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Abstract 

Medieval Islamic mathematicians and astronomers developed a variety of 

mathematical definitions and computations of the three astrological concepts 

of houses, rays (or aspects) and progressions. The medieval systems for the 

astrological houses have been classified by J.D. North and E.S. Kennedy, 

and the purpose of our paper is to attempt a similar classification for rays and 

progressions, on the basis of medieval Islamic astronomical handbooks and 

instruments. It turns out that there were at least six different systems for 

progressions, and no less than nine different systems for rays. We will 

investigate the historical relationships between these systems and we will 

also discuss the authors to whom the systems are attributed in the medieval 

Islamic sources. 

 

 
1 This paper has been finished in the framework of a research programme on “The evolution of 

Science in al-Andalusÿ Society from the Early Middle Ages to the Pre-Renaissance and its 

impact on the European and Arabic cultures (10th-15th centuries) II”, sponsored by the Spanish 

Ministry of Science and Innovation (FFI2011-30092-C02-01). 
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0. Preface 

In November 1998, J.P. Hogendijk presented at a conference in the Dibner 

Institute a preliminary classification of medieval Islamic methods for defi-

ning the two astrological concepts of “progressions” and “projection of rays” 

(or “planetary aspects”). These concepts are associated with natal astrology 

but unconnected to the medieval practice of astronomy, just like the (related) 

division of the ecliptic into twelve astrological houses. Hogendijkÿs prelimi-

nary survey was inspired by the classification of the astrological houses by 

J.D. North (1986) and E.S. Kennedy (1996). The survey was not published 

at that time, but a photocopy of the lecture (Hogendijk 1998) was widely 

circulated among historians of Islamic science. 

In October 2006, J. Casulleras published as his doctoral thesis an edition 

with translation and commentary of the entire Treatise on the Projection of 

Rays by the eleventh-century Andalusian mathematician and astronomer Ibn 

Muþ×dh al-Jayy×n÷ (died 1093). Only parts of this treatise had been studied 

before (Kennedy 1994, Casulleras 2004 and Hogendijk 2005). In the course 

of his research, Casulleras investigated numerous relevant sources on the 

three above-mentioned astrological concepts (cf. Casulleras 2010, pp. 49-

170) which had not been covered in Hogendijkÿs preliminary classification. 

Many of these sources belong to the Western Islamic astrological tradition. It 

therefore seemed natural to us to produce a more definitive version of the 

previous classification as a joint work. This is what we intend to offer in the 

following pages. Although numerous changes and additions have been made 

to Hogendijkÿs lecture of 1998, and sub-sections have been added, we have 

maintained as much as possible the previous numbering of sections in order 

to be consistent with the citations in the recent research literature to the 
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photocopied version of the lecture.
2
 Only in one case we have changed the 

original structure: Section 4.8 in the 1998 lecture (Mathematical Properties 

of the Equatorial Methods) corresponds to our current Section 4.10. 

1. Introduction 

This paper concerns the history of applied mathematics in medieval Islamic 

civilization.
3
 We will discuss the three astrological concepts of houses, rays 

and progressions and their mathematical interpretations. In Section 2 we in-

troduce these concepts and explain their importance for the astrologers. The 

houses, rays and progressions could be defined according to mathematically 

different systems. The medieval systems for defining the houses were first 

classified by J.D. North (1986), and his classification was extended by E.S. 

Kennedy (1996). The purpose of this paper is to attempt a classification for 

rays and progressions similar to the classification which North and Kennedy 

gave for the houses. Our classification is based on the publications of many 

modern historians of Islamic science. A definition and reference for the use 

of progressions among the Arabs was given by O. Schirmer (1934), whereas 

a significant study on the rays in the Islamic area was published by E.S. 

Kennedy and H. Krikorian-Preisler (1972). An overview of the resolution of 

astrological questions by means of analogical instruments in al-Andalus was 

presented in 1990 by Calvo (published in 1998). Relevant medieval Arabic 

sources have been published or analyzed,
4
 important older publications on 

Islamic astronomical instruments have been collected in Sezgin 1990-1991, 

and a comprehensive monograph on the same subject has been published by 

King (2005). It turns out that there were at least six different systems for 

 
2 Some of the publications that have used Hogendijkÿs original work, in chronological order, 

are: Samsó 1999, p. 117 (in the original) =19 (in the reprint); Samsó and Berrani 1999, pp. 

302, 306, 310; Samsó 2004, p. 510; Samsó and Berrani 2005, pp. 188, 199, 202, 203, 204, 

220; Casulleras 2007a, passim; Casulleras 2007b, pp. 48, 50, 52-55, 57-59, 61-63, 77; Díaz 

Fajardo 2008, pp. 24, 29, 30, 31; Casulleras 2008/2009, passim; Samsó 2009, pp. 31, 33; 

Casulleras 2009, passim; Díaz Fajardo 2010, pp. 302, 304, 305, 307, 311, 320, 322; Casulleras 

2010, passim; Díaz Fajardo 2011, pp. 336, 340. 
3 The adjective “Islamic” in a term like “Islamic astrology” refers to culture and not to religion. 

Astrology was strongly condemned by some medieval Islamic theologians because they felt 

that it contradicted the omnipotence of God. 
4 We have not compiled a list of all the sources and studies that might be connected to the sub-

ject of the computations in medieval Arabic astrology, but an outline of it can be extracted 

from the references given at the end of this paper. 
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defining progressions, to be discussed in Section 3 of this paper, and no less 

than nine different systems for defining the rays, to be discussed in Section 

4. We consider two systems as different if they have different (that is, mathe-

matically inequivalent) geometric definitions. One geometric system can 

lead to different numerical computations. 

For many medieval Islamic astrologers, the rays and progressions were 

not independent from each other and from the houses, and thus the history of 

one of these concepts may shed light on the history of the others. In Section 

5 we introduce the systems of houses from the classification of Kennedy and 

North which are related to systems for progressions and rays. In Section 6 

we discuss the usual attributions of the methods, we summarize some of 

their historical relationships, and we pose some questions deserving further 

research. 

Sections 3 and 4 of our paper also involve Greek astrology, in particular 

the mathematical aspects of the Tetrabiblos of Ptolemy (ca. A.D. 150). We 

have added some references to medieval Hebrew and Latin texts but we have 

not really investigated the transmission and further development of pro-

gressions and rays in the medieval Hebrew and Latin scientific traditions. 

Our survey of the Islamic systems for progressions and rays is incomplete 

because there are many unpublished sources which we have not been able to 

consult. Nevertheless, our paper gives a general idea of the nature and the 

scope of these non-trivial applications of mathematics in medieval Islamic 

civilization. These applications are not only historically important, but to our 

mind they are also fascinating because they are so strange to modern scien-

tific eyes. Future historians may well regard some present-day applications 

of mathematics with similar feelings of fascination. 

2. Basic definitions 

This section contains simple explanations of the astrological houses, rays 
and progressions. We assume that the reader has a rudimentary knowledge 

of spherical geometry and astronomical coordinate systems on the celestial 

sphere, as explained in any introduction to spherical astronomy (for example, 

Smart 1939). 
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2.1 Houses 

The ancient Greek astrologers introduced the division of the ecliptic into 

twelve “houses”.
5
 This division depends on the horizon, and it is therefore 

not the same as the division of the ecliptic into the zodiacal signs Aries, 

Taurus, etc. In this paper we will only be concerned with systems based on 

the four cardinal points, that is to say the intersections of the ecliptic with the 

horizon and meridian planes.
6
 In these systems the beginnings of the first, 

fourth, seventh and tenth houses are defined as the ascendent or rising point 

on the Eastern horizon (1), the intersection between ecliptic and the meridian 

below the horizon (4), the descendant or setting point on the Western hori-

zon (7), and the midheaven, that is the intersection between ecliptic and the 

meridian above the horizon (10) (Figure 1). 
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5 See Bouché-Leclercq 1899, pp. 279. 
6 We will not be concerned here with systems where the beginning of the first house was 5 

degrees away from the rising point. See for houses in general North 1986. 
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There were many different systems for the definition of the second, third, 

fifth, sixth, eighth, ninth, eleventh and twelfth houses in medieval Islamic as-

trology. In the simplest system, which was already used in ancient horos-

copes (North 1986, p. 6, fn. 13), the remaining boundaries between the 

houses were obtained by trisecting each of the four arcs between two cardi-

nal points. The Iranian astronomer al-B÷rýn÷
7
 (973-1046) called this system 

the “method of the ancients” (al-B÷rýn÷ 1954-1956, vol. 3, p. 1356; North 

1986, p. 40), and it is called the “Dual Longitude Method” in the North-

Kennedy classification. 

In all systems, the first house is the part of the sphere below the Eastern 

horizon, and the houses are numbered counter-clockwise, for an observer in 

the temperate regions on the Northern hemisphere who looks to the south. 

The process of defining the houses is called in Arabic the “equalization of 

the houses”,
8
 and the beginning points are called the cusps

9
 of the houses in 

the modern literature, and the centres
10

 of the houses in Arabic. 

During one daily revolution of the celestial sphere,
11

 any celestial body 

will pass through all twelve houses. These houses were connected to many 

things, including life (1), possessions (2), brothers and sisters (3), parents (4), 

children (5), illness (6), marriage (7), death (8), travels (9), honours (10), 

friends (11), and enemies (12).
12

 Lengthy descriptions of the qualities of the 

houses can be found in the work of the early tenth-century Christian astrolo-

ger Ibn Hibint× (1987, vol. 1, pp. 52-124). The qualities of the first, second, 

etc. houses were often connected to the qualities of the first, second, etc. 

signs of the zodiac. 

Many modern astrologers define the houses according to the so-called 

systems of Regiomontanus, Campanus and Placidus. These three systems, all 

of medieval Islamic origin, will be mentioned in Sections 5.1-5.3. 

 
7 On al-B÷rýn÷ see, for example, Yano 2007 and the references given there. 
8 taswiyat al-buyýt. 
9 We do not know the origin of this term. 
10 markaz, pl. mar×kiz. 
11 This apparent revolution for a modern reader, who knows that the earth revolves around its 

axis, was a real revolution for a medieval astronomer. 
12 See Bouché-Leclercq 1899, pp. 280-285. 
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2.2 Rays 

The ancient Greek astrologers also introduced the doctrine that each planet
13

 

P casts seven visual rays to other points P1 . . . P7 of the ecliptic. The posi-

tions of these rays are defined by means of a regular hexagon, a square and 

an equilateral triangle.
14

 In the simplest system, these polygons are inscribed 

in the ecliptic with an angular point at P, as in Figure 2, in which the arrow 

indicates the direction of increasing celestial longitude. The “rays” PP1, PP2, 

PP3 (PP7, PP6, PP5) are called the left (right) sextile, quartile and trine rays 

respectively, and PP4 is the ray to the diametrically opposite point. If another 

celestial body Q happens to be close to Pi, Q is said to be “looked at” (Latin: 

adspectus) and the two bodies P and Q are said to make an aspect. This in-

formation is astrologically significant. For the interpretation, the theory of 

rays and aspects between the planets was often related to the theory of the 

aspects between the zodiacal signs.
15

 The trine ray or aspect was regarded as 

beneficial, the sextile ray or aspect as less beneficial, the quartile ray or as-

pect as damaging, while the opinions diverged on the qualities of the oppo-

site ray and aspect. 

 
Figure 2 

 
13 In this connection, a planet is a celestial body which changes its position relative to the fixed 

stars. Thus the sun and moon are also considered to be planets. 
14 See Bouché-Leclercq 1899, pp. 177-178, 247-251 for the theory in antiquity. 
15 For this theory see Bouché-Leclercq 1899, pp. 165-177. 
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The medieval Islamic astrologers enthusiastically adopted the theory of 

the seven rays. Al-B÷rýn÷ points out that the planets cast light in all direc-

tions, not only in the direction of the astrological rays, but he argues that the 

points Pi have some special influence, and that this effect can be compared to 

the theory of musical intervals. He also notes the connection between the 

tides and the quartile aspects between the moon and the sun (al-B÷rýn÷ 1954-

1956, pp. 1379-1382). 

The above-mentioned system for defining the rays (Figure 2) is still in use 

by modern astrologers, but it was not the most popular system in medieval 

Islamic astrology. In Section 4 we will list some examples of its use and we 

will discuss the more complicated systems which were preferred by most 

medieval Islamic astrologers, and which still await rediscovery by their mo-

dern successors. 

2.3 Progressions 

The ancient Greek astrologers also introduced the doctrine that various 

events in the life of an individual could be predicted on the basis of the posi-

tions of the celestial bodies at the moment of birth. This doctrine was accep-

ted and elaborated in Islamic astrology. We will explain the general idea in 

connection with the prediction of the moment of death of the individual 

(Figure 3). First the astrologer had to select two celestial bodies or other sig-

nificant points (for example the ascendent, or one of the seven rays of a pla-

net) in the celestial configuration at the moment of birth of the individual. 

The way in which these bodies or points were selected depended on astrolo-

gical arguments which do not concern us here, although they were of course 

decisive for the resulting predictions.
16

 One of these points was thought as 

emitting life-force, the other as a destructive point which destroys life.
17

 

We now fix the emitting point P in its initial position and we rotate the 

destructive point F around the celestial axis (i.e. the line through the celestial 

North Pole C and the centre of the sphere) until it reaches P. If this happens 

 
16 See Bouché-Leclercq 1899, pp. 411-422. 
17 The first point was called in Greek the aphetic body (Bouché-Leclercq 1899, pp. 415-416), 

in Arabic the hayl×j, from Persian h÷l×j, “lord of a building” (Nallino 1907, vol. 2, p. 355) and 

in Latin the hyleg or significator. The other body was called the anairetic body in Greek, q×Ðiþ 
in Arabic, and promissor in Latin (Schirmer 1934). 
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after rotation over n degrees,
18

 the individual will live n solar years. Similar-

ly, a rotation over one minute of arc corresponds to approximately six days 

of the life of the individual. The destructive point F has now “progressed” 

from its initial position, and the method is called “progression” or in Arabic 

tasy÷r.19
 The emitting and the destructive points were always selected in such 

a way that the great circle distance between them is at most 90 degrees, so 

that n ≤ 90. 

 
Figure 3 

In Figure 3, the emitting point P “precedes”
20

 F in the sense that P rises 

earlier than F on the Eastern horizon, and the rotation of F to P is in the di-

rection of the daily motion of the celestial sphere. This situation was the 

most common one, and it will be assumed in the rest of this paper. Some as-

trologers were also willing to consider the destructive point “preceding” the 

emitting point, and rotation in the direction opposite to the daily motion of 

the sphere (see e.g. Ptolemy 1940, pp. 279-281, Ibn Hibint× 1987, vol. 1, p. 

