Studies in Learning Monotonic Models from Data

1f(¢¢

SIKS Dissertation Series No. 2014-01

The research reported in this thesis has been carried out under the aus-

pices of SIKS, the Dutch Research School for Information and Knowledge

Systems.

Netherlands Organisation for Scientific Research

The research reported in this thesis was supported by the Netherlands Or-
ganisation for Scientific Research (NWO grant no. 612.066.621).

(© 2013 Nicola Barile. All rights reserved.
Printed by Ipskamp Drukkers, the Netherlands.

ISBN: 978-90-393-7093-3

Studies in Learning Monotonic
Models from Data

Studies in het Leren van Monotone Modellen van
Data

(met een samenvatting in het Nederlands)

Proefschrift

ter verkrijging van de graad van doctor aan de Universiteit Utrecht op
gezag van de rector magnificus, prof.dr. G.J. van der Zwaan, ingevolge het
besluit van het college voor promoties in het openbaar te verdedigen op
maandag 10 februari 2014 des middags te 12.45 uur

door
Nicola Barile

geboren op 21 juli 1971 te Bari, Italié

Promotor: Prof.dr. A.P.J.M. Siebes
Co-promotor: Dr. A.J. Feelders

Contents

Acknowledgements
Abstract
Samenvatting

1 Introduction
1.1 The Need for Monotonicity
1.2 Research Motivation and Goals
1.3 Thesis Outline

2 Preliminaries
2.1 Definitions and Notation
2.2 Probability Theory and Statistics
2.3 Statistical Decision Theory
2.4 Pattern Recognition

2.5 The Isotonic Regression

3 Monotonic Classification with moca
3.1 Classification
3.2 Monotonic Classification with MOCA
3.3 Related work
34 Exampleo o
3.5 Experiments.
3.6 Weighted kNN probability estimation
3.7 New Experiments on Real-World Data Sets

3.8 Conclusions and Further Research

ii

iii

10

13
13
18
21
25
33

ii CONTENTS

4 Monotonic Instance Ranking with MIRA

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Preference Learning Tasks
Learning Preference Relations
Monotonic Instance Ranking
Experiments 0oL
An Improved Monotonic Ranking Function
Additional Experiments

Conclusion and further research

5 Active Learning in Monotonic Classification

5.1
5.2
5.3
5.4
5.5

Active Learning
Active Learning and Monotonicity
Related Work
Experiments oo

Conclusion

6 Conclusions

Appendix A Real-World Data Sets

Bibliography

SIKS Dissertation Series

Curriculum Vitae

115
117
119
131
134
144

147

151

155

167

181

Acknowledgements

First and foremost I would like to thank my supervisors Prof. Arno Siebes
and Dr. Ad Feelders for giving me the opportunity to fulfil my lifelong am-
bition of pursuing a PhD. Dr. Feelders in particular has taught me how
good research in Data Mining is done. The joy and enthusiasm he has
for his research were contagious and motivational, and, through his thor-
ough supervision, he has made my experience as a PhD student especially
productive and stimulating.

My heartfelt thanks also go out to the current and past members of
the Algorithmic Data Analysis research group I had the pleasure to meet
and work with, for they have contributed immensely to my experience at
Utrecht University both personally and professionally. The group has been
a source of friendships as well as of good advice and collaboration.

I would also like to thank the members of the reading committee, that is
Prof. Eyke Hiillermeier, Prof. Peter Flach, Prof. Linda van der Gaag, Prof.
Donato Malerba, and Prof. Hennie Daniels for the favourable opinions they
have expressed on this thesis and on the research of which it is the end
result.

Finally, T would like to thank to my family and to my friends from
around the world, in particular to Dr. Shari Lawrence Pfleeger and to
Dr. Charles P. Pfleeger, for all their love and encouragement. But most of
all T would love to thank my loving, supportive, encouraging, and patient
girlfriend Sonia for the unconditional love and faithful support she has given

me through all the stages of my doctoral studies.

il

Abstract

This thesis describes a number of new data mining algorithms which were
the result of our research into the enforcement of monotony restrictions
when learning (mostly non-parametric) models from data.

Not only can judicious use of domain knowledge improve the predictive
accuracy of data mining algorithms but also, crucially, models that are con-
sistent with the knowledge of domain experts will be accepted and adopted
much earlier than models that are not. Unfortunately, domain knowledge
that is most of times available is often informal and poorly structured, which
makes its use in practice fraught with difficulty.

The knowledge of the existence an ascending or descending relationship
between predictor variables and the variable to predict represents a notable
exception. Moreover, in many applications domain experts can specify such
monotonic relationships with relative ease and reliability based on their
knowledge and experience. It is known, for instance, that smoking and
being overweight increase the risk of cardiovascular disease (an increasing
relationship); on the other hand, it is likely that a higher income reduces
the probability of default on a loan (a decreasing relationship).

The experiments described in this thesis show that the predictive power
of our new data mining algorithms is comparable to, or sometimes even
better than, that of their non-monotonic counterparts. This is obtained
at a limited additional computational cost. All in all, it is possible to
conclude that enforcing monotony restrictions when applicable is practically
achievable and has an advantageous effect on the quality of the models

produced.

Samenvatting

Dit proefschrift beschrijft een aantal nieuwe data mining algoritmen die
zijn voortgekomen uit ons onderzoek naar het afdwingen van monotonie-
restricties bij het — veelal niet-parametrisch — leren van modellen uit data.

Het oordeelkundig gebruik van domeinkennis kan de voorspelkracht van
data mining algoritmen verbeteren, maar ten minste zo belangrijk is dat
modellen die in overeenstemming zijn met de kennis van domeindeskundigen
veel eerder geaccepteerd en gebruikt zullen worden dan modellen die hiermee
in tegenspraak zijn. Helaas is beschikbare domeinkennis vaak informeel en
slecht gestructureerd waardoor zij moeilijk gebruikt kan worden.

Kennis van een stijgend of dalend verband tussen voorspellende variabe-
len en de te voorspellen variabele vormt hierop een positieve uitzondering.
Bovendien geldt voor veel toepassingsgebieden dat domeindeskundigen op
grond van hun kennis en ervaring dergelijke monotone verbanden relatief
eenvoudig en betrouwbaar kunnen specificeren. Zo is het bijvoorbeeld bek-
end dat roken en overgewicht de kans op hart- en vaatziekten vergroot (een
stijgend verband) terwijl een hoger beschikbaar inkomen de kans op wan-
betaling bij een lening zal verkleinen (een dalend verband).

De experimenten die in dit proefschrift worden beschreven tonen aan dat
de voorspelkracht van onze nieuwe data mining algoritmen vergelijkbaar is
met, of soms zelfs beter is dan de voorspelkracht van hun niet-monotone
tegenhangers. Dit gaat slechts ten koste van een beperkte hoeveelheid extra
rekenwerk. Al met al mogen we concluderen dat het afdwingen van voorhan-
den monotonie-restricties praktisch haalbaar is, en een gunstig effect heeft

op de kwaliteit van de geproduceerde modellen.

Chapter 1

Introduction

The goal of predictive data mining is to determine the value of a target
output for a given population. One way to tackle this kind of problem is

represented by supervised pattern recognition.

Assuming the existence of a functional relationship between the domain
of the predictors (the feature space X') and the domain of the target attribute
(the target space V), a supervised pattern recognition algorithm observes the
training data set (the training phase) in order to learn from the examples
it comprises a model which approximates the unknown functional relation
also for individuals not included in the training data set (the training data
set usually does not cover the whole population). The learning process can

be seen as that of choosing a function (a hypothesis)
h:X—=Y

from a fixed class of functions H (the hypothesis space) which best fits the

training data set according to a given criterion.

Without assumptions about the nature of the functional relation being
approximated, an inductive learning task cannot be solved exactly because
unseen individuals might have an arbitrary output value. Such assumptions
represent the algorithm’s inductive bias [83] and are based on the available
prior domain knowledge, that is the auxiliary information about the learning
task which can be used to guide the learning process [110]. Not only does

domain knowledge provide inductive bias, but it can also facilitate other

4 Chapter 1. Introduction

aspects of an inductive learning task such as the preprocessing of training
examples, the initiation of the hypothesis space, the initiation of the start
point of the convergence, the direction of convergence etc. To sum it up,
prior domain knowledge is valuable to be incorporated into a predictive
algorithm. Unfortunately, though, domain knowledge is primarily informal
and ill structured, which usually makes its exploitation in inductive learning
systems challenging.

A common form of prior knowledge which is frequently available in many
application areas is represented by the monotonicity, either increasing or
decreasing, of the relation between the target variable and the predictor
variables. This kind of prior knowledge is usually easy to obtain in a reliable
way and is based on the intuition and experience of domain experts. It is
known, for instance, that smoking and being overweight increase the risk
of cardiovascular disease (a monotonically increasing relationship); on the
other hand, it is likely that a higher income reduces the probability of default
on a loan (a monotonically decreasing relationship); this a-priori knowledge
about the qualitative form of the model being learned should be built into
the estimation technique. Such qualitative features do not necessarily lead
to better rates of convergence but help in the interpretation of the obtained
curves [57]. Another example of monotonicity constraints in medicine can
be found in [95].

1.1 The Need for Monotonicity

The need to integrate monotonicity in the results produced by a data mining

algorithm can arise for many different reasons.

1.1.1 Monotonicity as a Property of the Target Function

In many cases, monotonicity represents a property of the target function
being learned which is a consequence of intrinsic characteristics of the mod-
elled phenomenon or whose presence can be assumed based on common
sense or experience.

In economic and financial applications involving demand, supply, and

pricing, monotonic functions are very common. FEconomic theory states

1.1.1. Monotonicity as a Property of the Target Function)

that, caeteris paribus, people tend to buy less of a product if its price in-
creases; as a consequence, price elasticity of demand should be negative.
The strength of this relationship and the precise functional form are how-
ever rarely dictated by economic theory. The usual assumption that such
relationships are linear are imposed mostly for reasons of mathematical
convenience. Other well-known examples from economics are the positive
dependence of labour wages on age and on education [85] and the so-called
hedonic price models, where the price of a consumer good depends on a set
of characteristics for which a valuation exists [58]. In house pricing, for in-
stance, the price of a house increases with the house area and decreases with
the distance to the city centre. Gamarnik [52] gives an example in option
pricing where the price of an American call option is an increasing func-
tion of the duration and the price of the underlying asset and a decreasing
function of the strike price.

Hellerstein [61] describes a statistical approach to diagnosing perfor-
mance problems of computer systems which exploits knowledge of mono-
tonic relationships such as the fact that paging delays increase with the
number of logged-on users.

Karpf [70] makes a strong case for the incorporation of monotonicity
constraints in inductive modelling of legal systems for the development of
example-based expert systems for administrative judgements. He analysed
four legal decision support systems in the area of administrative law which
were constructed by learning from formalised (parts of) cases from the prac-
tice of administration. The inductive systems discussed however lacked the
possibility to enforce monotonicity constraints, and this was identified as
a serious legal and technical shortcoming since most of the factors in the
analysed systems are, in fact, monotonic.

An example of monotonicity constraints in operations research can be
found in [80].

We end this section with an example from computer science. Record
matching is the task of identifying records that match the same real-world
entity. Each pair of records can be represented as a vector of similarity
measures between them (e.g. each measuring the similarity between the
two records on their corresponding fields); it stands to reason that if a

pair of records (r1,s1) matches and another pair (rg,s2) scores at least

6 Chapter 1. Introduction

as high on all similarity measures, then that pair should match as well.
Chaudhuri et al. [25] empirically observed that a monotonicity property is
indeed satisfied in most record matching scenarios. The same argument can
be used to require that scoring functions for top-k selection queries in data

bases should be monotonic [26].

1.1.2 Monotonicity as a Requirement for the Learned
Model

In many cases, monotonicity is not just an intrinsic property of the tar-
get concept being learned but a property that the predictive algorithm is
required to enforce. Predictions which do not respect the expected mono-
tonicity condition are likely to be rejected by a human expert evaluating
them.

For instance, when the results of a predictive algorithm are used to make
critical choices such as acceptance/rejection decisions, it may be required
that the algorithm return monotonic predictions for reasons of fairness or
liability [37]. An example would be a model used by a university to support
its admission process by ranking applicants. It would be strange if, given
two applicants a and b, a scored at least as well as b on all admission
criteria but a were ranked less favourably than b and, consequently, had their
application rejected. Such a non-monotonic admission rule would clearly
be unacceptable. Similar considerations also apply to most other selection
procedures, such as job selection and credit loan approval.

Another reason that might lead to the rejection of the results of a pre-
dictive algorithm is its lack of understandability or justifiability, for human
decision makers require in general that a model be easy to understand and
will not accept predictions returned by black box models such as neural net-
works or very complex decision trees [29]. Monotonicity constraints often
play a big role in the acceptability of automatically-generated predictions.

For instance, Pazzani et al. report in [88] on the evaluation of the po-
tential for monotonicity constraints to bias machine learning algorithms in
order to learn rules which are both accurate and meaningful. They employ
the FOCL algorithm, which is an extension of the purely inductive FOIL algo-

rithm. While the latter generates rules exclusively from the training data,

1.1.3. Monotonicity as Prior Knowledge for Probability Estimation 7

the former also uses domain knowledge to generate additional specifications
but then selects one hypothesis among all of these candidate specifications
based on performance over the data. Two data sets from the problems of
screening for dementia and assessing the risk of mental retardation were
collected and a rule learning system with and without monotonicity con-
straints was run on each. An example of monotonicity constraint given by
the authors is that the probability that a patient is mentally impaired de-
pends positively on the number of errors made in recalling their address; the
threshold which best distinguishes positive examples from negative exam-
ples according to the information gain criterion is selected. Rules learned
with monotonicity constraints were at least as accurate as those learned
without such constraints. More crucially, the authors also show that rules
learned with monotonicity constraints were significantly more acceptable to
medical experts than rules learned without such restrictions. They argue
that one factor influencing the acceptability of learned knowledge is consis-
tency with existing medical knowledge; they also show that most existing
knowledge discovery algorithms typically violate such knowledge, resulting
in concepts which are not coherent when taken in the larger context of other
related problems.

Finally, also in risk analysis it is often required that predictions be mono-

tonic with respect to the decision variables involved.

1.1.3 Monotonicity as Prior Knowledge for Probability
Estimation

Quantifying a Bayesian network, namely assessing the probability distri-
butions for each of the network’s variables conditional on their direct pre-
decessors in the network’s directed graph, can be easy in domains where
large data collections are available. On the other hand, when the amount
of data available is not very large, the subsets from which probabilities are
estimated can be empty or too small to allow for meaningful values, so the
probabilities estimates obtained are deemed as unreliable. Therefore, when
this happens, it is commonplace not to use the data available at all but,
instead, to rely on the knowledge and experience of domain experts as the

source of probabilistic estimation information.

8 Chapter 1. Introduction

Human experts tend to feel uncomfortable expressing their knowledge
and experience in terms of probabilities and tend to provide imperfectly cal-
ibrated assessments. On the other hand, they are typically able to express
probabilistic information of a semi-numerical or qualitative nature with rel-
ative conviction and clarity and with less cognitive effort; for example, they
often can easily indicate which of two probabilities is smaller [32]. In ad-
dition to requiring less cognitive effort and time to gather, such relative
judgements tend to be more reliable and more properly calibrated than di-
rect numerical assessments [82]. Based the above observations, Helsper et
al. designed in [41, 62| a method for obtaining the probabilities required
for a Bayesian network which combined the qualitative information about
probabilities obtained from domain experts with the numerical information
available.

Feelders et al. demonstrate in [43] that expert knowledge about the
signs of the influences between the variables in a Bayesian network can be
used to improve the probability estimates computed from small samples of
data from every-day problem solving in the domain. They also show how
these signs impose order constraints on the probabilities required for the
network. Druzdzel et al. propose in [32] a method for the elicitation of
probabilities from a domain expert which is non-invasive and which accom-
modates whatever probabilistic information the expert is willing or capable
to state. In their approach, all available information, whether qualitative
or quantitative in nature, is expressed in a canonical form consisting of
inequalities expressing monotonicity constraints on the hyperspace of pos-
sible joint probability distributions. This information is then used to derive

second-order probability distributions over the desired probabilities.

1.2 Research Motivation and Goals

Besides being easier to understand and more consistent with the prior
knowledge of domain experts, monotonic models ofter outperform better
their non-monotonic counterparts when monotonicity is a valid assumption
for the populations to which they are applied. For instance, Velikova et al.
show in [29] that monotonic decision trees derived from the relabelled data

perform better compared to those derived from the raw data. This is mainly

1.2. Research Motivation and Goals 9

due to the fact that monotonic models have a tendency to suppress over-
fitting [29]. Moreover, enforcing monotonicity removes noise and resolves
inconsistencies, which also may result in better predictive accuracy [84,98|.

The frequency with which monotonicity constraints occur in problems
addressed with data mining and machine learning and the ease and re-
liability with which such constraints can be elicited have prompted the
development of learning algorithms capable of enforcing such constraints
in a justified manner. Examples can be found in the fields of instance-
based classification [21,24, 34, 35,72, 76,77, 96|, rough-set-based classifica-
tion [17,53, 55,56, 71], classification trees 14,29, 37,40, 90,91, 105|, neural
networks [4,98,99,108], Bayesian networks [2,41-44,62,106], and rule learn-
ing [30,73,84].

The goal of our research was studying the incorporation of monotonic-
ity constraints into new algorithms aimed at performing various types of
predictive data mining tasks and resulted in the algorithms illustrated in
this thesis, which are all based on monotonicity-preserving models derived
from labelled data in a non-parametric fashion. Parametric models assume
a particular functional form beforehand and are completely specified by a
set of parameters; the objective of training in this case is to find appropri-
ate values for the parameters by optimising a loss function on the training
data; non-parametric models, on the other hands, do not assume a fixed
functional form. Either approach has a drawback to it: the price to pay
for parametric fitting is the chance of severe misspecification resulting in
too high a model bias, while non-parametric models may result in more
variable estimates especially for small sample sizes. We have opted for the
non-parametric approach for the two reasons. Firstly, parametric models
might be too restricted or too low-dimensional to fit unexpected features;
on the contrary, by not projecting the observed data into a Procrustean bed
of a fixed parametrisation (e.g. by fitting a linear model to the data), non-
parametric models offer greater flexibility. Secondly, we wanted to avoid
making assumptions about the function being learned other than mono-
tonicity as they might be wrong or hard to justify and might reduce the
support of problems that our research would be applicable to.

The main criterion used to evaluate our work was the quality of the

models produced by our algorithms; on the other hand, it was important

10 Chapter 1. Introduction

to determine the quality of the algorithms developed in terms of efficiency.
Therefore, the algorithms were applied to both ad-hoc generated artificial
data sets and real-world data sets (see appendix A for details on the latter)
in order to compare the out-of-sample predictive performance to that of
other relevant data mining algorithms, either monotonicity preserving or
not. The goal was to ensure we were not obtaining monotonic models at
the expense of predictive accuracy. If a monotonic model is really required,
then a small increase of the error might be acceptable, but clearly this
should be within reasonable limits. On the other hand, if the problem is
really monotonic, then we might even expect an improvement predictive

performance.

1.3 Thesis Outline

Although it revolves around three algorithms which were the result of
our research and which have been the subject of peer-reviewed publica-
tions [10-13], this thesis does not merely consist of a collection of separate
publications; instead, it includes three main chapters, each devoted to one
of the algorithms. Each of these main chapters begins with an introduc-
tion which establishes the main ideas behind the algorithm it discusses; the
chapter then proceeds with a presentation of related earlier work, followed
by a detailed description of the algorithm; finally, the chapter ends with an
empirical evaluation of the algorithm, followed by conclusions and ideas for
future work.

The following is a list of the chapters comprising this thesis together

with a summary of their contents:

e In Chapter 2 common notation and some basic concepts and defini-
tions, especially about monotonicity and probabilities, are introduced.
We also introduce the statistical problem of the isotonic regression
and the algorithm we have actually employed in our research, for the
isotonic regression lies at the heart of the algorithms presented in this

thesis.

e In Chapter 3 the MOCA monotonic classification algorithm is intro-

duced, which attempts to minimise the mean absolute prediction er-

1.83. Thesis Outline 11

ror for classification problems with ordered class labels. The algo-
rithm first learns a classifier with minimum mean absolute error (see
equation 2.3.7) on the training sample; it then uses an interpolation
scheme to predict the class label for attribute vectors not present in
the training data. We compare MOCA to the related 0SDL algorithm,
both on artificial and real-world data sets, and show that MOCA often

outperforms OSDL with respect to mean absolute prediction error.

e In Chapter 4 we present an algorithm for instance ranking called MIRA,
which learns a monotonic ranking function based on the posterior
class probabilities of a set of labelled training examples; monotonicity
is enforced by applying the isotonic regression to the basic proba-
bility estimates, and these new estimates are combined with logistic
regression in an attempt to remove unwanted rank equalities. An in-
terpolation scheme is then used to rank new data points. Through
experiments we show that MIRA produces ranking functions having
predictive performance comparable to that of a state-of-the-art in-
stance ranking algorithm, which makes MIRA a valuable alternative

when monotonicity is desired or mandatory.

e In Chapter 5 we propose two algorithms which exploit monotonicity
constraints for active learning in ordinal classification in two different
settings. The basis of our methods is the observation that if the class
label of an object is given, then monotonicity constraints may allow
us to infer the labels of other objects; for instance, from knowing
that loan applicant a is rejected, it can be inferred that all applicants
that score worse than a on all criteria should be rejected as well.
We also propose two heuristics to determine good query points; these
heuristics make a selection based on the potential of a point to allow
the labels of other points to be inferred. The introduced algorithms,
each implemented with the proposed heuristics, evaluated on artificial
and real-world data sets to study their performance. Empirical results
show that exploitation of monotonicity constraints can be beneficial

to active learning.

e Finally, in Chapter 6 we draw conclusions on our research, summarise

12

Chapter 1. Introduction

the contributions it has made, and discuss possible future develop-

ments in the work that we have done.

Chapter 2

Preliminaries

In this chapter we introduce some common notation and a few basic con-
cepts and definitions which are used throughout this thesis. Moreover, we
introduce the statistical problem of the isotonic regression and describe the
algorithm we employed to solve it, for the isotonic regression lies at the

heart of some of the algorithms presented in this thesis.

2.1 Definitions and Notation

2.1.1 Topology

Definition 1 (Partial Order). A binary relation < defined on a non-empty
set, P is called a partial order if the following three conditions are satisfied
for all a,b,c € P:

1) a<a (reflexivity)
2) ifa<band b<a,thena="b (antisymmetry)
3) ifa<bandb<c, then a <c (transitivity)

A partially-ordered set (or, briefly, a poset) consists of a set P together with
a partial order defined on it. Formally, a partially-ordered set is defined as

an ordered pair
X =(Px),

where P is called the ground set of X and < is the partial order of X.

14 Chapter 2. Preliminaries

Notation. For the sake of convenience, in this thesis a poset X = (P, <)
shall simply be referred to by specifying its ground set P when its ordering
relation needs not be specified; moreover, especially in order to distinguish
it from the partial order of another poset, we shall sometimes denote the

order relation of the poset as <p.

Definition 2 (Inverse Order). The inverse or dual of a partial order relation

< on a non-empty set P is the binary relation > on P defined as
a>b <= a<b.

The inverse of a partial order relation is reflexive, transitive, and anti-

symmetric; therefore, it is also a partial order relation.

Definition 3 (Dual Poset). The (order) inverse or (order) dual of a partially-
ordered set X = (P, <) is the poset having P as its ground set and the

inverse of < as its order relation, namely
X' = (P,>).

Definition 4 (Strict Partial Order). A binary relation < defined on a non-
empty set P is called a strict partial order if the following three conditions

are satisfied for all a,b,c € P:

1’) =(a < a) (wrreflezivity)
27) if a < b, then —(b < a) (asymmetry)
37) ifa <band b < c, then a < ¢ (transitivity)

A strictly-ordered set consists of a set P together with a strict order defined
on it and is denoted as (P, <).

There is a 1-to-1 correspondence between non-strict and strict partial
orders. In fact, if < is a partial order, then the corresponding strict partial

order < is the reflexive reduction < —{(z,z)|x € P}, namely

(a<b)e (a<band a#b).

2.1.1. Topology 15

Vice versa, given a strict partial order <, the corresponding non-strict par-

tial order < is the reflexive closure < U{(z,x) |z € P}, namely
(a<b)s(a<bora=b).

Definition 5 (Comparable Pair). Given a poset (P, <), (a,b) € P x P is

called a comparable pair if
a<borb<a.

Otherwise, (a,b) is called an incomparable pair.

Definition 6 (Transitive Closure). The transitive closure of a binary rela-
tion R on a set X is the transitive relation R on X such that R contains

R and R™ is minimal with respect to the inclusion relationship.

The transitive closure of a binary relation R always exists; it is R itself

if it is transitive, otherwise it is a different relation.

Definition 7 (Transitive Reduction). The transitive reduction of a binary
relation R on a set X is a minimal relation R’ on X such that the transitive

closure of R’ coincides with the transitive closure of R.

If the transitive closure of R is antisymmetric and finite, then R’ ex-
ists and is unique. On the other hand, existence or uniqueness are not

guaranteed in general.

Definition 8 (Covering Relation). Given a poset (P, <) and the reflexive
reduction < of <, the covering relation of P is the binary relation < defined
as:

a<b Z£ g<brBecPa<ec<b

The covering relation of a partially-ordered set (P, <) is therefore the
binary relation holding between comparable pairs that are immediate neigh-
bours. Moreover, if P is finite, then it can be proved that the covering
relation coincides with the transitive reduction of <. Covering relations
form the basis for a useful graphical representation of the partial order they

originate from.

16 Chapter 2. Preliminaries

Definition 9 (Order Graph). The order graph of a poset (P, <) is the
directed graph D = (V, A) where

HV=pr
2)acA = a=(r,y)\Nz<y

Fig. 2.1 depicts the order graph for a poset (P, <), where P = {a, b, c,d, e}
and < = {(a,b), (a,c), (a,d), (c,e)}.

Figure 2.1: Order graph for a poset (P,<), where P = {a,b,c,d,e} and < =
{(av b)v (a7 C)v (a, d): (C, e)}

Definition 10 (Total Order). A binary relation defined on a non-empty
set P is called a total order and usually denoted as < if the following three

conditions are satisfied for all a,b,c € P:

1) a<borb<a (totality)
2) ifa<band b<a,thena=">b (antisymmetry)
3) ifa <band b<c, then a <c¢ (transitivity)

A set paired with a total order is called a totally, a linearly ordered set or a
chain. At the opposite extreme, a poset in which no two distinct elements

are comparable is called an antichain.

Totality, which indicates the fact that any pair of elements in P is under
the relation, implies reflexivity; therefore, a total order is also a partial
order. As a consequence, all definitions and notations concerning partially-
ordered sets also apply to total orders and to totally-ordered sets. For

instance, the definition of a strict total order is analogous to Definition 4.

2.1.1. Topology 17

Definition 11 (Upper Set). An upper set of a poset (P, <)isaset U C P
with the property that, for every z,y € P, if x € U and z <y then y € U.

The definition of a lower set is given dually.

Notation. We shall denote the collections of all upper sets and of all lower

sets of a poset (P, <) as Up and Lp respectively.

Definition 12 (Upset). Given a poset (P, <) and a subset A C P, the
upset of A is the upper set 1A = {x € P|Ja € A:a < x}. The definition
of the downset | A of A is given dually.

Notation. If A = {a}, then we denote the upset of a as
ta={zePla<x}.

The notation for the downset |a of a is given dually. Moreover, we shall
write u(a) to denote the cardinality of 1@ and d(a) to denote the cardinality
of la.

Proposition 1 (Properties of Upper and Lower Sets). Given a poset (P, <),
the following properties are true for all x,2' € P, A,B C P:

~

. P is an upper set (resp. a lower set) of itself.

2. The complement of an upper set of P is a lower set, and vice versa.

3. The intersection and the union of upper sets (resp. lower sets) of P
is an upper set (resp. a lower set).

4. TA and | A are, respectively the smallest upper set and lower set of P
containing A.

5. If A =1TA, then A is an upper set of P, while if A =/ A, then A is a
lower set of P.

6. If AC B, then J/A C|lB, and TA C1B.

7. If x < 2!, then Lo Cla’, o’ Cta.

Definition 13 (Isotonic Function). A function f between two partially-
ordered sets (P, <) and (@, <) is isotonic if

a<pb= f(a) <q f(b). (2.1.1)

18 Chapter 2. Preliminaries

Definition 14 (Antitonic Function). A function f between two partially-
ordered sets (P, <) and (@, <) is antitonic if

a<pb= f(a) >¢q f(b). (2.1.2)

Definition 15 (Monotonic Function). An isotonic or antitonic function is

called monotonic.

2.2 Probability Theory and Statistics

Notation. Given a random variable X, its probability distribution shall be
denoted as
Px, (2.2.1)

and the values of its cumulative distribution function (cdf) as
Fx(xz), VYxeR. (2.2.2)

Notation. Given a discrete random variable Y, the values of its probability

mass function (pmf) we shall denoted as

py(y), VyeR (2.2.3)

Proposition 2. Given a discrete random variable Y with support Ry =
{yi}, then for all x € R

Fy(x) = > py(y)- (2.2.4)
Yyisw
In particular, Fy(x) = 0 if v < y1, and Fy(z) = 1 if card(Ry) = q and

('
On the other hand,

F i), 7 — 1’.
Py (yi) = Fy (yi) = Fy (y;) = v v T (225)
Fy (yi) — Fy(yi—1) otherwise.

where Fy (y;) = 1imyﬁy; Fy (y).

2.2. Probability Theory and Statistics 19

Proposition 2 describes the one-to-one correspondence between the prob-
ability mass function and the cumulative distribution function of a discrete
random variable Y: the knowledge of one allows to determine the values of
the other. Moreover, equation (2.2.4) shows that the cumulative distribu-
tion function of a simple random variable Y with support Ry = {y;}¥_, is
a step function comprising k£ + 1 steps delimited by the points comprising

Ry always taking value 0 on the first step and value 1 on the last step.

Definition 16. Given a random variable X, m € R is a median of the

probability distribution Py if

—_

PX>m)>—=, P(X<m)>-. (2.2.6)

NN

Notation. Any (discrete) probability distribution has at least one median,
but there may be more than one median. Nonetheless, we shall informally

refer to ‘the median’ and denote one of the medians as
Medx.

A simple way to characterise all the medians of a distribution is provided

by the following proposition. [77]

Proposition 3. Given a random wvariable X with probability distribution
P, m R, then

m is a median of P <= m € [my, my). (2.2.7)

N[=

where my = argmin,, P(X <m) > 1, andm, = argmax,, P(X >m) >

In the case of a discrete random variable X, the interval in (2.2.7) re-

duces to the (ordered) set {mg,mg+1,...,my}.

Proposition 4. Given a discrete random variable Y, m € R is a median
of the probability distribution Py if

(2.2.8)

Fy(m—1) < % Fy(m) >

N | —

20 Chapter 2. Preliminaries

Definition 17. Given a discrete random variable Y, m € R is a mode of

the discrete probability distribution Py if

m = arg max py ().
z€eR

Notation. The mode of a discrete probability function is not necessarily
unique as it may take the same maximum value at several points. Nonethe-
less, we shall informally refer to ‘the mode’ and denote one of the modes

as
MOdy.

Notation. Given a discrete random variable Y with support Ry = {y;},
a random vector X, the values of the conditional probability distribution

(also called the posterior distribution) Py x—x shall also be denoted as
Pi(x), VYie{l,...,k}. (2.2.9)
The values of the steps 2 to k of the cdf Fyx—_x shall be denoted as
Fi(x). (2.2.10)

The conditional expectation E(Y|X) of Y given the event X = x shall be
denoted as
Ey (x). (2.2.11)

Finally, given m € R, the notations

and

shall indicate the a median and the mode of the conditional probability

distribution of Y given the event X = x respectively.

2.3. Statistical Decision Theory 21

2.3 Statistical Decision Theory

Given a set A of possible actions, statistical decision theory [16,87] is con-
cerned with deciding which action a € A to take in the presence of statistical
knowledge which allows to reduce the uncertainties involved in making this
decision. The consequences of the decision taken depend on an unknown
state of nature

0 eco.

A first source of information used by statistical decision theory @ is
represented by how probable the various values of 6 are deemed to be; these
prior probabilities are usually based on past experience, and their density,

which can be either discrete or continuous, shall be denoted as
7(0).

Another source of information on 6 is represented by the outcome of
the statistical investigation performed on a population, which is described
by the random vector X taking values on the feature space X, in order to

estimate the conditional density
f(x]0).

Moreover, statistical decision theory also takes into account knowledge
of the possible consequences of the decision to be taken. This information
is quantified in terms of the loss that would be incurred for each possible
decision and for the various possible values of 6: if action q; is taken and 6,

is the true state of nature, then a loss
L0y, ar)

is incurred. Hence, it is assumed that a loss function L(0,a) is defined for
all tuples (6,a) € © x A.

Due to the presence of uncertainty, the actual loss is not entirely certain
at the time when the decision is made. Therefore, the action taken is the

action a which is “optimal” with respect to the “expected” loss of making a

22 Chapter 2. Preliminaries

decision is considered. As a first step towards formally defining this expected
loss, it is necessary to establish a way to map an observation x of X to an

action a which is appropriate for it.

Definition 18 (Decision Rule). A decision rule § is a function
51X — A (2.3.1)

If x is the observed value of the sample information, then d(x) represents

the action that is taken.

We seek to evaluate, for a given x, how much we would “expect” to lose

by performing action §(x) for each of the possible unknown states of nature

6.

Definition 19 (Conditional Risk Function). The conditional risk function
for a decision rule ¢ is the real-valued function R°(x) : © — R defined by

R°(x) = Eox (L0, 0(x)])- (2.3.2)
For all x, the value R°(x) is called the risk for §(x).

Notation. When the decision rule a risk function refers to is clear from the

context, the superscript § shall be omitted.

It is desirable to use a decision rule ¢ for which the risk is small. This
choice, though, has to be made individually for each observation x that the
risk is computed for.

In problems in which the state of nature 6 consists of a real number
dependent on X and the output of the decision function § is an estimate 0
of 0, a popular choice for the loss function is represented by the quadratic

or squared loss function
Ly(0,0) = (6 —), (2.3.3)
and the risk for choosing 0 is the mean squared error

MSE = Egx ([0 — 0]%). (2.3.4)

2.3. Statistical Decision Theory 23

The mean squared error is minimised by the conditional expectation F(6]X)
[23].

A generalisation of the squared-error loss which is of interest in estima-

tion problems is the weighted quadratic or squared loss function

A~

LY(0,0) = w(6)(6 — 6)?, (2.3.5)

This loss has the attractive feature of allowing the squared error, (6 — 5)2,
to be weighted by a positive-valued function of 8. This reflects the fact that
a given error in an estimation problem often varies in severity according to

what the real value of # happens to be.

Another loss function which can adopted to solve estimation problems

is represented by the Ly loss function or absolute error, which is defined as

~ ~

L1(6,0) =16 — 4. (2.3.6)

In this case, the risk of 0 is the mean absolute error

MAE = Egx (10 — 0)), (2.3.7)

which is minimised by any conditional median m € Medgx [23].

Finally, another loss function mainly used when 6 is discrete is repre-

sented by the zero-one loss function:

Lo_1(0,6) = 1(0,0), (2.3.8)

where I(x,y) is the indicator function. This loss function assigns a loss
of 0 for correct estimates and a loss of 1 to any kind of estimation error

regardless of the value predicted, for all errors are deemed equally costly.

Notation (Loss Matrix). If the state of nature takes k distinct values 6;,

the loss function used can be most conveniently represented as a loss matrix

A= Al (2.3.9)

24 Chapter 2. Preliminaries

where \; j = L(6;,6;), and the loss for choosing 6; for an observation x is

Ri(x) =Y \ijPi(x). (2.3.10)

For instance, using the notation above, the loss matrix for the zero-one
loss is
0, ifi=j
Xij = J ,j=1,...k, (2.3.11)
1, otherwise.
and, applying (2.3.11) in (2.3.10), the risk associated with choosing 6; for
X is
Rl (%)= Pi(x) P;(x). (2.3.12)
i#]

Ry_1 is minimised by choosing for x the value 6; for which 1 — P;(x) is
minimal, namely the value for which Pj(x) is maximal. In other words, the
optimal choice is represented by the conditional mode Modgx.

A way to choose a decision rule which does not depend on the decision
made for a given observation x is represented by considering the expected

loss with respect to the prior distribution on X.

Definition 20. The Bayes risk of a decision rule ¢ is defined as

R’ = Ex (R’ (x)). (2.3.13)

In case of a loss function expressed as a loss matriz A = ||\ ||, the
Bayes risk becomes

RM = Ex (R’ (x / Z/\”P) Px (x)dx. (2.3.14)

Since the Bayes risk is a number, one can simply seek a decision rule

which minimises it.

Definition 21 (The Minimal Bayes Risk Principle). Given two decision
rules 41 and d9, 1 is preferred to dy if

R < R%,

2.4. Pattern Recognition 25

A decision rule 6* is called a minimal risk Bayes decision rule if

§* = argmin R°.
1)

The quantity R* is called the Bayes risk.

In case of a loss function expressed as a loss matriz A = ||\]|, the
minimal risk Bayes allocation rule 6* corresponds to choosing for an object
x the state of nature 6; for which the risk R¢(x) = Zle Aij Pi(x) is minimal.

2.4 Pattern Recognition

In machine learning, pattern recognition is the problem of assigning a label
to an input value. In the following we introduce the generic type of pattern

recognition problem addressed by the algorithms described in this thesis.

2.4.1 Supervised Pattern Recognition

A supervised pattern recognition algorithm assumes the availability of a set
of labelled data (the training data set S), which in this thesis shall consist

of a number of labelled examples (x,y), where

e x is a vector of descriptive features, independent attributes, explana-
tory variables or predictors —quantifiable properties which together
constitute all known characteristics describing an instance— taking
values in a p-dimensional feature or input space X = H?:l X

e y is the label of x, also called the target, response, or dependent at-

tribute, taking values in the target or output space).

