
ar
X

iv
:1

30
9.

58
79

v2
  [

co
nd

-m
at

.s
tr

-e
l]

  2
1 

M
ay

 2
01

4

Interaction Induced Quantum Valley Hall Effect in Graphene

E. C. Marino1, Leandro O. Nascimento1,2, Van Sérgio Alves1,3, and C. Morais Smith2
1Instituto de F́ısica, Universidade Federal do Rio de Janeiro,

C.P.68528, Rio de Janeiro RJ, 21941-972, Brazil
2Institute for Theoretical Physics, Centre for Extreme Matter and Emergent Phenomena,

Utrecht University, Leuvenlaan 4, 3584CE Utrecht, the Netherlands
3Faculdade de F́ısica, Universidade Federal do Pará,
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We use Pseudo Quantum Electrodynamics (PQED) in order to describe the full electromagnetic
interaction of the p-electrons of graphene in a consistent 2D formulation. We first consider the effect
of this interaction in the vacuum polarization tensor or, equivalently, in the current correlator. This
allows us to obtain the dc conductivity after a smooth zero-frequency limit is taken in Kubo’s
formula.Thereby, we obtain the usual expression for the minimal conductivity plus corrections due
to the interaction that bring it closer to the experimental value. We then predict the onset of an
interaction-driven spontaneous Quantum Valley Hall effect (QVHE) below a critical temperature
of the order of 0.05 K. The transverse (Hall) valley conductivity is evaluated exactly and shown to
coincide with the one in the usual Quantum Hall effect. Finally, by considering the effects of PQED,
we show that the electron self-energy is such that a set of P- and T- symmetric gapped electron
energy eigenstates are dynamically generated, in association with the QVHE.

PACS numbers: 11.15.-q, 11.30.Rd, 73.22.Pr

Introduction.– The experimental realization of
graphene has opened the fascinating possibility of
observing in a condensed matter system a number
of interesting effects previously considered to occur
exclusively in relativistic particle physics. The Klein
paradox [1] and the Zitterbewegung [2] are well-known
examples. Graphene is also the first concrete realization
of the Dirac sea, the concept which has led Dirac to
predict the existence of antimatter. Indeed, Schwinger’s
effect of pair creation out of the vacuum by an electric
field is expected to occur in this material, thus providing
another beautiful connection between condensed matter
and particle physics [3].

Graphene exhibits quite a few unconventional trans-
port phenomena. These include an anomalous integer
quantum Hall effect (QHE) [4] and a puzzling finite
(“minimal”) dc conductivity at half-filling [5], even in
the absence of any dissipation and with a zero density of
states. The theoretical determination of the minimal dc
conductivity and its dependence on interactions is still a
challenge [6], in part due to the ambiguities associated to
the ω → 0 limit in Kubo’s formula. Attempts to include
the effect of interactions in the calculation of the optical
conductivity were recently made [7], however this effect
disappears in the limit ω → 0 and therefore no correc-
tions to σdc due to the interactions can be obtained.

Nevertheless, optical conductivity measurements [5]
yielded results that in the dc limit are in agreement with
earlier theoretical calculations in the approximation of
non-interacting electrons, namely σdc = (π/2)e2/h [8].
Analogously, the integer QHE [4] has been understood
in terms of relativistic Landau levels occupied by non-
interacting electrons, similarly to the results for GaAs

[9, 10].

The unexpected validity of the single-particle descrip-
tion has risen the issue of how relevant are the electronic
interactions in graphene, leading to a vivid debate in the
community. Nonetheless, the recent measurement [11] of
the renormalization of the Fermi velocity [12] was an in-
dication that interaction should be important. The direct
measurement of the dc conductivity [13], which yielded a
result that is in disagreement with the theoretical calcu-
lation in the absence of interactions, provided additional
evidence for the relevance of these. The experimental
observation of the fractional QHE in ultra-clean samples
subject to a perpendicular magnetic field has closed the
debate, undeniably demonstrating that the electronic in-
teractions are indeed important, at least for a certain
energy (temperature) scale [14–17].

Another intriguing transport property that has been
investigated in graphene is the possibility of observing
a quantized transverse (Hall) conductivity under uncon-
ventional circumstances. First, Haldane has shown that
the sufficient condition for the existence of the integer
QHE is a broken time-reversal symmetry (TRS) and not
a net magnetic field, as was previously supposed [18].
Later, even more unexpected results emerged, such as
the experimental observation of the integer QHE at room
temperature [19] and the proposal for the existence of a
quantum spin Hall effect in the presence of a sizable spin-
orbit coupling in a system which preserves time-reversal
symmetry (TRS) [20].

Most of the previous approaches, however, rely on a
single-particle description and the role of interactions,
as well as the proper theoretical framework to include
them, has been often neglected or only partially included.
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From first principles, the relevant electronic interaction in
graphene is the full electromagnetic interaction described
by the minimal coupling of the electronic current to the
U(1) electromagnetic gauge field. This, however, is not
easily incorporated in the model because the electrons in
graphene are confined to a plane and therefore require a
2D description, whereas the electromagnetic field is 3D.
Should we use Maxwell electrodynamics in 2D for de-
scribing the interaction of the electrons in graphene, we
would get a wrong result (for instance the electrostatic
potential would be − ln r instead of the correct 1/r). The
solution for this problem consists in the use of a full 2D
U(1) gauge field theory, which describes, within the 2D
framework, the full physics contained in the 3D Maxwell
theory. Such 2D theory was derived in [4] in the static
limit. Subsequently a full dynamical derivation was pro-
vided [22] and the theory was called Pseudo Quantum
Electrodynamics (PQED) (in part because it envolves
the so-called pseudo-differential operators) [22–24] .

In this letter, we employ PQED in order to describe
the electronic interactions in graphene and explore some
of the consequences of these. We firstly determine the
corrections to the minimal dc-conductivity produced by
such interactions, thus obtaining a value at T = 0, which
is the closest to the measured experimental one [13].
We then evaluate the effects of PQED in the valley dc-
conductivity and show that, below a temperature Tc, it
exhibits a nonzero transverse component, which is quan-
tized in the same way as in the usual QHE. This effect
is dynamically generated in graphene, when the full elec-
tromagnetic interaction is completely taken into account.
In this case, we show that the individual valley contribu-
tion to the conductivity contains a P,T-violating trans-
verse (Hall) component, which has opposite sign for each
valley and consequently leads to a Quantum Valley Hall
Effect (QVHE), rather than the usual QHE. Finally, we
investigate the Schwinger-Dyson equation for the elec-
tron self-energy in PQED and show that the latter satis-
fies a differential equation, which has solutions that shift
the poles of the electron propagator to gapped energy
states, when the interaction coupling is larger than a
certain critical value. The temperature scale is set by
the gap: thermal activation will destroy the plateaus for
temperatures larger than the gap.