139). 

 
18 The ancient and medieval astrologers expressed this quantity not as an angle but as a rota-

tion arc on the celestial equator. 
19 This technical term, literally: “making travel”, is often used in modern articles on the history 

of the subject. Point F is also called al-musayyar, the point which is made to travel, and point P 

al-musayyar ilay-hi, the point toward which the travel is made. 
20 This terminology was used by al-Batt×n÷ (Nallino 1899, vol. 3, pp. 198-203) and al-B÷rýn÷ 

(1954-1956, p. 1393). 
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Figure 3 is drawn for the case where points P and F have the same decli-

nation, so the rotated point F can coincide with the initial position of P, and 

vice versa. Some astrologers believed that the progression could only have 

an effect in this case. The eleventh-century Maghrib÷ astrologer Ibn Ab÷-l-

Rij×l copies from Ibn Hibint× an approximate solution for checking whether 

the equatorial declinations of the two elements implied are the same, and 

mentions Dorotheus of Sidon
21

 as his source
22

 (Ibn Ab÷-l-Rij×l 1954, pp. 

175-176; Ibn Hibint× 1987, vol. 1, p. 144; Díaz Fajardo 2008, pp. 95-103; 

Casulleras 2010, pp. 108-111). However, in almost all cases points P and F 

do not have the same declination, so the rotated point F can never coincide 

with P. In the next section we will see how the Greek and Islamic astrologers 

generalized the method for this case also. 

Modern astrologers still predict the events in the life of an individual from 

the constellation at the moment of birth by letting the celestial bodies “pro-

gress” from their original positions, but they do not use the (apparent) daily 

rotation of the celestial sphere in this connection. Instead, they simply obtain 

the arc of the tasy÷r on the ecliptic, a method which, as we shall see, is only 

one of a variety of alternatives existing in medieval sources. 

In our presentation thus far, the concepts of houses, rays and progressions 

seem to be mathematically unrelated. In the next sections we will see that 

some systems for the mathematical definition of progressions were also a-

dapted to define rays and houses, and that another system for houses was 

adapted to the rays. In another case of cross-fertilization, we have not been 

able to find out whether the system was first applied to the houses or to the 

rays. We will discuss the individual systems in Sections 3-5 and we will list 

the relationships in a chronological survey in Section 6.2. 

3. Systems for Progressions 

In this and the following sections we use the following notation for any 

celestial body P or any point P on the (moving) celestial sphere: 

 αφ(P) is the oblique ascension of P in a locality with Northern geogra-

phical latitude φ. This is the length of the arc of the celestial equator which 

 
21 Dorotheus of Sidon was a Greek astrologer who lived in the first century A.D. On the 

Arabic traces of his works see (Sezgin 1974-1984, vol. 7, pp. 32-38; Pingree 1978). 
22 Díaz Fajardo (2008, p. 98) notes that the quotation is not found in the preserved works of 

Dorotheus (1976). 
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rises on the Eastern horizon in the time interval which begins with the ri-

sing of the vernal point V and ends with the next rising of P (Figure 4). 

 α0(P) is the right ascension of P. 

 α−φ(P) is the oblique descension of P, i.e. the length of the arc of the ce-

lestial equator which sets on the Western horizon in the time interval which 

begins with the setting of the vernal point and ends with the next setting of 

P, at a locality with Northern geographical latitude φ. This quantity is equal 

to the oblique ascension in a locality with southern latitude −φ; such lati-

tudes were sometimes considered by the Islamic astronomers.
23

 

Oblique ascensions and descensions are usually defined only for points P 

on the ecliptic (see Figure 4, in which   = 90º − φ, ε ≈ 23º 30' the obliquity 

of the ecliptic, and Pedersen 1974, pp. 99-113, for all details, including com-

putation and tables). We use this notation for arbitrary points P for sake of 

brevity. 

All angles and arcs will be reckoned modulo 360. Thus, 40º − 320º = 80º. 

 
Figure 4 

 
23 Cf. Hogendijk 1989, pp. 176-178. 
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3.1 Progressions for predicting the moment of death 

We now assume an emitting point P and a destructive point F as in Figure 3. 

Required to compute the number of degrees n over which point F has to be 

rotated (in the direction of the daily motion of the universe) around the celes-

tial axis in such a way that the image of F is in a similar position as P. The 

number n in degrees is the life of the individual in solar years. The problem 

is, of course, how being in a similar position has to be defined if F and P do 

not have the same declination. At least six methods were used in medieval 

Islamic astrology. 

3.1.0 Direct Method 

As the name may suggest, in this method for progressions the number n in 

degrees is simply assumed to be the difference between the ecliptic longi-

tudes of F and P. In the eleventh century, al-B÷rýn÷ alludes implicitly to the 

use of this method for progressions in his Kit×b al-Tafh÷m, stating that the 

tasy÷r of the nativities must not be calculated using ecliptic degrees (al-

B÷rýn÷ 1934, p. 326). Thus, the method was known in the East but it seems 

that it was not commonly applied. In contrast, in al-Andalus, the eleventh-

century astrologer al-Istij÷ strongly defends the use of the simple procedure 

for the tasy÷r and for the projection of rays (cf. Section 4.1), and even consi-

ders it incorrect to use the equator in the computation (cf. Samsó and Berrani 

1999, pp. 303, 305-306, and 2005, pp. 187-188, 230). The method is also do-

cumented in the works of later authors of the Maghrib, such as Ibn 
c
Azzýz 

(died 1354) and Ibn Qunfudh (died 1407), both from Constantine (Algeria), 

and Abý þAbd Allāh al-Baqqār, who was working in Fez in 1418 (cf. Samsó 

and Berrani 2005, p. 188; Samsó 1999, p. 117=19; Casulleras 2008/2009, 

pp. 258-259, and 2010, pp. 105-106). It may also be worth noting here that 

this is the system currently used by modern astrologers. 

3.1.1 Right Ascension Method 

Two points are in a similar position if they are on a great semicircle whose 

endpoints are the celestial poles (Figure 5). This is to say: 

n = α0(F) − α0(P) . 

 

This system is mentioned in a treatise on the astrolabe by the Jewish ma-

thematician Abraham ibn þEzra (ca. 1090-1167), who received his mathema-
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tical training in Islamic Spain (Viladrich and Martí 1983, p. 90). The Greek 

astronomer Ptolemy says that this system is correct only if P is in the meri-

dian plane (1940, p. 290).
24

 The same principle is stated by al-B÷rýn÷ (1934, 

p. 326-327), Ibn Ab÷-l-Rij×l (1954, p. 174a) and, according to Ibn Qunfudh, 

by the philosopher al-Kind÷
25

, who died around 870 (Díaz Fajardo 2008, pp. 

125-126). Al-Istij÷ relates the method to “a group of Persians”
26

 that make 

their projection of rays and their progressions using right ascensions (Samsó 

and Berrani 1999, p. 304, and 2005, pp. 201, 234). 

 
Figure 5 

 

 
24 Bouché-Leclercq 1899, p. 411 indicates that the system was used in all cases, but he misun-

derstood Ptolemyÿs Tetrabiblos. 
25 On al-Kind÷ see, for example, Cooper 2007. 
26 Æ×ÿifa min al-furs. 
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3.1.2 Oblique Ascension Method 

Two points are in a similar position if they are on the Eastern horizon, or a 

half circle obtained by rotating the Eastern horizon on the celestial sphere 

around the celestial poles (Figure 6). This is to say: 

n = αφ(F) − αφ(P) . 

The system is mentioned by Ptolemy in his astrological work Tetrabiblos 
(1940, p. 290). He says that this is the usual system but that it is correct only 

if P is on the Eastern horizon. As happens with the Right Ascension Method, 

the same reasoning is transmitted by al-B÷rýn÷ and Ibn Ab÷-l-Rij×l, and rela-

ted to al-Kind÷ by Ibn Qunfudh. 

 
Figure 6 
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3.1.3 Position Semicircle Method  

We call a position semicircle a semicircle on the celestial sphere whose end-

points are the North point N and the South point S of the horizon (Figure 

7).
27

 The principle of this method is stated by Ptolemy in the Tetrabiblos:28
 

Two points are in a similar position if they are on the same position semicir-

cle. Al-B÷rýn÷ (1934, p. 326-327), Ibn Ab÷-l-Rij×l (1954, p. 174a) and al-

Kind÷ (according to Ibn Qunfudh) are probably thinking of the same princi-

ple when refer to the use of “mixed ascensions” for planets between the hori-

zon and the meridian (Díaz Fajardo 2008, pp. 125-126). Thus F has to be ro-

tated over an angle n in such a way that its image is on the position circle 

NPS. 

 
Figure 7 

 

 
27 An early definition of the position (semi)circles is found in the treatise on the construction of 

the astrolabe by the ninth-century astronomer al-Fargh×n÷ (2005, pp. 5, 10, 60-63). On this 

author see, for example, De Young 2007. 
28 “For a place is similar and the same if it has the same position in the same direction with re-

ference both to the horizon and to the meridian. This is most nearly true of those which lie 

upon one of those semicircles which are described through the [inter]sections of the meridian 

and the horizon ...” (Ptolemy 1940, p. 291). 
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If P is on the meridian, we obtain the right ascension method, and if P is 

on the Eastern horizon, the oblique ascension method. For P neither on the 

meridian nor on the horizon, Ptolemy uses in his computation an approxi-

mate method which we call the Hour Line Method, and which will be des-

cribed in Section 3.1.4 below because it is based on a different geometrical 

principle. 

Al-B÷rýn÷ presents a computation according to the Position Circle Method 

as “the method which I prefer in progressions” (al-B÷rýn÷ 1954-1956, pp. 

1397-1399). A similar computation is found in the works of later Islamic as-

tronomers, including the Andalusian astronomer Ibn al-Raqq×m
29

 (died 

1315), in chapter 63 of his Mustawf÷ Z÷j30
 (p. 221), and the king of Samar-

kand Ulugh Beg
31

 in the first half of the fifteenth century (Sédillot 1853, pp. 

208-209, 211-212). The basic idea is as follows. 

First assume that point P in the Eastern hemisphere. Let ξ be the minimum 

distance (on a great circle) from the celestial North Pole (C in Figure 7) to 

the position circle through P. We have 0 ≤ ξ ≤ φ, with ξ = 0 for P in the meri-

dian plane and ξ = φ for P in the horizon plane. 

We can now consider the position semicircle through P as the Eastern ho-

rizon for a geographical locality with latitude ξ. Thus n can be found if a ta-

ble of oblique ascensions for the latitude ξ is available, using the formula 

n = αξ (F) − αξ (P) . 

For points P is in the Western hemisphere, NPS can be considered in the 

same way as a Western horizon for a locality with latitude ξ with 0 ≤ ξ ≤ φ, 

and we find n as the difference between two oblique descensions: 

n = α−ξ (F) − α−ξ (P) . 

Ulugh Beg explains (Sédillot 1853, p. 206) that NPS can be considered as 

an Eastern horizon for a locality with southern latitude −ξ. 

Al-B÷rýn÷ gives the computation of ξ from the azimuth and altitude of P, 

and Ulugh Beg (Sédillot 1853, pp. 205-208) discusses various methods for 

the computation of ξ for a given point P (Sédillot 1853, pp. 205-208).
32

 

 
29 On Ibn al-Raqq×m see Casulleras 2007c. On his Mustawf÷ Z÷j, Samsó 2011, 522, 566-529 

and the references given there. 
30 We use the unpublished notes on this text kindly provided by Julio Samsó. 
31 On this author, see van Dalen 2007b. 
32 Some Islamic astronomers called the position (semi)circle through P the “incident horizon” 

(ufuq ¬×dith), and ξ the “latitude of the incident horizon”. See Kennedy 1996, pp. 555-556. In 

Sédillotÿs translation of the Z÷j of Ulugh Beg (Sédillot 1853, p. 205), these quantities are called 
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Some medieval Islamic astrologers describe the determination of n by 

means of a special astrolabe plate, called a “progression” plate or a plate for 

the projection of rays. This plate displays the stereographical projections of 

the position circles which intersect the equator at equal intervals of, for 

example, five degrees (see Figure 8). The plate is used as follows. Set the as-

trolabe at the celestial configuration at birth, find the positions of the pointer 

on the rim and find P on the spider.
33

 Fix on the plate the position semicircle 

on which P is located. Turn the spider until F arrives at this position semicir-

cle, and note the new position of the pointer on the rim. The difference 

between the two positions is the angle of rotation n. This easy method did 

not have the accuracy necessary for serious astrological predictions. 

 
Figure 8 

 
“(latitude de) lÿhorizon du cas de fortune”, which corresponds to “(þarÅ-i) ufuq-i ¬×dith” in the 

Persian original (Sédillot 1847, p. 437). 
33 The principle of the astrolabe is as follows. The spider contains the stereographic projections 

of the ecliptic and some bright fixed stars, projected from the celestial South Pole. Only the 

part of the heavens between the North Pole and the tropic of Capricorn is projected. The plate 

contains stereographic projections of circles in a horizontal coordinate system, projected from 

the celestial South Pole. The spider is placed on the plate in such a way that it can be rotated 

around an axis which corresponds to the projection of the celestial North Pole. This rotation 

corresponds to the apparent daily motion of the celestial sphere. The plate is fixed to the rim, 

which is concentric with the projection of the North Pole, and which is divided into 360 de-

grees. A pointer attached to the spider is used to measure angles of rotation n on the rim (see, 

for example, Michel 1947). 