Assuming the existence of a functional relationship between the feature
space and the target space, a supervised pattern recognition algorithm ob-
serves the training data set (the training phase) in order to learn from the
examples it comprises a model which approximates the unknown functional
relation also for individuals not included in the training data set (the train-
ing data set usually does not cover the whole population). The learning

process can be seen as one of choosing a function (a hypothesis)

h:X—Y (2.4.1)

26 Chapter 2. Preliminaries

from a fixed class of functions H (the hypothesis space) which best fits the
training data set according to a given criterion.
The training data set that the algorithms described in this thesis learn

from is assumed to be a finite multiset
S =(Sp,mg).

comprising N training examples, whose underlying set of elements is the

set of distinct training examples observed in S

Sp = {(di) }i2 = {(xi,¥i) }i%e,

and
mg : Sp — N*

is the multiplicity function of the elements of S.

We have chosen this rather general representation in order to deal with
the situation where there are training examples consisting of identical fea-
ture vectors but having different class labels. This phenomenon occurs
frequently in real-world applications and for different reasons (e.g. clerical
errors, disagreement among experts on how to label a given individual, the
existence of a latent variable), and the algorithms presented in this thesis

are able to deal with it.

Notation. We shall sometimes denote a training data set as
S =(5p,Gs),
where Gg represents the graph of its multiplicity function, that is
{(a,mg(a)):a € Sp}.

Notation. We shall denote the set of distinct feature vectors x occurring

in a training data set S as
Sx ={x;}j_1

Moreover, for each x € Sy and y €), we shall denote the number of

2.4.2. Empirical Risk Minimization 27

occurrences of x in S as

n(x),

and the number of occurrences of x in S with label equal to y as
n(x,y).

It be should noted that, since the pattern recognition algorithms de-
scribed in this thesis operate in a supervised setting, the adjective super-

vised shall sometimes be omitted in the following.

2.4.2 Empirical Risk Minimization

Because of the uncertainty due for example to the presence of noise in the
data, the relation between a feature vector x and its label y is not modelled
as a deterministic function. Instead, the training data set is assumed to
be a sample drawn from the random vector (X,Y") having joint probability
distribution Px y, and y is the value of a random variable ¥ on) with

posterior distribution Py|x.

Once a loss function L measuring how different the prediction § = h(z)
returned by a hypothesis h is from the true label y has been chosen, a
supervised pattern recognition algorithm chooses the hypothesis h* € H for
which the Bayesian risk (2.3.13) R" is minimal, that is:

h* = arg min R".
heH

In general, R" cannot be computed because the distribution Pxy is
unknown to the learning algorithm. However, an approximation called the
empirical Tisk can be computed by averaging the loss function on the train-

ing data set:

N
1
Rgmp -N ZL(h(aci),yi (xi,9i) € 5. (2.4.2)
i=1

The choice of a loss function depends on many factors, including the

type of label being predicted. In the case of the squared loss function, we

28 Chapter 2. Preliminaries

have the empirical squared risk

N

> (i —h(x))? (xiw) €S, (2.4.3)

i=1

and in the case of the Ly loss function we have the empirical absolute risk

N
D lyi— h(xi)| (xiowi) €S (2.4.4)
i=1

Definition 22 (Empirical Risk Minimisation (ERM) Principle). Given a
hypothesis space H and a training sample S, choose a hypothesis h which

minimises the empirical risk:

h =argmin R, . (2.4.5)
heH
Therefore, the learning strategy defined by the ERM principle consists
of solving the optimization problem (2.4.5).

2.4.3 Monotonic Pattern Recognition

The pattern recognition algorithms presented in this thesis assume the ex-
istence of a partial order <y on the feature space X and of a total order
<y on the output space). Moreover, they assume that the unknown func-
tional relationship between X and) is monotonic, so their goal is to learn a
monotonic or monotonicity-preserving hypothesis h : X —), namely such
that

x <y x' = h(x) <y h(x) vx,x' € X. (2.4.6)

Informally speaking, the learned hypothesis returns predictions in which a
lower ordered input is not allowed to have a higher label.

In many applications, the order on X is derived from knowledge of the
signs of the influences of the features X; on Y as follows. An attribute X;
has a positive influence on the class label Y if observing a higher value for
X; makes higher values for Y more likely [107]. For example, we might
expect a greater risk of diabetes in persons with a higher body mass index.

A negative influence is defined analogously: the larger the value of X, the

2.4.3. Monotonic Pattern Recognition 29

smaller the value of Y is likely to be.

Without loss of generality, we shall assume in this thesis that all influ-
ences are positive, for a negative influence from X; on Y can be turned into
a positive one simply by reversing the order on Xj.

As an example, we list in table 2.1 the signs of the influences of the
descriptive features on the target attribute Price for the Windsor Housing
data set, which is one the data sets used to test the accuracy of our al-
gorithms (see appendix A for more information on this and on the other
real-world data sets used in our experiments). The attributes of the data

set are defined as follows [3]:

e Price of the house in Canadian dollars;

e DRV = 1 if the house has a driveway;

e REC = 1 if the house has a recreational room:;

e FFIN = 1 if the house has a full and finished basement;

e GHW = 1 if the house uses gas for hot water heating;

e CA = 1 if there is a central air conditioning;

e GAR shows the number of garage places;

e REG = 1 if the house in located in a preferred neighbourhood of the
city, that is Riverside or South Windsor;

e LOT is a continuous variable showing the lot size of the property in
square feet;

e BDMS is the number of bedrooms;

e FB is the number of full bathrooms (i.e. including, at least, a toilet,
sink, and bathtub);

e STY represents the number of storeys, excluding the basement.

The above considerations on the influences of each feature on the target
variable typically translate into the product order on X induced by the total

order on each Aj;, that is
x<x &<z Vi=1,...,p. (2.4.7)

Anyway, it should be pointed out that the algorithms illustrated in this
thesis are not at all limited in their application to this type of order; instead,

they can be applied in the presence of any arbitrary partial order on X.

30 Chapter 2. Preliminaries

Attribute Type Sign
Price Real Target
DRV Binary +
REC Binary +
FFIN Binary +
GHW Binary +
CA Binary +
GAR Integer -+
REG Binary +
LOT Numeric +
BDMS Integer +
FB Integer +
STY Integer +

Table 2.1: Signs of the influences of the descriptive features on the target attribute
Price for the monotonic Windsor Housing data set.

Finally, it should be noted that in the presence of a monotonic functional
relationship between feature vectors and labels, it makes sense to choose a
loss function which incurs a higher cost for those misclassifications that are
“far” from the true label than for those that are “close”. Examples of well-
known loss function which are suitable candidates are the Ly loss function
and the squared loss function; on the other hand, the widely used 0/1 loss

function, is not a suitable choice in this case because it does not satisfy this

property.

2.4.4 Monotonicity Violations

Oftentimes, in spite of the assumption that the functional relationship be-
tween X and) is monotonic, the training data set is not monotonic. This

situation can be formalised as follows.

Definition 23 (Monotonicity Violation, Inconsistent Data Set). If the func-
tional relationship between X and) is isotonic, given a training data set .S,

(x,y), (x',y') € Sp are a non-monotonic pair or a monotonicity violation if

x<xxX ANy>yy orx <yxAy >yuy. (2.4.8)

2.4.4. Monotonicity Violations 31

S is called an inconsistent (labelled) data set.

As an example, let us consider a training data set consisting of five
distinct observations, each described by a two-dimensional real vector x;
and having an integer-valued label y; ranging from 1 to 3. The feature
vectors are ordered according to the product order induced by the standard
ordering of real numbers, and the labels are totally ordered according to the
standard ordering of integer numbers. The order graph for the attribute
vectors comprising the data set is depicted in figure 2.2, with the observed
class labels given inside the nodes; it is easy to see that only five of the

ordered pairs of feature vectors which can be formed are comparable.

Because the feature space is ordered according to the product order, the
vectors which are comparable with a given vector are the vectors correspond-
ing to points situated in the first and the third quadrants of a Cartesian
plane centred in that point; the incomparable feature vectors, on the other
hand, are those situated in the second and in the fourth quadrants. For
instance, x¢ and x; are comparable because X(l) < x} and X% < x?, while x

and x3 are incomparable because x§ > x1 but x3 < x3.

The same visual clue can be used to determine the upset and downset
of a feature vector as they correspond to the points in the first and third
quadrant respectively. In our example, the upset of xq is Tx9 = {x1}
because the value of each coordinate of x; is greater than or equal to the

corresponding value for x; similarly, the downset of xq is |xg = {x2}.

Finally, if the assumption is made that there exists an isotonic functional
relationship between attribute vectors and labels, then this data set is in-
consistent. In fact, (xg,%0), (x1,y1) constitutes a monotonicity violation

because xg < x1 but yg =2 < 1 =1y;.

It should be noted that the algorithms presented in this thesis are ca-
pable of returning monotonicity-preserving predictions even when trained
on an inconsistent data set without the need to remove beforehand the

monotonicity violations it contains.

32 Chapter 2. Preliminaries

Figure 2.2: Order graph for a labelled data set where feature vectors are ordered
according to the product order on the feature space. Each node represents a
distinct observation; class label are given inside the nodes.

\/

Figure 2.3: Visual clue to determine the feature vectors comparable and incompa-
rable with and the upset and downset of a feature vector when the feature space
ordered according to the product order.

2.5. The Isotonic Regression 33

2.5 The Isotonic Regression

In this section, we introduce the problem of the isotonic regression, which
lies at the heart of the algorithms presented in this thesis. It should be
noted that all the results and algorithms we introduce are already known
and have been proved. Nonetheless, we discuss them in some detail because
of their importance to our work.

Regression is an example of the more general problem of pattern recog-
nition in which a real-valued output is assigned to a given input value. It
is concerned with the fitting of curves or functions to a set of points (x,y)
or, more generally, to the joint distribution of a random vector (X,Y") [94].
The function chosen to fit the points or the joint distribution is called a
regression function; it can be used in many ways, such as for prediction,
for studying the degree of association between the explanatory variable X
and the dependent variable Y, or for providing new insights into the phe-
nomenon which generated the data.

In many situations, one might strongly believe that the underlying re-
gression function has a particular shape or form which can be characterised
by certain order restrictions, and, consequently, it is natural to restrict the
selection of the regression function to an appropriate class of functions. In
the presence of a monotonic relationship between the descriptive variables
and the dependent variable, the class of regression functions shall be that
of isotonic functions.

The monotonic function which best fits the data can then be chosen
by using some measure of quality of the fit such as least squares or least
absolute deviations, which correspond to minimising the mean squared error
and the mean absolute error respectively. As explained in section 2.4.3, the
choice of the squared error or of the absolute error as the loss function to
minimise is most appropriate in the presence of monotonicity constraints.

In the case of (restricted) least squares and of isotonic regression func-

tions, we have the following optimisation problem.

Definition 24 (Isotonic Regression). Let Z = {z;}?_; be a non-empty,
partially-ordered set, g be a function on Z, and W = {w;}]_; a set of

weights with w; associated to z; for all i = 1, ..., n. The isotonic regression

34 Chapter 2. Preliminaries

of g (with respect to the partial order <z and to the weights W) is the real

function ¢* on Z which minimises the sum
n
S wi [f(z) — gl2i))? (2.5.1)
i=1

in the class of isotonic functions f on Z. The antitonic regression of g is
defined as the function which minimises (2.5.1) within the class of antitonic

functions.

Typically, for all i = 1,...,n the value g(z;) represents the estimate of
the value of an unknown, real-valued isotonic function defined on Z and w;
a quantitative indication of the precision of this estimate.

Because an antitonic function can be easily turned into an isotonic func-
tion (e.g. by multiplying it by —1), we shall restrict our attention without
loss of generality to the problem of computing the isotonic regression. More-
over, due to the following proposition, we shall speak in the following of the

isotonic regression.

Proposition 5 (Spouge et al. [100]). There always exists a unique isotonic

regression g*.

Computing the isotonic regression corresponds to solving the quadratic
programming problem having objective function (2.5.1) and linear con-
straints corresponding to the comparable pairs in Z.

It should be noted that if g is already isotonic or if all of the elements

of Z are incomparable, then the trivial solution
Ve € Z: g*(x) = g(x)

is the unique solution to equation (2.5.1).

Various dedicated algorithms, often restricted to a particular type of
order, have been proposed to solve this optimisation problem.

The Pool Adjacent Violators (PAV') [7] can be applied if Z is linearly
ordered. This algorithm has a time complexity that is linear in the size of
the set of constants. (See for instance [1].)

The minimum lower sets (MLS) algorithm [19] allows to compute the

exact solution to the isotonic regression problem for an arbitrary partial

2.5. The Isotonic Regression 35

order. Although extremely inefficient, this algorithm is very simple and,
therefore, suited to formulating small examples giving insights into the na-
ture of the solution to the isotonic regression problem. This is the reason

why we discuss this algorithm in section 2.5.1.

The algorithm which we have adopted in our research to compute the
isotonic regression and which we call the Divide-and-Conquer Algorithm is
described in section 2.5.2; the description provided is based on the work
by Spouge et al. [100]. It represents a generalisation of the algorithm pre-
sented by Maxwell and Muckstadt in [81] solving a scheduling problem in
economics. Spouge et al. have proved that Maxwell and Muckstadt’s al-
gorithm is incorrect but that, nonetheless, the divide-and-conquer strategy
it is based on can be used to compute the isotonic regression by solving at
most n maximal-flow problems to find minimum cuts instead of maximum
cuts as originally suggested by Maxwell and Muckstadt. This technique was
introduced by Picard in [89].

The divide-and-conquer algorithm has the best time complexity known
for an exact solution to the isotonic regression problem for an arbitrary
partial order, namely O(n*). Spouge et al. [100] have shown that if Z
is a subset of the Euclidean plane with product ordering induced by the
Euclidean distance on each dimension, then the isotonic regression problem
can be solved in O(n?’) time; moreover, they have proved that if the two
dimensional set is restricted to a grid (that is, if all points have integer

coordinates), the time complexity can be further reduced to O(n?).

Notation. Given a real-valued function f defined on the set Z and a real

number ¢, we shall denote the set of points 2z € Z such that f(z) = c as

Moreover, we shall denote the set of points x € Z such that f(x) < c as

[f <,

and we shall use a similar notation for the other possible order relations.

36 Chapter 2. Preliminaries

On the other hand, the notation

C

f

shall denote the fact that f is a constant function with constant value c.
Finally, the notation
f<c

shall denote the fact that for all points z € Z, f(x) < ¢, and likewise for

the other possible order relations.

Definition 25 (Level Set). A subset B of Z is a level set if and only if
there exist a lower set L and an upper set U such that B=LNU.

Proposition 6 (Robertson [94]). A subset B of Z is a level set if and only
if there exist an isotonic function f on Z and a real number ¢ such that
B=1[f=.

Definition 26 (Weighted Average). Given a real-valued function f, a pos-
itive weight function w, and a subset S of the domain of f, we define the

weighted average of S as

> es w(2)f(2)
ZZES w(z) .

Proposition 7 (Robertson [94|). For any real number ¢ such that the set

Avp(S) = (2.5.2)

lg* =] is non-empty
Avg(lg" =¢]) =¢ (2.5.3)

Proposition 7 reduces the problem of computing ¢* to finding sets on

which ¢* is constant, i.e its level sets.

Proposition 8 (Robertson [94]). For every z € Z, the isotonic regression

of g is given by

* = i Av, (L . 2.5.4
9(2) LelcnzlgeL Uerlxltlza:}z{GU vy (LNU) (2.5.4)

The isotonic regression with respect to a partial order is equivalent to

the antitonic regression with respect to the inverse order. By considering

2.5.1. The Minimum Lower Set Algorithm 37
the inverse order, lower sets and upper sets are interchanged; therefore, the
antitonic regression can be characterized as follows.

Proposition 9 (Robertson [94]). For every z € Z, the antitonic regression

of g is given by

* = i Av, (L . 2.5.5
9°(2) Le%lza:)z{eL UEZI/Illzl:rzleU v (LNU) (2.5.5)

2.5.1 The Minimum Lower Set Algorithm

Notation. For all non-empty, disjoint subsets A and B of Z, the notation
A+ B

shall be used to denote AU B.

Definition 27. A real function M defined on the non-empty subsets of Z
is a Cauchy mean value function if, for all non-empty subsets A, B of Z,
M (A + B) is between M(A) and M(B).

Definition 28. M is a strict Cauchy mean value function if it is a Cauchy
mean value function and has the additional property for all non-empty
subsets A, B of Z

M(A) < M(B) = M(A) < M(A+ B) < M(B). (2.5.6)

The weighted average (2.5.2) is an example of a strict Cauchy mean

value function.

Proposition 10. If M is a strict Cauchy mean value function, then for all

non-empty subsets A, B of Z

1. M(A+ B) < M(A) = M(B)
2. M(A+ B) > M(A) = M(B)

M(A+ B)
M(A+ B)

[AVARVAN

Proposition 11 (Robertson [94]). The union B of all lower sets of Z of

minimum average

B= U{A €Ly | A=argminper,Avyg(L)} (2.5.7)

38 Chapter 2. Preliminaries

is the largest lower set of Z of minimum average.

Let us denote as Bj the set defined in equation (2.5.7). This set is the
level set on which g* assumes its smallest value, and, because of proposi-
tion 7, it follows that

Vo € By : g"(x) = Avg(B1) = min{Avyg(L) | L € Lz}.

Now let us consider the averages of level sets of the form LNB{ for all L € L,
namely the level sets consisting of lower sets of Z with By subtracted. Let us
select again the largest of these level sets of minimum average By = LaN BY.

Bo is the level set on which ¢g* assumes its smallest value:
Vo € By : g"(x) = Avg(Ba).

This process is continued until Z is exhausted.

This is the idea on which the Minimum Lower Set (MLS) algorithm,
which is illustrated in Algorithm 1, is based. The algorithm removes mono-
tonicity violations by averaging over suitably-chosen subsets B C Z; as a
consequence, it partitions the set Z into a number of blocks on which the
isotonic regression is constant. At each iteration, a lower set with minimum
weighted average is selected; if multiple lower sets attain the same mini-
mum, then any of them can be considered. In Algorithm 1 the largest one
is taken, which is obtained by taking the union of all minimum lower sets.

If we consider the blocks in the order in which they are selected by the
MLS algorithm, then it is clear that

Avg(B;) < Avg(Biy1),

since otherwise
Avg(Bi U Bi—i—l) < Avg(Bi),

which would contradict the assumption made that B; is a minimum lower
set at step 7.

The MLS algorithm can be adjusted to compute the antitonic regression
by considering the collection Uy of all upper sets of Z with respect to <

rather than the collection L of all lower sets with respect to <.

2.5.2. The Divide-and-Conguer Algorithm 39

What limits the applicability of this algorithm is the high computational

cost of the generation of lower sets, which is exponential in the size of Z [43].

Algorithm 1 MinimumLowerSets(Z, <, g(z), w(z))

1: L < Collection of all lower sets of (Z,<)
2: repeat
33 B+ U{Ae L] Avy(A) =mingep Avg(L)}
for all z € B do
g*(z) < Avyg(B)
end for
for all L € £ do
L+ L\B
end for
100 Z<+ Z\B
11: until 7 =2
12: return g*

2.5.2 The Divide-and-Conquer Algorithm

As we mentioned at the end of the previous section, the complexity of
determining the set £z of all lower sets of Z makes the adoption of the MLS
algorithm impracticable in real-world situations. A more viable alternative
is represented by the divide-and-conquer algorithm, which we introduce in
this section. Our discussion in based on the description provided by Spouge
et al. in [100].

Proposition 12. If f is any isotonic function on Z, then for any real

number a, [f < a] is a lower set of Z, and [f > a] is an upper set of Z.

Notation. Given a real-valued function f defined on the set Z, and a subset
S C Z, the notation

(fls)*

shall denote the isotonic regression of f restricted to S, which is distinct

from the restriction of the isotonic regression of f to S

s

40 Chapter 2. Preliminaries

Definition 29 (Complementary Pair). A complementary pair (L,U) of Z
is a partition of Z such that U is an upper set and, consequently, L is a

lower set. (L,U) is trivial if either L or U is empty.

Definition 30 (Projection Pair). A projection pair of Z for the function g

is a non-trivial complementary pair (L, U) such that

Jery € R: (‘C]|L)>k <cruy < (g|U)*'

Theorem 1. If (L,U) is a projection pair for g, then

9" lL = (9lL)", 9%lv = (glv)" (2.5.8)

Proof. If we define
. (g9l)", ifzel
g =
M o), itzeUu

then g7, is isotonic. In fact, if , 2" € L, then
v <o’ = giy(z) = (9]0)"(x) < (9])"(2)) = gLy (@)

The same is true if z, 2’ € U. On the other hand, if z € L and 2’ € U and,

therefore, z < ', then

giv (@) = (92)" (=) < crv < (glv)" (@) = giu (2).

AS a COnsequence,
lg—a*1% =llg—g* 1L +9—9*Ilt = la—9givlli+lg—9givllt = lg—givllZ,

where the inequalities are a consequence of the fact that g7, corresponds
to the isotonic regression of g restricted to L and U respectively. From the

uniqueness of ¢g*, it then follows that g* = g7 ;. O

Theorem 1 shows that the problem of computing the isotonic regression
g* of a given function g on Z can be reduced to that of finding a projection
pair (L, U) for g as the restriction of ¢g* to L and U is equal to the isotonic

regression of g restricted to L and U respectively. We would like to be

2.5.2. The Divide-and-Conguer Algorithm 41

able to repeat this decomposition in a recursive manner with a reduction
in size and complexity at each division until the problem of computing the
regression becomes trivial on the pieces. In the following we show how this

is possible.

Definition 31 (Maximal Upper Set). U € Uy is a mazimal upper set for
beRif

U = argmax s,(U), (2.5.9)
Uely
where
sp(A) = s(z), ACZ, (2.5.10)
z€A
and
sp(z) = w(x)[g(x) —b], = € Z. (2.5.11)

The definition of a minimal lower set follows dually.

Lemma 1. For any real number ¢, the following implications are true:
i <d#0 = Aully <d)<c (2.5.12)

"> #0 = Av(lg" >¢]) > ¢ (2.5.13)

Proof. The set [¢g* < ¢] can be decomposed as

[9" < c] = Uyev.[g" = v, (2.5.14)

with
Ye={y<cl|lg" =yl #0} =g"(Z)N[~inf,c].

Being a subset of the real line, the elements of Y, can be sorted as

N <y2Z...Yn==c.

Therefore, from proposition 7 and from the fact that Av, is a strict Cauchy

42 Chapter 2. Preliminaries

mean value function, it follows that

Avg([g* <) = Avg(Uyey,, [9" = y])
=Avg([¢" =yl + 9" =l + -+ [¢" = Ym-1] + [¢" = ym])
=Avg (([g" =] + 9" =yl + -+ 9" = ym—1]) + 9" = ym])
< Avg([g" = yml) = Avg(lg" = c]) = c.

The second implication follows by duality. O

Definition 32 (Maximal Complementary Pair). A complementary pair
(L,U) of Z is called mazimal for b € R if U is a maximal upper set (or,

equivalently, if L is a minimal lower set) for b.

Theorem 2. For a non-empty subset X of Z and for b € R, the following

implications are true:

X is a maximal upper set forb = Vre X :b < (g|x)"(x) (2.5.15)
X is a minimal lower set forb = Ve € X : (g|x)"(z) <b (2.5.16)

Proof. Let us suppose that X is a maximal upper set
uw=min(g |x)*

Because X can be partitioned as

X =g x)" <ulUl(g [x)" >ul,
and because X is a maximal upper set, it follows that

sp([(g 1x)" > u]) < sp(X) = su([(9 |x)" < ul) +s([(g [x)* > ul),
and, as a consequence,
0 < su(l(g [x)" < ul).

Therefore, from the definition of sy, it follows that

b < Avg([(g |x)" < ul).

2.5.2. The Divide-and-Conguer Algorithm 43

From lemma 1, we finally obtain that

b< Avy([(9 x)" <u)) <u<(g]x)"
The second implication follows by duality. 1

Corollary 1. Every non-trivial mazimal complementary pair (L,U) for

b e R is a projection pair for g, with cry = b.

Proof. Because L and U are respectively a minimal lower set and a maximal

upper set for b and are both non-empty, from theorem 2 it follows that

(g1)" <b<(glv)"
Therefore, (L, U) is a projection pair for g. O
Theorem 3. For b = Avy(Z), the following implications are true:

0 is a mazimal upper set forb = ¢g"=b (2.5.17)

0 is a minimal lower set for b = g* =b (2.5.18)

Proof. First of all, it should be noted that, since b = Av,(Z), we have
sp(Z) =0, as

(2) = 3 wla)lg(x) — Avy(Z)] = (2.5.19)
reZ
= Z w(z)g(z) — Loez W(@)9(@) Z w(z) = 0. (2.5.20)
reZ erz w(x) reZ
Moreover,
sp(0) = 0.

If) is a maximal upper set for Avy(Z), then Z is a maximal upper set for
Avy(Z) too, and, because of inequality (2.5.15),

b<g*.

On the other hand, the fact that §) is a maximal upper set for Av,(Z)

implies that Z is a minimal lower set for Av,(Z); as a consequence, because

44

Chapter 2. Preliminaries

of inequality (2.5.16),

g* <b.
Therefore,
g =0b.
Implication (2.5.18) follows by duality. O

The above properties lead to the recursive procedure IR to compute the

isotonic regression illustrated in Algorithm 2.

Algorithm 2 IR(Z, <, g(-), w("))

1
2
3
4:
5
6

(L,U) + FindMaximalComplementaryPair(Z, <, g(-), w(-))
:if L =@ or U = @ then
return Avy(2)
else
return (IR(L7 <, g‘L(')7 w|L())) IR(U, <, g|U('>a w|U('))
. end if

At each step, a maximal projection pair for Avy(Z) is computed by

procedure FindM aximalComplementaryPair, which is illustrated in Al-

gorithm 3.

Algorithm 3 FindMaximalComplementaryPair(Z, <, g(-), w(+))

1:

Construct the following network N = (V, A):

Vertices: Vo € Z add a corresponding vertex x to V

Source and Sink: add a source vertex s and a sink vertex ¢t to V
Edges: Vx,y € Z, if x < y then add to A a directed edge x — y with
capacity ¢(z,y) = oo

Capacity: compute Avg(Z); Vo compute a(z) = SAUQ(Z)(.’E) (see equa-
tion 2.5.11)

Maz Flow In: Yx € Z : a(xz) > 0 add to A an edge s — x with capacity
c(s,z) = a(x)

Maz Flow Out: Vo € Z : a(z) < 0 add to A an edge — ¢ with capacity
c(z,t) = —a(x)

: Solve the maximum-flow problem on the network N to find the mini-

mum s — ¢t cut C = (5,7

: return (T —t,5 —s)

Algorithm 3 consists of Picard’s maximal closure algorithm [89]. Picard

showed that a maximal upper set can be obtained from a minimum s — ¢

2.5.2. The Divide-and-Conguer Algorithm 45

cut in a network N = (V, A) constructed as illustrated. The minimum s —¢
cut required at step 2 can be computed by using a standard maximum flow
algorithms such as the Ford-Fulkerson algorithm [28], which is the algorithm
we adopted in the implementation we have used in our research.

Given the O(n?) time complexity of minimum s — ¢ cut algorithms, the
overall complexity of the algorithm is O(n*). This upper bound on the
time complexity is the best known for an exact solution to the isotonic
regression problem for an arbitrary partial order. However, there are a few

special cases worth mentioning;:

e If Z is already isotonic, then the algorithm’s time complexity is O(n?).
Each time Algorithm 3 is executed, it is not possible to find a path
from the source s to the sink ¢; both concluding there is no path and
then enumerating which elements belong to L or to U can be done in
O(n) time.

e [f each split between L and U is evenly balanced, then the algorithm’s
time complexity is O(n®log(n)). As the size of the graphs constructed
halves during each iteration, the sum over all constructed graphs
viewed in time is 1-n3+2- (%n)3+4- (41)3+- - +n-(Ln)? = log(n)n?,
resulting in a total running time of O(n®log(n)).

e If Z is antitonic, then the time complexity is O(n?). It is still necessary

to calculate the minimum s — ¢ cut, but there is no recursion.

All of the aforementioned cases are likely to occur during some of the
algorithm’s recursions in (parts of) real-world data sets; therefore, the al-
gorithm’s actual running time can be expected to be better than the O(n?)
upper bound.

As an illustration of Algorithm 2, in the following section we shall apply
it to computing the isotonic regression of the real-valued function g. First,

though, let us introduce the following definition and notation.

Definition 33 (Path in a Directed Graph). Given a directed graph G =
(V,E), v,v' € V, a path of length k from vertex v to vertex v’ is a sequence

of vertices

p= <U07U1a"'7vk>

such that (v;—1,v;) € Efori=1...n.

46 Chapter 2. Preliminaries

Notation. Given a directed graph G = (V, E), we shall denote the set of

all paths between two vertices v,v’ € V as

2.5.3 Example

Let us apply Algorithm 2 to computing the isotonic regression of a real-

valued function g on the poset
Z =A{x1, 2, 3, T4, 75}

The order graph for Z is given in Figure 2.4; in it, each node is labelled
with the value of g at the point that the node represents.

I

Ty T5

Figure 2.4: Divide-and-conquer algorithm example. Order graph for the domain
7 = {x1,x9,x3, 24,5} of a real-valued function g labelled with the values of the
function. The monotonicity violations in the graph of g shall be resolved by the
algorithm.

It should be noted that the graph of ¢ is inconsistent because of the

following three monotonicity violations (see definition 23):

1. (z1,2), (z3,1)
2. (v2,2), (x3,1)

2.5.3. Example 47

3. (xg, 2), (374, 1)

These violations shall be resolved by the algorithm.
We begin by determining the first maximal complementary pair. In
order to do so, we compute the values required to build the flow network of

step 1 of algorithm 3:

241424143

Avy(Z) = = 1.8
a(xy) = w(z1)[g(z1) — Avg(Z)] =1-[2-1.8] =0.2
a(xg) = w(z2)[g(z2) — Avg(Z)] =1-[2-1.8] =0.2
a(ws) = w(xz)[g(zs) — Avg(Z)] =1-[1-1.8] = —0.8
a(xs) = w(z)lg(zs) — Avg(Z)] =1-[1 - 1.8] = —0.8
a(xs) = w(ws)[g(ws) — Avg(Z)] =1-[3-1.8] =1.2

Figure 2.5 shows the first iteration of the Ford-Fulkerson algorithm ap-
plied to the whole of Z. The top side represents the initial residual network
Ry, with the augmenting path p; found in it shaded. It coincides with the
input network N and all edges are labelled with their capacity because the
initial flow f is equal to 0 on all of them; edges with residual capacity equal
to 0 are not shown, which is a convention we shall follow in the remainder
of this example. The bottom side shows the new flow f; = f 1 fp, resulting
from augmenting f by f,,.

Figure 2.6 shows the second and final iteration of the Ford-Fulkerson
algorithm applied to Z. The top side represents the new residual network
Ry, with the augmenting path ps found in it shaded. The bottom side shows
the new flow fo = fi T fp,. Because there are no other augmenting paths,
f2 is a maximum-flow for the network. According to the Ford-Fulkerson

theorem [28], the associated s — ¢ cut (S,T') is minimum and is given by
S={veV|3Ipes~v}={suzs5}
Ry,

T=V-8§8= {x17x27$37x47t}

Algorithm 3 therefore returns the cut consisting of the sets of vertices

48 Chapter 2. Preliminaries

p1 = {s, @1, 23,t}, ¢ =0.2

Figure 2.5: Divide-and-conquer algorithm example. First iteration of the Ford-
Fulkerson algorithm applied to the set Z = {x1, z2, 3, 4,25}

2.5.3. Example 49

p2 = {s,xa, x4,t}, ¢, =0.2

Figure 2.6: Divide-and-conquer algorithm example. Second iteration of the Ford-
Fulkerson algorithm applied to the set Z = {x1, z2, 3, 4,25}

50 Chapter 2. Preliminaries

L ={x1,29,23,24} and U = {x5}. Since both L and U are non-empty, step
5 of algorithm 2 is performed; the execution of algorithm 3 on U returns
the solution Avy(U) = 3.

Figure 2.7 shows the first iteration of the Ford-Fulkerson algorithm ap-
plied to Z' = L = {x1,x2,23,24}. The top side represents the initial
residual network R} with the augmenting path p} found in it shaded. The
bottom side shows the new flow f{ = f' 1 fl’),l.

Figure 2.8 shows the second and final iteration of the Ford-Fulkerson
algorithm applied to Z’. The top side represents the new residual network
Rf{ with the augmenting path p,, shaded. The bottom side shows the new
flow f5 = fi 1 fp, which results from augmenting fi by f,,.

There no other augmenting paths, and f} is a maximum-flow for the

network. The associated s — ¢ cut (S’,7”) is given by

S' = {s}
7=V -5 = {.731,1}2,.%3,1'4,15}
Algorithm 3 returns the two sets L' = {x1,z2, 23,24} and U’ = 0.
As a consequence, the execution of algorithm 2 on L returns the solution

Avy(Z') = 1.5.
The final solution returned by Algorithm 2 is the tuple

g"=(1.5,15,1.5,1.5,3).

Figure 2.9 shows the order graph for Z labelled with the values of the

isotonic regression g*.

2.5.8. Ezample 51

Py ={s,x1,23,t}, ¢, =05

Figure 2.7: Divide-and-conquer algorithm example. First iteration of the Ford-
Fulkerson algorithm applied to the set Z' = {x1, 22, z3, 24}

52 Chapter 2. Preliminaries

p/2 = {871‘2733472‘:}7 C])IQ = 05

Figure 2.8: Divide-and-conquer algorithm example. Second iteration of the Ford-
Fulkerson algorithm applied to the set Z' = {z1, z2, x5, 24}

2.5.8. Ezample 53

T

Z3

)

C)——()

Ty Ty

Figure 2.9: Divide-and-conquer algorithm example. Order graph made consistent
after performing the isotonic regression.

Chapter 3

Monotonic Classification with
MOCA

In this chapter we present the MOnotonic Classification Algorithm (MOcCA),
a non-parametric classification algorithm for problems in which there exists
a monotonicity relationship between the descriptive attributes and the class
label. During the training phase, MOCA computes monotonic estimates of
the posterior class probabilities for the training sample. An interpolation
scheme guaranteed to preserve the monotonicity property is used to ex-
tended the posterior distributions estimated for the training sample to new,
unlabelled observation, which are then assigned to the class corresponding
to the (smallest) median. MOCA’s allocation rule is guaranteed to minimise
the mean absolute error (see equation 2.3.7) computed on the training data.

We compared MOCA to the related 0sDL algorithm [21,77], both on
artificial and real-world data sets, and showed that MOCA often outperforms
OSDL with respect to mean absolute prediction error.

Because the posterior probability estimates used by OSDL and MOCA
are often based on very few observations, we conjectured that both meth-
ods might be prone to overfitting. Therefore we used in both methods a
smoothed version of the basic estimates which take into account observa-
tions near to where an estimate is required. We then performed a second
round of experiments to verify whether this improved either classifier’s per-
formance.

This chapter is organised as follows:

56

Chapter 3. Monotonic Classification with MOCA

In section 3.1, we introduce the pattern recognition problem of clas-

sification and how it can be solved in a probabilistic setting.

In section 3.2, we formalise the concept of monotonic classification.
We introduce how MOCA estimates the posterior class probabilities for
each training observation, formulate the MOCA allocation rule, and
show that this allocation rule minimises L loss on the training data;
we then illustrate the interpolation scheme used to extend to new,
unlabelled observations the estimates computed during the training

step.

In section 3.3, we discuss related work, focusing in particular on the
0OSDL algorithm by establishing similarities with and differences from
MOCA.

In section 3.4, we provide a small example to illustrate how both

methods operate.

In section 3.5, we describe the experimental comparison we performed

of OSDL and MOCA on both artificial and real-world data sets.

In section 3.6, we propose a strategy to smooth the basic estimates
that are used by OSDL and MOCA.

In section 3.7, we show the results of a second round of experiments
conducted to test whether significant differences in predictive perfor-
mance can be found between the original algorithms and their adapted

counterparts.

In section 3.8 we draw our conclusions on MOCA and OSDL and, in

particular, on the use of smoothed class-probability estimates in them.

3.1 Classification

Classification is the predictive data mining task of identifying to which of

a set of categories (sub-populations) a new observation belongs based on a

training set of data comprising observations (or instances) whose category

membership is known. One way to solve this problem is by casting it as a

3.1. Classification 57

pattern recognition problem (see section 2.4) in which what is predicted is

a class label y €). A classification algorithm is also called a classifier.

The goal of a classification algorithm is therefore to learn how to assign a
label y € Y to an element x € X'. Assuming that the descriptive attributes
have an influence on the target attribute, the algorithm observes a collection
of training data S in order to infer the underlying and unknown allocation
or decision rule

c: X =Y

which maps any element x € X to one of the classes y €). A decision rule
partitions the feature space X" into k regions {11, ...,Q, such that if x € ;

then x is assigned to class y;.

As shown in section 2.4, this problem can be conveniently solved by
applying statistical decision theory because it allows to quantify the uncer-
tainty associated with the possible classification decisions by using proba-
bilities and because it allows to quantify the costs that accompany classi-
fication decisions by using an loss functions. A way to chose the optimal

decision rule consists of the minimal Bayes risk principle (see definition 21).

A loss function is chosen to express the cost incurred for choosing to
assign an observation x to class y; when its true class is y;; the cost shall
be equal to 0 if 7 = 4. This makes it possible to deal with situations in
which some kinds of classification mistakes are more costly than others; for
instance, in a medical diagnosis problem, it is far worse to classify a patient
with severe thyroid abnormality as healthy (or having acid reflux) than the

other way round.

Frequently, wrong classification decisions are assumed equally costly for
all classes. One does not weigh a loss concerning misclassification of each
label; rather, one is only interested in judging whether or not a classification
is correct. The loss function of interest for this case is therefore the zero-one
loss function (2.3.8) as it assigns a loss of 0 for correct classification and a

loss of 1 to any kind of classification error regardless of the class chosen.

