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Schwinger-Keldysh theory for Bose-Einstein condensation of photons
in a dye-filled optical microcavity
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We consider Bose-Einstein condensation of photons in an optical cavity filled with dye molecules that are
excited by laser light. By using the Schwinger-Keldysh formalism we derive a Langevin field equation that
describes the dynamics of the photon gas and, in particular, its equilibrium properties and relaxation towards
equilibrium. Furthermore we show that the finite lifetime effects of the photons are captured in a single
dimensionless damping parameter that depends on the power of the external laser pumping the dye. Finally,
as applications of our theory we determine spectral functions and collective modes of the photon gas in both the
normal and the Bose-Einstein condensed phases.
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I. INTRODUCTION

After the theoretical prediction of Bose-Einstein conden-
sation (BEC) in 1925 [1,2], it took until 1995 for the first
direct experimental observation of this phenomenon in weakly
interacting atomic vapors [3–5]. In addition to these atomic
gases, BEC of bosonic quasiparticles such as magnons [6],
exciton-polaritons [7,8], and photons [9] is now also observed.
The Bose-Einstein condensates of these quasiparticles form a
different class of condensates as they are not in true thermal
equilibrium.

These nonequilibrium Bose-Einstein condensates are
driven by external pumping to compensate for the particle
losses and thereby to keep the average number of particles
in the system at a constant level. In these systems the steady
state of the Bose gas is therefore determined by interparticle
interactions that lead to quasiequilibration and by the balance
between pumping and particle losses. Furthermore, contrary
to dilute atomic gases, the temperature is typically constant
in these experiments. Instead, one varies the strength of the
external pumping power while keeping the system at a constant
temperature. Above some critical value of the pumping power,
the density of particles in the system is above the critical
density, and the system undergoes BEC.

Another special feature of these pumped systems is the
temperature at which BEC occurs. Since BEC happens when
the phase-space density is of the order of unity [10], the
temperature at which the magnons, exciton-polaritons, and
photons condense is inversely related to their mass to the
power 3/2. Although these particles do not even always have
a bare mass, they are all formally equivalent to bosons with an
effective mass that is several orders of magnitude smaller than
that of alkali atoms. Therefore these systems undergo BEC at
temperatures in the range of 10 to 300 K instead of in the nK
regime relevant for the atomic Bose-Einstein condensates.

In order to get a detailed understanding of these nonequi-
librium Bose-Einstein condensates, we from now onwards
focus on the photon experiment of Klaers et al. [9]. This
experiment is concerned with a photon gas in a dye-filled
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optical resonator. The distance between the cavity mirrors is
chosen such that the emission and absorption of photons with a
certain momentum in the longitudinal direction dominates over
that of other momenta. Thus this component of the momentum
of the photons is fixed, and the photon gas becomes equivalent
to a Bose gas with a small effective mass. Furthermore,
the gas becomes effectively two-dimensional. In general this
prohibits observing BEC at nonzero temperature since a
homogeneous two-dimensional Bose gas can only condense
at zero temperature [10]. However, due to the curvature of the
cavity mirrors there is a harmonic potential for the photons.
Therefore BEC of photons is observed above some critical
pumping power since a harmonically trapped two-dimensional
Bose gas can exhibit BEC at a nonzero temperature [11,12].

Theoretically, a lot of progress has been made for BEC
of magnons and exciton-polaritons [13–19]. Although the
observation of Bose-Einstein condensation of photons is
more recent, it has also motivated theoretical studies: Klaers
et al. predicted a regime of large fluctuations of the condensate
number [20]. Furthermore, the authors of Ref. [21] found
that the photons cannot reach thermal equilibrium for small
absorption and emission rates. The modification of the Stark
shift of an atom in a Bose-Einstein condensate of photons was
investigated in Ref. [22], and conditions for BEC of photons
that are in thermal equilibrium with atoms of dilute gases were
derived in Ref. [23].

In this article we develop a theory for the photon experiment
performed by Klaers et al. [9]. We describe this photon
system by using the Schwinger-Keldysh formalism, which is
commonly used in the quantum optics community (see, for
example, Ref. [24]). In Sec. II we derive an effective action
for the photons. In Sec. III we use this effective action to
derive a Langevin field equation for the photons including
Gaussian noise, which incorporates the effect of thermal and
quantum fluctuations. The main advantage of this approach is
that it simultaneously treats coherent and incoherent effects. In
particular, it enables us to describe the complete time evolution
of the photons, including the relaxation towards equilibrium;
thus equilibrium properties can also be obtained. Subsequently,
we show that the finite lifetime effects of the photons can be
captured in a single dimensionless parameter α that depends on
the power of the external laser pumping the dye. In Sec. IV we
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calculate equilibrium properties of the homogeneous photon
gas in the normal and Bose-Einstein condensed phase, such
as spectral functions, collective modes, and damping. We end
with conclusions and outlook in Sec. V.