  Progressions, Rays and Houses in Medieval Islamic Astrology  51 

 

 

This plate for progressions and rays is described by various authors, inclu-

ding al-B÷rýn÷ (Samsó 1996, p. 592) and al-Marr×kush÷ (1984, vol. 2, pp. 54-

55), and in the thirteenth-century Libro dell Ataçir written for the Castilian 

King Alphonso X by the astronomer Rabiçag, that is, Rabb÷ Is¬×q ibn S÷d 

(see Viladrich and Martí 1983 and Rico 1863-1867, vol. 2, pp. 295-309).
34

 

Several existing astrolabes contain plates with lines that match the geome-

trical approach here explained. Consequently, they can be used for the pro-

gressions and the projection of rays. However, we have to bear in mind that, 

when lacking the descriptions on the use of a plate, it is not always possible 

to know the methods and practices on which its design was based, since the 

application of two of the methods for the projection of rays (cf. Sections 4.4 

and 4.6) and the method for the progressions which we are dealing with here 

produce the same pattern on an astrolabe plate. We list here some examples 

of this kind of plate that have been published: 

 The astrolabe constructed in A.D. 984-985 by the Iranian astronomer 

al-Khujand÷ includes a plate entitled “projection of rays and progressions 

(tasy÷r×t)”, with position circles which intersect the equator in the end-

points of five-degree intervals. The geographical latitude is not stated but 

turns out to be 33º (King 1991, p. 162; King 1995, p. 87; King 2005, #111, 

cf. pp. 50, 508: plate f, 514, 940). The position circles are numbered from 

5º to 90º in each quadrant.
35

 

 An Andalusian plate from the eleventh-century, which is surprisingly 

preserved in an ottoman astrolabe,
36

 has an inscription stating that it is de-

vised for “the division of houses and the projection of rays” at the “latitude 

of 35º”, and projections of position circles arranged on the equator on divi-

 
34 Curiously, Rabiçag calls the position circles “circulos de los tiempos”, i.e. hour lines, so he 

considered the exact method he was using as equivalent to the approximate Hour Line Method 

(see the next section). In the Castilian text (Rico 1863-1867, vol. 2, p. 303), the North and 

South points of the horizon are incorrectly called polos de la villa. In the summary of the Libro 
dell Ataçir in (Viladrich and Martí 1983, p. 81), the position circles (through the North and 

South points of the horizon) have therefore been confused with the azimuthal circles (through 

the two poles of the locality, namely the zenith and the nadir). 
35 In King 2005, p. 940, is mentioned that this plate has markings for the equalization of the 

houses, but we do not see these markings on the published plate.  
36 This plate is going to be published soon in King 2012 (?). It belongs to a group of plates of 

unknown author preserved in a private collection in Belgium, mentioned in King 2005, #4040, 

cf. pp. 940, 945, 962: where Sothebyÿs London 30.5.1991 Catalogue, 136, lot 391, is quoted. 

Thanks to the kindness of the author, we could examine some photographs of this instrument 

before being published. 
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sions at each six-degree interval around the horizon. It also bears thicker 

marks for the limits of the houses according to what North (1986, pp. 35-

38) called the Equatorial (fixed boundaries) Method (see our Section 5.1, 

below), and the numbering of the position circles is repeated within each of 

the houses. 

 A Moroccan astrolabe constructed in A.D. 1208 contains four plates en-

titled “the projection of rays for latitude 33º 40'” (31º, 37º 30', 38º 30'), with 

position circles intersecting the equator at the endpoints of ten-degree 

intervals. In the published plate there are also thicker marks for the limits 

of the houses according to the Equatorial Method and the numbering of the 

position circles repeated within each of the houses (Sarrus 1853, p. 17, 

Planche 5). 

  An astrolabe constructed in A.D. 1304-1305 by A¬mad ibn ©usayn ibn 

B×½o
37

 includes one plate with position circles intersecting the equator at 

the endpoints of ten-degree intervals, entitled “The method of al-Gh×fiq÷ 

for latitude 37º 30'” (North 1986, p. 64). The plate also has ordinal num-

bers for the astrological houses according to the Equatorial Method. We 

will discuss the attribution of this method to “al-Gh×fiq÷” in Section 5.1. 

 In the context of the Latin West, a Spanish astrolabe, which Moreno, 

van Cleempoel and King (2002, pp. 346, 348; Casulleras 2010, pp. 135-

136) date in the sixteenth century, contains a two-sided plate for the lati-

tudes of 41º 30' and 40º, probably for the cities of Valladolid and Toledo, 

respectively. Both faces contain, below the horizon, the projection of posi-

tion circles crossing the equator at the endpoints of three-degree intervals, 

Roman numerals for the (first to seventh) astrological houses (Equatorial 

Method) and the inscription “Circvli positionvm”. 

A solution by means of a celestial globe is to be found in an appendix, 

written by the thirteenth-century Jewish astronomer Don Moshé for King 

Alphonso X, and appended to the Libro del Alcora (Rico 1863-1867, vol. 1, 

p. 206; Viladrich and Martí 1983, pp. 89-90; Samsó 1997, pp. 201, 208-209). 

A solution by means of an armillary sphere is in another Alfonsine book: the 

Libro Segundo de las Armellas (Rico 1863-1867, vol. 2, p. 67; Nolte 1922, 

p. 46). The Andalusian astronomers al-Zarq×lluh (died 1100) and ©usayn 

Ibn B×½o (died 1316) explain how the progressions can be computed accor-

 
37 He was the son of ©usayn Ibn B×½o who authored a treatise on a universal instrument 

(edition, Spanish translation and study in Ibn B×½o 1993). 
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ding to this method by means of their universal astrolabe plates (Rico 1863-

1867, vol. 3, pp. 207, 211; Puig 1987, pp. 82, 85-86; Ibn B×½o 1993, 202: 

Spanish, 179-181: Arabic, Ch. 156).
38

 

Although the principle of the method is stated in Ptolemyÿs Tetrabiblos, 
Islamic astronomers do not attribute this method to Ptolemy. Al-Zarq×lluh 

and Ibn B×½o attribute this method to the legendary Hermes, and they both 

mention the Z÷j (astronomical handbook with tables) of the Andalusian 

astronomer Abýÿl-Q×sim Ibn al-Sam¬
39

 (979-1035) as the source of this 

attribution. Don Moshé and the Libro Segundo de las Armellas also attribute 

the method to Hermes. We will discuss the attributions to Hermes in Section 

6.1 below. 

3.1.4 Hour Line Method 

In the Tetrabiblos, Ptolemy presents the method of this section as an appro-

ximation to the Position Semicircle Method of the previous section. The 

Tetrabiblos was translated into Arabic. The work is mentioned around the 

year 880, by the Eastern astronomer al-Batt×n÷
40

 (Nallino 1899, vol. 3 p. 203, 

line 1) as the source for this method. The attribution to Ptolemy is also found 

in al-B÷rýn÷ÿs Q×nýn (1954-1956, p. 1396), and this method was very likely 

seen as the practical resolution for the “mixed ascensions” that we have men-

tioned in the previous section. 

In this method, two points are supposed to be in a similar position if they 

are on the same hour line. The hour lines are defined as follows. On any 

given day, the period between sunrise and sunset is divided into 12 equal pe-

riods called seasonal (day) hours. The length of the seasonal hours varies 

with the season, but the time interval between sunrise and noon is always 6 

seasonal hours. On different days, one can consider the positions of the (cen-

tre of the) sun at a fixed number (less than 6) of seasonal hours before (or 

after) noon. These points define an hour line above the horizon. Similarly, 

 
38 In her useful survey of methods for progressions, (Calvo 1998, p. 37, Fig. 7), Calvo distin-

guishes between an “equatorial method” found in the Libro de Ataçir, and a “methode du 

premier vertical”, attributed to Hermes, and described in the treatises by al-Zarq×lluh and Ibn 

B×½o, the Libro de las Armellas, and in Don Moshéÿs appendix to the El Libro del Alcora. Ins-

pection of the texts shows that these two methods are the same. 
39 On Ibn al-Sam¬ see Rius 2007a. 
40 On al-Batt×n÷, who wrote a commentary on the Tetrabiblos, see, for example, van Dalen 

2007a. 
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the period between sunset and the next sunrise is divided into 12 equal sea-

sonal night hours, and by means of these hours one can define the hour lines 

under the horizon (cf. Hogendijk 2001, pp. 4-6). 

Thus, our problem is now as follows: For two given points F and P on the 

celestial sphere, to compute the number n such that if F is rotated around the 

celestial axis over an angle n, its image is on the same hour line as P (Figure 

9). 

meridianZ

C
n

horizon

equator

F

P

 
Figure 9 

 

©usayn Ibn B×½o describes in Chapter 152 of his treatise on the general 

plate (Ibn B×½o 1993, pp. 167-169: Arabic, 195-196: Spanish) the determina-

tion of n by means of a special astrolabe plate “that some people make for 

the projection of rays […] for a particular latitude […], and that can be also 

used for the tasy÷r”. This plate is “mentioned in the previous chapter”
41

, and 

it is prescribed to have hour lines distributed along 180 divisions on each 

 
41 Chapter 151, devoted to the projection of rays according to the Method of Ptolemy, cf. our 

Section 4.5. 
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side of the horizon.
42

 He calls this the “method of Ptolemy”.
43

 The astrolabe 

of A.D. 1304-1305 by his son A¬mad, mentioned above, has two plates with 

hour lines for all multiples of 2
3

 seasonal hours before or after noon and 

midnight (North 1986, pp. 62-63). One of them is entitled “the method of 

Ptolemy for latitude 37º 30'”, whereas the other only has the indication “for 

latitude 33º”. The hour lines on the plates can be used in the method for the 

tasy÷r of this Section, and in the methods for the rays that we explain in Sec-

tions 4.5 and 4.7. Again, inspection of these plates is not sufficient to deter-

mine the methods and practices for which they were conceived. However, 

these plates also have ordinal numbers for the limits of the astrological hou-

ses and, therefore, we know for sure that the constructor had in mind the me-

thod for the division of houses of our Section 5.3. 

We now explain the computation of n in modern notation, in a way close 

to the medieval procedures. Let the declination of P be δ(P). We first com-

pute the ascensional difference Δ(P) = α0(P)−αφ(P) from sin Δ(P) = tan φ tan 

δ(P). Here φ is the geographical latitude, |Δ(P)| < 90º, and Δ(P) and δ(P) 

have the same sign. Then, if P is above the horizon, the length of a seasonal 

day hour (if the centre of the sun coincides with P) is σ(P) = 15 + 
6
1 Δ(P) 

time-degrees.
44

 For P under the horizon, the length of a seasonal night hour 

(if the centre of the sun coincides with P) is σ = 15 − 
6
1 Δ(P) time-degrees. 

Now consider the case where P and F are above the horizon in the Eastern 

hemisphere. We first find the so-called “distance”
45

 d(P) of P to the meridian 

in seasonal hours. If the hour angle of P is u(P), we have d(P) = )(

)(

P

Pu

 . 

Similarly we find d(F). 

 

 
42 Ibn B×½o correctly explains how to plot these lines using equal divisions on the equator and 

the two tropics, but he then incorrectly states that the hour lines pass through the North point of 

the horizon.  
43 In her survey of progression methods, Calvo (1998, p. 37, Fig. 7), Calvo calls this method 

the “equatorial method”, but this is not strictly correct because the special plate considered by 

©usayn ibn B×½o contains hour lines, as he explains in his description of the plate in the prece-

ding chapter (Ibn B×½o 1993, Ch. 151, pp. 163-164 Arabic, 193-194 Spanish). 

44 One time-degree is 
360
1

 of one complete revolution of the celestial sphere (a revolution is 

close to 24 equinoctial hours). Thus a time-degree is the time-interval in which the celestial 

sphere rotates over one degree, and which corresponds to approximately four minutes. 
45 Arabic: buþd. 
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Then we have (compare Figure 9, in which d(P) = 1, d(F) = 5, σ(F) ≈ 18º): 

 n = (d(F) − d(P))   σ(F). (1) 

This method is given by Ibn Hibint× with worked examples (Ibn Hibint× 

1987, vol. 1, pp. 134-143).
46

 Using Δ(P) = α0(P) − αφ(P) and |u(F) − u(P)| = 

α0(F)−α0(P), (1) can be expressed as 

 n = α0(F) − α0(P) + 
6

)(Pd
 ((αφ(F) − αφ(P)) − (α0(F) − α0(P))). (2) 

Formula (2) is valid for all positions of P in the Eastern hemisphere and 

all positions of F; for points P in the Western hemisphere of the celestial 

sphere, change φ to −φ. This method is presented by al-Batt×n÷ (Nallino 

1903, vol. 1, pp. 131-134, vol. 3, pp. 200-202), Kýshy×r ibn Labb×n (tenth-

century Iran) (Yano and Viladrich 1991, pp. 4-7; Ibn Labb×n 1997, pp. 160-

167), al-B÷rýn÷ (1954-1956, pp. 1394-1397),
47

 in the treatise by al-Zarq×lluh 

on his universal plate (Puig 1987, pp. 81-82), (Rico 1863-1867, vol. 3, pp. 

205-206), and in the Alphonsine Libro de las Armellas (Rico 1863-1867, 

vol. 2, p. 67), and by Ibn þEzra (Viladrich and Martí, p. 91).
48

 

Other equivalent forms are also possible. Al-Batt×n÷ (Nallino 1903, vol. 1, 

pp. 134, 317; Nallino 1899, vol. 3, pp. 202-203; Yano and Viladrich 1991, p. 

7) presents another method, which is as follows for points P and F in the 

Eastern hemisphere:
49

 If M is the intersection between the ecliptic and the 

meridian above the horizon, 

 n = α0(F) − α0(M) − d(P)   σ(F).  (3) 

 
46 For F under the horizon and P above the horizon, Ibn Hibint× finds n as sum of two arcs n1 

and n2, where n1 represents the travel of F from its initial position to a position on the horizon 

and n2 the travel from this position of the horizon to the hour line through P. 
47 Al-B÷rýn÷ calls the right term of (2) a “mixed ascension” (maÐ×liþ muzawwaja, al-B÷rýn÷ 

1954-1956, p. 1394, line 2). 
48 Ibn þEzra says that this was the method of Hermes, Donoreus (i.e. Dorotheus?), Ptolomeus, 

Messella (M×sh×ÿall×h), Andruzagar, Abý Maþshar, and all other early astrologers with the ex-

ception of Avennouasth (Ibn Nawbakht) the Christian and Anurizi (al-Nayr÷z÷), see the com-

mentary of Viladrich and Martí 1983, p. 91). 
49 This formula, which is a variation of (1), can be derived algebraically from (2) using σ(F) = 

6
1

(90º + α0(F) – αφ(F)) and 
6

)(Pd
 = 

)()(º90

)()(

0

00

PP

MP








. The formula is therefore mathemati-

cally equivalent to (2). We do not understand the statement in Yano and Viladrich 1991, p. 7 to 

the effect that (3) is less accurate than (2). 
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For other positions of F, analogous formulas are valid. 

©usayn ibn B×½o gives a solution by means of his universal astrolabe 

plate (Ibn B×½o 1993, Ch. 152, pp. 169-170 Arabic, 196-197 Spanish), in 

which he follows the above-mentioned method of computation (2) step by 

step. 

In the eleventh century, al-Istij÷ criticized al-Batt×n÷ for using this method. 

