of this graph model rep-
resents adjacent tetrahedra sharing a common face. The resulting P-way graph partitioning problem is solved by
the library METIS (v. 5.0.2) [21], using the high-quality PartGraphKway () function with the edge-cut metric. The
details of this approach are described in [28] where it is referred to as the ‘‘triangulation graph partitioning model’’.

As a shorthand notation, we refer to such a partitioning by its index; for instance, we use all-neigh to indicate the partitioning
Vall-neigh. For the all-neigh, owner, and cut–net partitionings, we use the Mondriaan matrix partitioner [19], together with PaToH
[20] as external bipartitioner. For all four partionings, we carried out 50 runs with a partitioning algorithm using different
random seeds. We then determine the minimum communication volumes over these 50 runs. We did not use the internal
hypergraph bipartitioner of Mondriaan, as it assumes unit hyperedge weights (which is incompatible with (14)). Therefore,
Mondriaan will perform Algorithm 1 except for the bipartitioning step at line 4, which is done using PaToH. For the owner

partitionings, we also use Mondriaan’s vector partitioning functionality [19, Section 3] to minimize the total number of data
words sent and received by each processor.

All results are gathered on a compute cluster at the Center for Computing and Communication at RWTH Aachen Univer-
sity. This cluster consists of dual socket nodes (Bullx Blade B500) equipped with two Intel Westmere (X5675) processors
each. The processors run at a clock rate of 3.06 GHz and the nodes are connected by a QDR Infiniband network.

5.1. Results for the finite element solver DROPS

For this set of experiments, we investigate three different problems which vary in the number of tetrahedra and, hence, in
the number of vertices, hyperedges, and DOF. In all these problems, the underlying computational domain X represents a
measurement cell [29] which is used to study the behavior of levitated droplets [30]. We recursively apply different numbers
of local refinements to the triangulation yielding the problem sizes illustrated in Table 1. For each problem size, this table
presents the number of vertices jV j, the number of hyperedges jEj, the total number of pins Dpin :¼

P
e2Ejej, the minimum

hyperedge size Dmin :¼mine2Ejej, the maximum hyperedge size Dmax :¼maxe2Ejej, and the median of the hyperedge sizes
Dmed of the resulting hypergraphs. Throughout the experiments we assume a situation where a single DOF is stored at each
node n 2 N. So by (7), all hyperedge weights are set to 1. The weights of vertices are designed to encode information on the
triangulation. In this article, we consider a single triangulation which is a special case of a multi-level triangulation. The lat-
ter enters the picture via the three problem sizes that correspond to three levels of refinement. A weighting function for the
vertices of a multi-level triangulation is introduced in [11]. We follow that approach by setting the vertex weight to the num-
ber of tetrahedra represented by that vertex.

We investigate the total communication volume that occurs when evaluating the sum in (1) for all DOF. Recall from (6)
that, in terms of the hypergraph, this communication volume is given by Cf ðVÞ where V is some given partition. The com-
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munication volume metric f then represents a communication pattern that is applied when evaluating (6) on a given parti-
tion V. We consider Cfowner ðVÞ and Cfall-neigh

ðVÞ when evaluating this sum with the communication pattern f ¼ fowner and
f ¼ fall-neigh, respectively. We compare these two communication volumes for three different partitionings graph, owner, and
all-neigh representing different tetrahedron distributions.

The total communication volumes CfownerðVÞ and Cfall-neigh
ðVÞ are illustrated for these partitioning approaches in Fig. 3. A tol-

erance of e ¼ 5% for the balance condition in (8) is used for all partitioning approaches. All partitioners are able to satisfy the
balancing constraint for all problems, with the exception of the owner partitioner for the medium problem divided into P ¼
1024 parts. Therefore, we do not show any data for this particular case.

From Fig. 3 we find that, compared to graph, the communication volume is almost always smaller when using a hyper-
graph-based approach. For instance, consider the medium problem for P ¼ 1024 and Cfall-neigh

ðVÞ in Fig. 3(d). Here, we observe
that the communication volume decreases from 261,774 for the graph approach to 250,456 for the hypergraph-based all-neigh

approach, corresponding to a saving of 4:5%. On average the all-neighbor communication volume obtained by all-neigh is 3%

lower than the volume obtained by graph, while the all-neighbor communication volume obtained by owner is very close to
that of all-neigh. If we focus on the differences between the two hypergraph approaches, the minimum of volumes for a given
number of processes is—almost always—achieved if the corresponding objective function is used in the partitioning. That is,
Cfall-neigh

ðVÞ is minimal for the partitioning all-neigh and Cfowner ðVÞ is minimal for the partitioning owner. When comparing the
results in Fig. 3, we also notice that the volumes obtained by the owner partitioning are smaller than those of all-neigh. This
observation is sound, since fownerðkVÞ 6 fall-neighðkVÞ holds for all kV .