Using the result mentioned at the end of section 2.3, when the zero-one
loss is used, the minimal risk Bayes allocation rule consists of assigning
an observation x the class label corresponding to the conditional mode

Mody x. Therefore, in the case of the 0/1 loss, the minimal risk Bayes

58 Chapter 3. Monotonic Classification with MOCA

allocation rule coincides with the Bayes rule for minimum error

Cayes(X) = a'rglmzzx Pi(x), (3.1.1)
i=1,..,
which minimises the probability of error [33,109].

Estimating the posterior class probabilities Pj(x) becomes infeasible if
the number p of features is large or when there are features which can take
on a large number of values. On the other hand, estimating the probabil-
ities Py (y;) and Px|y—,,(x) is a more tractable problem. Therefore, since

because of the Bayes theorem we have that

Py (yi) Px|y—y, (%)

Pi) = S

the Bayes rule for minimum error actually used is

Coaves(X) = argmax Py (;) Py —y, (x). (3.1.2)
An example of a classifier adopting allocation rule (3.1.2) is represented by
the Naive Bayes classifier [33,109].

The Naive Bayes classifier is an example of probabilistic classifier. Al-
gorithms of this category use statistical inference to find the best class for a
given instance, and, instead of simply returning the “best” class for a given
observation, they output a probability of the instance being a member of
each of the possible classes.

In particular, the Naive Bayes classifier is an example of generative
classifier as it is based on estimating the joint distribution of (X,Y"). MOCA,
instead, is an example of discriminative classifier as it is based on directly

estimating the posterior class probabilities P;(x).

3.2 Monotonic Classification with MOCA

Assuming that the feature space X is partially ordered, that the set of la-
bels Y is totally ordered, and that the unknown functional relationship be-
tween X and) is monotonic, the objective of a monotonic or monotonicity-

preserving classifier is to infer a monotonic or monotonicity-preserving al-

3.2. Monotonic Classification with MOCA 59

location rule ¢ : X —), with
x <y X = c(x) <y c(x) vx,x' € X, (3.2.1)

namely such that a lower ordered input is not allowed to have a higher class
label.

Notation. Without loss of generality and for the sake of convenience, we

shall assume that

Y=1{1,2,... .k}

Moreover, we shall assume that the total order on) is the usual order on
integers, and, therefore, we shall use the standard sign < for inequalities

between integers.

The monotonicity constraint on the allocation rule being learned rep-
resents additional information that a monotonic classifier should try to ex-
ploit. Monotonic classification is halfway between classification and regres-
sion because, as is the case with classification, the output space is finite, and
because, as is the case with regression, the output space is totally ordered.
Nonetheless, direct application of classification or regression methods to
monotonic classification is not an appropriate choice for several reasons.
First of all, traditional classification and regression algorithm shall ignore
the monotonic relationship between input and output spaces. Secondly,
classification algorithms shall ignore the ordering on the input and output
spaces, while regression algorithms shall only exploit the ordering on the
output space, unnecessarily assuming meaningful distances between output
values.

Monotonic classification should not be confused with ordinal classifica-
tion, whose only difference from general classification in that it is assumed
that the set of labels is linearly ordered [45].

The crucial aspects to deal with in order to build a probabilistic classifier
which is also monotonic are translating monotonicity in the population be-
ing analysed into constraints on the estimated probability distributions and
incorporating this knowledge into the allocation rule used by the classifier.

The first goal can be achieved by imposing a stochastic ordering on

the estimated posterior class probabilities P;(x), namely an ordering which

60 Chapter 3. Monotonic Classification with MOCA

quantifies the concept of one (estimated) distribution being “bigger” than
another. The form of stochastic ordering which is enforced in our algo-
rithm is weak (first order) stochastic dominance, which can be formulated
as follows:

Py, < Py, <= Vz € R: Fy,(x) > Fy,(x), (3.2.2)

for every two random variables Y] and Y5 defined on the same probability

space.

Although there exist other forms of stochastic ordering [74], we have
chosen stochastic dominance because, when applied to the posterior class
probabilities P;(x), it enforces the idea that increasing values of x shift
the posterior class probabilities P;(x) upwards Vi = 1,..., k. This form of
stochastic ordering is frequently adopted in decision theory and risk man-

agement and has been used in the context of Bayesian networks [107].

MOCA produces estimates of the posterior class probabilities P;(x) which

satisfy the following stochastic monotonicity constraint:
vx,x' € X x <x X' = Pyjx=x < Pyix=x', (3.2.3)
namely
Vx,x' € X i x <y X' = Vo € R: Fyx=x(2) > Fyx—x (),
which, due to (2.2.4), is equivalent to

v, x' e X 1 x <y x' =>Vi=1,...,k: Fi(x) > F;(X). (3.2.4)

Constraint (3.2.4) is key to achieving the goal of incorporating mono-
tonicity in the population being analysed into an allocation rule: in the
following it shall be shown that if it is enforced, then the allocation rule
consisting in assigning an observation x to the class corresponding to a
consistently-chosen median of the posterior class distribution P;(x) is mono-

tonic.

3.2.1. Training Phase 61

3.2.1 Training Phase

In this section we introduce the monotonicity-preserving estimator which
MOCA uses to estimate the posterior-class cumulative distribution functions

for the distinct feature vectors Sy observed in a training data set S.

Definition 34 (Maximum Likelihood Probability Estimate). For x € Sy,

the unconstrained mazimum likelihood estimate of P;j(x) for alli=1,... k
is (x,1)
- n(x,1

Pi(x) = = 3.2.5

00 =22 (325)

Definition 35 (Maximum Likelihood CDF Estimate). For x € Sy, the

unconstrained maximum likelihood estimate of Fy(x) for alli=1,... k is

Fi(x) =Y Pi(x). (3.2.6)

J<i

Equation (3.2.6) represents the proportion of observations of a feature

vector x included in the training data whose label is less than or equal to i.

Definition 36 (Moca Estimator). For x € Sy and Vi = 1,. .., k, the MOCA

estimator of F;(x) is the function

f(x), ifi=1,...,k—1
Frog =9 | (327)
1 otherwise

where gf(x) is the antitonic regression of Fj(x), Vx € Sy, with weights
w(x) = n(x). (Only k — 1 isotonic regressions are required, for obviously
Fi(x)=1,Vx e Sy.)

Proposition 13. F*(x), Vi = 1,...,k, is a cumulative distribution func-

tion for a discrete random variable.

Proof. F*(x) is a distribution function for a discrete random variable be-

cause it satisfies the following properties:

62 Chapter 3. Monotonic Classification with MOCA

As F(x) is a weighted average of observed relative frequencies (see defini-
tion 26), the first condition follows. Moreover, since we have that Fj(x) >
Fj(x) for i > j, it follows that for every set A

Hence, it follows from proposition 9 that F(x) > F/(x). O

The MOCA estimator satisfies stochastic monotonicity constraint (3.2.4)

by construction, namely Vx,x’ € Sy:
x <x' = F'(x) > F(x) i=1,..., k.

This estimator has already been used for estimation under stochastic
order constraints in the past. It was proposed for linear orders already
by Hogg [64], and later analysed by Barmi and Mukerjee [36]; it was also
used by Feelders [38] for parameter estimation in Bayesian networks under

a stochastic order constraint.

3.2.2 Prediction Phase

This section describes how the posterior-class cumulative distribution func-
tions of new, unlabelled feature vectors are estimated by interpolation of
the cumulative distribution functions estimated for the set of distinct fea-
ture vectors Sy observed labelled in the training data set Sy during the
training phase.

For every xg € X, we define the quantities F/""(xg) and F*(xg) as

follows:
.Fimin(X()) — max E*(X) i=1,...,k, (328)
XETXQ
and
FZ'maX(Xo) — min E*(X) i=1,...,k. (329)
XE|Xp

If Tx¢ is empty, we then define

F'®(xg) =1 i=1,...,k (3.2.10)

3.2.2. Prediction Phase 63

and, if | xg is empty, we then define
. 0 i=1,...,k—1
Fmin(x) = (3.2.11)

Theorem 4. For every xg € X
FMaX(xo) > FM0(xq), Vi=1,...,k.

Proof. Let us suppose that both | xg and 1Txg are non-empty, and let us
consider two elements x' €/xo and x” €txg and i € {1,...,k}. Because

x' <x”, it follows that

Since this is true for any x’ €|xo and x” €tx¢ for any i € {1,...,k}, the
theorem follows in particular.

If {x¢ is empty, the theorem also follows in this case because
FMin(xg) =0 < FM™(xo) Vi=1,...,k—1
and because, by the definition of cumulative distribution function,
Fn () = 1 = ™ (xo).
Finally, if 1x¢ is empty, the theorem follows because

FP(x0) < 1= F™(xq) ¥i=1,....k.

1

From theorem 4, it follows that any element of the interval
[};WZ'IIIIII7 FTZ.YII&X}

is an estimate of Fj;(xg) which satisfies the stochastic order constraint con-
sistently with the values of Fj(x) for x € Sy estimated with the MOCA

estimator.

64 Chapter 3. Monotonic Classification with MOCA

The way MOCA selects a value from the interval [F/™® FMax] is by con-

sidering a convex combination of Fimin and F"%%, that is
Fi(x0) = aF™"(x0) + (1 — a)FM™(xq), «€[0,1]. (3.2.12)

choosing the value of o by minimising the empirical loss on a test sample.

It should be noted that for xg € Sy, we have that

Fi(x0) = F (x0)

since both F™i"(xg) and F®(x) coincide with F}*(xo).

Figure 3.1 illustrates an example of the interpolation scheme adopted

by MOCA.
oA l
Figure 3.1: MOCA interpolation scheme example. Since FMi(xq) =

maxx<x, F; (x) = max{0.2,0.3} = 0.3 and F"*(xp) = ming <x F'(x) =
min{0.6,0.4} = 0.4, any element of the interval [0.3,0.4] is an estimate of Fj(xg)
which satisfies the stochastic order constraint with respect to the values of F;(x)
for x € Sy estimated with the MOCA estimator.

Besides being convenient, the interpolation scheme (3.2.12) is guaran-

3.2.2. Prediction Phase 65

teed to produce globally-monotonic estimates, as we prove in the following.
Lemma 2. For all x1 and xo in X, if x1 < X9 then
FMin(x) > FM(xy) Vi=1,...,k, (3.2.13)

and
Fimax(xl) > Fimax(XQ) Vi=1,...,k. (3.2.14)

Proof. Since x; < x9, we have that
Tx CTx;.
Therefore,

Fr(x) > Fr
Jnax Fi'(x) > max F}(x),

and, as a consequence,
Fimin(xl) > Fimin(XQ)

by definition.
Because x; < X9, Tx71 is not empty as it contains xo. On the other

hand, x; can be empty; if that is the case, then
Fimin(xl) > Fimin(X2)

because in this case F™"(x2) dominates every other distribution.

The proof of equation (3.2.14) is analogous. O
Theorem 5. For all x1 and Xo in X we have that
X1 < X9 = Fi(xl) > Fi(xQ), Vi=1,...,k.
Proof. For o € [0, 1], from lemma 2 it follows that

Fi(xl) = ozFimin(xl) + (1 —)" (x1) >

7

> O[Filnin(x2> + (1 —a)F"™(xq) = Fi(x2) Vi=1,...,k

66 Chapter 3. Monotonic Classification with MOCA

Finally, we notice that, given the two random variables X, X’ and their

respective interval of medians [mg, my], [my, m;,], then [77]
Px < Pxr = my < mjp, my < ml,.

As a consequence, in order to obtain a monotonicity-preserving allocation
rule, it suffices to choose the label corresponding to the same position in
the interval of medians (e.g. the lower end point, the upper end point, or

the midpoint).

Definition 37 (MocA allocation rule). The MOCA allocation rule cyoea
consists of assigning a new observation x the label corresponding to the

smallest median of the estimates F'(x), namely
Cuoea(X) = min : Fj(x) > 0.5. (3.2.15)
K3

It should be noticed that the choice of the smallest median in (3.2.15)
is purely arbitrary and only made for the sake of consistency.

Another possible allocation rule would be assigning a new observation
x to the class corresponding to the conditional expectation Ey (x) because
we have that [86]

Pyx—x < Pyjx=x = Ey(x) < Ey(x)

and because the expectation minimises the squared loss function (see sec-
tion 2.4.3). This choice, though, would require the transformation of the
ordinal scale on the set of possible labels Y into an interval scale [102].
The consequence would be a limitation of the possible applicability of our

algorithm, whose only assumption about) is that it is totally ordered.

3.2.3 Empirical L; Loss Minimisation

In the previous section we proved that the MOCA allocation rule preserves
monotonicity. In this section we shall prove that it minimises the empirical
absolute risk (2.4.4) within the class of monotonic classification functions.

Although this result is not immediate to prove, it seems plausible be-

cause, as already mentioned in section 2.3, predicting a median minimises

3.2.3. Empirical L1 Loss Minimisation 67

the Lq loss function. This property makes the MOCA allocation rule the
correspondent of the Bayes allocation rule (3.1.1) with the 0/1 loss function
replaced by the L loss function. The reason to prefer the Lq loss function
to the 0/1 loss function has been expressed in section 2.4.3, where it has also
been stated that another appropriate choice in the presence of monotonicity
is represented by the squared loss function (2.3.3). Nevertheless, the L loss
function was a reasonable candidate, so we focused our attention on it.

We base our proof on Dykstra et al. [35], which was one of the first
publications to have addressed the problem of exact minimisation of an em-
pirical risk in the context of monotonic classification. The authors describe
two ways to derive a monotonic allocation rule via the isotonic regression
which minimises the empirical squared risk (2.4.3) and the empirical ab-
solute risk (2.4.4) respectively. To minimise the empirical squared risk, a
single isotonic regression and a rounding to the nearest integer is sufficient,
whereas, in order to minimise the empirical absolute risk, k& — 1 isotonic
regressions and roundings are required. Therefore, in order to show that
Cyoca Minimises the empirical absolute risk (2.4.4) within the class of mono-
tonic integer-valued functions ¢(+), it suffices to prove that it satisfies all the
requirements of Dykstra et al.’s method.

To describe their result, let us first define the relation < as follows:
Biij<:>E|l‘i€Bi,E|l‘j € Bj:x; < xj, VBi,Bj C Z,

that is, B; = B, if block B; contains an element which precedes an element
from block B;. Is should be noted that =< is not transitive.

Definition 38 (Maximal Partition). Let Z = {21, 22,...,2,} be a non-
empty, partially-ordered, finite set of constants, each of which is associated
with a real number g(z;) and with a positive real weight w;, and let <
denote the transitive closure of <. A maximal partition of Z with respect
to the isotonic regression g* of g is a partition Bi,..., B,, of Z such that

forallj=1,....m:

1. Vz € Bj: g*(2) = Avyg(By)
2. (B, <) is a partially-ordered set

3. m is as large as possible

68 Chapter 3. Monotonic Classification with MOCA

Definition 38 is slightly different from the one used in [35] because the
latter does not guarantee the uniqueness of the maximal partition [101].

Intuitively, a maximal partition splits Z into the smallest possible blocks
which have the property that the isotonic regression is obtained by taking
the block average.

To compute the maximal partition, Dykstra et al. [35] suggest a variant
of the Minimum Lower Sets algorithm (see section 2.5.1) in which in line 3
a minimum lower set of smallest size rather than the largest one is picked.

This corresponds to rewriting line 3 of the algorithm as

B+ argljr‘lin{A € L|Avy(A) = Iglellcl, Avg(L)}. (Alg. 1; 3")

The problem with this approach is that the number of lower sets can
grow exponentially with the size of the partial order. For example, the
number of lower sets of the product order on the space spanned by just six
binary attributes is approximately 8 million. As an alternative to the MLS
algorithm, which is therefore of no practical use in problems of realistic
size, Stegeman and Feelders propose in [101] a more efficient alternative
to compute a maximal partition for g* which is based on the divide and
conquer algorithm (see section 2.5.2).

Next, we state the result of Dykstra et al. from which the optimality of
the MocCA allocation rule follows.

Proposition 14 (Dykstra et al. [35]). For all x € Sx, let p}(x) denote the
isotonic regression of pi(x) = 1 — Fy(x). An isotonic allocation rule c¢(x)
minimises the empirical absolute risk (2.4.4) if and only if the following

three conditions are met for alli=1,..., k—1:

1. If pi(x) < 3, then c(x) <i
2. If p;(x) > 3, then c(x) > i
3. ¢(x) is constant and equal to either of i and i + 1 on each element

of the mazimal partition with respect to p} which is a subset of {x :
pi(x) = 3}

Theorem 6. For all x € Sy, let pf(x) denote the isotonic regression of

3.2.3. Empirical L1 Loss Minimisation 69

pi(x) =1 — Fi(x) and let F}*(x) denote the MOCA estimator. Then
pix)=1-Ff(x), Vi=1,....k— 1. (3.2.16)
Proof. Tt holds that

Yo w(x)(1 = F(x))

A = s e
4 > wea w(x) Fi(x)
erAw(x)
= 1- Av(A,E) (3.2.17)

Therefore, from (2.5.4) and (3.2.17), it follows that

i = i Av(L NU,p;
pix) = min max Av(LNU,pi)
= min max 1— Av(LNU,F})
L:xeL U:xeU

= min {1— min AU(LﬁU,Fi)}
L:xelL U:xeU

1-— { max min Av(LNU, Fz)})
L:xeL U:xeU
where, because of (2.5.5), the quantity

max min Av(LNU, F)
L:xeL U:xeU

is the antitonic regression Fy*(x) of Fj(x). O

Corollary 2. For allx € Sy, let F;*(x) denote the MOCA estimator (3.2.7).
An isotonic allocation rule c(x) minimises the empirical absolute risk (2.4.4)

if and only if the following three conditions are met for alli=1,... k—1:

1. If F(x) > &, then c(x) < i
2. If Ff(x) < 1, then ¢(x) > i
3. ¢(x) is constant and equal to either of i and i + 1 on each element

of the maximal partition with respect to F;* which is a subset of {x :
Ff(x) = 3}

70 Chapter 3. Monotonic Classification with MOCA

Therefore, to show that the Moca allocation rule ¢yoea (x) minimises the
empirical absolute risk (2.4.4), it suffices to show that the three conditions
stated in corollary 2 are satisfied.

The first two conditions follow directly from the definition of ¢,00a (3.2.15):

1. F(x) > % = Cuoca(X) <@

2. Ff(x) < 3 = cuoen(X)

3 7

V

The third condition of corollary 2 is necessary because attribute vectors
that belong to the same element of the maximal partition must have the
same class label in an optimal solution. Hence, if there is a choice of round-
ing to 7 or i 4+ 1, it must be done in such a way that vectors belonging to
the same element of the maximal partition are rounded to the same class
label. It follows from definition 37 that for x € Sy:

Criooa(X) = miin : Ff(x) > 0.5.
As a consequence, MOCA rounds all attribute vectors in {x : Fj(x) = %
to the lower value, and, therefore, ¢,c, 18 constant on each element of the
maximal partition which is a subset of {x : F;(x) = £}. Hence, ¢yocs also
satisfies the third condition of corollary 2.

As an illustration, let us consider the data set described in table 3.1,
whose feature space is ordered according to the graph given in figure 3.2.
Note that the maximal partition for both F}* and Fy is {{x1,x2}, {x3,%4}}.
According to condition (3) of Corollary 2, ¢(-) must be constant and equal
to 1 or 2 on {x1,x2}, and, likewise, ¢(-) must be constant and equal to 1,
2 or 3 on {x3,x4}. Table 3.2 lists the isotonic classifications which satisfy
this condition together with the respective values of the loss function. There
are 5 optimal solutions corresponding to assignments 1 to 5. Assignment 6
is suboptimal because it is not constant on block {x3,x4}. Assignment 1

corresponds to Cyoca-

3.3 Related work

Dykstra et al [35] propose a non-parametric monotonic classification proce-

dure which minimises Lq loss on the training data set subject to monotonic-

3.3. Related work

n(x,y) F

123 1 2 1 2
x; 4 0 6 04 04 05 0.7
X, 6 4 0 06 1 05 0.7
xs 4 0 6 04 04 05 05
x, 6 0 4 06 06 05 05

71

Table 3.1: Optimality of the MOCA allocation rule example. Summary of the data

set.

Figure 3.2: Optimality of the MOCA allocation rule example. Graph of the partial
order on the distinct feature vectors.

absolute error

S O W N =
— N DN = =
N N
N W N W N~
W W N W =

124+-4+12+8=36
124+4+10+410=36
12+4+8+12=36
10+6+10+10=36
10+6-+8-+12=36
124-4+10+12=38 (suboptimal)

Table 3.2: Optimality of the MOcCA allocation rule example.

Loss of different

isotonic classifications. There are 5 optimal solutions corresponding to assignments
1 to 5. Assignment 6 is suboptimal because it is not constant on block {xs,x4}.

Assignment 1 corresponds to ¢yoca-

72 Chapter 3. Monotonic Classification with MOCA

ity constraint (3.2.1). Their algorithm requires performing & — 1 isotonic
regressions to find an optimal solution. The authors also provide an al-
gorithm which minimises Lo loss on the training data set which requires
performing a single isotonic regression. Dykstra et al. indicate possibilities
to extend the relabelled training data to a monotonic prediction rule for the
entire input space but without using any information in the training data

beyond the ordering of the data points.

Kotlowski [72| shows that if a collection of probability distributions sat-
isfies the stochastic order constraint (3.2.4), then the Bayes allocation rule
Ceaves (3.1.1) satisfies monotonicity constraint (3.2.1) provided the loss func-
tion is convex. This encompasses many reasonable loss functions but not
0/1 loss, unless the class label is binary. Kotlowski et al. [71] consider
the problem of ordinal classification with monotonicity constraints in the
context of rough sets; they also consider the loss-optimal relabelling prob-
lem and establish a connection with the isotonic regression. Kotlowski and
Slowinski [73] use optimal relabelling as part of a boosting approach to the

construction of monotonic classifiers.

Ryu et al. [24,96] present a monotonic classification technique called
isotonic separation. Also this technique involves the minimisation of empir-
ical loss subject to the monotonicity constraint. The authors express this
optimization problem as a linear program and show that the dual of the

linear program is in fact a maximum-flow problem.

MOCA is related to the Ordinal Stochastic Dominance Learner (OSDL)
developed by Cao-Van [21] and then generalized by Lievens et al. in [77];
therefore, we shall now give a short description of OSDL in order to point

out similarities and differences between that algorithm and MOCA.

To obtain a collection of distribution functions which satisfy the stochas-
tic monotonicity constraint, Cao-Van [21] defines for every xo € X the

quantities F/™%(xg) and F(x) as follows:

F™ (%) = xesril}ilgxo Fi(x) i=1,...,k, (3.3.1)
and
FP¥(x0) = max [Fy(x) i=1,...,k (3.3.2)

XESy,x0<x

3.3. Related work 73

If there is no x in Sy such that x <y xg, then he defines
FMin(xg)=1 i=1,...,k

and, if there is no x in Sy such that xg <y x, then he defines
0,

F;H1&X(XO) —
1

It should be noted that Vx,x’ € X such that x <y x’ the following

inequalities are true:

Fvimin(x) > Fvimin(xl) (333)
Finlax(x) Z F‘inlax(xl) (334)

Inequality (3.3.3) follows from the fact that the minimum of a partially-
ordered set is never above the minimum of one of its subsets. Inequal-
ity (3.3.4) follows similarly.

In the “constant interpolation” version of OSDL (this is the version we
have taken into consideration for our comparison; details on the more so-
phisticated “balanced” and “double balanced” interpolation schemes can be
found in [77]), the cumulative distribution functions of x¢ are estimated

using the same interpolation schema used by MOCA, namely as
Fi(x0) = aF"™(x0) + (1 — a) F"™(x),

with a € [0,1].

These estimates satisfy the stochastic monotonicity constraint because
of inequalities (3.3.3) and (3.3.4). This rule is used both for observed data
points and for new data points. Similarly to MOCA, the value of the free
parameter o can be selected by minimising cross validation error.

MOCA and OSDL are similar in the sense that they both make use of the
same interpolation scheme. Nonetheless, an important difference between
0SDL and MOCA is that, while in the former the interpolation scheme is
based on the direct use of the maximum likelihood estimates F , in the

latter it is based on the use of the MOCA estimator F'*, namely the antitonic

74 Chapter 3. Monotonic Classification with MOCA

regressions of the estimates F. The most important consequence of this
difference is that MOCA is guaranteed to minimise the empirical absolute
risk (2.4.4), whereas this is not the case for 0sbL. On the other hand, it
should be noted that if £ already satisfies the stochastic order constraint,
then both methods are identical, for the isotonic regression shall not make
any changes to F due to the absence of order violations.

Another important difference between 0SDL and MOCA is represented by
their respective allocation rules. Originally, Cao-Van [21] assigned an unla-
belled individual x to the expected value of F(x), rounded to the nearest
integer. In |77] the allocation rule is changed to the class label correspond-
ing to the median of the estimated posterior class probabilities]%(x), but
the choice of median is left unspecified provided that it is made so that
the monotonicity constraint is satisfied. This could be interpreted as an
attempt to minimise the empirical absolute risk, but this is not stated ex-
plicitly. In contrast, MOCA assigns x the class label corresponding to the

smallest median.

3.4 Example

In this section we present an example to illustrate how MOCA and OSDL
operate. Let us suppose we train both algorithms on a training data set .S

in which feature vectors take values in the 2-dimensional feature space
X ={1,2,3} x {1,2,3}
and have one of the class labels in the totally-ordered set
y={1,2,3}.
The distinct features observed in the data set are
Sx = 1{(1,1),(1,2),(2,1),(1,3),(3,2) }-

The partial order on Sy is depicted in figure 3.3.
Table 3.3 lists, for every x € Sy, the number of occurrences n(x,y) of

x having label y, the total number of occurrences n(x), and the values of

3.4. Fxample 75

Figure 3.3: MOCA vs 0SDL example. Graph of the partial order on the distinct
feature vectors.

the maximum likelihood estimate Fj(x) of the posterior-class cumulative
distribution function Fj(x), i = 1,2 (F3(x) is not included because it is

equal to 1.)

Table 3.4 contains the MOCA and OSDL estimates of the cumulative
distribution functions for the observed attribute vectors together with their
median values. In the case of 0sSDL, we set o = 1/2; while for MOCA the
value of « is immaterial since the estimate shall always be equal to F* at

the attribute vectors comprising the training data set.

It should be noted that the occurrences of (2,1) in S, which have class
labels 2 and 3, and the occurrence of data point (3,2), which has class
label 1, induce monotonicity violations in Fy and in I respectively. MOCA
resolves the violation in in F} by replacing the original values Fy (2,1) and

F1(3,2) with their weighted average:

~ ~ 3x0+1x1 1
Rren2,1) = Fpoor @) = 20 TS = 4

The violation in £} is resolved similarly.

76 Chapter 3. Monotonic Classification with MOCA

(r1,22) n(x,y) n(x) F
1 2 3 1 2
X1 (1,1) 2 0 0 2 1 1
X9 (1,2) 1 2 0 3 1/3 1
X3 (2,1) 0 2 1 3 0 2/3
X4 (1,3) 0 0 1 1 0 0
X5 (3,2) 1 0 0 1 1 1

Table 3.3: MOCA vs OSDL example. Summary of the labelled data set used. For
each distinct feature vector x observed in the data set, the second column contains
the coordinates of x, the third column the number of occurrences of x observed
with each of the three possible labels, the fourth column contains the overall
number of occurrences of x observed in the data set, and the fifth column contains
the values of the maximum likelihood estimate F of the posterior-class cumulative
distribution function Fj(x), i = 1,2. (The estimates of F3(x) are omitted because
they are equal to 1.)

JrMoca Median JrospL Median

12 12
x1 1 1 1 11 1
xy 1/3 1 2 2/3 1 1
xg 1/4 3/4 2 1/2 5/6 {12}
x4 0 0 30 0 3
x5 1/4 3/4 2 1/2 5/6 {12}

Table 3.4: MOCA vs OSDL example. MOCA estimates F¥°°* and OSDL estimates
FOsPL of the posterior-class cumulative distribution function Fj(x), i = 1,2 (the
estimates of Fd(x) are omitted because they are equal to 1) together with their
median values.

3.5. Fxperiments 77

To illustrate OSDL, we now show how Ff’SDL(l, 2) is computed. We have

FMin2) =min{1/3,1} = 1/3
FPX(1,2) = max{1/3,0,1} =1
FPSPh(1,2) =Lxi+ix1=2

The L error of MOCA on Sy is
LY°* =04+14+140+1=3,

and it is the minimum possible L error on the training data for a monotonic

classifier.

For 0SDL we have a choice of medians for the third and fifth observation.
The lowest in-sample error is attained by assign both feature vectors label
2:

LY =0+424+14+0+1=4.

3.5 Experiments

As we have shown in section 3.2.3, unlike OSDL, MOCA is guaranteed to min-
imise the empirical absolute risk. Although this is an important property, it
remained to be seen how MOCA compares to OSDL on new, unlabelled data.
Therefore, we performed a series of experiments on a number of data sets
in order to compare MOCA to OSDL in terms of their mean absolute error.
We used both artificial and real-world data sets, and the results for each
of the two categories of data sets are discussed separately in sections 3.5.1

and 3.5.2 respectively.

In all of our experiments we assumed that, like MOCA, OSDL assigns x
the label corresponding to the smallest median according to its estimates

of the posterior class probabilities P;(x).

78 Chapter 3. Monotonic Classification with MOCA

3.5.1 Artificial Data Sets

To compare the performance of MOCA and OSDL in controlled circum-

stances, we generated artificial data from the monotonic function
filz,z0) = 1—|—ml—l—%(m§ —z?), (3.5.1)
and from the non-monotonic function

folz1,2) = 3+ sin (g:pl) (2 + sin(2722)), (3.5.2)

drawing the features 1 and z9 independently from the uniform distribution
on the unit interval. Non-monotonic function fo was considered in order to
test the robustness of both algorithms against violations of the monotonicity

assumption.

We sampled 100 points for training and another 10,000 for testing in
order to obtain a reliable estimate of the mean absolute prediction error.
To create ordered class labels, the values of the continuous target of the
overall sample were discretised into four intervals by using equal-frequency
binning.

For each data set, we selected the best « value from the set
{0,0.25,0.5,0.75,1}

for each of MOCA and OsSDL by using 10-fold stratified cross validation. We
then picked the best result obtained for each method in terms of mean
absolute error (2.3.7) and compared them by performing a paired-sample
t—test.

We added a normally distributed error term with mean zero and variance
o2 and studied the behaviour of the algorithms for different levels of noise,
namely for all 02 € { %M }}207 where M is the maximum observed value
of either function. As a result of adding noise, the samples of f; were used
may have contained non-monotonic pairs. On the other hand, the samples
of fo contained with certainty non-monotonic pairs even at zero-noise level

because fo was non-monotonic function.

The results of our experiments are given in tables 3.5 and 3.6. It can be

3.5.2. Real-World Data Sets 79

observed that MOCA has consistently lower error, except of course for the
monotonic data without noise: in that case, F already satisfies the stochas-

tic order constraint, and, hence, MOCA and OSDL give identical results.

3.5.2 Real-World Data Sets

We performed tests on the following real-world data sets (see Appendix A
for details):

e Australian Credit Approval
e Auto MPG

e Boston Housing

e Car Evaluation

e Computer Hardware

e ESL

e Haberman’s Survival

e Pima Indians

e Windsor Housing

The numeric target attribute of the Auto MPG, Boston Housing, Com-
puter Hardware, and Windor Housing data sets were discretised into four

labels using equal-frequency binning.

For each data set, we selected the best a value from the set
{0,0.25,0.5,0.75,1}

for each of MOCA and 0OSDL using 10—fold stratified cross validation. We
then selected the best result obtained for each method in terms of the
average Lj error and compared them by performing a paired sample t-
test, the results of which are given in Table 3.7. We note that MOCA has
lower error in 7 out of 9 cases, and in 4 cases this result is significant at
a = 0.05. In two cases OSDL is better, and significantly so in the case of

the Car Evaluation data set.

80 Chapter 3. Monotonic Classification with MOCA

o? Lyocer L¢Pt povalue
0 0.3009 0.3009 —
(1/10)M 03359 03688 0
(2/10)M 0.5039 0.5441 0
(3/10)M 0.6472 0.7096 0
(4/10)M 0.7736 0.8641 0
(5/10)M 0.8453 0.9616 0
(6/10)M 0.9623 1.1389 0
(7/10)M 0.9297 1.2999 0
(8/10)M 09762 13428 0
(9/10)M 1.0263 1.3558 0
M 1.0195 1.4251 0

Table 3.5: MOCA vs 0sSDL. Experimental results for monotonic function f;. The
first column contains the different levels of noise 0 € {;M}1%, added to fi,
where M is the maximum observed value of fi, the second and third columns con-
tain the errors registered by MOCA and OSDL respectively, and the fourth column
contains the p-value of a paired-sample t—test.

o? Lyeer L{sPr p-value
0 0.621 0.6549 1.3962¢ — 008
(1/10)M 0.7297 0.8974 0
(2/10)M 0.811 0.9991 0
(3/10)M 0.8727 1.2763 0
(4/10)M 1.0004 1.3331 0
(5/10)M 1.0207 1.4066 0
(6/10)M 1.0964 1.4556 0
(7/10)M 1.0463 1.3733 0
(8/10)M 1.0245 1.4614 0
(9/10)M 1.0944 1.4259 0
M 1.0248 1.4583 0

Table 3.6: MOCA vs OSDL. Experimental results for non-monotonic function fs.
The first column contains the different levels of noise o2 € {f—OM }}0:0 added to fa,
where M is the maximum observed value of fs, the second and third columns con-
tain the errors registered by MOCA and OSDL respectively, and the fourth column
contains the p-value of a paired-sample t—test.

3.6. Weighted kNN probability estimation 81

Data set Liyeer L§sPr p-value
Australian Credit 0.1609 0.3362 O*

Auto MPG 0.2526 0.2551 0.6550
Boston Housing 0.4565 0.5020 0.1120
Car Evaluation 0.04051 0.0318 0.0010*
Computer Hardware 0.3397 0.3828 0.0390*
ESL 0.3340 0.3443 0.4930
Haberman’s Survival 0.2614 0.2582 0.8350
Pima Indians 0.2604 0.2656 0.4330

Windsor Housing 0.5385 0.5934 0.0060*

Table 3.7: MOCA vs 0OSDL. Experimental results on real-world data sets. The
second and third columns contain the errors registered by MOCA and OSDL re-
spectively (lower error is shown in boldface), and the fourth column contains the
p-value of a paired-sample t—test (the superscript * indicates a significant differ-
ence at a = 0.05).

3.6 Weighted kNN probability estimation

In many applications, the training data set .S comprises only one observation
of most attribute vectors x € X, especially in case of numeric attributes;
as a consequence, the maximume-likelihood estimates of the posterior class
probabilities P;(x) tend to be overfitted. In order to prevent this from
happening, we developed a weight-based estimator based on the nearest
neighbours principle along the lines of the one introduced by Hechenbichler
and Schliep in [60], where the estimates obtained are used to perform ordinal
classification (without monotonicity constraints) by predicting the median.

In the following, we first discuss kNN as a classification technique and

then illustrate how to use it to estimate probabilities.

3.6.1 kNN Classification

k Nearest Neighbor (kNN) classification is an example of instance-based or
lazy pattern recognition: the training data set S is stored, and a new feature

vector xg is assigned a label depending the k most similar elements included

inS.

82 Chapter 3. Monotonic Classification with MOCA

Similarity is measured by means of a distance metric or function, namely
a real-valued function d which verifies the following properties for any fea-

ture vectors x,y,z € X:

1. d(x,y) >0, d(x,x) =0
2. d(x,y) = d(y,x)
3. d(x,2z) < d(x,y) +d(y,z)

The distance measure that we opted for is the Fuclidean distance:

In order to prevent attributes which have large values from having a
stronger influence than attributes measured on a smaller scale, it is impor-
tant to normalise the attribute values. We opted for Z—score standardisa-

tion: for each x € S, the j—th attribute x; is replaced with

where z; and s; denote respectively the mean and the sample standard
deviation of values of the j—th attribute of the feature vectors present in
the training sample S.

Having selected a distance measure to determine its neighbourhood, the
allocation rule adopted in kNN classification is typically represented by
(unweighted) magjority voting: Xq is assigned the label yy € Y occurring
most frequently among its k nearest neighbours {Xi}le, namely

k
yo = argmax » _1y(yi),

veY i

where y; is the label of the i—th neighbour x;, and 1, is the indicator
function for the set {y}, Yy €), that is

1 ify, =
1y:{ Y=Y

0 otherwise

3.6.2. Weighted kNN Classification 83

3.6.2 Weighted kNN Classification

In ENN classification it is reasonable to request that neighbours that are
close to xg have a greater role in determining its class than those that are
distant. This assumption is at the basis of weighted k— NN classification,
in which a new observation xq is assigned the class label yy which has a

weighted majority among its k nearest neighbours, that is

k
Yo = arg max Z wily(yi)-
veY i

Fach of the k nearest neighbours x; of xq is assigned a weight w; which
is inversely proportional to its distance d = d(xq,x;) from x¢ and which is

obtained by means of a weighting function or kernel K)(xo,x;) [59]:

= K =6 (10050 38

Kernels are at the basis of the Parzen density estimation method [59]. In
that context, the smoothing parameter or bandwidth A\ dictates the width
of the window considered to perform the estimation; a large value of A
implies low variance (averages are computed over more observations) but
also higher bias (the true density function is assumed to be constant within

the window).

Function G(-) in (3.6.1) can be any function which has maximum in
d = d(x,y) = 0 whose values gets smaller as the value of d grows. Thus the

following properties must hold [60]:

1. G(d) >0 foralld e R
2. G(d) gets its maximum for d = 0
3. G(d) descends monotonically for d — oo

In the one-dimensional case, a popular kernel is obtained by using the
Gaussian density function ¢(t) as G(-), with the standard deviation playing

the role of the parameter A\. In the p—dimensional case, with p > 1, its

84 Chapter 3. Monotonic Classification with MOCA

natural generalisation is represented by

1 1/ |xo0 — xi|\?
K)\(mei):\/%)\exp _5 f)

and this is the kernel that we have adopted.