Nevertheless, the same method occurs in works by later authors in the 

Maghrib, such as the twelfth-century astronomer Ibn al-Kamm×d
50

 (chapter 

29 of the Muqtabis Z÷j, fols. 17v-18r), Ibn al-Raqq×m (chapter 63 of the 

Mustawf÷ Z÷j, p. 222), Ibn þAzzýz, who says that his tables for the projection 

of rays in the Muw×fiq Z÷j (cf. Section 4.5), which are based on the use of 

hour lines, have their fruit in the tasy÷r (Casulleras 2007b, p. 62), and al-

Baqq×r (fl. Fes, 1411-1418), among others (cf. Díaz Fajardo 2010). 

For points P on the horizon or meridian, the Hour Line Method gives the 

same results as the Position Semicircle Method. We now investigate the 

difference between the two methods for other positions of P, mathematically 

and historically. 

In the Tetrabiblos, Ptolemy introduces hour lines as approximations to 

position semicircles in the following passage: “... one of those semicircles 

(i.e. position semicircles) which are described through the [inter]sections of 

the meridian and the horizon, each of which at the same position makes 

nearly the same temporal (i.e. seasonal) hour” (Ptolemy 1940, pp. 290-

291).
51

 Thus Ptolemy says that a position semicircle is nearly an hour line. 

We now check if this is the case in his own worked example for the 

latitude of Lower Egypt (φ = 30º 22'),
52

 where point P, the vernal point, is in 

the Western hemisphere of the celestial sphere with d(P) = 3, and F is the be-

ginning point of Gemini on the ecliptic (60º). He finds n = 64º by the Hour 

Line Method (Ptolemy 1940, pp. 300-301). 

The latitude of the position circle through P is
53

 ξ ≈ 22º 30' and hence by 

the Position Semicircle Method n = α−ξ (60º) − α−ξ (0º) ≈ 66º 54'. The diffe-

rence of 2º 54' corresponds to 2 years and 11 months in the life of the indivi-

dual in question, so the result is disastrous for a serious astrologer. For 1 ≤ 

 
50 On this author, see Comes 2007. 
51 The passage is incorrectly explained in footnotes 1 and 2 in Ptolemy 1940, pp. 290-291. 
52 This locality is defined by the assumption of a longest day of exactly 14 equinoctial hours, 

see Pedersen 1974, p. 108. 
53 If θ is the distance along the equator between (a) the intersection of the position circle 

through P and (b) the meridian, then tan ξ = tan φ sin θ. 
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d(P) ≤ 5, the error is always at least one degree for localities on the latitude 

of Lower Egypt.
54

 

The difference between the Hour Line Method and the Position Circle 

Method can also be illustrated geometrically. According to a celebrated theo-

rem in the theory of sundials, the (seasonal) hour lines are very nearly great 

circles on the celestial sphere, so their images on a horizontal sundial are 

very nearly straight lines. However, if the hour lines were (almost) position 

circles, their images would be almost parallel to each other and to the North-

South axis. This is evidently not the case (Figure 10 represents a sundial with 

markings for the seasonal hours at a latitude of 40º), and many surviving 

sundials from antiquity show that their makers were aware of this fact (Gibbs 

1976, pp. 323-338). Thus Ptolemy could have been aware of the significant 

difference between hour lines and position semicircles. 

 

Figure 10 

 

This situation becomes even more surprising if one realizes that Ptolemy 

wrote a work Analemma on the theory of sundials. In this work he intro-

duced six solar coordinates, including the verticalis, that is the distance be-

tween the zenith and the position semicircle through the (center) of the sun. 

 
54 The fact that this error went unnoticed for such a long time can be used as an argument 

against the validity of this type of prediction. 
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He then tabulated these coordinates for various latitudes and various times of 

the year, for the beginning of every seasonal hour. Thus he must have no-

ticed the change of the verticalis (and hence the position semicircle) at the 

beginning of each seasonal hour as function of the time of the year.
55

 All but 

one of the tables are lost, and the Analemma seems not to have been trans-

mitted into Arabic. It is probably a coincidence that the tenth-century Iranian 

mathematician Kýshy×r ibn Labb×n believed that the Ptolemy who authored 

the Tetrabiblos was not the same as the Ptolemy who wrote the Almagest 
(Ibn Labb×n 1997, pp. 160-161). 

Most Islamic astrologers show no awareness of the fact that the Hour Line 

Method is not mathematically equivalent to the Position Semicircle Method. 

However, al-B÷rýn÷ was more critical. He treats the notion of “distance” d(P) 

in seasonal hours between point P and the meridian with misgivings (al-

B÷rýn÷ 1954-1956, p. 1376), and he regards the Hour Line Method as a 

“theoretically insufficient”
56

 approximation and simplification of the Posi-

tion Semicircle Method (1954-1956, p. 1398, lines 1, 16-17). 

According to Ibn Hibint×, the astrologer M×sh×ÿall×h (died ca. 815) sim-

plified the method of this section in a way which boils down to the 

following. In formula (2) take d(P) = 0 for P in the tenth and fourth house, 

d(P) = 2 for P in the eleventh and third house, d(P) = 4 for P in the twelfth 

and second house, and d(P) = 6 for P in the first house. For points F and P on 

the ecliptic, M×sh×ÿall×h called α0(F) − α0(P) + 
3
1 ((αφ(F) − αφ(P)) − (α0(F) − 

α0(P))) the ascension of arc FP in the eleventh (and third) house, and so on 

(Ibn Hibint× 1987, vol. 1, pp. 131-134). The passage by Ibn Hibint× was co-

pied by Ibn Ab÷-l-Rij×l (cf. Díaz Fajardo 2008, pp. 125-136, and 2011, pp. 

348-352). 

3.1.5 Distance Method 

In this method n is the great circle distance between points P and F. We have 

found this method in the treatise by ©usayn ibn B×½o on his universal astro-

labe plate, in Chapter 153 on the projection of rays according to al-Batt×n÷ 

(see Section 4.1) (Ibn B×½o 1993, pp. 174 Arabic, 199 Spanish), and in 

Chapter 63 of Ibn al-Raqq×mÿs Mustawf÷ Z÷j (ca. 1280-1290, pp. 220-221). 

 
55 See for a summary of the Analemma and a description of the tables Nallino 1907, vol. 2, pp. 

848-856. 
56 Arabic: ghayr murÅ÷ f÷ Ðar÷q al-naÞar. 
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3.1.6 Hypothetical use of the Prime Vertical 

As we shall see (in Sections 4.9 and 5.2), there are astrolabe plates contai-

ning position circles arranged on equal divisions of the great circle through 

the East and West points of the horizon and the zenith, which is called the 

prime vertical circle. The division of houses according to this geometrical 

approach is illustrated on these plates in a way that corresponds to a well 

known procedure (cf. Section 5.2). The “projection of rays” is mentioned ex-

plicitly on two of the published plates of this kind that we know (cf. Section 

4.9). These plates could also be used for performing operations for the tasy÷r, 
but this is not indicated on any of them by a self-explanatory, unambiguous 

way. Moreover, the texts do not mention the use of this geometrical ap-

proach for the progressions. Therefore, there is no definite evidence of a me-

thod in which the arcs of the progressions are to be measured along the 

prime vertical circle instead of the equator or the ecliptic. 

3.2 Progressions for predictions for a given date 

Thus far we have discussed the problem to find the rotation arc n if the emit-

ting point P and the destructive point F are given. The astrologers were fre-

quently confronted with the need to make a prediction for a given number n 

of years after the birth of an individual. In this case, P and n are given and F 

has to be determined on the ecliptic in such a way that rotation of F around 

the celestial axis over an angle n produces a point in a similar position as 

point P. The astrologer then interpreted the position of point F in a zodiacal 

sign of the ecliptic and the celestial bodies, rays, etc. close to it, in order to 

make the desired prediction. 

The mathematical problem of finding F is easy to solve for the Oblique 

Ascension Method and the Right Ascension Method, and also for the Positon 

Semicircle Method, if the latitude ξ of the position circle through P can be 

computed, and oblique ascension tables for sufficiently many latitudes 

between 0 and φ are available.  

For the Hour Line Method, one has to determine F in such a way that for-

mula (2) is satisfied. For points P not in the horizon and meridian planes, 

Kýshy×r ibn Labb×n, (Yano and Viladrich 1991, p. 6) and al-B÷rýn÷ (1954-

1956, p. 1400) solved this problem in the following way by linear interpola-

tion: 

First assume that P is in the Eastern hemisphere. Find points F0 and Fφ on 

the ecliptic such that 
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n = α0(F0) − α0(P) , 

n = αφ(Fφ) − αφ(P) . 

If P is on the Eastern horizon, F = Fφ. If P is in the meridian plane, F = F0. 

For P between the Eastern horizon and the meridian, point F on the eclip-

tic is defined by 

 

 λ(F)= λ(F0) + 
6

)(Pd
   (λ(Fφ) − λ(F0)).  (4) 

Here λ denotes ecliptic longitude and d(P) is the distance between P and 

the meridian in seasonal day hours if P is above the horizon or in seasonal 

night hours if P is under the horizon. 

 Al-B÷rýn÷ calls the arc between the vernal point and F0 “the first arc” and 

the arc between the vernal point and Fφ “the second arc”. For P in the Wes-

tern hemisphere, change φ to −φ. 

 Al-B÷rýn÷ and Kýshy×r do not mention the fact that this computation is 

only an approximation, and hence the question arises whether they related 

this computation to the Hour Line Method. The following evidence shows 

that they must have conceived (4) as a solution to (2) for given n and P. 

Kýshy×r only presents (2) and no other methods for the computation of n 

from P and F. Al-B÷rýn÷ also mentions the Position Semicircle Method, but 

he goes on to compute the latitude ξ of this position circle, and he then hints 

that the ascensions and descensions for this latitude have to be used to find F 

from n and P.
57

 Since the formula (4) is unnecessary for the Position Semi-

circle Method, it has to belong to the only other method which he presents, 

that is the Hour Line Method. See Section 4.5 for further evidence. 

 
57 This is shown by the somewhat confusing terminology which al-B÷rýn÷ uses here: “the lati-

tude of the circle of the progression (i.e. ξ), and that is the horizon such that the preceding 

(body) travels by its ascensions and descensions” (al-B÷rýn÷ 1954-1956, p. 1399, lines 7-8). 

This seems to contradict our explanations, in which F (and not P) is made to travel, but al-

B÷rýn÷ explains the terminology a little later: “... the position at which the preceding (body) 

arrives by means of the progression, that is to say, the position of the ecliptic which arrives by 

the first motion (i.e. the daily rotation) at the circle of it (the preceding body)” (1954-1956, p. 

1400, lines 11-12). The notion that P (not F) travels is more natural for the astrologer who has 

to compute a series F1, F2 for a successive number of values n = 1, 2... The Fi can be seen as 

images of P. The terminological confusion between P travelling to F and F travelling to P 

occurs in many sources, for example: Ibn al-Sam¬ 1986. 
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4. Systems for Casting the Rays  

In this section we classify all methods for the construction of the astrological 

rays of which we have found traces in medieval Islamic sources. The names 

for these methods are our own inventions. The simple ecliptic method has al-

ready been defined in the introduction. It is based on the idea that the inter-

vals of 60º, 90º, etc. which determine the rays have to be measured on the 

ecliptic. In Section 4.1 we report some examples of authors using this me-

thod and we add the definitions of two alternatives which involve in the 

computations the ecliptic latitude of the object that casts its rays. The seven 

methods of Sections 4.2 to 4.8 are based on the idea that the intervals have to 

be measured on the celestial equator. The extant source material suggests 

that these seven equatorial methods were at least as popular as the simple 

ecliptic method.
58

 An interesting enquiry is to try and guess the practical sig-

nificance of the method (or methods) presented in Section 4.9, only attested 

in preserved astrolabes and based on the use of the prime vertical circle (de-

fined in Section 3.1.6 above). 

We have described the non-ecliptic methods of Sections 4.2 to 4.9 in such 

a way that the case of planets having non-zero latitude is automatically inclu-

ded and, in fact, most sources ignore the latitude of the planet. Nevertheless, 

some authors prescribe modifications of their methods to account for the 

case of non-zero latitude.
59

 Fortunately, there is no need to mention all these 

variations here.  

Unless indicated otherwise, in the following we consider a planet P on the 

ecliptic, and we suppose that the planet casts its left and right sextile rays to 

points L and R on the ecliptic. The definitions of L and R according to the 

different methods will be presented below. To obtain the definitions of the 

corresponding quartile and trine rays, change 60º to 90º and 120º in the defi-

nitions, and consider that the ray to the opposite point is cast to the point on 

the ecliptic diametrically opposite P. 

Some mathematical properties of the different methods will be compared 

 
58 Ulugh Beg (Sédillot 1853, p. 209) says that are many methods for the projection of rays, but 

that the (equatorial) methods of Sections 4.4 and 4.7 are much more used than the others. 
59 One example of this is in the work by Ibn Hibint× copied by Ibn Ab÷-l-Rij×l, which we have 

mentioned in Section 2.3 above. The approximate procedure for determining if the two objects 

involved in the tasy÷r have the same declination is extended to the projection of rays, and used 

for projecting the object that casts its rays onto the ecliptic by means of a circle parallel to the 

equator (see Casulleras 2007a, pp. 44-45; Ibn Ab÷-l-Rij×l 1954, p. 176b). 
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in Section 4.10. 

4.1 Ecliptic Methods 

Suppose that P is in the ecliptic (Figure 2). Inscribe a regular hexagon, a 

square and an equilateral triangle in the ecliptic with angular points at P. 

Then P casts its rays to points L = P1, P2, P3, P4, P5, P6 and R = P7 in Figure 2. 

If P is not on the ecliptic, most astrologers ignored its latitude and took 

instead of P the point with the same ecliptic longitude. Thus the celestial lon-

gitudes of L and R can be obtained by adding or subtracting 60º from the 

celestial longitude of P.  

This method for the projection of rays could have been used by Ptolemy, 

since he mentions the astrological rays without indicating how they have to 

be computed. In chapter 54 of his ¼ābiÿ Z÷j, al-Batt×n÷ approves the applica-

tion of this method only for the projection of rays of planets without ecliptic 

latitude (Nallino 1903, vol. 1, p. 129, and 1899, vol. 3, p. 194; cf. Samsó and 

Berrani 1999, p. 306). Although he describes far more sophisticated methods 

in his Qānýn, al-B÷rýn÷ states in his Tafh÷m that the different aspects are 

determined by the ecliptic signs (al-B÷rýn÷ 1934, pp. 225, 259-260). We have 

seen in Section 3.1.0 that, in the Maghrib, al-Istij÷ trusts in the use of this 

procedure for the tasy÷r and the projection of rays, and Ibn 
‘
Azzýz believes 

that the computation of the aspects must be performed on the ecliptic fol-

lowing this simple method (Casulleras 2007b, pp. 47, 62, 72, 75, and 

2008/2009, pp. 258-259). We also recall that it is the system used by modern 

astrologers. 