II. MODEL

In this section we derive an effective action for the photons
by using the Schwinger-Keldysh formalism developed in
Ref. [25]. In particular, the photons are coupled to a reservoir
of dye molecules. The energy of the photons is given by

εγ (k) = h̄c

√
k2
x + k2

y + k2
γ , (1)

where h̄ is Planck’s constant, c is the speed of light in the
medium, and k is the transverse momentum of the photon. In
agreement with the experiment kz is ±kγ since the frequency
of the pump laser is such that in the longitudinal direction the
absorption of photons with mode number q = 7 dominates
over other absorption processes [9]. For the molecules we take
an ideal gas in a box with volume V . Since this gas is at equi-
librium and at room temperature, we describe the translational
motion of the molecules by a classical Maxwell-Boltzmann
distribution. Furthermore, we model these molecules as a
two-level system with energy difference � > 0 between the
excited and ground states. This is a simplification since these
molecules have a rovibrational structure. Therefore the dye
molecules have more than two levels as the rovibrational
structure divides the ground and excited levels into several
sublevels. However, in this section we will show that we can
model this multilevel system by introducing an effective mass
for the molecules in our two-level model.

At time t0 the photons are coupled to the molecules with
a momentum-independent coupling constant g. To study the
dynamics of the coupled system at times larger than t0 we
consider the action

S[ak,a
∗
k,bk,b

∗
k]

=
∑

k

∫
G∞

dt a∗
k(t)

{
ih̄

∂

∂t
− εγ (k) + μγ

}
ak(t)

+
∑
p,ρ

∫
G∞

dt b∗
p,ρ(t)

{
ih̄

∂

∂t
− ε(p) + μρ − Kρ

}
bp,ρ(t)

− i√
2V

∑
k,p

∫
G∞

dt gak(t)bp,↓(t)b∗
p+k+,↑(t) + H.c.

+ i√
2V

∑
k,p

∫
G∞

dt gak(t)bp,↓(t)b∗
p+k−,↑(t) + H.c. (2)

Here time is integrated along the Schwinger-Keldysh contour
G∞, which is depicted in Fig. 1. The photons are described
by the fields ak(t) and a∗

k(t). Furthermore, εγ (k) is given by

t0t ∞
G∞

FIG. 1. The Schwinger-Keldysh contour G∞. The integration is
first from t0 to ∞ and then back from ∞ to t0.

Eq. (1), and μγ is the chemical potential of the photons. For
now we neglect the harmonic potential for the photons since
this term is not important for the coupling between molecules
and photons. The fields bp,ρ(t) and b∗

p,ρ(t) describe the dye
molecules, with ρ being equal to ↓ or ↑, corresponding
to the ground and excited states, respectively. Also, ε(p) =
h̄2p2/2md, with md being the mass of the rhodamine 6G
molecule. Moreover, Kρ accounts for the energy difference
between the molecular states, and we take K↓ = 0 and
K↑ = �. The last two terms describe the processes of the
absorption and emission of a photon, respectively. Here g is the
coupling strength between the photons and molecules, k+ =
(kx,ky,kγ ), and k− = (kx,ky, − kγ ). Note that the structure of
the interaction terms is a consequence of the expansion of
the photon field in terms of a standing wave, instead of a
plane wave, in the z direction. Furthermore, the summation
over k is two-dimensional, whereas the summations over
p are three-dimensional. The latter convention will be used
throughout the paper.

In this system one of the two molecular chemical potentials
determines the density of molecules. The experiment of Klaers
et al. used rhodamine 6G dye solved in methanol with
a concentration of 1.5 × 10−3 mol L−1. Therefore we use
a typical value of nm = 9 × 1023 m−3 for the density of
molecules. Furthermore the value of �μ = μ↑ − μ↓ deter-
mines the polarization of the molecules. This polarization is
defined as

P (�μ) := N↑ − N↓
N↑ + N↓

= eβ(�μ−�) − 1

eβ(�μ−�) + 1
, (3)

where β is the inverse of the thermal energy kBT and N↑
and N↓ are, respectively, the total number of excited-state and
ground-state molecules. For small �μ all molecules are in the
ground state. By increasing the value of �μ, the number of
molecules in the excited state increases. Since the total number
of molecules is constant, the number of ground-state molecules
thereby decreases. Thus for increasing �μ the polarization
increases. Moreover, the polarization is exactly zero for �μ =
�. A plot of the polarization as a function of �μ is given in
Fig. 2. The parameter �μ is also important for making a

P

−1

0

1

75 80      85 90 95 100
βΔμ

FIG. 2. (Color online) Plot of the polarization of the molecules P

at room temperature T = 300 K as a function of β�μ for a density of
molecules nm = 9 × 1023 m−3, � = 3.63 × 10−19J. The polarization
is exactly zero if �μ is equal to the energy difference between the
excited and ground states of the molecules.
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connection with the experiment since the number of excited
molecules and thereby the polarization are determined by the
pumping power of the external laser.