Although the kernel used is in a sense a parameter of wkNN, experience
has shown that its choice (with the exception of the rectangular kernel,
which gives equal weights to all neighbours) is not crucial [59].

In equation (3.6.1) it is assumed that the value of A remains constant
over the whole of the training data set. On the other hand, it would more
appropriate if the value of A were location-dependent, with larger values
for regions where the training observations are sparse and smaller values for
regions of the training data sample which are densely populated. This is the
idea behind adaptive windows: given the width function hy(xg) (indexed by
M), which determines the width of the neighbourhood at xq, we have

K/\(Xo,Xi) =G (h)\(X())

In our implementation, we set h)(xp) equal to the distance d(xg,Xx+1)
of xg from the first neighbour xj11 which is not taken into consideration [59,
60].

3.6.3 wkNN Probability Estimates

Definition 39 (wkNN Probability Estimator). Given x € Sy, the set N
of the k nearest neighbours of x in Sy, the set of the indices N(x) in S of
all observations of the feature vectors comprising N, the wkNN estimator
PENN(x) of the posterior class probability P;(x), i = 1,...,k, is defined
as follows:

2N (x) Wilys (U5)

piwkNN (X) —
> jeNy(x) Wi

(3.6.2)

It should be noted that the set of indices in (3.6.2) Ni(x) may comprise
more than k elements in case of repeated occurrences in S of some of the
feature vectors comprising N. It should also be noted that x is included in

its own neighbourhood and that, as a consequence, its occurrences have a

3.7. New Experiments on Real-World Data Sets 85

relatively large weight w; in (3.6.2). Finally, it should be noted that if k = 1,
then the values returned by equation (3.6.2) coincide with the maximum
likelihood estimates (3.2.5).

3.7 New Experiments on Real-World Data Sets

In order to determine whether and to what extent MOCA and OSDL, both
in the “constant interpolation” and in the “balanced” and “double balanced”
versions (see |77]), would benefit from estimating the posterior class prob-
abilities they require using the estimator (3.6.2) instead of the maximum-
likelihood estimator, we implemented the algorithms using the new estima-
tor. In the case of MOCA, the adoption of the wkNN probability estimator
has an impact on the computation of the MOCA estimator (3.2.7) not only
in terms of the probability estimates on which the antitonic regression is
performed but also on the weights used, for their cardinality is now equal
to that of the indices Ny(x) (see equation 3.6.2) for each x € Sy.

We then performed new tests on the following real-world data sets (see
Appendix A for details about them):

e Australian Credit

e Auto MPG

e Boston Housing

e Car Evaluation

e Computer Hardware
e ERA

e ESL

e Haberman’s Survival
[) KC].

o KC4

e LEV

e PC3

e PC4

e Pima Indians

e SWD

e Windsor Housing

86 Chapter 3. Monotonic Classification with MOCA

The numeric target attribute of the Auto MPG, Boston Housing, Com-
puter Hardware, and Windor Housing data sets were discretised into four
labels using equal-frequency binning.

Each of the data sets was randomly divided into two parts: the first
half, consisting of approximately two thirds of the data, was used as the
training data set, and the second half was used as the validation data set.

The training set was used to determine the optimal values of the neigh-
bourhood size k and of the nuisance parameter « for each of MOCA and OSDL
through 10-fold stratified cross validation. Starting with k£ = 1, the value
was incremented by one until the difference of the average L; error between
two consecutive iterations was less than or equal to 176, For each value of
k considered, the optimal « in {0,0.25,0.5,0.75,1} was determined. Once
the optimal parameter values were determined for each algorithm, they were
used to train them on the complete training set and then to test them on
the validation data set.

The average Li error rate attained on the validation sets by the algo-
rithms was registered, and then a paired t—test of the L; errors was per-
formed in order to determine whether observed differences were statistically
significant.

Table 3.8 lists the results of the experiments involving MOCA and “con-
stant interpolation” OsSDL implemented using the MLE and the wkNN es-
timator of the posterior class probabilities P;(x). The wkNN version of
0SDL performed significantly better (at o = 0.05) than the MLE version
four times, whereas it performed significantly worse once (on the SWD data
set); furthermore, the former almost never registered estimated error latter
than the former. On the other hand, the wkNN version of MOCA was sig-
nificantly better than the MLE version only once (on the ERA data set);
all other observed differences were not statistically significant.

Table 3.9 shows the results of the investigation into the effect of on the
“balanced” and “double balanced” versions of OSDL (for details on these
other version of OSDL, see [77]). wkNN estimation of the posterior class
probabilities P;(x) did not have much effect on both versions of the algo-
rithm; the only one significant improvement was registered in the case of
the KC1 data set.

Furthermore, comparing table 3.8 and table 3.9, we observe that con-

3.8. Conclusions and Further Research 87

Data Set MOCA ospL wkNN moca MLE ospr MLE 1vs3 2vs4
wkNN
Australian Credit 0.1304 0.1130 0.1348 0.3565 0.3184 0
Auto MPG 0.2977 0.2977 0.2977 0.2977 — —
Boston Housing 0.5030 0.4675 0.4675 0.5207 0.4929 0.2085
Car Evaluation 0.0625 0.0556 0.0625 0.0556 — —
Computer Hardware 0.3571 0.3286 0.3571 0.3571 - 0.5310
ERA 1.2006 1.2066 1.2814 1.2814 0.0247 0.0445
ESL 0.3620 0.3742 0.3620 0.4110 1 0.2018
Haberman’s Survival 0.3529 0.3431 0.3529 0.3431 — —
KC1 0.1863 0.1977 0.1863 0.3940 1 0
KC4 0.8095 0.8095 0.8571 0.8571 0.4208 0.5336
LEV 0.4162 0.4162 0.4102 0.4102 0.8060 0.8060
PC3 0.1228 0.1228 0.1228 0.1228 — -
PC4 0.1872 0.1872 0.1872 0.1872 - —
Pima Indians 0.3008 0.3086 0.3008 0.3086 - -
SWD 0.5359 0.5479 0.5060 0.4940 0.1492 0.0092
‘Windsor Housing 0.5604 0.5220 0.5604 0.6044 — 0.0249

Table 3.8: Results of the experiments involving MOCA and “constant interpola-
tion” OSDL implemented using the MLE and the wkNN estimator of the posterior
class probabilities P;(x). The first four columns contain the average L errors of
both versions of both algorithms on the validation part of each data set. The
penultimate column contains the p—value resulting from the comparison of both
versions of MOCA, and the final column contains the p—value resulting from the
comparison of both versions of OSDL.

stant interpolation OSDL with smoothing tends to outperform its balanced

and double balanced counterparts.

3.8 Conclusions and Further Research

We have presented MOCA, a new non-parametric monotonic classification
algorithm which attempts to minimise the mean absolute prediction error
for classification problems with ordered class labels. We have shown that
MOCA minimises the L error on the training sample subject to monotonicity
constraints. Through experiments on artificial and real-world data sets, we
have shown that it compares favourably to OSDL, a similar classification
algorithm also intended for the monotonic classification problems.

The maximum-likelihood (ML) estimates of the posterior class probabil-
ities used by both algorithms are typically based on very few observations,
so we conjectured that they both have a tendency to overfit the training

sample. As we thought that a point of possible improvement would be

88 Chapter 3. Monotonic Classification with MOCA

Data Set BosDL BosDL MLE DpBoOsDL DBOSDL 1vs2 3vs4
wkNN wkNN MLE
Australian Credit 0.3565 0.3565 0.3565 0.3565 - -
Auto MPG 0.2977 0.2977 0.2977 0.2977 — -
Boston Housing 0.5207 0.5207 0.5207 0.5207 — —
Car Evaluation 0.0556 0.0556 0.0556 0.0556 - -
ERA 1.8533 1.9760 1.8533 1.9760 0.1065 0.1065
ESL 0.5092 0.5092 0.5092 0.5092 - -
Haberman’s Survival = 0.3431 0.3431 0.3431 0.3431 - —
KC1 0.1892 0.3030 0.3883 0.3940 0 0.2061
KC4 0.7619 0.8571 0.7857 0.8571 0.1031 0.1829
LEV 0.9251 0.9251 0.9251 0.9251 - -
Computer Hardware — 0.4143 0.4143 0.4143 0.4143 - -
PC3 0.1228 0.1228 0.1228 0.1228 - -
PC4 0.1872 0.1872 0.1872 0.1872 - —
Pima Indians 0.2930 0.2930 0.2930 0.2930 - -
SWD 0.6617 0.6557 0.6617 0.6437 0.8212 0.4863
‘Windsor Housing 0.6044 0.6044 0.6044 0.6044 — —

Table 3.9: Results of the experiments involving the “balanced” (BosDL) and the
“double balanced” (DBOSDL) versions of 0SDL implemented using the MLE and the
wkNN estimator of the posterior class probabilities P;(x). The first four columns
contain the average L; errors of both versions of both algorithms on the validation
part of each data set. The penultimate column contains the p—value resulting
from the comparison of both versions of BOSDL, and the final column contains the
p—value resulting from the comparison of both versions of DBOSDL.

to consider an alternative to the ML estimates, we introduced a weighted
k nearest neighbour (wkNN) approach to estimating the probabilities the
algorithms use, and then run a second set of experiments to measure the
improvements brought by using the wkNN estimates. Results showed that
smoothing is beneficial for OSDL, for its predictive performance was sig-
nificantly better on a number of data sets and almost never worse. The
adoption of “balanced” and “double balanced” versions of OSDL do not seem
to lead to an improvement over the constant interpolation version on the
data sets considered. As for MOCA, smoothing seems to have a much more
reduced effect. This is probably a consequence of the fact that the isotonic
regression already smooths the basic estimates by averaging them in case
of order reversals. Hence, MOCA is already rather competitive when using
wkNN probability estimates for £ = 1, that is when using ML estimates of

the posterior class probabilities.

There are two interesting problems for further research which we men-

3.8. Conclusions and Further Research 89

tion in the following. We have looked at the L; loss function, but this is
certainly not the only loss function suitable for ordinal classification prob-
lems. Hence, it would be interesting to try to derive similar results for more
general classes of loss functions. Another important issue is finding ways
to reduce MOCA’s execution time. One possibility might be represented by
using the O(n?) approximate solution of the isotonic regression problem

presented by Burdakov et al. in [20].

Chapter 4

Monotonic Instance Ranking
with MIRA

Preference learning is an emerging subfield of machine learning concern-
ing the learning of preference models from observed (or extracted) prefer-
ence data; a preference can be considered as a relaxed constraint which,
if necessary, can be violated to some degree [46]. The learned models are
used to predict preferences of new, unseen individuals or groups or to pre-
dict preferences in new situations in which the learner has not been be-
fore. Preference learning is an interdisciplinary research field connecting
machine learning with other areas in which preferences play a key role such
as operations research, social sciences, and decision theory. More generally,
that of “preferences” is an important topic in current artificial intelligence
research. Automatic discovery of preferences of individuals is useful in vari-
ous fields in which increasing personalisation has been taking place, such as
recommender systems, adaptive user interfaces, adaptive retrieval systems,
autonomous agents, and gaming.

Preference learning problems arise quite naturally in many application
areas. A widely studied preference learning problem occurring in infor-
mation retrieval is the ranking of the results returned by a search engine:
given a query ¢ and a set of Web pages P, the goal is to find a ranking
of P reflecting their relevance with respect to ¢q. The learned ranking is
based on an unknown preference relation >, inferred from user feedback

on past rankings of retrieval results for different queries [79]. Because users

92 Chapter 4. Monotonic Instance Ranking with MIRA

are typically unwilling to provide explicit feedback by stating how relevant
a retrieved page is, research has been carried out on how to collect user
feedback indirectly. For instance, Joachims et. al propose several ways to
gather user feedback through clicking behaviour [68,69], and Arens [5] em-
ploys active learning (see chapter 5 of this thesis) to automatically select
the most appropriate training examples to feed into the ranking algorithm
he proposes in that same paper.

In many ranking problems, common sense dictates that the rank as-
signed to an instance should be increasing (or decreasing) in one or more
of the attributes describing it. Let us consider, for example, the problem
of ranking documents as not relevant, somewhat relevant, and relevant with
respect to a particular query; in this case, typical attributes are counts of
query terms in the abstract or title of the document, so one would expect
an increasing relationship between these counts and document relevance.

In this chapter we present a new instance ranking algorithm named
MIRA (Monotonic Instance Ranking Algorithm) which learns a monotonic
ranking model from a set of labelled training examples. This algorithm
builds on the ideas formulated by Fiirnkranz et al. in [51] and on our own
work on non-parametric monotonic classification (see chapter 3 of this the-
sis). Monotonicity is enforced in MIRA by applying the isotonic regression to
the training sample, and an interpolation scheme is used to rank new data
points. The basic ranking model is then combined with logistic regression
in an attempt to remove unwanted rank equalities. Through experiments
we showed that MIRA produces ranking functions having predictive perfor-
mance comparable to that of a state-of-the-art instance ranking algorithm;
this makes MIRA a valuable alternative when monotonicity is desired or
mandatory.

This chapter is organised as follows:

e In section 4.1, we describe the three main ranking tasks which are
addressed in the literature on preference learning by adopting the
terminology proposed by Fiirnkranz and Hiillermeier in [46]. In par-
ticular, in section 4.1.3 we introduce instance ranking, which is the

specific ranking problem solved by MIRA.

e In section 4.2, we introduce a general approach to preference learning

4.1. Preference Learning Tasks 93

based on binary decomposition techniques which have previously been
used for multi-class and ordinal classification, and in section 4.2.1
we outline the aggregation scheme that MIRA builds on, which was

proposed by Fiirnkranz et al. [51].

e In section 4.3, the monotonic instance ranking problem is defined and

an initial formulation of MIRA is presented.

e In section 4.4, we illustrate how the initial version of MIRA compares
to the best-performing algorithm presented in [51] both on artificial

and on real-world data in terms of ranking accuracy.

e In section 4.5, an improved and final version of our algorithm is in-

troduced

e In section 4.6, the results of additional experiments to evaluate the

performance of the second version of MIRA are presented.
e In section 4.7, conclusions are drawn and possibilities for future work
are suggested.
4.1 Preference Learning Tasks

Given a set of training instances for which preferences are known, a prefer-
ence learning task consists of learning a function which predicts preferences
for a new set of items or for the same set of items but in a different context.
Preferences typically consist of a total order (called in this case a ranking)

> on a finite set of alternatives
A={a,...,a,},
where, for all distinct i,7 € {1,2,...,r},
a; = aj;

indicates that alternative a; is preferred to alternative a;, or, equivalently,

that a; has higher rank than a;.

94 Chapter 4. Monotonic Instance Ranking with MIRA

It should be noted that a ranking > of a the set of r alternatives A4 can be
identified with a permutation 7 of A (or, equivalently, of the set {1,...,r})
such that m(i) < m(j) whenever a; > aj, where 7 (i) is the position of an
alternative a; in the ranking. Therefore, the higher the degree of preference
for an alternative, the smaller its index in the permutation. This equivalence

shall play a fundamental role in the following.

Notation. We shall denote the set of all permutations of {1,...,r} as
P,
for any non-negative integer r.

If instances are represented as feature vectors taking values in a p—dimen-
sional feature space X, a ranking problem can be cast as the pattern recogni-
tion problem of learning a function mapping a subset of X to a permutation
m € P, of the r possible alternatives A for the subset. The target function
is called a ranking function.

In the following we describe the three main ranking tasks which are
addressed as pattern recognition problems in the literature on preference
learning, adopting the terminology proposed by Fiirnkranz and Hiillermeier
in [46]. Each task is different in terms of the type of training data it makes
use of, which is not required to contain complete or consistent information.
Moreover, each task differs in terms of type of alternatives that the learned
ranking function returns a ranking of and in terms of the size of the subset

of X that the ranking is learned for.

4.1.1 Label Ranking

Given a set of possible alternatives consisting of a set of labels Y = {y1,. .., yx}
and a set of training instances (x, (y,y’)), where x is a feature vector and
the pair of labels (y,y’) indicates that alternative y is preferred to alter-
native 1y’ for x, a label ranking task consists of learning a ranking function
(label ranker)

r:X — Py

mapping any new instance x € X’ to a permutation my of V.

4.1.1. Label Ranking 95

Label ranking can be seen as a generalisation of classification in which

a total ordering of the class labels)

y‘n';l(l) >_X yﬂ_;l(2) >_X “e >_X yﬂ';l(k)

is associated with an instance x instead of only a single class label, where

7 1(i) is the position of label y; in the ranking associated with x.

One of the main application areas of label ranking is represented by
the prediction of orderings of a fixed set of elements, such as predicting
the ranking of the cars sold by a retailer for a potential customer based on
their demographics and income, or ranking a set of genes according to their
expression level (as measured by microarray analysis) based on their phy-
logenetic profile features [8]. Moreover, many conventional learning prob-
lems, such as classification and multilabel classification, may be formulated

in terms of label preferences [49].

To measure the predictive performance of a label ranker, a loss function
is required, and its choice depends on the purpose the predicted ranking
serves. The following two settings are the most covered in the literature

due to their numerous practical applications [65].

In the first setting, which is the most frequent and probably most obvi-
ous label ranking scenario, what is relevant is the complete ranking, namely
the positions assigned to all of the labels. The quality of a predicted rank-
ing is assessed by using a distance measure quantifying the deviation of the
predicted ranking from the true one, which is called ranking error. Any
distance or correlation measure on rankings (e.g. Spearman’s rank correla-
tion coefficient or Kendall tau correlation coefficient) can be used for this

purpose.

The second setting corresponds to the situation in which what is as-
sumed is the existence of a single target label and not of a target ranking;
the objective in this case is to predict a label ranking where the target item
appears as high as possible. Labels in this scenario correspond for example
to the causes of a technical failure, and the predicted ranking represents a
search process testing the possible fault until the real one is found. In this
setting, the quality of a predicted ranking is the number of labels which

precede the target item in it. This type of error, namely the distance in the

96 Chapter 4. Monotonic Instance Ranking with MIRA

predicted ranking of the target label from the top-rank, is called position

Error.

4.1.2 Object Ranking

Given a set of pairwise preferences of the form x = x’ indicating that object
x should be ranked higher than object x’, an object ranking task consists

of learning a ranking function (called an object ranker)
r:2% 5 P,

mapping any non-empty, finite set of objects X C X of cardinality n to
a permutation m of X. This is typically accomplished by assigning a real-
valued score to each object x and then ranking the objects according to the
scores: the larger the score, the higher the rank. Therefore, what is actually

learned is a scoring function
s:2% 5 R

assigning a score to the elements of a subset X C X.

This preference learning task, which is one of the first to have been
studied, is also known as learning to order things [27]. An example is
represented by the problem of learning to rank the query results returned
by a search engine tackled by Joachims in [68]. The training information
is provided implicitly by the user who clicks on some of the links in the
query result and not on others; this information can be turned into binary
preferences by assuming that the selected pages are preferred over nearby
pages that are not clicked on [69].

Similarly to a label ranker, one way to measure the performance of an
object ranker consists of measuring the ranking error, namely comparing
the predicted ranking with the target ranking. Frequently, though, the
number of items to be ordered in an object ranking task is likely to be
much larger than in a label ranking task, so one is typically not interested
in predicting a full ranking but only, for instance, the top-k ranks; this
occurs, for instance, in the task of ranking Web search engine results. In

this case, top-k measures comparing the top positions of rankings are used

4.1.3. Instance Ranking 97

instead.

Finally, in some applications one is not interested in predicting a ranking
but in distinguishing between positive and negative examples or between
relevant and irrelevant items (such as, which documents are relevant to a
query). In this case, performance is measured by adopting measures typical

of information retrieval such as precision, recall, or normalised discounted
cumulative gain (NDCG) [67].

4.1.3 Instance Ranking

Given a set of possible alternatives consisting of a set of totally ordered la-
bels ¥ = {y1,...,yx} (or, without loss of generality, Y = {1,2,...,k}) rep-
resenting preference degrees and a collection of labelled training instances
{(xi,y:)}I¥.,, an instance ranking task consists of learning a ranking func-

tion (called an instance ranker)
r:2% -5 P,

mapping a non-empty, finite set of unlabelled individuals X C X of car-
dinality n to a permutation 7 of X such that, ideally, the instances with
preference degree gy precede those with preference degree yi_1, which in
turn precede those with preference degree yi_o, etc. As in object ranking,

this is typically accomplished by learning a scoring function
s:2% & R,

which is used to assign a real-valued score to each element of X to then rank
them according to their scores, with higher ranks corresponding to larger
scores.

Instance ranking is therefore similar to object ranking in terms of the
type of ranking returned but proceeds from the setting of ordinal classifi-
cation in terms of the training data used (see section 3.2). Moreover, the
ranking predicted by an instance ranker is in a way a refinement of the order
information provided by an ordinal classifier because, unlike the latter, it
distinguishes between objects within the same category.

As an example, consider a bank possessing a data set describing past

98 Chapter 4. Monotonic Instance Ranking with MIRA

loan applicants in terms of their demographic characteristics and categorised
as highly reliable, reliable, and unreliable. The goal for the bank is ranking
new loan applicants according to their risk level from the most likely reli-
able to the most likely unreliable and, therefore, not just partitioning the

applicants into the three categories above.

For k = 2, this learning problem corresponds to the well-known bipartite
ranking problem. It consists of learning a ranking function from a training
set of positively and negatively labelled examples which, when applied to
a set of unlabelled instances, totally orders them from most likely positive
to most likely negative. For k > 2 this learning problem has been studied
by Fiirnkranz et al. in [51] and by Rajaram et al. in [93] with the name
of multi-partite ranking and k-partite ranking respectively. Similarly to
bipartite ranking, the goal is not to learn a good classifier but a good ranker,
that is, a function which systematically ranks “high” classes ahead of “low”

classes.

Different types of accuracy measures have been proposed for instance
ranking. As the goal is to produce a ranking in which instances from higher
classes precede those from lower classes, these measures count the number
of ranking errors, namely the number of pairs (x,x’) € X x X such that
x is ranked higher than x’ even though the former belongs to a lower class
than the latter.

In the two-class case, this corresponds to the area under the ROC curve
(AUC)

AUC (s, X) |P||N| >N S(s x')), (4.1.1)

xePx'eN

where P C X and N C X are the positive and negative instances in X,
and S(-,-) is defined as follows:

0 ifa>0b
S(a,b)=4 1 ifa<b (4.1.2)
1/2 ifa=b

Mapping (4.1.2) outputs 1 when a positive instance is ranked before the
negative one and 0 in the reverse case; the value returned is % when the

instances are assigned the same score.

4.2. Learning Preference Relations 99

The AUC can be interpreted as the probability that a randomly chosen
instance belonging to the positive class is ranked higher than a randomly
chosen instance belonging to the negative class. Its generalisation to more
than two classes is represented by the probability that a randomly chosen
pair of observations (x,y) and (x',y) belonging to different classes is ranked

consistently by the ranking function, namely
P(s (x) <s(x) |y <v). (4.1.3)

If the training examples are independently and identically drawn from a
probability distribution on X x), an unbiased estimator of (4.1.3) is rep-
resented by the concordance index (C-index) [54]

C(S,X)ZLZ > S(s(x),s(x), (4.1.4)

ZZ<J T i<y (%, x")eX;x X,

where X; and X are the subsets of instances x € X having class y; and y;

respectively, n; = | X;|, and S(-,-) is the mapping defined in (4.1.2).

4.2 Learning Preference Relations

Preferences can be expressed in several ways, two of which are very natural
and have been investigated in the literature on choice and decision theory;
they form the basis for the two main approaches to tackling the preference
learning tasks illustrated in the previous section.

The first approach to modelling preferences consists of evaluating indi-
vidual alternatives by means of a utility function, which assigns an abstract
utility degree to each alternative under consideration. This approach trans-
lates into the problem of learning utility functions given a training data set
representing preferences. Learning utility functions can be challenging be-
cause utility degrees tend to be difficult to elicit; for example, it is difficult
to ensure a consistent scale even if all utility evaluations are performed by
the same user, and the situation becomes even more problematic if utility
scores are elicited from different users, which may not have a uniform scale
of scores [27].

A second main approach to modeling preferences consists of comparing

100 Chapter 4. Monotonic Instance Ranking with MIRA

pairs of alternatives in terms of preference relations, that is learning one
or more binary preference predicates comparing pairs of alternatives. This
second approach is more appealing: instead of choosing one alternative from
a set of options or ranking all alternatives according to their desirability di-
rectly, it is often easier to first compare the possible alternatives in a pairwise
fashion and then choose the best alternative or rank all possible alternatives
in a second step on the basis of these pairwise comparisons. This intuition
is supported by cognitive psychology research [103| and forms the basis for
many decision theory methodologies. Crucially, this approach is also attrac-
tive from a machine learning point of view as it allows a preference learning
task to be carried out as a two-step procedure: first a binary comparison
relation is learned, and then the pairwise comparisons the learned relation
returns are combined to make predictions. The training phase is much
simpler compared to that of learning utility functions because comparative
preference information is used directly instead of having to translate it into
a set of constraints on a latent utility function to be learned and because it
translates into a set of learning problems which can typically be solved in
a more accurate and efficient way. Moreover, different prediction problems
may be performed using the results of the training phase simply by choosing
a different aggregation method.

A third approach to learning ranking functions is based on making spe-
cific assumptions about the structure of the preference relations, e.g. that
the target ranking of a set of objects can be represented as a lexicographic
order.

Finally, another possibility is to use local estimation techniques such as

the nearest neighbour principle [50].

4.2.1 Instance Ranking by Learning Preference Relations

Initial methods to solve the instance ranking problem were based on the
idea of learning the optimal scoring function s by turning the initial training
data set into a set of order constraints on it and then learning a function in
agreement as much as possible with them. Each pair of observed examples

(x4,yi) and (x;,y;) such that y; > y; gives rise to a constraint

s(x;) > s(x;). (4.2.1)

4.2.1. Instance Ranking by Learning Preference Relations 101

In order to use existing learning algorithms, one common approach consisted
of expressing these constraints as classification examples and then learning
a binary probabilistic classifier whose probability estimates are then used as
a scoring function. One important example of this approach is represented
by the algorithm introduced by Herbrich et al. in [63].

One drawback to these methods is that the number of constraints, and,
therefore, the size of the training data derived for training the binary clas-
sifier is usually larger than the original training data set. Moreover, these
methods are not specifically designed for instance ranking, although they
are applicable to it; their input is a set of order constraints (4.2.1) which,
in this case, are derived from inequalities between pairs of labels.

Firnkranz et al. introduced in [51] two pairwise learning techniques
specifically designed for instance ranking which make better and more ex-
plicit use of the class label information contained in the training data. In-
stead of transforming the original problem into a single binary classification
problem, the authors suggested decomposing it into several binary problems
by applying well-established decomposition techniques which had already
been used successfully in multi-class classification. Several binary classifiers,
therefore several scoring functions, are learned from the training instances.
Given a set of individuals X to rank, both approaches submit each x € X
to all learned models and aggregate the corresponding predictions into an
overall score. The set X is then ranked based on these aggregate scores. One
key advantage of this decomposition technique is that the resulting learning
problems are simpler and usually much smaller than a single binary prob-
lem, for they avoid the combinatorial explosion caused by considering all
pairs of the original training examples. Roughly speaking, by exploiting
class information, a large number of order constraints can be satisfied in
an implicit way: a classifier which separates ng negative from n; positive
instances, and which is hence trained on ng 4+ n; examples, automatically
satisfies ngny order constraints.

Fiirnkranz et al. also motivate the use of binary decomposition meth-
ods to tackle instance ranking by their successful application to similar
problems, such as classification [47,48], ordinal classification [45], and label
ranking [66]. Moreover, as Fiirnkranz et al. point out, an ordinal classifier

might indeed be used as a scoring function by interpreting the fact that an

102 Chapter 4. Monotonic Instance Ranking with MIRA

instance x is assigned label y; as x being given score 7; the resulting scoring
function, though, is not very good as it produces a large number of ties. On
the other hand, a ranking function s can be turned into an ordinal classifier
by using thresholding: given m+1 threshold values ¢;, 2 =1,...,k+1, class

y; is predicted for an instance x if the score s(x) is between ¢; and ¢;41.

Fiirnkranz et al. show that their decomposition methods are compet-
itive, if not superior, to a state-of-the-art ranking method introduced by
Joachims in [68] in terms of predictive accuracy while having much lower
computational cost. Of the algorithms they introduce, we now describe the
algorithms which builds on the decomposition technique aimed at ordinal
classification presented by Frank and Hall in [45], for our own algorithm is

based on the same aggregation scheme.

The ordinal classification algorithm presented by Frank and Hall in [45]
solves a problem involving k > 2 classes by training k£ — 1 binary classifiers.
The model s; learned by the i-th classifier, for i = 1,...,k—1, separates the
meta-classes C_ = {1,...,i} and Cy = {i+1,...,k}. Given a new instance

x, a prediction s;(x) is interpreted as an estimate of the probability
Py >i[x),

that is the probability that the class y of x is in C4. An estimate of
the posterior class probabilities P(y|x) are then derived from the above

cumulative probabilities as follows:

1— Py >i|x), ifi=1
Pi(x) = { max{(P(y >i—1|x) — P(y >1i|x)),0}, ifi=2,...,k—1
Py >i—1|x), ifi=k

(Tt should be noted that in Frank and Hall’s aggregation scheme P;(x) for
i=2,...,k—1is set equal to 0 if P(y >i—1|x) < P(y > i|x) because
the collection of binary classifiers it is based on does not preclude that from
happening.) The class predicted is the class corresponding to the highest
posterior probability.

To obtain a ranking function, Fiirnkranz, Hiillermeier and Vanderlooy

4.8. Monotonic Instance Ranking 103

suggest aggregating the models s; as

?‘?‘
i
H‘T
—_

Sage(X) = Y si(x) =) Ply>1i|x) (4.2.2)
1 1

<.
Il

i

because (4.2.2) systematically assigns higher scores to instances from higher

classes [51].

Notation. When the s; in this aggregation scheme are logistic regression
models [59] as is the case in [18,51], we shall denote this ranking function

as sy and the resulting ranking model as FHV.

It should be noted that logistic regression models produce linear class

boundaries.

4.3 Monotonic Instance Ranking

Assuming that the feature space X is partially-ordered, that the set of
preference degrees) is totally ordered, and that there exists an unknown
monotonic functional relationship between X and), a monotonic instance
ranking task is an instance ranking task in which the learned scoring func-

tion s : X — R is monotonic, that is
x <x' = s(x) < s(x), vx,x' € X. (4.3.1)

In other words, a lower ordered input is not allowed to have a higher score.
It should be noted that if we have that

x<x'=Ply>i|x)<Ply>ilx) vx,xeX Vi=1,... .k
which, as shown in section 3.2, is equivalent to
x <x' = F(x) > Fi(x)) vx,x' € X, Vi=1,...,k, (4.3.2)

where F;(x) denotes the cumulative probability P(y < i | x), then scoring
function (4.2.2) satisfies condition (4.3.1), namely

X < X' = 5agg(X) < Sagg(x'),

104 Chapter 4. Monotonic Instance Ranking with MIRA

since P(y > i | x) = 1 — Fj(x). Therefore, to obtain a monotonic scoring
function using aggregation scheme (4.2.2), it is sufficient that stochastic
order constraint (4.3.2) holds.

In order to achieve this goal, we propose adopting the MOCA estima-
tor F (see equation 3.2.7), for it satisfies the stochastic monotonicity con-

straint (4.3.2) by construction (see section 3.2.1).

Definition 40 (MIRA Scoring Function).
k—1)
Smira(X) = »_1—Fj(x), VxeX. (4.3.3)

i=1

The MIRA scoring function is guaranteed to produce globally-monotonic

estimates, as the following proposition shows.
Proposition 15. The MIRA scoring function is monotonic.

Proof. Given two feature vectors x,x’ € X such that x < x’, it follows from

theorem 5 on page 65 that

1> Fi(x) > Fy(x) Vi=1,....,k—1,
and then
0<1—Fy(x)<1-—F(x) Vi=1,...,k—1,
from which the proposition follows immediately. O

4.3.1 Example

To illustrate the differences between them, we apply the original scoring
function (4.2.2) and the MIRA scoring function (4.3.3) to a monotonic la-
belled data set S, interpreting the labels as degrees of preference. We as-
sume the former to employ maximum-likelihood estimates of the cumulative
probabilities and denote it as f . The examples comprising S consist of fea-

ture vectors taking values in the 2-dimensional feature space

X ={1,2,3} x {1,2,3}

4.3.1. Example 105

and having one of the class labels in the totally-ordered set
y={1,2,3}.

Figure 4.1 depicts the partial order on Sy.

Table 4.1 lists, for every x € Sy, the number of occurrences n(x,y) of x
having label y, the total number of occurrences n(x), the maximum likeli-
hood estimate Fz(x) of the posterior-class cumulative distribution function
Fi(x), i = 1,2, and, finally, the antitonic regression F of Fj(x). F3(x) and
Fg(x) are not included because they are equal to 1; moreover, it should be
recalled that F' = F* for the elements of the training data set.

The maximum-likelihood estimates F' violate the stochastic order con-
straint because (2,1) < (3,2), but F1(2,1) < F1(3,2); moreover, (1,2) <
(3,2), but F1(1,2) < F1(3,2). The antitonic regression resolves these vio-
lations by assigning the weighted average of F1(2,1) and 13’1(3,2) to both
attribute vectors:

_3x0+2x1/2 1

Fi(2,1) = F1(3,2) = T332 5

Figure 4.1: MIRA example. Graph of the partial order on the distinct feature
vectors observed in the training data set.

106 Chapter 4. Monotonic Instance Ranking with MIRA

(z1,22) nlxy) n(x) F F
1 2 3 1 2 1 2
xx (L) 200 2 1 1 1 1
x2 (1,2) 1 2 0 3 1/3 1 1/3
xs (2,1) 0 2 1 3 0 2/3 1/5 2/3
xx (,3) 001 1 0 0 0 0
xs (3,2) 1 0 1 2 1/2 1/2 1/5 1/2

Table 4.1: MIRA example. Summary of the labelled data set used. For each
distinct feature vector x observed in the data set, the second column contains the
coordinates of x, the third column the number of occurrences of x observed with
each of the three possible labels, the fourth column contains the overall number of
occurrences of x observed in the data set, the fifth column contains the values of
the maximum likelihood estimate F of the posterior-class cumulative distribution
function Fj(x), i = 1,2, and the sixth column contains the antitonic regression F
of Fy(x). (The estimates of F3(x) and of F3(x) are omitted because they are equal
to 1.)

The conflict between (1,2) and (3,2) is resolved by this averaging as well.

In table 4.2, we see the effect of the estimator choice on score values.
Since scoring function § is based on F , that is, since we filled F into equa-
tion (4.3.3) instead of I, we have

5(2,1) > 5(3,2),

which violates the monotonicity constraint. This violation is resolved in

Smira a8 Smira(2a]-) < Smira(?’a 2)

(-Tla 392) 5 Smira,
L)) 0 0
(1,2) 067 0.67
(2, 1) 1.33 1.13
(1.3 2 2
32 1 13

Table 4.2: MIRA example. Scores based on F and F respectively.

4.4. Bxperiments 107

To compute F for feature vector xo = (2,2), we proceed as follows. As
the points in the training data smaller than x¢ are (1,1), (1,2) and (2,1),

we have that
Fy'™(xp) = min{Fy (1,1), F5(1,2), F5(2,1)} = min{1,1,2/3} = 2/3.

The only feature vector in the training data bigger than xq is (3,2), so we
have that

F3n(x0) = max{F5(3,2)} = max{1/2} = 1/2.

So for ae = % we would have

S 000

F1(xp) is computed in a similar fashion.

4.4 Experiments

In order to verify that the desired monotonicity property does not come at
the cost of a decrease in predictive performance, we performed an empirical
comparison of the performance of scoring function $pja with that of sg,,
in terms of the concordance index (see equation 4.1.4). The comparison

involved both artificial and real data.

4.4.1 Artificial Data

To show that MIRA can improve the performance of the FHV logistic re-
gression model, we performed tests on data sets generated from a mono-
tonic non-linear model. The class boundaries of this model are depicted
in figure 4.2. For example, given a feature vector (x1,x9) if z1 > 0.4 and
xo > 0.4, then the vector is assigned to class 3. The two features z; and
22 were drawn independently from the uniform distribution on the interval
[0,1].

We considered two different training set sizes and four different noise

levels. For example, a noise level of 0.1 indicates that an observation from

108 Chapter 4. Monotonic Instance Ranking with MIRA

0.2 0.4

T2 |]

0.4

0.2

1
0 I 1

Figure 4.2: MIRA experiments on artificial data. Class boundaries according to
which the data was generated. For example, given a feature vector x = (z1, z2),
if 1 > 0.4 and x5 > 0.4, then the vector is assigned to class 3.

class 1 is flipped to class 2 with probability 0.05, and is flipped to class 3
with probability 0.05 as well. The concordance index of trained models was
estimated on a test set of size 10,000.

We performed five-fold stratified cross validation to select the best value
of « € {0,0.25,0.5,0.75,1}.

Table 4.3 gives the concordance index, averaged over five repetitions, of
MIRA and FHV for two different training set sizes and four different noise
levels; a noise level of e indicates that the probability that the true label
is flipped to one of the other two labels is equal to . The results conform
to our expectations: since the class boundaries are monotonic but non-
linear, MIRA has some advantage over the linear FHV model (with the odd
exception of n = 100 and ¢ = 0.2). MIRA’s advantage appears to become
smaller as the noise level increases; this makes sense, for a non-parametric
technique such as MIRA is more sensitive to noise.

The results also conform to the expectation that bigger training sets

tend to give better results for both methods.