In order to take account of non-zero ecliptic latitude of P, the following 

two generalized methods were designed:  

According to al-Batt×n÷, points L and R are located on the ecliptic at great 

circle distances of 60º from P, even if P is not on the ecliptic, as happens in 

Figure 11 (Nallino 1903, vol. 1, pp. 131, 307-308; and 1899, vol. 3, pp. 196-

197, Chapter 54). His laborious computation of the celestial longitudes of L 

and R was simplified by the tenth-century Iranian astronomer Ibn al-©usayn 

al-¼ýf÷, whose method is described by al-B÷rýn÷ with tables (Kennedy and 

Krikorian 1972, pp. 5-6; al-B÷rýn÷ 1954-1956, pp. 1385-1388). The quartile 

and trine rays were also cast to the ecliptic to points at great circle distances 

of 90º and 120º from P, and the opposite ray was cast to the point on the 

celestial sphere diametrically opposite P. 
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Figure 11 

A passage with a similar title and concerned with similar topics as al-

Batt×n÷ÿs text is found in an earlier work by Ya¬y× ibn Ab÷ Man½ýr
60

 (died 

830) and, therefore, the method may not have been created by al-Batt×n÷ (cf. 

van Dalen 2004, p. 30). However, in al-Andalus this procedure is generally 

attributed to al-Battān÷. It appears in the eleventh century (Calvo 1998, p. 43) 

in the treatises on the universal plates by Azarquiel (Puig 1987, pp. 32, 80; 

Rico y Sinobas 1863-1867, vol. 3, p. 206) and þAl÷ b. Khalaf (Rico y Sinobas 

1863-1867, vol. 3, p. 123), and in the Epistle on Tasy÷r and the Projection of 
Rays by Abý Marwān al-Istij÷ (Samsó and Berrani 1999, pp. 305-306, and 

2005, pp. 204, 235). It is also found, subsequently, in the alfonsine Libro 
Segundo de las Armellas, in the Treatise on the General Plate by ©usayn b. 

Bā½o (1993, 197-199: Spanish, 171-174: Arabic) and in two Z÷jes by Ibn al-

Raqqām: the Sh×mil (Abdurrahman 1996, pp. 158-159) and the Mustawf÷ 
(pages 216-217, chapter 61). We have seen in Section 3.1.5 that these two 

last authors also extended the method to the progressions. 

For P not on the ecliptic al-B÷rýn÷ defines points P2, P6 on the ecliptic at a 

great circle distance of 90 degrees from P and he draws the great circle 

through P, P2 and P6. The regular polygons have to be inscribed into this 

great circle with P as angular point. Thus the two quartile rays are cast to P2 

and P6 on the ecliptic, but the remaining rays are cast to points not on the 

 
60 On this author, see van Dalen 2007c. 
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ecliptic. Al-B÷rýn÷ computed tables for the longitudes and latitudes of the 

rays (1954-1956, pp. 1389-1392). Kennedy and Krikorian (1972, p. 7) poin-

ted out that this method seems to have been originated by al-B÷rýn÷ himself. 

Since it is not found in other sources, we may suspect that it did not have 

much success among the practitioners of astrology. 

4.2 Right Ascension Method 

Points L and R are on the ecliptic such that 

60º = α0(L) − α0(P) , 

60º = α0(P) – α0(R) . 

Geometric interpretation: Find the intersection of the celestial equator and 

the semicircle through P and the celestial North and South Poles. Let this in-

tersection be an angular point of a regular hexagon and a square inscribed in 

the celestial equator. Draw the semicircles through the other angular points 

and the celestial North and South Poles. The planet P casts its rays to the 

intersections of these semicircles with the ecliptic. See Figure 12, in which 

only P and L are shown. 

 
Figure 12 

This method is related to “Dr÷nýsh” (probable Dorotheus of Sidon) by 

Ya¬y× ibn Ab÷ Man½ýr (van Dalen 2004, p. 30). As we have seen in Section 

3.1.1, al-Istij÷ relates the method to the Persians. Al-Zarq×lluh and ©usayn 

ibn B×½o say: “It has been said that the (pre-Islamic) Persians produce the 
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projection of rays in the right sphere (i.e. using right ascensions) only, but 

this is for people who live on the equator, so we have not mentioned it” (Ibn 

B×½o 1993, p. 174 Arabic, 199 Spanish; Puig 1987, p. 82; Rico 1863-1867, 

vol. 3, p. 205). The attribution to the Persians is also found in Ibn al-

Raqq×mÿs Mustawf÷ Z÷j (p. 217). For a geographical latitude on the equator, 

all the non-ecliptic methods in this paper are equivalent to the Right Ascen-

sion method. It seems likely that this method was used by the pre-Islamic 

Iranian astronomers. 

4.3 Oblique Ascension Method 

See Figure 13. Points L and R are on the ecliptic such that 

60º = αφ(L) − αφ(P) , 

60º = αφ(P) − αφ(R) . 

This method is described in an appendix to the treatise of al-Khw×rizm÷
61

 

(ca. 830) on the use of the astrolabe (Frank 1922, pp. 13, 17). This appendix 

was probably written by a later author (Frank 1922, p. 5). The method is also 

mentioned by al-Istij÷, who attributes it to Ptolemy although it is not found in 

the Tetrabiblos (Samsó and Berrani 1999, pp. 303-304, and 2005, pp. 199-

200, 234), and Ibn al-Raqq×m (Mustawf÷ Z÷j, p. 217-218; Abdurrahman 

1996, p. 159). 

 
Figure 13 

 
61 On al-Khw×rizm÷ see, for example, Brentjes 2007. 
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4.4 Single Position Semicircle Method 

Points L and R are on the ecliptic, and have to be determined according to 

the following condition: 

If point L (R) is rotated around the celestial axis over an angle of 60 de-

grees in the direction of the daily motion of the celestial sphere (or in the op-

posite direction), its image after rotation is on the position semicircle through 

P. We call this method the single position semicircle method, because it only 

involves the position semicircle through P. 

Algebraically, let ξ be the latitude of the position semicircle through P in 

the Eastern hemisphere. 

Then 

60º = αξ(L) − αξ(P) , 

60º = αξ(P) − αξ(R) . 

For P in the Western hemisphere, change ξ to −ξ. See Figure 14, which is 

drawn for P in the Eastern hemisphere and in which   = 90º − ξ is the angle 

between the position circle and the celestial equator. 

 
Figure 14 

 

The method is the same as the Right Ascension Method for P in the meri-

dian plane and the Oblique Ascension Method for P on the Eastern horizon. 
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The method is obviously related to the Position Semicircle Method for pro-

gressions, so the rays can also be determined by means of an astrolabe with 

the special plate described in Section 3.1.3 above. Put the spider in the posi-

tion of the celestial bodies at birth, find P on the spider, note (the projection 

of) the position semicircle C through P on the plate, and note the position of 

the pointer on the rim. Then turn the spider over 60 degrees to the right (or 

left). The position semicircle C now intersects the ecliptic at the desired 

point L (or R). 

This method is mentioned in the treatise by al-Zarq×lluh on the universal 

plate (Puig 1987, p. 85; Rico 1863-1867, vol. 3, p. 211), in the Alphonsine 

Libro de las Armellas (Rico 1863-1867, vol. 2, p. 65; Nolte 1922, pp. 45-

46),
62

 and in the treatise by ©usayn ibn B×½o on the universal astrolabe plate 

(Ibn B×½o 1993, Ch. 155, pp. 178-179 Arabic, 201-202 Spanish). These three 

sources attribute the method to Hermes, see Section 6.1 for a further dis-

cussion. Only Ulugh Beg attributes this method to Ptolemy (Sédillot 1853, p. 

209). 

4.5 Single Hour Line Method 

This method is attested in many medieval Islamic sources, and it can be con-

sidered the standard Islamic method for computing the projections of the 

rays. The method is explained by Kennedy and Krikorian (1972, par. 2. p. 5). 

It is based on the following geometrical principle: 

Points L and R are on the ecliptic such that if L (or R) is rotated around 

the celestial axis over an angle of 60 degrees in the direction of the daily mo-

tion of the celestial sphere (or in the opposite direction), its image after ro-

tation is on the hour line through P (see Figure 15). We call this method the 

Single Hour Line Method because only the hour line through P is involved. 

 
62 The relevant text is as follows: 

“Saca el cerco que es semeíante dell orizon sobre que está ell estrelle en aquella hora ... et cata 

quál grado dell yguador del dia cae sobre aquel cerco. et faz sobrél sennal. et annada sobrél 

.LX. grados al sestil siniestro ... et faz sennal do se allegar la cuenta. et ponla sobrel cerco que 
es semeiante al cerco dell orizon et cata quál grado del cerco de los signos cae sobre aquel cer-

co. et aquel grado es el logar dell echamiento del rayo siniestro que feziste”. The italicized pas-

sage says that the second mark (on the equatorial ring) should be placed under the position cir-

cle. Thus it seems to us that the equatorial ring has to be rotated and the position circle is in a 

fixed position, hence this is a case of the single position semicircle method. 
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Figure 15 

 

This method is related to the Hour Line Method for progressions and, the-

refore, the rays can be found with the astrolabe plates that we have men-

tioned in Section 3.1.4 above. In the field of analogical instruments, the 

Single Hour Line Method for the rays is also mentioned in treatises on the 

use of the astrolabe by, for example, al-¼ýf÷ (1962, Chapters 154-155, pp. 

128-132), and Ibn al-Sam¬ (1986, pp. 68-70, 147-149). It is also found in the 

treatise on the universal plate by al-Zarq×lluh (Puig 1987, p. 81; Rico 1863-

1867, vol. 3, p. 205) with references to W×lyus the Egyptian and Ptolemy, 

and in the Alphonsine Libro de las Armellas (Rico 1863-1867, vol. 2, p. 62; 

Nolte 1922, p. 45), with an attibution to Vellix el egipciano and Ptolemy. 

This Vellix or W×lyus must be a pre-Islamic astrologer who may be identical 

to the Byzantine astrologer Vettius Valens.
63

  

As for other texts not dealing with instruments, Kennedy and Krikorian 

(1972, pp. 3-4) found the method in nine Eastern sources, including al-

B÷rýn÷ÿs Q×nýn (1954-1956, pp. 1377-1385) and seven z÷jes dated between 

the ninth and the fifteenth centuries. It is also found in the Great Introduction 
to Astrology by Abý Maþshar (died A.D. 886) (Abý Maþshar 1985, VII:7, 

pp. 408-410; 1995-1996, vol. 3, pp. 549-560), and in a medieval Latin trans-

 
63 See Sezgin 1974-1984, vol. 7, pp. 38-41. 
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lation of a treatise on the astrolabe attributed to M×sh×ÿall×h (ca. 780) but 

probably by the Andalus÷ astronomer Maslama al-Majr÷Ð÷
64

 (died A.D. 1007) 

(Frank 1922, pp. 24-25; Viladrich and Martí, p. 94; Nallino 1903, vol. 1, p. 

311; Sezgin 1974-1984, vol. 6, p. 128). Another Andalus÷ astronomer, Ibn 

Muþ×dh al-Jayy×n÷
65

 (died A.D. 1093), wrote a treatise on the projection of 

rays
66

 with the stated intention of warning about the errors of this method at-

tributed to Ptolemy and “transmitted by Abý Maþshar, among others”. To 

this purpose, Ibn Muþ×dh uses numerical demonstrations, including the follo-

wing example for geographical latitude φ = 49º: If P, the initial point of 

Capricorn on the ecliptic, is on the Eastern horizon, and Pÿ is the beginning 

of Cancer, that is, the point diametrically opposite P, we have αφ(Pÿ) − αφ(P) 

= 120º, with the astrologically absurd consequence that the left trine ray and 

the opposite ray coincide (Casulleras 2007a, p. 40, and 2010, pp. 175, 203-

210, 240-243: Spanish, 268-273: Arabic). The method is also found in later 

sources of the Islamic West, such as Ibn al-Kamm×d (Muqtabis Z÷j, fols. 

16v-17r: Chapter 28; Vernet 1949, pp. 74-78), Ibn al-Raqq×m, who relates 

the method to Vettius Valens and Ptolemy (Mustawf÷ Z÷j, p. 218), and Ibn 

þAzzýz, who attributes the method to Ptolemy and Hermes, and compiled on 

its basis the set of tables for the projection of rays that we have mentioned in 

3.1.4 (Casulleras 2007b, pp. 63-64, 81, 89). 

To find L and R the Islamic astrologers used an approximation as in Sec-

tion 3.2, for n = 60º. 

Computation for P in the Eastern hemisphere: First find points L0 and Lφ 

on the ecliptic such that 

60º = α0(L0) – α0(P) , 

60º = αφ(Lφ) − αφ(P) . 

Al-B÷rýn÷ calls L0 the “first ray”, Lφ the “second ray” (1954-1956, pp. 

1383-1384). The “first ray” is the result of the right ascension method, the 

“second ray” of the oblique ascension method. 

If P is on the Eastern horizon, L = Lφ. If P is in the meridian plane, L = L0. 

If P is between the Eastern horizon and the meridian, the left sextile ray is 

cast to point L on the ecliptic defined by 

 
64 On Maslama al-Majr÷Ð÷ see, for example, Casulleras 2007d. 
65 On Ibn Muþ×dh see Calvo 2007. 
66 For references to this work see Kennedy 1994; Casulleras 2004; Hogendijk 2005; Casulleras 

2010 (edition and Spanish translation). 
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λ(L) = λ(L0) + 
6

)(Pd
   (λ(Lφ) − λ(L0)) . 

Here d(P) is the distance in seasonal hours between P and the meridian 

plane, and λ denotes ecliptical longitude. 

The right sextile ray is obtained in the same way by interpolating between 

the “first ray” R0 and the “second ray” Rφ obtained by 

60º = α0(P) – α0(R0) , 

60º = αφ(P) − αφ(Rφ) . 

For P in the Western hemisphere, change φ to −φ. 

Just as in Section 3.2, one may well ask whether the Islamic astrologers 

were aware of the relationship between computation and geometrical princi-

ple. The following evidence suggests that they were aware of the connection. 