The formulation of the triangulation distribution Problem 1 and the equivalent hypergraph partitioning Problem 2 aim at
finding a partitioning of the triangulation minimizing the communication volume. Though not explicitly addressed by the
objective function of this partitioning problem, we next focus on the communication time. More precisely, we consider
the time needed for determining the sum (1) for all nodes n 2 N. Given any P-way partitioning, DROPS is capable of evaluating
the sum (1). However, the only communication pattern used in DROPS is currently the all-neighbor pattern. A novel commu-
nication library is currently being developed that will allow future versions of DROPS to evaluate this sum by the owner com-
munication pattern. Therefore, in Fig. 4, we present the communication time for evaluating this sum 1000 times using the
all-neighbor communication pattern. Here, we see that, for a small number of processes, the performance of all three par-
titioning approaches is nearly identical, while for a large number of processes the partitioning all-neigh tends to result in less
communication time than both graph and owner. In most cases, the longest communication time is observed when using the
hypergraph-based approach owner. Distributing the triangulation by graph yields shorter communication times than the dis-
tribution obtained by owner but longer times than the one determined by all-neigh. Thus, modeling the exact communication
volume by the hypergraph model, as done by all-neigh, also tends to be advantageous to reduce communication time, which
forms a major overhead in parallel computing.

In addition to the communication volume and the communication times discussed in previous paragraphs, we now con-
sider another quantity of interest. In Table 2, we present the number of messages which are needed to compute the sum (1)
for all n 2 N. In Table 2(a), we consider the number of messages using the all-neighbor communication pattern. This com-
munication pattern is implemented in DROPS and the values in that part of the table are not only those that result from an
analysis of a given partitioning but also coincide with the actual number of messages sent in the implementation. In contrast,
the numbers given in Table 2(b) refer to the owner communication pattern and are theoretically extracted from a given par-
titioning of the hypergraph. They are not practically observed in the implementation since the current version of DROPS is not
capable of determining the sum in (1) by the owner approach.

Comparing the two partitioning approaches all-neigh and graph for the all-neighbor communication pattern in Table 2(a),
we do not find that, in general, one of the two partitionings leads to a smaller number of messages. However, the all-neigh

partitioning approach tends to reduce the number of messages when the number of parts P becomes large. In Table 2(b),
we compare owner and graph for the owner communication pattern. Here, the partitioning graph yields a smaller number
of messages. The only exceptions are the medium case using P ¼ 32 and the large case using P ¼ 16. A number of messages
in Table 2(b) is always larger than the corresponding number in Table 2(a). That is, the all-neighbor communication pattern
to determine the sum in (1) results in less messages than the owner communication pattern. This is mainly caused by the
fact that two messages needs to be exchanged between the owner process of a DOF located at n and the kðnÞ � 1 processes,
see Section 2.4.

The time it takes to generate a hypergraph partitioning is comparable for owner and all-neigh (within 3% of each other on
average). For instance, consider the hypergraph partitioner based on a combination of Mondriaan and PaToH to partition the
hypergraph into 256 parts. Here, the partitioning owner needs 0.34 s, 2.1 s, and 11.3 s for the small, medium and large
Table 1
Problem sizes and characteristics of hypergraphs representing three finite element meshes based on the computational domain of a measurement cell.