All the phenomena described here only occur within
an SU(2) description of graphene, which is valid when
there is no backscattering connecting the different val-
leys. We also show that the use of PQED, contrary to
other attempts to describe the electronic interactions in
graphene, yields a current correlator that renders Kubo’s
formula free from any ambiguities. In the last section, we
show that our results are independent of the fact that the
Fermi velocity is different from the speed of light.

The Model. – The p-electrons of the carbon atoms
in the honeycomb lattice of graphene are usually de-
scribed as 4-component massless Dirac fermions, each

component corresponding to the two sublattices (A and
B) and the two inequivalent valleys (K and K’). If we
neglect backscattering between the valleys, however, an
equivalent description would consist of two massless 2-
component Dirac fermion fields. Backscattering involves
momenta of order ~/a, hence this process must be trig-
gered by lattice displacements of order a, which in the
quantum version are phonons. In any description that
does not consider phonon effects, actually one should,
for consistency, neglect backscattering. We assume that
these Dirac electrons will interact through the electro-
magnetic interaction, which in 2D is described by PQED
[22]. The corresponding Lagrangian reads

L =
1

4
Fµν

[

4√
−�

]

Fµν + ψ̄a (i∂/+ e γµAµ) ψa, (1)

where ψ is a two-component Dirac field, ψ̄ = ψ†γ0 is its
adjoint, Fµν is the usual field intensity tensor of the U(1)
gauge field Aµ, which intermediates the electromagnetic
interaction in 2D (pseudo electromagnetic field), γµ are
rank-2 Dirac matrices, and a = 1, ..., Nf is a flavor index,
specifying the spin component and the valley to which
the electron belongs. An SU(4) version of this model has
been recently used to study dynamical gap generation
and chiral symmetry breaking in graphene [25].
A few remarks are in order here: i) the natural velocity

appearing in the gauge field sector is that of light, c,
whereas the one occurring in the electronic sector is the
Fermi velocity vF, hence Lorentz invariance is broken.
For the time being we shall take vF = c = 1. Later on we
shall return to the physical value of the Fermi velocity; ii)
the gauge field propagator in momentum space contains
the speed of light c rather than vF, hence there will be no
retardation effects due to the fact that vF ∼ c/300; iii)
the two valleys (K and K’) are related by TRS. In spite
of the fact that we are using 2-component Dirac spinors,
however, we do not break TRS ab initio because we are
summing over the two species (as we may infer from the
physical value of Nf).
The current-current correlation function.– We are go-

ing to determine the dc conductivity of graphene by using
the Kubo formula, which requires the evaluation of the ir-
reducible two-points current correlation function 〈jµjν〉.
This is most conveniently obtained as a second functional
derivative of the generating functional of 1PI Green func-
tion Γ[Aµc ],

〈jµjν〉1PI =
1

e2
δ2

δAµc δAνc
Γ[Aµc ]

∣

∣

∣

Aµ
c=0

= Πµν , (2)

where Πµν is the full vacuum polarization tensor.
For two-component fermions this tensor was carefully

calculated in Ref. [26]. The one-loop result for a single
massless fermion in Euclidean space is

Π(1)
µν (p) = −

√

p2

16
Pµν +

1

2π

(

n+
1

2

)

ǫµανp
α, (3)
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where n is an integer (see Supplemental Material). Even
though this result was derived for QED3, it also holds
for PQED because it only involves fermion internal lines.
Notice the occurrence of a P,T-breaking term, which is
topological and according to the Coleman-Hill theorem
[27] has no higher order corrections.

The two-loops correction is exclusive of PQED and was
calculated in Ref. [8] for a single massless fermion, yield-
ing

Π(2)
µν (p) = −

√

p2

16
Cα αg Pµν , (4)

where Cα = (92−9π2)/18π ≈ 0.056 and αg ≈ 300/137 =
2.189. It follows that Cα αg < 1, hence the perturbation
expansion is justified.

The dc conductivity σij .– The dc conductivity can be
derived, within the linear response regime, from Kubo’s
formula, which for real time is:

σik = lim
ω→0,p→0

i 〈jijk〉ret.
ω

= σxxδ
ik + σxyǫ

ik0. (5)

However, we must sum over the spin components and
over the valleys K and K’. The sum over spins just con-
tributes a factor 2 to Nf . Since the P,T-symmetries
are preserved, the contributions from the two valleys are
clearly identical and the conductivity reads

σik = lim
ω→0,p→0

{

i〈jijk〉
ω

+
i〈jijk〉T

ω

}

, (6)

where 〈j j〉T is the time-reversed correlator and, before
summing on the valleys we are using Nf = 2 (see the
Supplemental Material for more details). Using Eq.(3)
and Eq.(4) and taking the limits in Eq.(6) we get

σxx =

(

π

2

e2

h

)[

1 +

(

92− 9π2

18π

)

αg +O(e4)

]

(7)

and

σxy = 0. (8)

Eq. (7) displays the dc conductivity, which has the
usual minimal value plus corrections due to the interac-
tion. We emphasize that the corrections above are to the
dc conductivity, rather than to the optical conductivity
σ(ω) usually found in the literature [29]. To the best of
our knowledge, the value we find for the dc conductivity,
namely σxx = 1.76 e2/h is the closest to the experimen-
tal result extrapolated to zero temperature, σxx = 2.16
e2/h [13].

Quantum Valley Hall Effect. – The average valley cur-
rent is defined by

〈J iV 〉 = 〈0|jiK |0〉 − 〈0|jiK′ |0〉. (9)

We can therefore define a dc “valley conductivity”,
through

σikV = lim
ω→0,p→0

{

i〈jijk〉
ω

− i〈jijk〉T
ω

}

, (10)

where 〈j j〉T is the time-reversed correlator and the sum
over spins is assumed to have been done. One immedi-
ately concludes that, for T < Tc, the valley conductivity,
is given by (see Supplemental Material)

σxyV = 4

(

n+
1

2

)

e2

h
, (11)

for n = integer. The longitudinal component, conversely,
vanishes:

σxxV = 0. (12)

The above result is exact, as a consequence of the
Coleman-Hill theorem. The existence of a transverse val-
ley conductivity characterizes the occurrence of a QVHE.
It is caused, ultimately, by the presence of the anomalous
P,T violating term appearing in the vacuum polarization
tensor or, equivalently, in the current correlator.
The valley Hall effect has been earlier predicted to oc-

cur in graphene systems subject to a staggered sublat-
tice potential that breaks inversion symmetry [30, 31], or
to strained graphene, where according to recent exper-
iments pseudomagnetic fields oppositely oriented in the
valleys can be as large as 300 T [32]. In addition, a frac-
tional valley Hall effect was proposed to arise in artificial
graphene systems, by fine tuning the short-range part of
interactions [33]. Notice that here no symmetry is bro-
ken a priori and no fine-tuning of model parameters are
required to generate the QVHE. A similar TRS breaking
was recently proposed to occur for bilayer graphene in
the presence of static Coulomb interactions, when fluc-
tuations are taken into account [34].
The anomalous terms found here are related to electron

masses that are dynamically generated. These, however,
appear in pairs of opposite signs and, for an even number
of flavors, cancel when summed, according to the Vafa-
Witten theorem [35]. There is, consequently no overall P,
T violation and for this reason the QHE does not occur.
The existence of individually violating terms, neverthe-
less, is sufficient to produce a QVHE. This is the central
result of this work.
Dynamically generated discrete energy states and Tc.–