©usayn ibn B×½o mentions the geometrical principle and the corresponding 

determination of the rays on the special astrolabe plate with hour lines that 

we have mentioned in Section 3.1.4 (Ibn B×½o 1993, Ch. 151, pp. 163-165 

Arabic, 193-194 Spanish), and he then explains how the rays can be found 

by means of his universal astrolabe plate, following the steps of the compu-

tation (1993, pp. 165-167 Arabic, 194-195 Spanish). Al-B÷rýn÷ says that the 

computation is incorrectly attributed to Ptolemy, but that the attribution is to 

be explained because the procedure is based on Ptolemyÿs method of pro-

gressions (al-B÷rýn÷ 1954-1956, pp. 1377, line 14, 1378, line 4), that is, the 

Hour Line method. Elsewhere (1954-1956, p. 1394), al-B÷rýn÷ says that this 

procedure for the rays was derived from the procedure for progressions, that 

is to say, the hour line method. 

4.6 Four Position Circles Method 

Points L and R are determined as follows. Find the intersection of the celes-

tial equator and the position semicircle through P. Let this intersection be an 

angular point of a regular hexagon and a square inscribed in the celestial 

equator. Draw the position semicircles through the other angular points. The 

planet P casts its rays to the intersections of these position semicircles with 

the ecliptic. Thus points L and R are such that their position semicircles in-

tersect the equator at points which are 60 degrees apart from the intersection 

of the equator and the position circle through P. See Figure 16, which shows 

the construction of L only. This method involves a total number of four posi-

tion circles. 
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Figure 16 

 

The rays can also be determined according to this method by means of the 

special astrolabe plate described in Section 3.1.3 above. Put the spider in the 

position of the celestial bodies at birth, find P on the spider, note the position 

circle C through P on the plate. Suppose the plate displays position circles 

for six-degree intervals of the equator. From the position circle C, count the 

position circles in counter-clockwise (or clockwise) direction, and let the 

tenth of these circles be CL (or CR). Then the intersection of CL (or CR) with 

the ecliptic will be the desired point L (or R). This procedure is illustrated in 

the Alphonsine Libro dell Ataçir written by Rabb÷ Is¬×q ibn S÷d (Viladrich 

and Martí 1983, pp. 92-93; Rico 1863-1867, vol. 2, p. 308).
67

 The author 

uses an astrolabe with the special plate containing projections of the position 

circles.
68

 

 
67 Emilia Calvoÿs survey of methods for projection of rays (1998, Fig. 6) is consistent with 

ours if we interpret her Prime Vertical Method as our Single Position Semicircle Method and 

her Equatorial Method as our Four Position Circles method. 
68 Here is the relevant text: 

“... sabe el grado dell ascendent. et pon aquel grado sobrell orizon oriental. et sabe quál de los 

cercos temporales passa por la estrella que tú quieres echar sus rayos. et faz sennal sobrella. et 

cata quál grado dell yguador del dia cae sobre aquel cerco et aquellos serán sos sobimientos 
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The Andalus÷ astronomer Maslama al-Majr÷Ð÷ computed tables for the (ap-

proximate) computation of the projections of rays. The lay-out and the ma-

thematical structure of his tables show that he was a follower of the Four Po-

sition Circles Method. Al-Majr÷Ð÷ÿs tables were adaptations of earlier tables 

for the projection of rays by al-Khw×rizm÷ but the geometrical motivation of 

the tables of al-Khw×rizm÷ is not so clear. The tables of al-Majr÷Ð÷ were 

based on the concept of the “latitude” ξ of a position circle NPS and the 

computation of the corresponding ascensions αξ.
69

 Al-Khw×rizm÷ did not 

compute ξ. His computation is much simpler and based on the approxima-

tion of position circles by hour lines as explained in Section 3.1.4. Of course, 

it is an open question to what extent al-Khw×rizm÷ was conscious of these 

mathematical subtleties.
70

 Thus it is not clear whether we have to classify his 

tables as an instance of the Four Position Circles Method or rather of what 

we will call the Seven Hour Lines Method (see Section 4.8). 

Without giving any details on the computation, al-Istij÷ attributes to the 

“geometers”
71

 and to Hermes a procedure which Samsó and Berrani have 

conjecturally identified with the Four Position Circles Method (1999, pp. 

304-305, and 2005, pp. 201-202, 234-235). In his work on the projection of 

rays, and in the Tabulae Jahen, Ibn Muþ×dh al-Jayy×n÷ argues that the Four 

Position Circles Method is the only correct method for projecting the rays.
72

 

He provides the only known algorithm for this method, and gives the Seven 

Hour Lines Method of Section 4.8 as an approximate alternative. 

It is worth noting that all the sources mentioning this method come from 

the Western area (cf. Casulleras 2008/2009, 248-251). 

 
sobre aquel cerco et guárdalos. Et si quisieres fazer rayos diestros (sinistros), mingua (annade) 

... (60º, 90º, 120º) et lo que fuer de los sobimientos despues del annadimiento ó del mingua-

miento. faz sobrello sennal en el cerco dell yguador del dia. et cata quál cerco de los tempora-

les (i.e. position circles) passa por y. et aquel será el cerco dell echamiento daquel rayo que 

quesiste saber.” 
69 For an explanation of these tables and their mathematical structure see Hogendijk 1989. 
70 The tables of al-Khw×rizm÷ possess a computational flaw, discussed in Hogendijk 1989, pp. 

184-187, formula (3.10), with the consequence that only for planets in the first ten degrees of 

each zodiacal sign we have the following property: If P casts its ray to Q, Q also casts a ray to 

P. Note that formula (2.6) in Hogendijk 1989, p. 178 should be changed to P*Q* = αξ (λQ) − 

αξ(λP). 
71 Muhandisýn. 
72 The mathematics is discussed in Hogendijk 2005. 
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4.7 Standard Houses Method 

This method was probably adapted from the Standard Method for defining 

the houses (see below, Section 5.4). The basic idea is as follows. Consider 

the position semicircle through P as an Eastern horizon for some latitude ξ 

(with −φ ≤ ξ ≤ φ). For this horizon and point P, construct the division of the 

ecliptic into 12 houses according to the Standard Method. In the Standard 

Method for the houses, point P is always on the ecliptic but this need not be 

true in the analogous construction of the rays. The planet then casts its left 

sextile, left quartile, left trine, right trine, opposite, right quartile and right 

sextile rays to the cusps of the third, fourth, fifth, seventh, ninth, tenth and 

eleventh house respectively. Although P does not need to be on the ecliptic, 

its rays are always cast to points on the ecliptic. 

The geometric construction is as follows (Figure 17): The circle through 

the celestial poles perpendicular to the position semicircle through P can be 

considered as a new “meridian plane”. The planet P casts its quartile rays to 

the intersections between this plane and the ecliptic. Construct the circle 

through P parallel to the celestial equator, and trisect the two arcs of this cir-

cle between P and the new “meridian plane”. The planet P casts its left and 

right sextile rays to the trisecting points L and R which are closest to the me-

ridian plane. P casts its right and left trine ray to the points diametrically op-

posite L and R respectively. 

 
Figure 17 
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Algebraically, we first compute the “ascensional difference” e = α0(P) − 

αξ(P). 

For the left quartile ray Q we have 

α0(Q) = αξ (P) + 90º = α0(P) + 90º − e , 

and for the sextile rays: 

α0(L) = α0(P) + 60º − 
3

2e
 = αξ (P) + 60º + 

3

e
 , 

α0(R) = α0(P) − (60º + 
3

2e
) = α0(L) – 120º . 

This method is explained in the Z÷j of Ulugh Beg, the king of Samarkand 

(ca. 1420) (Sédillot 1853, p. 210). Ulugh Beg says that there are many me-

thods for the projections of rays, but that two methods are much more often 

used than others, namely (in our terminology) the Single Position Semicircle 

Method (which he attributes to Ptolemy) and the method of this section 

(which he attributed to unspecified authors other than Ptolemy) (Sédillot 

1853, p. 209). 

Samsó (1996, pp. 597-601) summarized one page from the manuscript of 

the Z÷j al-¼af×ÿi¬ by Abý Jaþfar al-Kh×zin on the projection of rays. Samsóÿs 

reconstruction shows that al-Kh×zin also used this method.
73

 

4.8 Seven Hour Lines Method 
74

 

In this method a planet P casts its rays to the intersection points of the eclip-

tic with the seasonal hour lines indicating the seasonal hour of P plus or 

minus 4 (sextiles), 6 (quatriles), 8 (trines) or 12 (opposition) seasonal hours. 

See Figure 18, in which the left sextile L of P is represented. 

According to this definition, the rays can be found with the astrolabe 

 
73 In this connection, Samsó refers to a statement by al-H×shim÷ (ca. 890) in his Book on the 
Reasons behind Astronomical Tables (1981, pp. 186, 323-324) on tables for the astrological 

rays. For the left sextile ray, al-H×shim÷ introduces the quantity 
3
x

 where x = αφ(λP+180º) – 

αφ(λP). Since al-H×shim÷ refers to tables, he may have thought of al-Khw×rizm÷, who uses 
3
x

 

in his tables for the astrological rays, see Section 4.6. 
74 The original Section 4.8 (Mathematical Properties of the Equatorial Methods) in Hogendijk 

1998 corresponds to our current Section 4.10 below. 
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plates that we have mentioned in Section 3.1.4 above, but we have not found 

any evidence of the use of this method in the treatises on instruments. As we 

have seen in Section 4.6, Ibn Muþ×dh presents this method as an approxi-

mate alternative for the Four Position Circles Method, an approach which is 

consistent with the idea of using approximations of position circles by hour 

lines (cf. Section 3.1.4), and which allows for the use of arithmetical rules 

instead of trigonometric functions (cf. Casulleras 2004, pp. 392-400 and 

2010, p. 25). 

We have mentioned in Section 4.6 the possibility that al-Khw×rizm÷ÿs 

tables for the projection of rays were based on this method. Ibn al-Raqq×m 

attributes to “the modern ones”
75

 a procedure that is probably also the Seven 

Hour Lines Method (Mustawf÷ Z÷j, pp. 218-220). 

 
Figure 18 

 

4.9 Use of the Prime Vertical  

In this section we deal with the existence of one or more methods for the 

projection of rays that use position circles arranged according to equal divi-

sions of the prime vertical circle (defined in Section 3.1.6 above). A method 

for the division of houses based on divisions of this circle is well attested in 

 
75 Al-mutaÿakhkhirýn. 
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both Eastern and Western sources (cf. Section 5.2), but no evidence of the 

use of an analogous method for the projection of rays or the tasy÷r has been 

found in the texts. However, we know of three astrolabes, all of them Anda-

lusian, with plates that correspond to this geometric approach and can be 

used for the three astrological practices described here:
76

 

 The oldest one is an astrolabe constructed in Toledo in A.D. 1029-

1030. It includes two plates entitled “projection of rays for latitude 38º 30'” 

and “projection of rays for latitude 42º”. The plate for 38º 30' was pu-

blished (Woepke 1858, pp. 26-30, Fig. 12), and bears position circles 

which intersect the prime vertical at the endpoints of six-degree intervals 

around the horizon. The use of this plate for the division of houses is corro-

borated by the fact that the numbering of the position circles (6º, 12º, 18º, 

24º, 30º) is repeated within the interval that corresponds to each astrologi-

cal house (see also Hogendijk 2005, p. 99). 

 In 1081-1082, two plates with a similar net of lines specifically devised 

for “the projection of rays in Valencia” and “Saragossa” were made by 

Mu¬ammad al-¼abbān. These plates have ordinal numbers for the astrolo-

gical houses and position circles that correspond to divisions every ten de-

grees on the prime vertical, starting at the horizon (King 2005, 937 and 

940).
77

 

 Another plate which shows the same distribution and frequency of 

circles as al-¼abbānÿs plates belongs to the astrolabe made by A¬mad b. 

©usayn b. Bā½o in 1304-1305, mentioned above (in Sections 3.1.3 and 

3.1.4). The plate bears the inscription “Method of Hermes for the latitude 

37º30'” (probably Granada), in this case without reference to the practices 

for which it was designed, but also showing specific ordinal numbers for 

 
76 We must recall that there is no verifiable evidence of the application of any of these plates to 

the tasy÷r (cf. Section 3.1.6 above). To check that the position circles cross even divisions of 

the prime vertical circle in this type of plate, one can verify that the equatorial arcs between the 

East (West) point and the circles indicating the beginning of the 12th (8th) and 11th (9th) houses 

are close enough to, respectively, arctan (tan 30º / cos φ) and arctan (tan 60º / cos φ), where φ 

is the geographical latitude for which the plate is designed. Cf. Hogendijk 2005, fn. 3 (on page 

113). 
77 The plate for Valencia is at the bottom right on page 937. The current value for the latitude 

of Valencia, 39º 28', is consistent with the procedure proposed by Hogendijk (see the previous 

note) for checking this type of plate. The plate for Saragossa does not appear in the photo-

graphs. 
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the astrological houses (North 1986, p. 65).
78

 

The method or methods to be applied for the “projection of rays” stated in 

two of these plates must be analogous to either the Single Position Semi-

circle Method or the Four Position Circles Method, using the prime vertical 

instead of the equator for measuring the arcs defining the aspects. Therefore, 

we can assume that at least the constructors of these plates had in mind this 

geometrical approach. 

4.10 Mathematical Properties of the Methods for Casting the Rays 

In the simple ecliptic system, a planet P casts its rays to points P1, P2, P3, P4, 

P5, P6 and P7 which are defined as angular points of a regular hexagon 

PP1P3P4P5P7 and a square PP2P4P6 inscribed in the ecliptic (Figure 2). In this 

system, the rays have two properties, which we call the symmetric property 

and the combination properties, and which are consequences of the regulari-

ties of the figures. 

By the symmetry property we mean the fact that if P casts a ray to a point 

Q, a body at point Q will also cast a ray to P. For example, if P casts its left 

sextile ray to Q, we have Q = P1, so Q casts its right sextile ray to P. In terms 

of the ancient extramission theory of vision, if P looks at Q, Q will also look 

at P. 

By combination properties we mean the following three properties for 

combinations of left rays, and three analogous properties for right rays: (1) If 

P casts a left sextile ray to P1, a body at P1 casts its left sextile ray to the same 

point P3 to which P casts its trine ray. (2) If P casts a left trine ray to P3, a 

body at P3 will cast its left sextile ray to the same point P4 to which P casts its 

opposite ray. (3) If P casts a left quartile ray to P2, a body at P2 will cast its 

left quartile ray to the same point P4 to which P casts its opposite ray. 

The following table shows whether these properties are maintained or lost 

in what we might call the “Equatorial Methods” (i.e. those systems in which 

the arcs defining the different aspects are placed along the celestial equator). 