In our nonequilibrium theory the chemical potential of the
photons μγ becomes only well defined after the photon gas
equilibrates by coupling to the dye molecules. Since both the
sum of the number of ground-state molecules and excited-
state molecules and the sum of the number of excited-state
molecules and photons are constant, we have in equilibrium

�μ = μγ . (4)

To derive an effective action for the photons, we first integrate
out the molecules. Next, we use perturbation theory up to
second order in g to obtain

Seff[ak,a
∗
k]

=
∑

k

∫
G∞

dt ′
∫

G∞
dt a∗

k(t)

×
({

ih̄
∂

∂t
− εγ (k) + μγ

}
δ(t,t ′) − h̄
(k,t,t ′)

)
ak(t ′),

(5)

where the photon self-energy due to coupling with the dye is
given by


(k,t,t ′) = −i|g|2
2h̄2V

∑
p

G↓(p,t ′,t)

×{G↑(k+ + p,t,t ′) + G↑(k− + p,t,t ′)}. (6)

It turns out that both terms on the right-hand side are equal,
and therefore we can write


(k,t,t ′) = −i|g|2
h̄2V

∑
p

G↓(p,t ′,t)G↑(k+ + p,t,t ′). (7)

Here the Keldysh Green’s function for the dye molecules is
given by

Gρ(p,t,t ′) = ie−i[ε(p)−μρ+Kρ ](t−t ′)/h̄

×{�(t,t ′)[Nρ(p) − 1] + �(t ′,t)Nρ(p)}, (8)

where �(t,t ′) and �(t ′,t) are the corresponding Heaviside
functions on the Schwinger-Keldysh contour. Furthermore, the
occupation numbers for the dye molecules are

Nρ(p) = e−β[ε(p)−μρ+Kρ ], (9)

with ρ ∈ {↑,↓}. Since this action is defined on the Schwinger-
Keldysh contour, we can only use this action to calculate
quantities on the Schwinger-Keldysh contour. However, the
relevant physical quantities should be calculated on the real-
time axis. Therefore we need to transform this action into
an action that is defined on this real-time axis. As is shown
in Ref. [25], this boils down to determining the retarded,
advanced, and Keldysh self-energies. Roughly speaking, the
advanced and retarded self-energies determine the dynamics
of the single-particle wave function in the gas, i.e., the
coherent dynamics, and the Keldysh component accounts for
the dynamics of their occupation numbers, i.e., the incoherent
dynamics.

In the continuum limit the retarded self-energy becomes

h̄
(+)(k,t − t ′)

= i

h̄
�(t − t ′)

∫
dp

(2π )3
|g|2

× ei[ε(k+,p)+�μ](t−t ′)/h̄{N↑(k+ + p) − N↓(p)}. (10)

Here we used Eqs. (6) and (8) and we defined ε(k+,p) =
ε(p) − ε(k+ + p) − �. In Fourier space this self-energy reads

h̄
(+)(k,ω) := S(k,ω) − iR(k,ω)

:=
∫

d(t − t ′) h̄
(+)(k,t − t ′)eiω(t−t ′). (11)

Since the molecules behave as a Maxwell-Boltzmann gas at
room temperature, we can find an analytical expression for
R(k,ω). We obtain

R(k,ω) = A(k,ω)
|g|2m2

d

2|k+|πβh̄4 sinh

{
βh̄ω

2

}
, (12)

with

A(k,ω) = exp {β(μ↓ + μ↑ − �)/2}

× exp

{
−β

4

[
ε(k+) + (� − �μ − h̄ω)2

ε(k+)

]}
.

(13)

Furthermore, in Fourier space the Keldysh self-energy is given
by

h̄
K (k,ω)

= i

∫
dp

(2π )2
δ[h̄ω + ε(k+,p) + �μ]

× |g|2{2N↓(p)N↑(k+ + p) − N↓(p) − N↑(k+ + p)}.
(14)

Since the dye is in quasiequilibrium, this Keldysh self-energy
can be related to the imaginary part of the retarded self-energy.
We find

h̄
K (k,ω) = −2i[1 + 2N (ω)]R(k,ω), (15)

where

N (ω) = 1

eβh̄ω − 1
. (16)

This result is known as the fluctuation-dissipation theorem.
As we show in the next section, this result guarantees that the
photon gas relaxes towards thermal equilibrium in the limit of
t → ∞.

To make further progress, we have to determine typical
numerical values for � and g appropriate for the experiment
of Klaers et al. These values can be obtained by looking at
the physical meaning of the self-energy. Consider a system of
molecules that can be in either a ground state or excited state.
If we apply a laser to this system, we can measure, for instance,
the total number of molecules in the excited state. This number
depends on the rate of photon absorption and emission and
therefore on the lifetime of the photons. Since the imaginary
part of the retarded self-energy is related to the lifetime of the
photon, we can determine the emission and absorption spectra
of the molecules with the help of our expression for R(k,ω).
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In order to obtain the absorption and emission spectrum
separately, we take a closer look at the retarded self-
energy given by Eq. (10). In this expression the factor
with the Maxwell-Boltzmann distribution can be rewritten as
N↓(p)[N↑(k+ + p) ± 1] − N↑(k+ + p)[N↓(p) ± 1]. The first
term can be understood as the absorption of a photon, since this
statistical factor accounts for the process where a ground-state
molecule scatters into an excited state. The factor N↓(p) simply
is the number of molecules that can undergo the collision, and
[N↑(k+ + p) ± 1] denotes the Bose enhancement factor or
Pauli blocking factor depending on the quantum statistics of
the dye molecules. By using a similar reasoning the second
term can be understood as the emission of a photon. Hence the
part of the self-energy proportional to N↓(p) is related to the
absorption spectrum, and the part proportional to N↑(k+ + p)
is related to the emission spectrum.