Recently, it has been shown that the model described by
Eq. (1) dynamically generates a gap in the SU(4) case
due to a breaking of the chiral symmetry [25]. The re-
sult is obtained by a non-perturbative solution of the
Schwinger-Dyson equation [36]

S−1
F (p) = S−1

0F (p)− Σ(p), (13)

where S0F and SF are, respectively, the free and inter-
acting electron propagators and Σ(p), the electron self-
energy calculated in PQED [25]. Here, we investigate
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the SU(2) case and show that an infinite sequence of dis-
crete energy eigenstates is dynamically generated. For
the two-component Dirac fields considered here, the as-
sociated gap generation breaks the parity and TRS sym-
metries instead of the chiral one. The generation of this
set of eigenstates, which according to Eq. (13) is a conse-
quence of the interactions, is therefore another manifes-
tation of the dynamical symmetry breaking found in the
vacuum polarization tensor, which has led to the spon-
taneous QHE for each valley below Tc.
By imposing the eigenenergy (ǫ) to satisfy

Σ(p = ǫ) = ǫ, (14)

we guarantee, according to Eq. (13), that they will be
zero-momentum poles of the complete electron propa-
gator, thus renormalizing the tight-binding eigenenergy
ǫ = |~k|. The energy levels are discrete and given by

ǫ(±)
n = ±Λ exp

{

−Zn
γ

}

, (15)

where

γ =
1

2

√

Nc
Nf

− 1, Nc =
4λ

π2(4 + λ
16 )

, (16)

Λ ∼ π/a is an ultraviolet cutoff, n = 0, 1, 2, ..., and Zn =
nπ + δn are solutions of the transcendental equation

exp

(

− 3

2γ
z

)

= cos z, (17)

such that

0 ≤ δn ≤ π

2
n = 0, 2, 4, ...

π

2
≤ δn ≤ π n = 1, 3, 5, ... (18)

Inversion of Eq. (16) allows us to determine a critical
interaction λc above which the phenomena described here
will occur.
For all n, δn → π/2 for n → ∞, whereas δn → 0

(n even) and δn → π (n odd) for γ → ∞ (an unphysi-
cal limit, in which Nf → 0, see Supplemental Material).
Since γ is small, Zn ≈ (2n+ 1)π/2.
Notice that γ is real forNf < Nc and all the ǫn collapse

to zero as Nf → Nc. Observe also that the sequence of
negative levels labeled by n = 0, 1, 2, ... have increasing
energies and accumulate at zero for n→ ∞, whereas the
positive levels labeled by n = 0, 1, 2, ... have decreasing
energies and accumulate at zero for n→ ∞, being there-
fore symmetric with respect to zero.
We finally remark that the existence of a one-to-one

mapping between the energy bands with the respective
gaps and the valley Hall conductivity plateaus, which
count the number of edge states, is simply a manifes-
tation of the bulk-boundary correspondence, known to
apply for topological insulators.

We may now estimate the critical temperature Tc for
the observation of the effect we found. This must corre-
spond to the thermal activation energy, which is of the or-

der of the maximal gap ∆∞ = ǫ
(+)
0 −ǫ∞ = ǫ∞−ǫ(−)

0 (this

is of the same order as the first gap ∆1 = |ǫ(±)
0 |−|ǫ(±)

1 | ≈
∆∞, especially for small γ).
Supposing that a fraction 1− x of the electrons in the

ground state are promoted to higher levels by thermal
activation, we would have (see Supplemental Material)

Tc ≃
Λ

kBx
exp

[

− π

2γ

]

, (19)

where we used Eq. (15) and the fact that δ0 ≃ π/2. Ob-
serve that Tc → 0 as Nf → Nc.
In Fig.1, we plot Tc as a function of the coupling α for

Nf = 4 and x = 0.01. We estimate the upper tempera-
ture threshold for observation of the spontaneous QVHE
in suspended graphene in the vacuum (αg ≈ 2.189) to
be of the order of 0.05 K. Note that we have used the
physical value of the Fermi velocity in the expression of
the fine-structure constant of graphene to plot Fig. 1.

FIG. 1. (Color online) Critical temperature Tc as a function
of the coupling α for Nf = 4, x = 0.01 and Λ ∼ ~vF/a.

Fermi velocity.– Let us discuss now the consequences of
the fact that the Fermi velocity is different from c. For
describing this effect, one must make the replacements
γi → γivF in the Dirac kinetic term. Because of the linear
dependence of the Dirac Lagrangian on p = (p0,p), it
follows that all dependence on vF will appear in the form
vFp. In an analogous way, the current will change as
jµ = (j0, ji) → jµ = (j0, vFji) and the current correlation
function we used in Eq. (5) is actually v2F〈jj〉.
The whole dependence of the conductivity on vF comes

through the insertion of the current correlator in the
Kubo formula, after the corresponding limits are taken.
The current correlator dependence on the Fermi veloc-
ity, on its turn, comes through the vacuum polarization
tensor, as we may infer from Eqs. (2). Now, the dif-
ferent components of Πµν depend on vF only through
the combination vFp. When taking the limit p → 0 in
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Kubo’s formula, therefore, any dependence on vF shall
completely disappear (see Supplemental Material).

The net effect of reinstating the physical values of vF
and c in the self-energy can be shown to be a rescaling
of the rhs of Eq. (17) by a dimensionless factor f1(vF, c).
Yet, since γ is small the lhs is practically equal to zero and
consequently the zeros of the transcendental equation co-
incide with the ones of the cos z function irrespective of
the value of f1.

Summary.– Experimental and theoretical results sug-
gest that electronic interactions must be important in
graphene, at least for a certain temperature range. The
observation of the fractional QHE [14–16] is an exam-
ple of the former, whereas renormalization group calcula-
tions, which show an increase of the interaction strength
as we lower the temperature [12], is an example of the
latter. We have provided a complete and strictly 2D
description of the real electromagnetic interactions oc-
curring among the electrons in graphene. For the longi-
tudinal dc conductivity we obtain the “minimal” value
plus corrections due to the interaction, which make it
closer to the experimental result. In addition, the in-
teraction generates a dynamical TRS breaking through
one-loop vacuum fluctuations. This produces, below a
critical temperature Tc, a transverse (Hall) valley con-
ductivity quantized exactly as if there was an external
magnetic field in the QHE. Discrete states corresponding
to the Hall plateaus, and analogous to the Landau levels
in the usual QHE, appear as interaction induced renor-
malized poles of the fully corrected electron propagator
at zero momentum.