Problem jV j jEj Dpin Dmin Dmed Dmax

small 5059 12,042 59,847 1 15.5 36
medium 16,247 101,462 374,947 1 17.5 36
large 66,616 551,425 1,914,326 1 18.0 36
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Fig. 3. Communication volumes for the owner communication pattern Cfowner ðVÞ (left) and for the all-neighbor communication pattern Cfall-neigh
ðVÞ (right)

when varying the partitioning approach V among graph, owner, and all-neigh. Here, the sum in (1) is determined for all n 2 N, considering the three finite
element problems from Table 1.
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problem, respectively. The corresponding timings for all-neigh are given by 0.35 s, 2.1 s, and 11.6 s. The partitioning graph

based on METIS required only around 1.6% of these hypergraph partitioning times. In real-life finite element computations
there is a trade-off between the time spent in determining a distribution of the tetrahedra and the time spent in determining
the sum (1). In our findings, we illustrate that determining a ‘‘better’’ distribution of the tetrahedra among the processes by
the more time consuming hypergraph model yields better communication times for linear algebra operations in the simu-
lation, such as determining the sum (1). This may be advantageous if a static triangulation is used, i.e., a single triangulation
is given for the whole simulation. However, this may become disadvantageous if an adaptive triangulation strategy is used
where the triangulation constantly changes. In this case, many tetrahedral decompositions need to be determined and only a
few linear algebra operations are performed on each triangulation. Here, a fast but less accurate graph partitioning may be
the right choice to reduce the overall simulation time.

5.2. Results for artificial problems with larger hyperedge sizes

Recall from Fig. 3 that the communication volume of the partitioning approach all-neigh is similar to that of owner. This is
explained by the fact that, in the hypergraphs arising from the triangulation distribution problem, the resulting hyperedge
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Fig. 4. Communication time for determining the sum in (1) 1000 times for all nodes. The sum in (1) is evaluated using the all-neighbor communication
pattern when varying the partitioning approaches among graph, owner, and all-neigh.

Table 2
Number of messages sent among the processes while computing the sum in (1) using the all-neighbor communication pattern (top) and the owner
communication pattern (bottom). Here, we use the partitioning approach corresponding to the communication pattern under consideration and compare with
the graph approach. Best result in bold.

(a) All-neighbor communication pattern
P

Problem Approach 2 4 8 16 32 64 128 256 512 1024
Small graph 2 6 20 62 186 544 1690 – – –

all-neigh 2 6 24 66 178 502 1510 – – –
Medium graph 2 12 46 156 406 898 2008 4772 10,972 27,050

all-neigh 2 12 48 174 392 918 2004 4572 10,770 25,810
Large graph 2 12 48 148 396 914 1934 4158 9036 20,000

all-neigh 2 12 50 146 412 952 2010 4322 9126 19,812

(b) Owner communication pattern
P

Problem Approach 2 4 8 16 32 64 128 256 512 1024
Small graph 4 12 40 124 316 900 2388 – – –

owner 4 12 48 132 324 968 3320 – – –
Medium graph 4 24 88 292 720 1588 3412 7348 15,184 –

owner 4 24 88 304 712 1664 3592 7748 16,948 –
Large graph 4 24 92 292 728 1652 3540 7472 15,404 31,900

owner 4 24 100 288 744 1752 3684 7792 16,176 34,216
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sizes are moderate. Indeed, any hyperedge size is no larger than the maximal number of different tetrahedra that can meet at
a single node which is given by Dmax ¼ 36 as already reported in Table 1. The minimum, maximum, and median hyperedge
sizes given in that table indicate that the adaptive refinement taking place in the finite element discretization does not have
a significant effect on the structure of the resulting hypergraphs. This is indeed true since the adaptive refinement, though
typically causing the tetrahedra to dramatically change in their spatial distribution, mainly preserves the topology of their
neighborship. Thus, the resulting hypergraphs are quite regularly structured. This way, the greedy approach of Algorithm 1
does not have the chance to differ significantly for all-neigh and owner.



Table 3
Problem sizes and characteristics of hypergraphs constructed from sparse matrices [31,32] together with the number of parts P ¼ d

ffiffiffiffiffiffi
jV j

p
e.

Matrix jV j jEj Dpin Dmin Dmed Dmax P

commanche_dual 7920 7920 31,680 4 4 4 89
aug3d 24,300 24,300 69,984 1 2 6 156
mario001 38,434 38,434 206,156 1 4 7 197
skirt 12,598 12,598 196,520 1 15 33 113
helm3d01 32,226 32,226 428,444 3 19.5 37 180
fe_tooth 78,136 78,136 905,182 3 17.5 39 280
sparsine 50,000 50,000 1,548,988 6 32 56 224