The absorption and emission spectra are usually obtained
in experiments where the number of photons is not conserved.
So in these systems the photons have no chemical potential.
To make a comparison, we therefore have to set μ↓ = μ↑.
Furthermore, contrary to the experiment of Klaers et al., there
is no restriction on the momentum of the photons. This implies
that the photon field should be expanded into plane waves
instead of standing waves. Therefore the fourth term on the
right-hand side of the action in Eq. (2) is absent, and the
prefactor of the third term is changed into 1/

√
V . However,

this modification leaves the expressions for the self-energies
unchanged.

In order to get more insight into the role of the parameters
of our model in the absorption and emission spectra, we first
consider the experiment of Klaers et al., and we keep k fixed.
Then, the spectra have a maximum at

h̄ω± = � ± h̄2k2
+

2md
, (17)

where we used �μ = 0. Here the plus sign is the maximum
of the absorption spectrum, and the minus sign corresponds
to the position of the maximum of the emission spectrum. So
we obtain a difference in frequency between the maximum
of the absorption and emission spectra. This difference is also
obtained experimentally and is known as the Stokes shift. From
this expression we find that the value of md determines the
value of the Stokes shift. Furthermore we can see from Eq. (17)
that we can change the position of the peaks by varying �.

Now we turn to more conventional experiments, where
the absorption of laser light by the medium is measured as
a function of frequency. To obtain the absorption and emission
spectra only as a function of frequency, we have to consider
the self-energy on the shell and thus replace k+ with ω/c. For
the physical mass of the rhodamine 6G molecule, we obtain
peaks that are too narrow and a Stoke shift that is too small.
This is because we neglected the rovibrational structure of
the molecules. Due to this rovibrational structure there are
many possible transitions since the excited and ground levels
are split into several sublevels. Therefore there is a whole
range of photon energies which can be absorbed or emitted
by the molecule. This causes a considerable broadening of
the spectra. As mentioned before, we model this rovibrational
structure by choosing an effective mass for the molecules.

We can also see explicitly from Eqs. (12) and (13) that
decreasing the value of md will indeed broaden the peaks. For
� = 3.63 × 10−19 J and md = 9.3 × 10−35 kg we recover in
good approximation the normalized absorption and emission
spectra given in Ref. [9].

Up to now, we have considered the relative absorption
and emission spectra. To obtain the correct height of these
spectra, we have to find an appropriate value for g. By
using Ref. [26], we can actually compare our results to
the experimentally obtained absorption and emission spectra.
However, to calculate the emission spectrum for this particular
experiment within our formalism, we have to take into account
that the emission of a photon can be in an arbitrary direction.
Thus to obtain the emission spectrum we have to perform an
integral which averages over all possible emission directions.
However, the absorption spectrum can be obtained without
performing additional integrals, and therefore we focus on
this spectrum to obtain a numerical value for g. Then, as a
consequence of our formalism, for our purposes the correct
emission spectrum is also incorporated.

Before we can fit g, we have to relate our calculated decay
rates to the measured absorption cross sections. We have

dN

dx
= −n↓σabs(ω), (18)

where the left hand-side is the number of absorbed photons dN

at a distance dx along the path of a beam. Furthermore, n↓ is the
density of ground-state molecules, and σabs is the absorption
cross section. By using Fermi’s golden rule, we obtain that
dN/dt is equal to −2Rabs(ω)/h̄. Here Rabs(ω) denotes the
absorption term in the imaginary part of the self-energy. Hence

σabs(ω) = 2Rabs(ω)

ch̄n↓
. (19)

Since the molecules behave as a classical Maxwell-Boltzmann
gas,

n↓ =
(

md,real

2πh̄2β

)3/2

eβμ↓ . (20)

Note that contrary to the mass of the dye molecules used in the
self-energies, we here use the real mass of the dye molecules
to obtain the correct densities. Thus md is the effective
mass to model the rovibrational structure of the molecules,
and md,real 
 7.95 × 10−25 kg is the physical mass of a
rhodamine 6G molecule. By using our expression for R(k,ω)
we observe that the absorption cross section is independent
of μ↓. Therefore we do not need to specify the number of
molecules to obtain a numerical estimate for g. Furthermore
we can relate the absorption cross section given by Eq. (19)
to the molecular extinction coefficient obtained in Ref. [26].
According to Ref. [27],

σ = (3.82 × 10−21 cm3 mol L−1)ε, (21)

where ε = 1.16 × 105 L mol−1 cm−1 is the molar extinction
coefficient. This results in g 
 6.08 × 10−26 J m3/2. A plot
of the absorption and emission cross sections for the obtained
numerical values for �, md, and g is given in Fig. 3. The
shown emission cross section is obtained from Eq. (19) by
replacing Rabs(ω) with Remis(ω). As mentioned before, this is
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FIG. 3. (Color online) The absorption and emission cross sections
of the photons obtained from the imaginary part of the retarded
self-energy for md = 9.3 × 10−35 kg, � = 3.63 × 10−19 J, and g =
6.08 × 10−26 J m3/2. The red (left) curve corresponds to the emission,
and the blue (right) curve denotes the absorption of photons. The
absorption cross section is given by Eq. (19), and the plotted emission
cross section is obtained from the same equation by replacing Rabs(ω)
with Remis(ω).

not the physical emission cross section since that can only be
obtained by integrating over all directions of emission.