The quantization of our valley currents is emergent,
exact and universal, contrarily to the results obtained in
the literature for a QVHE driven by inversion symme-
try breaking (staggered chemical potential) [30, 31, 37].
Even though our calculations are made at T = 0, we
may estimate the critical temperature for observing the
effect by identifying Tc with the gap. This follows from
the fact that, when the temperature reaches this level,
most of the states would be populated by thermal acti-
vation and, thereby, the plateaus would be washed out
by thermal activation.

The electrons from different valleys are sensitive to the
circular polarization of light [37], thus producing a cir-
cular dichroism whenever they are spatially separated.
Scattering of unpolarized light at T ≈ 0.05 K, therefore,
should be an experimental way for observing this fasci-
nating effect.

This work was supported in part by CNPq (Brazil),
CAPES (Brazil), FAPERJ (Brazil), the Netherlands Or-
ganization for Scientific Research (NWO) and by the
Brazilian government project Science Without Borders.
We are grateful to G.’t Hooft, A. H. Castro Neto, M. Go-
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THE CURRENT-CURRENT CORRELATION

FUNCTION

The accurate description of the electromagnetic inter-
action among the electrons in graphene is given by the
following Lagrangian

L =
1

4
Fµν

[

4√
−�

]

Fµν + ψ̄a (i∂/+ e γµAµ) ψa. (20)

Here, ψ is a two-component Dirac field, ψ̄ = ψ†γ0 is its
adjoint, Fµν is the usual field intensity tensor of the U(1)
gauge field Aµ, which intermediates the electromagnetic
interaction in 2D (pseudo electromagnetic field), γµ are
rank-2 Dirac matrices, a = 1, ..., Nf is a flavor index,
specifying the spin component and the valley to which
the electron belongs. The coupling constant e2 = 4πα
is conveniently written in terms of α, the fine-structure
constant in natural units. The Lagrangian described by
Eq. (20) was derived within the pseudo-QED formalism,
which appropriately takes into account the fact that the
electromagnetic field is 3D, whereas the dynamics of elec-
trons in graphene is 2D [1–4].
We will determine the dc conductivity of graphene by

using the Kubo formula, which describes the linear re-
sponse to a static external eletric field. In real time, it is
given by

σik = lim
ω→0,p→0

i〈jijk〉
ω

. (21)

where the current correlation function is meant to contain
only one-particle-irreducible (1PI) diagrams [5].
The current correlator is most conveniently obtained

from the corresponding generating functional. Starting
from the generating functional of arbitrary correlators,

Z[J ] = N
∫

DAµDψ̄Dψ e−
∫
d3x(L+e jµJµ) , (22)

where J is a vector functional variable and N = NANψ

are constants chosen in such a way that Z[0] = 1 , we
have that the generator of connected correlation func-
tions is given by

W [J ] = − lnZ[J ] . (23)
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The generating functional of 1PI correlation functions
can then be obtained by the following Legendre transfor-
mation

Γ[Aµc ] =

∫

d3xJµ(x)A
µ
c (x)−W [J ] , (24)

where

Aµc (x) =
δW [J ]

δJµ(x)
. (25)

Thus, the current-current correlation function that is
needed for the Kubo formula can be obtained by taking
the second derivative of the generating functional,

〈jµjν〉 =
1

e2
δ2

δAµc δAνc
Γ[Ac]

∣

∣

∣

Ac=0
. (26)

It turns out, however, that the above expression is noth-
ing but the Aµ-field self-energy Πµν , also known as the
vacuum polarization tensor, which is given by

G−1
µν −G−1

0,µν = −e2Πµν , (27)

where G is the exact Aµ-field Euclidean propagator and
G0 is the free one,

G0,µν =
1

4
√

p2
Pµν . (28)

In this expression, Pµν = δµν − pµ pν/p
2, and p2 =

p23 + p2, where p3 is the third component of the energy-
momentum vector in the Euclidean space. We, therefore,
come to the conclusion that

〈jµjν〉1PI = Πµν . (29)

Πµν has been calculated up to the order of two-loops
in PQED, for the case of two-component fermions. The
Euclidean one-loop contribution for a single massless
fermion, which is the same for QED3, is [6]

Π(1)
µν (p) = A(p)Pµν +B ǫµναp

α , (30)

where A(p) = −
√

p2/16, and B = (1/2π) (n+ 1/2), with
n integer. Notice that the second term contains the P and
T anomaly. Accordingly to the Coleman-Hill theorem [7],
if the parity anomaly occurs, it will appear only in one

loop fermion integration, i.e, only Π
(1)
µν could have a term

ǫµναpα.
The two-loops contribution to the vacuum polarization

tensor in PQED was calculated in Ref.[8] and reads

Π(2)
µν = A(p)CααgPµν , (31)

with Cα = (92−9π2)/18π. Indeed, there is no correction
for the B-term. Note that Cα = 0.056 and the fine struc-
ture constant for graphene is αg ∼ 300/137 = 2.189. It
follows that Cααg < 1, thus justifying our perturbative
calculation.

According to Eq. (29), the irreducible current-current
correlation function is given by

〈jµjν〉 = j1(p)P
µν + j2 ǫ

µναpα , (32)

with

j1(p) = −NfA(p)(1 + Cααg +O(e4)) (33)

and

j2 = −NfB, (34)

where Nf arose from the sum over all fermions.

THE DC CONDUCTIVITY

Observe that the current correlator (29) is propor-
tional to the number of flavors Nf , consisting of spin ↑, ↓
and valleys K,K ′. We have, therefore Nf = NS + NV .
The two spin components give identical contributions to
Eq. (21), thereforeNS = 2. We must be careful, however,
when summing the contributions from the two valleys K
and K ′. For symmetry reasons, it is reasonable to expect
that both valleys will contribute identically. Neverthe-
less, the valleys K and K ′ are related to each other by
TRS and, consequently their contribution will depend on
whether this symmetry is spontaneously broken or not.
When TRS symmetry is preserved, both valleys clearly
give identical contributions and NV = 2 or Nf = 4.
Indeed, in linear response theory, for each valley we

have

〈0|ji|0〉K =
i〈0|jiKjjK |0〉

ω
Aj (35)

and

〈0|ji|0〉K′ =
i〈0|jiK′j

j
K′ |0〉

ω
Aj . (36)

The contribution from the two valleys to the average
total current is given by 〈0|jiK+ jiK′ |0〉. According to the
result above, this can be expressed as

〈0|ji|0〉K + 〈0|ji|0〉K′ =
{

i〈0|jiKjjK |0〉
ω

+
i〈0|jiKjjK |0〉T

ω

}

Aj . (37)

Therefore, when the TRS is not spontaneously broken,
the sum of the contributions from the two valleys to the
conductivity is