ex3sta1 16,782 16,782 678,998 9 43 339 130
polyDFT 46,176 46,176 3,690,048 1 205 340 215
memplus 17,758 17,758 126,150 1 50 353 134
poli_large 15,575 15,575 33,074 1 47 491 125
lp_cre_b 77,137 9,648 260,785 1 121 844 278
gupta1 31,802 31,802 2,164,210 3 499.5 8413 179
mip1 66,463 66,463 10,352,819 4 388 66,395 258
Stanford_Berkeley 683,446 683,446 7,583,376 1 495 83,448 827
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Fig. 5. Characteristics of hyperedge sizes. The hypergraphs are sorted by increasing maximum hyperedge size Dmax. The bottom and top of the blue boxes
are the 25th and 75th percentile. The red band near the middle of each box is the median hyperedge size Dmed. The ends of the whiskers represent the
minimum and maximum hyperedge sizes Dmin and Dmax, respectively. (For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this article.)
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To illustrate potential differences in the partitioning strategies, we next also investigate hypergraphs with a greater var-
iation in hyperedge size. We construct these hypergraphs from sparse matrices originating in a variety of fields, including but
not limited to finite element simulations. The matrix polyDFT stems from the Tramonto density functional theory code [31]
while all remaining matrices belong to the University of Florida sparse matrix collection [32]. We interpret each matrix col-
umn as a vertex with weight 1 and each matrix row as a hyperedge, containing all columns that have a nonzero entry in that
row. The weight of a hyperedge is set to 1.

The set of hypergraphs constructed from sparse matrices is given in Table 3. This table summarizes the problem sizes as
well as hypergraph characteristics. The rows are sorted by increasing maximum hyperedge size Dmax. Here and throughout
this section, we use this ordering to divide these matrices into two classes. The first class, given in the top part of Table 3,
consists of matrices whose maximum hyperedge size is moderate. Matrices belonging to the second class are given in the
bottom part and exhibit considerably larger maximum hyperedge sizes.

To justify this classification, Fig. 5 gives more details on the hyperedge sizes. For each matrix, this boxplot depicts several
hyperedge size characteristics. The figure does not only show the data for all the matrices given in Table 3 but also contains
the corresponding data for the three hypergraphs arising from the finite element solver DROPS; compare Table 1 with the



Table 4
Communication volume Cfcut-net ðVÞ for the matrices from Table 3 divided into P ¼ d

ffiffiffiffiffiffi
jV j

p
e parts, with 5% imbalance. Best result in bold.

Matrix cut–net owner all-neigh

commanche_dual 1698 1.03� 1.07�
aug3d 4985 1.12� 1.17�
mario001 7544 1.05� 1.07�
skirt 5033 1.03� 1.11�
helm3d01 20,741 1.04� 1.08�
fe_tooth 36,475 1.02� 1.07�
sparsine 48,841 1.02� 1.02�

ex3sta1 15,843 1.05� 1.06�
polyDFT 42,212 1.05� 1.06�
memplus 7298 1.16� 1.22�
poli_large 136 1.67� 2.60�
lp_cre_b 2554 1.71� 2.39�
gupta1 31,192 1.02� 1.02�
mip1 66,257 1.00� 1.00�
Stanford_Berkeley 23,798 1.26� 1.73�

Table 5
Communication volume Cfowner ðVÞ for the matrices from Table 3 divided into P ¼ d

ffiffiffiffiffiffi
jV j

p
e parts, with 5% imbalance. Best result in bold.

Matrix cut–net owner all-neigh

commanche_dual 1.04� 1816 1.02�
aug3d 1.44� 5838 1.02�
mario001 1.54� 8189 1.01�
skirt 1.10� 6193 1.04�
helm3d01 1.58� 34,857 1.02�
fe_tooth 1.37� 52,735 1.03�
sparsine 2.18� 304,685 1.04�

ex3sta1 2.93� 60,716 0.98�
polyDFT 3.35� 130,734 1.04�
memplus 2.44� 12,451 1.05�
poli_large 3.14� 554 1.07�
lp_cre_b 2.44� 17,251 1.34�
gupta1 4.76� 92,323 1.22�
mip1 12.50� 179,405 1.04�
Stanford_Berkeley 3.02� 56,129 1.19�

Table 6
Communication volume Cfall-neigh

ðVÞ for the matrices from Table 3 divided into P ¼ d
ffiffiffiffiffiffi
jV j

p
e parts, with 5%

imbalance. Best result in bold.