III. NONEQUILIBRIUM PHYSICS

We introduce a complex field φ(x,t) for the photons such
that

〈|φ(k,t)|2〉 = N (k,t) + 1
2 , (22)

where N (k,t) corresponds to the average occupation number
of the single-particle state with momentum k at time t . As is
shown in Ref. [25], φ(x,t) obeys a Langevin field equation
for describing the dynamics of the photon gas. This equation
ultimately reads

ih̄
∂

∂t
φ(x,t)

= [H (x) + T |φ(x,t)|2]φ(x,t)

+
∫

dx′dt ′h̄
(+)(x − x′,t − t ′)φ(x′,t ′) + η(x,t), (23)

where the Hamiltonian

H (x) = −h̄2∇2

2mph
− μγ + h̄ckγ + 1

2
mph�

2|x|2. (24)

Here x = (x,y) and the field φ∗(x,t) satisfies the complex
conjugate equation. Furthermore, to obtain this equation, we
expanded Eq. (1) for small transverse momenta, using that
kγ (x) is position dependent due to the curvature of the cavity
mirrors. In this equation mph 
 6.7 × 10−36 kg is the effective
mass of the photons, and � 
 2.6 × 1011 Hz is the trapping
frequency of the harmonic potential. We also introduced a
self-interaction term with strength T 
 1.2 × 10−36 J m2.
According to Ref. [9], this self-interaction of the photons
arises from Kerr nonlinearity or thermal lensing in the dye.
This self-interaction is an effective interaction and therefore
also incorporates renormalization from interactions at high
momenta and energies. Finally, the Gaussian noise η(x,t)

satisfies

〈η(x,t)η∗(x′,t ′)〉 = ih̄

2
h̄
K (x − x′,t − t ′). (25)

Here, the brackets denote averaging over different realizations
of the noise. In general it is difficult to determine correlation
functions from these equations, especially because of the
nonlocality of the retarded self-energy. However, since we are
interested in Bose-Einstein condensation of photons we focus
on the low-energy behavior of this self-energy. In the low-
energy regime we are interested in kξ of the order of unity and
ω around ωB(k), where

h̄ωB(k) =
√(

h̄2k2

2mph

)2

+ 2n0T

(
h̄2k2

2mph

)
, (26)

is the Bogoliubov dispersion and

ξ = h̄

2
√

mphn0T
(27)

is the coherence length, with n0 being the density of condensed
photons. Note that k is the norm of the two-dimensional
momentum vector k = (kx,ky). Since for the experiment of
Ref. [9] the critical number of photons Nc 
 77 000 and the
diameter of the condensate is measured as a function of the
condensate fraction, we can make an estimate of n0. We obtain
condensate densities in the range of at least 1012–1013 m−2.

We make a low-energy approximation to the imaginary
part of the retarded self-energy. As we see in Fig. 4, this is a
good approximation in the low-energy regime. Furthermore,
the real part of the retarded self-energy is small, and as a
zeroth-order approximation we neglect this contribution. Thus
we approximate

h̄
(+)(k,ω) = −iαh̄ω, (28)

and we can write for the Langevin field equation that

ih̄(1 + iα)
∂

∂t
φ(x,t) = [H (x) + T |φ(x,t)|2]φ(x,t) + η(x,t).

(29)

k

ω
/ω

 B
(

)

0

20

40

0.5 1.0 1.5 2.0 2.5 3.0

k

ξ

FIG. 4. (Color online) Plot of the validity of the linear approx-
imation of the retarded self-energy for n0 = 1012 m−2 and certain
values of ω and k. The blue (middle), red (top), and green (bottom)
curves are for, respectively, �μ equal to 3.4 × 10−19, 3.7 × 10−19,
and 4.0 × 10−19 J. Below the curves is the region where the linear
approximation is within 1% of the actual value of the self-energy.
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This is the equation which determines the complete dynamics
of the photon gas. The finite lifetime effects are captured by
the single dimensionless parameter α, which depends on the
difference between the chemical potentials of the excited-state
and ground-state molecules. Furthermore the noise η(x,t) is
related to the Keldysh self-energy via Eq. (25), and in this
approximation

h̄
K (x′ − x,t ′ − t) = −iδ(x − x′)

× 2αh̄

∫
dω

2π
[1 + 2N (ω)]ωe−iω(t ′−t).