σik = lim
ω→0,p→0

{

i〈jijk〉
ω

+
i〈jijk〉T

ω

}

, (38)

where 〈j j〉T is the time-reversed correlator and the sum
over spins is assumed to have been done, namely, at this
level Nf = NS = 2.
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Now, observe that, according to Eqs. (33) and (34),
j2 is a constant, whereas j1 is a function of p2 + p23 in
Euclidean space. When we go back to the real time,
we must analytically continue p3 to the imaginary axis.
Hence, j1 becomes a function of p2 + (i p0)

2. This is
invariant under time-reversal (i → −i , p0 → p0 and
p → −p) and, consequently, so is j1.
In the limit p → 0, the current correlator and its time-

reversed version are given, respectively, by expressions of
the form

〈jijk〉 = j1((i p0)
2) δik + j2ǫ

ik0(i p0) , (39)

and

〈jijk〉T = j1((−i p0)2) δik + j2ǫ
ik0(−i p0) . (40)

The first term is clearly invariant, since (i p0)
2 =

(−i p0)2. The second term, conversely, is clearly non-
invariant and derives from the anomalous part of the vac-
uum polarization tensor, which is generated by vacuum
fluctuations. The p0 variable above, in the unit system
that we are using, must be identified with the frequency
ω in the Kubo’s formula (21).
We may now take the limit ω → 0 , in order to get

the dc conductivity. It is worth mentioning that this
limit in Kubo formula can be taken unambiguously when
PQED is used to describe the interactions, unlike the
usual QED3. This occurs due to the peculiar structure of
the gauge field propagator of the theory, which produces
a linear ω-dependence in the current correlator for p → 0,
that will cancel the ω in the denominator in the Kubo’s
formula.
Using Eqs. (39) and (40), we see that the conductivity

has the general form

σik = σxxδik + σxyǫik0. (41)

Inserting Eqs. (39) and (40) into Eq. (38), we find that
for an unbroken TRS phase only the longitudinal part
survives. It is easy to see that we have equal contribu-
tions from the two valleys, hence NV = 2 or Nf = 4.
The p0 dependence cancels nicely and we can take the
zero frequency limit without hurdles. Using Eq. (34), we
obtain

σxx =

(

π

2

e2

h

)[

1 +

(

92− 9π2

18π

)

αg +O(e4)

]

(42)

and

σxy = 0 . (43)

VALLEY CONDUCTIVITY AND THE

QUANTUM VALLEY HALL EFFECT

The average valley current is defined by

〈J iV 〉 = 〈0|jiK |0〉 − 〈0|jiK′ |0〉. (44)

It vanishes whenever the two valleys contribute the same
amount to the electric current. From Eq. (44) it is clear
that

〈J iV 〉 =
{

i〈0|jiKjjK |0〉
ω

− i〈0|jiKjjK |0〉T
ω

}

Aj . (45)

We can therefore define a dc “valley conductivity”,
which is given by

σikV = lim
ω→0,p→0

{

i〈jijk〉
ω

− i〈jijk〉T
ω

}

. (46)

Now, using Eqs. (39) and (40) whith Nf = NS = 2 as
before, one immediately concludes that the longitudinal
parts cancel, whereas the transverse component survives.
The valley conductivity, therefore, is given by

σxyV = 4

(

n+
1

2

)

e2

h
, (47)

for n = integer. The above result is exact, as a conse-
quence of the Coleman-Hill theorem.
The longitudinal component, conversely, vanishes:

σxxV = 0. (48)

The existence of a transverse valley conductivity char-
acterizes the occurrence of a quantum valley Hall effect.
It is caused, ultimately, by the presence of the anomalous
P,T violating term that appears in the vacuum polariza-
tion tensor or, equivalently, in the current correlator.
The anomalous terms are related to electron masses

that are dynamically generated. These, however, arise
in pairs of opposite signs and, for an even number of fla-
vors, cancel when summed, according to the Vafa-Witten
theorem [9]. There is, consequently no overall P, T vio-
lation and for this reason the quantum Hall effect does
not occur. The existence of individually violating terms,
nevertheless, is sufficient to produce a quantum valley
Hall effect, which is analogous to the quantum spin Hall
effect, but with spins replaced by valleys.

DYNAMICALLY GENERATED DISCRETE

ENERGY STATES

It was recently shown in Ref. [10] that a dynamical
fermion mass generation occurs in PQED3. In that con-
text, where four-component massless fermions were used,
the mass term breaks the chiral symmetry. For the two-
component fermions considered here, however, the mass
terms would break the parity symmetry instead. This
non-symmetric phase may be investigated by consider-
ing non-perturbative solutions of the Schwinger-Dyson
equation [11], given by

S−1
F (p) = S−1

0F (p)− Σ(p), (49)
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where SF (p) is the full fermion propagator, S0F (p) is
the bare fermion propagator and Σ(p) is the self-energy,
which is given by

Σ(p) =
e2

2
tr

∫

d3k

(2π)3
γµSF(k)γ

ν Gµν(p− k) , (50)

where Gµν is the full field propagator of the gauge field
and tr is the trace over Dirac indexes.
By making a Taylor expansion around ǫ

Σ(p) = Σ(p = ǫ) + (γµpµ − ǫ)
∂Σ(p)

∂p
|p=ǫ + ... (51)

and imposing

Σ(p = ǫ) = ǫ, (52)

we may write the full fermion propagator as

SF (p) =
1

γµpµ − Σ(p)

=
1

(γµpµ − ǫ)(1 − ∂Σ(p)
∂p |p=ǫ + ...)

=
γµpµ + ǫ

(p2 − ǫ2)(1 − ∂Σ(p)
∂p |p=ǫ + ...)

. (53)

We see that ǫ is the pole of the full physical electron
propagator at zero momentum, being therefore an eigen-
energy. Using an e2-expansion, the gauge field propaga-
tor can be written as

Gµν ≈ 1
√

p2(4 + λ
16 )

Pµν , (54)

where λ = e2Nf .
Inserting Eq. (49) and Eq. (54) into Eq. (50), we obtain

the integral equation

Σ(p) =
2λ

Nf

∫

d3k

(2π)3
Σ(k)

k2 +Σ2(k)

1
√

(p− k)2(4 + λ
16 )

.