4.4.2 Real Data

We also performed tests on the following real-world data sets (see Ap-

pendix A for more details on them):

e Auto MPG

4.4.2. Real Data 109

Size n 100 500

Noise ¢ FHV MIRA FHV MIRA
0.0 0.9013 0.9856 0.9041 0.9942
0.1 0.8379 0.8957 0.8416 0.8906
0.2 0.7802 0.7431 0.7842 0.8256
0.3 0.7148 0.7484 0.7271 0.7578

Table 4.3: MIRA experiments on artificial data. Concordance index of MIRA and
FHV for two different training set sizes and four different noise levels. A noise level
of € indicates that the probability that the true label is flipped to one of the other
two labels is equal to €.

e Boston Housing

e Computer Hardware
e ERA

e ESL

e Haberman’s Survival
e LEV

e Ohsumed

e Pima Indians

e SWD

e Windsor Housing

The numeric target attributes of the Auto MPG, Boston Housing, Com-
puter Hardware, and Windor Housing data sets were discretised into five
labels using equal-frequency binning. Moreover, we did not use the whole of
the Ohsumed data but instead only the data for query 3 and only considered
the descriptive attributes 5, 6, 7, 18, 20, 21, 22, 35, 36, and 37.

For each data set, the concordance index of both algorithms was esti-
mated as the average of the concordance indices registered during five rep-
etitions of a 10—fold stratified cross validation. Within each fold, the best
value —in terms of the concordance index— for MIRA’s v in {0, 0.25,0.5,0.75, 1}
was chosen by performing 5—fold stratified cross validation on the training
data set for the fold. The best value of o was then used to train MIRA and
complete the fold.

110 Chapter 4. Monotonic Instance Ranking with MIRA

Table 4.4 contains the concordance index attained for the best value
of a by MIRA and by FHV respectively averaged over the five repetitions
of a 10—fold stratified cross validation. We observe that the difference in
concordance index is typically very small. Hence, we conclude that the
desired property of monotonicity can be obtained without sacrificing much
in terms of predictive accuracy. Even though the difference mostly occurs
only in the second or third decimal place, we observe that FHV has the
higher concordance index 10 out of 11 times. When performing Wilcoxon’s
signed-ranks test, as recommended by Demsar [31], the p—value obtained
is 0.02.

We may summarise these findings by stating that FHV has a consistently

slightly better predictive performance.

4.5 An Improved Monotonic Ranking Function

Scoring function (4.3.3) has the potential disadvantage that violations of
monotonicity are resolved by averaging the conflicting (partial) scores, pos-
sibly leading to setting the scores equal altogether.

To illustrate this point, let us consider the simplest possible case of

Data set MIRA FHV

Auto MPG 0.9327 0.9494
Boston Housing 0.8773 0.9179
Computer Hardware 0.9064 0.9085
ERA 0.7326 0.7384
ESL 0.9572 0.9623
Haberman’s Survival 0.7024 0.6815
LEV 0.8617 0.8656
Ohsumed 0.6346 0.6680
Pima Indians 0.7697 0.8298
SWD 0.8070 0.8144

Windsor Housing 0.8529 0.8601

Table 4.4: MIRA experiments on real data. Concordance index attained for the
best value of @ by MIRA and by FHV respectively averaged over five repetitions of
a 10—fold stratified cross validation.

4.5. An Improved Monotonic Ranking Function 111

two examples (x1,y1) and (X2,72) in a binary problem where x; < xo
but y; > y2. The isotonic regression resolves this monotonicity violation by
averaging the probabilities, giving both examples a probability of 0.5 for the
lower class; as a consequence, the two examples get the same score, giving a
concordance index on the training data of 0.5. However, the monotonicity
constraint expresses the belief that the higher ordered input xo tends to
have higher class labels in general. Therefore, it would be more appropriate
to give x9 a higher score than x;. It should be noted that doing so would
actually yield a lower concordance index on the training data as it would
decrease to 0. If the monotonicity constraint is correct, however, then the
concordance index on unseen data improves by making the inequality a
strict one.

In an attempt to enforce strict inequalities, we try to break ties by
combining each of the probabilities added up in equation (4.3.3) with those

estimated using the logistic regression model [59]

log PZ-(C+|§)

Fi(C-[x)

p
=Bo+ > Bjxj, (4.5.1)
7=1

where P;(C4|x) and P;(C_|x) are the posterior class probabilities that a
given instance belongs to the metaclasses Cy and C_ for the i—th initial

rank respectively.

Definition 41 (MIRAT Scoring Function).

k—1
SmIrat (X) = ZV&LR(X) + (1 — 7)(1 — FZ(X)) Vx € X, (4.5.2)
=1

where each P'"(x) = P;(Cy|x) is the fitted probability of the logistic re-
gression model for the i—th metaclass C, and v € [0, 1].

The reason for using correction (4.5.1) is that if 5; > 0, then there is
a strictly positive monotonic relationship between x; and the probability
of belonging to the metaclass C; consequently, this produces a ranking
function which is strictly monotonic in z;.

In order to only get positive coefficients in the logistic regression model,

the full logistic models (namely, including all descriptive attributes) are

112 Chapter 4. Monotonic Instance Ranking with MIRA

first estimated. If the models obtained contain negative coefficients, then
all of the corresponding descriptive attributes are removed, and the logistic
models are re-estimated with the remaining descriptive attributes. The
re-estimation of the logistic models is repeated until only attributes with
positive coefficients remain.

It should be noted that because attributes with negative coefficients are
removed, we may not be able to always enforce the desired strict monotonic-
ity. To illustrate this point, let us denote with x; the subset of x included
in the logistic regression model. If x < x’ but x; = xJ, then the logistic
regression model shall obviously assign the same probabilities to x and x/,
that is P;(C4|x) = P;(C4|x').

Finally, it should also be noted that if v = 0 in (4.5.2), then the scoring
function being used effectively is (4.3.3), and that if v = 1, then only the
logistic regression correction (4.5.1) is being used. Moreover, even if v = 1,
then spira is not identical to sp,, because MIRA enforces positive coefficients

in order to obtain the required monotonicity directions.

4.6 Additional Experiments

We performed new experiments to evaluate the performance of the MIRA™
scoring function using the same experimental set-up used in the experi-
ments reported in section 4.4.2. Table 4.5 reports the concordance index
attained for the best value of o by MIRA™T for different values of v and by
FHV respectively averaged over five repetitions of a 10—fold stratified cross

validation.

To test the null-hypothesis that all methods have the same performance,
we carried out a Friedman’s test as recommended by Dems3ar [31]. The test
yielded a p-value of 0.0003, leading to rejection of this hypothesis at any
reasonable value of «, so we proceeded with a Nemenyi post-hoc test in
which we compared MIRAT at different levels of v with FHV, using the
latter as the baseline or control ranker in this experiment. The p-values of
the null-hypothesis of no difference are given in the final row of table 4.5
for each value of v. To control for family-wise error, we performed the

Bonferroni correction. Taking o = 0.1, we divided this by the number of

4.7. Conclusion and further research 113

comparisons performed, which was eight; hence, only p-value smaller than
0.0125 are considered to indicate a significant difference.

Summarising the results, it seems fair to say that striking a balance
between the isotonic regression and the logistic regression components works
best for MIRA, for the best results are obtained for v = 0.5 and v = 0.7.
This can be inferred from the high p-values and low average ranks for these
values of 7. Finally, the fact that results for v = 0 and v = 1 are among
the worst proves that both components of MIRA’s scoring function must be

present in order to achieve the best performance.

4.7 Conclusion and further research

We presented MIRA, a monotonic instance ranking algorithm. MIRA extends
our earlier work on non-parametric monotonic classification [10] to ranking
problems and builds on the best-performing decomposition and aggregation
scheme among those proposed by Fiirnkranz et al. in [51].

By performing experiments on real data, we showed that MIRA’s predic-
tive accuracy measured by means of the concordance index is comparable to
that of the algorithm by Fiirnkranz et al. Moreover, experiments performed
on an artificial data set show that MIRA can outperform the linear model the
FHV algorithm is based on if class boundaries are monotonic and non-linear.

More importantly, MIRA is guaranteed to produce a monotonic ranking func-

Data set vy=0 v=005~v=01 v=02 v=05 v=07 v=09 ~=1 FHV
Auto MPG 0.9327 0.9389 0.9398 0.9427 0.9488 0.9504 0.9491 0.9479 0.9494
Boston Housing 0.8773 0.8817 0.8844 0.8887 0.9000 0.9020 0.9006 0.8951 0.9179
Computer Hardware 0.9064 0.9134 0.9140 0.9145 0.9194 0.9187 0.9141 0.9097 0.9085
ERA 0.7326 0.7333 0.7337 0.7348 0.7369 0.7379 0.7365 0.7356 0.7384
ESL 0.9572 0.9579 0.9583 0.9579 0.9469 0.9374 0.9366 0.8601 0.9623
Haberman’s Survival 0.7024 0.7003 0.7000 0.6992 0.6951 0.6949 0.6915 0.6841 0.6815
LEV 0.8617 0.8626 0.8634 0.8647 0.8669 0.8674 0.8664 0.8656 0.8656
Ohsumed 0.6346 0.6434 0.6444 0.6478 0.6583 0.6660 0.6688 0.6700 0.6680
Pima Indians 0.7697 0.7924 0.7949 0.7989 0.8126 0.8205 0.8279 0.8288 0.8298
SWD 0.8070 0.8082 0.8091 0.8105 0.8129 0.8081 0.8008 0.7949 0.8144
Windsor Housing 0.8529 0.8570 0.8578 0.8594 0.8609 0.8616 0.8592 0.8582 0.8601
Average rank 7.7 6.6 5.7 4.9 3.5 3.3 4.5 5.6 3.1
p—value 0.0000 0.0005 0.0066 0.0491 0.3476 0.4481 0.0887 0.0094 —

Table 4.5: MIRAT experiments on real data. Concordance index attained for the
best value of o by MIRA™T for different values of v and by FHV respectively averaged
over five repetitions of a 10—fold stratified cross validation.

114 Chapter 4. Monotonic Instance Ranking with MIRA

tion. Monotonicity is desired or even required for many applications, so this
represents a valuable addition to existing ranking algorithms.

One issue for future research is determining whether MIRA’s predictive
accuracy can be further improved by using a different estimator capable of
attaining higher concordance index values. We tried to do so by using the
weighted KNN estimator introduced by Barile and Feelders in [11] and also
described in this thesis without obtaining any improvements. Another way
to improve the performance of the algorithm to investigate is the adoption

of different aggregation schemes.

Chapter 5

Active Learning in Monotonic

Classification

In order to learn accurate classification models from data, traditional su-
pervised approaches typically require a large collection of labelled training
vectors. There are many applications, however, in which data are abun-
dant but class labels are difficult, time-consuming, or expensive to obtain.
In such cases, we would like to be able to select the examples (the query
points) whose labels are in some sense most informative about the location
of the decision boundary between classes. This problem setting has been
studied in the relatively new field of active learning [97]. At each step, an
active learning algorithm can ask an oracle (e.g., a human annotator, a do-
main expert, or a device which is expensive to query such as a satellite) to
label an example, which may be drawn from a set of unlabelled examples
or synthesised ad hoc.

As part of our project, we investigated how to exploit prior knowledge
in the form of monotonicity constraints for active learning in monotonic
classification (see section 3.2). We focused on the pool-based active learning
setting, in which there is an initial pool of unlabelled data points and the
learner is allowed ask an oracle for the label of (a limited number of) data
points. In this setting, the central problem is how to choose the data points
to query the oracle for; ideally, the learner should submit queries whose
answers allow it to draw conclusions about the labels of as many other

unlabelled points as possible.

116 Chapter 5. Active Learning in Monotonic Classification

Many active learning approaches to classification use a specific type of
classifier (e.g. support vector machines, classification trees, or logistic re-
gression models) relative to which good query points are determined. In our
case, instead, we have decoupled active learning from a specific classification
model. Our approach is based on the observation that if the class label of
an object a is given, then it is possible to infer that all objects which score
worse than a on all attributes cannot have a higher class label and that, on
the other hand, all those that score better than a on all attributes cannot
have a lower class label. Therefore, thanks to the monotonicity constraints,
we hypothesised that we might be able to infer the labels of a substantial
subset of the training vectors from just a few well-chosen query points.

The most important research question was how we could use the known
monotonicity of the “true” class labels to determine good query points. Is
it possible to find optimal strategies to select query points? Are these
strategies computationally feasible? If not, can we develop easy-to-compute
heuristics for selecting good query points? As a result of our investigation,
we devised heuristics which, next to a theoretical analysis, were imple-
mented in two new active learning algorithms. We determined the quality
of our approach empirically by performing tests on both artificial and real-
life data sets; in each test we used the training data set returned by each
algorithm to fit a classification model and then estimated the error rate
of each learned model on a test sample. We do not enforce monotonicity
constraints on the trained models because we are only interested in using
monotonicity to infer the labels of data points as a way of augmenting the
training sample. The fitted models are merely instrumental in determining
the relative quality of the training samples produced using the proposed
heuristics.

This chapter is organised as follows:

e In section 5.1 we introduce the active learning paradigm, providing

some theoretical arguments to support it in section 5.1.1.

e In section 5.2 we discuss the basic ideas of active learning with mono-
tonicity constraints, then we propose two heuristics to select good
query points and two algorithms, each operating in a different set-

ting, which are designed to make use of the introduced heuristic.

5.1. Active Learning 117

e In section 5.3, we discuss related work.

e In section 5.4 we provide and interpret the results of experiments

performed on artificial as well as real data sets.

e Finally, in section 5.5, we draw conclusions and indicate possibilities

for further research.

5.1 Active Learning

In order to learn accurate classification models from data, traditional su-
pervised approaches typically require a large collection of labelled training
vectors. There are many applications, however, in which data are abundant
but class labels are difficult, time-consuming, or expensive to obtain. For
instance, learning to classify documents (e.g., articles or Web pages) or any
other kind of media (e.g., image, audio, and video files) requires that users
label hundreds or thousands of instances with labels such as “relevant” or
“not relevant”. Instance labelling by manual annotation is typically unlikely
to be carried out on the required scale because of its tediousness; moreover,
it can lead to redundancy or contradiction. In such cases, we would like to
be able to select the examples (the query points) whose labels are in some
sense most informative about the location of the decision boundary between
the classes.

This problem setting has been studied in the relatively new field of
active learning (also called query learning or optimal experimental design
in statistical literature) [97]. It is an iterative type of pattern recognition
based on the idea that, if the learning algorithm is allowed to choose the
data from which it learns, then it shall perform better with fewer training
examples. At each step, an active learning algorithm can ask an oracle
(e.g., a human annotator, a domain expert, or a device which is expensive
to query such as a satellite) to label an informative example which may be
drawn from a set of unlabelled examples or synthesised ad hoc.

Several scenarios have been studied in the literature on active learn-
ing [97]. In our investigation, we focused our attention on the pool-based
sampling setting because of its relevance to data mining applications. In

this scenario (see figure 5.1), which was first introduced in the context of

118 Chapter 5. Active Learning in Monotonic Classification

text mining by Lewis et al. in [75], it is assumed that a small set of labelled
feature vectors £ and a large set (or pool) of unlabelled feature vectors U
are available. The active learning algorithm begins with £ as the initial
training data set and then selects the most informative instance from U
and queries the oracle for its label; this choice is typically made according
to a greedy querying strategy based on an informativeness measure which
is used to evaluate all feature vectors in the pool U or, if U is very large,
a sample thereof. The newly labelled example is added to £, which the
algorithm then uses in a standard supervised way. The process is repeated
until the maximum number of queries allowed has been performed.

Active learning research mainly focuses on the strategy to choose the
data points to be queried. The most common querying strategy is uncer-
tainty sampling, where the unlabelled instance chosen to be queried is the
instance that the learner is the least certain how to label. Other strate-
gies try to reduce the subset of all hypotheses that are consistent with the
observed training tuples. Finally, a decision-theoretic approach may fol-
low which estimates expected error reduction, and the selected tuples are
the ones that would result in the greatest reduction in the total number of

incorrect predictions such as by reducing the expected entropy over U.

learn a model : :
gl vy machine learning

model

labeled
training set
(e

unlabeled pool

U

select queries
oracle (e.g., human annotator)

Figure 5.1: The pool-based active learning cycle [97].

5.1.1. Theoretical Justification 119

5.1.1 Theoretical Justification

A theoretical argument for why and when active learning can produce better
results than traditional supervised pattern recognition is an active research
topic. The goal is to find, given a learning problem, a bound on the number
of queries required to learn an accurate enough model and a guarantee that
this number is smaller than in the traditional supervised setting.

To illustrate the kind of argument sought, let us consider the problem
of learning a binary threshold function f parametrised by an unknown con-

stant @ for points lying on a one-dimensional line:

f(x,@):{ 1 ifz>0,

0 otherwise

According to the probably approximately correct (PAC) learning frame-
work, given a desired maximum error rate ¢, if the underlying data distri-
bution can be classified without error by an hypothesis from the class of
hypotheses we consider (that is, the realisable case), then it is enough to
draw randomly O(1/e¢) labelled instances.

On the other hand, if this problem is solved in a pool-based active
learning setting, the instances labelled by querying the oracle can be seen
as an array sorted based on their labels, namely as a sequence of zeros
followed by ones. The goal of the active learning algorithm can therefore be
seen as discovering the level at which the transition from zero to one occurs
while asking for as few labels as possible. A classification error smaller than
e can therefore be attained only requiring O(log 1/¢) queries by conducting
a binary search through the unlabelled instances.

Generalisations to higher dimensions of the example above within the
active learning literature have focused on linear separators (see for example
Balcan et al. [9]) rather than general monotonic classifiers as we did in our

research.

5.2 Active Learning and Monotonicity

Many active-learning approaches to classification make use of a specific type

of classifier (e.g. support vector machines, classification trees, or logistic re-

120 Chapter 5. Active Learning in Monotonic Classification

gression models) relative to which good query points are determined. For
example, one possibility is to learn a logistic regression model on the set
of examples labelled at a certain point and then apply this model to the
unlabelled examples to determine the one about which the classifier is most
uncertain (as measured, for example, by the entropy of the probability dis-
tribution over the classes). This would determine the next query point, and
SO on.

In our case, instead, we decoupled active learning from a specific classifi-
cation model, for we investigated how prior knowledge about the application
domain in the form of monotonicity constraints can be exploited for active
learning.

The basis of our approach is the observation that if the class label of
an object a is given, then it is possible to infer that all objects that score
worse than a on all attributes cannot have a higher class label and that, on
the other hand, all those that score better than a on all attributes cannot
have a lower class label. Therefore, thanks to the monotonicity constraints,
we might be able to infer the labels of a substantial subset of the training
vectors from just a few well-chosen query points.

To show how monotonicity constraints can be exploited in active learn-
ing, let us consider the problem of ranking loan applicants based on their
disposable income and on the number of years they have worked with their
current employer. In this example, a monotonicity relation between the
descriptive attributes and the target is expected to hold. In particular, it
is reasonable to assume that the higher an applicant’s disposable income,
the lower the risk that they shall not be able to pay back the loan; likewise,
experience shows that, caeteris paribus, the more years an applicant has
been working for his or her current employer, the smaller their probability
of defaulting on a loan. Let us then consider the collection of unlabelled
examples given in table 5.1. If we know that applicant as has been accepted
by the loan officer, since ag and a4 score not worse than as on both decision
criteria, it can be inferred that the loan officer shall also accept these other
applicants. Hence, there’s no point in querying the loan officer about them.
On the other hand, learning the loan officer’s opinion on as does not allow
to infer anything about a; because the two points are incomparable: as

scores better on income, but a; scores better on years of employment.

5.2.1. Querying with Monotonicity Constraints 121

Applicant Disposable Income Years Employed

a1 3000 15
az 3500 8
as 5000 10
a4 4000 8
as 3000 6

Table 5.1: Monotonicity constraints exploitation in active learning example. Un-
labelled loan applicant data.

In the following, we introduce two querying strategies which make ex-
plicit use of the monotonic constraints assumed to be present in the data.
We then present two new active learning algorithms for monotonic classifica-
tion named MAL (Monotonic Active Learner) and ND-MAL (Non-Deterministic
Monotonic Active Learner) designed to make use of the introduced heuris-
tics. Each algorithm operates in a different setting.

In order to be able to deal with the possibility of repeated occurrences of
the same feature vector with the same label, the pool of unlabelled vectors
U is assumed to be a multiset. Moreover, both the heuristics and the
algorithms have knowledge of the number of occurrences of each distinct

feature vector occurring in U and of the partial ordering on them.

Notation. We shall indicate the set of distinct feature vectors in U as Uy.

5.2.1 Querying with Monotonicity Constraints

Notation. Given a feature vector x € Uy, we shall denote the size of |x
as d(x) and the size of Tx as u(x).

Notation. Given a feature vector x € Uy, we shall denote the number of
lower sets of Uy which include x as L(x) and the number of upper sets of
Uy which include x as U(x).

In order to develop some intuition, let us begin by studying the special
case of a chain

x1 <Xs9...<Xx,

122 Chapter 5. Active Learning in Monotonic Classification

comprising n feature vectors, each having a binary class label y € {1,2}. In
general, if the oracle states that the label of the i—th element of the chain
is y; = 1, then it is possible to infer that y; = 1 for all j < ¢; similarly, from

knowing that y; = 2, it can be inferred that y; = 2 for all j > 1.

Let us suppose that we query the oracle for the label of the smallest
element of the chain x;. If the result of the query is that y; = 2, then it
can be inferred that the labels of all other elements of the chain is also 2;
on the other hand, if y; turns out to be 1, then no inference can be made
about the labels of the other elements of the chain. It seems unlikely that
the label of x; may be 2 because there is only one monotonic classification

such that y; = 2; hence, the odds that this case occurs seem very small.

Let us make the ideas expressed above more precise. First of all, it
should be noted that the number of monotonic binary classifications of a
chain with n points is n + 1, since label 1 can be assigned to any initial
segment (including the empty one and the complete chain) and label 2 to
the remaining upper segment. Moreover, the number of monotonic classifi-
cations in which a point x is assigned label 1 is equal to the size of its upset
1Tx, for assigning label 1 to the downset of each element of 1x yields one
such monotonic classification. Likewise, the number of monotonic classifi-

cations which assign label 2 to a point x is equal to the size of its downset

Ix.

If we assume that the latent monotonic decision function being inferred
has been drawn at random from the set of all possible monotonic functions

on the chain, then

If the label of the i—th element of the chain x; is 1, then it can be
inferred that the label of all the points comprising its downset also have
label 1; therefore, the number of labels which can be inferred is equal to

d(x;). This makes it possible to compute the expected number of labels

5.2.1. Querying with Monotonicity Constraints 123

N(x;) that can be inferred by querying x; as

E[N(x;)] = P(y; = 1)d(x;) + P(y; = 2)u(x;) (5.2.1)
__u(xi)d(xi) d(xi)u(x;)
d(x;) +u(x;) d(x;) +u(x;)

Maximising it with respect to u(x;) and d(x;), we find that (5.2.1) is largest
when d(x;) = u(x;). As a consequence, the most informative feature vector

to query is the one in the middle of the chain.

The reader must have noted the similarity with the problem of searching
for an element in a sorted list: using the well-known binary search strategy,
all labels can be inferred by asking the oracle for the value of logy(n) + 1 of
them.

The generalisation to arbitrary partial orders is conceptually straight-
forward. In order to obtain it, it should be noted that there is a one-to-one
correspondence between lower sets and monotonic binary classifications: as-
signing label 1 to all elements of the lower set and label 2 to its complement
upper set yields a monotonic classification, and, for any monotonic classifi-
cation, the set of points assigned label 1 is a lower set. Hence, the number
of monotonic classifications in which x; is assigned label 1 (respectively la-
bel 2) is equal to the number of lower sets (respectively upper sets) which
include x;. Therefore

L(x; U(x;
P(y;=1)= L(Xi)(Jr()](Xi)’ Py, =2) = L(xl)gr(}(xz) (5.2.2)

It follows that filling probabilities (5.2.2) into equation (5.2.1) would
make it possible to determine the feature vector having the highest expected
number E[N(x;)] of inferred labels.

Unfortunately, as proved by Provan and Ball in [92], counting the num-
ber of lower sets of a partial order is a #P-complete problem. A problem is
#P-complete if and only if it is in #P, and all problems in #P are reducible
to it by a polynomial-time counting reduction. This class is harder than
NP-complete, and a polynomial-time solution to a #P-complete problem
would imply P=NP. Therefore, the choice of the point to query can only be

made heuristically. For the binary case, a reasonable heuristic in terms of

124 Chapter 5. Active Learning in Monotonic Classification

computational cost consists of maximising the number of values which can

be inferred in the worst case, that is selecting the query point x* such that

x* = arg max min{d(x), u(x)}. (5.2.3)

xXEUx
It should be noted that this heuristic selects the middle element of a chain.
In the non-binary case, selecting a feature vector to query becomes

slightly more complex and requires some extra notation.

Notation. Given a feature vector x € Uy, we shall denote the interval of

possible labels for an unlabelled instance x as [(x, hx].
Assuming we start with no labelled examples, initially it is
[lx, hx] = [1,k] Vx € Ux.

As the oracle is queried, the bounds of the label intervals are adjusted based
on the monotonicity constraint in the following way: if the oracle returns

label y for query point x, then it can be inferred that

1. for all X’ €]x : hy < min(hy,y);
2. for all X" €1x : by < max(lyr,y).

Let N(x,y) denote the overall number of candidate labels which can be
scrapped for the feature vectors comprising U after learning from the oracle

that the label of x is y. It clearly is

N(X7y> = Z (hx’ _y)+ + Z (y _‘gx”)Jr)

x/€lx xex

where z; = max(0, z). By maximising the worst case, we obtain the follow-

ing heuristic.

Definition 42 (Heuristic 1). Given a pool of unlabelled observations, query
the oracle for the label of

z¥ =argmax min {N(x,y)}. (5.2.4)
xeU YE[lx;hx]

5.2.1. Querying with Monotonicity Constraints 125

To illustrate this heuristic, let us consider an unlabelled data set S com-
prising observations of the four, two-dimensional feature vectors described
in table 5.2. The feature space is ordered according to the product order in-
duced by the total order on the domain of each attribute (see equation 2.4.7),
which are both assumed to be the set of integers. The ordered set of possible
labels is Y = {1,2,3}

The distinct feature vectors comprising the data set are plotted in fig-
ure 5.2; by looking at the plot, it is clear that the data set contains an
incomparable pair, namely (x2,x3) (see definition 5).

Figure 5.3 depicts the graph of the partial order on Sy; since the number
of possible labels is 3, each point is initially labelled with the interval [1, 3].
In table 5.3 we indicate, for each feature vector, the overall number of
candidate labels which can be eliminated after observing each of the three
possible labels. Both x9 and x3 satisfy equation (5.2.4), so either can be
chosen. Let us suppose that xs is selected and that the label that the oracle
returns for it is yo = 2.

Figure 5.4 shows the new intervals after processing the first query. Ta-

1‘1 1172
X1 2 2
X2 4 6
X3 8 3
x, 1210

Table 5.2: Heuristic 1 example. Distinct feature vectors.

y=1 y=2 y=3 min

X1 2 5 8 2
Xy 4 4 4 4
x5 4 4 4 4
X4 8) 2 2

Table 5.3: Heuristic 1 example. Overall number of candidate labels which can be
eliminated for every feature vector after observing each of the possible labels.

126 Chapter 5. Active Learning in Monotonic Classification

N

#O

2O

-
17
xT

Figure 5.2: Heuristic 1 example. Plot of the distinct feature vectors.

Figure 5.3: Heuristic 1 example. Order graph for the distinct feature vectors
labelled with the interval of possible labels.

ble 5.4 contains the updated information concerning the number of can-
didate labels which can be eliminated after observing each of the possible
labels; based on the information contained in the table, the second point
selected to query the oracle for is x3. If the oracle returns label y = 1 for
X3, then it is possible to infer that ¥ = 1 and only the label of x4 remains
uncertain.

Another possible criterion consists of fitting a classification model to
examples which have been labelled at the current stage, either by querying

the oracle or by making inferences based on mononiticity, and then using

5.2.2. MAL 127

1,3

Figure 5.4: Heuristic 1 example. Order graph for the distinct feature vectors
labelled with the interval of possible labels after observing y, = 2.

y=1 y=2 y=3 min

x; 1 2 - 1
X2 - 0 0
x5 3 2 2
X, - 2 1 1

Table 5.4: Heuristic 1 example. Overall number of candidate labels which can be
eliminated for every feature vector after observing each of the three possible labels
after observing y, = 2.

the learned model to estimate the posterior class probabilities P(y|x;) for
the remaining unlabelled data points. The selected query point shall be
the one which maximises the expected number of label inferences based on

these probability estimates.

Definition 43 (Heuristic 2). Given a pool of unlabelled observations, query
the oracle for the label of

= arg max y x)N(x,y). 5.2.5
g, Y. Plykx)) (5.2.5)

5.2.2 MAL

The MAL algorithm operates in the ideal situation in which the oracle an-

swers a query for the label a feature vector always returning the same label

128 Chapter 5. Active Learning in Monotonic Classification

and in which the oracle is guaranteed to return labels so that monotonicity
is satisfied; in other words, when queried for the labels of two feature vectors

x and x’, the oracle assigns them the label y and %’ respectively so that
x<x' =y<y.

It follows that, in case of repeated occurrences of the same feature vector x

in U, the oracle needs only be queried once for it.

Our active learning algorithm for this setting is described in Algorithm 4:
given the multiset & of unlabelled feature vectors, MAL returns a multiset
L of training examples labelled by querying the oracle at most max times
for the labels of points chosen according to a heuristic H. In line 3, the best
query point according to H is selected from Uy. The label of the selected
point is then returned by the oracle, and the new labelled example is added
to the training set. In lines 7-11, the intervals of possible labels for the
feature vectors comprising | x* and 1Tx* are updated based on the answer
provided by the oracle. Then, if the label of a point x € Uy is uniquely
determined, i.e. {x = hx =y, then n(x) examples (x, y) are added to £, and
x is removed from Uy. The algorithm iterates until a maximum number of

iterations max has been performed or Uy is empty.

5.2.3 ND-MAL

The ND-MAL algorithm operates in the situation where the monotonic re-
lation between the descriptive attributes and the class label is assumed to
be of a probabilistic nature: for a given feature vector x, the class label
y is distributed according to a probability distribution P(y|x), and, when
queried for the label of x, the oracle replies by producing a random draw
from P(y|x).

This second setting contemplates the possibility that the oracle may
make errors or, more generally, that the class label is not uniquely de-
termined by the chosen descriptive attributes. For example, heavy smok-
ers have indeed a higher probability of developing lung cancer than non-
smokers; nonetheless, not every smoker develops lung cancer, and some

non-smokers do develop lung cancer.

5.2.3. ND-MAL 129

Algorithm 4 £ = MAL(U,max)

1: L+ @
2: while maz > 0 AUy # @ do
30 X" ¢ argmaxygy, H(x)
y* < O(x")
Lp + LpU{(x*,y")}
G+ G U{((x",y"),n(x"))}
Uy < Ux \ {x*}
for all x €/x* do
hx < min(hx, y*)
10: end for
11: for all x €1x* do
12: Uy +— max(lx, y*)
13: end for
14: for all x € Uy do

15: if /x = hx then

16: y < Uy

17: Lp <+ LpU{(x,y)}

18: Gr + GLU{((X,y),n(X))}
19: Ux + Ux \ {x}

20: end if

21: end for
22: max < max — 1
23: end while
24: return L

Similarly to the MOCA algorithm, we shall express the constraint that

Y is increasing in X in terms of the stochastic order constraint (3.2.3).

Because of the stochastic nature of the oracle, the set of examples con-
structed from its answers may contain monotonicity violations (see defini-
tion 23), which must be therefore repaired. In order to do so, we notice
that if the prediction error is measured by means of a convex loss function
(e.g. absolute error or squared error), then the Bayes allocation rule (21),
namely

f*(x) = argmin Y _ L(y, y') P(y|x)
y'eY ey
is monotonic when the stochastic order constraint is satisfied |72]. Hence,

it makes sense to relabel £ by means of f*.

130 Chapter 5. Active Learning in Monotonic Classification

We estimate f* by using the relabelling algorithm proposed by Feelders
in [39], which is based on the empirical risk minimisation principle (see
definition 22) with the hypothesis space H equal to the class of monotonic

functions. In other words, the algorithm estimates f* as

N

f(x) = argmin Y " L(yi, f(x)). (5.2.6)
fen 3

The relabelling algorithm runs in polynomial time, so this appears to be a

feasible tool to be used in this second setting.

After applying the relabelling algorithm to a set of labelled examples,
an interval [(x, hx| of optimal labels is determined for each feature vector x
occurring in the set. If /x = hx = y, then y is the label of x in every optimal
relabelling. Hence, a very conservative inference strategy is to consider the

collection of relabelled examples for which ¢y = hy.

Algorithm 5 outlines our algorithm for this second active learning set-
ting: given the multiset U of unlabelled feature vectors, ND-MAL returns
a multiset £ of training examples labelled by querying the oracle at most
max times for the labels of points chosen according to a heuristic H. @
denotes the collection of examples that have been labelled by querying the

oracle, and @y the set of distinct feature vectors in Q.

For each x € Uy, ND-MAL expects the oracle to return n(x) possibly
distinct labels for x. FEvery time the oracle is queried for the label of a
feature vector x*, it replies with a label which is interpreted as a random
draw from the labels of the labelled observations of x* which have not been

used yet, that is from the examples which are not in @ yet.

In line 1 the first query point x* is chosen as the one which maximises
H over Uy. After the oracle returns the label y* of x* (line 2), the la-
belled example (x*,y*) is added to @ (line 3), and the number of remaining
unlabelled occurrences of x* is decreased by one (line 4). If there are no
more labelled occurrences, then x* is removed from Uy (line 5-7). The
next query vector x* chosen from (@ is the vector which maximises the av-
erage of the values of the heuristic H corresponding to the minimal and
the maximal optimal relabelling of @ respectively (line 10); the alternative

of maximising the average over all optimal relabellings of () is not viable

5.3. Related Work 131

because the number of optimal relabellings can grow exponentially in the
size of @ [39]. After the oracle returns the label y* of the chosen query
point x*, the labelled example (x*,y*) is added to @ (lines 14 and 15). In
line 16, possible monotonicity violations in) are resolved by applying the
relabelling algorithm by [39]. The algorithm returns, for each feature vector
x in @, an interval [fx, ux| of optimal labels; assigning each x € @ the label
lx produces the minimal optimal monotonic relabelling of @), and assigning
ux produces the maximal optimal monotonic relabelling of @. The number
of remaining unlabelled occurrences of x* is decreased by one; if there are no
more labelled occurrences of x*, then x* is removed from Uy (lines 17-20).
When the maximum number of queries has been performed or Uy is empty,
for each queried vector x € @, the respective intervals of possible labels
for the vectors comprising | x and 1x are updated based on monotonicity
constraints (lines 23-30). The algorithm then returns n(x) examples (x,y)

of a feature vector x such that lx = ux = y if

1. x € Qy, for x has label y in every optimal relabelling;
2. X € Uy, and its interval of possible labels has reduced to y because of

the monotonicity constraint.

Hence, the labelled data returned by the algorithm consists of the set of
examples which receive the same label in every optimal relabelling together
with the set of the points whose labels can be uniquely inferred from the

former.

5.3 Related Work

Torvik et al. [104] consider the problem of learning monotonic Boolean func-
tions

f: X =),

which in our setting corresponds to the case that X; = {0,1} and Y = {0, 1}.
Loosely speaking, their objective is to determine for each x € X the value
of f(x) by asking as few queries as possible. They propose an algorithm
which computes the minimum average number of queries, where the average

is taken over all monotonic Boolean functions on X. This algorithm is

132 Chapter 5. Active Learning in Monotonic Classification

Algorithm 5 £ = ND-MAL(U, max)

xX* ¢« argmax, o, H(x)

y* < Ox7)

Q « {(x"y")}

n(x*) < n(x*) — 1

if n(x*) =0 then

UX < Z/{X \ {X*}
end if
while max > 0 ANUx # @ do
for all x € Uy do

Hy(x) <« heuristics value for x corresponding to the minimal optimal
relabelling of Q
H,(x) < heuristics value for x corresponding to the maximal optimal
relabelling of Q

12: end for

13: X" < argmax, oy, (He(x) + Hy(x))/2

14: y* + O(x*)

5 Qe QU{Gx,y)}

16: Relabel(Q)

7. n(x*) +n(x*) -1

18: if n(x*) =0 then

._.
e

—
—

19: Uy <—Z/[X\{X*}
20: end if
21: max — max — 1

22: end while

23: for all x € Qx do

24: for all x’ €/x do
25: hxr < min(hx, y)
26: end for

27: for all x’ €tx do
28: Uy max(lx/,y)
29: end for

30: end for

31: L+ O

32: for all x € Uy UQx do
33: if /x = hy then

34: Y Ux

35: Lp+ LpU{(x,y)}

36: Gr + G U{((x,y),n(x))}
37: end if

38: end for

39: return L

5.3. Related Work 133

intractable for p > 5; nonetheless, based on the optimal solutions found for
p < 5, the authors develop a heuristic which proves to be rather effective.
Their proposed heuristic, which is based on the observation that in a chain
poset, it is optimal to query the middle element, whereas in a sawtooth
poset it is optimal to query an endpoint, corresponds to querying the oracle

for the label of a vector x* such that

x" = arg min |u(x) — d(x)|. (5.3.1)
xeX
The authors show that heuristic (5.3.1) produces optimal results for p < 4
and compares favourably to other heuristics for p > 4.

It should be noted, though, that there are several important differences
between our problem setting and that addressed by Torvik et al. Firstly,
we are not allowed to query the oracle for any arbitrary x € X but only
for x € Sx; moreover, Sy usually is only a small subset of X. Secondly,
the objective of Torvik et al. is to determine f(x) for all x € X, either by
querying the oracle or by making inferences from labelled points. In our
setting this is not possible; instead, we want to construct a good training
sample by asking as few queries as possible. A third important difference
is that we do not restrict ourselves to binary attributes and class labels.
Instead, in our setting attributes can be numeric or discrete with ordered
values; moreover, class labels are allowed to be non-binary as long as their

values are ordered.