 

 

 
78 If we make transparent copies of these last two plates with the same radius and place one 

over the other, we may easily verify that the lines on the two plates are practically identical, 

with very slight divergences due to the difference in latitude between the locations for which 

they were designed. Cf. Casulleras 2010, p. 100. 
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Equatorial System Symmetric Property Combination Properties 

Right ascension  yes yes 

Oblique ascension yes no 

Single Position Semicircle no no 

Single Hour Line no no 

Four Position Circles yes yes 

Standard Houses  no no 

Seven Hour Lines yes yes 

 

The two methods of Section 4.1 which take into account non-zero ecliptic 

latitude do not have the symmetric and combination properties.
79

 Any me-

thods based on divisions of the prime vertical circle (cf. Section 4.9) would 

have the same properties of either the Single Position Semicircle Method or 

the Four Position Circles Method, depending on their geometrical definition. 

The symmetry and combination properties are natural properties for a sys-

tem for projecting the rays, because these properties reflect the properties of 

the regular polygons which are used in the definition of the rays. Similar pro-

perties hold in the theory of aspects between zodiacal signs, and the analo-

gies with these aspects were often used in the astrological interpretation of 

the rays. The Simple Ecliptic Method, the Right Ascension Method, the Four 

Position Circles Method and the Seven Hour Lines Method are, in this sense, 

natural methods for projecting the rays. Thus we can assume that the 

Oblique Ascension, Single Position Semicircle and Single Hour Line me-

thods were derived from the corresponding methods for progressions, and 

that the Standard Houses method was derived from the standard methods for 

dividing the ecliptic into houses. As for methods based on the use of the 

prime vertical for the rays, we can presuppose that they would be related to 

the Prime Vertical Method for the houses, but we can only conjecture about 

whether these methods were originally designed for the division of houses, 

the projection of rays, or the progressions (tasy÷r). These relations will be 

further discussed in Section 6. 

 
79 In the method of al-Batt×n÷, a point P outside the ecliptic casts its rays to points in the eclip-

tic. This method has some (but not all) of the combination properties and it does not have the 

symmetric property. In the method of al-B÷rýn÷, the rays are not cast to points on the ecliptic, 

except the quartile rays. This method has neither the symmetric property nor any of the combi-

nation properties. 
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5. Houses 

Die Angriffe unsachverständiger Astrologie-Gegner richten sich 

mit Vorliebe gegen das Häusersystem, welches als willkürliches, 

törichtes Gemengsel einfältiger Kombinationen hergestellt wird.  

(Koch 1959, p. 95) 

Although the astrological houses are not the main subject of this paper, we 

will list the systems which are related to the above-mentioned systems for 

progressions and rays. We use the same terminology as Kennedy (1996, pp. 

538-545) and North (1986, pp. 46-47), and we only add references to ancient 

and medieval sources if they are relevant for our discussion of rays and pro-

gressions. 

5.1 Equatorial (Fixed Boundaries) Method 

This is Kennedy-North, no. 4. Modern astrologers attribute this system to 

Regiomontanus (1436-1476), an author who owned a Latin translation of Ibn 

Muþ×dh al-Jayy×n÷ÿs Tabulae Jahen.
80

 The cusps of the houses are the inter-

sections of the ecliptic with the position circles which divide the celestial 

equator into equal intervals of 30 degrees (Figure 19). 

 
Figure 19 

 
80 North 1987, p. 49. 
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Ibn Muþ×dh mentions this method in both his Tabulae Jahen and his trea-

tise on the projection of rays, and he says that it is the correct method be-

cause it is analogous to the Four Position Circle method, which he considers 

as the correct method for the projection of rays (Hogendijk 2005). Thus ma-

ny later authors attributed this method for the houses to Ibn Muþ×dh (or: 

Abenmoat).
81

 

All the astrolabe plates mentioned in Section 3.1.3 above allow for the ap-

plication of this method for the houses, but the evidence of markings or num-

bers for the limits of the houses lacks on the oldest one, made in 984-985. 

Therefore, we can not assume that this plate, which explicitly mentions the 

projection of rays and the tasy÷r, was also designed for the division of 

houses. On the plate of the astrolabe of A¬mad ibn ©usayn ibn B×½o, the 

method is attributed to one al-Gh×fiq÷. According to North (1986, p. 65), this 

individual was Abýÿl-Q×sim A¬mad ibn þAbdall×h ibn þUmar al-Gh×fiq÷ ibn 

al-¼aff×r (died 1035). Following this identification, it is possible to consider 

that the method was already known to Ibn al-¼affār, if not before (cf. 

Hogendijk 2005, p. 98). Perhaps Ibn al-¼aff×r invented the mathematical me-

thod and Ibn Muþ×dh gave the philosophical motivation and some mathema-

tical algorithms for the computation. Nevertheless, al-Ghāfiq÷ is a fairly 

common nisba in al-Andalus (cf. for instance Lirola and Puerta 2004, p. 754: 

index of nisbas) and it seems somewhat risky to take Northÿs identification 

for granted. Among others, the same nisba is attached to the Andalusian ma-

thematician and astronomer Ibn al-Hāÿim (Sevilla?, second half of the 12
th
 c 

– Marrakesh?, first half of the 13
th
 c).

82
 Moreover, we can not know whether 

the “method of al-Gh×fiq÷” refers to this solution for the houses or to a more 

general approach that uses the same geometrical pattern for the projection of 

rays (or the progressions, cf. Sections 3.1.6 and 4.9 above). Another astro-

labe of A¬mad ibn ©usayn ibn B×½o, dated in A.D. 1294-1295 (694 of the 

Hegira) and published in García Franco 1955, pp. 297-309,
83

 seems to have 

four plates with position circles for the division of houses according to the 

 
81 See North 1986, pp. 35-38. 
82 On this author see Puig 2007, pp. 555-556 and the references there given. 
83 García Franco read the Hegira date on the plate, written in abjad numerals, as 664 (A.D. 

1265-1266), but Calvo (in Ibn B×½o 1993, p. 31: fn. 86) showed that it seems more reasonable 

to read 694 (see also Vernet and Samsó 1992, p. 225; Eiroa Rodríguez 2006, pp. 69-70, no. 

70). 
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Equatorial Method.
84

  

In the thirteenth-century Libro dell astrolabio redondo, a work written for 

king Alphonso X by Rabb÷ Is¬×q ibn S÷d, the method is described and attri-

buted to Hermes and al-Zarq×lluh (died 1100).
85

 Traces of this method have 

yet to been found in the Eastern Islamic world (see Section 6). 

5.2 Prime Vertical Method 

This is Kennedy-North no. 3. Modern astrologers attribute this system to 

Campanus of Novara (ca. 1210-1296). The cusps of the houses are the inter-

sections of the ecliptic with the position circles which divide the prime verti-

cal (defined in Section 3.1.6 above) into equal intervals of 30 degrees 

(Figure 20). 

 
Figure 20 

 
84 The published photographs are not clear enough to identify all the markings. The published 

description implies that circles crossing twelve equal divisions of the equator and passing 

through the North point of the horizon were drawn on these plates. A new inspection of this 

device, preserved in Madrid, Real Academia de la Historia, would clarify its details. 
85 As pointed out by Calvo (1998, p. 36), the Libro dell astrolabio redondo does not give the 

Prime Vertical Method of Section 5.2 and thus North 1986, p. 34, has to be corrected. The des-

cription in the Libro dell astrolabio redondo is also explained in Seemann 1925, pp. 15, 28. 
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This kind of position circles are plotted on the astrolabe plates mentioned 

in Section 4.9, which have also numbers indicating that are to be used for the 

division of houses. Another plate related to this method was published on the 

cover of Comes, Puig and Samsó, 1987. It belongs to an astrolabe that, ac-

cording to Samsó, can be attributed to one of the Baný Bā½o: ©asan b. 

Mu¬ammad b. Bā½o
86

. This plate is only designed for the division of houses 

at a latitude of 37º30'. It has the inscription “for the Method of Hermes” and 

shows the projection of twelve position circles corresponding to the limits of 

the houses as defined in the Prime Vertical Method. 

©usayn Ibn B×½o presents a trial-and-error solution according to this me-

thod by means of his universal astrolabe plate (1993, Ch. 154, pp. 175-177 

Arabic, 199-201 Spanish). He attributes the method to Hermes, and he says 

that Ibn al-Sam¬ also employed it in his Z÷j using an incorrect computation. 

This incorrect computation was criticized and corrected by Ibn Muþ×dh in 

his treatise on the projection of rays (Kennedy 1994). 

5.3 Hour Lines Method 

This is Kennedy-North no. 0, compare Sections 3.1.4, 3.2 and 4.5. Modern 

astrologers attribute this system to Placidus, that is, Placido de Titi (1590-

1668) (North 1986, p. 21). The cusps of the houses are the intersections of 

the ecliptic with the lines of the even seasonal hours. Thus the cusps of the 

eleventh and twelfth house lie on the lines of 2 and 4 seasonal hours before 

noon, as in Figure 21. 

This procedure can be performed with any standard astrolabe plate having 

the lines for the seasonal hours. Nevertheless, some preserved plates bear ex-

plicit numbers of the houses, which were engraved in counter-clockwise 

order along the lines for the even-numbered seasonal hours. Thus these 

instruments were also constructed for determining the houses by means of 

the Hour Line Method. This is the case of the two plates of A¬mad b. 

©usayn b. B×½oÿs astrolabe mentioned in Section 3.1.4. 

The application of an astrolabe to this function is found in several treatises 

on this instrument (cf. Calvo 1998, p. 36). Ibn al-Sam¬ says that ©abash [al-

©×sib]
87

 (ninth century) attributed the procedure to Ptolemy (Ibn al-Sam¬ 

 
86 The first note on this astrolabe appeared in Firneis 1987, pp. 229-230. On the identification 

of the members of the Baný B×½o family, see Calvo 2002; Ibn B×½o 1993, pp. 23-25. 
87 On this author see Charette 2007. 



84  J. Casulleras and J.P. Hogendijk 
 

 

1986, pp. 66, 124). No trace of any method for determining the houses 

appears in the extant works of Ptolemy, but Viladrich argues that the refe-

rence can be explained by the fact that in the Tetrabiblos, Ptolemy mentions 

hour lines in connection with progressions (Ibn al-Sam¬ 1986, p. 67, fn. 

140). Ibn al-¼aff×r
88

 (died 1035) describes the technique without any attribu-

tion (Millás 1955, pp. 44, 75; Catalan translation in Millàs 1931, pp. 70-71). 

Abraham b. þEzra gives the procedure in three works: his treatise on the as-

trolabe (Millás 1940, p. 22), Sefer ha-moledot (North 1986, pp. 20-27) and 

De rationibus (Millás 1947, pp. 159-161), where he explains that its applica-

tion is very easy with an astrolabe
89

 (cf. Samsó 2012, p. 190). In the frame-

work of the Alfonsine Books, the method is attributed to Ptolemy and Vetius 

Valens (“Veles”) in the treatise on the spherical astrolabe (Seemann 1925, p. 

28), and it appears without attribution in the treatise on the flat astrolabe. 

 
Figure 21 

 

 
88 On this author see Rius 2207b. 
89 “Nos vero in astrolabio docuimus facile distinguere domus” (Millás 1947, p. 160; quoted in 

Samsó 2012, p. 190). 
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In the end of Section 3.1.4 above reference has been made to the quanti-

ties which the astrologer M×sh×ÿall×h (who died ca. A.D. 815) called “ascen-

sions in the houses”. For example, the “ascension” of an ecliptical arc λ in 

the eleventh house was defined as α0(λ) + 
3
1  (αφ(λ) – α0(λ)). Now the ques-

tion arises what system of houses M×sh×ÿall×h used, if this computation was 

based on any geometric motivation. His “ascensions” in the tenth and the 

first house are the right and oblique ascensions. These depend on the meri-

dian and horizon plane, so they are derived from the cusps of the tenth and 

first house. If one assumes that this is also true for the other houses, there are 

good grounds for believing that M×sh×ÿall×h defined the houses by means of 

the hour lines method.
90

 

5.3.1 Split Differences Method 

This is Kennedy no. 8. Kennedy found this method in the Z÷j of Ibn al-

Raqq×m, who worked in Tunis and Granada around 1280. It is as follows: 

“Trisect the quadrant of the equator between upper midheaven and the 

east point of the horizon, this determining two equatorial points. For each of 

them find two ecliptic points which are its inverse right and oblique ascen-

sions respectively. Trisect both of the ecliptic segments thus determined. 

Then the initial point of the eleventh house is in the upper segment, a third of 

the distance from the inverse right ascension to the inverse oblique ascen-

sion. The initial point of the twelfth house is in the lower segment, but it is a 

third of the distance from the inverse oblique ascension to the inverse right 

ascension” (Kennedy 1996, pp. 544-545, see also p. 568). 

We now reconstruct the geometric rationale of this method, using Sections 

3.2 and 4.6. In Figure 22, the ecliptic and the celestial equator intersect the 

meridian above the horizon at P and Q respectively, and the cusp of the ele-

venth house is F. Let φ be the geographical latitude of the locality. Since Q is 

 
90 Let V be the vernal point on the ecliptic and denote the “ascension in the eleventh house” of 

any ecliptical arc VL as the equatorial arc VE. Assume that the boundary between the tenth 

and eleventh house is defined by some curve C. We now give the notion “ascension in the ele-

venth house” the following geometrical interpretation: if L is on C, E must also be on C (note 

that this interpretation is also valid for M×sh×ÿall×hÿs ascensions in the tenth and the first 

house). Using the definition of the “ascension in the eleventh house” one can now prove that C 

is either the hour line 2 seasonal hours before noon, or a line obtained by rotating this hour line 

on the sphere around the celestial axis. The second possibility can be excluded on historical 

grounds. 
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on the equator, we have αφ(P) = α0(P) = α0(Q). The construction of the cusp 

of the eleventh house can now be rendered thus: 

Find points F0 and Fφ on the ecliptic such that 

30º = α0(F0) – α0(P) , 

30º = αφ(Fφ) − αφ(P) . 

Let λ denote ecliptical longitude. Then F is defined by 

λ(F) = λ(F0) + 
3

1
(λ(Fφ) − λ(F0)) . 

These formulas resemble formula (4) in Section 3.2 for n = 30º, but 

instead of an interpolation factor 
6

)(Pd
 in (4), which belongs to the hour line 

through P, we now have the interpolation factor 
3
1 . The following two re-

marks can be made: 

 The interpolation factor 
3
1  corresponds to the hour line two seasonal 

hours before noon. 