(55)
Introducing an ultraviolet cutoff Λ, we can transform

the integral equation (55) into a differential equation (Eu-
ler’s equation),

d

dp

(

p2
dΣ(p)

dp

)

+
Nc
4Nf

Σ(p) = 0, (56)

where

Nc =
4λ

π2(4 + λ
16 )

(57)

is a critical number of flavors. The self-energy also obeys

lim
p→Λ

(

2 p
dΣ(p)

dp
+Σ(p)

)

= 0, (58)

and

lim
p→0

p2
dΣ(p)

dp
= 0, (59)

representing the ultraviolet (UV) and infrared (IR)
boundary conditions, respectively.
The solutions of Euler’s differential equation are

Σ(p) = C̃pa+ + D̃pa− , (60)

where a± = −1/2 ± 1/2
√

1−Nc/Nf and C̃ and D̃ are
constants. The solution Eq.(60) can, without loss of gen-
erality, be rewritten as

Σ(p) =
(C +D)√

p
cos

(

γ ln
p

Λ̄

)

+ i
(C −D)√

p
sin

(

γ ln
p

Λ̄

)

,

(61)
where C = C̃Λ̄iγ , D = D̃Λ̄−iγ , and the constant

γ =
1

2

√

Nc
Nf

− 1 (62)

is real in the range of couplings such that Nf < Nc.
Insertion of Eq. (61) into the boundary condition (58)
provides us with the constraints on the values of C and
D, namely

lim
p→Λ

γ
√

p3

[

(C +D) sin
(

γ ln
p

Λ̄

)

(63)

+i(D − C) cos
(

γ ln
p

Λ̄

)]

= 0. (64)

There are two possible solutions that obey the con-
straint: either C = D and sin

[

γ ln
(

Λ/Λ̄
)]

= 0 or

C = −D and cos
[

γ ln
(

Λ/Λ̄
)]

= 0.

By assuming 2C = Λ3/2 to regularize the constraint,
we can rewrite Eq. (61) as

Σ(p) =
Λ3/2

√−p sin
(

γ ln
p

Λ̄

)

, C = −D (65)

Σ(p) =
Λ3/2

√
p

cos
(

γ ln
p

Λ̄

)

, C = D (66)

where the constant Λ̄ can be obtained from Eq. (58),
namely

Λ̄ = Λ exp

[

− (2l+ 1)π

2γ

]

, C = −D, (67)

Λ̄ = Λ exp

[

−kπ
γ

]

, C = D, (68)

with k and l integers. Now, we chose these integers to
have a value as small as possible, but in a way to guar-
antee that Λ ≥ Λ̄. This choice fixes l = k = 0.
In order to obtain the physical eigenenergies ǫ, we must

solve Eq. (52). Using the Eqs. (65) and (66) for the self-
energy, we have

ǫ = −Λ3/2

√−ǫ cos
(

γ ln
|ǫ|
Λ

)

, ǫ < 0, (69)

ǫ =
Λ3/2

√
ǫ

cos

(

γ ln
|ǫ|
Λ

)

, ǫ > 0. (70)
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Let us now define

z = −γ ln (|ǫ|/Λ) , (z > 0) (71)

or, equivalently,

|ǫ| = Λ exp

(

− z

γ

)

. (72)

Then, after inserting Eq. (72) into Eqs. (69) and (70),
we find that the dimensionless quantity z(γ) is given by
the solutions of the transcendental equation

exp

(

− 3z

2γ

)

= cos z, (73)

which holds for both, ǫ positive or negative. Its solutions
depend on γ, which on its turn is determined by the
coupling and the number of flavors Nf .
Let us call zn = Zn, n = 0, 1, 2, ... the solutions of

Eq. (73). It is not difficult to infer, from the graphic
representation of the functions in Eq. (73), that

Zn = nπ + δn (74)

where

0 ≤ δn ≤ π

2
n = 0, 2, 4, ...

π

2
≤ δn ≤ π n = 1, 3, 5, ... (75)

For all values of n, δn → π/2 for n → ∞ whereas
δn → 0 (n even) and δn → π (n odd) for γ → ∞ (an
unphysical limit, in which Nf → 0 ).
The energy levels are then

ǫ(±)
n = ±Λ exp

{

−Zn
γ

}

= ±Λ exp

{

− 1

γ
(nπ + δn)

}

. (76)

Observe that the negative energy levels increase and
the positive ones decrease with n = 0, 1, 2, ..., in such a
way that both of them accumulate in zero for n→ ∞. In
the situation when γ → 0, which occurs when Nc → Nf ,

all energy levels ǫ
(±)
n collapse to zero, thus destroying

the effect. Therefore, Nc is a critical quantity for the
phenomenon we described: this will only occur for Nc >
Nf or equivalently for λ > λc (see Eq. (57) ). Since γ
is small, the LHS of the Eq. (73) tends to zero and the
solutions are the zeros of the cosine function, which are
Zn ≈ (2n+ 1)π/2.
Since the eigenenergies are zero-momentum poles of

the corrected electron propagator, they become dynam-
ically generated electron masses. Notice that all flavors
will acquire a mass

M = ǫ
(±)
0 ≃ ±Λ exp

{

− π

2γ

}

. (77)

We may now estimate the maximal energy gap,

namely, ∆∞ = ǫ
(+)
0 − ǫ∞ = ǫ∞ − ǫ

(−)
0 . This is given

by

∆∞ = |ǫ(±)
0 | ≃ Λ exp

{

− π

2γ

}

, (78)

where we used the fact that δ0 ≃ π/2. The first gap is

∆1 = |ǫ(±)
0 | − |ǫ(±)

1 | ≈ ∆∞, since γ is small.
The energy gap ∆∞ determines the critical tempera-

ture Tc for observing the quantum valley Hall conduc-
tivity that we have predicted: for T > Tc the plateaus
will be washed out by thermal activation. Assuming
that a fraction 1 − x of the electrons in the ground
state are promoted to higher levels by thermal activa-
tion (N/N0 = 1− x ), we have

N = N0 exp

[

−∆∞

kBT

]

, (79)

or equivalently

Tc =
∆∞

kB ln(N0/N)
≃ ∆∞

kBx
. (80)

We find, therefore

Tc ≃
Λ

kBx
exp

[

− π

2γ

]

. (81)

Notice that kBTc is of the order of the modulus of the
electron masses and hence Tc ∼ 0.05K.
It is worth to emphasize that the study of dynamical

mass generation for electrons in graphene has been inves-
tigated in the literature in different contexts, by consid-
ering only the static Coulomb interaction with screening
effect. In this case, the quantum corrections in the gauge
propagator contain only the “00” component of the vac-
uum polarization [12–14]. The influence of the renormal-
ization of the Fermi velocity for the gap equation was
investigated in reference [14].
We will see in the next section that the fact that there

are positive and negative masses is crucial for guaran-
teeing that the system obeys the Vafa-Witten theorem,
although individually each valley breaks the P and T
symmetries.