Matrix cut–net owner all-neigh

commanche_dual 1.10� 1.01� 3752
aug3d 2.32� 1.01� 12,140
mario001 2.28� 1.00� 16,800
skirt 1.25� 1.01� 14,597
helm3d01 2.46� 1.00� 105,702
fe_tooth 1.94� 0.99� 148,569
sparsine 4.35� 0.97� 2,756,078

ex3sta1 8.93� 1.10� 316,068
polyDFT 11.54� 1.13� 676,827
memplus 10.67� 1.10� 68,310
poli_large 22.58� 1.68� 2251
lp_cre_b 10.13� 1.35� 213,318
gupta1 12.78� 2.65� 1,203,979
mip1 139.31� 1.09� 1,071,572
Stanford_Berkeley 53.33� 1.25� 449,926
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three matrices labeled ‘‘small,’’ ‘‘medium’’ and ‘‘large’’ in Fig. 5. Two classes of hypergraphs can clearly be distinguished in
this figure. The matrices starting from the left up to sparsine fall into the first class. Since their hyperedge size character-
istics are similar to those of the three DROPS hypergraphs we expect similar results, i.e., the resulting communication volume



Table 7
Number of messages sent with owner communication pattern, for the matrices from Table 3 divided into
P ¼ d

ffiffiffiffiffiffi
jV j

p
e parts, with 5% imbalance. Best result in bold.

Matrix cut–net owner all-neigh

commanche_dual 1.08� 451 0.99�
aug3d 1.91� 1527 1.00�
mario001 2.37� 1069 0.99�
skirt 1.23� 532 0.89�
helm3d01 2.40� 2631 0.94�
fe_tooth 2.49� 3499 0.92�
sparsine 1.69� 25,737 0.96�

ex3sta1 1.66� 7607 0.99�
polyDFT 2.77� 6933 0.86�
memplus 3.29� 4084 0.96�
poli_large 3.35� 948 0.92�
lp_cre_b 2.65� 14,254 0.93�
gupta1 1.17� 26,843 0.48�
mip1 6.20� 7054 0.89�
Stanford_Berkeley 6.47� 20,530 0.88�

Table 8
Number of messages sent with all-neighbor communication pattern, for the matrices from Table 3 divided
into P ¼ d

ffiffiffiffiffiffi
jV j

p
e parts, with 5% imbalance. Best result in bold.

Matrix cut–net owner all-neigh

commanche_dual 1.12� 1.02� 447
aug3d 2.31� 1.02� 1537
mario001 2.68� 1.01� 1070
skirt 1.40� 1.13� 485
helm3d01 2.70� 1.06� 2713
fe_tooth 2.94� 1.09� 3491
sparsine 1.53� 1.06� 31,601

ex3sta1 1.64� 1.01� 8975
polyDFT 3.57� 1.16� 6701
memplus 1.52� 1.11� 11,644
poli_large 8.06� 1.77� 1389
lp_cre_b 2.29� 1.39� 32,639
gupta1 1.60� 1.59� 19,946
mip1 1.00� 1.00� 66,306
Stanford_Berkeley 4.94� 1.59� 85,913
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and message number should not depend too much on the partitioning. However, the second class is quite different. Here, the
maximum hyperedge sizes are considerably larger and also the variability of the hyperedge sizes is larger. So, for that class,
we could expect differences in the communication volume and message number when applying the greedy approach of
Algorithm 1 to different partitionings.

We create a partition V of the vertices V of each jEj � jV jmatrix with Dpin nonzeros into P ¼ d
ffiffiffiffiffiffi
jV j

p
e parts, with imbalance

e ¼ 5%. The recorded communication volumes and message counts are averaged over 50 partitioning runs using three par-
titionings: cut–net, owner, and all-neigh. Since some of these hypergraphs do not stem from problems based on meshes, we do
not use METIS to determine a partitioning graph.