 Point Q is on the celestial equator, so if this point is made to “progress” 

(in the way of Section 3, but in the opposite direction to the daily motion of 

the universe) to the hour line two seasonal hours before noon, the pro-

gression arc n is 30 degrees. 

 
Figure 22 
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We conclude that Ibn al-Raqq×m computed the cusp of the eleventh house 

as the intersection between the ecliptic and the hour line two seasonal hours 

before noon. Thus the Split Differences Method is an approximate computa-

tion of the houses according to the hour lines method.
91

 This confirms 

Northÿs conjecture in (North 1996, p. 580): “This new method (i.e. the Split 
Differences method of Ibn al-Raqq×m) I find interesting because, to my 

eyes, it looks like an approximative method, rather than a new method”. 

5.4 Standard Method 

Compare Section 4.7 and Figure 17. This system was the most popular one 

among medieval Islamic authors of astrological texts and tables, and it is the-

refore called the Standard Method by Kennedy and North (no. 1), and “the 

well-known method” by al-B÷rýn÷ (1985, vol. 3, pp. 1357-1359). Through 

the ascendent P draw a semicircle parallel to the celestial equator with end-

points on the meridian plane. Thus one obtains the half day arc and the half 

night arc of the ascendent. Trisect these arcs and draw great circles through 

the division points and the celestial pole C. These great circles define the 

boundaries of the houses. This system is attested in a Greek horoscope by 

Rhetorius who lived in the fifth century A.D. (North 1986, p. 6), so it is pre-

Islamic. 

6. Final remarks 

6.1 Ptolemy and Hermes 

In the preceding sections we have seen that many methods for progressions, 

rays and houses are attributed to either Ptolemy or Hermes. The question 

arises what these attributions really mean. It is clear that the Hour Line me-

thod for progressions was correctly attributed to Ptolemy because it is found 

in the Tetrabiblos. No trace of the Single Hour Line method for rays and the 

Hour Lines Method for the houses are found in the extant works of Ptolemy. 

We think that these attributions are best explained following the sugges-

tion by al-B÷rýn÷ in Section 4.5 above. In Section 4.10 we have argued that 

the Hour Line method for rays is unnatural because it does not have the ma-

 
91 An exact computation was not feasible because it would have involved the numerical solu-

tion of a cubic equation, see North 1986, pp. 22-23. 
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thematical properties one expects for a sensible theory of rays. The method 

had probably been adapted from the Hour Line method for progressions. 

Since that method was the work of Ptolemy, the method for rays was also 

called “method of Ptolemy”. In the same way one can explain why the hour 

lines method for houses was attributed to Ptolemy. Thus the term “method of 

Ptolemy” means the same as “using hour lines” and it does not mean “inven-

ted by Ptolemy”. 

The case of the attributions to Hermes seems to be similar. The tenth-cen-

tury astrologer Ibn Hibint× says: “Hermes said in his book related to ‘The 

Latitudeÿ that the trine, and sextile, and quartile (rays) are made in equal 

degrees (i.e. on the equator)”
92

 (Ibn Hibint× 1987, vol. 1, p. 293, vol. 2, p. 

66; Kennedy and Krikorian 1972, p. 13). Hermes is a mythical figure and his 

astrological “Book of Latitude” is now lost, but the term “method of 

Hermes” must somehow have become synonymous to “by means of position 

semicircles”. Perhaps the lost book by Hermes on progressions contained the 

position semicircle method as well.
93

 This explains why almost all methods 

involving position (semi)circles were attributed by at least one medieval Isla-

mic author to Hermes.
94

 Thus it is not necessary to assume a pre-Islamic ori-

gin of either the Prime Vertical Method or the Equatorial (fixed boundaries) 

Method of houses. 

One may compare the modern usage of “algorithm” for method of com-

putation. This term does not imply that the method in question was invented 

by al-Khw×rizm÷.
95

 

 
92 This is Kennedyÿs translation. Ibn Hibinta continues that Dorotheus did “the same” 

(kadhalika) and that this means the following: the ecliptic degrees have to be transformed to 

ascensions, which are used to find the exact position of the ray (presumably on the equator). 
93 On Hermes and his astrological works see Sezgin 1974-1984, vol. 7, pp. 50-58. The work on 

progressions is p. 58 no. 1. 
94 Note that the position semicircle method for progressions is found in Ptolemyÿs Tetrabiblos, 
so it should have been attibuted to Ptolemy. 
95 Our interpretation of the attributions to Ptolemy and Hermes is confirmed in Chapter 52 of 

the Alfonsine Libro Segundo de las Armellas. This text establishes, on the one hand, an identi-

ty between the ‘opinionsÿ of Ibn Muþ×dh and Hermes in connection with the methods using 

position circles or semicircles for the projection of rays and the tasy÷r and, on the other hand, a 

relationship between Ptolemy and the methods using hour lines. Moreover, the author also ex-

presses his doubts on the attributions to Ptolemy, stating that they can be derived from mis-

takes in the translation (or the transmission: the text refers to “yerro en el trasladar”), and that a 

correct understanding of the Tetratiblos shows that the ‘opinionÿ of Ptolemy is most near to 

that of Ibn Muþ×dh: “Et quando entendieres bien el quarto partido de Ptolomeo. entendrás que 

mas tira su opinion á lo que dixo Aben-Mohat. que non á otro.” (Rico 1863-1867, vol. 2, p. 66; 
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6.2 Chronological survey of systems and their relations 

We will conclude this paper by a chronological list of some of the systems 

and their relationships. References to the sources can be found in the sections 

in which the methods are described. 

6.2.1 A.D. 0 - 200 

Most of the systems for progressions date back to the time of Ptolemy 

(around A.D. 150) or before. In the Tetrabiblos, Ptolemy mentioned the 

Right Ascension system for planets on the meridian, the Oblique Ascension 

system as the method usual in his time, the Position Semicircle system as the 

true system, and the Hour Line system as the system to be used in computa-

tions. Ptolemy mentions the astrological rays but the Tetrabiblos does not in-

dicate how they have to be computed, so he may have used the simple sys-

tem.
96

 

Ibn Hibint× preserved a confused quotation from an astrological work by 

Dorotheus, who lived in the first century after Christ.
97

 We do not under-

stand the details of the quotation but what is clear is that, if the quotation is 

authentic, Dorotheus used some kind of equatorial theory for the projection 

of rays, perhaps the Oblique Ascension Method. 

 
Casulleras 2010, pp. 112-115). Consequently, it seems that the Alfonsine author assumes that 

Ptolemy also intended to use position (semi)circles. Another case of possible identification of 

the procedures attributed to “Ptolemy and Hermes” is found in Ibn þAzzýz, who puts both 

names together as the source of “the best method and the most correct of what is said” on the 

projection of rays (cf. Casulleras 2007b, pp. 63-64, 81-82: English and 86-88: Arabic). 
96 The Standard and the Hour Line methods for the houses are also attributed to Ptolemy, and 

al-Istij÷ says that Ptolemy made their projections using oblique ascensions, but we should take 

this kind of attributions cautiously, as they cannot be substantiated from the extant works. 
97 Here is the quotation, with our remarks in square brackets [ ]. “Dorotheus said the same 

thing, namely: you look at the degree of the planet, then you make the projection of any ray 

you want in (a degree) equal to the degree of the sign in which (the planet) is [ignore latitude?], 

then you transform it to the ascension of its sign, [take some kind of ascension] [Here 

Dorotheus probably stated that 60, 90, etc. degrees should be added or subtracted in a passage 

which is missing in the text we have] and there will come out for you the exact place of its ray, 

and who tried it has stated that it is correct, then you transform the degree of the planet itself to 

the ascensions of its sign, and the place of its body will come out for you. [unclear; does he 

mean that a point on the celestial equator has to be transformed to a point on the ecliptic by ta-

king some kind of inverse ascension?]” (Ibn Hibint× 1987, vol. 1, p. 293, vol. 2, p. 66; transla-

ted in Kennedy and Krikporian 1972, p. 13). 
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6.2.2 Late antiquity 

The works attributed to Hermes and W×lis are of uncertain authorship, but 

they must have been written in late antiquity in Greek.
98

 The quotation from 

the “Book of Latitude” in Section 6.1 above suggests that “Hermes” also 

used some equatorial theory for the projection of rays. Therefore it is likely 

that the position semicircle method had been adapted from progressions to 

rays at this time. The fact that the Single Hour Line Method for rays and the 

Hour Lines Method for houses were attributed to “W×lis” shows that these 

methods were probably known in late antiquity as well. The Standard me-

thod for houses is found in a horoscope from late antiquity. 

6.2.3 Sassanid Iran 

The Right Ascension Method, which is one of the natural methods for cas-

ting the rays, was used in pre-Islamic Iran. A reference to the Persians using 

right ascensions also for the tasy÷r is found in al-Istij÷. Some of the methods 

listed under “Ninth-century Baghd×d” may also be of Iranian origin.  

6.2.4 Ninth-century Baghd×d 

In the eleventh century Ibn Muþ×dh presents the Seven Hour Lines Method 

for the rays as an approximation to the Four Position Circles Method, but we 

do not know whether these two methods had been created from the begin-

ning as two different methods or as two different solutions for the same geo-

metrical approach. In any case, we find the first trace of this approach for the 

rays in the tables of al-Khw×rizm÷, and must have been conceived by one of 

his contemporaries or predecessors, perhaps under influence of the Iranian 

right ascension method and the single position semicircle method of late an-

tiquity. 

Further research may well lead to a number of surprises. Al-Kind÷ stated 

in a lost astrological work that if a planet is at the ascendent, it casts its sex-

tile rays to the cusps of the eleventh and third house, its quartile rays to the 

intersections of ecliptic and meridian, and its trine rays to the cusps of the 

fifth and ninth houses.
99

 One wonders what systems of rays and houses al-

 
98 See Sezgin 1974-1984, vol. 7, pp. 38-41, 50-58. 
99 The source of this information is the treatise by Ibn Muþ×dh al-Jayy×n÷ on the projection of 

rays (Hogendijk 2005, pp. 98-99, 100: Arabic, 102-103: English). Ibn Hibint× presents a simi-
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Kind÷ used. There are four possibilities: (1) the Standard Method for the 

houses, combined with the Standard Houses Method for the rays; (2) the 

Hour Lines Method for the houses, combined with the Seven Hour Lines 

Method for the rays; (3) the Equatorial (fixed boundaries) Method for the 

houses, combined with the Four Position Circles Method for the rays; and 

(4) the use of the prime vertical with four position circles, combined with the 

Prime Vertical Method for the houses. Since Ibn Muþ×dhÿs treatise seems 

very comprehensive about the different systems for the houses, and he does 

not mention the use of the standard houses for the rays, the first option may 

be discarded. It is also unlikely that he was referring to operations on the 

prime vertical, because the use of this circle for the division of houses is 

harshly criticized in other passages. The solution of the Seven Hour Lines 

Method for the rays in the second option corresponds to the method presen-

ted by Ibn Muþ×dh as an approximation to the Four Position Circles. The re-

maining possibility is the combination that corresponds to the only methods 

for the rays and the houses approved by Ibn Muþ×dh in his works. In this last 

case, the Equatorial (fixed boundaries) Method for the houses has a history 

in the Eastern Islamic world and perhaps the ancient world as well. This is 

not impossible, for if hour lines are considered as approximations of position 

circles as in the Tetrabiblos of Ptolemy, then the Hour Lines method for the 

houses of ©abash and “Veles” is an approximation of the Equatorial 

Method. 

©abash al-©×sib used the Hour Lines method for the houses. It is likely 

that he used the same computation as Ibn al-Raqq×m. 

6.2.5 The tenth and eleventh centuries 

Around 950, Abý Jaþfar al-Kh×zin used the standard houses method for the 

projection of rays. 

The end of the tenth or the early eleventh century witnessed the invention 

of the Prime Vertical Method for the houses by al-B÷rýn÷ in Iran or Afgha-

nistan and (perhaps independently) by Ibn al-Sam¬ in al-Andalus. We also 

have the first evidence of a design using the prime vertical for the projection 

of rays in the astrolabe of Toledo A.D. 1029-1030. 

If the Equatorial (fixed boundaries) Method was not transmitted from the 

 
lar theory (1987, vol. 1, pp. 291-292 = vol. 2, pp. 64-65). Ibn þEzra uses this principle to find 

the rays by interpolation if the houses are known (Viladrich and Martí 1983, pp. 95-96). 
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East, it was invented in this period in al-Andalus, where Ibn Muþ×dh formu-

lates the first correct computation known for this method. 

The computations of the tasy÷r and the projection of rays along the ecliptic 

using the simplest methods are strongly defended by al-Istij÷. 

6.2.6 From the eleventh century on 

We do not find any new methods for the astrological practices in our area of 

study from the eleventh century on, but some authors make interesting com-

pendia of the existing alternatives, proposing new computational approaches 

(Libros del Saber, Ibn al-Raqq×m), compiling tables (Ibn þAzzýz), or making 

instruments with plates for a variety of methods (A¬mad ibn ©usayn ibn 

B×½o). 

Between the 13
th
 and 17

th
 centuries, Islamic methods for finding the 

houses became known in Europe under the names of Campanus of Novara, 

Regiomontanus and Placido de Titi. Thus all traces of the Islamic back-

ground of these methods disappeared. 

After al-Istij÷ÿs defence of the simple ecliptic methods for the progressions 

and the aspects, their number of supporters increases in the Maghrib (Ibn 

þAzzýz, Ibn Qunfudh, al-Baqq×r). The abandon of the astrolabe, an instru-

ment based on the projection of the celestial sphere on the equatorial plane, 

may have contributed to the modern use by the astrologers of the same sim-

ple methods. 

6.3 Open questions 

In this paper we have been concerned with texts and instruments, and most 

of the sources which have been discussed throw light on the history of theo-
retical mathematical astrology. It is obvious that the picture which we have 

sketched will be modified in the light of future research. The study of extant 

but unpublished or unexplored sources will provide much information on the 

history of houses, progressions and rays in the ninth to eleventh centuries. 

The history of these concepts in pre-Islamic Iran is a missing link which will 

be much more difficult to fill. It is an open question which methods were 

used by practicing astrologers in Islamic civilization. It would be interesting 

to locate unpublished horoscopes with astrological interpretations in archives 

(an example is Elwell-Sutton 1977) and then investigate this question in the 

light of the classifications of methods for the different practices, as has been 

done by Samsó (1999, 2004 and 2009). Thus one could try to find out which 
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parts of the history described in this paper went beyond the textbooks on ma-

thematical astrology. 
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