THE VAFA-WITTEN THEOREM

Here, we examine our results in the light of the Vafa-
Witten theorem [9]. Let us start by reviewing the proof of
the theorem. Consider the partition function of a gauge
field with a vector minimal coupling to a Dirac field of
mass M in Euclidean space. Integration over the Dirac
field yields

Z[ξ] = N
∫

DAµ e
−Sξ[Aµ]Det[D/+M ][Aµ]. (82)
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On general grounds, the bosonic part of the action may
be decomposed into a P (and T) invariant part S0 and a P
(and T) non-invariant part iξX , which in Euclidean space
is purely imaginary. Indeed, in the expression above Sξ =
S0 + iξX [9], where ξ is a real parameter.
The theorem follows from the fact that, for a real

and positive fermionic determinant, evidently, we have
a bound Z[ξ] ≤ Z[0]. Defining Z[ξ] = e−V[ξ], we have
V [ξ] ≥ V [0]. Hence, the energetically most stable state is
the one with ξ = 0, implying 〈X〉 = 0, which means that
there is no spontaneous breakdown of P and T symme-
tries. This completes the proof.
A key ingredient for the demonstration of the Vafa-

Witten theorem is the fact that the fermionic determi-
nant must be real and positive. This is guaranteed by
the following lemma: Suppose the anti-hermitian opera-
tor D/ has eigenvalues iλ;

[D/+M ]ψ = [M + iλ]ψ. (83)

Since the γ5-matrix anticommutes with D/, it follows
that for each eigenstate ψ there will be another one given
by γ5ψ, with eigenvalue [M − iλ]. The fermionic deter-
minant, accordingly will be

∏

λ[M
2 + λ2], which is real

and positive, thus completing the proof of the lemma.
We now come to the system we are using for de-

scribing graphene. A great difference with respect to
the framework where the Vafa-Witten theorem has been
demonstrated is the fact that there is no γ5-matrix for
two-component Dirac fermions in two spatial dimensions,
hence the above lemma, which forced the fermionic de-
terminant to be real and positive, does not apply.
The fermionic determinant was actually calculated in

Ref. [6] for a single two-component fermion in two-
dimensional space and indeed, it presents a complex
phase. This is proportional to a Chern-Simons term,
which is not invariant either under P or T, and the pro-
portionality factor is fixed and non-vanishing. In this
case the theorem clearly does not apply. The bound on
the partition function just cannot be fulfilled.
Now consider the case of many-flavor fermions. Then,

we have the product of all flavor determinants, which
results in a real positive modulus plus an overall phase
given by the sum of the complex phases of all flavors.
For fermions of mass M , each phase is proportional to
M/|M |, namely, to the mass’ sign. This fact leads us to
conclude, by using the same argument employed in the
demonstration of the theorem, that the anomalous phases
would cancel for an even number of flavors provided there
is the same number of masses with opposite signs. This
would make the resulting many-flavor determinant real
and positive and would redeem the result of P and T
invariance.
In our system, specifically, we have just seen in the

previous section that in the low-temperature phase the
dynamically generated electron masses present two op-
posite signs: M = ±|ǫ0|, hence the anomalous complex

phases will cancel in compliance with the Vafa-Witten
theorem.
The dynamical generation of masses and the associated

occurrence of complex phases in the fermionic determi-
nants, even though cancelling when fully summed, are
responsible for the onset of a non-vanishing valley cur-
rent below Tc, which characterizes a Quantum Valley
Hall effect.
This is the “center-of-gravity” of this work. The point

where the dynamical generation of electron masses, ob-
tained from the electron self-energy, meets the dynamical
generation of a P and T violating term in the vacuum
polarization, for each flavor. By summing over the even
number of flavors, the anomalous terms do cancel as a
consequence of the fact that the masses are generated in
pairs of opposite signs. This form of mass generation, de-
spite ruling out a regular Quantum Hall effect, however
does imply a Quantum Valley Hall effect.

FERMI VELOCITY

For vF 6= c, we must rewrite the electronic kinetic term
and the current, respectively as

i∂/ = iγ0∂0 + i vF γ
i∂i, (84)

and

jµ = e ψ̄γµψ = e (ψ̄γ0ψ, vF ψ̄γ
iψ). (85)

Now, when evaluating the current correlation function
given by Eqs. (29-31), we must replace γi → vF γi in the
vertices.
The one-loop result in momentum space is

Π00(p0,p) = − 1

16

p2

√

v2Fp
2 + p20

, (86)

Πi0(p0,p) =
1

16

p0 pi
√

v2Fp
2 + p20

+
1

2π

(

n+
1

2

)

ǫi0j pj , (87)

and

Πij(p0,p) = − 1

16

[

δij
(

v2Fp
2 + p20

)

− v2F p
i pj

√

v2Fp
2 + p20

]

+
1

2π

(

n+
1

2

)

ǫij0 p0 . (88)

The generating functional Z[J ] is obtained by perform-
ing different gaussian integrals over A0 and Ai. Then, it
is easy to see from Eq. (29) that the current correlator
will be expressed in terms of Πij , Π00 and Πi0. After
taking the limit p → 0 in the Kubo formula, we conclude
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that the only contribution comes from Πij , since Π00 and
Πi0 vanish in this limit. From the equation above, how-
ever, we see that all dependence on vF disappears in the
limit when the external momentum p → 0. Note that
the above argument also holds for the two-loops contri-
bution.
It is quite interesting to note that all dependence on vF

coming from the momentum integration of the internal
fermion lines is completely removed by a scale transfor-
mation, which is possible because the fermions are mass-
less. This explains why all vF dependence comes from
the external lines.
Let us consider now the effects of vF 6= 1 and c 6= 1 on

the self-energy Σ(p), on the dynamically generated gaps
ǫn, and on the transition temperature Tc. Now, the pre-
vious argument with the scale transformation cannot be
used despite the fact that the propagators are massless,
because each of them contains a different velocity.
In the relativistic case (vF = c = 1) the self-

energy is a function Σ(
√

p20 + p2). When we reinstate
the physical values of vF and c, it happens that the
self-energy becomes a function Σ(f1(vF , c)p0, f2(vF , c)p)
[15], where the coefficient f1(vF , c) is dimensionless,
whereas f2(vF , c) has dimension of velocity. Note that
p0 has dimension of energy when we use the physical
units.
We are interested in the dynamically generated gap,

i.e., the mass spectrum; hence, we only need to evaluate
Σ(f1 p0, f2 p = 0). Therefore, we make the Taylor ex-
pansion of the self-energy in the variable p0 around the
gap ǫ, namely

Σ(f1p0) = Σ(f1ǫ) + (γ0p0 − ǫ)
∂Σ(f1p0)

∂p0
|p0=ǫ + ...(89)

Now, we must impose the condition

Σ(f1ǫ) = ǫ, (90)

instead of (52).
The full fermion propagator at zero momentum be-

comes

SF (p0,p = 0) =
1

γ0p0 − Σ(f1p0)

=
1

(γ0p0 − ǫ)(1− ∂Σ(f1p0)
∂p0

|p0=ǫ + ...)

=
γ0p0 + ǫ

(p20 − ǫ2)(1 − ∂Σ(f1p0)
∂p0

|p0=ǫ + ...)

and the dynamically generated gap is still ǫ. This is
determined by Eq. (90), which yields the solutions

ǭ(±)
n = ±Λ exp

{

− Z̄n
γ

}

, (91)

where Z̄n are solutions of the equation

exp

(

− 3

2γ
z

)

= f1(vF , c) cos z. (92)

For physical values of the coupling constant of
graphene, γ is rather small. It follows that the left hand
side of Eq.(92) is close to zero, as before. Consequently,
the solutions of Eq.(92) are effectively given by the ze-
ros of the cosine function, independently of the value of
f1(vF , c). Hence, we conclude that Z̄n coincide with Zn

and the dynamically generated gaps ǭ
(±)
n are the same

as before. This fact implies that our estimate for the
transition temperature Tc remains unchanged when the
physical values of vF and c are used.