(30)

The explicit dependence of α on �μ is given by

α = αmaxnm
e−C(�μ−�)2

cosh
{

1
2β(�μ − �)

} , (31)

where nm is the density of dye molecules,

C = βmd

2h̄2|kγ |2 , (32)

and

αmax =
√

πmd,real

8βh̄2k2
γ

(
β|g|md

md,real

)2

e−βh̄2k2
γ /8md . (33)

The damping parameter α is inversely proportional to the
photon lifetime and accounts for the decay of photons due
to the interaction with the dye molecules. The emission and
absorption of photons are equally important for the photon
equilibration. Therefore α has a maximum when there is an
equal amount of excited-state and ground-state molecules, i.e.,
for �μ = � where P = 0. This also explains the symmetric
form of α around �μ = �. Namely, α should be symmetric
while changing the sign of the polarization as this only
switches the excited-state and ground-state molecule densities.
A plot of α as a function of �μ is shown in Fig. 5.

The Langevin field equation given by Eq. (29) incorporates
the complete dynamics of the photons. However, we still need
to check that for large times the photon distribution function
relaxes to the correct equilibrium. For this it suffices to consider
the homogeneous case and to neglect the self-interaction of

0

1

2

3

75 80 85 90 95 100
βΔμ

10
−2

α

FIG. 5. (Color online) Plot of the dimensionless damping param-
eter α as a function of β�μ. For this plot we used nm = 9 × 1023 m−3.
The parameter α has a maximum value of about 2.65 × 10−2 at �μ

equal to �.

the photons. For purposes of generality, we do not make a
low-energy approximation to the self-energy, and we Fourier
transform the Langevin field equation into

ih̄
∂

∂t
φ(k,t) = (εγ (k) − μγ )φ(k,t) + η(k,t)

+
∫ ∞

t0

dt ′ h̄
(+)(k,t − t ′)φ(k,t ′). (34)

As mentioned in the previous section, the fluctuation-
dissipation theorem given by Eq. (15) should ensure that the
gas relaxes towards thermal equilibrium. To check that this
formalism contains this correct equilibrium, we assume that
〈φ(k,t)φ∗(k,t ′)〉 only depends on the difference t − t ′ and
write

〈φ(k,t)φ∗(k,t ′)〉 =
∫

dω

2π
G(k,ω)e−iω(t−t ′). (35)

Then

ih̄
d

d(t + t ′)
〈φ(k,t)φ∗(k,t ′)〉 = 0, (36)

and for t ′ = t we obtain the equilibrium value for
〈φ(k,t)φ∗(k,t)〉. Since we are interested in the equilibrium, we
consider times much larger than t0. Therefore we are allowed
to take the limit of t0 → −∞. Now Eq. (36) can be rewritten
as

〈η(k,t)φ∗(k,t ′)〉 − 〈φ(k,t)η∗(k,t ′)〉
=

∫ ∞

−∞
dt ′′ 〈φ(k,t)φ∗(k,t ′′)〉h̄
(−)(k,t ′′ − t ′)

−
∫ ∞

−∞
dt ′′ h̄
(+)(k,t − t ′′)〈φ(k,t ′′)φ∗(k,t ′)〉. (37)

Here we used h̄
(−)(k,t ′ − t) = [h̄
(+)(k,t ′ − t)]∗. Further-
more, since the field φ(k,t) and its complex conjugate depend
on the noise, we have a nonzero value for 〈η(k,t)φ∗(k,t ′)〉,
which can be determined by formally integrating Eq. (34) and
using Eq. (25).

In Fourier space Eq. (37) is given by

− 1

2i

K (k,ω)G(+)(k,ω)G(−)(k,ω) = G(k,ω), (38)

where the retarded (+) and advanced (−) photon Green’s
functions are determined by

h̄G(±),−1(k,ω) = h̄ω± − εγ (k) + μγ − h̄
(±)(k,ω). (39)

To make further progress, we introduce the spectral function

ρ(k,ω) = − 1

πh̄
Im[G(+)(k,ω)]

= 1

π

R(k,ω)

[h̄ω − εγ (k) + μγ − S(k,ω)]2 + [R(k,ω)]2

= 1

πh̄2 R(k,ω)G(+)(k,ω)G(−)(k,ω). (40)

This spectral function ρ(k,ω) can be interpreted as a single-
particle density of states. Therefore we can calculate densities
in equilibrium by multiplying this spectral function with the
Bose-distribution function N (ω) and then integrating over h̄ω.
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FIG. 6. (Color online) The spectral function as a function of the frequency ω for ky = kx = 0 for nm = 9 × 1023 m−3 and μγ = 3.5 × 10−19J.
The negative (positive) contribution for negative (positive) frequencies is shown on the left (right) side.

Hence

N (k) =
∫

d(h̄ω) N (ω)ρ(k,ω), (41)

where N (k) is the number of photons in a state with momentum
k. Thus in equilibrium

G(k,ω) = 2πh̄
(

1
2 + N (ω)

)
ρ(k,ω), (42)

where we used the fluctuation-dissipation theorem in Eq. (15).
Hence

〈φ(k,t)φ∗(k,t)〉 = N (k) + 1
2 . (43)

By comparing this result to Eq. (22), we find that the
average occupation numbers N (k,t) relax to N (k). During this
calculation we did not use an approximation for the imaginary
part of the retarded self-energy. However, we can do the same
calculation for R(k,ω) given by αh̄ω. This approximation will
directly manifest itself in the fluctuation-dissipation theorem
and ultimately in the spectral function. Therefore in this
approximation the equilibrium occupation numbers are also
given by Bose-Einstein distribution functions.