A comparison of the communication volumes is carried out in Tables 4–6, which list the obtained average volumes
Cfcut—net ;Cfowner , and Cfall-neigh

for the three different partitioning strategies. To facilitate a comparison of the three partitioning
strategies, the communication volumes of two partitioning approaches are written as multiplicative factors. For example,
consider the first row of Table 4. Here, the absolute communication volume Cfcut—net of 1698 is given for the approach cut–

net. The corresponding value of Cfcut—net is about 1.07 times as large for all-neigh. In these tables, the smallest communication
volumes are denoted in bold font. An analysis of these tables indicates that each partitioning strategy yields the smallest
volume for the corresponding metric in almost all cases. In particular, Table 6 shows that all-neigh is effective for minimizing
Cfall-neigh

. However, for problems with a regular structure (those with small hyperedge sizes, such as the finite element matrix
fe_tooth), the all-neigh partitioning strategy does not yield any improvement over owner in terms of Cfall-neigh

. For more com-
plicated matrices (such as gupta1), the all-neigh strategy is very effective. When varying the partitioning approaches in
Tables 4–6, the differences in communication volume tend to be small for the class of matrices with a moderate maximum
hyperedge size. At the same time, the matrices in the bottom part of these tables that correspond to the class with larger
maximum hyperedge size tend to show significantly larger differences in communication volume.
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Next, we also analyze the number of messages for the owner and all-neighbor communication patterns in Tables 7 and 8.
Here, we see that using the all-neigh partitioning strategy results in having to send the smallest number of messages for both
communication patterns. This makes the k ðk� 1Þ-metric interesting for partitioning on systems where creating messages is
time consuming. Similarly to the communication volume, the gains in the number of messages are small for regularly struc-
tured matrices but large for matrices with more irregular structure. Take aug3d as an illustrative example for the class of
matrices with moderate maximum hyperedge size. In both tables there is almost no difference in the message number be-
tween all-neigh and owner. On the other hand, gupta1 taken from the class of matrices with larger maximum hyperedge size
shows, in both tables, a considerable difference in the message number when comparing all-neigh and owner.

Therefore, in summary, the approach from Section 4 provides an effective way to minimize different communication vol-
ume metrics. Furthermore, the k ðk� 1Þ-metric is also useful for minimizing the total number of messages, but for problems
where the hyperedge sizes are small, the gains are also small.
6. Conclusion

In this work, we have introduced a hypergraph model for the distribution of a finite element triangulation to processes of
a distributed-memory computer. The crucial feature of this hypergraph model is its capability to represent the communica-
tion volume exactly rather than giving an approximation. To this end, we presented a new metric for hypergraph partition-
ing, the k ðk� 1Þ-metric, which was inspired by the all-neighbor communication pattern occurring in the finite element
software package DROPS. This metric is an alternative to the common ðk� 1Þ-metric, which accurately measures the commu-
nication volume in an owner communication pattern as well as in parallel sparse matrix–vector multiplication. Both metrics
are special instances of a more general family of metrics, defined by a cost function f ðkÞwhich is a non-decreasing function of
the connectivity k of a hyperedge of the hypergraph. The three metrics studied in our work can be ordered by increasing
dependence on the connectivity as: minðk� 1;1Þ;2 ðk� 1Þ, and k ðk� 1Þ. Furthermore, we have given an explicit formula
(12) for hypergraph bipartitioning with the new metric which enables implementation using a standard hypergraph parti-
tioner, provided it has the option of setting hyperedge weights.

The experimental results for the finite element problems show that, though small, there are differences in the commu-
nication volume between graph and hypergraph partitioning. Compared to a graph partitioning, we observed reductions
in the communication volume of up to about 5% for hypergraph partitioning. Also, the number of messages as well as
the communication time needed to evaluate linear algebra operations on the distributed triangulation tend to be reduced
when using a hypergraph model rather than an undirected graph model. On the other hand, the difference in communication
volume between the 2 ðk� 1Þ-metric and the k ðk� 1Þ-metric is almost negligible. Still, the communication time obtained
from a partitioning based on the all-neighbor metric is smaller than when using a partitioning based on the owner metric.
For 1024 processes we observed roughly a factor of two between these two communication times, see Fig. 4(c).

In finite element meshes, the number of neighbors of a given node does not vary very much, which accounts for the small
differences observed in communication volume and which explains the continued use in many applications of graph parti-
tioning instead of the more accurate hypergraph partitioning. In situations, however, where the number of neighbors of a
vertex varies wildly, see Table 6, the new metric is suited for applications that follow the all-neighbor approach in their
implementation.
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[13] Ü.V. Çatalyürek, E. Boman, K.D. Devine, D. Bozdağ, R. Heaphy, L.A. Riesen, Hypergraph-based dynamic load balancing for adaptive scientific
computations, in: IEEE International Parallel and Distributed Processing Symposium (IPDPS 2007), IEEE, 2007, pp. 1–11.
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