NON-RELATIVISTIC LIMIT

Now, let us investigate the small vF /c limit of the Dirac
equation, assuming we are in the phase where the en-

ergy states ǫ
(±)
n are present and give a mass to the elec-

trons. Then, the Foldy-Wouthuysen transformation can
be applied to the Dirac equation coupled to the pseudo-
electromagnetic field. This result can be easily obtained
from the corresponding transformation in QED4 [16],
simply by constraining the matter to move only in the
x − y plane with Jz = 0 (no current matter in the z
direction).

Using the Fermi velocity divided by the light velocity
as an expansion parameter, the non-relativistic limit of
the Dirac equation in the lowest approximation yields the
Pauli equation, which contains: (a) the minimal coupling
with the vector potential ∝ (p−A)2, (b) an electron-spin
interaction with the magnetic field ∝ (σ ·B), and (c) the
static Coulomb interaction ∝ (1/r).

In the absence of a magnetic field, the second order
term in the expansion gives other interactions related to
the electric field: (a) a Darwin interaction ∝ ρ(r) and
(b) a spin-orbit term which, taking Jz = 0, reduces to a
Rashba-like spin-orbit coupling. By applying an electric
field in the z-direction, for instance, we obtain a spin-
orbit coupling ∝ (σxpy − σypx). It was recently shown
that it is possible to generate quantum Hall states in the
presence of a Rashba spin-orbit coupling and static inter-
actions [17, 18]. Since the spin-orbit coupling is included
in the full electromagnetic interaction and this produces
the QVHE, there could be a relation between the two
effects. We shall explore this connection elsewhere.

UNITARITY

Here, we study the properties of the gauge field propa-
gator in PQED, given by Eq. (28) and show, in particular,
that unitarity is preserved.

First of all, let us observe that this propagator has no
poles, just a cut, hence the pure gauge field of PQED
has no particle content, as should be expected. Evi-
dently there are no photons in two-dimensional space.
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Pure PQED gauge theory, however is the bosonized ver-
sion of the free massless Dirac field in 2D [2]. It has no
particle content itself, in the same way as its counter-
part in 1D, namely, the massless scalar field, which is the
bosonic field associated to the massless Dirac field in this
case.

As usual, we use the Feynman prescription p2 → p2+iǫ
(p2 = ω2 −p2), in order to define the Feynman propaga-
tor

Gµν0,F (t,x) =
1

4
PµνDF (t,x), (93)

where Pµν is the transverse projector and DF (t,x) is the
corresponding scalar propagator, namely

DF (t,x) =

∫

dω

2π

∫

d2k

(2π)2
e−iωt eik�x

[ω2 − k2 + iε]1/2
. (94)

This integral has been carefully calculated in Ref. [3]
(see Appendix 1 therein). The result is

DF (t,x) =
C

[t2 − r2 − iε]
, (95)

where r = |x| and C = −1/2π2.

Unitarity of the S = 1 + iT operator, i.e, S†S = 1,
implies

i(T − T †) = T †T, (96)

We first consider the scalar field case. Considering the
amplitude corresponding to the previous operator equa-
tion evaluated between states |i〉 and |f〉 and introducing
a complete set of intermediate states |x〉 on the RHS, the
above unitarity condition becomes

Dif −D∗
if = −i

∑

x

∫

dΠ(2π)3δ3(pi − px) (D
∗
ixDxf),

(97)
where Dif is given by 〈f |T |i〉 = (2π)3δ3(pi− pf)Dif and
dΠ is the phase space factor, which is needed to ensure
that the sum over the intermediate states corresponds to
the identity. The equation above is known as the gener-
alized optical theorem. In the limit i → f , we have that
the Feymann propagator of the scalar field reads

Dii = DF (ω,k) =
1

[ω2 − k2 + iε]1/2
, (98)

and obeys the equation

Dii −D∗
ii = −i

∑

x

∫

dΠ(2π)3δ3(0)(D∗
ixDxi). (99)

or

DF (ω,k)−D∗
F (ω,k) =

−i
∫

dΠ(2π)3δ3(0)

∫

dωx
2π

∫

d2kx
(2π)2

D∗
F (ωx,kx)DF (ω − ωx,k− kx). (100)

We now Fourier transform the above equation back to
coordinate space and, using Eq. (95) and the fact that
the Fourier transform of a convolution is a product, we
obtain

iC
ε

[t2 − r2]2 + ε2
= −iC2

∫

dΠ δ3(0)
1

[t2 − r2]2 + ε2
.

(101)
The phase space integral above yields τ/L2 [19], whereas
δ3(0) = τL2, where L and τ are the characteristic
length and time of the system, respectively. By choosing
ε = −Cτ2 = τ2/2π2 (notice that ε has dimension of τ2),
the two sides above coincide and unitarity is, therefore,
demonstrated. The corresponding result for the vector
field Aµ follows by making C → C/4 and from the trans-
verse projector property: P 2 = P .
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and F. Peña, Phys. Rev. D 87, 125002 (2013).

[11] T. W. Appelquist, D. Nash, and L. C. R. Wijewardhana,
Phys. Rev. Lett. 60, 2575 (1988).

[12] D. V. Khveshchenko, Phys. Rev. Lett. 87, 246802 (2001);
D. V. Khveshchenko, Phys. Rev. Lett. 87, 206401 (2001);
D. V. Khveshchenko and H. Leal, Nucl. Phys. B 687, 323
(2004); D. V. Khveshchenko and B. Shively, Phys. Rev.
B 73, 115104 (2006).

[13] E. V. Gorbar, V. P. Gusynin, V. A. Miransky and I. A.
Shovkovy, Phys. Rev. B 66, 045108 (2002); E. V. Gorbar,
V. P. Gusynin, V. A. Miransky and I. A. Shovkovy, Phys.
Lett. A 313, 472 (2003).

[14] D. V. Khveshchenko, J. Phys. Condens. Matter 21,
075303 (2009).

[15] H. Isobe and N. Nagaosa, Phys. Rev. B 87, 205138
(2013).

[16] J. D. Bjorken and S. D. Drell, Relativistic Quantum Me-
chanics, McGraw-Hill, College Park (1965).

[17] W. Beugeling, N. Goldman, and C. Morais Smith, Phys.
Rev. B 86, 075118 (2012).

[18] Y. Yang, Z. Xu, L. Sheng, B. Wang, D. Y. Xing, and D.
N. Sheng, Phys. Rev. Lett. 107, 066602 (2011).

[19] M. E. Peskin and D. V. Schroeder, An Introduction to
Quantum Field Theory, Westview (1995)