IV. EQUILIBRIUM

In the previous section we have shown that the complete
dynamics of the photon gas can be obtained from a Langevin
field equation for a complex field φ(x,t). On top of this
nonequilibrium physics, we have demonstrated the relaxation
of the photons towards the correct equilibrium. In this
section we discuss equilibrium properties of the photon gas,
and we therefore set �μ = μγ according to Eq. (4). We
perform calculations in both the normal and the Bose-Einstein
condensed states.

A. Normal state

We first consider the spectral function of the photons
defined in Eq. (40). The spectral function should satisfy two
conditions. First of all, because we are dealing with bosons,
the spectral function should be positive (negative) for positive
(negative) frequencies. From Eq. (12) it is clear that R(k,ω) has
this property, and therefore this condition is indeed satisfied
by the spectral function. Second, the spectral function should

satisfy the zeroth-frequency sum rule∫
d(h̄ω)ρ(k,ω) = 1. (44)

By numerically integrating this spectral function, we check
that we satisfy the sum rule for all chemical potentials smaller
than the lowest energy of the photons.

As we can see from Fig. 6, the spectral function consists of a
Lorentzian-like peak for positive frequencies and a continuum
for negative frequencies. The latter is roughly five orders of
magnitude smaller than the positive contribution. Since the
positive contribution is approximately a Lorentzian, we can
determine the lifetime of the photons by looking at the width of
these peaks [28]. This lifetime is defined as the time for which
a photon in a certain momentum state k goes into another state
with momentum k′ due to absorption and reemission by the
molecules.

Numerically, we obtained for small momenta and βμγ up
to roughly 87 a lifetime on the order of 10−13 s. If we increase
μγ even further, the lifetime of the photons increases rapidly.
Because for larger values of μγ the peaks of the spectral
function are at smaller frequencies, we can also show this fact
analytically. Since we know that the lifetime of the photon is
related to the imaginary part of this pole, we need to determine
the poles of Eq. (39).

In the previous section we found that for small frequencies
we can use an approximation for the imaginary part of the
self-energy in which it is linear in frequency. Within this
approximation, the Green’s function given by Eq. (39) has
a pole at

h̄ωpole(k) = 1 − iα

1 + α2
[εγ (k) − μγ ]. (45)

Since α2 � 1, a typical lifetime of the photons in the normal
state is given by

τ (k) = h̄

2α(εγ (k) − μγ )
∼ 1

α�
, (46)

where α is given by Eq. (31), �μ is sufficiently large, and �

is the trap frequency of the photons. In the last step we used
the fact that the photons are trapped in a harmonic potential,
and therefore the typical energy of the photons is proportional
to h̄�. From Fig. 5 we know that for the relevant values of
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μγ , α is in the range of 10−3–10−2. Therefore the lifetime of
the photons is in the nanosecond regime, which agrees with
Ref. [9]. We also note that the smallness of α implies that
the collective-mode dynamics of the gas is underdamped as
the ratio between the damping and frequency of the collective
modes is precisely α.

B. Condensed state

In this section we consider the homogeneous two-
dimensional photon gas below the critical temperature for
Bose-Einstein condensation. To describe the condensate of
photons we start from the following two-dimensional action:

Seff[a∗,a] =
∑
k,n

h̄G−1(k,iωn)a∗
k,nak,n

+ T

2

∑
K,k,q,n,m,l

a∗
K−k,n−ma∗

k,maK−q,n−laq,l . (47)

Here

h̄G−1(k,iωn) = ih̄ωn − εγ (k) + μγ − h̄
(k,iωn), (48)

and h̄
(k,iωn) follows from the retarded self-energy by Wick
rotation of the real frequency to Matsubara frequencies iωn.
This action describes the same equilibrium physics as coming
from the Langevin field equation in Eq. (34) since after
a Wick rotation the equations of motion for the field ak,n

are determined by the average of the Langevin equations.
Substituting a0,0 → a0,0 + φ and requiring that the terms
linear in the fluctuations vanish leads to the equation

μγ = h̄ckγ + S(0,0) + T n0, (49)

where n0 is the density of condensed photons. This equation
determines the chemical potential of the Bose-Einstein con-
densate of photons. We obtain βμγ 
 90.9, and according to
Eq. (3), we have a corresponding polarization of roughly 0.93.
Therefore almost all molecules are in the excited state.

To determine the collective excitations of the condensate
over the ground state we consider the action up to second
order in the fluctuations. This is the so-called Bogoliubov
approximation. So

SBog[a∗,a] = −1

2

∑
k,n

u
†
k,nh̄G−1

B (k,iωn)uk,n, (50)

where

uk,n :=
[

ak,n

a∗
−k,−n

]
(51)

and

−h̄G−1
B (k,iωn) =

[
2T n0 T n0

T n0 2T n0

]

−
[
h̄G−1(k,iωn) 0

0 h̄G−1(k, − iωn)

]
.