We pointed out in section 5.2.1 the equivalence of learning a determin-
istic binary monotonic function on a chain, and the problem of searching
an element in a sorted list. Work has been done on searching elements in
partially-ordered lists as well ([22,78]), and it stands to reason that this
problem is strongly related to learning a binary monotonic function on a

partial order in the deterministic setting.

Carmo et al. [22] define an optimal search strategy as one where the
longest search is as short as possible and prove that in general determining
such a strategy is N P-hard. Nevertheless, they show that there are efficient
approximation algorithms under the random graph model and the uniform
model. It would be interesting to be able to apply this work to learning non-

binary monotonic functions, for example by decomposing it into a collection

134 Chapter 5. Active Learning in Monotonic Classification

of binary problems. The following differences, though, need be taken into

account:

1. Due to the nature of the problem, the work concerned with searching
in partial orders only considers the deterministic setting.

2. The mapping of our problem to the problem of search only applies to
the case of binary classification.

3. The work concerned with search focuses on finding algorithms with
the best worst case complexity. Translated to the problem of learning
a binary monotonic classification, this amounts to developing query
strategies which minimise the number of queries that have to be asked
in the worst case to infer the complete function. In the context of

active learning, it is not so obvious that this should be a good criterion.

5.4 Experiments

To determine the quality our approach, we used the training data sets re-
turned by the algorithms we proposed, each implemented with the proposed
heuristics, to fit a classification model and then estimated the error rate of
each learned model on a test sample. It should be noted that we do not
enforce the monotonicity constraint on the trained models because we are
interested in using monotonicity to infer the labels of data points as a way of
augmenting the training sample; the fitted models are merely instrumental
in determining the relative quality of the training samples inferred by using
the proposed heuristics. We performed our evaluation on both artificial and
real data sets.

Both algorithms were implemented employing Heuristic 1 (see defini-
tion 42) and Heuristic 2 (see definition 43). As for the latter, the posterior
class probabilities P(y|x;) were estimated by using the weighted kNN prob-
ability estimation strategy discussed in section 3.6 with k& = 5; since to
compute the kNN estimates at least 5 labelled data points are needed, until
that number was reached, Heuristic 1 was used instead.

Each data set, whether real or artificial, was partitioned into two parts.
The first part was used as the knowledge that the oracle used to answer the

queries of both algorithms. Each learned data set was then used to perform

5.4.1. Artificial Data 135

weighted ENN classification of the second part of the original data set, with
k =5 (see section 3.6 for details); the classification took place only if the
learned data set contained labelled instances of at least 5 distinct feature
vectors. We repeated this 20 times and compared all the variants in terms
of the average mean absolute error registered over the repetitions performed
by the weighted kNN classifier.

The 20 experimental rounds on each data set were repeated three times,
each time setting the maximum number of iterations maz for each algorithm
equal to 5, 10, and 20 per cent of the number of the individuals selected for
active learning respectively.

For each algorithm, we used as baselines the average mean absolute error

attained by

1. a kNN classifier based on the whole of the labelled observations set
aside for active learning;

2. the algorithm itself with the heuristic choice of the next individual
to query the oracle about replaced with random picking, with and

without the interval of allowed labels updated based on monotonicity.

5.4.1 Artificial Data

We generated data from two monotonic non-linear models with two-dimen-
sional feature vectors x = (x1,x2), the first having three class labels and
the second having two. The class boundaries of both models are depicted in
figure 5.7; for example, in the first model if 1 > 0.4 and z2 > 0.4, then the
observation is assigned to class 3. To evaluate ND-MAL, we used the same
data sets, perturbing them by adding a noise level of 0.1, which indicates
that an observation from class 1 is flipped to class 2 with probability 0.05
and flipped to class 3 with probability 0.05 as well.

Moreover, it stands to reason that the impact of the monotonicity con-
straint depends on the shape of the partial order: if all attribute vectors are
incomparable to each other, then the constraint brings no benefits because
any label assignment is vacuously monotonic; on the other hand, if the train-
ing vectors form a chain, then we profit maximally from the monotonicity
constraint. To verify this hypothesis, we generated different versions of the

data sets each with a different degree of comparability among feature vec-

136 Chapter 5. Active Learning in Monotonic Classification

tors. We did so by sampling the two descriptive attributes from the uniform
distribution on the interval [0, 1] with different degrees of correlation: if the
attributes are positively correlated, then there tend to be more compara-
ble pairs than if they are not correlated, while there tend to be even fewer
comparable pairs if there is a negative correlation. This phenomenon can
be visualised easily: if the descriptive attributes are positively correlated,
then feature vectors tend to cluster around a line with positive slope (see
figure 5.5), which leads to a relatively high proportion of comparable pairs;
on the other hand, in case of negative correlation, feature vectors tend to
cluster around a line with negative slope (see figure 5.6), which leads to a
relatively small proportion of comparable pairs.

For each of the 20 repetitions performed, from each of the two monotonic
models considered we drew a random sample of 300 observations to use for
active learning and another sample of size 1000 for testing.

The results for MAL (i.e. the deterministic case) are illustrated in ta-
bles 5.5 and 5.6. It is interesting to note how the correlation between the
descriptive attributes and, hence, the number of comparable pairs, influ-
ences the results. If we consider the results for the data set with three class
labels where we query 5% of the points, the trend is clear: higher correlation
(namely, more comparable pairs) translates into better performance. For
example, for p = —0.9, the lowest error was 0.2362, whereas the error using
the complete training set was 0.0592. For p = 0.9, on the other hand, the
best active learning result was 0.0597 versus 0.0368 when the whole training
set was used. The effect of correlation becomes less relevant as the percent-
age of points queried becomes bigger, for the average error goes down for all
active learning variants. With a few exceptions, both heuristics registered
better performance than random querying with monotonicity inference on
larger training samples. Random querying without monotonicity inference
was clearly worse than all other options, as was expected. It should be
noted that in some cases the number of points queried is smaller than the
size of the part of the training set used because the algorithm simply ran
out of unlabelled attribute vectors before the limit was reached.

The results for the data set with two class labels paint a similar picture,
although the influence of correlation on performance is in this case rather

small. On the other hand, the effect is still easily seen in the size of the

5.4.1. Artificial Data 137

o
< 7 o°
o 0°
o
o o
o% o
o
«© _| o %o
o o o
o o
o ° © o
o o
o o
© | ° ° o % o °
o o ° o °
° o e o
« o o
x [¢2}
o
° o
< | o)
=] o ° 4 ® o o o
oo 5©
o o o o
o §o
o~ | o
© 00 © 6
O@ o
&, ° o
o
%o
e] o©
o
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Figure 5.5: Artificial data used to test the active learning algorithms having strong
positive correlation (p = 0.9). There are long chains from the bottom left to the
top right corner. Of all pairs, 85% are comparable.

e]
T B
o0go
%o
° o
o
o
oo
o | ° %o
=]
° o
o
oo o
o
° 3 o Ooo o
© | o o . 00
o
o0 o o
° o
© o
< o
0®, °
- o S o
c 7 o ° 5
o o ©
0o o
o o
° o 5%
o
o
N o ° o
s 3 o
© 800000
00
o
° o
° o
. o
2 o
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Figure 5.6: Artificial data used to test the active learning algorithms having strong
positive correlation (p = —0.9). There are no long chains from the bottom left to
the top right corner. Only 13% of the pairs are comparable.

138 Chapter 5. Active Learning in Monotonic Classification

0.2 0.4 0.2

T |] Ty |] 2

0.4

0.2 0.2

1 1
0 T 1 0 T 1

Figure 5.7: Class boundaries of the two monotonic non-linear models from which
the artificial data used to test the active learning algorithms was generated. Both
models have two-dimensional feature vectors x = (x1, x2); the first has three class
labels, and the second has two.

training sample. For example, for p = —0.9 and 5%, Heuristic 1 allowed to
obtain a training set of size 173.05 on average; for p = 0.9, the average size
was 293.

For both data sets, when querying 20% of the points, the error attained is
equal or slightly larger than when using the whole of the points. Surprisingly
enough, in three-label data sets, for p = 0 the active learning actually leads
to better performance than using the whole data set.

The results for ND-MAL (i.e. the non-deterministic case) are shown in
table 5.7 and 5.8. Also in this case it is clear that higher correlation
corresponds to better performance. For the data set with three class labels,
for p = —0.9 and using 5% of the training data for active learning, Heuristic
2 performed best, for it attained an average error of 0.4853 against 0.3317
when the whole training set is used; on the other hand, for p = 0.9 and
using 5% of the data, Heuristic 1 provided the best performance, for it
allowed the algorithm to attain an average error of 0.3767 against 0.3297
when the whole training set is used. Similarly, for the data set with two class
labels, for p = —0.9 and using 5% of the training data, Heuristic 2 was the
best performing one as it attained an average error of 0.4114 against 0.2879
when the whole training set was used. For p = 0.9 and using 5% of the
training data, random querying with monotonicity inference gives the best

performance, attaining an average error of 0.2918, against 0.2618 when the

5.4.2. Real Data

139

Mean Absolute Error

Queries Performed

Learned Data Set Size

Correlation = —0.9 5% 10% 20% 5% 10% 20% 5% 10% 20%
Whole Data Set 0.0592

Random pick (no Monotonicity) 0.4099 0.2091 0.1433 15 30 60 15 30 60
Random pick (Monotonicity) 0.2362 0.1210 0.0709 " " " 95.75 159.10 243.30
Heuristic 1 0.2641 0.1047 0.0636 " " " 105.70 164.90 239.15
Heuristic 2 0.3160 0.0880 0.0595 " " 59.5 100.65 214.05 285.50
Correlation = —0.5 5% 10% 20% 5% 10% 20% 5% 10% 20%
Whole Data Set 0.0608

Random pick (no Monotonicity) 0.4266 0.2620 0.1507 15 30 60 15 30 60
Random pick (Monotonicity) 0.2087 0.1094 0.0665 " " 59.80 126.65 205.70 276.95
Heuristic 1 0.1826 0.0910 0.0661 " " 60 159.75 225.75 281.80
Heuristic 2 0.2915 0.1238 0.0630 " " 59.55 124.95 207.75 291.35
Correlation = 0 5% 10% 20% 5% 10% 20% 5% 10% 20%
Whole Data Set 0.0603

Random pick (no Monotonicity) 0.3888 0.2449 0.1547 15 30 60 15 30 60
Random pick (Monotonicity) 0.2167 0.1097 0.0601 " " 59.2 158.45 229.25 291.05
Heuristic 1 0.1354 0.0773 0.0628 " " 59.8 196.35 252.90 293.70
Heuristic 2 0.2252 0.0987 0.0602 " " 58.3 166.30 240.35 294.50
Correlation = 0.5 5% 10% 20% 5% 10% 20% 5% 10% 20%
Whole Data Set 0.0503

Random pick (no Monotonicity) 0.3392 0.2257 0.1303 15 30 60 15 30 60
Random pick (Monotonicity) 0.1677 0.0863 0.0519 " " 57.30 183.35 243.25 295.30
Heuristic 1 0.1216 0.0682 0.0504 " " 54.65 223.80 269.75 299.60
Heuristic 2 0.1628 0.0866 0.0506 " " 57.05 193.30 256.15 298.85
Correlation = 0.9 5% 10% 20% 5% 10% 20% 5% 10% 20%
Whole Data Set 0.0368

Random pick (no Monotonicity) 0.2017 0.1027 0.0824 15 30 60 15 30 60
Random pick (Monotonicity) 0.0851 0.0502 0.0372 " " 47.75 206.05 271.50 299.55
Heuristic 1 0.0597 0.0447 0.0368 " " 42.85 258.55 285.85 300
Heuristic 2 0.0800 0.0464 0.0368 " " 44.50 241.85 283.45 300

Table 5.5: Experimental results of MAL on the artificial data set with three labels
without noise. Lowest mean absolute error is shown in boldface, and mean absolute
errors for an actively-learned data set smaller than or equal to that of the whole

data set are shown in italics.

whole training set is used. Unlike in the deterministic case, though, the two

heuristics introduced registered worse performance than random querying

with monotonicity inference on larger training samples; when using 20% of

the labelled data, random querying with monotonicity inference generally

has better performance than the other options, with an average error very

close to that of the classifier trained on the whole training data set.

5.4.2 Real Data

We performed tests on the following real-world data sets (see Appendix A

for more details on them):

e Auto MPG

140 Chapter 5. Active Learning in Monotonic Classification

Mean Absolute Error Queries Performed Learned Data Set Size

Correlation = —0.9 5% 10% 20% 5% 10% 20% 5% 10% 20%
Whole Data Set 0.0327

Random pick (No Monotonicity) 0.2363 0.1121 0.0766 15 30 60 15 30 60
Random pick (Monotonicity) 0.0844 0.0391 0.0332 " " 59.15 159.90 234.35 293.20
Heuristic 1 0.0545 0.0388 0.0332 " " 60 173.05 231.65 281.30
Heuristic 2 0.1308 0.0337 0.0327 " " 47.65 192.65 278.95 299.90
Correlation = —0.5 5% 10% 20% 5% 10% 20% 5% 10% 20%
Whole Data Set 0.0359

Random pick (No Monotonicity) 0.2897 0.1676 0.1051 15 30 60 15 30 60
Random pick (Monotonicity) 0.0761 0.0449 0.0857 " " 46.25 204.50 269.10 299.25
Heuristic 1 0.0590 0.0369 0.0359 " " 49.15 232.15 277.70 300
Heuristic 2 0.1585 0.0390 0.0359 " " 44.45 189.55 279.35 300
Correlation = 0 5% 10% 20% 5% 10% 20% 5% 10% 20%
Whole Data Set 0.0344

Random pick (No Monotonicity) 0.2508 0.1638 0.0884 15 30 60 15 30 60
Random pick (Monotonicity) 0.0710 0.0384 0.0344 " 29.90 42.10 238.75 284.90 300
Heuristic 1 0.0505 0.0358 0.0344 " 30 38.85 262.65 290.05 300
Heuristic 2 0.0810 0.0351 0.0344 29.95 38.80 " 238.20 289.15 300
Correlation = 0.5 5% 10% 20% 5% 10% 20% 5% 10% 20%
Whole Data Set 0.0277

Random pick (No Monotonicity) 0.1731 0.1208 0.0658 15 30 60 15 30 60
Random pick (Monotonicity) 0.0606 0.0310 0.0277 " 28.10 34.10 255.70 294.25 300
Heuristic 1 0.04100.0281 0.0277 " 28.30 28.90 282.05 299.40 300
Heuristic 2 0.0659 0.0297 0.0277 " 29.75 35.75 262.30 293.50 300
Correlation = 0.9 5% 10% 20% 5% 10% 20% 5% 10% 20%
Whole Data Set 0.0186

Random pick (No Monotonicity) 0.1085 0.0518 0.0407 15 30 60 15 30 60
Random pick (Monotonicity) 0.0283 0.0197 0.0186 " 25.45 23.60 280.50 298.95 300
Heuristic 1 0.0214 0.0186 0.0186 " 21.65 21.65 293 300 300
Heuristic 2 0.0255 0.0186 0.0186 " 23.75 23.75 289.80 300 300

Table 5.6: Experimental results of M AL on the artificial data set with two labels
without noise. Lowest mean absolute error is shown in boldface, and mean absolute
errors for an actively-learned data set smaller than or equal to that of the whole
data set are shown in italics.

e Computer Hardware
e ESL

e Haberman’s Survival
e KC4

e Ohsumed

e Pima Indians

e Windsor Housing

e Wisconsin Breast Cancer

The numeric target attribute of the Auto MPG, Boston Housing, Com-
puter Hardware, and Windsor Housing data sets were discretised into four

labels using equal-frequency binning. Moreover, we did not use the whole of

5.4.2. Real Data 141

Mean Absolute Error Queries Performed Learned Data Set Size

Correlation = —0.9 5% 10% 20% 5% 10% 20% 5% 10% 20%
Whole Data Set 0.3317

Random pick (No Monotonicity) 0.6162 0.4849 0.4079 30 60 120 15 30 60
Random pick (Monotonicity) 0.5845 0.4582 0.3678 16 31 61 83.80 129.05 169.85
Heuristic 1 0.5697 0.5136 0.4455 " " " 112.50 169.15 233.35
Heuristic 2 0.4853 0.4018 0.3711 " " " 141.90 232.15 276
Correlation = —0.5 5% 10% 20% 5% 10% 20% 5% 10% 20%
Whole Data Set 0.3425

Random pick (No Monotonicity) 0.6157 0.5015 0.4207 30 60 120 15 30 60
Random pick (Monotonicity) 0.5851 0.4683 0.3679 16 31 61 108.95 164.60 206.75
Heuristic 1 0.5235 0.4444 0.4272 " " " 170.55 224.50 254
Heuristic 2 0.4851 0.4149 0.4029 " " " 189.05 262.45 282.05
Correlation = 0 5% 10% 20% 5% 10% 20% 5% 10% 20%
Whole Data Set 0.3559

Random pick (No Monotonicity) 0.6427 0.5081 0.4345 30 60 120 15 30 60
Random pick (Monotonicity) 0.5376 0.4617 0.3890 16 31 61 108.60 167.95 219.95
Heuristic 1 0.4622 0.4180 0.3964 " " " 195.10 250.60 263
Heuristic 2 0.4825 0.4343 0.4094 " " " 198 265.35 283.85
Correlation = 0.5 5% 10% 20% 5% 10% 20% 5% 10% 20%
Whole Data Set 0.3529

Random pick (No Monotonicity) 0.5460 0.4750 0.4204 30 60 120 15 30 60
Random pick (Monotonicity) 0.4988 0.4368 0.3713 16 31 61 141.80 188 228.75
Heuristic 1 0.4125 0.3784 0.3735 " " " 231.05 268.90 270.75
Heuristic 2 0.4213 0.3900 0.3851 " " " 236.10 275.45 286.40
Correlation = 0.9 5% 10% 20% 5% 10% 20% 5% 10% 20%
Whole Data Set 0.3297

Random pick (No Monotonicity) 0.4672 0.4069 0.3723 30 60 120 15 30 60
Random pick (Monotonicity) 0.4107 0.3792 0.3434 16 31 61 180.80 223.95 246.50
Heuristic 1 0.3767 0.3666 0.3508 " " " 264.15 274.30 279.40
Heuristic 2 0.3799 0.3675 0.3542 " " " 265.30 289.80 281.55

Table 5.7: Experimental results of ND-MAL on the artificial data set having three
labels with added noise. Lowest mean absolute error is shown in boldface.

the Ohsumed data but only the data for query 3 the descriptive attributes
1 and 16.

For each data set, we randomly drew 20 samples consisting of 70 per
cent of the observations. Each experimental round consisted of applying our
algorithms, which were implemented with Heuristic 1, Heuristic 2, random
pick with and without monotonicity, to the drawn samples using 5%, 10%,
and 20% of the data respectively. Each actively-learned data set and the
whole of the sample were then used to perform ENN classification of the

remaining 30% of the observations.

To make sure that the oracles used by the MAL algorithm be monotonic,
we relabelled each original data set by using the algorithm presented by
Feelders in [39] so that mean squared error was minimised. The choice of

the mean squared error was purely arbitrary, for our only goal was to relabel

142 Chapter 5. Active Learning in Monotonic Classification
Mean Absolute Error Queries Performed Learned Data Set Size
Correlation = —0.9 5% 10% 20% 5% 10% 20% 5% 10% 20%
Whole Data Set 0.2879
Random pick (No Monotonicity) 0.4378 0.3588 0.3233 30 60 120 15 30 60
Random pick (Monotonicity) 0.4537 0.3583 0.3081 16 31 61 76.90 124.90
Heuristic 1 0.5384 0.4619 0.4160 " " " 83.65 151.60 231.70
Heuristic 2 0.4114 0.3434 0.3327 " " " 160.30 255.15 276.70
Correlation = —0.5 5% 10% 20% 5% 10% 20% 5% 10% 20%
Whole Data Set 0.2914
Random pick (No Monotonicity) 0.4695 0.3806 0.3480 30 60 120 15 30 60
Random pick (Monotonicity) 0.4692 0.39420.3161 16 31 61 114.35 157.55 216.25
Heuristic 1 0.4953 0.4469 0.4173 " " " 147.25 219.80 259.95
Heuristic 2 0.4553 0.3976 0.3908 " " " 209.70 275.35 284.30

Mean Absolute Error
Correlation = 0 5% 10% 20%
Whole Data Set 0.2944
Random pick (No Monotonicity) 0.4443 0.3681 0.3459
Random pick (Monotonicity) 0.3933 0.3547 0.3084
Heuristic 1 0.4757 0.4443 0.4274
Heuristic 2 0.4727 0.4305 0.3996

Queries Performed

5% 10% 20%
30 60 120

16 31 61
" " "

" " "

Learned Data Set Size
5% 10% 20%

15 30 60
134.75 170.30 233.75
190.75 249.45 265.60
218.40 278.40 288.55

Mean Absolute Error
Correlation = 0.5 5% 10% 20%
Whole Data Set 0.2874
Random pick (No Monotonicity) 0.3793 0.3474 0.3077
Random pick (Monotonicity) 0.3404 0.3204 0.2954
Heuristic 1 0.4302 0.4058 0.3958
Heuristic 2 0.4205 0.4007 0.3924

Queries Performed

5% 10% 20%
30 60 120
16 31 61

" " "

" " "

Learned Data Set Size
5% 10% 20%

15 30 60
152.60 219.15 248.25
219.90 269.15 262.40
249.75 289.75 291.35

Mean Absolute Error
Correlation = 0.9 5% 10% 20%
Whole Data Set 0.2618
Random pick (No Monotonicity) 0.3416 0.2996 0.2784
Random pick (Monotonicity) 0.2918 0.2790 0.2619
Heuristic 1 0.4035 0.3723 0.3681
Heuristic 2 0.3937 0.3893 0.3724

Queries Performed

5% 10% 20%
30 60 120

16 31 61
" " "

" " "

Learned Data Set Size
5% 10% 20%

15 30 60
225.50 250.60 265.40
270.70 272.20 284.30
283.75 292.70 292.85

Table 5.8: Experimental results of ND-MAL on the artificial data set having two
labels with added noise. Lowest mean absolute error is shown in boldface.

the data sets in order to make them monotonic. Other loss functions such

as mean absolute error might as well have been used. For example, to make

the KC4 data set monotonic, 10 points were relabelled, with a total squared

error of 13 (see table 5.9).

Change -2

-1

0 1

Frequency 1

115 4

Table 5.9: Tests of the active learning algorithms on real data. Detailed relabelling

results of the KC4 data set.

5.4.2. Real Data 143

The results for MAL on the relabelled data sets are displayed in ta-
ble 5.10. Firstly it should be noted that using the monotonicity constraint
to infer new labels almost invariably results in a lower mean absolute error.
Comparing the three implementations of the algorithm which use mono-
tonicity inference, the implementations based on Heuristic 1 and Heuristic
2 usually lead to better results than querying points at random. The sin-
gle, slight exception to this is represented by the Haberman’s Survival data
set when querying 20% of the data. In that case, the error attained by
using the complete training set is only 0.1000, and the random pick with-
out monotonicity inference has an error of 0.0973. Nonetheless, all other
variants have slightly higher error; in particular, Heuristic 2 registered an
error equal to 0.1000. In general, the models trained on the whole of each
relabelled data set attained lower error, although sometimes the difference
compared to using active learning is rather small, namely with Auto MPG
at 20%, Haberman’s Survival at 20%, and Windsor Housing at 20%. In the
case of three relabelled data sets, namely Haberman’s Survival, Pima Indi-
ans, and Wisconsin Breast Cancer, active learning actually lead to better
performance than using the whole relabelled data set. It is hard to find
a satisfactory explanation for this phenomenon. The expectation was also
that on data sets with many class labels the results of active learning would
be worse, since in that case it is harder to infer labels of attribute vectors.
This intuition was confirmed by the results of our experiments: MAL’s per-
formance on ESL (9 labels) was relatively bad, whereas its performance on
binary classification data sets was rather satisfactory. It can also noticed
that on a data set with many comparable pairs such as Auto MPG MAL
is able to infer plenty of labels: Heuristic 1 allowed the algorithm to infer
a labelled data set with on average 171.55 data points when using 5% of
the data set by querying just 14 attribute vectors. On the other hand, on
data sets such as Wisconsin Breast Cancer which have very few comparable

pairs, the algorithm was able to infer hardly any training points.

Finally, the results for ND-MAL on the original real data sets are shown
in table 5.11. On the whole, the results are aligned with those of the
other cases, but of course the results are worse than for the determinis-
tic case. Nevertheless, using monotonicity inference almost always pays

off, the Ohsumed data set being the only exception. Again, we note that

144 Chapter 5. Active Learning in Monotonic Classification

Heuristic 1 and Heuristic 2 almost invariably allow to infer a larger training

set compared to random querying with monotonicity inference.

5.5 Conclusion

We introduced monotonicity constraints into active learning for supervised
classification by proposing algorithms selecting instances to query the oracle
which maximise the number of labels that can be inferred based on mono-
tonicity. When the oracle is ensured to return monotonicity-preserving an-
swers and in the presence of many comparable pairs, experiments show that
active learning can drastically reduce the number queries necessary to infer
a labelled data set capable of ensuring high levels of predictive accuracy;
this is especially true when the number of class labels is not too large.

In order to deal with the realistic scenario in which the oracle does not
always return monotonic labels, we have proposed an algorithm based on
relabelling the set of queried points to make it monotonic while minimising
absolute error. Only the attribute vectors whose label is uniquely deter-
mined after relabelling and vectors whose label can be inferred from them
are included in the learned training sample.

Also the experiments we performed to test our second algorithm gave
promising results; on the other hand, we think there is room for improve-
ment. Firstly, as the number of class labels k increases, it becomes more
and more difficult to infer unique class labels from points that the oracle
has been queried for; consequently, the training set returned is likely to
be relatively small. As there are expected to be several points whose set
of possible labels is reduced considerably by means of monotonicity-based
inference, by only considering points whose label has been uniquely deter-
mined in the training set the algorithm might end discarding potentially
valuable information. Therefore, one possibility to improve the algorithm’s
performance could consist of exploiting this partial label information by
also including into the inferred training sample examples corresponding to
data points whose label has not been uniquely determined. Secondly, the
model-based inference used in one of the many active learning approaches
described in [97] could be used to complement the monotonicity-based in-

ference the algorithm is based on.

5.5. Conclusion

145

Mean Absolute Error

Learned Data Set Size

Auto MPG 5% 10% 20% 5% (14) 10% (27.9) 20% (54.9)
Whole Data Set (275) 0.0889

Random pick (No Monotonicity) 0.3235 0.1496 0.1017 14.10 28.05 55.45
Random pick (With Monotonicity) 0.1637 0.1073 0.0957 122.65 177.20 238.95
Heuristic 1 0.1098 0.0991 0.0932 171.55 217.30 254.95
Heuristic 2 0.1368 0.0966 0.0897 143.65 216.30 259.15
Computer Hardware 5% 10% 20% 5% (7) 10% (14) 20% (27.7)
Whole Data Set (147) 0.2718

Random pick (No Monotonicity) 0.8048 0.6097 0.4387 7.55 15 30.15
Random pick (With Monotonicity) 0.6621 0.4573 0.3726 19.10 37.50 59.20
Heuristic 1 0.4419 0.3306 0.3242 31.90 45 72.50
Heuristic 2 0.4911 0.3742 0.3323 23.20 36.85 61.65
ESL 5% 10% 20% 5% (8.85) 10% (16.9520% (33.35)
Whole Data Set (342) 0.1640

Random pick (No Monotonicity) 0.9493 0.6384 0.4445 17.15 34.55 69.60
Random pick (With Monotonicity) 0.9007 0.5966 0.4089 22.60 48.25 112.95
Heuristic 1 0.5685 0.4658 0.3349 51.55 97.65 172.95
Heuristic 2 0.5870 0.4271 0.3158 46.45 65.95 144.55
Haberman’s Survival 5% 10% 20% 5% (10.9) 10% (20.9) 20% (41.20)
Whole Data Set (215) 0.1000

Random pick (No Monotonicity) 0.1593 0.1571 0.1154 11.50 21.80 43.50
Random pick (With Monotonicity) 0.1203 0.1077 0.0973 119.30 162.55 205.40
Heuristic 1 0.1088 0.0995 0.1016 145.45 176.70 201.25
Heuristic 2 0.1060 0.1027 0.1000 147.20 181.75 210.85
KC4 5% 10% 20% 5% (5) 10%(9) 20% (17)
Whole Data Set (88) 0.4892

Random pick (No Monotonicity) NA 0.7297 0.6662 5.45 9.50 17.85
Random pick (With Monotonicity) 0.7127 0.7027 0.6297 9.65 14.35 25.80
Heuristic 1 0.7311 0.7284 0.7284 13.25 17.45 26.05
Heuristic 2 0.7824 0.6581 0.5838 13.20 20.05 30.65
Ohsumed 5% 10% 20% 5% (3) 10% (5.15) 20% (10.1)
Whole Data Set (165) 0.0450

Random pick (No Monotonicity) NA 0.1333 0.1650 9.45 16 34.65
Random pick (With Monotonicity) 0.1624 0.1014 0.0600 75.60 123.15 148.85
Heuristic 1 0.0721 0.0643 0.0493 137.25 146.90 162.35
Heuristic 2 0.1886 0.0993 0.0507 105.80 125.20 153.35
Pima Indians 5% 10% 20% 5% (27) 10% (54) 20% (108)
Whole Data Set (538) 0.2085

Random pick (No Monotonicity) 0.2470 0.2530 0.2165 27 54 108
Random pick (With Monotonicity) 0.2343 0.2215 0.2133 123.85 186.50 283.35
Heuristic 1 0.2283 0.2209 0.1970 154.15 197.25 261.85
Heuristic 2 0.2239 0.2185 0.2063 176.95 244.35 337.80
Windsor Housing 5% 10% 20% 5% (19) 10% (38) 20% (75.45)
Whole Data Set (383) 0.3334

Random pick (No Monotonicity) 0.6307 0.5025 0.4337 19.45 38.20 77.70
Random pick (With Monotonicity) 0.5724 0.4577 0.3969 54.95 97.85 166.60
Heuristic 1 0.4926 0.4037 0.3715 83.60 133.25 198
Heuristic 2 0.5000 0.4227 0.3626 57.90 104.10 176.25
Wisconsin Breast Cancer 5% 10% 20% 5% (7) 10% (14) 20% (28)
Whole Data Set (136) 0.2414

Random pick (No Monotonicity) 0.2621 0.2448 0.2397 7 14 28
Random pick (With Monotonicity) 0.2853 0.2655 0.2422 8.45 17.55 33.7
Heuristic 1 0.2957 0.2638 0.2397 7 14 28
Heuristic 2 0.2957 0.2422 0.2509 7 24.85 42.2

Table 5.10: Experimental results of MAL on the relabelled real data sets. Low-
est mean absolute error is shown in boldface, and mean absolute errors for an
actively-learned data set smaller than or equal to that of the whole data set are
shown in italics. The impossibility to perform ANN classification due to the lack
of enough observations in the actively-learned data set is indicated as NA. The
average number of queries performed is indicated in brackets.

146 Chapter 5. Active Learning in Monotonic Classification

Mean Absolute Error Queries Performed Learned Data Set Size

Auto MPG 5% 10% 20% 5% 10% 20% 5% 10% 20%
Whole Data Set 0.2355

Random pick (No Monotonicity) 0.5145 0.3620 0.3004 14 28 55 14 28 55
Random pick (Monotonicity) 0.4303 0.4094 0.3026 " " " 52.60 83 119.65
Heuristic 1 0.39620.3350 0.2927 " " " 80.25 121.85 160.25
Heuristic 2 0.4239 0.3838 0.3274 " " " 71.35 88 126.95
Computer Hardware 5% 10% 20% 5% 10% 20% 5% 10% 20%
Whole Data Set 0.3798

Random pick (No Monotonicity) 0.8798 0.6790 0.5323 7 14.05 27.80 7.60 15.35 30
Random pick (Monotonicity) 0.8285 0.6629 0.4968 " " " 26 38.80 58.50

Heuristic 1 0.5702 0.4944 0.4685 " " " 39.95 59.25 83.05
Heuristic 2 0.5702 0.4992 0.4774 " " " " 56.15 81.20
ESL 5% 10% 20% 5% 10% 20% 5% 10% 20%
Whole Data Set 0.3452

Random pick (No Monotonicity) 1.0062 0.7342 0.6099 8.9 16.75 31.90 16.40 31.85 63.40
Random pick (Monotonicity) 1.1175 0.7161 0.6038 8.8 16.85 31.75 26.15 65.05 110.10

Heuristic 1 0.8295 0.6024 0.4918 8.9 17.05 33.35 54.40 102.65 184.55
Heuristic 2 0.6932 0.6257 0.5116 " " " 61 107.90 177.25
Haberman’s Survival 5% 10% 20% 5% 10% 20% 5% 10% 20%
Whole Data Set 0.2808

Random pick (No Monotonicity) 0.2923 0.2989 0.2885 10.8 21 40.65 11.50 21.95 43.25
Random pick (Monotonicity) 0.2918 0.2874 0.2527 " " 40.75 103.40 132.50 157.15
Heuristic 1 0.2725 0.2648 0.2648 " " " 137.15 170.80 186.25
Heuristic 2 0.2676 0.2484 0.2357 " " 40.80 144.55 191.95 204.20
KC4 5% 10% 20% 5% 10% 20% 5% 10% 20%
Whole Data Set 0.7419

Random pick (No Monotonicity) NA 0.7716 0.7365 5 9 17 5.2 9.35 17.65
Random pick (Monotonicity) 0.74050.7162 0.7284 " 8.95 16.90 8.40 15.70 26.65
Heuristic 1 0.7959 0.7608 0.7676 " 9 17.05 14.80 17.80 20.25
Heuristic 2 0.7959 0.7608 0.7878 " 9 " " " 28
Ohsumed 5% 10% 20% 5% 10% 20% 5% 10% 20%
Whole Data Set 0.6743

Random pick (No Monotonicity) NA 0.6214 0.7014 2.95 5.10 9.50 13 18.60 28.80
Random pick (Monotonicity) 0.8107 0.7960 0.7343 3 5.05 9.30 73.10 61.55 100
Heuristic 1 0.7979 0.8736 0.8121 " 5.20 890 69.40 116.80 136.65
Heuristic 2 0.7827 0.8621 0.7586 " " 8.75 71.05 108.50 131.95
Pima Indians 5% 10% 20% 5% 10% 20% 5% 10% 20%
Whole Data Set 0.2630

Random pick (No Monotonicity) 0.3115 0.2946 0.2822 27 54 108 27 54 108
Random pick (Monotonicity) 0.2880 0.2778 0.2735 " " " 131.30 187.15 256.45
Heuristic 1 0.2848 0.2793 0.2761 " " " 155.90 195.75 248.55
Heuristic 2 0.2989 0.2807 0.2678 " " " 250.15 323.05 361.10
Windsor Housing 5% 10% 20% 5% 10% 20% 5% 10% 20%
Whole Data Set 0.6123

Random pick (No Monotonicity) 0.7847 0.7003 0.6871 19 37.95 75.20 19.35 39.10 77.15
Random pick (Monotonicity) 0.7417 0.6844 0.6227 " 37.90 " 69.25 114.05 158.85
Heuristic 1 0.7319 0.6831 0.6635 " 37.95 75.05 138.70 182.85 240.10
Heuristic 2 0.7552 0.6874 0.6304 " " 75.25 124.85 154.75 228.10
‘Wisconsin Breast Cancer 5% 10% 20% 5% 10% 20% 5% 10% 20%
Whole Data Set 0.2448

Random pick (No Monotonicity) 0.3224 0.2759 0.2853 7 14 28 7 14 28
Random pick (Monotonicity) 0.2466 0.24400.2681 " " " 9.65 18.05 33.05
Heuristic 1 0.2259 0.2457 0.2974 " " " 7 14 28.75
Heuristic 2 0.2259 0.2560 0.2681 " " " " 25.05 39.70

Table 5.11: Experimental results of ND-MAL on the original real data sets. Low-
est mean absolute error is shown in boldface, and mean absolute errors for an
actively-learned data set smaller than or equal to that of the whole data set are
shown in italics. The impossibility to perform kNN classification due to the lack
of enough observations in the actively-learned data set is indicated as NA. The
average number of queries performed is indicated in brackets.

Chapter 6

Conclusions

In this thesis, we have presented pattern recognition algorithms tackling
three different data mining problems by making use of or enforcing the

monotonicity of the functional relation between the input and output spaces:

e We have presented MOCA, a new non-parametric monotonic classi-
fication algorithm which attempts to minimise the mean absolute
prediction error for classification problems with ordered class labels.
We have shown that MOCA minimises the L; error on the training
sample subject to monotonicity constraints. Through experiments on
artificial and real-world data sets, we have shown that it compares
favourably to 0SDL, a similar classification algorithm also intended
for monotonic classification problems. Since the maximum-likelihood
(ML) estimates of the posterior class probabilities used by MOCA and
OSDL are typically based on very few observations, we conjectured
that they both have a tendency to overfit on the training sample.
We thought that a point of possible improvement would be obtained
be considering an alternative to the ML estimates; therefore, we pro-
posed a weighted k nearest neighbour (wkNN) approach to estimating
the probabilities the algorithms use and then ran a second set of ex-
periments to measure the improvements brought by using the wkNN
estimates. Results showed that smoothing is beneficial for OSDL as
its predictive performance was significantly better on a number of

data sets and almost never worse; the adoption of the “balanced” and

148

Chapter 6. Conclusions

“double balanced” versions of OSDL do not seem to lead to an im-
provement over the constant interpolation version on the data sets
considered during the experiments. As for MOCA, smoothing seems
to have a much more reduced effect; this is probably due to the fact
that the isotonic regression already smooths the basic estimates by
averaging them in case of order reversals. Hence, MOCA is already
rather competitive when using wkNN probability estimates for & = 1,
that is when using ML estimates of the posterior class probabilities.
There are two interesting problems concerning MOCA which in our
view are worth investigating in future research. We have only looked
at the L loss function, but this is certainly not the only appropriate
loss function for ordinal classification problems; hence, it would be
interesting to try to derive similar results for more general classes
of loss functions. Another important issue is finding ways to reduce
MOCA’s execution time; one possibility might be represented by using
the O(n2) approximate solution of the isotonic regression problem
presented by Burdakov et al. in [20].