(52)

Since μγ is given by Eq. (49), we obtain that Det[G−1
B (0,0)] =

0. Therefore we have a gapless excitation, which agrees with
Goldstone’s theorem. By Wick rotating and solving for which

ω the determinant of this matrix vanishes, we can determine
the dispersions. Since we are interested in the low-energy
behavior, we can use Eq. (28) for the self-energy. In this
approximation the dispersions are given by

(1 + α2)h̄ω(k) = −iα(ε̃γ (k) + T n0)

±
√

−(αT n0)2 + ε̃γ (k)(ε̃γ (k) + 2T n0),

(53)

with ε̃γ (k) = εγ (k) − h̄ckγ . The imaginary part of the disper-
sion relations is always negative, and we find a lifetime in
the nanosecond regime for n0 in the range of 1012–1013 m2

and excitations for which kξ < 0.2, with k = |(kx,ky)|. For
excitations with larger momentum the lifetime decreases until
it approaches zero in the limit of k → ∞.

Furthermore, we have the same behavior as was first shown
in Ref. [29] for a nonequilibrium Bose-Einstein condensate of
exciton-polaritons. Also in this case the dispersions become
purely imaginary for small momenta. For the numerical values
of the experiment and n0 = 1012 m2, we have purely imaginary
dispersions for kξ < 2.2 × 10−3. However, this does not imply
that for small momenta there are only decaying quasiparticles
at zero energy. This can be seen in the spectral function, which
in this case corresponds to the imaginary part of GB;11(k,ω+).
In Figs. 7 and 8 we can see the two qualitatively different forms
of the spectral function. For relatively large momenta, we have
two peaks at the real part of the dispersions, and the width of the
peaks is determined by the imaginary part of the dispersions. In
the small-momenta region where both dispersions are purely
imaginary, we have a continuum for both negative and positive
frequencies. Still, the spectral function has a maximum and a
minimum. Therefore in agreement with the large-momentum
case we can also define the position of these extrema as the
dispersion. So, contrary to what the analytical dispersion given
by Eq. (53) suggests, for small momenta the spectral function
also has a maximum and minimum at nonzero energy.

Finally, we check if the spectral function satisfies the sum
rule given by Eq. (44). In the low-frequency approximation for
the retarded self-energy we can integrate the spectral function

10
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FIG. 7. (Color online) A plot of the spectral function as a function
of ω for nm = 9 × 1023 m−3 and n0 = 1012 m−2. In this plot kξ 

3.8 × 10−2.
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FIG. 8. (Color online) Plot of the spectral function as a function
of ω for nm = 9 × 1023 m−3 and n0 = 1012 m−2. In this plot kξ 

1.9 × 10−5.

analytically, and we obtain∫
d(h̄ω) ρ(k,ω) = 1

1 + α2
. (54)

Since we are in the Bose-Einstein condensed phase α 
 4.5 ×
10−3, and we satisfy in very good approximation the sum
rule. Note that this small deviation from the sum rule is a
consequence of making the low-energy approximation to the
self-energy. Namely, this approximation for the self-energy is
only valid for small energies, and therefore the high-frequency
behavior is not incorporated correctly. However, without this
low-energy approximation the self-energy has the correct low-
energy and high-energy limits, and we indeed find that the
spectral function with the full self-energy satisfies the sum
rule.

V. CONCLUSION AND OUTLOOK

In this work we constructed a theory for Bose-Einstein
condensation of photons in a dye-filled cavity. By using the
Schwinger-Keldysh formalism, we obtained a Langevin field
equation that describes the complete dynamics of the photons.

In particular, it incorporates both the coherent and incoherent
dynamics of the gas. Furthermore we found that the finite
lifetime of the photons can be captured in a single parameter
α, which depends on the external laser pumping the dye.
In addition, we also found an analytic expression for this
parameter. In the homogeneous case we have shown that our
theory incorporates the correct equilibrium properties of the
gas.

Subsequently, we calculated the collective modes and
spectral functions of the homogeneous photon gas in the
normal and Bose-Einstein condensed state. In both phases
we found that the lifetime of the photons in the cavity is
in the nanosecond regime, which is the same regime as
found experimentally in Ref. [9]. Moreover, we obtained
that the dynamics of the collective modes is underdamped.
Furthermore, in agreement with the results of Ref. [29] for
exciton-polaritons, we found in the Bose-Einstein condensed
phase that dispersions become formally purely imaginary
for small momentum. Nevertheless, for small momentum
the spectral function also has qualitatively a maximum and
minimum at nonzero energy. Finally, in both phases the
spectral function is well behaved and satisfies the sum rule.

In future research we will consider in detail the fluctu-
ations, in particular the phase fluctuations, of the photon
Bose-Einstein condensate. For a condensate density of n0 

1012 m−2, the trap length l = √

h̄/mph� 
 7.8 × 10−6 m is
about 2 times smaller than the coherence length ξ . However, a
condensate density of n0 
 1013 m−2 results in a trap length l

that is about 2 times larger than the coherence length ξ . Both
condensate densities are accessible experimentally [9], and
therefore we intend to explore both the regime of Bose-Einstein
condensation and the quasicondensate regime.
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