We have then presented MIRA, a monotonic instance ranking algo-
rithm. MIRA extends our work on non-parametric monotonic classifi-
cation to ranking problems and builds on the best-performing decom-
position and aggregation scheme among those proposed by Fiirnkranz
et al. in [51]. By performing experiments on real data, we showed
that MIRA’s predictive accuracy measured by means of the concor-
dance index is comparable to that of the algorithm by Fiirnkranz et
al. Moreover, experiments performed on an artificial data set showed
that MIRA can outperform the linear model the other algorithm is
based on if class boundaries are monotonic and non-linear. More im-
portantly, MIRA is guaranteed to produce a monotonic ranking func-
tion. Monotonicity is desired or even required for many applications,
so this algorithm represents a valuable addition to existing ranking al-
gorithms. One issue for future research is determining whether MIRA’s
predictive accuracy can be further improved by using a different esti-
mator capable of attaining higher concordance index values. We tried
to do so by using the weighted KNN estimator introduced by Barile

and Feelders in [11] without obtaining any improvements. Another

149

way to improve the performance of the algorithm to investigate is the
adoption of different aggregation schemes.

Finally, we have introduced active learning algorithms for supervised
classification which, in the presence of monotonicity constraints, select
the feature vectors to query the oracle for in order to maximise the
number of labels that can be inferred based on monotonicity. When
the oracle is ensured to return monotonicity-preserving answers and
in the presence of many comparable pairs, experiments showed that
active learning can drastically reduce the number of queries necessary
to infer a labelled data set capable of ensuring high levels of predic-
tive accuracy; this is especially true when the number of class labels
is not too large. In order to deal with the realistic scenario in which
the oracle does not always return monotonic labels, we have proposed
an algorithm based on relabelling the set of queried points to make it
monotonic while minimizing absolute error. Only the attribute vec-
tors whose label is uniquely determined after relabelling and attribute
vectors whose label can be inferred from the former are included in
the learned training sample. The experiments we performed to test
our second algorithm also gave promising results; on the other hand,
we think there is room for improvement. Firstly, as the number of
class labels k increases, it becomes more and more difficult to infer
unique class labels from points that the oracle has been queried for;
consequently, the training set returned is likely to be relatively small.
As there are expected to be several points whose set of possible labels
is reduced considerably by means of monotonicity-based inference,
by only considering points whose label has been uniquely determined
in the training set, the algorithm might end discarding potentially
valuable information. Therefore, one possibility to improve the al-
gorithm’s performance could consist of exploiting this partial label
information by also including into the inferred training sample exam-
ples corresponding to data points whose label has not been uniquely
determined. Secondly, the model-based inference used in one of the
many active learning approaches described in [97] could be used to
complement the monotonicity-based inference the algorithm is based

on.

150

As a result of our research, it can be concluded that using or enforcing
monotonicity in a predictive algorithm leads to performance comparable to
or even better than that of state-of-the art, non-monotonic counterparts.
Because this can be done at a computational cost which is affordable in
most realistic cases, enforcing monotonicity when it is a property of the

target concept or a requirement for the learned is a viable option.

Appendix A

Real-World Data Sets

To test the performance of our algorithms, we selected the following real-
world data sets from different sources on the basis that the presence of an
increasing (or decreasing) relation between the attributes and the response

variable was a plausible assumption:

e the ERA (Employee Rejection/Acceptance), ESL (Employee Selec-
tion), LEV (Lecturers Evaluation), and SWD (Social Workers Deci-
sions) data sets are available on the Web site of the Weka project !
and have been donated by Dr. Arie Ben David [15];

e the Windsor Housing [3] data set is available on the Journal of Applied
Econometrics Data Archive 2;

e the KC1, KC4, PC3 and PC4 data sets are included in the NASA’s
Metrics Data Program Data Repository 2;

e the Ohsumed data set is included the LETOR (LEarning TO Rank for
information retrieval) collection of data sets #, each of which contains
a wide variety of queries with user feedback in several domains. Much
of the research on preference learning is conducted on these data sets;

e the remaining data sets are included in the UCI machine learning

repository 5 [6].

"http:/ /www.cs.waikato.ac.nz/ml/weka,/datasets.html
http://econ.queensu.ca/jae/
3http://spinoff.nasa.gov/Spinoff2006 /ct _1.html/
“http://research.microsoft.com/en-us/um/beijing/projects/letor/
®http://archive.ics.uci.edu/ml/

152

The chosen data sets vary widely in size and number and type of fea-
tures in order to be representative of as wide range of data that may occur
in practical situations as possible. Moreover, due to the lack of ordinal clas-
sification data sets, we also included a few regression data sets, discretising
their target attributes using equal-frequency binning before running exper-
iments on them. This approach, which as has often been pursued in the
literature [45,48,51], is reasonable and has the advantage that, by changing
the number of labels to discretise a data set into, several ordinal data sets
can be obtained.

It should be emphasised that monotonicity judgements were only based
on common sense. For example, the Ohsumed attributes are data retrieval
metrics such as the counts of the number of times a query term appears
in the title and abstract of a document respectively, and the class label
indicates the relevance of the document to the query, where a higher label
indicates higher relevance (the class labels are “irrelevant”, “partially rele-
vant” and “highly relevant”); as a consequence, it is reasonable to assume
that the class label should be increasing in both attributes.

We did not always use the data sets in their original form. In general,
when common sense suggested that there should be a decreasing rather in-
creasing relationship between a feature and the response variable, we simply
inverted the attribute values. We tested this by looking at the correlation
between each attribute and the response. In case of a negative correlation
between an attribute x and the response, we transformed the values of x as
follows:

Ti = Tmaz — Ti + Tmin, i=1,...,n

with Ty, = max(z), and Ty, = min(z).

More specifically,

e in the case of the Australian Credit data set, we only used the de-
scriptive attributes 7, 8, 9 and 10 of the original data set.

e In the case of the Boston Housing data set, we excluded the Charles
River dummy variable;

e we did not use the whole of the Ohsumed data set but instead only the
data for query 3; in one case we only used the descriptive attributes
5,6, 7,18, 20, 21, 22, 35, 36, and 37, and in the other the descriptive

153

attributes 1 and 16;

e as for all of the NASA data sets, the attribute ERROR_COUNT was used
as the response. All attributes that contained missing values were
removed. Furthermore, the attribute MODULE was removed because
it is a unique identifier of the module and the ERROR_DENSITY was
removed because it is a function of the response variable. Finally,

attributes with zero variance were removed.

Table A.1 lists some basic properties of the data sets. Besides the case
of the Ohsumed data set, the table contains repeated entries for regression
data sets whose target attributes were discretised into a different number
of intervals. The first four columns of the table concern basis properties
of the data sets: the first column of the table contains the overall number
of labelled examples, the second column the number of distinct attribute
vectors (multiple labelled occurrences of the same feature vector are possible
in a data set), the third column contains the number of descriptive attributes
after preprocessing, and the fourth column specifies the type of the target
variable. The last two column of table A.1 contain some monotonicity
properties of the data sets. The fifth column gives the number of comparable
pairs (see definition 5) expressed as a percentage of the total number of
pairs. This quantity gives and indication of the potential benefit of applying
monotonicity constraints: the more the comparable pairs, the higher the
potential benefit of taking monotonicity constraints into account. If all
pairs are incomparable, the monotonicity constraint is satisfied vacuously.
Finally, the sixth column gives the percentage of pairs which do not give rise
to a monotonicity violation among the comparable ones; if this percentage

is low, then the monotonicity assumption becomes questionable.

154 APPENDIX A

Data set N n Number of Target Comparable Monotonicity
Attributes ~ Variable Pairs
Australian Credit 690 360 4 Binary 71.62 95.34
Auto MPG! 392 392 7 Numeric 40.09 99.76
Auto MPG? " " " " " 99.36
Boston Housing?! 506 506 12 Numeric 19.10 97.17
Boston Housing? " " " " " 96.99
Car Evaluation 1728 1728 6 4 Classes 14.36 99.96
Computer Hardware® 209 190 6 Numeric 49.53 98.49
Computer Hardware? " " " " " 97.22
ERA 1000 44 4 9 Classes 16.77 85.08
ESL 488 199 4 9 Classes 70.65 98.85
Haberman’s Survival 306 283 3 Binary 31.23 87.76
KC1 2107 1190 21 3 Classes 14.82 98.62
KC4 125 116 13 3 Classes 2.62 92.61
LEV 1000 92 4 5 Classes 24.08 95.73
Ohsumed?® 235 194 10 3 Classes 52.29 81.61
Ohsumed* " 55 2 " 77.99 80.79
PC3 1563 1436 36 3 Classes 0.12 99.22
PC4 1458 1343 37 4 Classes 0.12 99.08
Pima Indians 768 768 8 Binary 7.32 97.76
SWD 1,000 117 10 4 Classes 12.62 94.20
Windsor Housing® 546 529 11 Numeric 27.37 96.77
Windsor Housing? " " " " 27.37 96.37
Wisconsin Breast Cancer 194 194 32 2 Classes 0.56 96.19

Table A.1: Basic properties of the real-world data sets used to test our algorithms
on. Besides the case of the Ohsumed data set, the table contains repeated entries
for regression data sets whose target attributes were discretised into a different
number of intervals. The first column contains the overall number of labelled
examples, the second column the number of distinct attribute vectors (multiple
labelled occurrences of the same feature vector are possible in a data set), the
third column contains the number of descriptive attributes after preprocessing,
and the fourth column specifies the type of the target variable, the fifth column
the number of comparable pairs (see definition 5) expressed as a percentage of
the total number of pairs, and the sixth column the percentage of pairs which do
not give rise to a monotonicity violation (see definition 23) among the comparable
ones.

!Discretised; Number of distinct labels: 4

2Discretised; Number of distinct labels: 5

3Query 3; attributes 5, 6, 7, 18, 20, 21, 22, 35, 36, and 37
4Query 3; attributes 1 and 16

Bibliography

[1]

2]

13]

[4]

15]

6]

7]

Ravindra K. Ahuja and James B. Orlin. A fast scaling algorithm for
minimizing separable convex functions subject to chain constraints.
Operations Research, 49(5):784-789, 2001.

Eric E. Altendorf, Angelo C. Restificar, and Thomas G. Dietterich.
Learning from sparse data by exploiting monotonicity constraints. In
Fahiem Bacchus and Tommi Jaakkola, editors, Proceedings of the 21st
Conference on Uncertainty in Artificial Intelligence (UAI-05), pages
18-25. AUAI Press, 2005.

P.M. Anglin and R. Gengay. Semiparametric estimation of a hedonic
price function. Journal of Applied Econometrics, 11(6):633-648, 1996.

Norman P. Archer and Shi-Tong Wang. Application of the back-
propagation neural network algorithm with monotonicity constraints
for two-group classification problems. Decision Sciences, 24(1):60-75,
1993.

Robert Arens. Learning SVM ranking functions from user feedback
using document metadata and active learning in the biomedical do-
main. In Johannes Fiirnkranz and Eyke Hiillermeier, editors, Prefer-

ence Learning, pages 363-383. Springer-Verlag, 2010.

A. Asuncion and D.J. Newman. UCI machine learning repository,
2007.

Miriam Ayer, H.D. Brunk, George M. Ewing, W.T. Reid, and E. Sil-

verman. An empirical distribution function for sampling with in-

156

8]

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

BIBLIOGRAPHY

complete information. Annals of Mathematical Statistics, 26:641-647,
1955.

Rajarajeswari Balasubramaniyan, Eyke Hiillermeier, Nils Weskamp,
and Jorg Kamper. Clustering of gene expression data using a lo-
cal shape-based similarity measure. Bioinformatics, 21(7):1069-1077,
2005.

Maria-Florina Balcan, Alina Beygelzimer, and John Langford. Ag-
nostic active learning. Journal of Computing and System Sciences,
75:78-89, 2009.

Nicola Barile and Ad J. Feelders. Nonparametric monotone classi-
fication with MOCA. In Fosca Giannotti, editor, Proceedings of the
FEighth IEEE International Conference on Data Mining (ICDM 2008),
pages 731-736. IEEE Computer Society, 2008.

Nicola Barile and Ad J. Feelders. Nonparametric ordinal classifica-
tion with monotonicity constraints. In and Ad J. Feelders and Rob
Potharst, editors, Workshop Proceedings of MoMo 2009 at ECML
PKDD 2009, pages 47-63, 2009.

Nicola Barile and Ad J. Feelders. Monotone instance ranking with

mira. In Discovery Science, pages 31-45, 2011.

Nicola Barile and Ad J. Feelders. Active learning with monotonicity
constraints. In Proceedings of the 14th international conference on

Discovery Science, 2012.

Arie Ben-David. Monotonicity maintenance in information-theoretic

machine learning algorithms. Machine Learning, 19:29-43, 1995.

Arie Ben-David, Leon Sterling, and Yoh-Han Pao. Learning and clas-
sification of monotonic ordinal concepts. Computational Intelligence,
5:45-49, 1989.

James O. Berger. Statistical Decision Theory and Bayesian Analysis,
2nd Edition. Springer, 1985.

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

BIBLIOGRAPHY 157

Jan C. Bioch and Viara Popova. Rough sets and ordinal classification.
In Proceedings of the 11th International Conference on Algorithmic
Learning Theory, ALT 00, pages 291-305, London, UK, UK, 2000.
Springer-Verlag.

Christopher M. Bishop. Pattern Recognition and Machine Learning
(Information Science and Statistics). Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2006.

H.D. Brunk. Maximum likelihood estimates of monotone parameters.
Annals of Mathematical Statistics, 26:607-616, 1955.

Oleg Burdakov, Oleg Sysoev, Anders Grimvall, and Mohamed Hus-
sian. An algorithm for isotonic regression problems. In Proceedings of
the European Congress on Computational Methods in Applied Sciences
and Engineering, 2004.

Kim Cao-Van. Supervised Ranking, from Semantics to Algorithms.
PhD thesis, Universiteit Gent, 2003.

Renato Carmo, Jair Donadelli, Yoshiharu Kohayakawa, and Ed-
uardo Sany Laber. Searching in random partially ordered sets. In

Proceedings of the 5th Latin American Symposium on Theoretical In-
formatics, LATIN *02, pages 278-292. Springer-Verlag, 2002.

George Casella and Roger L. Berger. Statistical inference. Duxbury
Press, 2. ed edition, 2002.

Ramaswamy Chandrasekaran, Young U. Ryu, Varghese S. Jacob, and
Sungchul Hong. Isotonic separation. INFORMS Journal On Comput-
ing, 17(4):462-474, 2005.

Surajit Chaudhuri, Bee-Chung Chen, Venkatesh Ganti, and Raghav
Kaushik. Example-driven design of efficient record matching queries.

In Proceedings of the 33rd International Conference on Very large
Databases, VLDB ’07, pages 327-338. VLDB Endowment, 2007.

Surajit Chaudhuri and Luis Gravano. Evaluating top-k selection
queries. In Proceedings of VLDB 1999, pages 397-410, 1999.

158

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

BIBLIOGRAPHY

William W. Cohen, Robert E. Schapire, and Yoram Singer. Learning
to order things. Journal of Artificial Intelligence Research, 1999.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clif-
ford Stein. Introduction to Algorithms, Third Edition. The MIT Press,
3rd edition, 2009.

Hennie A.M. Daniels and Marina V. Velikova. Derivation of monotone
decision models from non-monotone data. Discussion Paper 2003-30,

Tilburg University, Center for Economic Research, 2003.

Krzysztof Dembczynski, Wojciech Kotlowski, and Roman Slowin-
ski. Ordinal classification with decision rules. In Zbigniew W. Ras,
Shusaku Tsumoto, and Djamel Zighed, editors, Proceedings of the
3rd ECML/PKDD international conference on Mining complex data,
pages 169-181, Warsaw, Poland, 2007. Springer—Verlag.

Janez DemsSar. Statistical comparisons of classifiers over multiple
data sets. The Journal of Machine Learning Research, 7(December
2006):1-30, 2006.

Marek J. Druzdzel and Linda C. van der Gaag. Elicitation of prob-
abilities for belief networks: Combining qualitative and quantitative
information. In Philippe Besnard and Steve Hanks, editors, Proceed-
ings of the 11th Conference on Uncertainty in Artificial Intelligence
(UAI-95), pages 141-148. Morgan Kaufmann, 1995.

Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Clas-
sification (2nd Edition). Wiley-Interscience, 2000.

Wouter Duivesteijn and Ad J. Feelders. Nearest neighbour classifi-
cation with monotonicity constraints. In Walter Daelemans, editor,
Proceedings of ECML/PKDD 2008, volume 5211 of LNAI pages 301—
316. Springer, 2008.

Richard Dykstra, John Hewett, and Tim Robertson. Nonparametric,
isotonic discriminant procedures. Biometrika, 86(2):429-438, 1999.

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

BIBLIOGRAPHY 159

Hammou El Barmi and Hari Mukerjee. Inferences under a stochas-
tic ordering constraint: the k-sample sase. Journal of the American
Statistical Association, 100(469):252-261, 2005.

Ad J. Feelders. Prior knowledge in economic applications of data
mining. In D.A. Zighed, J. Komorowski, and J. Zytkow, editors,
Proceedings of PKDD 2000, volume 1910 of LNAI, pages 395-400.
Springer, 2000.

Ad J. Feelders. A new parameter learning method for Bayesian
networks with qualitative influences. In R. Parr and L.C. van der
Gaag, editors, Proceedings of Uncertainty in Artificial Intelligence
2007 (UAIO7), pages 117-124. AUAT Press, 2007.

Ad J. Feelders. Monotone relabeling in ordinal classification. In ICDM
2010, Proceedings of the 10th IEEE International Conference on Data
Mining, pages 803-808. IEEE Computer Society, 2010.

Ad J. Feelders and Martijn Pardoel. Pruning for monotone classi-
fication trees. In Michael R. Berthold, Hans-Joachim Lenz, Eliza-
beth Bradley, Rudolf Kruse, and Christian Borgelt, editors, Advances
in Intelligent Data Analysis V, volume 2810 of LNCS, pages 1-12.
Springer, 2003.

Ad J. Feelders and Linda C. van der Gaag. Learning Bayesian network
parameters under order constraints. In Peter Lucas, editor, Proceed-
ings of the second European workshop on probabilistic graphical models
(PGM’04), pages 73-80, 2004.

Ad J. Feelders and Linda C. van der Gaag. Learning Bayesian network
parameters with prior knowledge about context-specific qualitative
influences. In Fahiem Bacchus and Tommi Jaakkola, editors, Proceed-
ings of the 21st Conference on Uncertainty in Artificial Intelligence
(UAI-05), pages 193-200. AUAT Press, 2005.

Ad J. Feelders and Linda C. van der Gaag. Learning bayesian net-
work parameters under order constraints. International Journal of
Approzimate Reasoning, 42(1-2):37-53, 2006.

160

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

BIBLIOGRAPHY

Ad J. Feelders and Robert van Straalen. Parameter learning for
Bayesian networks with strict qualitative influences. In Michael R.
Berthold, John Shawe-Taylor, and Nadia Lavra¢, editors, Advances
in Intelligent Data Analysis VII, volume 4723 of LNCS, pages 48-58.
Springer, 2007.

Eibe Frank and Mark Hall. A simple approach to ordinal classifica-
tion. In Luc De Raedt and Peter A. Flach, editors, Proceedings of the
12th European Conference on Machine Learning (ECML/PKDD-01),
pages 145-156, Freiburg, Germany, 2001. Springer-Verlag.

FJohannes Fiirnkranz and Eyke Hiillermeier, editors. Preference

Learning. Springer-Verlag, 2010.

Johannes Fiirnkranz. Round robin classification. The Journal of Ma-
chine Learning Research, 2:721-747, March 2002.

Johannes Filirnkranz. Round robin ensembles. Intelligent Data Anal-
ysis, 7(5):385-403, October 2003.

Johannes Fiirnkranz and Eyke Hiillermeier. Pairwise preference learn-
ing and ranking. In Proceedings of the 14th Furopean Conference on

Machine Learning, pages 145-156. Springer-Verlag, 2003.

Johannes Filirnkranz and Eyke Hiillermeier. Preference learning: An
introduction. In Johannes Fiirnkranz and Eyke Hiillermeier, editors,

Preference Learning, pages 1-17. Springer-Verlag, 2010.

Johannes Fiirnkranz, Eyke Hiilllermeier, and S. Vanderlooy. Binary
decomposition methods for multipartite ranking. In Wray L. Bun-
tine, Marko Grobelnik, Dunja Mladenic, and John Shawe-Taylor, edi-
tors, Proceedings of the European Conference on Machine Learning
and Principles and Practice of Knowledge Discovery in Databases
(ECML/PKDD-09), volume Part I, pages 359-374, Bled, Slovenia,
2009. Springer-Verlag.

David Gamarnik. Efficient learning of monotone concepts via

quadratic optimization. In Proceedings of the Eleventh Annual Confer-

[53]

[54]

[55]

[56]

[57]

[58]

[59]

|60]

[61]

BIBLIOGRAPHY 161

ence on Computational Learning Theory, pages 134-143. ACM Press,
1998.

Giinther Gediga and Ivo Diintsch. Approximation quality for sorting
rules. Computational Statistics & Data Analysis, 40(3):499-526, 2002.

Mithat Gonen and Glenn Heller. Concordance probability and dis-
criminatory power in proportional hazards regression. Biometrika,
92(4):965-970, 2005.

Salvatore Greco, B. Matarazzo, and R. Slowinski. Rough approxi-
mation by dominance relations. International Journal of Intelligent
Systems, 17:153-171, 2002.

Salvatore Greco, Roman Slowiniski, Jerzy Stefanowski, and Marcin
Zurawski. Lecture notes in computer science. In James F. Peters,
Andrzej Skowron, Didier Dubois, Jerzy W. Grzymala-Busse, and
Masahiro Inuiguchi, editors, Transactions on Rough Sets II, chapter
Incremental versus non-incremental rule induction for multicriteria

classification, pages 33-53. Springer-Verlag, Berlin, Heidelberg, 2004.

Wolfgang Hardle. Applied Nonparametric Regression. Econometric
Society Monographs. Cambridge University Press, 1992.

O. Harrison and D. Rubinfeld. Hedonic prices and the demand for
clean air. Journal of Environmental Economics and Management,
53:81-102, 1978.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Ele-

ments of Statistical Learning. Springer, second edition, 2009.

Klaus Hechenbichler and Klaus Schliep. Weighted k-nearest-neighbor
techniques and ordinal classification. Discussion Paper 399, Collab-
orative Research Center (SFB) 386 Statistical Analysis of Discrete

Structures - Applications in Biometrics and Econometrics, 2004.

Joseph L. Hellerstein. A statistical approach to diagnosing intermit-
tent performance-problems using monotone relationships. In Proceed-
ings of the 1989 ACM SIGMETRICS International Conference on

162

[62]

[63]

[64]

[65]

[66]

[67]

|68]

[69]

BIBLIOGRAPHY

Measurement and Modeling of Computer Systems, pages 20-28. ACM
Press, 1989.

Eveline M. Helsper, Linda C. van der Gaag, Ad J. Feelders, Willie L. A.
Loeffen, Petra L. Geenen, and Armin R.W. Elbers. Bringing order
into bayesian-network construction. In Proceedings of the Third In-
ternational Conference on Knowledge Capture, pages 121-128. ACM
Press, 2005.

Ralf Herbrich, Thore Graepel, and Klaus Obermayer. Large margin
rank boundaries for ordinal regression. Advances in Large-Margin
Classifiers, pages 115-132, 2000.

Robert V. Hogg. On models and hypotheses with restricted alterna-
tives. Journal of the American Statistical Association, 60(312):1153—
1162, 1965.

Eyke Hiillermeier and Johannes Fiirnkranz. Learning label prefer-
ences: ranking error versus position error. In Proceedings of the 6th
international conference on Advances in Intelligent Data Analysis,
IDA’05, pages 180-191, Berlin, Heidelberg, 2005. Springer-Verlag.

Eyke Hiillermeier, Johannes Filirnkranz, Weiwei Cheng, and Klaus
Brinker. Label ranking by learning pairwise preferences. Artificial
Intelligence, 172(16-17):1897-1916, 2008.

Kalervo Jarvelin and Jaana Kekéldinen. Cumulated gain-based eval-
uation of ir techniques. ACM Trans. Inf. Syst., 2002.

Thorsten Joachims. Optimizing search engines using clickthrough
data. In Proceedings of the Eighth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, 2002.

Thorsten Joachims, Laura Granka, Bing Pan, Helene Hembrooke, and
Geri Gay. Accurately interpreting clickthrough data as implicit feed-
back. In Proceedings of the 28th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval,
2005.

[70]

[71]

[72]

73]

|74]

[75]

[76]

[77]

78]

[79]

BIBLIOGRAPHY 163

Jorgen Karpf. Inductive modelling in law: Example based expert sys-
tems in administrative law. In Proceedings of the Third International
Conference on Artificial Intelligence in Law, pages 297-306. ACM
Press, 1991.

Wojciech Kotlowski, Krzysztof Dembczynski, Salvatore Greco, and
Roman Slowinski. Stochastic dominance-based rough set model for
ordinal classification. Information Sciences, 178:4019-4037, 2008.

Wojciech Kotlowski and Roman Slowinski. Statistical approach to
ordinal classification with monotonicity constraints. In Eyke Hiiller-
meier and Johannes Filirnkranz, editors, ECML PKDD 2008 Work-

shop on Preference Learning, 2008.

Wojciech Kotlowski and Roman Slowinski. Rule learning with mono-
tonicity constraints. In Léon Bottou and Michael Littman, editors,
Proceedings of the 26th Annual International Conference on Machine
Learning (ICML 2009), pages 537-544, 2009.

E.L. Lehmann. Ordered families of distributions. Annals of Mathe-
matical Statistics, 26:399-U419, 1955.

David D. Lewis and William A. Gale. A sequential algorithm for train-
ing text classifiers. In Proceedings of the 17th Annual International
ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, SIGIR ’94, pages 3—12. Springer-Verlag, 1994.

Stijn F. Lievens and Bernard De Baets. Supervised ranking in the
weka environment. Inf. Sci., 180:4763-4771, December 2010.

Stijn F. Lievens, Bernard De Baets, and Kim Cao-Van. A proba-
bilistic framework for the design of instance-based supervised rank-

ing algorithms in an ordinal setting. Annals of Operations Research,
163:115-142, 2008.

Nathan Linial and Michael E. Saks. Searching ordered structures.
Journal of Algorithms, 6:86-103, 1985.

Tie-Yan Liu. Learning to rank for information retrieval. Foundations

and Trends in Information Retrieval, pages 225-331, 2009.

164

[30]

[81]

[82]

[83]

[84]

[85]

[36]

[87]

[38]

[39]

BIBLIOGRAPHY

Antoine Mahul and Alexandre Aussem. Learning with monotonicity
requirements for optimal routing with end-to-end quality of service
constraints. In European Symposium on Artificial Neural Networks,
pages 455-460, 2006.

William L. Maxwell and John A. Muckstadt. Establishing consistent
and realistic reorder intervals in production-distribution systems. Op-
erations Research, 33(6):1316-1341, 1985.

M.A. Meyer and J.M. Booker. Eliciting and Analyzing Expert Judg-

ment: A Practical Guide. Series on Statistics and Applied Probability.
ASA-SIAM, 2001.

Tom M. Mitchell. Machine learning. McGraw Hill series in computer
science. McGraw-Hill, 1997.

Helen M. Moshkovich, Alexander I. Mechitov, and David L. Olson.
Rule induction in data mining: Effect of ordinal scales. Expert Systems
with Applications Journal, 22:303-311, 2002.

Hari Mukarjee and Steven Stern. Feasible nonparametric estimation
of multiargument monotone functions. Journal of the American Sta-
tistical Association, 89(425):77-80, 1994.

Wlodzimierz Ogryczak and Andrzej Ruszczynski. Dual stochastic
dominance and related mean-risk models. SIAM Journal on Opti-
mization, 13(1):60-78, 2002.

Giovanni Parmigiani and Lurdes Inoue. Decision theory. Principles
and approaches. John Wiley & Sons, 2009.

Michael J. Pazzani, S. Mani, and William R. Shankle. Acceptance of
rules generated by machine learning among medical experts. Methods
of Information in Medicine, 40:380-385, 2001.

Jean-Claude Picard. Maximal closure of a graph and applications
to combinatorial problems. Management Science, 22(11):1268-1272,
1976.

[90]

91]

[92]

193]

194]

[95]

[96]

[97]

98]

[99]

[100]

BIBLIOGRAPHY 165

Rob Potharst and J.C. Bioch. Decision trees for ordinal classification.
Intelligent Data Analysis, 4(2):97-112; 2000.

Rob Potharst and Ad J. Feelders. Classification trees for problems
with monotonicity constraints. SIGKDD FExplorations, 4:1-10, 2002.

J. Scott Provan and Michael O. Ball. The complexity of counting cuts
and of computing the probability that a graph is connected. SIAM
Journal on Computing, 12(4):777-788, 1983.

Shyamsundar Rajaram and Shivani Agarwal. Generalization bounds
for k-partite ranking. In Shivani Agarwal, Corinna Cortes, and Ralf
Herbrich, editors, Proceedings of the NIPS 2005 Workshop on Learn-
ing to Rank, pages 28-23, 2005.

Tim Robertson, F. Wright, and Richard L. Dykstra. Order Restricted
Statistical Inference. Wiley, 1988.

Patrick Royston. A useful monotonic non-linear model with ap-
plications in medicine and epidemiology. Statistics in Medicine,
19(15):2053-2066, 2000.

Young U. Ryu, Ramaswamy Chandrasekaran, and Varghese S. Ja-
cob. Breast cancer prediction using the isotonic separation technique.
European Journal Of Operational Research, 181:842-854, 2007.

Burr Settles. Active learning literature survey. Computer Science
Technical Report 1648, University of Wisconsin—-Madison, 2009.

Joseph Sill. Monotonic networks. In Advances in Neural Information
Processing Systems, NIPS (Vol. 10), pages 661-667, 1998.

Joseph Sill and Yaser S. Abu-Mostafa. Monotonicity hints. In Ad-
vances in Neural Information Processing Systems, NIPS (Vol. 9),
pages 634-640, 1997.

J. Spouge, H. Wan, and W.J. Wilbur. Least squares isotonic regression
in two dimensions. Journal Of Optimization Theory And Applications,
117(3):585-605, 2003.

166

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

BIBLIOGRAPHY

Luite Stegeman and Ad J. Feelders. On generating all optimal mono-
tone classifications. In Proceedings of the Eleventh IEEFE International
Conference on Data Mining (ICDM 2011), pages 685-694, 2011.

Stanley S. Stevens. On the theory of scales of measurement. Science,
103(2684):677-680, June 1946.

Louis L. Thurstone. A law of comparative judgment. Psychological
Review, 34:273-286, 1927.

Vetle I. Torvik and Evangelos Triantaphyllou. Minimizing the average
query complexity of learning monotone boolean functions. INFORMS
Journal on Computing, 14(2):144-174, 2002.

Rémon van de Kamp, Ad J. Feelders, and Nicola Barile. Isotonic
classification trees. In Niall M. Adams, Céline Robardet, Arno P.J.M.
Siebes, and Jean-Francois Boulicaut, editors, Proceedings of the Sth
International Symposium on Intelligent Data Analysis: Advances in
Intelligent Data Analysis VIII, pages 405-416, Lyon, France, 2009.
Springer—Verlag.

Linda C. van der Gaag, H. Bodlaender, and Ad J. Feelders. Mono-
tonicity in Bayesian networks. In M. Chickering and J. Halpern, ed-

itors, Proceedings of the 20th Conference on Uncertainty in Artificial
Intelligence (UAI-04), pages 569-576. AUAI Press, 2004.

Linda C. van der Gaag, Hans L. Bodlaender, and Ad J. Feelders.
Monotonicity in bayesian networks. In Proceedings of the 20th confer-
ence on Uncertainty in artificial intelligence, UATI 04, pages 569-576,
Arlington, Virginia, United States, 2004. AUAI Press.

Marina V. Velikova, Hennie A.M. Daniels, and Ad J. Feelders. Mix-
tures of monotone networks for prediction. International Journal of
Computational Intelligence, 3(3):204-214, 2006.

Andrew R. Webb. Statistical Pattern Recognition, 2nd Edition. John
Wiley & Sons, 2002.

BIBLIOGRAPHY 167

[110] Ting Yu, Simeon Simoff, and Tony Jan. Vgsvm: A case study for in-
corporating prior domain knowledge into inductive machine learning.
Neurocomputing, 73:2614-2623, 2010.

SIKS Dissertation Series

1998 01 Johan van den Akker (CWI), DEGAS - An Active, Temporal Database of Autonomous
Objects
02 Floris Wiesman (UM), Information Retrieval by Graphically Browsing Meta-Information
03 Ans Steuten (TUD), A Contribution to the Linguistic Analysis of Business Conversations
within the Language/Action Perspective
04 Dennis Breuker (UM), Memory versus Search in Games
05 E.W.Oskamp (RUL), Computerondersteuning bij Straftoemeting
199901 Mark Sloof (VU), Physiology of Quality Change Modelling; Automated modelling of Quality
Change of Agricultural Products
02 Rob Potharst (EUR), Classification using decision trees and neural nets
03 Don Beal (UM), The Nature of Minimax Search
04 Jacques Penders (UM), The practical Art of Moving Physical Objects
05 Aldo de Moor (KUB), Empowering Communities: A Method for the Legitimate User-Driven
Specification of Network Information Systems
06 Niek J.E. Wijngaards (VU), Re-design of compositional systems
07 David Spelt (UT), Verification support for object database design
08 Jacques H.J. Lenting (UM), Informed Gambling: Conception and Analysis of a Multi-Agent
Mechanism for Discrete Reallocation
2000 01 Frank Niessink (VU), Perspectives on Improving Software Maintenance
02 Koen Holtman (TUE), Prototyping of CMS Storage Management
03 Carolien M.T. Metselaar (UvA), Sociaal-organisatorische gevolgen van kennistechnologie;
een procesbenadering en actorperspectief
04 Geert de Haan (VU), ETAG, A Formal Model of Competence Knowledge for User Interface
Design
05 Ruud van der Pol (UM), Knowledge-based Query Formulation in Information Retrieval
06 Rogier van Eijk (UU), Programming Languages for Agent Communication
07 Niels Peek (UU), Decision-theoretic Planning of Clinical Patient Management
08 Veerle CoupC (EUR), Sensitivity Analyis of Decision-Theoretic Networks
09 Florian Waas (CWI), Principles of Probabilistic Query Optimization
10 Niels Nes (CWI), Image Database Management System Design Considerations, Algorithms
and Architecture
11 Jonas Karlsson (CWI), Scalable Distributed Data Structures for Database Management
2001 01 Silja Renooij (UU), Qualitative Approaches to Quantifying Probabilistic Networks
02 Koen Hindriks (UU), Agent Programming Languages: Programming with Mental Models
03 Maarten van Someren (UvA), Learning as problem solving
04 Evgueni Smirnov (UM), Conjunctive and Disjunctive Version Spaces with Instance-Based
Boundary Sets
05 Jacco van Ossenbruggen (VU), Processing Structured Hypermedia: A Matter of Style
06 Martijn van Welie (VU), Task-based User Interface Design
07 Bastiaan Schonhage (VU), Diva: Architectural Perspectives on Information Visualization
08 Pascal van Eck (VU), A Compositional Semantic Structure for Multi-Agent Systems Dy-

namics

170

SIKS DISSERTATION SERIES

09 Pieter Jan 't Hoen (RUL), Towards Distributed Development of Large Object-Oriented Mod-
els, Views of Packages as Classes

10 Maarten Sierhuis (UvA), Modeling and Simulating Work Practice BRAHMS: a multiagent
modeling and simulation language for work practice analysis and design

11 Tom M. van Engers (VUA), Knowledge Management: The Role of Mental Models in Business
Systems Design

2002 01 Nico Lassing (VU), Architecture-Level Modifiability Analysis

02 Roelof van Zwol (UT), Modelling and searching web-based document collections

03 Henk Ernst Blok (UT), Database Optimization Aspects for Information Retrieval

04 Juan Roberto Castelo Valdueza (UU), The Discrete Acyclic Digraph Markov Model in Data
Mining

05 Radu Serban (VU), The Private Cyberspace Modeling Electronic Environments inhabited
by Privacy-concerned Agents

06 Laurens Mommers (UL), Applied legal epistemology; Building a knowledge-based ontology
of the legal domain

07 Peter Boncz (CWI), Monet: A Next-Generation DBMS Kernel For Query-Intensive Appli-
cations

08 Jaap Gordijn (VU), Value Based Requirements Engineering: Exploring Innovative E-
Commerce Ideas

09 Willem-Jan van den Heuvel (KUB), Integrating Modern Business Applications with Objec-
tified Legacy Systems

10 Brian Sheppard (UM), Towards Perfect Play of Scrabble

11 Wouter C.A. Wijngaards (VU), Agent Based Modelling of Dynamics: Biological and Organ-
isational Applications

12 Albrecht Schmidt (UvA), Processing XML in Database Systems

13 Hongjing Wu (TUE), A Reference Architecture for Adaptive Hypermedia Applications

14 Wieke de Vries (UU), Agent Interaction: Abstract Approaches to Modelling, Programming
and Verifying Multi-Agent Systems

15 Rik Eshuis (UT), Semantics and Verification of UML Activity Diagrams for Workflow Mod-
elling

16 Pieter van Langen (VU), The Anatomy of Design: Foundations, Models and Applications

17 Stefan Manegold (UvA), Understanding, Modeling, and Improving Main-Memory Database
Performance

2003 01 Heiner Stuckenschmidt (VU), Ontology-Based Information Sharing in Weakly Structured

Environments

02 Jan Broersen (VU), Modal Action Logics for Reasoning About Reactive Systems

03 Martijn Schuemie (TUD), Human-Computer Interaction and Presence in Virtual Reality
Exposure Therapy

04 Milan Petkovic (UT), Content-Based Video Retrieval Supported by Database Technology

05 Jos Lehmann (UvA), Causation in Artificial Intelligence and Law - A modelling approach

06 Boris van Schooten (UT), Development and specification of virtual environments

07 Machiel Jansen (UvA), Formal Explorations of Knowledge Intensive Tasks

08 Yongping Ran (UM), Repair Based Scheduling

09 Rens Kortmann (UM), The resolution of visually guided behaviour

10 Andreas Lincke (UvT), Electronic Business Negotiation: Some experimental studies on the
interaction between medium, innovation context and culture

11 Simon Keizer (UT), Reasoning under Uncertainty in Natural Language Dialogue using
Bayesian Networks

12 Roeland Ordelman (UT), Dutch speech recognition in multimedia information retrieval

13 Jeroen Donkers (UM), Nosce Hostem - Searching with Opponent Models

14 Stijn Hoppenbrouwers (KUN), Freezing Language: Conceptualisation Processes across ICT-
Supported Organisations

15 Mathijs de Weerdt (TUD), Plan Merging in Multi-Agent Systems

16 Menzo Windhouwer (CWI), Feature Grammar Systems - Incremental Maintenance of Indexes
to Digital Media Warehouses

17 David Jansen (UT), Extensions of Statecharts with Probability, Time, and Stochastic Timing

18 Levente Kocsis (UM), Learning Search Decisions

SIKS DISSERTATION SERIES 171

2004 01 Virginia Dignum (UU), A Model for Organizational Interaction: Based on Agents, Founded
in Logic
02 Lai Xu (UvT), Monitoring Multi-party Contracts for E-business
03 Perry Groot (VU), A Theoretical and Empirical Analysis of Approximation in Symbolic
Problem Solving
04 Chris van Aart (UvA), Organizational Principles for Multi-Agent Architectures
05 Viara Popova (EUR), Knowledge discovery and monotonicity
06 Bart-Jan Hommes (TUD), The Evaluation of Business Process Modeling Techniques
07 Elise Boltjes (UM), Voorbeeldig onderwijs; voorbeeldgestuurd onderwijs, een opstap naar
abstract denken, vooral voor meisjes
08 Joop Verbeek(UM), Politie en de Nieuwe Internationale Informatiemarkt, Grensregionale
politiLle gegevensuitwisseling en digitale expertise
09 Martin Caminada (VU), For the Sake of the Argument; explorations into argument-based
reasoning
10 Suzanne Kabel (UvA), Knowledge-rich indexing of learning-objects
11 Michel Klein (VU), Change Management for Distributed Ontologies
12 The Duy Bui (UT), Creating emotions and facial expressions for embodied agents
13 Wojciech Jamroga (UT), Using Multiple Models of Reality: On Agents who Know how to
Play
14 Paul Harrenstein (UU), Logic in Conflict. Logical Explorations in Strategic Equilibrium
15 Arno Knobbe (UU), Multi-Relational Data Mining
16 Federico Divina (VU), Hybrid Genetic Relational Search for Inductive Learning
17 Mark Winands (UM), Informed Search in Complex Games
18 Vania Bessa Machado (UvA), Supporting the Construction of Qualitative Knowledge Models
19 Thijs Westerveld (UT), Using generative probabilistic models for multimedia retrieval
20 Madelon Evers (Nyenrode), Learning from Design: facilitating multidisciplinary design teams
200501 Floor Verdenius (UvA), Methodological Aspects of Designing Induction-Based Applications
02 Erik van der Werf (UM), AI techniques for the game of Go
03 Franc Grootjen (RUN), A Pragmatic Approach to the Conceptualisation of Language
04 Nirvana Meratnia (UT), Towards Database Support for Moving Object data
05 Gabriel Infante-Lopez (UvA), Two-Level Probabilistic Grammars for Natural Language Pars-
ing
06 Pieter Spronck (UM), Adaptive Game AI
07 Flavius Frasincar (TUE), Hypermedia Presentation Generation for Semantic Web Informa-
tion Systems
08 Richard Vdovjak (TUE), A Model-driven Approach for Building Distributed Ontology-based
Web Applications
09 Jeen Broekstra (VU), Storage, Querying and Inferencing for Semantic Web Languages
10 Anders Bouwer (UvA), Explaining Behaviour: Using Qualitative Simulation in Interactive
Learning Environments
11 Elth Ogston (VU), Agent Based Matchmaking and Clustering - A Decentralized Approach
to Search
12 Csaba Boer (EUR), Distributed Simulation in Industry
13 Fred Hamburg (UL), Een Computermodel voor het Ondersteunen van Euthanasiebeslissingen
14 Borys Omelayenko (VU), Web-Service configuration on the Semantic Web; Exploring how
semantics meets pragmatics
15 Tibor Bosse (VU), Analysis of the Dynamics of Cognitive Processes
16 Joris Graaumans (UU), Usability of XML Query Languages
17 Boris Shishkov (TUD), Software Specification Based on Re-usable Business Components
18 Danielle Sent (UU), Test-selection strategies for probabilistic networks
19 Michel van Dartel (UM), Situated Representation
20 Cristina Coteanu (UL), Cyber Consumer Law, State of the Art and Perspectives
21 Wijnand Derks (UT), Improving Concurrency and Recovery in Database Systems by Ex-
ploiting Application Semantics
2006 01 Samuil Angelov (TUE), Foundations of B2B Electronic Contracting
02 Cristina Chisalita (VU), Contextual issues in the design and use of information technology

in organizations

172

SIKS DISSERTATION SERIES

03 Noor Christoph (UvA), The role of metacognitive skills in learning to solve problems

04 Marta Sabou (VU), Building Web Service Ontologies

05 Cees Pierik (UU), Validation Techniques for Object-Oriented Proof Outlines

06 Ziv Baida (VU), Software-aided Service Bundling - Intelligent Methods & Tools for Graphical
Service Modeling

07 Marko Smiljanic (UT), XML schema matching - balancing efficiency and effectiveness by
means of clustering

08 Eelco Herder (UT), Forward, Back and Home Again - Analyzing User Behavior on the Web

09 Mohamed Wahdan (UM), Automatic Formulation of the Auditor’s Opinion

10 Ronny Siebes (VU), Semantic Routing in Peer-to-Peer Systems

11 Joeri van Ruth (UT), Flattening Queries over Nested Data Types

12 Bert Bongers (VU), Interactivation - Towards an e-cology of people, our technological envi-
ronment, and the arts

13 Henk-Jan Lebbink (UU), Dialogue and Decision Games for Information Exchanging Agents

14 Johan Hoorn (VU), Software Requirements: Update, Upgrade, Redesign - towards a Theory
of Requirements Change

15 Rainer Malik (UU), CONAN: Text Mining in the Biomedical Domain

16 Carsten Riggelsen (UU), Approximation Methods for Efficient Learning of Bayesian Networks

17 Stacey Nagata (UU), User Assistance for Multitasking with Interruptions on a Mobile Device

18 Valentin Zhizhkun (UvA), Graph transformation for Natural Language Processing

19 Birna van Riemsdijk (UU), Cognitive Agent Programming: A Semantic Approach

20 Marina Velikova (UvT), Monotone models for prediction in data mining

21 Bas van Gils (RUN), Aptness on the Web

22 Paul de Vrieze (RUN), Fundaments of Adaptive Personalisation

23 Ion Juvina (UU), Development of Cognitive Model for Navigating on the Web

24 Laura Hollink (VU), Semantic Annotation for Retrieval of Visual Resources

25 Madalina Drugan (UU), Conditional log-likelihood MDL and Evolutionary MCMC

26 Vojkan Mihajlovic (UT), Score Region Algebra: A Flexible Framework for Structured Infor-
mation Retrieval

27 Stefano Bocconi (CWI), Vox Populi: generating video documentaries from semantically an-
notated media repositories

28 Borkur Sigurbjornsson (UvA), Focused Information Access using XML Element Retrieval

200701 Kees Leune (UvT), Access Control and Service-Oriented Architectures

02 Wouter Teepe (RUG), Reconciling Information Exchange and Confidentiality: A Formal
Approach

03 Peter Mika (VU), Social Networks and the Semantic Web

04 Jurriaan van Diggelen (UU), Achieving Semantic Interoperability in Multi-agent Systems: a
dialogue-based approach

05 Bart Schermer (UL), Software Agents, Surveillance, and the Right to Privacy: a Legislative
Framework for Agent-enabled Surveillance

06 Gilad Mishne (UvA), Applied Text Analytics for Blogs

07 Natasa Jovanovic’ (UT), To Whom It May Concern - Addressee Identification in Face-to-Face
Meetings

08 Mark Hoogendoorn (VU), Modeling of Change in Multi-Agent Organizations

09 David Mobach (VU), Agent-Based Mediated Service Negotiation

10 Huib Aldewereld (UU), Autonomy vs. Conformity: an Institutional Perspective on Norms
and Protocols

11 Natalia Stash (TUE), Incorporating Cognitive/Learning Styles in a General-Purpose Adap-
tive Hypermedia System

12 Marcel van Gerven (RUN), Bayesian Networks for Clinical Decision Support: A Rational
Approach to Dynamic Decision-Making under Uncertainty

13 Rutger Rienks (UT), Meetings in Smart Environments; Implications of Progressing Technol-
ogy

14 Niek Bergboer (UM), Context-Based Image Analysis

15 Joyca Lacroix (UM), NIM: a Situated Computational Memory Model

16 Davide Grossi (UU), Designing Invisible Handcuffs. Formal investigations in Institutions
and Organizations for Multi-agent Systems

17 Theodore Charitos (UU), Reasoning with Dynamic Networks in Practice

SIKS DISSERTATION SERIES 173

18 Bart Orriens (UvT), On the development an management of adaptive business collaborations

19 David Levy (UM), Intimate relationships with artificial partners

20 Slinger Jansen (UU), Customer Configuration Updating in a Software Supply Network

21 Karianne Vermaas (UU), Fast diffusion and broadening use: A research on residential adop-
tion and usage of broadband internet in the Netherlands between 2001 and 2005

22 Zlatko Zlatev (UT), Goal-oriented design of value and process models from patterns

23 Peter Barna (TUE), Specification of Application Logic in Web Information Systems

24 Georgina Ramirez Camps (CWI), Structural Features in XML Retrieval

25 Joost Schalken (VU), Empirical Investigations in Software Process Improvement

2008 01 Katalin Boer-Sorban (EUR), Agent-Based Simulation of Financial Markets: A modular,

continuous-time approach

02 Alexei Sharpanskykh (VU), On Computer-Aided Methods for Modeling and Analysis of
Organizations

03 Vera Hollink (UvA), Optimizing hierarchical menus: a usage-based approach

04 Ander de Keijzer (UT), Management of Uncertain Data - towards unattended integration

05 Bela Mutschler (UT), Modeling and simulating causal dependencies on process-aware infor-
mation systems from a cost perspective

06 Arjen Hommersom (RUN), On the Application of Formal Methods to Clinical Guidelines,
an Artificial Intelligence Perspective

07 Peter van Rosmalen (OU), Supporting the tutor in the design and support of adaptive e-
learning

08 Janneke Bolt (UU), Bayesian Networks: Aspects of Approximate Inference

09 Christof van Nimwegen (UU), The paradox of the guided user: assistance can be counter-
effective

10 Wauter Bosma (UT), Discourse oriented summarization

11 Vera Kartseva (VU), Designing Controls for Network Organizations: A Value-Based Ap-
proach

12 Jozsef Farkas (RUN), A Semiotically Oriented Cognitive Model of Knowledge Representation

13 Caterina Carraciolo (UvA), Topic Driven Access to Scientific Handbooks

14 Arthur van Bunningen (UT), Context-Aware Querying; Better Answers with Less Effort

15 Martijn van Otterlo (UT), The Logic of Adaptive Behavior: Knowledge Representation and
Algorithms for the Markov Decision Process Framework in First-Order Domains

16 Henriette van Vugt (VU), Embodied agents from a user’s perspective

17 Martin Op 't Land (TUD), Applying Architecture and Ontology to the Splitting and Allying
of Enterprises

18 Guido de Croon (UM), Adaptive Active Vision

19 Henning Rode (UT), From Document to Entity Retrieval: Improving Precision and Perfor-
mance of Focused Text Search

20 Rex Arendsen (UvA), Geen bericht, goed bericht. Een onderzoek naar de effecten van de
introductie van elektronisch berichtenverkeer met de overheid op de administratieve lasten
van bedrijven

21 Krisztian Balog (UvA), People Search in the Enterprise

22 Henk Koning (UU), Communication of IT-Architecture

23 Stefan Visscher (UU), Bayesian network models for the management of ventilator-associated
pneumonia

24 Zharko Aleksovski (VU), Using background knowledge in ontology matching

25 Geert Jonker (UU), Efficient and Equitable Exchange in Air Traffic Management Plan Repair
using Spender-signed Currency

26 Marijn Huijbregts (UT), Segmentation, Diarization and Speech Transcription: Surprise Data
Unraveled

27 Hubert Vogten (OU), Design and Implementation Strategies for IMS Learning Design

28 Ildiko Flesch (RUN), On the Use of Independence Relations in Bayesian Networks

29 Dennis Reidsma (UT), Annotations and Subjective Machines - Of Annotators, Embodied
Agents, Users, and Other Humans

30 Wouter van Atteveldt (VU), Semantic Network Analysis: Techniques for Extracting, Repre-
senting and Querying Media Content

31 Loes Braun (UM), Pro-Active Medical Information Retrieval

174

SIKS DISSERTATION SERIES

32 Trung H. Bui (UT), Toward Affective Dialogue Management using Partially Observable
Markov Decision Processes

33 Frank Terpstra (UvA), Scientific Workflow Design; theoretical and practical issues

34 Jeroen de Knijf (UU), Studies in Frequent Tree Mining

35 Ben Torben Nielsen (UvT), Dendritic morphologies: function shapes structure

2009 01 Rasa Jurgelenaite (RUN), Symmetric Causal Independence Models

02 Willem Robert van Hage (VU), Evaluating Ontology-Alignment Techniques

03 Hans Stol (UvT), A Framework for Evidence-based Policy Making Using IT

04 Josephine Nabukenya (RUN), Improving the Quality of Organisational Policy Making using
Collaboration Engineering

05 Sietse Overbeek (RUN), Bridging Supply and Demand for Knowledge Intensive Tasks - Based
on Knowledge, Cognition, and Quality

06 Muhammad Subianto (UU), Understanding Classification

07 Ronald Poppe (UT), Discriminative Vision-Based Recovery and Recognition of Human Mo-
tion

08 Volker Nannen (VU), Evolutionary Agent-Based Policy Analysis in Dynamic Environments

09 Benjamin Kanagwa (RUN), Design, Discovery and Construction of Service-oriented Systems

10 Jan Wielemaker (UvA), Logic programming for knowledge-intensive interactive applications

11 Alexander Boer (UvA), Legal Theory, Sources of Law & the Semantic Web

12 Peter Massuthe (TUE, Humboldt-Universitaet zu Berlin), Operating Guidelines for Services

13 Steven de Jong (UM), Fairness in Multi-Agent Systems

14 Maksym Korotkiy (VU), From ontology-enabled services to service-enabled ontologies (mak-
ing ontologies work in e-science with ONTO-SOA)

15 Rinke Hoekstra (UvA), Ontology Representation - Design Patterns and Ontologies that Make
Sense

16 Fritz Reul (UvT), New Architectures in Computer Chess

17 Laurens van der Maaten (UvT), Feature Extraction from Visual Data

18 Fabian Groffen (CWI), Armada, An Evolving Database System

19 Valentin Robu (CWI), Modeling Preferences, Strategic Reasoning and Collaboration in
Agent-Mediated Electronic Markets

20 Bob van der Vecht (UU), Adjustable Autonomy: Controling Influences on Decision Making

21 Stijn Vanderlooy (UM), Ranking and Reliable Classification

22 Pavel Serdyukov (UT), Search For Expertise: Going beyond direct evidence

23 Peter Hofgesang (VU), Modelling Web Usage in a Changing Environment

24 Annerieke Heuvelink (VUA), Cognitive Models for Training Simulations

25 Alex van Ballegooij (CWI), RAM: Array Database Management through Relational Mapping

26 Fernando Koch (UU), An Agent-Based Model for the Development of Intelligent Mobile
Services

27 Christian Glahn (OU), Contextual Support of social Engagement and Reflection on the Web

28 Sander Evers (UT), Sensor Data Management with Probabilistic Models

29 Stanislav Pokraev (UT), Model-Driven Semantic Integration of Service-Oriented Applica-
tions

30 Marcin Zukowski (CWI), Balancing vectorized query execution with bandwidth-optimized
storage

31 Sofiya Katrenko (UvA), A Closer Look at Learning Relations from Text

32 Rik Farenhorst (VU)and Remco de Boer (VU), Architectural Knowledge Management: Sup-
porting Architects and Auditors

33 Khiet Truong (UT), How Does Real Affect Affect Affect Recognition In Speech?

34 Inge van de Weerd (UU), Advancing in Software Product Management: An Incremental
Method Engineering Approach

35 Wouter Koelewijn (UL), Privacy en Politiegegevens; Over geautomatiseerde normatieve
informatie-uitwisseling

36 Marco Kalz (OUN), Placement Support for Learners in Learning Networks

37 Hendrik Drachsler (OUN), Navigation Support for Learners in Informal Learning Networks

38 Riina Vuorikari (OU), Tags and self-organisation: a metadata ecology for learning resources
in a multilingual context

39 Christian Stahl (TUE, Humboldt-Universitaet zu Berlin), Service Substitution - A Behavioral

Approach Based on Petri Nets

SIKS DISSERTATION SERIES 175

40 Stephan Raaijmakers (UvT), Multinomial Language Learning: Investigations into the Ge-
ometry of Language

41 Igor Berezhnyy (UvT), Digital Analysis of Paintings

42 Toine Bogers (UvT), Recommender Systems for Social Bookmarking

43 Virginia Nunes Leal Franqueira (UT), Finding Multi-step Attacks in Computer Networks
using Heuristic Search and Mobile Ambients

44 Roberto Santana Tapia (UT), Assessing Business-IT Alignment in Networked Organizations

45 Jilles Vreeken (UU), Making Pattern Mining Useful

46 Loredana Afanasiev (UvA), Querying XML: Benchmarks and Recursion

201001 Matthijs van Leeuwen (UU), Patterns that Matter

02 Ingo Wassink (UT), Work flows in Life Science

03 Joost Geurts (CWI), A Document Engineering Model and Processing Framework for Multi-
media documents

04 Olga Kulyk (UT), Do You Know What I Know? Situational Awareness of Co-located Teams
in Multidisplay Environments

05 Claudia Hauff (UT), Predicting the Effectiveness of Queries and Retrieval Systems

06 Sander Bakkes (UvT), Rapid Adaptation of Video Game Al

07 Wim Fikkert (UT), Gesture interaction at a Distance

08 Krzysztof Siewicz (UL), Towards an Improved Regulatory Framework of Free Software. Pro-
tecting user freedoms in a world of software communities and eGovernments

09 Hugo Kielman (UL), A Politiele gegevensverwerking en Privacy, Naar een effectieve waar-
borging

10 Rebecca Ong (UL), Mobile Communication and Protection of Children

11 Adriaan Ter Mors (TUD), The world according to MARP: Multi-Agent Route Planning

12 Susan van den Braak (UU), Sensemaking software for crime analysis

13 Gianluigi Folino (RUN), High Performance Data Mining using Bio-inspired techniques

14 Sander van Splunter (VU), Automated Web Service Reconfiguration

15 Lianne Bodenstaff (UT), Managing Dependency Relations in Inter-Organizational Models

16 Sicco Verwer (TUD), Efficient Identification of Timed Automata, theory and practice

17 Spyros Kotoulas (VU), Scalable Discovery of Networked Resources: Algorithms, Infrastruc-
ture, Applications

18 Charlotte Gerritsen (VU), Caught in the Act: Investigating Crime by Agent-Based Simula-
tion

19 Henriette Cramer (UvA), People’s Responses to Autonomous and Adaptive Systems

20 Ivo Swartjes (UT), Whose Story Is It Anyway? How Improv Informs Agency and Authorship
of Emergent Narrative

21 Harold van Heerde (UT), Privacy-aware data management by means of data degradation

22 Michiel Hildebrand (CWI), End-user Support for Access to Heterogeneous Linked Data

23 Bas Steunebrink (UU), The Logical Structure of Emotions

24 Dmytro Tykhonov, Designing Generic and Efficient Negotiation Strategies

25 Zulfigar Ali Memon (VU), Modelling Human-Awareness for Ambient Agents: A Human
Mindreading Perspective

26 Ying Zhang (CWI), XRPC: Efficient Distributed Query Processing on Heterogeneous XQuery
Engines

27 Marten Voulon (UL), Automatisch contracteren

28 Arne Koopman (UU), Characteristic Relational Patterns

29 Stratos Idreos(CWI), Database Cracking: Towards Auto-tuning Database Kernels

30 Marieke van Erp (UvT), Accessing Natural History - Discoveries in data cleaning, structur-
ing, and retrieval

31 Victor de Boer (UvA), Ontology Enrichment from Heterogeneous Sources on the Web

32 Marcel Hiel (UvT), An Adaptive Service Oriented Architecture: Automatically solving In-
teroperability Problems

33 Robin Aly (UT), Modeling Representation Uncertainty in Concept-Based Multimedia Re-
trieval

34 Teduh Dirgahayu (UT), Interaction Design in Service Compositions

35 Dolf Trieschnigg (UT), Proof of Concept: Concept-based Biomedical Information Retrieval

36 Jose Janssen (OU), Paving the Way for Lifelong Learning; Facilitating competence develop-

ment through a learning path specification

176

SIKS DISSERTATION SERIES

37 Niels Lohmann (TUE), Correctness of services and their composition

38 Dirk Fahland (TUE), From Scenarios to components

39 Ghazanfar Farooq Siddiqui (VU), Integrative modeling of emotions in virtual agents

40 Mark van Assem (VU), Converting and Integrating Vocabularies for the Semantic Web

41 Guillaume Chaslot (UM), Monte-Carlo Tree Search

42 Sybren de Kinderen (VU), Needs-driven service bundling in a multi-supplier setting - the
computational e3-service approach

43 Peter van Kranenburg (UU), A Computational Approach to Content-Based Retrieval of Folk
Song Melodies

44 Pieter Bellekens (TUE), An Approach towards Context-sensitive and User-adapted Access
to Heterogeneous Data Sources, Illustrated in the Television Domain

45 Vasilios Andrikopoulos (UvT), A theory and model for the evolution of software services

46 Vincent Pijpers (VU), e3alignment: Exploring Inter-Organizational Business-ICT Alignment

47 Chen Li (UT), Mining Process Model Variants: Challenges, Techniques, Examples

48 Withdrawn

49 Jahn-Takeshi Saito (UM), Solving difficult game positions

50 Bouke Huurnink (UvA), Search in Audiovisual Broadcast Archives

51 Alia Khairia Amin (CWI), Understanding and supporting information seeking tasks in mul-
tiple sources

52 Peter-Paul van Maanen (VU), Adaptive Support for Human-Computer Teams: Exploring
the Use of Cognitive Models of Trust and Attention

53 Edgar Meij (UvA), Combining Concepts and Language Models for Information Access

201101 Botond Cseke (RUN), Variational Algorithms for Bayesian Inference in Latent Gaussian

Models

02 Nick Tinnemeier(UU), Organizing Agent Organizations. Syntax and Operational Semantics
of an Organization-Oriented Programming Language

03 Jan Martijn van der Werf (TUE), Compositional Design and Verification of Component-
Based Information Systems

04 Hado van Hasselt (UU), Insights in Reinforcement Learning; Formal analysis and empirical
evaluation of temporal-difference learning algorithms

05 Base van der Raadt (VU), Enterprise Architecture Coming of Age - Increasing the Perfor-
mance of an Emerging Discipline

06 Yiwen Wang (TUE), Semantically-Enhanced Recommendations in Cultural Heritage

07 Yujia Cao (UT), Multimodal Information Presentation for High Load Human Computer
Interaction

08 Nieske Vergunst (UU), BDI-based Generation of Robust Task-Oriented Dialogues

09 Tim de Jong (OU), Contextualised Mobile Media for Learning

10 Bart Bogaert (UvT), Cloud Content Contention

11 Dhaval Vyas (UT), Designing for Awareness: An Experience-focused HCI Perspective

12 Carmen Bratosin (TUE), Grid Architecture for Distributed Process Mining

13 Xiaoyu Mao (UvT), Airport under Control. Multiagent Scheduling for Airport Ground Han-
dling

14 Milan Lovric (EUR), Behavioral Finance and Agent-Based Artificial Markets

15 Marijn Koolen (UvA), The Meaning of Structure: the Value of Link Evidence for Information
Retrieval

16 Maarten Schadd (UM), Selective Search in Games of Different Complexity

17 Jiyin He (UvA), Exploring Topic Structure: Coherence, Diversity and Relatedness

18 Mark Ponsen (UM), Strategic Decision-Making in complex games

19 Ellen Rusman (OU), The Mind ’ s Eye on Personal Profiles

20 Qing Gu (VU), Guiding service-oriented software engineering - A view-based approach

21 Linda Terlouw (TUD), Modularization and Specification of Service-Oriented Systems

22 Junte Zhang (UvA), System Evaluation of Archival Description and Access

23 Wouter Weerkamp (UvA), Finding People and their Utterances in Social Media

24 Herwin van Welbergen (UT), Behavior Generation for Interpersonal Coordination with Vir-
tual Humans On Specifying, Scheduling and Realizing Multimodal Virtual Human Behavior

25 Syed Wagar ul Qounain Jaffry (VU), Analysis and Validation of Models for Trust Dynamics

26 Matthijs Aart Pontier (VU), Virtual Agents for Human Communication - Emotion Regula-

tion and Involvement-Distance Trade-Offs in Embodied Conversational Agents and Robots

SIKS DISSERTATION SERIES 177

27 Aniel Bhulai (VU), Dynamic website optimization through autonomous management of de-
sign patterns

28 Rianne Kaptein(UvA), Effective Focused Retrieval by Exploiting Query Context and Docu-
ment Structure

29 Faisal Kamiran (TUE), Discrimination-aware Classification

30 Egon van den Broek (UT), Affective Signal Processing (ASP): Unraveling the mystery of
emotions

31 Ludo Waltman (EUR), Computational and Game-Theoretic Approaches for Modeling
Bounded Rationality

32 Nees-Jan van Eck (EUR), Methodological Advances in Bibliometric Mapping of Science

33 Tom van der Weide (UU), Arguing to Motivate Decisions

34 Paolo Turrini (UU), Strategic Reasoning in Interdependence: Logical and Game-theoretical
Investigations

35 Maaike Harbers (UU), Explaining Agent Behavior in Virtual Training

36 Erik van der Spek (UU), Experiments in serious game design: a cognitive approach

37 Adriana Burlutiu (RUN), Machine Learning for Pairwise Data, Applications for Preference
Learning and Supervised Network Inference

38 Nyree Lemmens (UM), Bee-inspired Distributed Optimization

39 Joost Westra (UU), Organizing Adaptation using Agents in Serious Games

40 Viktor Clerc (VU), Architectural Knowledge Management in Global Software Development

41 Luan Ibraimi (UT), Cryptographically Enforced Distributed Data Access Control

42 Michal Sindlar (UU), Explaining Behavior through Mental State Attribution

43 Henk van der Schuur (UU), Process Improvement through Software Operation Knowledge

44 Boris Reuderink (UT), Robust Brain-Computer Interfaces

45 Herman Stehouwer (UvT), Statistical Language Models for Alternative Sequence Selection

46 Beibei Hu (TUD), Towards Contextualized Information Delivery: A Rule-based Architecture
for the Domain of Mobile Police Work

47 Azizi Bin Ab Aziz(VU), Exploring Computational Models for Intelligent Support of Persons
with Depression

48 Mark Ter Maat (UT), Response Selection and Turn-taking for a Sensitive Artificial Listening
Agent

49 Andreea Niculescu (UT), Conversational interfaces for task-oriented spoken dialogues: design
aspects influencing interaction quality

201201 Terry Kakeeto (UvT), Relationship Marketing for SMEs in Uganda

02 Muhammad Umair(VU), Adaptivity, emotion, and Rationality in Human and Ambient Agent
Models

03 Adam Vanya (VU), Supporting Architecture Evolution by Mining Software Repositories

04 Jurriaan Souer (UU), Development of Content Management System-based Web Applications

05 Marijn Plomp (UU), Maturing Interorganisational Information Systems

06 Wolfgang Reinhardt (OU), Awareness Support for Knowledge Workers in Research Networks

07 Rianne van Lambalgen (VU), When the Going Gets Tough: Exploring Agent-based Models
of Human Performance under Demanding Conditions

08 Gerben de Vries (UvA), Kernel Methods for Vessel Trajectories

09 Ricardo Neisse (UT), Trust and Privacy Management Support for Context-Aware Service
Platforms

10 David Smits (TUE), Towards a Generic Distributed Adaptive Hypermedia Environment

11 J.C.B. Rantham Prabhakara (TUE), Process Mining in the Large: Preprocessing, Discovery,
and Diagnostics

12 Kees van der Sluijs (TUE), Model Driven Design and Data Integration in Semantic Web
Information Systems

13 Suleman Shahid (UvT), Fun and Face: Exploring non-verbal expressions of emotion during
playful interactions

14 Evgeny Knutov(TUE), Generic Adaptation Framework for Unifying Adaptive Web-based
Systems

15 Natalie van der Wal (VU), Social Agents. Agent-Based Modelling of Integrated Internal and
Social Dynamics of Cognitive and Affective Processes

16 Fiemke Both (VU), Helping people by understanding them - Ambient Agents supporting

task execution and depression treatment

178

SIKS DISSERTATION SERIES

17 Amal Elgammal (UvT), Towards a Comprehensive Framework for Business Process Compli-
ance

18 Eltjo Poort (VU), Improving Solution Architecting Practices

19 Helen Schonenberg (TUE), What’s Next? Operational Support for Business Process Execu-
tion

20 Ali Bahramisharif (RUN), Covert Visual Spatial Attention, a Robust Paradigm for Brain-
Computer Interfacing

21 Roberto Cornacchia (TUD), Querying Sparse Matrices for Information Retrieval

22 Thijs Vis (UvT), Intelligence, politie en veiligheidsdienst: verenigbare grootheden?

23 Christian Muehl (UT), Toward Affective Brain-Computer Interfaces: Exploring the Neuro-
physiology of Affect during Human Media Interaction

24 Laurens van der Werff (UT), Evaluation of Noisy Transcripts for Spoken Document Retrieval

25 Silja Eckartz (UT), Managing the Business Case Development in Inter-Organizational IT
Projects: A Methodology and its Application

26 Emile de Maat (UvA), Making Sense of Legal Text

27 Hayrettin Gurkok (UT), Mind the Sheep! User Experience Evaluation & Brain-Computer
Interface Games

28 Nancy Pascall (UvT), Engendering Technology Empowering Women

29 Almer Tigelaar (UT), Peer-to-Peer Information Retrieval

30 Alina Pommeranz (TUD), Designing Human-Centered Systems for Reflective Decision Mak-
ing

31 Emily Bagarukayo (RUN), A Learning by Construction Approach for Higher Order Cognitive
Skills Improvement, Building Capacity and Infrastructure

32 Wietske Visser (TUD), Qualitative multi-criteria preference representation and reasoning

33 Rory Sie (OUN), Coalitions in Cooperation Networks (COCOON)

34 Pavol Jancura (RUN), Evolutionary analysis in PPI networks and applications

35 Evert Haasdijk (VU), Never Too Old To Learn - On-line Evolution of Controllers in Swarm-
and Modular Robotics

36 Denis Ssebugwawo (RUN), Analysis and Evaluation of Collaborative Modeling Processes

37 Agnes Nakakawa (RUN), A Collaboration Process for Enterprise Architecture Creation

38 Selmar Smit (VU), Parameter Tuning and Scientific Testing in Evolutionary Algorithms

39 Hassan Fatemi (UT), Risk-aware design of value and coordination networks

40 Agus Gunawan (UvT), Information Access for SMEs in Indonesia

41 Sebastian Kelle (OU), Game Design Patterns for Learning

42 Dominique Verpoorten (OU), Reflection Amplifiers in self-regulated Learning

43 Withdrawn

44 Anna Tordai (VU), On Combining Alignment Techniques

45 Benedikt Kratz (UvT), A Model and Language for Business-aware Transactions

46 Simon Carter (UvA), Exploration and Exploitation of Multilingual Data for Statistical Ma-
chine Translation

47 Manos Tsagkias (UvA), Mining Social Media: Tracking Content and Predicting Behavior

48 Jorn Bakker (TUE), Handling Abrupt Changes in Evolving Time-series Data

49 Michael Kaisers (UM), Learning against Learning - Evolutionary dynamics of reinforcement
learning algorithms in strategic interactions

50 Steven van Kervel (TUD), Ontologogy driven Enterprise Information Systems Engineering

51 Jeroen de Jong (TUD), Heuristics in Dynamic Sceduling; a practical framework with a case
study in elevator dispatching

201301 Viorel Milea (EUR), News Analytics for Financial Decision Support

02 Erietta Liarou (CWI), MonetDB/DataCell: Leveraging the Column-store Database Technol-
ogy for Efficient and Scalable Stream Processing

03 Szymon Klarman (VU), Reasoning with Contexts in Description Logics

04 Chetan Yadati(TUD), Coordinating autonomous planning and scheduling

05 Dulce Pumareja (UT), Groupware Requirements Evolutions Patterns

06 Romulo Goncalves(CWI), The Data Cyclotron: Juggling Data and Queries for a Data Ware-
house Audience

07 Giel van Lankveld (UvT), Quantifying Individual Player Differences

08 Robbert-Jan Merk(VU), Making enemies: cognitive modeling for opponent agents in fighter

pilot simulators

SIKS DISSERTATION SERIES 179

09 Fabio Gori (RUN), Metagenomic Data Analysis: Computational Methods and Applications

10 Jeewanie Jayasinghe Arachchige(UvT), A Unified Modeling Framework for Service Design

11 Evangelos Pournaras(TUD), Multi-level Reconfigurable Self-organization in Overlay Services

12 Marian Razavian(VU), Knowledge-driven Migration to Services

13 Mohammad Safiri(UT), Service Tailoring: User-centric creation of integrated IT-based home-
care services to support independent living of elderly

14 Jafar Tanha (UvA), Ensemble Approaches to Semi-Supervised Learning Learning

15 Daniel Hennes (UM), Multiagent Learning - Dynamic Games and Applications

16 Eric Kok (UU), Exploring the practical benefits of argumentation in multi-agent deliberation

17 Koen Kok (VU), The PowerMatcher: Smart Coordination for the Smart Electricity Grid

18 Jeroen Janssens (UvT), Outlier Selection and One-Class Classification

19 Renze Steenhuizen (TUD), Coordinated Multi-Agent Planning and Scheduling

20 Katja Hofmann (UvA), Fast and Reliable Online Learning to Rank for Information Retrieval

21 Sander Wubben (UvT), Text-to-text generation by monolingual machine translation

22 Tom Claassen (RUN), Causal Discovery and Logic

23 Patricio de Alencar Silva(UvT), Value Activity Monitoring

24 Haitham Bou Ammar (UM), Automated Transfer in Reinforcement Learning

25 Agnieszka Anna Latoszek-Berendsen (UM), Intention-based Decision Support. A new way
of representing and implementing clinical guidelines in a Decision Support System

26 Alireza Zarghami (UT), Architectural Support for Dynamic Homecare Service Provisioning

27 Mohammad Huq (UT), Inference-based Framework Managing Data Provenance

28 Frans van der Sluis (UT), When Complexity becomes Interesting: An Inquiry into the In-
formation eXperience

29 Iwan de Kok (UT), Listening Heads

30 Joyce Nakatumba (TUE), Resource-Aware Business Process Management: Analysis and Sup-
port

31 Dinh Khoa Nguyen (UvT), Blueprint Model and Language for Engineering Cloud Applica-
tions

32 Kamakshi Rajagopal (OUN), Networking For Learning; The role of Networking in a Lifelong
Learner’s Professional Development

33 Qi Gao (TUD), User Modeling and Personalization in the Microblogging Sphere

34 Kien Tjin-Kam-Jet (UT), Distributed Deep Web Search

35 Abdallah El Ali (UvA), Minimal Mobile Human Computer Interaction Promotor: Prof. dr.
L. Hardman (CWI/UVA)

36 Than Lam Hoang (TUE), Pattern Mining in Data Streams

37 Dirk Bérner (OUN), Ambient Learning Displays

38 Eelco den Heijer (VU), Autonomous Evolutionary Art

39 Joop de Jong (TUD), A Method for Enterprise Ontology based Design of Enterprise Infor-
mation Systems

40 Pim Nijssen (UM), Monte-Carlo Tree Search for Multi-Player Games

41 Jochem Liem (UvA), Supporting the Conceptual Modelling of Dynamic Systems: A Knowl-
edge Engineering Perspective on Qualitative Reasoning

42 Léon Planken (TUD), Algorithms for Simple Temporal Reasoning

43 Marc Bron (UvA), Exploration and Contextualization through Interaction and Concepts

2014 01 Nicola Barile (UU), Studies in Learning Monotonic Models from Data

Curriculum Vitae

Nicola Barile was born in Bari, Italy on 21st July 1971. He earned his mas-
ter’s degree in Computer Science at the University of Bari in Italy in 2006
by defending his thesis titled ‘Transductive Classification: A Relational
Approach’ under the supervision of Prof. Donato Malerba. Upon com-
pleting his undergraduate studies, he participated in a EU-funded project
on Web Usage Mining carried out at a Web consultancy based in Bari,
Italy under the supervision of Prof. Malerba. In 2008 he started his PhD
in Data Mining at Utrecht University within the AMOC (Algorithms for
Nonparametric Monotonic Classification) project under the supervision of
Prof. Arno Siebes and of Dr. Ad Feelders. After completing his doctoral
work and while finalising his thesis, he worked as a quantitative developer
at a software house based in Amsterdam, the Netherlands. Since the end of
2013, namely a few months before defending his PhD, he has been working
at ING in Amsterdam, the Netherlands as a data scientist specialising in
Big Data.

